
HAL Id: tel-01297163
https://theses.hal.science/tel-01297163

Submitted on 3 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of Information Theory to Machine Learning
Jérémy Bensadon

To cite this version:
Jérémy Bensadon. Applications of Information Theory to Machine Learning. Metric Geometry
[math.MG]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS025�. �tel-01297163�

https://theses.hal.science/tel-01297163
https://hal.archives-ouvertes.fr

NNT: 2016SACLS025

Thèse de doctorat

de L’Université Paris-Saclay
préparée à L’Université Paris-Sud

École Doctorale n°580
Sciences et technologies de l’information et de la communication

Spécialité : Mathématiques et informatique

par
Jérémy Bensadon

Applications de la théorie de l’information
à l’apprentissage statistique

Thèse présentée et soutenue à Orsay, le 2 février 2016

Composition du Jury :
M. Sylvain Arlot Professeur, Université Paris-Sud Président du jury
M. Aurélien Garivier Professeur, Université Paul Sabatier Rapporteur
M. Tobias Glasmachers Junior Professor, Ruhr-Universität Bochum Rapporteur
M. Yann Ollivier Chargé de recherche, Université Paris-Sud Directeur de thèse

Remerciements

Cette thèse est le résultat de trois ans de travail, pendant lesquels j’ai côtoyé
de nombreuses personnes qui m’ont aidé, soit par leurs conseils ou leurs idées,
soit simplement par leur présence, à produire ce document.

Je tiens tout d’abord à remercier mon directeur de thèse Yann Ollivier.
Nos nombreuses discussions m’ont beaucoup apporté, et j’en suis toujours
sorti avec les idées plus claires qu’au départ.

Je remercie également mes rapporteurs Aurélien Garivier et Tobias Glas-
machers pour leur relecture attentive de ma thèse et leurs commentaires,
ainsi que Sylvain Arlot, qui m’a permis de ne pas me perdre dans la littérature
sur la régression et a accepté de faire partie de mon jury.

Frédéric Barbaresco a manifesté un vif intérêt pour la troisième partie de
cette thèse, et a fourni de nombreuses références, parfois difficiles à trouver.

L’équipe TAO a été un environnement de travail enrichissant et agréable,
par la diversité et la bonne humeur de ses membres, en particulier mes ca-
marades doctorants. Un remerciement tout particulier aux secrétaires de
l’équipe et de l’école doctorale Marie-Carol puis Olga, et Stéphanie, pour
leur efficacité. Leur aide dans les différentes procédures de réinscription et
de soutenance a été inestimable.

Enfin, je voudrais surtout remercier ma famille et mes amis, en particulier
mes parents et mes sœurs. Pour tout.

Paris, le 27 janvier 2016
Jérémy Bensadon

3

Contents

Introduction 8
1 Regression . 8
2 Black-Box optimization: Gradient descents 10
3 Contributions . 11
4 Thesis outline . 12

Notation 14

I Information theoretic preliminaries 15

1 Kolmogorov complexity 16
1.1 Motivation for Kolmogorov complexity 16
1.2 Formal Definition . 17
1.3 Kolmogorov complexity is not computable 18

2 From Kolmogorov Complexity to Machine Learning 20
2.1 Prefix-free Complexity, Kraft’s Inequality 20
2.2 Classical lower bounds for Kolmogorov complexity 21

2.2.1 Coding integers . 21
2.2.2 Generic bounds . 22

2.3 Probability distributions and coding: Shannon encoding the-
orem . 23
2.3.1 Non integer codelengths do not matter: Arithmetic

coding . 25
2.4 Model selection and Kolmogorov complexity 28
2.5 Possible approximations of Kolmogorov complexity 29

3 Universal probability distributions 31
3.1 Two-part codes . 34

3.1.1 Optimal precision . 34
3.1.2 The i.i.d.case: confidence intervals and Fisher infor-

mation . 35
3.1.3 Link with model selection 36

3.2 Bayesian models, Jeffreys’ prior 37
3.2.1 Motivation . 37

4

3.2.2 Construction . 38
3.2.3 Example: the Krichevsky–Trofimov estimator 38

3.3 Context tree weighting . 41
3.3.1 Markov models and full binary trees 41
3.3.2 Prediction for the family of visible Markov models . . 42
3.3.3 Computing the prediction 42

3.3.3.1 Bounded depth 43
3.3.3.2 Generalization 45

3.3.4 Algorithm . 46

II Expert Trees 47

4 Expert trees: a formal context 50
4.1 Experts . 51

4.1.1 General properties . 52
4.2 Operations with experts . 53

4.2.1 Fixed mixtures . 53
4.2.2 Bayesian combinations 54
4.2.3 Switching . 55

4.2.3.1 Definition . 55
4.2.3.2 Computing some switch distributions: The

forward algorithm 56
4.2.4 Restriction . 61
4.2.5 Union . 61

4.2.5.1 Domain union 61
4.2.5.2 Target union 62
4.2.5.3 Properties 63

4.3 Expert trees . 65
4.3.1 Context Tree Weighting 67
4.3.2 Context Tree Switching 68

4.3.2.1 Properties 69
4.3.3 Edgewise context tree algorithms 74

4.3.3.1 Edgewise Context Tree Weighting as a Bayesian
combination 75

4.3.3.2 General properties of ECTS 76
4.3.4 Practical use . 80

4.3.4.1 Infinite depth algorithms 80
4.3.4.1.1 Properties 81

4.3.4.2 Density estimation 82
4.3.4.3 Text compression 84
4.3.4.4 Regression 84

5 Comparing CTS and CTW for regression 86

5

5.1 Local experts . 86
5.1.1 The fixed domain condition 86
5.1.2 Blind experts . 87
5.1.3 Gaussian experts . 87
5.1.4 Normal-Gamma experts 88

5.2 Regularization in expert trees 89
5.2.1 Choosing the regularization 90

5.3 Regret bounds in the noiseless case 94
5.3.1 CTS . 94
5.3.2 ECTS . 96
5.3.3 CTW . 100

6 Numerical experiments 104
6.1 Regression . 104
6.2 Text Compression . 108

6.2.1 CTS in [VNHB11] . 108

III Geodesic Information Geometric Optimization 110

7 The IGO framework 113
7.1 Invariance under Reparametrization of θ: Fisher Metric . . . 113
7.2 IGO Flow, IGO Algorithm 115
7.3 Geodesic IGO . 116
7.4 Comparable pre-existing algorithms 117

7.4.1 xNES . 117
7.4.2 Pure Rank-µ CMA-ES 119

8 Using Noether’s theorem to compute geodesics 121
8.1 Riemannian Geometry, Noether’s Theorem 121
8.2 GIGO in G̃d . 123

8.2.1 Preliminaries: Poincaré Half-Plane, Hyperbolic Space 124
8.2.2 Computing the GIGO Update in G̃d 125

8.3 GIGO in Gd . 126
8.3.1 Obtaining a First Order Differential Equation for the

Geodesics of Gd . 126
8.3.2 Explicit Form of the Geodesics of Gd (from [CO91]) . 130

8.4 Using a Square Root of the Covariance Matrix 131

9 Blockwise GIGO, twisted GIGO 133
9.1 Decoupling the step size . 133

9.1.1 Twisting the Metric 133
9.1.2 Blockwise GIGO, an almost intrinsic description of

xNES . 135

6

9.2 Trajectories of Different IGO Steps 137

10 Numerical experiments 142
10.1 Benchmarking . 142

10.1.1 Failed Runs . 143
10.1.2 Discussion . 144

10.2 Plotting Trajectories in G1 145

Conclusion 151
1 Summary . 151

1.1 Expert Trees . 151
1.2 GIGO . 151

2 Future directions . 151

A Expert Trees 153
A.1 Balanced sequences . 154

A.1.1 Specific sequence achieveing the bound in Section 5.3.1 155
A.2 Loss of Normal–Gamma experts 156
A.3 Pseudocode for CTW . 162

B Geodesic IGO 164
B.1 Generalization of the Twisted Fisher Metric 165
B.2 Twisted Geodesics . 166
B.3 Pseudocodes . 168

B.3.1 For All Algorithms . 168
B.3.2 Updates . 169

Bibliography 172

Index 178

7

Introduction

Information theory has a wide range of applications. In this thesis, we
focus on two different machine learning problems, for which information
theoretical insight was useful.

The first one is regression of a function f : X 7→ Y . We are given a
sequence (xi) and we want to predict the f(xi) knowing the f(xj) for j < i.
We use techniques inspired by the Minimum Description Length principle
to obtain a quick and robust algorithm for online regression.

The second one is black box optimization. Black-box optimization con-
sists in finding the minimum of a function f when the only information we
have about f is a “black box” returning f . Our goal is to find the min-
imum of f using as few calls of the black box as possible. We transform
this optimization problem into an optimization problem over a family Θ of
probability distributions, and by exploiting its Riemannian manifold struc-
ture [AN07], we introduce a black-box optimization algorithm that does not
depend on arbitrary user choices.

1 Regression

Density estimation and text prediction can be seen as general regression
problems. Indeed, density estimation on X is regression of a random func-
tion from a singleton to X, and text prediction with alphabet A is regression
of a function from N to A, with sample points coming in order.

This remark led us to generalize a well-known text compression algo-
rithm, Context Tree Weighting (CTW), to general regression problems, and
therefore also to density estimation. The CTW algorithm computes the
Bayesian mixture of all visible Markov models for prediction.

The generalized CTW algorithm computes a similar Bayesian mixture,
but on regression models using specialized submodels on partitions of Df .

The idea of using trees for regression is not new. We give the essential
characteristics of the general CTW algorithm below:

• The main motivation for the generalized CTW algorithm is the min-
imum description length principle: we want the shortest description
of the data. More precisely, the prediction of f(xi) is a probability

8

@
@
@

�
�
�

@
@
@

�
�
�

c

c

d

d

Figure 1: A Markov model for text prediction on {c, d} (Figure 3.1). Each
leaf s contains a local model for characters occuring after the context s

@
@
@

�
�
�

@
@
@

�
�
�

[0, 1)

[0, .5)

[.5, .75)

[.5, 1)

[.75, 1)

Figure 2: A Markov model for regression on [0, 1). Each leaf [a, b) contains
a local model for regression on [a, b).

distribution P on Y , and the loss is − lnP (f(xi)) (this point of view
will be developed in part I). MDL-driven histogram models for density
estimation have been studied in [KM07].

In several other methods where Y = R, the prediction for f(xi) is a
real number, and the loss incurred is the square of the error, this cor-
responds to the log loss, where the prediction is a Gaussian probability
distribution around f(xi) with fixed variance.

• CTW is robust: it computes the Bayesian mixture of a very large num-
ber of models, and consequently, performs at least as well as the best
of these models (up to a constant independent of the data). More-
over, since CTW performs model averaging and not model selection
(as in [Aka09]), a small variation in the previous data cannot lead to
a large variation in the predictions (unless the local models are not
continuous).

• The tradeoff for this robustness is that to compute the average over
all the models, the tree has to be fixed in advance (for example, by
splitting the interval corresponding to a given node in two equal parts,
we obtain a Bayesian mixture on all dyadic partition models). This
is different from CART or random forests [BFOS84], [HTF01] [RG11],
since the trees built by these algorithms are allowed to depend on the
data.

• Contrarily to kernel methods for density estimation, or lasso and ridge
regression for regression [HTF01], CTW is an online model,and conse-

9

quently, it has to run fast: the running time for one data point is the
depth of the tree multiplied by the time complexity of the models at
the nodes.

• CTW is not a model by itself, it is a way of combining models. It
is close to Hierarchical Mixtures of Experts [HTF01], but the main
difference with the latter is that CTW treats all nodes the same way.

2 Black-Box optimization: Gradient descents

A common approach for black-box optimization, shared for example by
CMA-ES [Han11] and xNES [GSY+10], is the maintaining of a probability
distribution Pt according to which new points are sampled, and updating Pt
according to the sampled points at time t.

A simple way of updating Pt is a gradient descent on some space of
probability distributions (we will be specifically interested in Gaussian dis-
tributions), parametrized by some Θ (e.g. mean and covariance matrix for
Gaussians). We try to minimize EPt(f), thus yielding the update:

θt+δt = θt − δt
∂EPθt (f)

∂θ
(1)

However, there is a fundamental problem:
∂EP

θt
(f)

∂θ depends on the
parametrization θ 7→ Pθ.

As a simple example, suppose we are tring to minimize f : (x, y) 7→ x2 +
y2. The gradient update is (x, y)t+δt = (x, y)t − δt(2x, 2y). Now, we change
the parametrization by setting x′ = 1

1000x. We have f(x′, y) = 106(x′)2 +y2,
so the new gradient update reads: (x′, y)t+δt = (x′, y)t − δt(2.106x′, 2y),
which corresponds to (x, y)t+δt = (x, y)t− δt(2.103x, 2y), a different update.

In general, for any given time step δt, by simply changing the parametriza-
tion, it is possible to reach any point of the half space ∂f

∂θ < 0, so gradient
descents are not well defined.

A possible way of solving this problem is to endow Θ with a metric

θ 7→ I(θ), and the gradient update then reads θt+δt = θt− δtI−1(θ)
∂EP

θt
(f)

∂θ .
This point of view will be developed at the beginning of part III.

The Fisher metric is a metric that appears naturally when considering
probability distributions. The gradient associated with the Fisher metric is
called the natural gradient, and the study of spaces of probability distribu-
tions endowed with this metric (so they are Riemannian manifolds) is called
Information Geometry [AN07].

As shown in [OAAH11], both CMA-ES and xNES can be described as
natural gradient descents, for different parametrizations. Following [OAAH11],

10

instead of applying a pure gradient method, we used this Riemannian man-
ifold structure to define a fully parametrization-invariant algorithm that
follows geodesics.

3 Contributions

The contributions of this thesis can be separated in two parts: the first
one concerns the generalization of the Context Tree Weighting algorithm,
and the second one concerns black-box optimization. They are the following:

Generalization of the Context Tree Weighting algorithm. The
Context Tree Weighting algorithm efficiently computes a Bayesian combi-
nation of all visible Markov models for text compression. We generalize
this idea to regression and density estimation, replacing the set of visible
Markov models by (for example) the set of dyadic partitions of [0, 1], which
correspond to the same tree structure. The framework developed here also
recovers several algorithms derived from the original CTW algorithm such
as Context Tree Switching [VNHB11], Adaptive Context Tree Weighting
[OHSS12], or Partition Tree Weighting [VWBG12].

Edgewise context tree algorithms. Suppose that we are regressing
a function on [0, 1) but we mostly saw points in [0, 0.5). If the predictions
on [0, 0.5) are good, the posterior of the model “split [0, 1) into [0, 0.5)
and [0.5, 1) will be much greater than the posterior of the model “use the
local expert on [0, 1)”. In particular, a new point falling in [0.5, 1) will be
predicted with the local expert for [0.5, 1), but this model will not have
enough observations to issue a meaningful prediction.

The edgewise versions of the context tree algorithms address this by al-
lowing models of the form “Use the local expert on [0, 0.5) if the data falls
there, and use the local expert on [0, 1) if the data falls into [0.5, 1)”, with
the same algorithmic complexity as the non edgewise versions. The edge-
wise context tree weighting algorithm can even be described as a Bayesian
combination similar to the regular CTW case (Theorem 4.41).

Switch behaves better than Bayes in Context Trees. We prove
that in a 1-dimensional regression case, the Context Tree Switching algo-
rithm offers better performance that the Context Tree Weighting algorithm.
More precisely, for any Lipschitz regression function:

• The loss of the CTS and edgewise CTS algorithms at time t is less than
−t ln t + O(t).1 This bound holds for a larger class of sample points
with the edgewise version of the algorithm (Corollaries 5.14 and 5.18).

1 Negative losses are an artifact due to the continuous setting, with densities instead
of actual probabilities. “Loss L” has to be read as “− ln ε + L bits are needed to encode
the data with precision ε”.

11

• The loss of the CTW algorithm at time t is at least −t ln t+ 1
2 t ln ln t+

O(t) (Corollary 5.20).2

More generally, under the same assumptions, any Bayesian combina-
tion of any unions of experts incurs the same loss (Corollary 5.21).

A fully parametrization-invariant black-box optimization algo-
rithm. As shown in [OAAH11], xNES [GSY+10] and CMA-ES [Han11]
can be seen as natural gradient descents in Gd the space of Gaussian dis-
tributions in dimenstion d endowed with the Fisher metric, using different
parametrizations. Although the use of the natural gradient ensures that
they are equal at first order, in general, different parametrizations for Gd

yield different algorithms. We introduce GIGO, which follows the geodesics
of Gd and is consequently fully parametrization-invariant.

Application of Noether’s Theorem to the geodesics of the space
of Gaussians. Noether’s theorem roughly states that if a system has sym-
metries, then there are invariants attached to these symmetries. It can be
directly applied to computing the geodesics of Gd. While a closed form of
these geodesics has been known for more than twenty years [Eri87, CO91],
Noether’s theorem provides enough invariants to obtain a system of first
order differential equations satisfied by the geodesics of Gd.

3

A description of xNES as a “Blockwise GIGO” algorithm. We
show that contrary to previous intuition ([DSG+11], Figure 6), xNES does
not follow the geodesics of Gd (Proposition 9.13). However, we can give
an almost intrinsic description of xNES as “Blockwise GIGO” (Proposition
9.10): if we write Gd

∼= Rd×Pd and split the gradient accordingly, then the
xNES update follows the geodesics of these two spaces separately.

4 Thesis outline

The first part (Chapters 1 to 3) is an introduction focusing on the Mini-
mum Description Length principle, and recalling the Context Tree Weight-
ing [WST95] algorithm, which will be generalized in part II, and the Fisher
metric, which will be used in part III. This part mostly comes from the notes
of the first three talks of a series given by Yann Ollivier, the full notes can
be found at www.lri.fr/~bensadon.

Chapter 4 introduces a formal way of handling sequential prediction,
experts 4, and presents switch distributions. These tools are then used
to generalize the Context Tree Weighting (CTW) and the Context Tree
Switching (CTS) algorithm.

2See footnote 1.
3Theorem 8.13 gives equation (4) from [CO91], the integration constants being the

Noether invariants.
4Experts can be seen as a generalization of Prequential Forecasting Systems [Daw84].

12

www.lri.fr/~bensadon

Chapter 5 compares the performance of the Context Tree Weighting and
the Context Tree Switching algorithms on a simple regression problem. In
Chapter 6, numerical experiments are conducted.

The next part led to [Ben15]. Chapter 7 presents the IGO framework
[OAAH11], that can be used to describe several state of the art black-box
optimization algorithms such as xNES [GSY+10] and CMA-ES [Han11]5;
and introduces Geodesic IGO, a fully parametrization-invariant algorithm.
The geodesics of Gd the space of Gaussians in dimension d, needed for the
practical implementation of the GIGO algorithm, are computed in Chapter
8.

Chapter 9 introduces two possible modifications of GIGO (twisted GIGO
and blockwise GIGO) to allow it to incorporate different learning rates for
the mean and the covariance.

Finally, GIGO is compared with pure rank-µ CMA-ES and xNES in
Chapter 10.

5Actually, only pure rank-µ CMA-ES can be described in the IGO framework

13

Notation

We introduce here some general notation that we will use throughout this
document.

• |x| is the “size” of x. Its exact signification depends on the type of x
(length of a string, cardinal of a set, norm of a vector...).

• If A is a set, A∗ denotes the set of finite words on A.

•
∏m
i=n ... and

∑m
i=n ... when m < n denote respectively an empty prod-

uct, which is 1, and an empty sum, which is 0.

• We usually denote the nodes of a tree T by character strings. In the
binary case, for example, the root will be ε, and the children of s are
obtained by appending 0 or 1 to s. We will use prefix or suffix notation
according to the context.

We simply refer to the set of the children of a given node whenever
possible.

• If T is a tree, we denote by Ts the maximal subtree of T with root s.

• Vectors (and strings) will be noted either with bold letters (e.g. z)
if we are not interested in their length, or with a superscript index
(e.g. zn = (z1, z2, ..., zn)). zn:m := (zn, zn+1, ..., zm−1, zm) denotes the
substring of z from index n to index m. If no z0 is defined, z0 := ∅.

• For any set X, for any x ∈ X, for any k ∈ N ∪ {∞}, xk is the vector
(or string) of length k containing only x.

• For any set X, for I, J ∈ XN, we write I ∼n J if Ii = Ji for i > n.

14

Part I

Information theoretic
preliminaries

15

Chapter 1

Kolmogorov complexity

Most of the ideas discussed here can be found in [LV08].

1.1 Motivation for Kolmogorov complexity

When faced with the sequence 2 4 6 8 10 12 x, anybody would expect x to
be 14. However, one could argue that the sequence 2 4 6 8 10 12 14 does
not exist “more” than 2 4 6 8 10 12 13, or 2 4 6 8 10 12 0: there seems to
be no reason for picking 14 instead of anything else. There is an answer to
this argument: 2 4 6 8 10 12 14 is “simpler” than other sequences, in the
sense that it has a shorter description.

This can be seen as a variant of Occam’s razor, which states that for a
given phenomenon, the simplest explanation should be preferred. This prin-
ciple has been formalized in the 60s by Solomonoff [Sol64] and Kolmogorov
[Kol65]. As we will soon see, the Kolmogorov complexity of an object is
essentially the length of its shortest description, where “description of x”
means “algorithm that can generate x”, measured in bytes. However, in
practice, finding the shortest description of an object is difficult.

Kolmogorov complexity provides a reasonable justification for “induc-
tive reasoning”, which corresponds to trying to find short descriptions for
sequences of observations. The general idea is that any regularity, or struc-
ture, detected in the data can be used to compress it.

This criterion can also be used for prediction: given a sequence x1, ..., xn, (?)
choose the xn+1 such that the sequence x1, ..., xn+1 has the shortest descrip-
tion, or in other words, such that xn+1 “compresses best” with the previous
xi . For example, given the sequence 0000000?, 0 should be predicted, be-
cause 00000000 is simpler than 0000000x for any other x.

As a more sophisticated example, given a sequence x1, y1, x2, y2, x3, y3, x4, ...,
if we find a simple f such that f(xi) = yi, we should predict f(x4) as the
next element of the sequence. With this kind of relationship, it is only nec-

16

essary to know the xi, and f to be able to write the full sequence. If we
also have xi+1 = g(xi), then only x0,f and g have to be known: somebody
who has understood how the sequence (1, 1; 2, 4; 3, 9; 4, 16; ...) is made will
be able to describe it very efficiently.

Any better understanding of the data can therefore be used to find struc-
ture in the data, and consequently to compress it better: comprehension and
compression are essentially the same thing. This is the Minimum Descrip-
tion Length (MDL) principle [Ris78].

In the sequence (1, 1; 2, 4; 3, 9; 4, 16; ...), f was very simple, but the more
data we have, the more complicated f can reasonably be: if you have to
learn by heart two sentences x1, y1, where x1 is in English, and y1 is x1 in
German, and you do not know German, you should just learn y1. If you
have to learn by heart a very long sequence of sentences such that xi is a
sentence in English and yi is its translation in German, then you should
learn German. In other words, the more data we have, the more interesting
it is to find regularity in them.

The identity between comprehension and compression is probably even
clearer when we consider text encoding: with a naive encoding, a simple
text in English is around 5 bits for each character (26 letters, space, dot),
whereas the best compression algorithms manage around 3 bits per charac-
ter. However, by removing random letters from a text and having people
try to read it, the actual information has been estimated at around 1 bit per
character ([Sha51] estimates the entropy between .6 and 1.3 bit per charac-
ter).

1.2 Formal Definition

Let us now define the Kolmogorov complexity formally:

Definition 1.1. The Kolmogorov complexity of x a sequence of 0s and 1s
is by definition the length of the shortest program on a Universal Turing
machine1 that prints x. It is measured in bits.2

The two propositions below must be seen as a sanity check for our defi-
nition of Kolmogorov complexity. Their proofs can be found in [LV08].

Proposition 1.2 (Kolmogorov complexity is well-defined). The Kolmogorov
complexity of x does not depend on the Turing machine, up to a constant
which does not depend on x (but does depend on the two Turing machines).

Sketch of the proof. if P1 prints x for the Turing machine T1, then if I12 is
an interpreter for language 1 in language 2, I12 :: P1 prints x for the Turing
machine T2, and therefore K2(x) 6 K1(x) + length(I12)

1Your favorite programming language, for example.
2Or any multiple of bits.

17

In other words, if P is the shortest zipped program that prints x in your
favourite programming language, you can think about the Kolmogorov com-
plexity of x as the size (as a file on your computer) of P (we compress the
program to reduce differences from alphabet and syntax between program-
ming languages).

Since Kolmogorov complexity is defined up to an additive constant, all
inequalities concerning Kolmogorov complexity are only true up to an ad-
ditive constant. Consequently, we write K(x)+6 f(x) for K(x) 6 f(x) + a,
where a does not depend on x:

Notation 1.3. Let X be a set, and let f , g be two applications from X to
R.

We write f+6 g if there exists a ∈ R such that for all x ∈ X, f(x) 6
g(x) + a.

If the objects we are interested in are not sequences of 0 and 1 (pictures,
for example), they have to be encoded.

Proposition 1.4. the Kolmogorov complexity of x does not depend on the
encoding of x, up to a constant which does not depend on x (but does depend
on the two encodings).

Sketch of the proof. Let f ,g be two encodings of x. We have K(g(x)) <
K(f(x)) +K(g ◦ f−1) (instead of encoding g(x), encode f(x), and the map
g ◦ f−1. max

(
K(g ◦ f−1),K(f ◦ g−1)

)
is the constant).

In other words, the Kolmogorov complexity of a picture will not change
if you decide to put the most significant bytes for your pixels on the right
instead of the left.

Notice that the constants for these two propositions are usually reason-
ably small (the order of magnitude should not exceed the megabyte, while
it is possible to work with gigabytes of data).

1.3 Kolmogorov complexity is not computable

Kolmogorov complexity is not computable. Even worse, it is never possible
to prove that the Kolmogorov complexity of an object is large.

An intuitive reason for the former fact is that to find the Kolmogorov
complexity of x, we should run all possible programs in parallel, and choose
the shortest program that outputs x, but we do not know when we have
to stop: There may be a short program still running that will eventually
output x. In other words, it is possible to have a program of length K(x)
that outputs x, but it is not possible to be sure that it is the shortest one.

18

Theorem 1.5 (Chaitin’s incompleteness theorem). There exists a constant
L3 such that it is not possible to prove the statement K(x) > L for any x.

Sketch of the proof. For some L, write a program that tries to prove a state-
ment of the form K(x) > L (by enumerating all possible proofs). When a
proof of K(x) > L for some x is found, print x and stop.

If there exists x such that a proof of K(x) > L exists, then the program
will stop and print some x0, but if L has been chosen largen enough, the
length of the program is less than L, and describes x0. Therefore, K(x0) 6
L. contradiction.

This theorem is proved in [Cha71] and can be linked to Berry’s paradox:
“The smallest number that cannot be described in less than 13 words”
“The [first x found] that cannot be described in less than [L] bits”.

Corollary 1.6. Kolmogorov complexity is not computable.

Proof. Between 1 and 2L+1, there must be at least one integer n0 with Kol-
mogorov complexity greater that L (since there are only 2L+1− 1 programs
of length L or less). If there was a program that could output the Kol-
mogorov complexity of its input, we could prove that K(n0) > L, which
contradicts Chaitin’s theorem.

As a possible solution to this problem, we could define Kt(x), the length
of the smallest program that outputs x in less than t instructions, but we
lose some theoretical properties of Kolmogorov complexity (Proposition 1.2
and 1.4 have to be adapted to limited time but they are weaker, see [LV08],
Section 7. For example, Proposition 1.2 becomes Kct log2 t,1(x) 6 Kt,2(x)+c).

3reasonably small, around 1Mb

19

Chapter 2

From Kolmogorov
Complexity to Machine
Learning

Because of Chaitin’s theorem, the best we can do is finding upper bounds
on Kolmogorov complexity. First, we introduce prefix-free Kolmogorov com-
plexity and prove Kraft’s inequality, and state Shannon encoding theorem.
Finally, we give classical upper bounds on Kolmogorov complexity, firstly
for integers, then for other strings.

2.1 Prefix-free Complexity, Kraft’s Inequality

If we simply decide to encode an integer by its binary decomposition, then,
we do not know for example if the string ”10” is the code for 2, or the code
for 1 followed by the code for 0.

Similarly, given a Turing machine, and two programs P1 and P2, there
is nothing that prevents the concatenation P1P2 from defining another pro-
gram that might have nothing to do with P1 or P2.

This leads us to the following (not formal) definition:

Definition 2.1. A set of strings S is said to be prefix-free is no element of
S is a prefix of another.

A code is said to be prefix-free if no codeword is a prefix of another (or
equivalently, if the set of codewords is prefix-free).

We then adapt the definition of Kolmogorov complexity by forcing the
set of programs to be prefix-free (hence the name prefix-free Kolmogorov
complexity1).

1“self-delimited” is sometimes used instead of prefix-free.

20

It is clear now that if we receive a message encoded with a prefix-free
code, we can decode it unambiguously letter by letter, while we are reading
it, and if a Turing machine is given two programs P1 and P2, their concate-
nation will not be ambiguous.

With programming languages, for example, working with prefix-free
complexity does not change anything, since the set of compiling programs
is prefix free (the compiler is able to stop when the program is finished).

However, being prefix-free is a strong constraint: a short codeword for-
bids many longer words. More accurately, we have the following result:

Proposition 2.2 (Kraft’s inequality). Let S ⊂ {0, 1}∗ be the set of prefix-
free set of strings, and let S ∈ S. We have∑

s∈S
2−|s| 6 1 (2.1)

Sketch of the proof. We construct an application φ from S to the set of
binary trees: for S ∈ S, φ(S) is the smallest full binary tree T such that all
elements of s are leaves of T . Such a tree always exists: start with a deep
enough tree2, and close nodes until each pair of “sibling leaves” contain
either an element of S or a node that has at least one element of s as its
children. No internal node can correspond to an element of S, because it
would then be the prefix of another element of s.

So finally, we have:∑
s∈S

2−|s| 6
∑

s leaves ofφ(S)

2−|s| = 1 (2.2)

For the general proof, see Theorem 1.11.1 in [LV08].

2.2 Classical lower bounds for Kolmogorov com-
plexity

2.2.1 Coding integers

Now, let us go back to integers:

Proposition 2.3. Let n be an integer. We have

K(n)+6 log2 n+ 2 log2 log2 n. (2.3)

2We overlook the “infinite S” case, for example, S = {0, 10, 110, 1110, ...}, but the idea
behind a more rigorous proof would be the same.

21

Proof, and a bit further. Let n be an integer, and let us denote by b its
binary expansion, and by l the length of its binary expansion (i.e. l =
blog2(n+ 1)c ∼ log2 n).

Consider the following prefix codes (if c is a code, we will denote by c(n)
the codeword used for n):

• c1: Encode n as a sequence of n ones, followed by zero. Complexity n.

• c2: Encode n as c1(l) :: b, with l and b as above. To decode, simply
count the number k of ones before the first zero. The k bits following
it are the binary expansion of n. Complexity 2 log2 n.

• c3: Encode n as c2(l) :: b. To decode, count the number k1 of ones
before the first zero, the k2 bits following it are the binary expansion of
l, and the l bits after these are the binary expansion of n. Complexity
log2 n+ 2 log2 log2 n, which is what we wanted.

• We can define a prefix-free code ci by setting ci(n) = ci−1(l) :: b. The
complexity improves, but we get a constant term for small integers,
and anyway, all the corresponding bounds are still equivalent to log2 n
as n→∞.

• It is easy to see that the codes above satisfy cn(1) = n + 1: for small
integers, it would be better to stop the encoding once a number of
length one (i.e. one or zero) is written. Formally, this can be done the
following way: consider c∞,1 defined recursively as follows :

c∞,1(n) = c∞,1(l − 1) :: b :: 0, (2.4)

c∞,1(1) = 0. (2.5)

It is easy to see that c∞,1(n) begins with 0 for all n, i.e, c∞,1 = 0 :: c∞,2.

We can now set c∞(0) = 0 and c∞(n) = c∞,2(n+ 1).

The codes c2 and c3 are similar to Elias gamma and delta (respectively)
coding. c∞ is called Elias omega coding [Eli75].

2.2.2 Generic bounds

We also have the following bounds:

1. A simple program that prints x is simply print(x). The length of
this program is the length of the function print, plus the length of x,
but it is also necessary to provide the length of x to know when the
print function stops reading its input (because we are working with
prefix-free Kolmogorov complexity). Consequently

K(x)+6 |x|+K(|x|). (2.6)

22

By counting arguments, some strings x have a Kolmogorov complex-
ity larger than |x|. These strings are called random strings by Kol-
mogorov. The justification for this terminology is that a string that
cannot be compressed is a string with no regularities.

2. The Kolmogorov complexity of x is the length of x compressed with
the best compressor for x. Consequently, we can try to approximate
it with any standard compressor, like zip, and we have:

K(x)+6 |zip(x)|+ |unzip program|. (2.7)

This property has been used to define the following distance between two ob-

jects: d(x, y) =
max (K(x)|y),K(y|x))

max (K(x),K(y))
. By using distance-based clustering

algorithms, the authors of [CV] have been able to cluster data (MIDI files,

texts...) almost as anyone would expected (the MIDI files were clustered

together, with subclusters essentially corresponding to the composer, for ex-

ample). In the same article, the Universal Declaration of Human Rights in

different languages has been used to build a satisfying language tree.

3. If we have some finite set E such that x ∈ E, then we can simply
enumerate all the elements of E. In that case, an x can be described
as “the nth element of E. For this, we need K(E) bits to describe E,
and dlog2 |E|e bits to identify x in E:

K(x)+6 K(E) + dlog2 |E|e. (2.8)

4. More generally,

Theorem 2.4. If µ is a probability distribution on a set X, and x ∈ X,
we have

K(x)+6 K(µ)− log2(µ(x)). (2.9)

For example, if µ is uniform, we find equation (2.8). Another simple
case is the i.i.d. case, which will be discussed later. This inequality is
the most important one for machine learning, because a probability
distribution µ such that K(µ)− log2(µ(x)) is small can be thought of
as a “good” description of x, and we can expect it to predict upcoming
terms well. The proof of this inequality consists in noting that coding
x with − log2 µ(x) bits satisfies Kraft’s inequality.

2.3 Probability distributions and coding: Shan-
non encoding theorem

Let X be a countable alphabet, and suppose we are trying to encode effi-
ciently a random sequence of characters (xi) ∈ XN, such that P (xn|xn−1) is
known:

23

For all n, we are trying to find the codelength L minimizing

E(L(xn)) =
∑

xn∈An
P (xn)L(xn), (2.10)

under the constraint given by Kraft’s inequality:∑
xn∈An

2−L(xn) 6 1 (2.11)

The solution of this optimization problem is L(x) := − log2 P (x), and
from now on, we will identify codelengths functions L with probability dis-
tributions 2−L.

Definition 2.5. Let X be a countable alphabet, let µ and ν be probability
distributions on X, and let (xi) be a sequence of i.i.d random variables
following µ.

The quantity H(µ) = −
∑
x∈X

µ(x) log2 µ(x) is called entropy of µ. It is

the expected number of bits needed to encode an x sampled according to µ
when using µ.

The quantity KL(µ‖ν) :=
∑
x∈X

ν(x) log2

ν(x)

µ(x)
is called Kullback-Leibler

divergence from ν to µ. It is the expected additional number of bits needed
to encode if x is sampled according to ν, and we are using µ instead of ν.

The Kullback–Leibler divergence is always positive. In particular, the
entropy of a probability distribution µ is the minimal expected number of
bits to encode an x sampled according to µ.

Proposition 2.6. The Kullback–Leibler divergence is positive:
Let X be a countable alphabet, and let µ, ν be two probability distributions

on X. We have:
KL(µ‖ν) > 0 (2.12)

Proof.

KL(µ‖ν) :=
∑
x∈X

ν(x) log2

ν(x)

µ(x)
(2.13)

> log2

(∑
x∈X

ν(x)
ν(x)

µ(x)

)
= 0 (2.14)

In all this section, we have been suggesting to encode any x with− log2 µ(x)
bits for some µ, without checking that − log2 µ(x) is an integer. We now
justify this apparent oversight.

24

2.3.1 Non integer codelengths do not matter: Arithmetic
coding

The idea behind (2.9) is that for a given set E, if I think some elements are
more likely to appear than others, they should be encoded with fewer bits.
For example, if in the set {A,B,C,D}, we have P (A) = 0.5, P (B) = 0.25,
and P (C) = P (D) = 0.125, instead of using a uniform code (two bits for
each character), it is better to encode for example3 A with 1, B with 01, C
with 001 and D with 000.

In the first example, the expected length with the uniform code is 2 bits
per character, while it is 1.75 bits per character for the other.

In general, it can be checked that the expected length is minimal if the
length of the code word for x is − log2(µ(x)). If we have a code satisfying
this property, then (2.9) follows immediately (encode µ, and then use the
code corresponding to µ to encode x).

However, if we stick to encoding one symbol after another approxima-
tions have to be made, because we can only have integer codelengths. For
example, consider we have: P (A) = 0.4, P (B) = P (C) = P (D) = P (E) =
0.15. The − log2 P (∗) are not integers: we have to assign close integer code-
lengths. We describe two possible ways of doing this:

• Sort all symbols by descending frequency, cut when the cumulative
frequency is closest to 0.5. The codes for the symbols on the left
(resp. right) start with 0 (resp. 1). Repeat until all symbols have
been separated. This is Shannon–Fano coding ([Fan61], similar to the
code introduced in the end of the proof of Theorem 9 in [Sha48]).

• Build a binary tree the following way: Start with leave nodes cor-
responding to the symbols, with a weight equal to their probability.
Then, take the two nodes without parents with lowest weight, and
create a parent node for them, and assign it the sum of its children’s
wieght. Repeat until only one node remains. Then, code each symbol
with the sequence of moves from the root to the leaf (0 corresponds
to taking the left child, for example). This is Huffman coding [Huf52],
which is better than Shannon–Fano coding.

On the example above, we can find the following codes (notice that
some conventions are needed to obtain well-defined algorithms from what is
described above: for Shannon-Fano, what to do when there are two possible
cuts, and for Huffman, which node is the left child and which node is the
right child):

3We do not care about the code, we care about the length of the code words for the
different elements of X.

25

Theoretical Shannon–Fano Huffman
optimal length code code

A ≈ 1.322 00 0
B ≈ 2.737 01 100
C ≈ 2.737 10 101
D ≈ 2.737 110 110
E ≈ 2.737 111 111

Length expectation ≈ 2.17 2.3 2.2

As we can see, neither Shannon–Fano coding nor Huffman coding reach
the optimal bound.

However, if instead of encoding each symbol separately, we encode the
whole message (2.9) can actually be achieved up to a constant number of bits
for the whole message4 by describing a simplification of arithmetic coding
[Ris76]:

The idea behind arithmetic coding is to encode the whole message as
a number in the interval [0, 1], determined as follow: consider we have the
message (x1, ..., xN) ∈ XN (here, to make things easier, we fix N). We
start with the full interval, and we partition it in #X subintervals, each one
corresponding to some x ∈ X and of length our expected probability to see
x, given the characters we have already seen, and we repeat until the whole
message is read. We are left with an subinterval IN of [0, 1], and we can
send the binary expansion of any number in IN (so we choose the shortest
one).

10 .6 .8A B C

.60 .36 .48AA AB AC

.48.36 .432 .456ABA ABB ABC

?

.3XXXXXXXXXXXXz

.3����������������9

.3H
HHH

HHj

.3(((((((((

.3H
HH

Figure 2.1: Arithmetic coding of a word starting with ABB, with P (A) =
0.6, P (B) = 0.2, P (C) = 0.2

4Since all the inequalities were already up to an additive constant, this does not matter
at all.

26

Algorithm 2.7 (End of the proof of (2.9): A simplification of arithmetic
coding). We are given an ordered set X, and for x1,...,xn,y ∈ X, we de-
note by µ(y|x1, ..., xn) our expected probability to see y after having observed
x1, ..., xn.5

Goal: Encode the whole message in one number 0 6 x 6 1.

Encoding algorithm
Part 1: Encode the message as an interval.

i = 1
I = [0, 1]
while xi+1 6= END do

Partition I into subintervals (Ix)x∈X such that:
x < y =⇒ Ix < Iy,6 length(Ix) = length(I)µ(x|x1, ..., xi−1)
Observe xi
I = Ixi
i = i+ 1

end while
return I

Part 2: pick a number in the interval I.
We can find a binary representation for any real number x ∈ [0, 1], by

writing x =
+∞∑

1

ai
2i

, with ai ∈ {0, 1}. Now, for a given interval I, pick the

number xI ∈ I which has the shortest binary representation.7 The message
will be encoded as xI .

Decoding algorithm. xI received.

i = 1
I = [0, 1]

5A simple particular case is the case where µ does not depend on past observations (i.e.
µ(y|x1, ..., xn) =: µ(y)) and can therefore be identified with a probability distribution on
X

6If I, J are intervals, we write I < J for ∀x ∈ I, ∀y ∈ J , x < y.
7We call length of the representation (a1, ..., an, ...) the number min{n ∈ N,∀k > n, ak =

0}. If length(I) 6= 0, I necessarily contains number with a finite representation.

27

while not termination criterion8 do
Partition I into subintervals (Ix)x∈X as in the encoding algorithm.
xi ← the only y such that xI ∈ Iy
I = Ixi
i = i+ 1

end while

Arithmetic coding allows to find a code such that the length of the code
word for x = (x1, ..., xn) is

∑n
i=1− log2(µ(xi|x1, ..., xi−1)) =

∑n
i=1− log2(µ(xi|x1, ..., xi−1),

which is what we wanted.
However, arithmetic cannot be implemented like this, because of prob-

lems of finite precision: if the message is too long, the intervals of the parti-
tion might become undistinguishable. It is possible to give an online version
of this algorithm which solves this problem: the encoder sends a bit once
he knows it (he can send the n-th bit if I contains no multiple of 2−n). In
that case, he does not have to worry about the n first digits of the bounds
of the intervals of the partition anymore, which solves the problem of finite
precision. In the case 0.5 remains in the interval, the encoder can remember
that if the first bit is 0, then the second is 1, and conversely, thus working
in [.25, .75] instead of [0, 1] (and the process can be repeated).

Arithmetic coding ensures that we can focus on codelengths, instead of
actual codes.

2.4 Model selection and Kolmogorov complexity

The term − log2(µ(x)) in Theorem 2.4 is essentially the cost of encoding the
data with the help of the model, whereas K(µ) can be seen as a penalty for
complicated models (which, in machine learning, prevents overfitting: if the
data is “more compressed”, including the cost of the model and the decoder,
the description is better).

As a basic example, if µ is the Dirac distribution at x, K(µ) = K(x): in

8There are several possibilities for the termination criterion:

• We can have an END symbol, to mark the end of the message (in that case, stop
when END has been decoded).

• We can give the length N of the message first (in that case, stop when N characters
have been decoded)

• The message sent by the encoder can be slightly modified as follows. We decide that
a sequence of bits (a1, ..., an) represents the interval Ia of all numbers of which the
binary expansion starts with (a1, ..., an). Now, the message a sent by the encoder
is the shortest non ambiguous message, in the sense that Ia is contained in I, but
is not contained in any of the subintervals Ix corresponding to I (where I is the
interval obtained at the end of the first part of the encoding algorithm).

28

that case, all the complexiy is in the model, and the encoding of the data is
completely free.

More interestingly, if we are trying to fit the data x1, ..., xn to an i.i.d.
Gaussian model (which corresponds to the description: “this is Gaussian
noise”), with mean m and fixed variance σ2, the term − log2(µ(x)) is equal
to
∑

i(xi −m)2 up to additive constants, and the m we should select is the
solution to this least square problem, which happens to be the sample mean
(if we neglect K(m), which corresponds to finding the maximum likelihood
estimate).

In general, K(µ) is difficult to evaluate. There exists two classical ap-
proximation, yielding different results:

• K(µ) can be approximated by the number of parameters in µ. This
gives the Akaike Information Criterion (AIC) [Aka73].

• K(µ) can also be approximated by half the number of parameters in µ
multiplied by the logarithm of the number of observations. This gives
the Bayesian Information Criterion (BIC) [Sch78]. The reason for this
approximation will be given in Section 3.1.3.

2.5 Possible approximations of Kolmogorov com-
plexity

Now, even with these upper bounds, in practice, it is difficult to find good
programs for the data.

As an introduction to the next chapter, we give some heuristics:

• Usual compression techniques (like zip) can yield good results (as in
[CV], for example).

• Minimum description length techniques ([Ris78], [Gru07] for exam-
ple): starting from naive generative models to obtain more complex
ones: for example, if we have to predict sequences of 0 and 1, and
we initially have two experts, one always predicting 0 and the other
predicting always 1, we can use a mixture of experts: use the first
experts with probability p, and the second with probability 1− p, and
we can obtain all Bernoulli distributions. More interestingly, we can
also automatically obtain strategies of the form “after having observed
xi, use expert k to predict xi+1”, thus obtaining Markov models.

• Auto-encoders can also be used: they are hourglass shaped neural
networks (fewer nodes in the intermediate layer), trained to output
exactly the input. In that case, the intermediate layer is a compressed
form of the data, and the encoder and decoder are given by the net-
work.

29

• The model class of Turing machine is very large. For example, if we
restrict ourselves to finite automata, we can compute the restricted
Kolmogorov complexity, and if we restrict ourselves to visible Markov
models we can even use Kolmogorov complexity for prediction.

30

Chapter 3

Universal probability
distributions

The equivalence between coding and probability distribution, combined with
Occam’s razor is probably the main reason for defining Kolmogorov com-
plexity: Kolmogorov complexity gives the length of the “best” coding (ac-
cording to Occam’s razor), so the probability distribution it defines must be
the “best” predictor or generative model.

More precisely, we can define the following probability distributions on
X∗ (All finite sequences of elements of X. These distributions are defined
up to a normalization constant for programs that do not end), that should
be usable for any problem [Sol64].

P1(x) = 2−K(x), (3.1)

P2(x) =
∑

all deterministic programs

2−|p|1p outputsx, (3.2)

P3(x) =
∑

all random programs

2−|p|P (p outputsx), (3.3)

P4(x) =
∑

probability distributions

2−|µ|µ(x), (3.4)

where a program is any string of bits to be read by a universal Turing ma-
chine, and a random program is a program that has access to a stream of
random bits (in particular, a deterministic program is a random program),
and |µ| is the Kolmogorov complexity of µ, i.e., the length of the shortest
program computing µ (if µ is not computable, then its Kolmogorov com-
plexity is infinite, and µ does not contribute to P4: the sum is in practice
restricted to computable probability distributions). For example, P2 is the
output of a program written at random (the bits composing the program
are random, but the program is deterministic), and P3 is the output of a
random program written at random.

31

Notice that P1(x) can be rewritten as
∑

Diracs 2−|δ|δ(x): P4 is to P1 what
P3 is to P2 (the Diracs are the “deterministic probability distributions”).

Since Kolmogorov complexity is defined only up to an additive constant,
the probability distributions above are only defined up to a multiplicative
constant. This leads us to the following definition:

Definition 3.1. Let P and P ′ be two probability distributions on a set X.
P and P ′ are said to be equivalent if there exists two constants m and M
such that:

mP 6 P ′ 6MP (3.5)

Proposition 3.2 (proved in [ZL70]). P1, P2, P3 and P4 are equivalent.

Consequently, we can pick any of these probability distributions (which
are called Solomonoff universal prior) as a predictor. We choose P4:

P4(xk+1|xk, ...x1) : =

∑
µ 2−|µ|µ(x1, ..., xk+1)∑

µ,x′ 2
−|µ|µ(x1, ..., xk, x′)

(3.6)

=

∑
µ 2−|µ|µ(x1, ..., xk)µ(xk+1|x1, ..., xk)∑

µ 2−|µ|µ(x1, ..., xk)
(3.7)

=

∑
µwµµ(xk+1|x1, ..., xk)∑

µwµ
, (3.8)

where wµ = 2−|µ|µ(x1, ..., xk) can be seen as a Bayseian posterior on the
probability distributions (we had the prior 2−|µ|). In particular, the posterior
weights depend on the data.

However, as we have seen, the Kolmogorov complexity and therefore P4

are not computable.
We have to replace Kolmogorov complexity by something simpler: we

choose a family of probability distibutions F , and restrict ourselves to this

family. The distribution we obtain is therefore PF :=
∑
µ∈F

2−|µ|µ.

We now give some possible families:

• F = {µ}. One simple model that explains past data can be good
enough, and the computation cost is small (depending on µ).

• F = {µ1, ..., µn}: as seen in equation (3.8), we obtain a Bayesian
combination.

• F = {µθ, θ ∈ Θ}: this case will be studied below. As a simple example,
we can take Θ = [0, 1], and µθ is Bernoulli, with parameter θ.

32

In that case, we have

PF =
∑
θ∈Θ

2−K(θ)µθ. (3.9)

Notice that the right side of equation (3.9) is only a countable sum: if θ is
not computable, then K(θ) = +∞, and the corresponding term does not
contribute to the sum.

There exist different techniques for approximating PF in the parametric
case (see for example [Gru07]):

1. Encoding the best θ0 to encode the data. In that case,
∑

θ∈Θ 2−K(θ)µθ
is approximated by the largest term of the sum. Since we encode first
a θ ∈ Θ, and then the data, with the probability distribution Pθ, these
codes are called two-part codes.

2. We can replace the penalization for a complex θ by a continuous
Bayesian prior q on Θ. In that case,

∑
θ∈Θ 2−K(θ)µθ is approximated

by ∫
Θ
q(θ)µθ. (3.10)

As we will see later, there exists a prior (called Jeffreys’ prior) with
good theoretical properties with respect to this construction.

3. Normalized maximum likelihood techniques (will not be discussed here)

4. We can make online predictions in the following way: use a default
prior for x1, and to predict (or encode) xk, we use past data to choose
the best µθ.

1 With this method, the parameter θ is defined implicitly
in the data: there is no need to use bits to describe it.

We also introduce the definition of prequential models [Daw84]. Al-
though we will not use it directly, it will be an important inspiration for the
definition of “experts” in Section 4.1:

Definition 3.3. A generative model P is said to be prequential (contraction

of predictive-sequential, see [Gru07]) if
∑
x

P (x1, ..., xk, x) = P (x1, ..., xk)

(i.e. different time horizons are compatible).
A predictive model Q is said to be prequential if the equivalent gen-

erative model is prequential, or equivalently, if Q(xk+1, xk|x1, ..., xk−1) =
Q(xk+1|x1, ..., xk)Q(xk|x1, ..., xk−1) (i.e. predicting two symbols simultane-
ously and predicting them one after the other are the same thing, hence the
name “predictive-sequential”)

1Here, “the best” does not necessarily mean the maximum likelihood estimator: if a
symbol does not appear, then it will be predicted with probability 0, and we do not want
this. A possible solution is to add fictional points of data before the message, which will
also yield the prior on x0. For example, when encoding the results of a game of heads or
tails, it is possible to add before the first point a head, and a tail, each with weight 1/2.

33

It can be checked that the Bayesian model and the online model are
prequential, whereas the two others are not.

Notice that prequential models really correspond to one probability dis-
tribution on Xn. The reason why two-part codes and NML codes are not
prequential is that for any fixed k, they correspond to a probability distriu-
tion Pk on the set of sequences of symbols of length k, but for k′ 6= k, Pk
and Pk′ are not necessarily related.

We now study the first of these techniques: two-part codes.

3.1 Two-part codes

Our strategy is to use the best code θ0 in our family (Pθ). Since the decoder
cannot know which Pθ we are using to encode our data, we need to send θ0,
first.

Since θ0 is a real parameter, we would almost surely need an infinite
number of bits to encode it exactly: we will encode some θ “close” to θ0

instead.
Suppose for example that θ0 ∈ [0, 1]. If we use only its k first binary

digits for θ, then we have |θ − θ0| 6 2−k.
Consequently, let us define the precision of the encoding of some θ ∈

[0, 1] with ε := 2−number of bits to encode θ (so we immediately have the bound
|θ − θ0| 6 ε).

We recall the bound (2.9): for any probability distribution µ,

K(x) 6 K(µ)− log2(µ(x)), (3.11)

which corresponds to coding µ, and then, using an optimal code with respect
to µ to encode the data.

Here, increasing the precision (or equivalently, reducing ε) increases the
likelihood of the data (and consequently − log2(µ(x)) decreases), but K(µ)
increases: we can suppose that there exists some optimal precision ε∗. Let
us compute it.

3.1.1 Optimal precision

In the ideal case (infinite precision), we encode the data x1, ..., xn by sending
θ∗ := argmaxθµθ(x1, ..., xk), and then, the data encoded with the probability
distribution µθ∗ .

The codelength corresponding to a given ε is:

l(ε) := − log2 ε− log2(µθ(x)), (3.12)

where |θ− θ∗| 6 ε (i.e. we encode θ, which takes − log2 ε bits, and then, we
encode x using µθ, which takes − log2(µθ(x)) bits).

34

With a second order Taylor expansion around θ∗, we find:

l(ε) = − log2 ε−log2 µθ∗(x)+
∂(− log2 µθ(x))

∂θ
(θ−θ∗)+ ∂2

∂θ2
(− log2 µθ(x))

(θ − θ∗)2

2
+o((θ−θ∗)2),

(3.13)
where the derivatives are taken at θ = θ∗.
The first order term is equal to zero, since by definition, µθ∗ is the

probability distribution minimizing − log2 µθ(x). If we approximate θ − θ∗

by ε and write J(θ∗) := ∂2

∂θ2 (− lnµθ(x)) (which is positive), we find:

l(ε) ≈ − log2(µθ∗(x))− log2 ε+
J(θ∗)

ln 2

ε2

2
. (3.14)

Differentiating with respect to ε, we find dl
dε = 1

ln 2

(
−1
ε + εJ(θ∗)

)
. If we

denote by ε∗ the optimal precision, we must have dl
dε |ε=ε∗ = 0, i.e.

ε∗ ≈

√
1

J(θ∗)
, (3.15)

which, by plugging (3.15) into (3.14), yields the following codelength:

l(ε∗) ≈ − log2 µθ∗(x) +
1

2
log2 J(θ∗) + cst. (3.16)

Essentially, the idea is that if θ − θ∗ < ε∗, and if we denote by x the
data, the difference between Pθ(x) and Pθ∗(x) is not significant enough to
justify using more bits to improve the precision of θ. Another possible way
to look at this is that we cannot distinguins θ from θ∗, in the sense that it
is hard to tell if the data have been sampled from one distribution or the
other.

3.1.2 The i.i.d. case: confidence intervals and Fisher infor-
mation

Let us now consider the i.i.d. case: all the xi are sampled from the same
probability distribution, and we have − log2 µθ(x) =

∑
i− log2 αθ(xi). In

that case, J(θ) =

n∑
i=1

∂2

∂θ2
lnαθ(xi), so it is roughly proportional to n, and

ε∗ is therefore proportional to 1√
n

: we find the classical confidence interval.

Moreover, if the xi really follow αθ, then

Ex∼α(J(θ)) = nEx∼α
(
∂2

∂θ2
(− lnαθ(x))

)
=: nI(θ), (3.17)

where I(θ) is the so-called Fisher information [Fis22]. We will often use the
following approximation

J(θ) ≈ nI(θ). (3.18)

35

With this, we can rewrite equation (3.15) for the i.i.d. case, and we find that
the optimal ε is approximately equal to:

ε∗ ≈ 1√
n

1√
I(θ∗)

. (3.19)

By simply studying the optimal precision to use for a parameter from
a coding perspective, we managed to recover confidence intervals and the
Fisher information.

3.1.3 Link with model selection

Now that we have the optimal precision and the corresponding codelength,
we can also solve certain model selections problems.

Consider for example you are playing heads or tails n times, but at
the middle of the game, the coin (i.e. the parameter of Bernoulli’s law) is
changed. You are given the choice to encode a single θ, or θ1 which will be
used for the first half of the data, and θ2 which will be used for the second
half.

Let us compute the codelengths corresponding to these two models. If
we denote by x all the data, by x1 the first half of the data, and by x2 the
second half of the data, we find, by combining equations (3.16) and (3.18):

l1 = − log2 µθ(x) +
1

2
log2 I(θ) +

1

2
log2(n) + cst, (3.20)

l2 = − log2 µθ1(x1)− log2 µθ2(x2) +
1

2
log2 I(θ1) +

1

2
log2 I(θ2) +

1

2
log2(n/2) +

1

2
log2(n/2) + cst

(3.21)

= − log2 µθ1,θ2(x) +
2

2
log2(n) +O(1). (3.22)

It is easy to see that for a model with k parameters, we would have:

lk = − log2 µθ1,...,θk(x) +
k

2
log2(n) +O(1). (3.23)

Asymptotically, we obtain the Bayesian information criterion, which is
often used. It could be interesting to use the non-asymptotic equation (3.21)
instead, but the Fisher information is usually hard to compute.

It is also interesting to notice that using two-part codes automatically
makes the corresponding coding suboptimal, since it reserves several code-
words for the same symbol: coding θ1 followed by x coded with Pθ1 yields
a different code than θ2 followed by x coded with Pθ2 , but these two codes

36

are codes for x. A solution to this problem is to set Pθ(x) = 0 if there exists
θ′ such that Pθ′(x) > Pθ(x) , and renormalize. Then, for a given x, only the
best estimator can be used to encode x. This yields the normalized maxi-
mum likelihood distribution (if we denote by θ̂(x) the maximum likelihood

estimator for x, NML(x) =
Pθ̂(x)(x)∑
x Pθ̂(x)(x)

).

Another way to look at this problem is the following: consider as an
example the simple case Θ = {1, 2}. The encoding of θ corresponds to a prior
q on Θ (for example, using one bit to distinguish P1 from P2 corresponds to
the uniform prior q(1) = q(2) = 0.5).

The two-part code corresponds to using max(q(1)P1, q(2)P2) as our “prob-
ability distribution” to encode the data, but its integral is not equal to
1: we lose

∫
X min(q(1)P1(x), q(2)P2(x))dx, which makes the codelengths

longer. Consequently, it is more interesting to directly use the mixture
q(1)P1 + q(2)P2 to encode the data when it is possible, because all code-
words will then be shorter. We are thus naturally led to Bayesian models.

3.2 Bayesian models, Jeffreys’ prior

3.2.1 Motivation

We need a reasonable default prior q for the probability distribution (3.10):

PBayes
F (x) =

∫
Θ
q(θ)µθ(x)dθ. (3.24)

A naive choice for a default prior is “the uniform prior” (i.e. q(θ) = cst).
Sadly, the uniform prior on a family of probability distributions can be

ill-defined.
Consider for example B the family of Bernoulli distributions.
If Pθ is the Bernoulli distribtion of parameter θ, and Qθ is the Bernoulli

distribtion of parameter θ100, then {Pθ, θ ∈ [0, 1]} = {Qθ, θ ∈ [0, 1]} = B,
but most of the time, the uniform prior on the family (Qθ) will select a
Bernoulli distribution with a parameter close to 0 (θ is picked uniformly in

[0, 1], so θ100 < 0.1 with probability 0.1
1

100 & .97).
This shows that a uniform prior depends not only on our family of prob-

ability distributions, but also on its parametrization, which is an arbitrary
choice of the user.

Any reasonable default prior should be invariant by reparametrization
of the family {Pθ, θ ∈ Θ} (else, there would be as many possible priors as
there are parametrizations), and Jeffreys’ prior [Jef61], constructed below,
does have this property.

37

3.2.2 Construction

Consider we are sending a message of length n with a two-part code.
Equation (3.19) (about the optimal coding precision) shows that when

coding a given message with a two-part code, only a finite number of ele-
ments of Θ will actually be used in the first part of the coding, each θk being
used for all θ ∈ Ik ; and it also shows that the length of Ik is 1√

n
1√
I(θk)

.

The fact that all elements of Ik are encoded the same way means that
we will not distinguish different θ in the same Ik, and in practice, we will
only use the m different θk corresponding to each interval.

Consequently, a reasonable procedure to pick a θ would be to start by
picking some k ∈ [1,m], and then, pick θ ∈ Ik uniformly.

It is easy to see that the probability distribution qn corresponding to this
procedure is given by the density:

qn(θ) = Kn

√
I(θk(θ)), (3.25)

where Kn is a normalization constant, and k(θ) is defined by the relation
θ ∈ Ik(θ).

Now, if n→∞, it can be proved2 that (qn) converges to the probability
distribution q given by the density:

q(θ) = K
√
I(θ), (3.26)

where K is a normalization constant.3 Also notice that sometimes (for ex-
ample with the family of Gaussian distributions on R), Jeffreys’ prior cannot
be normalized, and consequently, cannot be used.

We now have a reasonable default prior, and we are going to use it to
predict the next element of a sequence of zeros and ones.

3.2.3 Example: the Krichevsky–Trofimov estimator

We introduce the following notation:

Notation 3.4. We denote by Pθ the Bernoulli distribution of parameter θ,
and we define B := {Pθ, θ ∈ [0, 1]}.

Suppose we are trying to learn a frenquency on the alphabet X = {c, d}.
For example, given the message ccc, we want P (x4 = c).

A first approach is using the maximum likelihood (ML) estimator:

PML(xn+1 = c|x1, ..., xn) =

∑n
i=1 1xi=c

n
=

number of c in the past

number of observations
. (3.27)

2The important idea is that θk(θ) → θ when n→∞, since the length of all the intervals
Ik tends to 0.

3In dimension larger than 1, (3.26) becomes q(θ) = K
√

det I(θ).

38

This has two drawbacks: ML assigns the probability 0 to any letter that has
not been seen yet (which is a major problem when designing codes, since
probability 0 corresponds to infinite codelength), and is undefined for the
first letter.

Let us now consider the Bayesian approach with Jeffreys’ prior.

Lemma 3.5. The Fisher metric on B is given by

I(θ) =
1

θ(1− θ)
, (3.28)

and Jeffreys’ prior is given by

q(θ) =
1

π

1√
θ(1− θ)

(3.29)

Proof. It is a straightforward calculation. We have Pθ(0) = 1−θ, Pθ(1) = θ,

so ∂2 lnPθ(0)
∂θ2 = −1

(1−θ)2 and ∂2 lnPθ(1)
∂θ2 = −1

θ2 . Finally:

I(θ) = −∂
2 lnPθ(0)

∂θ2
Pθ(0)− ∂2 lnPθ(1)

∂θ2
Pθ(1) (3.30)

=
1

(1− θ)2
(1− θ) +

1

θ2
θ (3.31)

=
1

1− θ
+

1

θ
(3.32)

=
1

θ(1− θ)
, (3.33)

and we have the Fisher information. The only difficulty to compute Jeffreys’
prior is the normalization constant, which is

K :=

∫ 1

0

dθ√
θ(1− θ)

, (3.34)

and the substition θ = sin2 u yields

K =

∫ π/2

0

2 sinu cosudu√
sin2 u cos2 u

= π. (3.35)

We have therefore, by using Jeffreys’ prior in (3.10):

P Jeffreys(xn+1|x1, ..., xn) =
1

π

∫ 1

0

1√
θ(1− θ)

Pθ(x1, ..., xn)Pθ(xn+1|x1, ..., xn)dθ.

(3.36)
This is actually easy to compute, thanks to the following proposition

(proved for example in [Fin97]):

39

Proposition 3.6. Let α, β > 0. If q(θ) ∝ θα−1(1− θ)β−1, then

PBayes(xn+1 = c|x1, ..., xn) =
α+

∑n
i=1 1xi=c

α+ β + n
, (3.37)

where

PBayes(x) =

∫
Θ
q(θ)Bθ(x)dθ (3.38)

is the Bayesian prediction with Bernoulli distributions and the prior q on
the parameter θ of the distributions.

In other words, using such a prior is equivalent to using ML, with fic-
tional observations (c occuring α times and d occuring β times).4

In particular, for Jeffreys’ prior, we have α = β = 1
2 , so

P Jeffreys(xn+1 = c|x1, ..., xn) =
1
2 +

∑n
i=1 1xi=c

n+ 1
=

1
2 + number of c in the past

1 + number of observations
.

(3.39)

Consequently, we introduce the following notation: KT(x, y) :=
1
2 + x

1 + x+ y
.

This estimator is called “Krichevsky–Trofimov estimator” (KT, [KT81]),
and it can be proved ([WST95],[VNHB11]) that, when using it instead of
knowing the “real” θ, no more than 1 + 1

2 log(n) bits are wasted.
We can also define the generative model corresponding to Jeffreys’ prior.

It is easy to prove (by induction on the total number of symbols) that the
probability assigned to any given sequence (x1, ..., xa+b) with a zeros and b
ones is equal to

PJ(a, b) :=

(∏
06i<a(i+ 1

2)
) (∏

06i<b(i+ 1
2)
)∏

06i<a+b(i+ 1)
=
∏

06i<a

KT(i, 0)
∏

06j<b

KT(a, j),

(3.40)
with the convention that the empty product is equal to 1 (i.e. PJ(0, 0) = 1).

In particular, we can see that the probability of a sequence (x1, ..., xn)
depends only on the number of c and d in (x1, ..., xn), and not on the order,
and PJ satisfies the relations, PJ(a+ 1, b) = PJ(a, b)KT(a, b) and PJ(a, b+
1) = PJ(a, b)(1−KT(a, b)).

It is also useful to remark that PJ(0, 0) = 1 and PJ(1, 0) = PJ(0, 1) = 1
2 .

In practice, Jeffreys’ prior is not efficient when the optimal θ is on the
boundary: for instance, when encoding text, most punctuation symbols

4Distributions satisfying q(θ) ∝ θα−1(1− θ)β−1 are called beta distributions. The sim-
plification in this proposition is due to the fact that if we have a beta prior for a Bernoulli
distribution, then the posterior will also be a beta distribution. The beta distributions
are called conjugate priors to Bernoulli distributions.

40

are always followed by a space. The corresponding new prior for Bernoulli
distributions is given by

1

2
q +

1

4
δ0 +

1

4
δ1, (3.41)

where q is Jeffreys’ prior on B, and δi is the Dirac distribution at i. This
new prior is called a “zero-redundancy estimator” [RK05].

3.3 Context tree weighting

In this section, we quickly present context tree weighting, a Bayesian text
prediction model combining all visible Markov models of any finite order,
see [WST95] and [Wil94] for more information. In part II, we describe this
algorithm and prove its fundamental property5 in a more elegant way (Sec-
tion 4.3.4.3 in particular), and we extend it to other applications.

We start by showing a simple way to describe one visible Markov model.

3.3.1 Markov models and full binary trees

Learning a frequency on the alphabet X = {c, d} corresponds to restricting
ourselves to the family of Bernoulli distributions, which can be thought of
as the family of Markov models of order 0.

Still working on the alphabet {c, d}, we are going to present the context
tree weighting algorithm, which uses the family of all visible Markov models.

Notice in particular that we can use Markov models of variable order,
for example: “if the last symbol was c, predict c with probability 0.7, if the
last symbol was d, then look at the next-to-last symbol: if it was a c then
predict c with probability 0.5, else predict c with probability 0.3.”

A Markov model can be described by a full6 binary tree the following
way:

@
@
@

�
�
�

@
@
@

�
�
�

0.7

0.5 0.3

c

c

d

d

Figure 3.1: Tree corresponding to the example above

For a given tree, the contexts we are interested in are the leaves of
the tree: with the example above, the leaf labeled 0.7 corresponds to the
context “c?”, the leaf 0.5 corresponds to the context “cd?” and the leaf 0.3

5It does compute the advertised Bayesian mixture.
6All nodes have either 0 or 2 children.

41

corresponds to “dd?” (notice in particular that contexts are read backwards
in the tree).

Suppose for now that we have such a tree. It is easy to see that there
is exactly one context appearing in the tree and corresponding to a suffix
of the past observations: we output c with probability equal to the value of
the leaf corresponding to this context.

Our model can therefore be decomposed as a finite full binary tree T
(the structure of the tree), and the ordered set θT := (θs) of the labels on
the leaves, and we will try to estimate it online.

Now that we are able to describe efficiently a Markov model, we can go
back to our main problem: prediction using universal probability distribu-
tions on all visible Markov models.

3.3.2 Prediction for the family of visible Markov models

The distribution we would like to use for prediction is (3.4), with Θ =
{(T, θT), T finite binary tree, θT ∈ [0, 1]number of leaves of T } :

PF =
∑
θ∈Θ

2−K(θ)µθ,

where µθ is given by the previous subsection. K(θ) remains problematic,
but we can decompose

∑
θ 2−K(θ) into

∑
T 2−K(T)

∑
θT

2−K(θT), and then:

• A full binary tree T can be described by as many bits as it has nodes,
by labelling internal nodes by 1 and leaves by 0, and read breadth-first
(our example would give the code 10100).

• We can use Jeffreys’ prior for θT .

With these new approximations, we have:

PF =
∑

T full binary trees

2−#nodes(T)

∫
[0,1]#leaves(T)

dθs1
π
√
θs1(1− θs1)

...
dθsl

π
√
θsl(1− θsl)

P(T,(θi)),

(3.42)
where θi denotes the parameter of the i-th leaf. (3.42) can be interpreted as
a double mixture over the full binary trees and over the parameter values.

Now, we have to compute (3.42). This sum has an infinite number of
terms (and even if we restrict ourselves to a finite depth D, the number is
still exponential in D). However, it is possible to compute it efficiently and
exactly.

3.3.3 Computing the prediction

The general idea is to maintain the tree of all observed contexts, and each
node s will weight the choices “using s as a context”, and “splitting s into

42

the subonctexts cs and ds” by using information from deeper nodes (more
precisely, the number of times a c or a d has been written in a given context).

3.3.3.1 Bounded depth

Here, we restrict ourselves to Markov models of depths at most D. For
simplicity, we will not try to predict the D first symbols.

Notice that in that case, the cost to describe a tree can be modified:
since a node at depth D is automatically a leaf, it is no longer necessary to
use bits to describe them. If we denote by TD the complete binary tree of
depth D, and by nD(T) the number of nodes at depths less than D of a tree
T , then the probability distribution corresponding to this model is

PF =
∑

T subtree of TD

2−nD(T)

∫
[0,1]#leaves(T)

dθs1
π
√
θs1(1− θs1)

...
dθsl

π
√
θsl(1− θsl)

P(T,(θi)),

(3.43)

Notation 3.7. We will denote each node by the suffix corresponding to it
(for example, the root is ε, the node labeled 0.7 in Figure 3.1 is c, etc. . .),
and at each node s, we will maintain two numbers cs and ds, respectively the
number of times a c and a d have been observed after the context s (starting
the count at x1). Notice that we have the relation cs = c1s + c0s.

7

Now, let us look at equation (3.43) more closely. The goal of the following
lemma and its corollary is to write equation (3.43) in a way that will allow
to compute it efficiently.

Firstly, we can see that

Lemma 3.8. If cs(k) and ds(k) are respectively the number of times a c
and a d have been observed after the context s from x1 to xk, we have:

P(T,(θsi))
(x1, ..., xn) =

∏
s leaves of T

θcs(n)
s (1− θs)ds(n), (3.44)

Proof. By induction. P(T,(θsi))
(x1) = θ

1x1=c

sT (Lx1)(1−θsT (Lx1))
1x1=d , where sT (x)

is the only leaf of T corresponding to a suffix of x, which is what we want.
Now,

P(T,(θsi))
(x1, ..., xk+1) =P(T,(θsi))

(xk+1|x1, ..., xk)P(T,(θsi))
(x1, ..., xk)

=θ
1xk+1=c

sT (Lx1...xk)(1− θsT (Lx1...xk))
1xk+1=d

∏
s leaves of T

θcs(k)
s (1− θs)ds(k),

7Unless s is a prefix of the word we are reading. In practice, as we will see in the next
section, this problem can be solved by adding a new character § indicating the beginning
of the message: cs = c0s + c1s + c§s is always true.

43

and since for all s for λ ∈ {c, d}, λs(k+1) = λs(k)+1xk+1=λ1s=sT (Lx1...xk),
we find

P(T,(θsi))
(x1, ..., xk+1) =

∏
s leaves of T

θcs(k+1)
s (1− θs)ds(k+1), (3.45)

which is what we wanted.

Consequently, the integral in (3.43) can be computed with Proposition
3.6:

Corollary 3.9. We have:∫
[0,1]#leaves(T)

dθs1
π
√
θs1(1− θs1)

...
dθsl

π
√
θsl(1− θsl)

P(T,(θi))(x1, ..., xn) =
∏

u leaves of T

PJ(cu, du)

(3.46)

Proof. It is a consequence of Lemma 3.8 and of the fact that PJ(a, b) is the
probability of seeing a sequence containing respectively a and b times the
letters c and d with Jeffreys’ prior.

Equation 3.43 can therefore be rewritten:

PF (x1, ..., xn) =
∑

T subtree of TD

2−nD(T)
∏

u leaves of T

PJ(cu, du). (3.47)

Under this form, PF can be computed recursively, starting by its leaves,
by the following lemma:

Lemma 3.10. If we assign to each node s the following probability:

P s :=

{
PJ(cs, ds) if |s| = D

1
2PJ(cs, ds) + 1

2P
csP ds if |s| < D

(3.48)

then, for any node s, P s satsifies:

P s =
∑

T subtree of TD with root s

2−nD(T)
∏

u leaves of T

PJ(cu, du). (3.49)

Notice that by definition, s is automatically a suffix of all the u in the equa-
tion above.

44

Proof. By induction. If |s| = D, it is clearly true. Suppose now that (3.49)
holds for all nodes deeper than s. We have, by definition:

P s =
1

2
PJ(cs, ds) +

1

2
P csP ds

=
1

2
PJ(cs, ds) +

1

2

 ∑
T subtree of TD with root cs

2−nD(T)
∏

u leaves of T

PJ(cu, du)


∗

 ∑
T subtree of TD with root ds

2−nD(T)
∏

u leaves of T

PJ(cu, du)



The first term corresponds to the subtree composed only of the root, and
the second term corresponds to all other subtrees, described by the part on
the left of the root and the part of the right of the root. In other words:

P s = 2−1PJ(cs, ds)+
∑

T subtree of TD with root cs

T ′ subtree of TD with root ds

2−1−nD(T)−nD(T ′)
∏

u leaves of T orT ′

PJ(cu, du),

(3.50)
which is what we want.

As an immediate corollary, we have:

P ε =
∑

T subtree of TD with root ε

2−nD(T)
∏

u leaves of T

PJ(cu, du), (3.51)

which is exactly equation (3.47).
Let us now consider the general case.

3.3.3.2 Generalization

The method presented above has two shortcomings: the fact that we cannot
predict the first D symbols, and the bounded depth.

The first one can be solved by adding a “beginning of the message”
character §. The corresponding trees are then ternary, and since undefined
symbols can only occur at the beginning of a word, any suffix starting with
§ is a leaf.

Now, to work with unbounded depth, we simply maintain the tree Tn of
all suffixes seen up to time n (i.e: all factors of the word §, x1, ..., xn−1, xn.
Tn is therefore exactly of depth n+1), and, at each node s of Tn, the counts
cs, ds, and §s.

45

To compute the corresponding distribution, we replace the P s in (3.48)
by:

P s :=

{
1
2 if s is a leaf of Tn

1
2PJ(cs, ds) + 1

2P
csP dsP §s else,

(3.52)

with the convention that P λs = 1 if λs has never appeared yet (for λ =
c, d, §), and we use P ε again as our probability distribution.

It can be proved that this algorithm achieves entropy (i.e. optimal cod-
ing length) for arbitrary-depth tree sources (Theorem 3 in [Wil94]).

We can now describe the actual algorithm.

3.3.4 Algorithm

Suppose that we have PF ,n(xn|x1, ..., xn−1), with the corresponding tree
Tn−1 (the tree containing all suffixes in x1, ..., xn−1).

When we read xn, we update Tn−1 by adding to it the suffix correspond-
ing to the branch (x1, ..., xn). We add at most n nodes. Now, we compute
the new P s. Since the only modified P s are those corresponding to a suffix
of (x1, ..., xn), the complexity is O(n).

We can therefore read P (x1, ..., xn) at the root. Now, add the node
x1, ..., xn, c to compute P (x1, ..., xn, c) at the root (the computation is again

O(n)), and the prediction is PF ,n+1(xn+1|x1, ..., xn) =
PF,n+1(x1,...,xn+1)
PF,n(x1,...,xn) .

The complexity of this algorithm is O(n2), whereas the bounded version
has complexity O(nD), where, n is the length of the data we are compressing
and D is the depth bound. However, if the data is “sufficiently random”,
the complexity of the unbounded version is only O(n log2 n) when coded
properly8, which makes it usable in general.

8The algorithm described here is always O(n2), but it can be improved by using the
fact that some points are “equivalent” (for example, we can stop going deeper in the tree
once we find a suffix that has appeared only once).

46

Part II

Expert Trees

47

The Context Tree Weighting algorithm, detailed in Section 4.3.1, is a
well-known online text compression algorithm which computes a very large
Bayesian mixture of models with a suitable prior (all finite visible Markovian
models) efficiently by starting with complex models (i.e. models using a
long context for the current data point), and recursively comparing them
to (just) simpler models, up to the root of the tree, which will give the
final prediction. In other words, each node of the context tree computes the
(Bayesian) weight of the options “being open” (i.e. using more sophisticated
experts) or “being closed”.

This general idea can actually be applied to a much larger class of prob-
lems including regression, and density estimation: in Chapter 4, we give an
adequate formal context to define a generic Context Tree Weighting algo-
rithm: we define experts, which are entities that make predictions, and we
give different ways of combining them.

Moreover, it has been noted in [vEGdR12] that Bayesian mixtures have a
lot of “intertia”: complex experts need a long time to estimate their param-
eters correctly, so by design, they make poor predictions in the beginning,
which hurts their Bayesian posterior. The Bayesian mixture starts using
them again only once their new predictions offset their slow start.

This issue is adressed (still in [vEGdR12]) by introducing Switch distri-
butions:

• From a predictive point of view, at each step, the switch distribution
takes a small part of the posterior and redistributes it, thus allowing
complex models to quickly become relevant once they start making
good predictions.

• From a generative point of view, while a regular Bayesian mixture
corresponds to an average on the different models in it, the switch
distribution is an average on sequences of models. In particular, we
can expect that sequences with models of increasing complexity to
perform very well.

Since the Context Tree Weighting algorithms contain infinitely many
models of arbitrary complexity, it seems reasonable to try to use Switch
distribution in context trees. It is not possible to compute the switch distri-
bution corresponding to all finite visible Markovian models, but it is possible
to use switch distributions locally at each node, for the open/closed choice.

This approach has been tried for text compression in [VNHB11], with
promising results. However, the switch distributions considered in [VNHB11]
switch infinitely many times with probability one, while we expect that the
most interesting sequences on a given node are of the form “closed until time
n (so that the more specialized experts get enough data), open afterwards”
(with possibly n = ∞). Consequently, we try using the distributions in

48

[vEGdR12], which give a strictly positive wieght to any of these sequences
instead.

Chapter 5 is a proof of concept for using these switch distributions in
context trees: we show that in the case where local experts are fitting a
Gaussian with variable mean and variance, the Context Tree Swiching algo-
rithm outperforms the Context Tree Weighting algorithm on any Lipschitz
function, in the sense that it assigns a higher probability to the actually
observed data (i.e. the comparison criterion is the log-loss).

Finally, these results are illustrated by numerical experiments in Chapter
6.

49

Chapter 4

Expert trees: a formal
context

We begin by giving a formal context which will enable us to describe the
generalized context tree weighting and context tree switching algorithms
easily.

Experts are a generalization of Prequential Forecasting Systems intro-
duced in [Daw84], that allow for an elegant expression of the Context Tree
Weighting algorithm.

The general idea is that we have the choice between a “simple” expert,
and two (or more) more complex experts, each of these experts making
recursively the same choice. For example, in the text compression setting, as
seen in Section 3.3, an expert chooses between directly making its prediction
and asking an expert with longer context, while in the regression setting,
one could choose between a local expert on [0, 1) and two experts, on [0, 0.5)
and [0.5, 1).

We will consider explicitly three different problems to illustrate the def-
initions:

• Text compression: We are trying to predict the character xn ∈ X
knowing the previous characters xn−1 ∈ X∗.

• Density estimation: We are trying to predict where the point xn ∈ X
will appear, knowing the previous points xn−1.

• Regression: Given some unknown, possibly noisy function f : X → Y ,
we are trying to predict f(xn), knowing the (xk, f(xk)) for k < n.1

In Section 4.1, we give a formal definition of experts, and in Section
4.2, we define basic operations to build new experts from existing ones.
In particular, the Switching combination of experts is defined in Section

1As seen in part I, we do note care about the “existence” of such a function, we are
simply trying to compress the data using different models.

50

4.2.3. Finally, we define Expert Trees in Section 4.3, which allows for the
description of a generic context tree weighting/switching algorithm.

4.1 Experts

Keeping in mind that a prediction is a probability distribution (as seen
in part I), we define experts as applications matching previous data to a
prediction:

Definition 4.1. An expert from X to Y is an application E from a subset
D of (X × Y)∗ ×X to probability distributions on a non empty subset T of
Y .

D is called the domain of E, and is noted Dom(E).
T is called the target of E, and is noted Tar(E).
If X is a singleton2, we will identify X × Y with Y , and we will simply

write “an expert on Y ”.

This is a generalization of Prequential Forecasting Systems [Daw84], in
the sense that Prequential Forecasting Systems are experts with domain
(X × Y)∗ ×X and target Y . 3

Intuitively:

• E(z)(z′) is the probability assigned to z′ after having seen z.

• An expert issues a prediction only if the previous data falls in its
domain 4, and the prediction is conditioned on the new data falling in
its target (“if y is in my target, then I think it follows the probability
distribution p”).

For formal simplicity, we will only consider the cases Y discrete, or Y
continuous but the probability distribution issued by the experts have a
density (and in that case, E(x)(y) is the density at y). This leads us to the
following notation:

Notation 4.2. Let X, Y be two sets. If E is an expert from X to Y ,
z, z′ = (x′,y′) ∈ (X × Y)∗, we write:

E(z′|z) :=
∏

16i6|z′|
(z · (z′)i−1,x′i)∈Dom(E)

y′i∈Tar(E)

E(z · (z′<i), x′i)(y
′
i). (4.1)

2This will happen for text compression and denstiy estimation.
3Specialists ([FSSW97], [KAW12]) could also be seen as experts with target Y (the

specialist being awake iff the previous data falls in its domain). However, the main point
of defining specialists is the combined prediction of a bunch of specialists (a specialist that
is asleep issues the same prediction as the average of the awake specialists), whereas the
experts defined here are not penalized for predictions that are out of their domain.

4 Notice that there is nothing in the definition preventing an expert from using data
outside of its domain.

51

Moreover, if x ∈ X, y ∈ Y , z,z′ ∈ (X × Y)∗, we also write:

E((y, z′)|(z, x)) := E((x, y, z′)|z) (4.2)

The following proposition justifies using E(z′|z) for E(z)(z′):

Proposition 4.3. If E is an expert from X to Y , z, z′, z′′ ∈ (X × Y)∗, we
have:

E(z′ · z′′|z) = E(z′|z)E(z′′|z · z′). (4.3)

In particular, if E(z|∅) 6= 0,

E(z′|z) =
E(z · z′|∅)

E(z|∅)
, (4.4)

Proof. Immediate consequence of the definition of E(z′|z).

By definition, if y ∈ Y \Tar(E), then E(y|x) = 1. In particular, E(.|x) is
not a probability distribution on Y restricted to Tar(E). This is the reason
the target of an expert has to be defined explicitly.

Moreover, by equation (4.4), an expert E that never issues a zero prob-
ability can also be defined by specifying E(z|∅) for z ∈ D × T instead of
E(y|z, x) (or equivalently E((x, y)|z)) for all (z, x) ∈ Dom(E), y ∈ Tar(E).

Finally, in the particular case of an expert E on a set X, with Tar(E) = X
and Dom(E) = X∗, E(.|∅) is a probabilistic source (as defined in [Gru07])
on X. Indeed, we can easily check that:

• For all x ∈ X∗,
∑

y∈X E(xy|∅) =
∑

y∈X E(x|∅)E(y|x) = E(x|∅)

• E(∅|∅) = 1,

4.1.1 General properties

In this section, we define a ”no peeking out” condition, ensuring that an
expert only uses data in its domain and target, and a compatibility condi-
tion between experts. These two conditions will be necessary for the good
implementation of the expert tree algorithms.

We say that an expert does not peek out if it only watches its domain:
it updates its predictions only after making one.

Notation 4.4. If z = (z1, ..., zn) ∈ A∗ and S ⊂ A∗, we define:

z ∩A := (zi|zi ∈ S). (4.5)

If E is an expert from X to y with domain D and target T and z =
((x1, y1), ..., (xn, yn)) ∈ (X × Y)n, we define z ∩ E as the subword of z con-
taining only the (xi, yi) for which E has been used. In other words:

z ∩ E := z ∩ (D × T) =
(
(xi, yi)|(z<i, xi) ∈ D, yi ∈ T

)
(4.6)

52

Definition 4.5 (No peeking out). Let E be an expert from X to Y with
domain D and target T . We say E does not peek out iff:

E(z|∅) = E(z ∩ E|∅), (4.7)

for all z ∈ (X × Y)∗

This condition will be used to ensure that the Context Tree Weighting
predictions can be computed in a reasonable time.

The compatibility condition will be used to define infinite depth expert
tree algorithms.

Definition 4.6 (Compatible experts). Let X, Y be two sets, and let E1, E2

be two experts from X to Y with same domain and same target. We say
they are compatible if

E1(∅) = E2(∅) (4.8)

as applications X → Y .
If T is an expert tree, we say that the experts in T are compatible if for

any internal node s, we have:
⋃
t∈c(s) Et(∅) = Es(∅).

We now define several operations allowing us to create new experts from
existing ones.

4.2 Operations with experts

In this section, we define the mixture of experts, the bayesian and switch
combination of experts, the restriction of an expert, and the union of experts.

4.2.1 Fixed mixtures

The fixed mixture of n experts consists in averaging the prediction of these
experts with fixed coefficients:

Definition 4.7. Let (α1, ..., αn) ∈ Rn+ \ {0, ..., 0}.
The fixed mixture of n density experts on X with same domain D and

target T with coefficients α1, ..., αn, with is the expert with domain D and
target T defined by:

mix((αiEi)i=1,..,n)(z′|z) :=
1∑
i αi

∑
i

αiEi(z′|z), (4.9)

for z′ = (x′, y′), (z, x′) ∈ D, y′ ∈ T .

Notice however that for y ∈ T ∗, mix((αiEi)i=1,..,n)(y|x) is not equal to
1∑
i αi

∑
i αiEi(y|x) in general.

53

4.2.2 Bayesian combinations

Definition 4.8. Let E1, ..., En be n experts from X to Y with the same
domain D and target T such that for all z ∈ (X × Y)∗, there exists i ∈
{1, ..., n} such that Ei(z|∅) 6= 0.

The Bayesian combination of E1, ..., En is the expert with domain D and
target T defined by:

Bayes(E1, ..., En)(z′|z) :=

∑
i Ei(z|∅)Ei(z′|z)∑

i Ei(z|∅)
=

∑
i Ei(z · z′|∅)∑
i Ei(z|∅)

, (4.10)

for z′ = (x′, y′), (z, x′) ∈ D, y′ ∈ T .

Under the same assumptions, we also define the Bayesian combination
of E1, ..., En with prior w1, ..., wn as:

Bayes ((E1, w1), ..., (En, wn)) (z′|z) :=

∑
iwiEi(z|∅)Ei(z′|z)∑

iwiEi(z|∅)
, (4.11)

and the Bayesian combination of (Eθ, wθ)θ∈Θ as

Bayes ((Eθ, wθ)θ∈Θ) (z′|z) :=

∫
ΘwθEθ(z|∅)Eθ(z′|z)dθ∫

θ wθEθ(z|∅)dθ
. (4.12)

As an immediate consequence of the definition, we have:

Proposition 4.9. For all λ ∈ R∗, we have

Bayes((Ei, λwi)) = Bayes((Ei, wi)) (4.13)

An important property of the Bayesian combination is that from a gen-
erative point of view, it is simply a sum:

Proposition 4.10. We have, for all z, z′ ∈ (X × Y)∗:

Bayes((E1, w1), ..., (En, wn))(z′|z) =

∑
iwiEi(z|∅)Ei(z′|z)∑

iwiEi(z|∅)
. (4.14)

In particular, if the wi sum to one:

Bayes((Ei, wi))(z|∅) =
∑

wiEi(z|∅) (4.15)

Proof. By definition, we have:

Bayes((E1, w1), ..., (En, wn))(z′|z) =

|z′|∏
k=1

Bayes((E1, w1), ..., (En, wn))(z′k|z · z′<k)

(4.16)

=

|z′|∏
k=1

∑
iwiEi(z · z′6k|∅)∑
iwiEi(z · z′<k|∅)

(4.17)

=

∑
iwiEi(z · z′|∅)∑
iwiEi(z|∅)

, (4.18)

54

which is what we wanted.

Corollary 4.11. For any three experts E1, E2, E3 with same domain D and
target T , and four weights w1, w2, w3, w2,3, we have:

Bayes((E1, w1), (Bayes((E2, w2), (E3, w3)), w2,3)) = Bayes((E1, w1), (E2, w2,3
w2

w2 + w3
), (E3, w2,3

w3

w2 + w3
))

(4.19)

Proof. Immediate consequence of (4.15).

Corollary 4.12. Let E1, ..., En be n experts with the same domain D and
target t such that for all z ∈ (X × Y)∗, there exists i ∈ {1, ..., n} such that
Ei(z|∅) 6= 0.

If the Ei do not peek out, then Bayesi(Ei) do not peek out.

Proof. Immediate with (4.15).

Following the specialist framework, a more general Bayesian combina-
tion could be defined by removing the condition that all the experts in the
combination must have the same domain.

4.2.3 Switching

The Bayesian combination penalizes models with many parameters too harshly,
because these parameters need to be estimated:

Consider that we are trying to predict a text actually generated with a
(non degenerate) Markov model of order 2 using B, a Bayesian combination
of the experts E1 and E2, using visible Markov models of respective order
1 and 2. At the beginning, E2 will not have enough data to have a good
estimate of its parameters, and will be inferior to E1. At some point t0, E2

will start being better than E1, but its posterior weight at this time w2(t0)
will be much smaller than w1(t0), so B will still behave like E1, until some
time t1, when w2 catches up with w1 (this is the “catch-up phenomenon” in
[vEGdR12]).

Switching, which has been introduced in [vEGdR12], and also discussed
in [KdR08] and [vE10], remedies this drawback: from a generative point of
view, Bayes consists in choosing one model, and sticking with it, whereas
Switch allows switching (hence the name) between models, and the posterior
weights remain quick to compute.

4.2.3.1 Definition

We start with a concise way of writing sequences of experts:

55

Notation 4.13. Given n experts E1,...,En with same domain D and target
T , and I = (i1, ..., ik, ...) ∈ J1, nKN∗, we denote by EI the expert using Eik for
its k-th prediction:

EI(y|z, x) = Eiφ(z)
(y|z, x) (4.20)

for all y ∈ T , (z, x) ∈ D, where φ(z) := 1 + |z ∩ (D × T)|

We define the switching combination of n experts as a Bayesian combi-
nation on sequences of experts:

Definition 4.14. Let E1,...,En be experts with same domain D and target
T , and let µ be a probability distribution on {1, ..., n}N. We define the expert
Switchµ(E1, ..., En) by:

Switchµ(E1, ..., En)(z|∅) :=
∑

I∈{1,...,n}N
µ(I)EI(z|∅) = BayesI(EI , µ(I))(z|∅),

(4.21)

for all z ∈ D × T .
More generally, we have:

Switchµ(E1, ..., En)(z′|z) =
∑

I∈{1,...,n}N
µ(I|z)EI(z′|z), (4.22)

where µ(I|z) :=
µ(I)EI(z|∅)∑

J∈{1,...,n}N µ(J)EJ(z|∅)
is the Bayesian posterior weight

after z of I.

Proof. Direct application of Proposition 4.10.

Notice that in particular, if µ(I) = 0 for all non constant sequences I,
then Switchµ(E1, ..., En) is simply a Bayesian combination of the (Ei). Of
course, for most probability distributions µ, it is impossible to compute the
posterior weights corresponding to (4.21).

However, under certain conditions on µ, the predictions of the switch
experts can be computed in a reasonable time.

4.2.3.2 Computing some switch distributions: The forward algo-
rithm

This section follows [KdR08] and [vEGdR12].
The most important condition for some switch distributions to be com-

puted exactly is that the posterior weight of each expert at time n+ 1 must
only depend of the weights at time n.

We start by describing a probability distribution on “switch parameters”:
sequences (ti, ki)iin{1,...,m} corresponding to sequences of experts starting
with k1, and switching at the ti to the expert ki ; we then pull this probability
distribution back to actual sequences of experts:

56

Definition 4.15. Let Ξ = {E1, ..., En} be a set of experts with domain D
and target T .

We call set of switch parameters on Ξ the set:

Θ = {(tm, km)|1 6 m 6∞, km ∈ Ξm, tm ∈ Nm, 0 = t1 < t2 < ...}.5 (4.23)

We now define a surjective map from Θ to sequences of experts φ : Θ→ ΞN

by: φ(θ) := (φ1(θ), φ2(θ), ...), and:

φn(tm, km) = Eksup{i∈{1,...,m}|ti<n}
. (4.24)

Any probability distribution π on Θ defines a probability distribution on ΞN

by
π∗(A) = π(φ−1(A)), (4.25)

for A ⊂ ΞN.

In other words, φ sends the switch parameters (tm, km) to the sequence
using k1 for t ∈]t1, t2], k2 for t ∈]t2, t3] and so on. We now describe the
actual prior that we will use, introduced in [vEGdR12].

Definition 4.16. The switch prior πSwitch is the following distribution on
switch parameters:

πSwitch(tm, km) = πM (m)πK(k1)
m∏
i=2

πτ (ti|ti > ti−1)πK(ki), (4.26)

where πM is geometric with rate θ, πK is an arbitrary probability distribution
on Ξ, and πτ is an arbitrary probability distribution on N∗.

As described in [KdR08] and [vEGdR12], this probability distribution
can be computed by using a hidden Markov model with the following pa-
rameters:

• Ξ = {E1, ..., En} a set of experts with domain D and target T .

• A probability distribution wΞ on Ξ (or on {1, ..., n}, by identifying Ei
and i).

• Freezing probabilities (τn)n∈N: a sequence of probability distributions
on {0, 1}. By abuse of notation, we will write τn := τn(1) the proba-
bility of freezing at time n.

• Switching probabilities (σn)n∈N∗ : a sequence of probability distribu-
tions on {0, 1}. By abuse of notation, we will write σn := σn(1) the
probability of switching at time n.

and, the forward algorithm, described for example in [KdR08] computes
the predictions for a HMM (Theorem 3 in [KdR08]).

5[KdR08] and [vEGdR12] only consider the case m <∞.

57

Figure 4.1: The unfolded switch HMM, with two experts, with wi := wΞ(Ei)
(see also Figure 12 in [KdR08])

u u uu u u

u u u

- - -�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

��
��

��
��

��
��

E2 E2 E2

��
��

��
��

��
��

E1 E1 E1

��
��

��
��

��
��

E1 E1 E1

��
��

��
��

��
��

E2 E2 E2

HHH
HHj

HHH
HHj

HHH
HHj

��
�
��*

��
�
��*

��
�
��*

HH
HHHj

HH
HHHj

HH
HHHj

�
��

��*

�
��

��*

�
��

��*

��
��*

��
��*

HH
HHj

HH
HHj

- -

- -

- -

- -

��

HH

w2 w2 w2

w1 w1 w1

w1 w1 w1

w2 w2 w2

FROZEN

UNFROZEN τ0 τ1 τ2

σ1

σ1

σ2

σ2

58

Algorithm 1 Forward algorithm from time n to time n+ 1, for the switch
HMM

1. Observe zn and compute posterior weights at time n.
for all E ∈ Ξ, ∗ ∈ {u, f} do
w(E , ∗, n)← w(E , ∗, n)E(zn|zn−1)

end for
2. Forward propagation of the weights
while Dom(w) 6= {(E , ∗, n+ 1)|E ∈ Ξ, ∗ ∈ {u, f}} do

Pick u ∈ Dom(w) such that u is not the descendent of any v ∈ Dom(w).
for all v children of u do

if v /∈ Dom(w) then
initalize w(v)← 0.

end if
w(v)← w(v) + w(u)P (u→ v)

end for
Dom(w)← Dom(w) \ {u}

end while
Renormalize w.
3. Predict zn+1: PForward(zn+1) =

∑
E∈Ξ
∗∈{u,f}

w(E , ∗, n+ 1)E(zn+1|zn)

This algorithm actually computes π∗Switch described in (4.26).

Theorem 4.17. Let Ξ = {E1, ..., En} a set of experts, and let

• wΞ = πK

• For all n, τn = θ

• For all n, σn = πτ (n)
πτ ([n,+∞[)

Then Algorithm 1 for the switch HMM defined by wΞ, (τn) and σn computes
the predictions from the switch distribution defined by πM geometric with
rate θ, πK and πτ . In other words:

n∏
i=1

PForward(zi|z<i) =
∑
θ∈Θ

πSwitch(θ) [φ(θ)(zn|∅)] , (4.27)

where φ is from Definition 4.15 (in particular, φ(θ) is an expert).
In particular, Switchπ∗Switch

(E1, ..., En)(zm|∅) can be computed in O(nmt),

where t is the maximal computing time for the likelihoods Ek(zi|z<i) (knowing
the state of Ek before i).

See Appendix A.7 in [vEGdR12] (Theorem 14) for the proof.

If θ ∈ (0, 1), Supp(πK) = Ξ and Supp(πτ) = n, π∗Switch has the intersting
property that any sequence I that is constant for large n is given a positive

59

weight. Consequently, the weight of all the sequences of experts using for
example E1 after the time n can be uniformly bounded by some h = h(n) >
0.

This property leads to a bound for the posterior weight of given sequences
that is uniform on z.

Lemma 4.18. Let E1, ..., Em be m experts from X to Y with same domain
D and target T .

Let µ be a probability distribution on {1, ...,m}N, and for all I ∈ {1, ..., n}N,

z ∈ (X × Y)∗, let us write µ(I|z) :=
µ(I)EI(z|∅)∑

J∈{1,...,n}N µ(J)EJ(z|∅)
the posterior

weight after having seen z of the expert EI in Switchµ(E1, ..., Em).
Let n ∈ N, and let I ∈ {1, ...,m}N.
If there exists h(n) such that for all J ∈ {1, ...,m}N, J ∼n I =⇒ µ(J) >

h(n), then, for all z such that φ(z) := 1 + |z ∩ (D × T)| 6 n:

max
J∈{1,...,m}N
J∼φ(z)I

µ(J |z) > h(n). (4.28)

6

Proof. The idea behind this proof is that one of the EJ for J ∼n I makes
the best possible predictions, and consequently, its posterior weight will be
greater than its prior weight. More precisely:

Let z = zN ∈ (X × Y)N .
For 1 6 i 6 φ(z)− 1, we write d(i) = inf{j ∈ N|φ(zj) = i+ 1} the index

of the i-th point predicted by the Ek, and fi(z) := argmaxkEk(zd(i)|zd(i)−1)
the index of the best expert at local time k. 7 Notice that by definition of the
d(i) the Ek issue a prediction for zd(i), i.e. yd(i) ∈ T and (zd(i)−1, xd(i)) ∈ D.

Let us now define the sequence J∗ (depending on z) by:

• J∗i = fi(z) if i < φ(z)

• J∗i = Ii if i > φ(z).

By definition, J∗ ∼φ(z) I, so J∗ ∼n I. Moreover, for all J ∈ {1, ...,m}N, we
have:

EJ(z|∅) =

φ(z)−1∏
i=1

EJ(zd(i)|zd(i)−1) (4.29)

6
φ(z)−1∏
i=1

Efi(z)(zd(i)|zd(i)−1) =

φ(z)−1∏
i=1

EJ∗(zd(i)|zd(i)−1) = EJ∗(z|∅),

(4.30)

6 We recall that I ∼n J ⇔ ∀k > n, Ik = Jk.
7If the maximum is attained by several experts, choose the smallest index, for example.

60

since EJ∗(zd(i)|zd(i)−1) = EJ∗i
φ(zd(i)−1)

(zd(i)|zd(i)−1) = EJ∗i (zd(i)|zd(i)−1).

Consequently, we have:

µ(J∗|z) =
µ(J∗)EJ∗(z|∅)∑

J∈{1,...,n}N µ(J)EJ(z|∅)
(4.31)

>
µ(J∗)EJ∗(z|∅)∑

J∈{1,...,n}N µ(J)EJ∗(z|∅)
=

µ(J∗)∑
J∈{1,...,n}N µ(J)

= µ(J∗) > h,

(4.32)

which is what we wanted.

4.2.4 Restriction

This simple operation consists in restricting the domain of an expert to a
smaller set:

Definition 4.19. If D′ ⊂ D, the restriction to D′ of an expert E from X
to Y with domain D is the expert E|D′ with domain D′ defined by:

E|D′(x, y|z) = E(x, y|z) (4.33)

for all (z, x) ∈ D′, for all y ∈ Y .

4.2.5 Union

There are two different kinds of union for experts: a domain union (uniting
two experts with disjoint domains), and a target union (uniting two experts
with disjoint targets):

Suppose that we have two experts for regression: E1, an expert on [0, 0.5),
and E2, an expert on [0.5, 1). It is straightforward to define an expert E1∪E2

on [0, 1) that will use either E1 or E2, depending on where x falls. This is
the domain union.

However, if we have two density estimation experts E1 and E2, respec-
tively on [0, 0.5) and on [0.5, 1), we need a way to weight each of these
experts in order to obtain a density on [0, 1). This is the target union.

Defining the former is straightforward, but for the latter (which we want
to use for density estimation), another expert has to be added: we need to
choose if we will be using E1 or E2 for the next prediction.

4.2.5.1 Domain union

Given two different experts E1 and E2 with disjoint domains D1 and D2, it
is straightforward to obtain a single expert with target D1 ∪ D2 by using
either E1 or E2, depending on where the data falls:

61

Definition 4.20. If E1, ...En are experts with same target T and disjoint
domains Di, then the union of the (Ei), noted

⋃n
i=1 Ei, is the expert with

domain
⋃
iDi and target T defined by:

(
n⋃
i=1

Ei)(y|z, x) =
n∑
i=1

Ei(z′|z, x)1(z,x)∈Dom(Ei) (4.34)

for (z, x) ∈ D, y ∈ T .

An interesting property of the domain union is that if the experts do not
peek out, it is essentialy a product:

Lemma 4.21. Let E1, ..., Em be m experts from X to Y with target T , with
respective disjoint domains D1, ..., Dn. We have:⋃

i

Ei(zn|z) =
∏
i

Ei(zn|z), (4.35)

for any z ∈ (X × Y)∗, zn ∈ (X × Y)n.

Proof. Let us write zk = (xk, yk) for all k, and D =
⋃
iDi. We have:

⋃
i

Ei(zn|z) =

n∏
l=1

(z · zl−1,yl)∈D
yl∈T

⋃
i

Ei(zl|z · zl−1) (4.36)

=

n∏
l=1

(z · zl−1,yl)∈D
yl∈T

m∑
i=1

1(z · zl−1,x)∈Dom(Ei)Ei(zl|z · zl−1). (4.37)

Since the Ei have disjoint domains, all the sums above have exactly one term.
Consequently, if we regroup all of these terms according to the expert used:

⋃
i

Ei(zn|z) =

m∏
i=1

n∏
l=1

z · zl−1,x∈Dom(Ei)
yl∈T

Ei(zl|z · zl−1) (4.38)

=
m∏
i=1

Ei(zn|z), (4.39)

which is what we wanted.

4.2.5.2 Target union

Given two density experts E1 and E2 with respective targets T1 and T2, we
need some way to weight them to renormalize the density.

To do so, we introduce a particular class of experts.

62

Definition 4.22. Let X, Y be two sets. If E is an expert from X to Y , and
Y = {y1, ..., yn} is finite, we call E a choice expert. If X is clear from the
context, we will simply write “a choice expert on Y ”.

From a formal point of view, this definition is not necessary: writing
that an expert is a choice expert is the statement that it will be used in a
union of experts (in particular, they are only used for generation, not for
prediction).

We are now able to define the target union of two or more experts:

Definition 4.23. If E1, ...En are experts with same domain D, and if C is
a choice expert on {E1, ..., En}, then the union of the (Ei) with choice expert
C, noted

⋃n
C,i=1 Ei is the expert with domain D and target

⋃
i Ti defined by:

(

n⋃
C,i=1

Ei)(y|z, x) =

n∑
i=1

C(Ei|z, x)Ei(y|z, x)1z,x∈Ti (4.40)

for (z, x) ∈ D, y ∈ T1 ∪ ... ∪ Tn.

The presence of an expert in the subscript of ∪ indicates if the union is
a domain union or a target union: E1 ∪ E2 is a domain union, and E1 ∪C E2

is a target union.

4.2.5.3 Properties

Although these two unions are different, they have similar properties.
We write them only for the target union (for the domain union, invert

the target and the domain situations, and remove the choice experts).
By definition, ∪ is commutative. It is also associative in the following

sense:

Proposition 4.24. Let E1,E2,E3 be three X-experts, let C1 (resp. C′) be a
choice expert between E1 and E2 (resp. between E1 ∪C1 E2 and E3). Then:

(E1 ∪C1 E2) ∪C′ E3 =
⋃
C

(E1, E2, E3), (4.41)

where C is the choice expert between E1, E2 and E3 defined by C(E1|z, x) =
C′(E1 ∪C1 E2|z, x)C1(E1|z, x), C(E2|z, x) = C′(E1 ∪C1 E2|z, x)C1(E2|z, x) and
C(E3|z, x) = C′(E3|z, x).

63

Proof. Let z, x ∈ D, y ∈ T1 ∪ T2 ∪ T3. We have:

(E1 ∪C1 E2) ∪C′ E3(y|z, x) = C′(E1 ∪C1 E2|z, x)E1 ∪C1 E2(y|z, x)1(z,x)∈T1∪T2

(4.42)

+ C′(E3|z, x)E3(y|z, x)1(z,x)∈T3
(4.43)

= C′(E1 ∪C1 E2|z, x)C′(E1|z, x)E1(y|z, x)1(z,x)∈T1

(4.44)

+ C′(E1 ∪C1 E2|z, x)C′(E2|z, x)E2(y|z, x)1(z,x)∈T2

(4.45)

+ C′(E3|z, x)E3(y|z, x)1(z,x)∈T3
, (4.46)

which is what we wanted.

There is a form of distributive property of the union over the Bayesian
combination.

The following lemma is merely a technical tool:

Lemma 4.25. If E1 and E2 are two experts with domain D and respective
targets T1 and T2, with T1 ∩ T2 = ∅, and if C is a choice expert between E1

and E2, then we have:

(E1 ∪C E2)(z′|z) = E1(z′|z)E2(z′|z)
∏

16i6n
z · z′6i∈D×(T1∪T2)

C(arg(zi)|z · z′<i), (4.47)

with arg((x, y)) = E1 if y ∈ T1 and arg((x, y)) = E2 if y ∈ T2, for any
z, z′ ∈ (X × Y)∗.

Proof. Let us write z′ = ((x1, y1), (x2, y2), ...).

(E1 ∪C E2)(z′|z) =
∏

16i6n
z · z′6i∈D×(T1∪T2)

(
C(E1|z · z′<i)E1(z′i|z · z′<i)1yi∈T1 + C(E2|z · z′<i)E2(z′i|z · z′<i)1yi∈T2

)
=

∏
16i6n

z · z′6i∈D×T1

C(E1|z · z′<i)E1(z′i|z · z′<i)
∏

16i6n
z · z′6i∈D×T2

C(E2|z · z′<i)E2(z′i|z · z′<i)

=E1(z′|z)E2(z′|z)
∏

16i6n
z · z′6i∈D×(T1∪T2)

C(arg(zi)|z · z′<i)

and the distributive property is the following:

Proposition 4.26 (Concatenation and Bayes). If Ei are experts with target
T and domain D and E ′i are experts with target T ′ and domain D, with
T ∩ T ′ = ∅, and the wi, w

′
i are positive numbers, then for any expert C:

Bayesi((Ei, wi)) ∪C Bayesj((E ′j , w′j)) = Bayesi,j((Ei ∪C E ′j , wiw′j)) (4.48)

64

Proof. Let z = ((x1, y1), ..., (xn, yn)), and let us write B1 := Bayesi((Ei, wi))
and B2 := Bayesj((E ′i, w′i)).

By lemma 4.25, we have:

B1 ∪C B2(z|∅) =B1(z|∅)B2(z|∅)
∏

16k6n
zk∈D×(T∪T ′)

C(arg(zk)|z<k)

=
∑
i

wiEi(z|∅)
∑
j

w′jE ′j(z|∅)
∏

16k6n
zk∈D×(T∪T ′)

C(arg(zk)|z<k).

and

Bayesi,j((Ei ∪C E ′j , wiw′j))(z|∅) =
∑
i,j

wiw
′
j

(
Ei ∪C E ′j

)
(z|∅)

=
∑
i,j

wiw
′
jEi(z|∅)E ′j(z|∅)

∏
16k6n

zk∈D×(T∪T ′)

C(arg(zk)|z<k).

And as a consequence of the description of Switch as a Bayesian combi-
nation, this proposition extends to switch:

Corollary 4.27 (Concatenation and Switch). If Ei are experts with target
T and domain D and E ′i are experts with target T ′ and domain D, with
T ∩T ′ = ∅, and if µ and µ′ are probability distributions on {1, ..., n}N, then
for any expert C with domain D and target {Switchµ((Ei)),Switch′µ((E ′j))}:

Switchµ((Ei)) ∪C Switch′µ((E ′j)) = BayesI,J(EI ∪ EJ , µ(I)µ′(J)), (4.49)

Proof. By Proposition 4.26,

Switchµ((Ei)) ∪C Switch′µ((E ′j)) = BayesI(EI , µ(I)) ∪C BayesJ(EJ , µ′(J))

(4.50)

= BayesI,J(EI ∪ EJ , µ(I)µ′(J)) (4.51)

4.3 Expert trees

We can now describe the different algorithms that we will be using. The
general idea is always the same: we build a tree such that each node s
corresponds to an expert Es, deeper experts being more specialized, and,
starting from the bottom of the tree we recursively choose if we are using
the children of a node, or the node itself.

More precisely:

65

Definition 4.28. Let X, Y be two sets. We call expert tree from X to Y
a rooted tree T with root ε such that

• Each node s of T has a finite number of children. The set of the
children of s is denoted by c(s).

• Each node s contains an expert Es from X to Y .

• Dom(Es) =
⋃
t∈c(s) Dom(Et)

We call weighted expert tree an expert tree T with a probability distri-
bution µs on {0, 1}N at each non-leaf node s.

Intuitively, Es is the local expert, and µs corresponds to the prior prob-
ability of opening the node s (i.e. with prior probability

∑
I,it=1 µs(I), the

“tree expert” at s uses the “tree experts” at the children of s instead of the
local expert at s).

Notation 4.29. If T is an expert tree, and if S is the set of leaves of T,
we denote by ET the expert:

∪s∈S Es (4.52)

If T = (Tk) is a sequence of expert trees, we denote by ET the expert
using ETk at time k.

As seen in Section 3.3, the CTW algorith recursively computes a Bayesian
posterior at each node, finally yielding the prediction corresponding to the
Bayesian combination of all the ET .

If we replace the Bayesian combination by a switching combination, we
obtain another algorithm, Context Tree Switching [VNHB11], but it is not
a switching combination of all the ET , because Switch (E1,Switch(E2, E3))
cannot be written Switch(E1, E2, E3) in general. Consequently, we introduce
Switching patterns, that can be though of as data-dependent trees. A switch-
ing pattern assigns to each node s a sequence in Is ∈ {0, 1}N to each node,
and (Is)n indicates whether s is open (1) or closed (0) at time n. The pre-
diction corresponding to the switching pattern is the prediction using the
resulting tree.

Definition 4.30. Let T be an expert tree. We call switching pattern on T
an application matching each internal node s of T to Is ∈ {0, 1}N.

If T is an expert tree from X to Y , and I = (Is) a switching pattern
on T, for any node s of T, we define the expert EI,s by: Dom(EI,s) =
Dom(Es) =: D, Tar(EI,s) = Tar(Es) =: T , and

• EI,s(y|zn, x) := 1(Is)k=0Es(y|zn, x) + 1(Is)k=1

⋃
t∈c(s)

EI,t(y|zn, x),

for all (zn, x) ∈ D, for all y ∈ T , where k = k(s, zn) := 1 + |{zk|1 6
k 6 n, (z<k, xk) ∈ D, yk ∈ T}|, if s is not a leaf of T.

66

• EI,s(y|zn, x) := Es(y|zn, x) otherwise.

We define the weight wI of a switching pattern I as:

wI =
∏
s∈T

s not a leaf ofT

µs(Is) (4.53)

4.3.1 Context Tree Weighting

Context tree weighting has been introduced in [WST95] for text compres-
sion.

Let T be a finite weighted expert tree, such that for any internal node s
of T, µs(0

∞) + µs(1
∞) = 1. We write ws := µs(0

∞).
We denote by Ts the set of subtrees of T with root s such that each node

t of the subtree has either 0 or c(t) children.
We define the weight of T ∈ Ts as

wT :=
∏

q internal nodes of T

(1− ws)
∏

q leaves of T
q not a leaf of T

ws (4.54)

It can be checked that
∑

T∈Ts wT = 1.

Definition 4.31. We define the Context Tree Weighting algorithm corre-
sponding to the finite weighted expert tree T as:

CTWT := BayesT∈Tε (ET , wT) (4.55)

The interesting point here is that this gigantic Bayesian combination can
be computed “locally”, starting from the bottom nodes, and going up to the
root.

Theorem 4.32. Let T be a weighted expert tree with ws := µs(0
∞) =

1 − µs(1∞). For each node s of T, we define the expert CTWs as follows:
The target of CTWs is Tar(Es), its domain is Dom(Es), and

CTWs = Bayes

(Es, ws), (
⋃

Cs,t∈c(s)

CTWt, 1− ws)

 , (4.56)

if s is an internal node of T, and

CTWs = Es (4.57)

if s is a leaf of T.
With these notations, we have:

CTWs = BayesT∈Ts (ET , wT) , (4.58)

67

or equivalently:

CTWs = BayesI switching pattern onTs
(EI,s, wI) , (4.59)

where, if I = (Is), wI =
∏
s nodes of T µs(Is).

In particular,
CTWε = CTWT (4.60)

Proof. By induction on the nodes, starting from the leaves.
If s is a leaf, there is nothing to prove (the two experts are EE(s)).
Now, let s be an internal node such that the hypothesis is true for all

descendents of s, and let {t1, ..., tn} = c(s). By induction and lemma 4.26,
we have:

n⋃
i=1

CTWti =
n⋃
i=1

BayesT∈Tti
(ET , wT)

=BayesT1∈Tt1...
Tn∈Ttn

(ET1 ∪ ... ∪ ETn , wT1 ...wTn)

=Bayes T∈Ts
T 6={s}

(
ET ,

1

1− ws
wT

)
The theorem then easily follows from Corollary 4.11 and the fact that∑
T∈Ts,T 6={s}wT = 1− ws.

For the equivalence between (4.58) and (4.59), just remark that the only
switching patterns I with non-zero weight are constant switching patterns,
so EI,s = ET , where T is the subtree of Ts corresponding to the switching
pattern I, and wI = wT , so the two Bayesian combinations are exactly the
same.

In the case of text compression, the original Context Tree Weighting
algorithm uses Krichefsky–Trofimov estimators as local experts. Other ex-
perts can be used, as in [OHSS12], which uses “discounted” KT estimators
(more weight on recent observations). Conditional NML [RR07] could also
be a possibility.

It is also possible to recover the more recent Partition Tree Weighting
algorithm [VWBG12] at fixed time horizon. We give more details about this
in Section 4.3.4.3.

There are several more conditions for CTW to be implemented efficiently,
they will be discussed in Section 4.3.4.

4.3.2 Context Tree Switching

[VNHB11] introduced a version of context tree switching, using a switch in-
spired by [vEGdR12]. We will define a more general algorithm, by replacing
the Bayesian combination in context tree weighting (4.56) by a switch.

68

Definition 4.33. Let T be a finite weighted expert tree. For each node s of
T, we define the expert CTSs as follows: The target of CTSs is Tar(Es), its
domain is Dom(Es), and:

CTSs = Switchµs

Es, ⋃
t∈c(s)

CTSt

 , (4.61)

if s is an internal node of T, and

CTSs = Es (4.62)

if s is a leaf of T.
We write

CTST := CTSε. (4.63)

As for the context tree weighting algorithm, an unbounded depth context
tree switching algorithm can be defined.

This algorithm does not generalize Definition 4.31 in the sense that Con-
text Tree Switching will not actually be a switch combination of context
trees. Actually, CTS is not even a Bayesian combination of switching pat-
terns. However, it is still possible to obtain theoretical guarantees.

4.3.2.1 Properties

As an immediate consequence of the definition of the switch, we have:

Lemma 4.34. Let X, Y be two sets, Let µ be a probability distribution on
{0, 1}N, let E0, E1 be two experts, and let E = Switchµ(E0, E1). There exists
an expert E ′ from X to Y such that

E = Bayes((E0, k0), (E1, k1), (E ′, 1− k0 − k1)), (4.64)

where k0 = µ(0∞) and k1 = µ(1∞).

Proof. (4.64) is exactly the definition of switch if

E ′(z|∅) =
1

1− k0 − k1

∑
I∈{0,1}N\{(0∞),(1∞)}

µ(I)EI(z|∅) (4.65)

and therefore:

Corollary 4.35. Let θ ∈ R, let µ be a probability distribution on {0, 1}N
such that min(µ(0∞), µ(1∞)) > θ

2 , let E0, E1 be two experts, and let E =
Switchµ(E0, E1). We have:

E(z|∅) >
θ

2
(E0(z|∅) + E1(z|∅)) (4.66)

for all z ∈ (X × Y)∗

69

θ corresponds to the freezing probability at t = 0 in [vEGdR12] (hence
the factor 1

2 .
Finally,

Theorem 4.36. Let T be a finite weighted expert tree, let s be a node of T,
and let Ts be the set of subtrees of T with root s. There exists an expert E ′
on Tar(Es) such that

CTSs = Bayes
(

(ET , ws(T))T∈Ts , (E ′, 1−
∑

ws(T))
)

(4.67)

where, if θs := min(µs(0
∞), µs(1

∞)):

ws(T) =
∏
q∈T

q not a leaf of T

θq, (4.68)

In particular:

CTSs(z|∅) >
∑
T∈Ts

w(T)ET (z|∅), (4.69)

Proof. We give the proof in the binary case, the generalization is straight-
forward. We denote the children of s by s0 and s1.

By induction on |s|. If |s| = D, then Ts = {s}, and we do have
CTSs(x|∅) = Es(x|∅) > θs

2 Es(x|∅), which is what we wanted.
Now, let s such that 0 6 |s| 6 D − 1, and suppose that for all q longer

than s, CTSq(x|∅) >
∑

T∈Tq w(T)ET (x|∅).

By Lemma 4.34, there exists E ′ such that:

CTSs = Switchs (Es,CTSs0 ∪ CTSs1) (4.70)

= Bayes

(
(Es,

θs
2

), (CTSs0 ∪ CTSs1,
θs
2

), (E ′, 1− θs)
)

(4.71)

Now, by induction, let E ′0 and E ′1 be such that:

CTSs0 = Bayes
(

(ET , ws0(T))T∈Ts0 , (E ′0, 1−
∑

ws0(T))
)
. (4.72)

CTSs1 = Bayes
(

(ET , ws1(T))T∈Ts1 , (E ′1, 1−
∑

ws1(T))
)
. (4.73)

We have, by Lemma 4.26:

CTSs0∪CTSs1 = Bayes

(ET ∪ ET ′ , ws0(T)ws1(T ′))T∈Ts0
T ′∈Ts1

, (E ′′, 1−
∑
T∈Ts0
T ′∈Ts1

ws0(T)ws1(T ′)

 ,

(4.74)
where E ′′ contains all the other terms.

70

Now, by combining equations (4.71) and (4.74), and using Lemma 4.26,
we obtain:

CTSs = Bayes

(Es,
θs
2

),

(
ET ∪ ET ′ ,

θs
2
ws0(T)ws1(T ′)

)
T∈Ts0
T ′∈Ts1

, (E ′′′, 1− θs
2
−
∑
T∈Ts0
T ′∈Ts1

θs
2
ws0(T)ws1(T ′))

 ,

(4.75)
which is what we wanted.

In particular, CTSs(z|∅) > lCTWs(z|∅) if the product
∏
q all prefixes θq

converges to l, and we have l > 0 in any of the following cases:

• T is finite.

• min(µs(0
∞), µs(1

∞)) > 1
2(1− 2−|s|

|s|2). This is the case if the probability

of starting unfrozen for a node at depth d is less than 2−d

d2 (with prior
opening weight 1

2).

• We are given a sequence of positive numbers (ut) such that
∑
ut con-

verges. Let Nt be the number of nodes opened at time t. The prob-
ability of starting unfrozen for a node s is then a|s|uot(s), where (ak)
sums to one.

However, these conditions essentially amounts to preventing the algo-
rithm from switching, which is not satisfying. In Chapter 5, we will show
that in a particular case, CTS does behave better than CTW.

To do so, we will need the following lemma.

Lemma 4.37. Let T be a (possibly infinite) weighted expert tree, and let
n0 ∈ N. Let I := (Is) be a switching pattern on T such that for all s,
Is = 0∞ or Is ∈ {0k1∞|0 6 k 6 n} (i.e. the expert uses Es for the first k
points, and then switches to the children of s).

For all s ∈ T, we have:

CTSTs(z|z′) > h(n0)|(Ts|I)|EI|s(z|z′), (4.76)

for all z, z′ ∈ (X × Y)∗ such that φ(z′) := 1 + |z′ ∩ Es| 6 n0,8 where:

• h(n0) := inf{µs(J)|s ∈ T, (J ∼n+1 1∞ or J = 0∞)},9

• I|s is the restriction of I to Ts,

• Ts|I is the tree obtained by removing the descendents of all the nodes
t such that It = 0∞ from Ts.

8We recall that by definition, EI(.|z) = Eiφ(z)(.|z).
9 We recall that I ∼n J ⇔ ∀k > n, Ik = Jk.

71

Proof. If T|I is infinite, then h(n0)|(Ts|I)| = 0 and there is nothing to
prove.10 We now suppose that T|I is finite, and we proceed by induc-
tion on s, starting with the leaves of T|I.

Preliminary computation.
Let s ∈ T|I, let k ∈ J0, n0K ∪ {∞} such that Is = (0k1∞).
Let us denote T = Tar(Es), D = Dom(Es), and let t1, ..., t|c(s)| be an

enumeration of the children of s. Let z ∈ (X × Y)∗ such that φ(z) 6 n0.
We have, for all n, for all zn = (z1, ..., zn) ∈ (X × Y)n:

CTSs(z
n|z) = Switchµs(Es,

⋃
t∈c(s)

CTSt)(z
n|z) (4.77)

=
∑

Is∈{0,1}N
µs(Is|z)

n∏
l=1

1Is
φ(z · zl)=0Es(yl|z · zl−1, xl) + 1I

sφ(z · zl)=1

⋃
t∈c(s)

CTSt(yl|z · zl−1, xl)

 .
(4.78)

The first φ(z) − 1 terms of Is are not used in the product above, so we
regroup all the terms corresponding to sequences ending as Is:

CTSs(z
n|z) >

∑
Is∈{0,1}N
Is∼φ(z)Is

µs(Is|z)
n∏
l=1

1Is
φ(z · zl)=0Es(yl|z · zl−1, xl) + 1Is

φ(z · zl)=1

 ⋃
t∈c(s)

CTSt

 (yl|z · zl−1, xl)


(4.79)

> max
Is∈{0,1}N
Is∼φ(z)Is

µs(Is|z)
n∏
l=1

1φ(z · zl)6kEs(yl|z · zl−1, xl) + 1φ(z · zl)>k

 ⋃
t∈c(s)

CTSt

 (yl|z · zl−1, xl)

 .
(4.80)

Now, by Lemma 4.18, max
Is∈{0,1}N
Is∼φ(z)Is

µs(Is|z) > h(n0), so:

CTSs(z
n|z) > h(n0)

n∏
l=1

1φ(z · zl)6kEs(yl|z · zl−1, xl) + 1φ(z · zl)>k

 ⋃
t∈c(s)

CTSt

 (yl|z · zl−1, xl)

 ,
(4.81)

> h(n0)
m∏
l=1

[
Es(yl|z · zl−1, xl)

] n∏
l=m+1

 ⋃
t∈c(s)

CTSt

 (yl|z · zl−1, xl)

(4.82)

10h(n0) cannot be equal to 1, since {J ∈ {0, 1}N| (J ∼n+1 1∞ or J = 0∞)} contains at
least two elements.

72

where m := max(sup{l|1 6 l 6 n, φ(z · zl) 6 k}, 0)

> h(n0)

m∏
l=1

[
Es(yl|z · zl−1, xl)

] ⋃
t∈c(s)

CTSt

 (zm+1:n|z · zm),

(4.83)

where we define z0 := ∅ and
∏0
l=1 f(l) := 1, for any f . So finally, we have:

CTSs(z
n|z) > h(n0)

m∏
l=1

[
Es(yl|z · zl−1, xl)

] ∏
t∈c(s)

CTSt(z
m+1:n|z · zm)


(4.84)

by lemma 4.21.

Actual induction.
If s is a leaf of T|I, then by definition, k =∞, so we have m = n, and:

CTSs(z
n|z) > h(n0)

n∏
l=1

[
Es(yl|z · zl−1, xl)

]
(4.85)

> h(n0)Es(zn|z) = h(n0)EI|s(zn|z) (4.86)

by definition of EI|s. This is what we wanted.
If s is any non-leaf node (of T|I) such that (4.76) is true for all descen-

dents of s, then k 6=∞ by definition of T|I (so k 6 n0). Now, by defintion
of m:

• either φ(z) > k, and then m = 0, so zm = 0, and φ(z · zm) = φ(z) 6 n0

• or φ(z) 6 k, and then, by definition of m, φ(z · zm) 6 k 6 n0

In both cases φ(z · zm) 6 n0, so by induction, and using the definition of
EI|s:

CTSs(z
n|z) > h(n0)

m∏
l=1

[
EI|s(yl|z · zl−1, xl)

] ∏
t∈c(s)

h(n0)|(Tt|I)|

 ∏
t∈c(s)

EI|t(zm+1:n|z · zm)

(4.87)

> h(n0)

m∏
l=1

[
EI|s(yl|z · zl−1, xl)

] ∏
t∈c(s)

h(n0)|(Tt|I)|

 ⋃
t∈c(s)

EI|t

 (zm+1:n|z · zm)

(4.88)

73

by Lemma 4.21 again, so finally:

CTSs(z
n|z) > h(n0)|(Ts|I)|EI|s(zm|z)EI|s(zm+1:n|z · zm) (4.89)

> h(n0)|(Ts|I)|EI|s(zn|z) (4.90)

This is what we wanted.

4.3.3 Edgewise context tree algorithms

Since we cannot always control where our data falls, it is possible to have
a lot of points on the left of the tree, and almost none on the right. If we
open the root, we will predict better on the left, but we will not have enough
points on the right, while if we close the root, we will not be able to use
enough the information we have on the left. This problem can be solved if
instead of opening or closing nodes, we open and close vertices. This leads
us to the following definition:

We can now define the edgewise context tree switching algorithm11:

Definition 4.38. We call edgewise weighted expert tree an expert tree T
such that a probability distribution µs→t on {0, 1}N is associated to each edge
s→ t.

Intuitively, Es has the same role as in a weighted expert tree, but instead
of controlling the status (open/closed) of a node s, µs→t controls the status
of the vertex s→ t.

The edgewise context tree switching algorithm can now be defined:

Definition 4.39. Let T be a finite edgewise weighted expert tree. For each
s ∈ T, we define the edgewise context tree switching expert ECTSs as follows:
The target of ECTSs is Tar(Es), its domain is Dom(Es), and:

ECTSs =
⋃
t∈c(s)

Switchµs→t(ECTSt, (Es)|Dom(Et)) (4.91)

is s is an internal node of T, and

ECTSs = Es (4.92)

otherwise.
We write

ECTST := ECTSε. (4.93)

11We have seen that the context tree weighting algorithm is a frozen context tree switch-
ing algorithm (Section 4.3.2.1). Similarly, the edgewise context tree weighting algorithm
is simply a frozen edgewise context tree switching, i.e. a context tree switching algorithm
such that for all sT and t ∈ c(s), µs→t(0∞ + 1∞ = 1).

74

In the case that for all s ∈ T and t ∈ c(s), µs→t(0
∞) + µs→t(1

∞) =
1, which is of particular interest, we will use the denomination “edgewise
context tree weighting” (ECTW).

As for regular context tree switching, we will study this algorithm by us-
ing edgewise switching patterns, which are a straightforward generalization:
instead of opening or closing nodes, we open or close edges, and we use the
deepest expert with the right domain that can be attained with open edges.
In other words, Is→t controls whether we use the father Es (0) or the child
Et (1):

Definition 4.40. Let T be an expert tree. We call edgewise switching
pattern on T an application I matching each edge s→ t to Is→t ∈ {0, 1}N.

If T is an expert tree from X to Y , and I = (Is→t) an edgewise switching
pattern on T, for any node s of T, we define the expert EI,s by: Dom(EI,s) =
Dom(Es) =: D, Tar(EI,s) = Tar(Es) =: T , and

• EI,s(y|z, x) :=

 ⋃
t∈c(s)

EIs→t

 (y|z, x)

for all (z, x) ∈ D, for all y ∈ T , where

EIs→t(y|z, x) := 1(Is→t)φt(z)=0(Es)|Dom(Et)(y|z, x) + 1(Is→t)φt(z)=1EI,t(y|z, x),

with φt(z
n) := 1 + |{zk|1 6 k 6 n, (z<k, xk) ∈ Dom(Et), yk ∈ T}|, if s

is not a leaf of T.

• EI,s(y|z, x) := Es(y|z, x) otherwise.

We will write EI := EI,ε, where ε is the root of T.
We define the weight wI of a switching pattern I as:

wI =
∏
s∈T
t∈c(s)

µs→t(Is→t). (4.94)

4.3.3.1 Edgewise Context Tree Weighting as a Bayesian combi-
nation

Edgewise context tree weighting behaves just as regular context tree weight-
ing, except that now, a node can activate separately its children.

Theorem 4.41. Let T be an edgewise weighted expert tree with ws→t :=
µs→t(0

∞) = 1 − µs→t(1∞). For each node s of T, we define the edgewise
context tree weighting expert ECTWs as follows: The target of ECTWs is
Tar(Es), its domain is Dom(Es), and

ECTWs =
⋃
t∈c(s)

Bayes
(
((Es)|Dom(Et), ws→t), (ECTSt, 1− ws→t)

)
, (4.95)

75

if s is an internal node of T, and

ECTWs = Es (4.96)

if s is a leaf of T.
With these notations, we have:

ECTWs = BayesI edgewise switching pattern onTs
(EI,s, wI) , (4.97)

where, if I = (Is→t), wI =
∏

s∈T
t∈c(s)

µs→t(Is→t).

Sketch of the proof. The general idea is the same as in Theorem 4.32, but
the terms appearing in the equations are more complicated.

For simplicity, we suppose that T is a binary tree, and we proceed by
induction on s starting with the leaves. If s is a leaf, there is nothing to
prove.

Suppose s is an internal node of T such that (4.95) holds for all descen-
dents of s, and let us write c(s) = {t1, t2}.

We have, by Lemma 4.26:

ECTWs =
⋃
t∈c(s)

Bayes
(
((Es)|Dom(Et), ws→t), (ECTSt, 1− ws→t)

)
(4.98)

= Bayes

[
((Es)|Dom(Et1) ∪ (Es)|Dom(Et2), ws→t1ws→t2), (4.99)

(Es)|Dom(Et1) ∪ ECTWt2 , ws→t1(1− ws→t2), (4.100)

ECTWt1 ∪ (Es)|Dom(Et2), (1− ws→t1)ws→t2 , (4.101)

+ ECTWt1 ∪ ECTWt2 , (1− ws→t1)(1− ws→t2)

]
(4.102)

And by induction, these four terms are Bayesian combinations corre-
sponding respectively to switching patterns such that: Is→t1 = Is→t2 = 0∞,
Is→t1 = 0∞ and Is→t2 = 1∞, Is→t1 = 1∞ and Is→t2 = 0∞, and Is→t1 =
Is→t2 = 1∞, with their respective weights.

4.3.3.2 General properties of ECTS

We also have an analogous of Lemma 4.37 and its corollary, where the switch-
ing patterns are replaced by edgewise switching patterns:

Lemma 4.42. Let T be a (possibly infinite) weighted expert tree, and let
n0 ∈ N. Let I := (Is→t) be an edgewise switching pattern on T such that
for all s, t, Is→t = 0∞ or Is→t ∈ {0k1∞|0 6 k 6 n0}.

76

For all s ∈ T|I such that s is not a leaf of T|I,12 we have:

ECTSTs(z|z′) > h(n0)nedge(Ts|I)EI|s(z|z′), (4.103)

for all z, z′ ∈ (X × Y)∗ such that φs(z
′) := 1 + |z′ ∩ Es| 6 n0,13 where:

• h(n0) := inf{µs→t(J)|s ∈ T, t ∈ c(s), (J ∼n0+1 1∞ or J = 0∞)},14

• I|s is the restriction of I to Ts,

• T|I is the tree obtained by removing the descendents of all the nodes
t such that Is→t = 0∞ from T, where s is the father of t.

• nedge(T) := |T| − 1 is the number of edges of T.

Proof. The proof is essentially the same as the proof of Lemma 4.37:
We work by induction on T |I.
If Ts|I is infinite, then h(n0)|(Ts|I)| = 0 and there is nothing to prove.15

We now suppose that Ts|I is finite, and we proceed by induction on s, start-
ing with the nodes of Ts|I whose only children are leaves.

Preliminary computation.
Let s be a non-leaf node of T|I.
Let us denote T = Tar(Es), D = Dom(Es), and let t1, ..., t|c(s)| be an

enumeration of the children of s. Let z ∈ (X × Y)∗ such that φs(z) 6 n0.
We have, for all n, for all zn = (z1, ..., zn) ∈ (X × Y)n:

ECTSs(z
n|z) =

 ⋃
t∈c(s)

Switchµs→t(ECTSt, (Es)|Dom(Et))

 (zn|z) (4.104)

=
∏
t∈c(s)

Switchµs→t(ECTSt, (Es)|Dom(Et))(z
n|z) =:

∏
t∈c(s)

St (4.105)

by Lemma 4.21.
Let k = k(t) ∈ J0, n0K ∪ {∞} such that Is→t = (0k1∞). Now, by Defini-

tion 4.14, for all t ∈ c(s), we have:

St =
∑

Is→t∈{0,1}N
µs→t(Is→t|z)

n∏
l=1

[
1I(s→t)

φ(z · zl)=0(Es)|Dom(Et)(yl|z · zl−1, xl) + 1I
(s→t)φ(z · zl)=1ECTSt(yl|z · zl−1, xl)

]
.

(4.106)

12Technically, it is possible to take any s ∈ T but we are not interested in what happens
elsewhere.

13We recall that by definition, EI(.|z) = Eiφ(z)(.|z).
14 We recall that I ∼n J ⇔ ∀k > n, Ik = Jk.
15h(n0) cannot be equal to 1, since {J ∈ {0, 1}N| (J ∼n+1 1∞ or J = 0∞)} contains at

least two elements.

77

The first φt(z)− 1 terms of Is are not used in the product above, so we
regroup all the terms corresponding to sequences ending as Is:

St >
∑

Is→t∈{0,1}N
Is→t∼φt(z)Is→t

µs→t(Is→t|z)
n∏
l=1

[
1I(s→t)

φt(z · zl)
=0(Es)|Dom(Et)(yl|z · zl−1, xl) + 1I

(s→t)φt (z · zl)=1ECTSt(yl|z · zl−1, xl)

]

(4.107)

>

 max
Is→t∈{0,1}N

Is→t∼φt(z)Is→t

µs→t(Is→t|z)

 n∏
l=1

[
1I(s→t)

φt(z · zl)
=0(Es)|Dom(Et)(yl|z · zl−1, xl) + 1I

(s→t)φt (z · zl)=1ECTSt(yl|z · zl−1, xl)

]
(4.108)

Now, by Lemma 4.18, max
Is→t∈{0,1}N

Is→t∼φt(z)Is→t

µs→t(Is→t|z) > h(n0), so:

St > h(n0)
n∏
l=1

[
1Is→t

φt(z · zl)=0(Es)|Dom(Et)(yl|z · zl−1, xl) + 1Is→t
φt(z · zl)=1ECTSt(yl|z · zl−1, xl)

]
,

(4.109)

> h(n0)

m∏
l=1

[
(Es)|Dom(Et)(yl|z · zl−1, xl)

] n∏
l=m+1

ECTSt(yl|z · zl−1, xl)

(4.110)

where m = m(t) := max(0, sup{l|1 6 l 6 n, φt(z · zl) 6 k}), since by
definition of the Is→t, Is→t

φt(z · zl) = 0 iff l 6 m.

> h(n0)
[
(Es)|Dom(Et)(z

m|z)
]

ECTSt(z
m+1:n|z · zm), (4.111)

Where we define z0 := ∅ and
∏0
l=1 f(l) := 1, for any f .

In particular, if Is→t = 0∞, we have: k(t) =∞, so m = n, and:

St = Switchµs→t(ECTSt, (Es)|Dom(Et))(z
n|z) > h(n0)(Es)|Dom(Et)(z

n|z) = h(n0)EIs→t(zn|z),

(4.112)

by definition of EIs→t .

Actual induction.
If all the children of s in Ts|I are leaves (i.e. Is→t = 0∞ for all t ∈ c(s)),

78

then by (4.112),

ECTSs(z
n|z) =

∏
t∈c(s)

St > h(n0)|c(s)|
∏
t∈c(s)

(Es)|Dom(Et)(z
n|z) (4.113)

> h(n0)nedge(Ts|I)

 ⋃
t∈c(s)

(Es)|Dom(Et)

 (zn|z)

(4.114)

by lemma 4.21,

> h(n0)nedge(Ts|I)Es(zn|z) = h(n0)nedge(Ts|I)EI|s(zn|z)

(4.115)

and (4.103) holds.
Now, if s is any non-leaf node (of T|I) such that (4.103) is true for all

the children t of s satisfying Is→t 6= 0∞, we have, from equation (4.105):

ECTSs(z
n|z) =

∏
t∈c(s)

Is→t 6=0∞

St
∏
t∈c(s)

Is→t=0∞

St. (4.116)

If t is such that Is→t 6= 0∞, then k(t) 6= ∞ by definition of T|I (so
k(t) 6 n0). So, by definition of m, φt(z · zm) 6 k(t) 6 n0

Consequently, by induction, using (4.111):

St > h(n0)
[
(Es)|Dom(Et)(z

m|z)
]

ECTSt(z
m+1:n|z · zm) (4.117)

> h(n0)
[
(Es)|Dom(Et)(z

m|z)
]
h(n0)nedge(Tt|I)EI|t(zm+1:n|z · zm) (4.118)

> h(n0)nedge(Tt|I)+1(Es)|Dom(Et)(z
m|z)EI|t(zm+1:n|z · zm) (4.119)

> h(n0)nedge(Tt|I)+1EIs→t(zm|z)EIs→t(zm+1:n|z · zm) = h(n0)nedge(Tt|I)+1EIs→t(zn|z),
(4.120)

by definition of EIs→t .
So by injecting (4.112) and (4.120) in (4.116):

ECTSs(z
n|z) =

∏
t∈c(s)

Is→t 6=0∞

St
∏
t∈c(s)

Is→t=0∞

St (4.121)

>
∏
t∈c(s)

Is→t 6=0∞

(
h(n0)nedge(Tt|I)+1EIs→t(zn|z)

) ∏
t∈c(s)

Is→t=0∞

(h(n0)EIs→t(zn|z))

(4.122)

and since nedge(Ts|I) = |c(s)|+
∑

t∈c(s)
Is→t 6=0∞

nedge(Tt|I),

ECTSs(z
n|z) > h(n0)

|c(s)|+
∑

t∈c(s)
Is→t 6=0∞

nedge(Tt|I) ∏
t∈c(s)

EIs→t(zn|z) = h(n0)nedge(Ts|I)
∏
t∈c(s)

EIs→t(zn|z).

(4.123)

79

We conclude with Lemma 4.21 and the definition of EI|s(zn|z) =
⋃
t∈c(s) EIs→t(zn|z).

4.3.4 Practical use

For all these expert tree algorithms to be implemented properly, it is nec-
essary to make sure that new data points only affects the experts in one
branch of the tree: this is exactly the no peeking-out condition.

We only defined our algorithms on finite expert trees. As for the original
CTW algorithm, it is possible to define unbounded depth algorithms on
expert trees if the union involved at the nodes of the tree are domain unions.
We do this in the following section.

4.3.4.1 Infinite depth algorithms

For an infinite depth CTW16 algorithm to be defined, we need that for all
z ∈ (X×Y)∗, there exists a weighted expert tree T such that for all T′ such
that T is a subtree of T, CTST(z|∅) = CTST′(z|∅).

This condition is satisfied if the experts in T are compatible.
Moreover, we want to prevent two different points from corresponding

to the same infinite branch of the tree.
This leads us to the following definition:

Definition 4.43. We say that an expert tree T is a proper expert tree if:

• The experts in T are compatible.

• The experts in T do not peek out.

• limk→∞ sup{|Dom(Es)|, |s| = k} = 0 (i.e. the domains shrink when
depth increases)17

Now, suppose we are trying to compute CTWT(yn|zn−1, xn) under the
following conditions:

• T is a full expert tree with depth D “large”.

• T is proper.

• The xi are pairwise distinct.

• We define s0 as the first node (in terms of depth) satisfying xn ∈
Dom(Es0) and ∀k < n, xk /∈ Dom(Es0) (“D large” in the first condition
means “s0 exists”).

16We only describe the CTW algorithm here for simplicity, but the remarks in this
section are also valid for the other expert tree algorithms.

17This condition is mostly useful for regression and density estimation. It can be applied
to text compression with alphabet A by setting {x ∈ A∗|x = xn;xn−|s|+1:n = s} := |A||−s|.

80

In that case have CTWs0(zn|zn−1) = CTWs0(zn|∅) (no peeking out),
and since the experts in T are compatible, CTWs0(zn|∅) = Es0(zn|∅) (if
nothing has been seen in the context s yet, then a simple proof by induction
yields CTWs(∅) = Es(∅)). In particular, CTWs0(zn|zn−1) does not depend
on D for D large: the only nodes of the tree for which computations are
needed are the nodes that have already been visited at least once.

Notice however that for practical implementation of the infinite depth
algorithm, it is necessary to store zn at the node s0. If another point zm
with m > n is such that zm ∈ Dom(Es0), then zn has to be moved to the
first node not also used for zm. The algorithm is described in the Appendix.

Definition 4.44. Let T be a (not necessarily finite) proper weighted expert
tree.

We define the Context Tree Weighting expert corresponding to T by:
Tar(CTWT) = Tar(CTWT0), Dom(CTWT) = Dom(CTWT0) ∩ D, and:

CTWT(zn|zn−1) = lim
D→∞

CTWTD(zn|zn−1), (4.124)

where TD is the subtree of T obtained by removing all nodes at depth > D,
and D = {(x1, y1), ..., (xn, yn), xn+1 ∈ (X × Y)∗ × X|∀k, k′ ∈ {1, ..., n +
1}, ∃s ∈ T, (xk ∈ Dom(Es) andxk′ /∈ Dom(Es))}.

In the infinite case, we restrict the domain to make sure that the Bayesian
posteriors can still be normalized. Indeed, (zn, xn+1) ∈ D ensures that
only a finite number of experts will have to be considered to compute the
prediction CTWT(yn+1|zn, xn+1). On [0, 1], if T is proper and if the xi are
i.i.d following a probability distribution with bounded density, xn ∈ D with
probability one, because of the condition limk→∞ sup{|Dom(Es)|, |s| = k} =
0.

4.3.4.1.1 Properties Lemmas 4.37 and 4.42, stating that the Context
Tree Switching algorithms do “better” than given sequences of trees can be
generalized to the infinite case. More precisely, we have:

Lemma 4.45. Let T be a proper infinite weighted expert tree. Let I := (Is)
be a switching pattern on T such that:

• for all s, Is ∈ {0∞, 01∞, 001∞}.

• There exists D ∈ N such that for all s such that |s| = D, Is = 0∞.

For all s ∈ T, we have:

CTSTs(z|∅) > h2D+1−1EI|s(z|∅), (4.125)

for all z ∈ (X × Y)∗, where I|s is the restriction of I to Ts, and h =
inf{µt(J)|t ∈ T, (J ∼3 1∞ or J = 0∞)}.

81

Proof. Direct application of Lemma 4.37 with n0 = 2, noting that a binary
tree with maximal depth D has 2D+1 − 1 nodes.

Lemma 4.46. Let T be a proper infinite edgewise weighted expert tree. Let
I := (Is→t) be a switching pattern on T such that:

• for all s, Is→t ∈ {0∞, 01∞, 001∞}.

• There exists D ∈ N such that for all s such that |s| = D, for all
t ∈ c(s), Is→t = 0∞.

For all s ∈ T, we have:

ECTSTs(z|∅) > h2D−|s|+2−2EI|s(z|∅), (4.126)

for all z ∈ (X × Y)∗, where I|s is the restriction of I to Ts, and h =
inf{µt→t′(J)|t ∈ T, t′ ∈ c(t), (J ∼3 1∞ or J = 0∞)}.

Proof. Direct application of Lemma 4.42 with n0 = 2, noting that a binary
tree with maximal depth D has 2D+1− 2 edges, and that the depth of Ts|I
is D + 1− |s|.

We now give some example of experts that could be used for expert tree
algorithms in different situations.

4.3.4.2 Density estimation

The algorithms above have been described only for experts that can work
with domain union. It is not the case for density estimation experts, which
need target union. The algorithms can be adapted by adding at each node
s a choice expert Cs for the union at s.

It is however harder to define an unbounded CTW algorithm for den-
sity estimation, since contrarily to the domain union case, the sequence
(CTWTD)D∈N is not constant at infinity.

To give more intuition on Context Tree Weighting applied to density
estimation, we give an example with one point:

Logarithmic singularity with only one point. Consider the fol-
lowing weighted expert tree for density on [0, 1]: each node s of T has two
children: s0 and s1, for each s, Es is the uniform density expert with target
the set of numbers whose binary expansion start with s, ws = 1

2 for all s, and

the choice experts Cs are defined by: Cs(Es0|xn) = |{k∈{1,...,n}|xk∈Dom(Es0)}|
|{k∈{1,...,n}|xk∈Dom(Es)}| if

{k ∈ {1, ..., n}|xk ∈ Dom(Es)} 6= ∅, and Cs(Es0|xn) = 1
2 otherwise.

Then we have:

Proposition 4.47. The density φx0 output by the CTWT algorithm with
T described above after having observed one single point x0 =

∑
i>1 ai2

−i

(with ai = 0 or 1) satisfies:

82

φx0(
∑

bi2
−i) =

1

2
inf{i, ai 6= bi}, (4.127)

where bi = 0 or 1.
In particular, we have φ0(x) = −blog2(x)c.

Proof. By definition of Es, we have x0 ∈ Tar(Es) iff s is a prefix of (a1, a2, ...).
Now, let x :=

∑
i>1 bi2

−i ∈ [0, 1] \ {x0}.

CTWT(x|x0) = BayesT (ET , wT)(x|x0) (4.128)

=
∑
T

wTET (x0|∅)∑
T wTET (x0|∅)

ET (x|x0) (4.129)

=
∑
T

wTET (x|x0), (4.130)

since ET (x0|∅) = 1 and thus
∑

T wTET (x0|∅) =
∑

T wT = 1.
We now regroup the trees according to the leaf containing x0. Let us

denote by fx0(T) the leaf of T such that x0 ∈ Dom(Efx0 (T)):

CTWT(x|x0) =
∞∑
n=0

∑
T

fx0 (T)=a1,...,an

wTET (x|x0). (4.131)

If fx0(T) = a1, ..., an, then ET (x|x0) = 2n1inf{i,ai 6=bi}>n. Indeed, the
choice expert ensures that ET (x|x0) = Efx0 (T)(x|x0) if x ∈ Dom(Efx0 (T)) and
ET (x|x0) = 0 otherwise.

Moreover, ET (x0|∅) = 1 for all T . So we have:

CTWT(x|x0) =
∞∑
n=0

2n1inf{i,ai 6=bi}>n
∑
T

fx0 (T)=a1,...,an

wT . (4.132)

But for n ∈ N,
∑

T
fx0 (T)=a1,...,an

wT = 1
2n+1 , since {T |fx0(T) = a1, ..., an}

can be characterized exactly by “ the nodes ε;a1; a1, a2;...; a1, ..., an−1 are
open, and a1, ..., an is closed”.

So finally,

CTWT(x|x0) =
1

2

∞∑
n=0

1inf{i,ai 6=bi}>n (4.133)

=
1

2
inf{i, ai 6= bi}, (4.134)

which is what we wanted.

83

This proposition allows us to actually compute an unbounded CTW
algorithm for T (specifically with uniform density experts, though): we just
have to plug a logarithmic singularity once we reach an interval containing
only one data point.

We have not used in practice though.

4.3.4.3 Text compression

The original CTW algorithm on {0, 1} can be described in the expert tree
framework:

• T is an expert tree from {∗} to {0, 1}.

• ws = 1/2 for all s.

• Each node s has three children: 0s and 1s, and a special symbol §s
corresponding to the beginning of the word.

• Tar(Es) = {0, 1}, and Dom(Es) = {(∗, y1), ..., (∗, yn), ∗|s is a suffix of §∞yn}.

• Es uses a Krichevsky-Trofimov estimator: Es(i|yn) = |{k|yk−1∈Dom(Es),yk=i}|+1/2
|{k|yk−1∈Dom(Es)}|+1

,

and Definition 4.44 can be used directly for the infinite depth CTW algo-
rithm.

It is also possible to recover the Partition Tree Weighting algorithm at
fixed time horizon n = 2K : this time, each node s has two children, s0 and
s1 (notice the suffix notation), and

Dom(Es) =
⋃

TheK bits binary expansion of n starts with s

({∗} × {0, 1})n × {∗}.18

(4.135)
In other words the left children of Es are used for the first half of the points
seen by Es, and the right children are used for the second half.

4.3.4.4 Regression

Let us consider f : [0, 1)→ R. Given xi ∈ [0, 1), we try to predict f(xi). An
expert tree framework for this problem could be for example:

• T is an expert tree from [0, 1) to R

• ws = 1/2 for all s.

• Dom(Eε) = [0, 1), Tar(Eε) = Y .

18“K bits binary expansion” means that we complete the binary expansion of n with
zeroes on the left.

84

• Each node s has two children: s0 and s1.

• If Dom(Es) = [a, b[, then Dom(Es0 = [a, a+b
2 [) and Dom(Es1 = [a+b

2 , b[).

• Tar(Es) = R.

• Es can be any local regression expert on Dom(Es) (examples of local
regression experts will be given in Section 5.1).

The generalization from f : X → Y is straightforward.
We have not been able to find a general theorem showing that context

tree switching behaves better than context tree weighting if we are using a
version of CTS that actually switches often. However, as we are now going
to show, CTS behaves better than CTW on a reasonable regression problem.

85

Chapter 5

Comparing CTS and CTW
for regression

In this chapter, we are trying to predict the behavior of an unknown function
f : [0, 1] → R. We show that in the noiseless case (i.e., we observe exactly
the f(xi)), with local experts fitting a Gaussian with unknown mean and
variance to the data, infinite-depth CTS is better than infinite-depth CTW
in the sense that its cumulated log-loss is smaller.

5.1 Local experts

In this section, we define the experts that will be used in the context tree to
give an estimate of some function f on a fixed set A ⊂ R. These experts use
respectively a fixed Gaussian, a Gaussian with fixed variance and variable
mean, and a Gaussian with variable mean and variance, which is the expert
we will use for the comparison between CTW and CTS.

Information about conjugate priors can be found in [Fin97].

5.1.1 The fixed domain condition

Most of the time, we think of a local regression expert E from X to Y as
attached to a subset D of X: E will issue a prediction for xn if and only
if xn ∈ D. In that case, we say that E is a fixed domain expert. More
precisely:

Definition 5.1 (Fixed domain). Let E be an expert from X to Y with
domain D and target T . We say that the domain of E is fixed if there exists
A ⊂ X such that D = (X × Y)∗ ×A. In other words, a prediction is issued
if and only if the last x seen is in A.

In that case we will often abuse the definition of the “domain” and write
that A is the domain of E.

86

We will define fixed domain experts below, but the generalization is
straightforward.

5.1.2 Blind experts

We first define an expert with fixed mean and fixed precision (inverse of
variance).

Definition 5.2. Let d ∈ N, µ, τ ∈ R and D ⊂ Rd. We call blind expert
with domain D, mean µ and precision τ the fixed domain expert E defined
by: Dom(E) = (Rd × R)∗ ×D, Tar(E) = R, and

E((x, y)|z) =

√
τ√

2π
e−τ

(y−µ)2

2 (5.1)

for all x ∈ D, y ∈ R

This expert is not useful by itself, but it will be a building block for the
more refined Gaussian expert and Normal-Gamma expert.

5.1.3 Gaussian experts

Gaussian experts try to fit a Gaussian with unknown mean, but fixed pre-
cision τ to the data.

Definition 5.3. Let d, t, τ0 ∈ N, D ⊂ Rd, and T ⊂ R, µ0, λ ∈ R. We call
Gaussian expert with domain D, regularization µ0, λ and precision τ0 (or
with variance 1

τ0
) the expert noted E defined by: Dom(E) = (Rd × R)∗D,

Tar(E) = R, and:

E(z|∅) =
√
λ

∫
µ

√
τ0√
2π
e−λ

τ0(µ−µ0)2

2 Eµ,τ0(z|∅)dµ (5.2)

for z ∈ (Rd × R)∗ ×D × R, where Eµ,τ0 is the blind expert with domain D,
mean µ and precision τ .

In other words, E is a Bayesian combination of blind experts with weights:

wµ =
√
λ
√
τ0√
2π
e−λ

τ0(µ−µ0)2

2 .

E = Bayesµ((Eµ,τ0 , wµ)), (5.3)

Remark. The regularization can be interpreted as Jeffreys’ prior (which
is uniform on µ) with additional λ observations at µ0.

The predictions are actually simple to compute:

87

Proposition 5.4 (Computing predictions (conjugate prior)). Let d, n ∈ N,
µ0, λ, τ0 ∈ R, and let D ⊂ R. For all z ∈ (D × R)n, if Eµ0,λ,τ0 denotes
the Gaussian expert with domain (R × R)∗ × D, regularization µ0, λ and
precision τ0, we have:

Eµ0,λ,τ0(.|z) = Eλµ0+nȳ
λ+n

,λ+n,τ0
(.|∅), (5.4)

where x̄ := 1
m

∑m
i=1 yi is the sample mean, and:

Eµ0,λ,τ0(.|x) = N (µ0,
1

(λ+ 1)τ0
). (5.5)

for x ∈ D.

5.1.4 Normal-Gamma experts

Normal-Gamma experts try to fit a Gaussian with unknown mean and vari-
ance to the data. These are the experts we will use in the expert tree.

Definition 5.5. Let d, t ∈ N, D ⊂ Rd, µ0 ∈ R, λ, α, β > 0. We call
Normal-Gamma expert with domain D, with regularization µ0, λ, α, β the
expert E satisfying: Dom(E) = (Rd × R)∗ ×D, Tar(E) = R, and:

E(z|∅) =

∫
µ

∫
τ

βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτe−

λτ(µ−µ0)2

2 Eµ,τ (z|∅)dτdµ (5.6)

for z ∈ D × R, where Eµ,τ is the blind expert with domain D, mean µ and
precision τ .

In other words, E is a Bayesian combination of blind experts with weights

wµ,τ = βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτe−

λτ(µ−µ0)2

2 :

E = Bayesµ,τ ((Eµ,τ , wµ,τ)), (5.7)

where Eµ,τ is the blind expert with domain D,, mean µ and precision τ .
Consequently, E is also a Bayesian combination of Gaussian experts with

weights wτ = βατα−1e−βτ

Γ(α) (Gamma distribution on τ):

E = Bayesτ ((Eµ0,λ,τ , wτ)), (5.8)

where Eµ0,λ,τ is the Gaussian expert with domain D, precision τ , and regu-
larizaion µ0, λ.

Remark. If λ = 2α, the regularization can be interpreted as Jeffreys’
prior with additional α observations at µ0 + β/α and α observations at
µ0 − β/α.

We have the following well-known propositions:

88

Proposition 5.6 (Conjugate prior). Let d, n,m ∈ N, µ0, λ, α, β ∈ R,
D ⊂ R. Let ED,µ0,λ,α,β be the Normal-Gamma expert with domain D and
target R with regularization µ0, λ, α, β. For all z ∈ (D × R)n, we have:

ED,µ0,λ,α,β(.|z) = E
D,

λµ0+nȳ
λ+n

,λ+n,α+n/2,β+ 1
2

Var(y)+ nλ
n+λ

(x̄−µ0)2

2

(.|∅), (5.9)

where ȳ := 1
m

∑m
i=1 yi is the sample mean, and Var(y) :=

∑m
i=1(yi − ȳ)2 is

the sample variance.

Proposition 5.7 (Computing predictions). Let d, t ∈ N, D ⊂ Rd, µ0, λ, α,
β ∈ R, let ED,µ0,λ,α,β be a Normal-Gamma expert on D with regularization
µ0, λ, α, β, and let z = (x, y) ∈ D × R. We have:

ED,µ0,λ,α,β(z|∅) = t2α(y|µ0,
β(λ+ 1)

αλ
), (5.10)

where tα(.|µ, σ2) is the Student distribution with α degrees of freedom, with
mean µ and variance σ2 (i.e. ∀x, tα(x|µ, σ2) := tα(x−µσ)).

From now on, we suppose that µ0 = 0, without loss of generality.

It is easy to check that all the experts defined in this section do not
peek out (the blind experts do not peek-out since their prediction is inde-
pendent of the data, and the other experts are Bayesian combinations of
blind experts)1, so they can be used for expert tree algorithms. Since we
want to use infinite depth expert trees, we also have to ensure the experts
are compatible. This is the objective of the next section.

5.2 Regularization in expert trees

We consider an infinite depth weighted expert tree T for regression on the
interval [0, 1], as defined in Section 4.3, with a Normal-Gamma expert Es at
each node s.

We are interested in the relation between the hyperparameters of the the
different Es.

Since we want to use an infinite depth expert tree, the different experts
we use have to be compatible. In other words, Es(.|x) must not depend on
s (if x ∈ Dom(Es)). Since we know (Proposition 5.7) that ED,µ0,λ,α,β(y|x) =

t2α(y|µ0,
β(λ+1)
αλ), we must have the following condition:

Condition 5.8. We say that S satisfies condition 5.8 if S is a set of Normal-
Gamma experts, and:

• µ0(E) = cst (we fix it to zero without loss of generality).

1This argument also holds for the non fixed domain versions of the experts.

89

• α(E) = cst

• β(E)(λ(E)+1)
λ(E) = cst =: B(S)

for E ∈ S.

Proposition 5.9. Let S be a set of Normal-Gamma experts. S satisfies
Condition 5.8 iff for all E , E ′ ∈ S, E and E ′ are compatible.

In particular, an expert tree containing Normal-Gamma experts is a
proper tree iff it satisfies Condition 5.8.

Proof. Let E , E ′ ∈ S, with respective regularizations (µ0, λ, α, β), (µ′0, λ
′, α′, β′).

By Proposition 5.7, E(∅) = x 7→ t2α(y|µ0,
β(λ+1)
αλ), and E ′(∅) = x 7→

t2α′(y|µ′0,
β′(λ′+1)
α′λ′).

Since two student distributions are equal iff they have same mean and
variance, and same number of degrees of freedom, E and E ′ are compatible
iff:

• µ0 = µ′0

• α = α′

• β(λ+1)
αλ = β′(λ′+1)

α′λ′

This is exactly condition 5.8.

Consequently, the most important question when regularizing is: “how
should λ (or β) change with |s| (or more precisely, with Dom(Es)) ?”. This
issue will be adressed in Section 5.2.1 below.

We will only consider the cases λ = K|Dom(Es)|h, with K > 0, h > 0.
In particular, λ = O(1) and β = O(1) uniformly on the whole tree.

5.2.1 Choosing the regularization

We are interested in the “best” choice of regularization among the λ(Es) =
K|Dom(Es)|h for the Normal-Gamma experts in an expert tree satisfying
Condition 5.8 for regression. To do so, we will study a very simple case:
regression for f : x 7→ x on [0, 1], and sample points xi such that at time
t = 2K , each expert at depth K has seen exactly one point.

We show that in this case, the best choice is λ(Es) ∝ |Dom(Es)|2.

Notation 5.10. We denote by (un)n∈N the sequence defined by: u0 = 0,
and for all k,m, if 0 6 m < 2k, u2k+m = 2m+1

2k+1 .

If 0 6 m < 2k, we write Ik,m := [m
2k
, m+1

2k
).

90

Notice in particular that the (un) are such that u2k+m is the second point
in Ik,m, and the first point in any Ik′,m containing u2k+m with k′ > k.

We now use these (un) to study the behaviour of the CTW algorithm in
an expert tree satisfying Condition 5.8.

Let t = 2K , vn = (un, f(un)) = (un, un), and let us consider an expert E
at depth k, with k 6 K. In particular, |Dom(E)| = 1

2k
, and tk = t

2k
is the

number of data points actually seen by E . By Lemma A.9, we have:

− ln E(vt|∅) = (α+ tk/2) lnV0(tk, λ) +
1 + ln 2π

2
tk + ln tk −

1

2
lnλ− α lnβ +O(1),

(5.11)

with V0(tk, λ) = 2β
tk+λ + λ

tk+λ

∑
ui∈Dom(E) u

2
i

tk+λ +
(

tk
tk+λ

)2
Varui∈Dom(E)(ui) (with

also tk = |{ui ∈ Dom(E)}|).
Now, since lnβ = lnλ+O(1), the average cost of a point is:

− 1

tk
ln E(vt|∅) = (

α

tk
+ 1/2) lnV0(tk, λ) +

1 + ln 2π

2
− 1

tk
ln

1

tk
− 1

tk
(
1

2
+ α) lnλ+O(

1

tk
),

(5.12)

= (
α

tk
+ 1/2) lnV0(tk, λ)− 1

tk
(
1

2
+ α) lnλ+O(1) (5.13)

=
α+ 1/2

tk
(lnV0(tk, λ)− lnλ) +

tk − 1

2tk
lnV0(tk, λ) +O(1)

(5.14)

=: φ(tk, λ) +O(1). (5.15)

Lemma 5.11. We have, if λ = O(1): tk > 1:

lnV0(tk, λ) = max [lnλ− ln tk,−2k ln 2] +O(1) if tk > 1, (5.16)

lnV0(tk, λ) = lnλ+O(1) if tk = 1 (5.17)

where V0(tk, λ) = 2β
tk+λ + λ

tk+λ

∑
ui∈Dom(E) u

2
i

tk+λ +
(

tk
tk+λ

)2
Varui∈Dom(E)(ui).

Proof. We have, for any a, b, c > 0, ln(max(a, b, c)) 6 ln(a + b + c) 6
ln(3 max(a, b, c)) = ln(max(a, b, c)) + ln 3. In particular ln(a + b + c) =
ln(max(a, b, c)) +O(1) = max(ln(a, b, c)) +O(1).

We now apply this to the three terms in V0(t+ λ):

ln
2β

tk + λ
= ln

Bλ

(λ+ 1)tk(1 + λ
tk

)
= ln(

λ

tk
) + ln

(
B

(λ+ 1)(1 + λ/tk)

)
= lnλ− ln tk +O(1).

(5.18)

Since for all i, ui ∈ [0, 1], we have
∑

ui∈Dom(E) u
2
i 6 t, so:

ln

(
λ

tk + λ

∑
ui∈Dom(E) u

2
i

tk + λ

)
6 ln

(
λtk

t2k(1 + λ
tk

)2

)
= lnλ− ln tk +O(1).

(5.19)

91

If tk = 1, Varui∈Dom(Ei)(ui) = 0 and the lemma follows.

If tk > 1, suppose without loss of generality that Dom(E) = [0, 1
2k

), so

that {ui ∈ Dom(Ei)} = { m
2K
|m ∈ J0, 2K−k−1K}. Let us consider the (2Kui),

and let us write A = 2K−k−1. Their average is ū = A
2 , so

Varui∈Dom(Ei)(2
Kui) =

1

A+ 1

A∑
m=0

(m−A/2)2 (5.20)

=
1

A+ 1

A∑
m=0

m2 − A

2

A∑
m=0

m+ (A+ 1)A2/4 (5.21)

=
A(2A+ 1)

6
− A2

2
+
A2

4
(5.22)

=
A2

12
+
A

6
. (5.23)

So Varui∈Dom(Ei)(ui) =
1

22K
Varui∈Dom(Ei)(2

Kui) =
2−2k−2

12
+

2−k−K−1

6
. Since

k 6 K, we finally have: ln Varui∈Dom(Ei)(ui) = −2k ln 2 +O(1), and

ln

(
tk

tk + λ

)2

Varui∈Dom(E)(ui) = ln(
1

(1 + λ
tk

)2
) + ln Varui∈Dom(Ei)(ui)

(5.24)

= −2k ln 2 +O(1). (5.25)

The lemma follows

Plugging tk = 1 in (5.14) immediately yields a O(1) average loss, for
any regularization. As we will see, this worse than what we can obtain with
tk > 1:

• Suppose λ(ε) = εh, with h > 2. Then V0(tk, λ) = −2k ln 2 + O(1).
In particular, h 7→ φ(tk,

1
2kh

) is decreasing on (2,+∞). Intuitively,
increasing h over 2 increases the cost for each expert (− lnλ term),
but does not improve their performance (− lnV0 term).

• Suppose λ(ε) = εh, with h < 2. In that case, lnλ − ln tk = (−kh −
K + k) ln 2 = −(K + k(h− 1)) ln 2. Let us study how the average loss
of E varies with its depth k.

— For k(3−h) > K, lnλ−ln tk > −2k ln 2, so lnV0(tk, λ) = lnλ−ln tk.
In particular, (5.14) yields:

−1

k
ln E(vt|∅) =

tk − 1

2tk
(lnλ− ln tk) (5.26)

= − tk − 1

2tk
(K + k(h− 1)) ln 2 +O(1). (5.27)

92

The dominant term is therefore −1
2(K + k(h− 1)) ln 2 (if it is not also

in the O(1)). In particular:

– It is decreasing in k if 2 > h > 1, so the optimal choice is k = K
3−h ,

and the loss is (up to terms of lesser order) −1
2(K+K h−1

3−h) ln 2 =

−h−1
3−h ln t, with h−1

3−h <
2−1
3−2 = 1.

– It is increasing in k if h 6 1, so the optimal choice is k = 0, and
the loss is (up to terms of lesser order) −1

2K ln 2 = −1
2 ln t.

—For k(3− h) 6 K, lnλ− ln tk 6 −2k ln 2, so lnV0(tk, λ) = −2k ln 2.
In this case, we show that the best loss is achieved for k close to K
(i.e. k = K

3−h), and then, as seen before, the loss is −h−1
3−h ln t if h > 1,

and −1
2 ln t otherwise.

Indeed, (5.14) yields

φ(tk, λ) =
α+ 1/2

tk
(−2k ln 2 + kh ln 2)− tk − 1

2tk
2k ln 2 (5.28)

=

[
−k + k

2k

t
− (α+ 1/2)(2− h)k

2k

t

]
ln 2) (5.29)

=

[
−k + k

2k

t
(1− (α+ 1/2)(2− h))

]
ln 2, (5.30)

so

1

ln 2

dφ(tk, λ)

dk
= −1 +

2k

t
(1− (α+ 1/2)(2− h)) + k

2k

t
(1− (α+ 1/2)(2− h)) ln 2

(5.31)

= −1 +
2k

t
(cst ∗ k ln 2 + cst) (5.32)

But since k 6 K
3−h 6 K, we have 2k 6 t

1
3−h =: t1−ν , with ν = 1− 1

3−h >
0 ; and k ln 2 6 K ln 2 = ln t. So

1

ln 2

dφ(tk, λ)

dk
6 −1 + cst

ln t

tν
. (5.33)

Consequently, for t large enough dφ(tk,λ)
dk is negative on [0, K

3−h), so the

optimal k is K
3−h , with an average loss of −h−1

3−h ln t.

So finally, the best regularization for a linear function with a balanced
sequence of sample points is λ(ε) ∝ |Dom(E)|2. This is the regularization
we will use from now on.

At first glance, it would have seemed reasonable to choose a regular-
ization proportional to λ(ε) ∝ ε, because it is the only regularization that
could be described as virtual points seen by the whole tree.

93

However, since we suppose we are regressing Lipschitz functions, we
know that the variation of f in an interval of size ε is of order ε, so a better
regularization would ensure that the expected deviation of Es after having
seen on point is of order ε. Since the variance is roughly proportional to
λ(ε), we must have λ(ε) = ε2. We expect that in general, if we are regressing
a h-Hölder function, the best regularization is λ(ε) = ε2h.

5.3 Regret bounds in the noiseless case

We are now going to prove that for an infinite binary weighted expert tree T
satisfying Condition 5.8, if the sequence of sample points (xi) is sufficiently
well-behaved:

• The loss of the context tree weighting algorithm corresponding to T
(and more generally, of any Bayesian combination of Normal–Gamma
experts) is greater than −t ln t+ 1

2 t ln ln t+O(t)

• The loss of the context tree switching algorithm corresponding to T is
lower than −t ln t+O(t).2 Using the edgewise version of the algorithm
broadens the class of functions for which the bound holds.

The idea behind the proofs is always the following: to generate the image
f(xi) of a new point xi, CTS can use the deepest expert that has seen xi
and at least one other data point (provided the expert is not “too deep”:
the cost of specifying the tree must not be too high), whereas CTW cannot
(from a generative point of view, CTW consists in choosing a given tree,
and using it to generate the data).

5.3.1 CTS

The expert trees we use to achieve the bound for CTS and ECTS are “well-
behaved” infinite binary trees. More precisely:

Definition 5.12. Let I ⊂ R be an interval, and let T be an expert tree with
Dom(Eε) = I.

We say that T is n-balanced if:

• Each node of T has exactly n children.

• For all s ∈ T, the domain of Es has is fixed.

• For all s ∈ T, Dom(Es) is an interval.

• For all s ∈ T and for all t, t ∈ c(s), |Dom(Et)| = |Dom(Et′)|
2Under a condition on the switching that is satisfied by the Switch prior from Definition

4.16.

94

In particular, a n-balanced tree is infinite.

The bound we obtained for non edgewise CTS holds only in a simple
case: we choose a sequence of sample points such that at time 2K , each
expert at depth K has seen exactly one data point.

Theorem 5.13 (Lower bound for CTS regret). Let (un) be as in Notation
5.10.

Let Kf ∈ R+, let f be a Kf -Lipschitz function on [0, 1], and let t ∈ N.
Let T be a proper 2-balanced weighted expert tree such that DomEε = [0, 1]

and h := inf{µt(J)|t ∈ T, (J ∼3 1∞ or J = 0∞)} > 0.
If for any expert Es, for any (z1, z2) ∈ Tar(Es)N, we have:

− ln Es(z1|∅) 6 C(f) (5.34)

and,
− ln Es(z2|z1) 6 C(f)− |s| ln 2 =: L|s|, (5.35)

then,
− ln CTST(vt|∅) 6 −t ln t+O(t), (5.36)

where for all n, vn := (un, f(un))

Proof. Let K such that t ∈ (2K−1, 2K].
Let I be a switching pattern on T such that Is = (001∞) for |s| 6 K−2

and Is = (0∞) for |s| = K − 1.
By Lemma 4.45, we have:

− ln CTST(vt|∅) 6 − ln EI(vt|∅)− (2K − 1) lnh = − ln EI(vt|∅) +O(t).
(5.37)

By definition of Iε, we have

EI(v1|v0) = Eε(v1|v0). (5.38)

Now, by Lemma A.6, for all k > 0, for all 0 6 m < 2k, u2k+m is at
least the third point in all of the Ik′,m′ such that k′ < k and u2k+m ∈
Ik′,m′ , and it is the second point in Ik,m, so we have EI(v2k+m|v2k+m−1) =

Es(k,m)(v2k+m|v2k+m−1), where s(k,m) is the node of T satisfying Dom(Es) =

Ik,m. Finally, if t0 is the index of the first point in Ik,m, Es(k,m)(v2k+m|v2k+m−1) =
Es(k,m)(v2k+m|vt0), since the experts do not peek out.

Since by construction, |s(k,m)| = k, we have EI(v2k+m|v2k+m−1) =
Es(k,m)(v2k+m|vt0) 6 Lk.

95

Consequently, we have (up to the term corresponding to v0, which is a
constant):

− ln CTST(vt|∅) 6 − ln EI(vt|∅) +O(t) =

K−2∑
k=0

2kLk + (t− 2K−1)LK−1 +O(t)

(5.39)

6 − ln 2
K−2∑
k=0

2kk − (t− 2K−1)(K − 1) ln 2 +O(t)

(5.40)

and by applying Corollary A.2, we find:

− ln CTST(vt|∅) 6 −t ln t+O(t), (5.41)

which is what we wanted.

Corollary 5.14. Let Kf ∈ R+, let f be a Kf -Lipschitz function on [0, 1],
let (un) be as in Notation 5.10.

Let T be a 2-balanced weighted expert tree with DomEε = [0, 1], satisfying
Condition 5.8 with λ(Es) = |Dom(Es)|2, and such that there exists h > 0 such
that for any node s of T, min(µs(01∞), µs(0

∞)) > h.
We have:

− ln CTST(vt|∅) 6 −t ln t+O(t). (5.42)

where for all n, vn := (un, f(un))

Proof. By Proposition 5.9, a weighted expert tree satisfying Condition 5.8
is a proper tree, and by Lemma A.10, the Normal-Gamma experts satisfy
conditions of Theorem 5.13.

As discussed at the beginning of 4.3.3, the problem with CTS (or at least
with the proof of Theorem 5.13) is that the data points have to alternate
exactly between the left and right, for all experts.

Edgewise CTS offers the same guaranteed performance on a larger class
of functions.

5.3.2 ECTS

For ECTS to work properly, we need sequences with “low discrepancy”.
More precisely,

Definition 5.15. Let I0 be a bounded interval of R. Let (xn)n∈N ∈ IN0 . Let
K > 1.

For any interval I ⊂ I0, for any t ∈ R, let Nt(I) := |{k|1 6 k 6 t, xk ∈
I}| be the number of points of (xn) having falled in I before time t.

96

• We say that (xn) is well K-balanced if for any interval I ⊂ I0, for
any t ∈ N ⌊

1

K
|I|t
⌋
6 Nt(I) 6 max(1,K|I|t). (5.43)

• We say that (xn) is upper well K-balanced if for any interval I ⊂ I0,
for any t ∈ N

Nt(I) 6 max(1,K|I|t). (5.44)

We say that (xn) is well balanced (resp. upper well balanced) if there
exists K such that (xn) is well K-balanced (resp. upper well K-balanced).

Remark 5.16. Let (un) ∈ [0, 1]N defined by u0 = 0, and for all k,m, if
0 6 m < 2k, u2k+m = 2m+1

2k+1 (Notation 5.10). (un) is well 4-balanced.

Proof. For t ∈ (2K−1, 2K], there are less points in a given I than for t = 2K ,
and for t = 2K , the distance between a point and its closest neighbor is 1

2K
,

so if |I| < 1
2K

, I contains at most one point, and if |I| > 1
2K

, I contains

at most 2K |I| + 1 6 2 ∗ 2K |I| 6 2 ∗ 2t|I|, so (un) is upper well 4-balanced.
Conversely, for t ∈ [2K , 2K+1), there are more points in a given I than for
t = 2K , and there are b2K |I|c elements of un in the adherence Ī of I, so
there are at least b2K |I|c/2 > b2K |I|/4c in I, so (un) is well 4-balanced.

Theorem 5.17 (Lower bound for ECTS). Let Kf ∈ R+, let f be a Kf -
lipschitz function on [0, 1].

Let T be an proper infinite 2-balanced edgewise weighted expert tree such
that DomEε = [0, 1] and h := inf{µs→t(J)|s ∈ T, t ∈ c(s), (J ∼2 1∞ or J = 0∞)} >
0 .

If for all s ∈ T, for any (xi) ∈ Dom(Es)N, the local experts satisfy:

− 1

n
ln Es(z1, ..., zn|z′1, ..., z′m) 6 C(f,m)− |s| ln 2 =: L|s|,m (5.45)

for all n ∈ N, m ∈ N∗. Then, for any well balanced sequence (xi) ∈
(DomEε)N we have:

− ln ECTST(zt|∅) 6 −t ln t+O(t), (5.46)

where zn := (xn, f(xn)).

Proof. Let K ∈ N such that t ∈ (2K−1, 2K], let (xn) ∈ [0, 1]N. Let λ such
that (xn) is well λ-balanced, and let I = I(x) be an edgewise switching
pattern such that for any s ∈ T, and t ∈ c(s)

• Is→t = 0∞ if |s| = K − 1.

• Is→t = 01∞ otherwise.

97

In other words, to predict xn, EI tries to use the deepest expert (at maximum
depth K − 1) that has seen at least one other data point before xn (Lemma
A.3 in the Appendix).

By Lemma 4.46 applied to the root of T, we have:

− ln ECTST(zt|∅) 6 − ln EI(zt|∅)− (2K+1− 2) lnh = − ln EI(zt|∅) +O(t).
(5.47)

If we denote by sn the node corresponding to the expert used at time n,
we have:

−ln EI(zt|∅) = −
t∑

n=1

ln Esn(xn|xn−1) = −
t∑

n=1
|sn|<K−1

ln Esn(xn|xn−1)−
t∑

n=1
|sn|=K−1

ln Esn(xn|xn−1).

(5.48)
By Lemma A.3, sn satisfies xn ∈ Dom(Esn), xn−1 ∩ Dom(Esn) 6= ∅ and

either |sn| = K − 1 or xn−1 ∩ Dom(Etn) = ∅, where tn is the child of sn
containing xn.

In particular, for any s ∈ T: if |s| = K − 1 and n > n(s) where n(s) :=
inf{i ∈ N||xi ∈ Dom(Es)|} is the index of the first point of x belonging to
Dom(Es), then xn ∈ Dom(Esn)⇔ sn = s.

If we regroup the terms corresponding to the same experts in the second
sum, we see that:

−
t∑

n=1
|sn|=K−1

ln Esn(xn|xn−1) = −
∑
s∈T

|s|=K−1

ln Es(xt(s)+1:t|xt(s)) (5.49)

because if |s| = K − 1, every point falling in Dom(Es) after t(s) is predicted
with Es,

(5.50)

= −
∑
s∈T

|s|=K−1

ln Es(xt(s)+1:t ∩Dom(Es)|xt(s) ∩Dom(Es))

(5.51)

because the local experts do not peek out (By hypothesis: T is a proper
tree),

(5.52)

= −
∑
s∈T

|s|=K−1

ln Es(xt(s)+1:t ∩Dom(Es)|xt(s)), (5.53)

by definition of t(s).

98

So by hypothesis (5.45), we have:

−
t∑

n=1
|sn|=K

ln Esn(xn|xn−1) = −
∑
s∈T
|s|=K

ln Es(xt(s)+1:t ∩Dom(Es)|xt(s)) 6
∑
s∈T

|s|=K−1

nsLK−1,1 = nK−1LK−1,1

(5.54)

where ns = |xt(s)+1:t ∩ Dom(Es)| is the number of times Es has been used,
and nK−1 =

∑
s∈T

|s|=K−1
ns is the number of times an expert at depth K − 1

has been used.

Now, let us consider the term

−
t∑

n=1
|sn|<K−1

ln Esn(xn|xn−1) = −
t∑

n=1
|sn|<K−1

ln Esn(xn|xn−1 ∩Dom(Esn)). (5.55)

The sn in this sum satisfy: xn ∈ Dom(Esn), xn−1 ∩ Dom(Esn) 6= ∅, and
xn−1 ∩Dom(Etn) = ∅, where tn is the child of sn containing xn.

In particular, since xn−1 ∩ Dom(Etn) = ∅, if we denote by t′n ∈ T the
child of sn that is not tn, we have: xn−1 ∩Dom(Esn) = xn−1 ∩Dom(Et′n).

Now, by Proposition A.4, xn−1 ∩ Dom(Etn) = ∅ implies 1 6 xn−1 ∩
Dom(Et′n) 6 λ2, so by hypothesis (5.45), if we write Ln := max16m6λ2 Ln,m:3

−
t∑

n=1
|sn|<K−1

ln Esn(xn|xn−1 ∩Dom(Esn)) 6
t∑

n=1
|sn|<K−1

L|sn| =
K−2∑
k=0

nkLk, (5.56)

where nk = |{sn, |sn| = k}| is the number of times an expert at depth k has
been used.

So finally, if we regroup the two sums:

− ln EI(zt|∅) = −
t∑

n=1
|sn|<K−1

ln Esn(xn|xn−1)−
t∑

n=1
|sn|=K−1

ln Esn(xn|xn−1) 6
K−1∑
k=0

nkLk

(5.57)

But any given node s ∈ T satisfying |s| < K − 1 can appear only once
in the sum (5.56) (after a node appears in the sum, its two children contain
at least one data point, and the condition xn−1 ∩Dom(Etn) = ∅ cannot be
satisfied anymore), so we must have nk 6 2k for all k 6 K − 2.

Since k 7→ Lk is decreasing and
∑
nk = t is fixed,

∑K−1
k=0 nkLk is clearly

maximal for nk = 2k for all k < K−1: If one of the nk, say k0, is smaller than

3So by definition, LK−1,1 from (5.45) is smaller than LK−1

99

2k, we must have nK−1 > 2K−1. Therefore, nK−1 ← nK−1−1;nk0 ← nk0 +1;
yields a larger sum. Consequently, up to the first point, we have

− ln ECTST(zt|∅) 6 − ln EI(zt|∅) +O(t) 6
K−2∑
k=0

2kLk + (t− 2K−1)LK−1 +O(t)

(5.58)

6 − ln 2
K−2∑
k=0

k2k − (t− 2K−1)(K − 1) ln 2 +O(t)

(5.59)

6 −t ln t+O(t), (5.60)

by Corollary A.2, which is what we wanted.

Corollary 5.18. Let Kf ∈ R+. Let f be a Kf -Lipschitz function on
[0, 1]. Let K ∈ N, and t = 2K . Let T be an infinite 2-balanced edge-
wise weighted expert tree with DomEε = [0, 1], satisfying Condition 5.8
with λ(Es) = |Dom(Es)|2, and such that h := inf{µs→t(J)|s ∈ T, t ∈
c(s), (J ∼2 1∞ or J = 0∞)} > 0 .4 Then, we have:

− ln ECTST(zt|∅) 6 −t ln t+O(t), (5.61)

for any well balanced sequence (xi) ∈ (DomEε)N, where zn := (xn, f(xn)).

Proof. By Proposition 5.9 Condition 5.8 ensures that T is a proper tree,
and by Lemma A.11, the Normal-Gamma experts satisfy the condition of
Theorem 5.17.

5.3.3 CTW

It is possible to obtain a lower bound on the loss of any Context Tree
Weighting algorithm, also holding on Bayesian combination of histograms,
provided the observed is only upper well balanced (we only need to prevent
deep experts from seeing “too many” data points).

The bound for the Context Tree Weighting algorithm, and the Bayesian
histograms follows from the theorem below:

Theorem 5.19 (Average loss). Let Kf ∈ R+, let f be a Kf -Lipschitz func-
tion on [0, 1].

Let S be a set of Normal-Gamma experts satisfying condition 5.8, with
λ(E) = |Dom(E)|2 and E 7→ |Dom(E)| bounded on S.

We have, for any E ∈ S, for any upper well balanced sequence (xn):

4We recall that this condition is achieved by the switch distribution from [vEGdR12].

100

− 1

tE
ln E(zt|∅) > − ln t+

1

2
ln ln t+O(1), (5.62)

uniformly on S, where zt = (xt, f(xt)), and tE := |zt∩Dom(E)| is the number
of points predicted by the expert E.

Proof. We write ε := |Dom(E)|. Since Normal-Gamma experts do not peek
out, we have by Lemma A.12:

1

tE
E(zt|∅) =

1

tE
E(zt ∩Dom(E)|∅) > (1− 1

tE
) ln ε− 1

2
ln tE +O(1) =: φε(tE) +O(1)

(5.63)

We have dφε
dtE

= ln ε
t2E
− 1

2tE
= 2 ln ε−tE

2t2E
: φε is increasing on [1, 2 ln ε] (if non

empty) and decreasing on [2 ln ε,∞), so its minimum on any segment [1, a]
is attained either at 1 or at a.

Since (xn) is upper well balanced, there existsK such that tE 6 max(1,Kεt).
So we have:

φε(tE) > min(φε(1), φε(max(1,Kεt))) = min(0, φε(K1εt)) (5.64)

We are therefore interested in the minimum value of ε 7→ φε(Kεt). We
have

φε(Kεt) = (1− 1

Kεt
) ln ε− 1

2
ln(Kεt) (5.65)

=
1

2
ln ε− 1

2
ln t− ln ε

Kεt
+O(1). (5.66)

If we set u = εt
ln t , we find:

φε(Kεt) =
1

2
lnu− 1

2
ln t+

1

2
ln ln t− 1

2
ln t− ln(u ln t)− ln t

Ku ln t
+O(1)

(5.67)

= − ln t+
1

2
ln ln t+

1

2
lnu+

1

Ku
− 1

K

ln(u ln t)

u ln t
+O(1) (5.68)

lnx/x 6 1/e for all x > 0, so

φε(Kεt) > − ln t+
1

2
ln ln t+

1

2
lnu+

1

Ku
+O(1) (5.69)

We then see that 1
2 lnu+ 1

Ku > 1
2 ln 2

K + 1
2 = O(1).

So finally 1
tE
E(zt|∅) > − ln t+ 1

2 ln ln t+O(1), which is what we wanted.

101

Corollary 5.20 (Lower bound on regret for Context Tree Weighting). Let
Kf ∈ R+, let f be a Kf -Lipschitz function on [0, 1].

Let T be a proper (possibly infinite) weighted expert tree with DomEε =
[0, 1] and such that for all s ∈ T, Dom(Es) is an interval, with λ(Es) =
|Dom(Es)|2. We have, for any upper well balanced sequence (xn):

− ln CTWT(zt|∅) > −t ln t+
1

2
t ln ln t+O(t), (5.70)

where zk = (xk, f(xk)).

Proof. By definition, we have CTWT = BayesT (ET , wT), so− ln CTWT(zt|∅) >
−maxT ln ET (zt|∅).

Now, for any T , ET =
⋃
s leaf of T Es, so by Lemma 4.21, we have:

ET (zt|∅) =
∏

s leaf of T

Es(zt|∅), (5.71)

so

− ln ET (zt|∅) >
∑

s leaf of T

− ln Es(zt|∅). (5.72)

Now, by Theorem 5.19:

− ln ET (zt|∅) >
∑

s leaf of T

−tEs ln t+
1

2
tEs ln ln t+O(tEs), (5.73)

where O(tEs) does not depend on the experts, and, since
∑

s tEs = t,

− ln ET (zt|∅) > −t ln t+
1

2
t ln ln t+O(t). (5.74)

So finally,

− ln CTWT(zt|∅) > −max
T

ln ET (zt|∅) > −t ln t+
1

2
t ln ln t+O(t), (5.75)

which is what we wanted.

Notice in particular that we use intervals of size ln t/t even if f is con-
stant5, because the regularisation is ε2: going deeper allows the Normal-
Gamma experts to have less added artificial variance.

More generally, since Theorem 5.19 bounds uniformly the loss of individ-
ual Normal-Gamma experts, we have the following, stronger result, which
applies in particular to Bayesian histograms.

5The optimal u = εt
ln t

in the proof of Theorem 5.19 is constant.

102

Corollary 5.21 (Lower bound on regret for Bayesian histograms). Let Kf ∈
R+, let f be a Kf -Lipschitz function on [0, 1].

Let H be a (possibly infinite) Bayesian combination of (possibly count-
able) unions of Normal-Gamma experts satisfying condition 5.8 with λ(E) =
|Dom(E)|2, and with DomH = [0, 1].

We have, for any upper well balanced sequence (xn):

− lnH(zt|∅) > −t ln t+
1

2
t ln ln t+O(t), (5.76)

where zk = (xk, f(xk)).
In particular, (5.76) holds if H is an histogram or a Bayesian combina-

tion of histograms.

Proof. Same proof as Corollary 5.20.

This bound does not hold when using time-dependent histograms (for
example, with t1/3 bins): using more complex histograms when more data
is available is exactly the switch strategy. The advantage of CTS is that it
simultaneously considers many different sequences of histograms, so one of
them uses the “right” bin size.

103

Chapter 6

Numerical experiments

We conclude this part with some numerical experiments, to test some of the
new algorithms described here. In particular, we are interested in knowing
if CTS is also better than CTW for “reasonably small” t.

We used finite binary trees for the experiments (depth 17 for regression,
30 for text compression). The weighting algorithms used equal to 1

2 , and
the switch algorithms used correspond to Definition 4.16, with πK uniform,
freezing rate θ = 1

2 , and the probability distribution πτ : n 7→ ln 2
n+2 −

ln 2
n+1 on

N∗.
The details specific to the application are given in the corresponding

parts.

6.1 Regression

In order to illustrate the results in Section 5.3, we test the CTW and CTW
algorithms, and their edge counterparts with Normal-Gamma experts on
several test functions. The regularization for the experts was α = .5, λ(ε) =
ε2, and β = λ

λ+1 .
The choice of the log-loss could seem unorthodox, but it is quite natural

in the MDL context: we want to minimize the description length of the
data, which is − lnP (zn). Moreover, minimizing the log-loss amounts to
minimizing the square error, assuming Gaussian noise with fixed variance.

Since the (zi) are real numbers, P is usually a probability density on R,
so strictly speaking, − lnP (zn) is not the number of bits needed to encode
zk (which is infinite). What we are interested in is encoding the zi up to
a precision ε. And in that case, the cost of encoding zi as “a point in an

interval I of size ε” is: − ln

∫
I
P (z)dz ≈ − ln ε− lnP (zi).

We use some classical test functions from [MAJ+98]].

As we can see, in the noiselesse case, the edgewise versions of the algo-

104

Figure 6.1: Regression functions list
Constant x 7→ 0 “CTW-friendly” setting.

LargeConstant x 7→ 106 Since CTW has to learn the constant at each step,
we can expect CTS to be much better than CTW here

SteepLinear x 7→ 100x

SteepLinearConstant x 7→ 100x+ 106

Blocks x 7→
∑

hjK(x− xj) Should behave like Constant for CTW.

K(x) = 1+sg(x)
2 . xj , hj in Figure 6.2

Bumps x 7→
∑

hjK(
x− xj
wj

) K(x) = (1 + |x|)−4. xj , hj , wj in Figure 6.2

Doppler x 7→
√
x(1− x) sin(

2.1π

x+ .05
)

Wave x 7→.5 + .2 cos(4πx) + .1 cos(24πx)

Additive noise on f x 7→f(x) + ε E(ε) = 0.

Multiplicative noise on f x 7→f(x) + εf(x) E(ε) = 0. The fact that Normal-Gamma experts adapt
their variance should be put to use in this case.

Figure 6.2: Complement to Figure 6.1: Parameters for the Blocks and
Bumps functions
Blocks and Bumps, xj .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81

Blocks, hj 4 −5 3 −4 5 −4.2 2.1 4.3 −3.1 5.1 −4.2

Bumps, hj 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2

Bumps, wj .005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005

rithm are systematically superior to the non edgewise versions (except for
the CTW algorithms on SteepLinearConstant), and switching is systemati-
cally superior to weighting (except for a tie on the non edgewise versions on
SteepLinearConstant), which confirms our intuition.

However, the performance of the switching algorithms on LargeCon-
stant and SteepLinearConstant is surprising: we would have expected a
performance similar to the Constant and SteepLinear functions, since Switch
should have paid the price of fixing the constant only once.

The second set of experiments consisted in comparing these algorithms
on noisy functions with an oracle (in the noiseless case for density, the loss
incurred by an oracle would be −∞: we know f(x) so for any ε, the cost
of encoding f(x) up to ε is zero. Intuitively, the “density of a Dirac” is
infinite).

In the noisy case, the differences between the algorithms are smaller.
In particular, the difference between the edgewise and the non edgewise
version of an algorithm is extremely small, with a very slight edge for the

105

Figure 6.3: Complement to Figure 6.1: Graphs of the functions. From left
to right then top to bottom: Blocks, Bumps, Doppler, Wave.

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"Blocks"

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"Bumps"

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"Doppler"

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"Wave"

CTW CTS ECTW ECTS

Constant −12.207 −12.848 −12.551 −13.160

LargeConstant 8.184 6.586 7.729 6.271

SteepLinear −4.955 −6.375 −5.266 −6.450

SteepLinearConstant 6.586 6.586 7, 730 6.272

Blocks −11.205 −11.925 −11.560 −12.239

Bumps −9.710 −10.427 −9.931 −10.559

Doppler −9.286 −10.051 −9.424 −10.062

Wave −10.172 −10.987 −10.343 −11.030

Figure 6.4: Average loss in bits after 2.105 points in the noiseless case.
Average on ten runs.

CTW CTS ECTW ECTS Oracle

AddDoppler −1.992 −2.024 −1.991 −2.020 − log2(1
0.2) ≈ −2.322

AddWave −2.032 −2.047 −2.032 −2.044 − log2(1
0.2) ≈ −2.322

MultDoppler −4.198 −4.296 −4.196 −4.279 −4.788

MultWave −3.091 −3.113 −3.089 −3.109 −3.403

Figure 6.5: Average loss in bits after 2.105 points in the noisy case. Average
on ten runs. For additive and multiplicative noise, ε ∼ Unif[−.1, .1].

106

non edgewise algorithms1. CTS remains consistently better than CTW,
though, and the average performance of the algorithms is not very far from
the oracle.

1The samples have very small variance, so the difference is actually significant for CTS
and ECTS.

107

6.2 Text Compression

We test different algorithms on the Calgary corpus, with KT estimators at
the leaves. We expect the results of the “new” algorithms to be comparable
with those of CTS described in [VNHB11], since the only difference is the
choice of the switch distribution. This point of view is developed in Section
6.2.1.

Figure 6.6: Performance of different expert tree algorithms at depth 30
on the Calgary corpus. The results of CTW48 and CTS48 are taken from
[VNHB11] (non enhanced versions with depth 48). In bold: best perfor-
mance among the first four algorithms.)

bib book1 book2 geo news obj1 obj2 paper1 paper2 paper3 paper4 paper5 paper6 pic progc progl progp trans

CTW 2.30 2.40 2.26 5.02 2.85 4.64 3.30 2.86 2.61 2.98 3.50 3.73 3.00 0.91 3.01 2.16 2.25 2.15

CTS 2.32 2.41 2.25 5.01 2.85 4.57 3.34 2.88 2.62 3.00 3.52 3.75 3.02 0.91 3.02 2.15 2.26 2.17

ECTW 2.38 2.42 2.29 5.06 2.90 4.67 3.33 2.95 2.67 3.07 3.61 3.83 3.09 0.91 3.11 2.21 2.33 2.25

ECTS 2.41 2.43 2.28 5.05 3.00 4.64 4.63 2.97 2.69 3.09 3.63 3.86 3.12 0.90 3.13 2.28 2.35 2.28

CTW48 2.25 2.31 2.12 5.01 2.78 4.63 3.19 2.84 2.59 2.97 3.50 3.73 2.99 0.90 3.00 2.11 2.24 2.09

CTS48, from
[VNHB11] 2.23 2.32 2.10 5.05 2.77 4.70 3.16 2.78 2.56 2.95 3.48 3.70 2.93 0.91 2.94 2.05 2.12 1.95

As we can see, most of the time, vanilla CTW gives the best performance,
although our version of CTS is always very close (never more than .02 bits
per byte in favor of CTW). Interestingly, there is apparently no correlation
between the files where our implementation of CTS is better than CTW and
the files where CTS from [VNHB11] is better than CTW.

6.2.1 CTS in [VNHB11]

As discussed before, a Context Tree Switching algorithm, using different
switch distributions, had already been defined in [VNHB11].

The Markov model corresponding to these distributions was the one
described in Section 4.2.3 with two differences:

• The switch in [VNHB11] never freezes.

• The switching probabilities (σt) are allowed to depend on the global
time T of the algorithm.2

It was noticed that choosing σt = 1
t (so t is the “local” time) for the

Es gave poor empirical performance, contrary to σt = 1
T (where T (t, s) :=

min{u ∈ N||xu ∩Dom(Es)| > t} is the global time, if the data are the (xi)).
Moreover, a theoretical bound on CTS regret was obtained. We believe that
an intuitive reason for this is the following:

2In particular, these experts do not satisfy the “no peeking out condition”. However,
the CTS update is still easy to compute, since the global time is the same for all experts
by definition.

108

For context trees, the situation is very similar to the one described in
the introduction of [vEGdR12], comparing a Markov model of order 1 and a
Markov model of order 2 for text compression: we can expect that at some
point, any given node will have enough information to “open”3, and once it
is open (i.e. once the local experts at its children nodes have enough data to
predict well), it should stay open (the children nodes should continue being
better than their father).

However, the typical sequence predicted by a switch distribution that
does not freeze with a switching rate σt = 1

t switches infinitely many times
(since

∑
t

1
t diverges). Choosing σt = 1

T instead of σt = 1
t allows for less

frequent switching when t is large in deep nodes, which could partly explain
the improved performance.

This property is also probably the reason why our implementation of
CTS and CTS from [VNHB11] behave differently: the latter is better suited
for models that change over time (as suggested by Theorem 3 in [VNHB11]),
while the former should be better on a fixed model. More investigation is
needed to confirm this intuition.

3Supposing that the best model is not the local expert Es.

109

Part III

Geodesic Information
Geometric Optimization

110

Consider an objective function f : X → R to be minimized. We suppose
we have absolutely no knowledge about f : the only thing we can do is ask
for its value at any point x ∈ X (black-box optimization) and that the
evaluation of f is a costly operation. We are going to study algorithms that
can be described in the IGO framework (see [OAAH11]).

We consider the following optimization procedure:
We choose (Pθ)θ∈Θ a family of probability distributions (which will be

given a Riemannian manifold structure, following [AN07]) on X and an ini-
tial probability distribution Pθ0 . Now, we replace f by F : Θ → R (for
example F (θ) = Ex∼Pθ [f(x)]), and we optimize F by gradient descent, cor-
responding to the gradient flow:

dθt

dt
= −∇θEx∼Pθ [f(x)]. (6.1)

However, because of the gradient, this equation depends entirely on the
parametrization we chose for Θ, which is disturbing: we do not want to have
two different updates, because we chose different parameters to represent the
objects with which we are working. Moreover, in the case of a function with
several local minima, changing the parametrization can change the attained
optimum (see [MP14], for example). That is why invariance is a design
principle behind IGO. More precisely, we want invariance with respect to
monotone transformations of f and invariance under reparametrization of
Θ.

The IGO framework uses the geometry of the family Θ, which is given
by the Fisher metric to provide a differential equation on θ with the desired
properties, but because of the discretization of time needed to obtain an
explicit algorithm, we lose invariance under reparametrization of θ: two
IGO algorithms applied to the same function to be optimized, but with
different parametrizations, coincide only at first order in the step size. A
possible solution to this problem is geodesic IGO (GIGO), introduced here
(see also IGO-Maximum Likelihoodin [OAAH11], for example.): the initial
direction of the update at each step of the algorithm remains the same as in
IGO, but instead of moving straight for the chosen parametrization, we use
the Riemannian manifold structure of our family of probability distributions
(see [AN07]) by following its geodesics.

Finding the geodesics of a Riemannian manifold is not always easy, but
Noether’s theorem will allow us to obtain quantities that are preserved along
the geodesics, thus allowing, in the case of Gaussian distributions, one to
obtain a first order differential equation satisfied by the geodesics, which
makes their computation easier.

Although the geodesic IGO algorithm is not, strictly speaking, parametrization-
invariant when no closed form for the geodesics is known, it is possible to
compute them at arbitrary precision without increasing the numbers of ob-
jective function calls.

111

Chapter 7 consists in preliminaries: we recall the IGO algorithm, in-
troduced in [OAAH11], and we describe particular cases of the xNES and
CMA-ES updates as IGO updates.

Chapter 8 focuses on Noether’s theorem: in Section 8.1, after a reminder
about Riemannian geometry, we state Noether’s theorem, which will be our
main tool to compute the GIGO update for Gaussian distributions. In
Section 8.2, we consider Gaussian distributions with a covariance matrix
proportional to the identity matrix: this space is isometric to the hyperbolic
space, and the geodesics of the latter are known. Finally, in Section 8.3, we
consider the general Gaussian case, and we use Noether’s theorem to obtain
two different sets of equations to compute the GIGO update. The equations
are known (see [Eri87, CO91, ITW11]), but the connection with Noether’s
theorem has not been mentioned.4 We then give the explicit solution for
these equations, from [CO91].

In chapter 9, we introduce two possible slight modifications of the IGO al-
gorithm to incorporate the direction-dependent learning rates used in CMA-
ES and xNES. We then compare these different algorithms and prove that
while xNES is not GIGO in general, it can be described as “Blockwise
GIGO”, thus recovering xNES from abstract principles.

Finally, Chapter 10 presents numerical experiments, which suggest that
when using GIGO with Gaussian distributions, the step size must be chosen
carefully.

4Another interesting point is that Noether’s theorem shortcuts the tedious computation
of the Christoffel symbols.

112

Chapter 7

The IGO framework

In this section, we recall what the IGO framework is and we define the
geodesic IGO update. Consider again Equation (6.1):

dθt

dt
= −∇θEx∼Pθ [f(x)].

As we just saw:

• The gradient depends on the parametrization of our space of proba-
bility distributions (see 7.3 for an example).

• The equation is not invariant under monotone transformations of f .
For example, the optimization for 10f moves ten times faster than the
optimization for f .

In this section, we recall how IGO deals with this (see [OAAH11] for a
better presentation).

7.1 Invariance under Reparametrization of θ: Fisher
Metric

In order to achieve invariance under reparametrization of θ, it is possible
to turn our family of probability distributions into a Riemannian manifold
(this is the main topic of information geometry; see [AN07]), which allows
us to use a canonical, parametrization-invariant gradient (called the natural
gradient). The first brick in this construction is the differential Kullback–
Leibler divergence:

Definition 7.1. Let P,Q be two probability distributions on X. The Kullback–
Leibler divergence of Q from P is defined by:

KL(Q‖P) =

∫
X

ln(
Q(x)

P (x)
)dQ(x). (7.1)

113

It is the immediate generalization of the Kullback–Leibler divergence in
Definition 2.5, and by definition, it does not depend on the parametrization.
It is not symmetrical, but if for all x, the application θ 7→ Pθ(x) is C2, then
a second-order expansion yields:

KL(Pθ+dθ‖Pθ) =
1

2

∑
i,j

Iij(θ)dθidθj + o(dθ2), (7.2)

where:

Iij(θ) =

∫
X

∂ lnPθ(x)

∂θi

∂ lnPθ(x)

∂θj
dPθ(x) = −

∫
X

∂2 lnPθ(x)

∂θi∂θj
dPθ(x). (7.3)

This is enough to endow the family (Pθ)θ∈Θ with a Riemannian manifold
structure: a Riemannian manifold M is a differentiable manifold, which can
be seen as pieces of Rn glued together, with a metric . The metric at x is a
symmetric positive-definite quadratic form on the tangent space of M at x:
it indicates how expensive it is to move in a given direction on the manifold.
We will think of the updates of the algorithms that we will be studying as
paths on M .

The matrix I(θ) is called the “Fisher information matrix”, and the metric
it defines is called the “Fisher metric”.

Given a metric, it is possible to define a gradient attached to this metric;
the key property of the gradient is that for any smooth function f :

f(x+ h) = f(x) +
∑
i

hi
∂f

∂xi
+ o(‖h‖) = f(x) + 〈h,∇f(x)〉+ o(‖h‖), (7.4)

where 〈x, y〉 = xT Iy is the dot product in metric I. Therefore, in order to
keep the property of Equation (7.4), we must have ∇f = I−1 ∂f

∂x .
We have therefore the following gradient (called the “natural gradient”;

see [AN07]):

∇̃θ = I−1(θ)
∂

∂θ
, (7.5)

and since the Kullback–Leibler divergence does not depend on the parametriza-
tion, neither does the natural gradient.

Later in this paper, we will study families of Gaussian distributions. The
following proposition gives the Fisher metric for these families.

Proposition 7.2. Let (Pθ)θ∈Θ be a family of normal probability distribu-
tions: Pθ = N (µ(θ),Σ(θ)).
If µ and Σ are C1, the Fisher metric is given by:

Ii,j(θ) =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (7.6)

114

Proof: This is a non-trivial calculation. See [SSUSCU81] or [PF86] for
more details.

As we will often be working with Gaussian distributions, we introduce
the following notation:

Notation 7.3. Gd is the manifold of Gaussian distributions in dimension d,
equipped with the Fisher metric. G̃d is the manifold of Gaussian distributions
in dimension d, with the covariance matrix proportional to identity in the
canonical basis of Rd, equipped with the Fisher metric.

7.2 IGO Flow, IGO Algorithm

In IGO [OAAH11], invariance with respect to monotone transformations is
achieved by replacing f by the following transform; we set:

q(x) = Px′∼Pθ(f(x′) 6 f(x)), (7.7)

a non-increasing function w : [0; 1] → R is chosen (the selection scheme),

and finally, W f
θ (x) = w(q(x)) (this definition has to be slightly changed if

the probability of a tie is not zero, see [OAAH11] for more details). By

performing a gradient descent on Ex∼Pθ [W
f
θt(x)], we obtain the “IGO flow”:

dθt

dt
= ∇̃θ

∫
X
W f
θt(x)Pθ(dx) =

∫
X
W f
θt(x)∇̃θ lnPθ(x)Pθt(dx). (7.8)

Notice that the function we are optimizing is Ex∼Pθ [W
f
θt(x)] and not

Ex∼Pθ [W
f
θ (x)] (the second function is constant and always equal to

∫ 1
0 w).

In particular, the function for which we are performing the gradient descent
changes at each step, although their optimum (a Dirac at the minimum of
f) does not: the IGO flow is not a gradient flow; it is simply a vector flow
given by the gradient of interrelated functions.

For practical implementation, the integral in (7.8) has to be approxi-
mated. For the integral itself, the Monte-Carlo method is used; N values
(x1, ..., xN) are sampled from the distribution Pθt , and the integral becomes:

1

N

N∑
i=1

W f
θt(xi)∇̃θ lnPθ(xi) (7.9)

and we approximate 1
NW

f
θ (xi) = 1

Nw(q(xi)) by ŵi = 1
Nw(rk(xi)+1/2

N), where
rk(xi) = |{j, f(xj) < f(xi)}|: it can be proven (see [OAAH11]) that limN→∞Nŵi =

W θt

f (xi) (here again, we are assuming that there are no ties).
We now have an algorithm that can be used in practice if the Fisher

information matrix is known.

115

Definition 7.4. The IGO update associated with parametrization θ, sample
size N , step size δt and selection scheme w is given by the following update
rule:

θt+δt = θt + δtI−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
. (7.10)

We call IGO speed the vector I−1(θt)
∑N

i=1 ŵi
∂ lnPθ(xi)

∂θ .

Notice that one could start directly with the ŵi rather than w, as we
will do later.

Replacing f by its expected value under a probability distribution Pθ and
optimizing over θ using the natural gradient have already been discussed.
For example, in the case of a function f defined on {0, 1}n, IGO with the
Bernoulli distributions yields the algorithm, PBIL[BC95]. Another similar
approach (stochastic relaxation) is given in [MMP11]. For a continuous func-
tion, as we will see later, the IGO framework recovers several known ranked-
based natural gradient algorithms, such as pure rank-µ CMA-ES [KMH+03],
xNES or SNES (Separable Natural Evolution Strategies) [WSG+14]. See
[Hua13] or [AMS08] for other, not necessarily gradient-based, optimization
algorithms on manifolds.

7.3 Geodesic IGO

Although the IGO flow associated with a family of probability distributions
is intrinsic (it only depends on the family itself, not the parametrization
we choose for it), the IGO update is not. However, the difference between
two steps of IGO that differ only by the parametrization is only O(δt2),
whereas the different between two vanilla gradient descents with different
parametrizations is O(δt).

Intuitively, the reason for this difference is that two IGO algorithms start
at the same point and follow “straight lines” with the same initial speed,
but the definition of “straight lines” changes with the parametrization.

For instance, in the case of Gaussian distributions, let us consider two
different IGO updates with Gaussian distributions in dimension one, the first
one with parametrization (µ, σ) and the second one with parametrization
(µ, c := σ2). We suppose that the IGO speed for the first algorithm is
(µ̇, σ̇). The corresponding IGO speed in the second parametrization is given
by the identity ċ = 2σσ̇. Therefore, the first algorithm gives the standard
deviation σnew,1 = σold + δtσ̇ and the variance cnew,1 = (σnew,1)2 = cold +
2δtσoldσ̇ + δt2σ̇2 = cnew,2 + δt2σ̇2.

The geodesics of a Riemannian manifold are the generalization of the
notion of a straight line: they are curves that locally minimize length. In
particular, given two points a and b on the Riemannian manifold M , the
shortest path from a to b is always a geodesic (the converse is not true,

116

though). The notion will be explained precisely in Section 8.1, but let us
define the geodesic IGO algorithm, which follows the geodesics of the mani-
fold instead of following the straight lines for an arbitrary parametrization.

Definition 7.5 (GIGO). The geodesic IGO update (GIGO) associated with
sample size N , step size δt and selection scheme w is given by the following
update rule:

θt+δt = expθt(Y δt) (7.11)

where:

Y = I−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
, (7.12)

is the IGO speed and expθt is the exponential of the Riemannian manifold
Θ. Namely, expθt(Y δt) is the endpoint of the geodesic of Θ starting at θt,
with initial speed Y , after a time δt. By definition, this update does not
depend on the parametrization θ.

Notice that while the GIGO update is compatible with the IGO flow (in
the sense that when δt→ 0 and N →∞, a parameter θt updated according
to the GIGO algorithm is a solution of Equation (7.8), the equation defining
the IGO flow), it not necessarily an IGO update. More precisely, the GIGO
update is an IGO update if and only if the geodesics of Θ are straight lines
for some parametrization (by Beltrami’s theorem, this is equivalent to Θ
having constant curvature).

This is a particular case of a retraction [AMS08]: a map from the tangent
bundle of a manifold to the manifold itself satisfying a rigidity condition.
Arguably, the Riemannian exponential is the most natural retraction, since
it depends only on the Riemannian manifold itself and not on any decom-
position. However, in general, the geodesics are difficult to compute.

In the next section, we will state Noether’s theorem, which will be our
main tool to compute the GIGO update for Gaussian distributions.

7.4 Comparable pre-existing algorithms

In this section, we recall the xNES and pure rank-µ CMA-ES, and we de-
scribe them in the IGO framework, thus allowing a reasonable comparison
with the GIGO algorithms.

7.4.1 xNES

We recall a restriction of the xNES algorithm, introduced in [GSY+10] (this
restriction is sufficient to describe the numerical experiments in [GSY+10]).

117

Definition 7.6 (xNES algorithm). The xNES algorithm with sample size
N , weights wi and learning rates ηµ and ηΣ updates the parameters µ ∈ Rd,
A ∈ Md(R) with the following rule: At each step, N points x1, ..., xN are
sampled from the distribution N (µ,AAT). Without loss of generality, we
assume f(x1) < ... < f(xN). The parameter is updated according to:

µ← µ+ ηµAGµ,

A← A exp(ηΣGM/2),

where, setting zi = A−1(xi − µ):

Gµ =
N∑
i=1

wizi,

GM =
N∑
i=1

wi(ziz
T
i − I).

The more general version decomposes the matrix A as σB, where detB =
1, and uses two different learning rates for σ and for B. We gave the version
where these two learning rates are equal (in particular, for the default pa-
rameters in [GSY+10], these two learning rates are equal). This restriction
of the xNES algorithm can be described in the IGO framework, provided
all of the learning rates are equal (most of the elements of the proof can be
found in [GSY+10] (the proposition below essentially states that xNES is a
natural gradient update) or in [OAAH11]):

Proposition 7.7 (xNES as IGO). The xNES algorithm with sample size N ,
weights wi and learning rates ηµ = ηΣ = δt coincides with the IGO algorithm
with sample size N , weights wi, step size δt and in which, given the current
position (µt, At), the set of Gaussians is parametrized by:

φµt,At : (δ,M) 7→ N

(
µt +Atδ,

(
At exp(

1

2
M)

)(
At exp(

1

2
M)

)T)
,

with δ ∈ Rm and M ∈ Sym(Rm).
The parameters maintained by the algorithm are (µ,A), and the xi are

sampled from N (µ,AAT).

Proof. Let us compute the IGO update in the parametrization φµt,At : we
have δt = 0, M t = 0, and by using Proposition 7.2, we can see that for
this parametrization, the Fisher information matrix at (0, 0) is the identity
matrix. The IGO update is therefore,

(δ,M)t+δt = (δ,M)t + δtYδ(δ,M) + δtYM (δ,M) = δtYδ(δ,M) + δtYM (δ,M),

118

where:

Yδ(δ,M) =
N∑
i=1

wi∇δ ln(p(xi|(δ,M))

and:

YM (δ,M) =
N∑
i=1

wi∇M ln(p(xi|(δ,M)).

Since tr(M) = log(det(exp(M))), we have:

lnPδ,M (x) = −d
2

ln(2π)−ln(detA)−1

2
trM−1

2
‖ exp(−1

2
M)A−1(x−µ−Aδ)‖2,

and a straightforward computation yields:

Yδ(δ,M) =
N∑
i=1

wizi = Gµ,

and:

YM (δ,M) =
1

2

N∑
i=1

wi(ziz
T
i − I) = GM .

Therefore, the IGO update is:

δ(t+ δt) = δ(t) + δtGµ,

M(t+ δt) = M(t) + δtGM ,

or, in terms of mean and covariance matrix:

µ(t+ δt) = µ(t) + δtA(t)Gµ

A(t+ δt) = A(t) exp(δtGM/2),

or:
Σ(t+ δt) = A(t) exp(δtGM)A(t)T .

This is the xNES update.

7.4.2 Pure Rank-µ CMA-ES

We now recall the pure rank-µ CMA-ES algorithm. The general CMA-ES
algorithm is described in [Han11].

119

Definition 7.8 (Pure rank-µ CMA-ES algorithm). The pure rank-µ CMA-
ES algorithm with sample size N , weights wi and learning rates ηµ and ηΣ

is defined by the following update rule: At each step, N points x1, ..., xN
are sampled from the distribution N (µ,Σ). Without loss of generality, we
assume f(x1) < ... < f(xN). The parameter is updated according to:

µ← µ+ ηµ

N∑
i=1

wi(xi − µ),

Σ← Σ + ηΣ

N∑
i=1

wi((xi − µ)(xi − µ)T − Σ).

The pure rank-µ CMA-ES can also be described in the IGO framework;
see, for example, [ANOK10].

Proposition 7.9 (Pure rank-µ CMA-ES as IGO). The pure rank-µ CMA-
ES algorithm with sample size N , weights wi and learning rates ηµ = ηΣ = δt
coincides with the IGO algorithm with sample size N , weights wi, step size
δt and the parametrization (µ,Σ).

120

Chapter 8

Using Noether’s theorem to
compute geodesics

8.1 Riemannian Geometry, Noether’s Theorem

The goal of this section is to state Noether’s theorem. See [AVW89] for the
proofs and [Bou07] or [JLJ98] for a more detailed presentation. Noether’s
theorem states that if a system has symmetries, then there are invariants
attached to these symmetries. Firstly, we need some definitions.

Definition 8.1 (Motion in a Lagrangian system). Let M be a differentiable
manifold, TM the set of tangent vectors on M (a tangent vector is identified
by the point at which it is tangent and a vector in the tangent space) and
L : TM → R

(q, v) 7→ L(q, v)
a differentiable function called the Lagrangian

function (in general, it could depend on t). A “motion in the Lagrangian
system (M,L) from x to y” is map γ : [t0, t1]→M , such that:

• γ(t0) = x
• γ(t1) = y
• γ is a local extremum of the functional:

Φ(γ) =

∫ t1

t0

L(γ(t), γ̇(t))dt, (8.1)

among all curves c : [t0, t1]→M , such that c(t0) = x, and c(t1) = y.

For example, when (M, g) is a Riemannian manifold, the length of a
curve γ between γ(t0) and γ(t1) is:∫ t1

t0

√
g(γ̇(t), γ̇(t))dt. (8.2)

The curves that follow the shortest path between two points x, y ∈ M
are therefore the minima γ of the functional (8.2), such that γ(t0) = x and

121

γ(t1) = y, and the corresponding Lagrangian function is (q, v) 7→
√
g(v, v).

However, any curve following the shortest trajectory will have minimum
length. For example, if γ1 : [a, b]→M is a curve of the shortest path, so is
γ2 : t 7→ γ1(t2): these two curves define the same trajectory in M , but they
do not travel along this trajectory at the same speed. This leads us to the
following definition:

Definition 8.2 (Geodesics). Let I be an interval of R and (M, g) be a
Riemannian manifold. A curve γ : I → M is called a geodesic if for all
t0, t1 ∈ I, γ|[t0,t1] is a motion in the Lagrangian system (M,L) from γ(t0)
to γ(t1), where:

L(γ) =

∫ t1

t0

g(γ̇(t), γ̇(t))dt. (8.3)

It can be shown (see [Bou07]) that geodesics are curves that locally

minimize length, with constant velocity, in the sense that dg(γ̇(t),(γ̇(t))
dt = 0.

In particular, given a starting point and a starting speed, the geodesic is
unique. This motivates the definition of the exponential of a Riemannian
manifold.

Definition 8.3. Let (M, g) be a Riemannian manifold. We call the expo-
nential of M the application:

exp : TM → M
(x, v) 7→ expx(v),

such that for any x ∈ M , if γ is the geodesic of M satisfying γ(0) = x and
γ′(0) = v, then expx(v) = γ(1).

In order to find an extremal of a functional, the most commonly-used
result is called the “Euler–Lagrange equations” (see [AVW89], for example);
a motion γ in the Lagrangian system (M,L) must satisfy:

∂L
∂x

(γ(t))− d

dt

(
∂L
∂ẋ

(γ̇(t))

)
= 0. (8.4)

By applying this equation with the Lagrangian given by (8.3), it is possible
to show that the geodesics of a Riemannian manifold follow the “geodesic
equations”:

ẍk + Γkij ẋ
iẋj = 0, (8.5)

where the

Γkij =
1

2
glk
(
∂gjl
∂qi

+
∂gli
∂qj
− ∂gij

∂ql

)
(8.6)

are called “Christoffel symbols” of the metric g. However, these coefficients
are tedious (and sometimes difficult) to compute, and (8.5) is a second order
differential equation. Noether’s theorem will give us a first order equation
to compute the geodesics.

122

Definition 8.4. Let h : M → M , a diffeomorphism. We say that the La-
grangian system (M,L) admits the symmetry h if for any (q, v) ∈ TM ,

L (h(q), dh(v)) = L(q, v), (8.7)

where dh is the differential of h.
If M is clear in the context, we will sometimes say that L is invariant

under h.

An example will be given in the proof of Theorem 8.13.
We can now state Noether’s theorem (see, for example, [AVW89]).

Theorem 8.5 (Noether’s Theorem). If the Lagrangian system (M,L) ad-
mits the one-parameter group of symmetries hs : M → M , s ∈ R, then the
following quantity remains constant during motions in the system (M,L).
Namely,

I(γ(t), γ̇(t)) =
∂L
∂v

(
dhs(γ(t))

ds
|s=0

)
(8.8)

does not depend on t if γ is a motion in (M,L).

Now, we are going to apply this theorem to our problem: computing the
geodesics of Riemannian manifolds of Gaussian distributions.

8.2 GIGO in G̃d

If we force the covariance matrix to be either diagonal or proportional to the
identity matrix, the geodesics have a simple expression that we give below.
In the former case, the manifold we are considering is (G1)d, and in the
latter case, it is G̃d.

The geodesics of (G1)d are given by:

Proposition 8.6. Let M be a Riemannian manifold; let d ∈ N; let Φ be the
Riemannian exponential of Md; and let φ be the Riemannian exponential of
M . We have:

Φ(x1,...,xn)((v1, ..., vn)) = (φx1(v1), ..., φxn(vn)) (8.9)

In particular, knowing the geodesics of G1 is enough to compute the
geodesics of (G1)d.

This is true, because a block of the product metric does not depend on
variables of the other blocks.

Consequently, a GIGO update with a diagonal covariance matrix with
the sample (xi) is equivalent to d separate one-dimensional GIGO updates
using the same samples. Moreover, G1

∼= G̃1, the geodesics of which are
given below.

We will show that G̃d and the “hyperbolic space”, of which the geodesics
are known, are isometric.

123

8.2.1 Preliminaries: Poincaré Half-Plane, Hyperbolic Space

In dimension two, the hyperbolic space is called the “hyperbolic plane” or
the Poincaré half-plane. We recall its definition:

Definition 8.7 (Poincaré half-plane). We call the “Poincaré half-plane”
the Riemannian manifold:

H = {(x, y) ∈ R2, y > 0},

with the metric ds2 = dx2+dy2

y2 .

We also recall the expression of its geodesics (see, for example, [GHL04]):

Proposition 8.8 (Geodesics of the Poincaré half-plane). The geodesics of
the Poincaré half-plane are exactly the:

t 7→ (<(z(t)),=(z(t))) ,

where:

z(t) =
aievt + b

cievt + d
, (8.10)

with ad− bc = 1 and v > 0.

The geodesics are half-circles perpendicular to the line y = 0 and vertical
lines, as shown in Figure 8.1 below.

µ

σ

γ1

γ2

Figure 8.1: Geodesics of the Poincaré half-plane.

The generalization to the higher dimension is the following:

Definition 8.9 (Hyperbolic space). We call the “hyperbolic space of dimen-
sion n” the Riemannian manifold:

Hn = {(x1, ..., xn−1, y) ∈ Rn, y > 0},

with the metric ds2 =
dx2

1+...+dx2
n−1+dy2

y2 (or equivalently, the metric given by

the matrix Diag(1
y2)).

124

The Lagrangian for the geodesics is invariant under all translations along
the xi, so by Noether’s theorem, its geodesics stay in a plane containing the
direction y and the initial speed . The induced metric on this plane is the
metric of the Poincaré half-plane. The geodesics are therefore given by the
following proposition:

Proposition 8.10 (Geodesics of the hyperbolic space). If γ : t 7→ (x1(t), ..., xn−1(t), y(t)) =
(x(t), y(t)) is a geodesic of Hn, then there exists a, b, c, d ∈ R, such that
ad− bc = 1, and v > 0, such that

x(t) = x(0) + ẋ0
‖ẋ0‖ x̃(t), y(t) = =(γC(t)), with x̃(t) = <(γC(t)) and:

γC(t) :=
aievt + b

cievt + d
. (8.11)

8.2.2 Computing the GIGO Update in G̃d

If we want to implement the GIGO algorithm in G̃d, we need to compute
the natural gradient in G̃d and to be able to compute the Riemannian ex-
ponential of G̃d.

Using Proposition 7.2, we can compute the metric of G̃d in the parametriza-
tion (µ, σ) 7→ N (µ, σ2I). We find:

1
σ2 0 . . . 0

0
. . .

. . .
...

...
. . . 1

σ2 0

0 . . . 0 2d
σ2

 . (8.12)

Since this matrix is diagonal, it is easy to invert, and we immediately
have the natural gradient and, consequently, the IGO speed.

Proposition 8.11. In G̃d, the IGO speed Y is given by:

Yµ =
∑
i

ŵi(xi − µ), (8.13)

Yσ =
∑
i

ŵi

(
(xi − µ)T (xi − µ)

2dσ
− σ

2

)
. (8.14)

Proof. We recall the IGO speed is defined by Y = I−1(θt)
∑N

i=1 ŵi
∂ lnPθ(xi)

∂θ .

Since Pµ,σ(x) = (2πσ2)−d/2 exp(− (x−µ)T (x−µ)
2σ2), we have:

∂ lnPµ,σ(x)

∂µ
= x− µ,

∂ lnPµ,σ(x)

∂σ
= −d

σ
+

(x− µ)T (x− µ)

σ3
.

The result follows.

125

The metric defined by Equation (8.12) is not exactly the metric of the hy-
perbolic space, but with the substitution µ← µ√

2d
, the metric becomes 2d

σ2 I,

which is proportional to the metric of the hyperbolic space and, therefore,
defines the same geodesics.

Theorem 8.12 (Geodesics of G̃d). If γ : t 7→ N (µ(t), σ(t)2I) is a geodesic
of G̃d, then there exists a, b, c, d ∈ R, such that ad− bc = 1, and v > 0, such
that:

µ(t) = µ(0) +
√

2d µ̇0

‖µ̇0‖ r̃(t), σ(t) = =(γC(t)), with r̃(t) = <(γC(t)) and

γC(t) :=
aievt + b

cievt + d
. (8.15)

Now, in order to implement the corresponding GIGO algorithm, we only
need to be able to find the coefficients a, b, c, d, v corresponding to an initial
position (µ0, σ0) and an initial speed (µ̇0, σ̇0). This is a tedious but easy
computation, the result of which is given in Proposition B.5.

The pseudocode of GIGO in G̃d is also given in the Appendix: it is
obtained by concatenating Algorithms 3 and 9 (Proposition B.5 and the
pseudocode in the Appendix allow the metric to be slightly modified; see
Section 9.1.1).

8.3 GIGO in Gd

8.3.1 Obtaining a First Order Differential Equation for the
Geodesics of Gd

In the case where both the covariance matrix and the mean can vary freely,
the equations of the geodesics have been computed in [Eri87] and [CO91].
However, these articles start with the equations of the geodesics obtained
with the Christoffel symbols, then partially integrate them . These equations
are in fact a consequence of Noether’s theorem and can be found directly.

Theorem 8.13. Let γ : t 7→ N (µt,Σt) be a geodesic of Gd. Then, the
following quantities do not depend on t:

Jµ = Σ−1
t µ̇t, (8.16)

JΣ = Σ−1
t (µ̇tµ

T
t + Σ̇t). (8.17)

Proof. This is a direct application of Noether’s theorem, with suitable groups
of diffeomorphisms. By Proposition 7.2, the Lagrangian associated with the
geodesics of Gd is:

L(µ,Σ, µ̇, Σ̇) = µ̇TΣ−1µ̇+
1

2
tr(Σ̇Σ−1Σ̇Σ−1). (8.18)

126

Its derivative is:

∂L
∂θ̇

=
[
(h,H) 7→ 2µ̇TΣ−1h+ tr(HΣ−1Σ̇Σ−1)

]
. (8.19)

Let us show that this Lagrangian is invariant under affine changes of
basis (thus illustrating Definition 8.4).

The general form of an affine change of basis is φµ0,A : (µ,Σ) 7→ (Aµ +
µ0, AΣAT), with µ0 ∈ Rd and A ∈ GLd(R).

We have:

L(φµ0,A(µ,Σ), dφµ0,A(µ̇, Σ̇)) =Ȧµ
T

(AΣAT)−1Ȧµ+

1

2
tr
(

˙
AΣAT (AΣAT)−1 ˙

AΣAT (AΣAT)−1
)
,

(8.20)

and since Ȧµ = Aµ̇ and
˙

AΣAT = AΣ̇AT , we find easily that:

L(φµ0,A(µ,Σ), dφµ0,A(µ̇, Σ̇)) = L(µ,Σ, µ̇, Σ̇), (8.21)

or in other words: L is invariant under φµ0,A for any µ0 ∈ Rd, A ∈ GLd(R).
In order to use Noether’s theorem, we also need one-parameter groups

of transformations. We choose the following:

1. Translations of the mean vector. For any i ∈ [1, d], let hsi : (µ,Σ) 7→
(µ+sei,Σ), where ei is the i-th basis vector. We have

dhsi
ds |s=0 = (ei, 0),

so by Noether’s theorem,

∂L
∂θ̇

(ei, 0) = 2µ̇TΣ−1ei = 2eTi Σ−1µ̇

remains constant for all i. The fact that Jµ is an invariant immediately
follows.

2. Linear base changes. For any i, j ∈ [1, d], let hsi,j : (µ,Σ) 7→ (exp(sEij)µ, exp(sEij)Σ exp(sEji)),
where Eij is the matrix with a one at position (i, j) and zeros else-
where. We have:

dhsEij
ds
|s=0 = (Eijµ,EijΣ + ΣEji).

Therefore, by Noether’s theorem, we then obtain the following invari-
ants:

Jij :=
∂L
∂θ̇

(Eijµ,EijΣ + ΣEji) (8.22)

=2 µ̇TΣ−1Eijµ+ tr((EijΣ + ΣEji)Σ
−1Σ̇Σ−1) (8.23)

=2 (Σ−1µ̇)TEijµ+ tr(EijΣ̇Σ−1) + tr(EjiΣ
−1Σ̇) (8.24)

=2(Jµµ
T)ij + 2(Σ−1Σ̇)ij , (8.25)

and the coefficients of JΣ in (8.17) are the (Jij/2).

127

This leads us to first order equations satisfied by the geodesics mentioned
in [Eri87, CO91, ITW11].

Theorem 8.14 (GIGO-Σ). t 7→ N (µt,Σt) is a geodesic of Gd if and only
if µ : t 7→ µt and Σ : t 7→ Σt satisfy the equations:

µ̇t = ΣtJµ (8.26)

Σ̇t = Σt(JΣ − JµµTt) = ΣtJΣ − µ̇tµTt , (8.27)

where:
Jµ = Σ−1

0 µ̇0,

and:
JΣ = Σ−1

0

(
µ̇0µ

T
0 + Σ̇0

)
.

Proof: This is an immediate consequence of Proposition 8.13.

These equations can be solved analytically (see [CO91]); however, usu-
ally, that is not the case, and they have to be solved numerically, for example
with the Euler method (the corresponding algorithm, which we call GIGO-Σ,
is described in the Appendix). The goal of the remainder of the subsection
is to show that having to use the Euler method is fine.

To avoid confusion, we will call the step size of the GIGO algorithm (δt
in Proposition 7.5) “GIGO step size” and the step size of the Euler method
(inside a step of the GIGO algorithm) “Euler step size”.

Having to solve our equations numerically brings two problems:
The first one is a theoretical problem: the main reason to study GIGO

is its invariance under reparametrization of θ, and we lose this invariance
property when we use the Euler method. However, GIGO can get arbitrarily
close to invariance by decreasing the Euler step size. In other words, the
difference between two different IGO algorithms is O(δt2), and the difference
between two different implementations of the GIGO algorithm is O(h2),
where h is the Euler step size; it is easier to reduce the latter. Still, without
a closed form for the geodesics of Gd, the GIGO update is rather expensive
to compute, but it can be argued that most of the computation time will
still be the computation of the objective function f .

The second problem is purely numerical: we cannot guarantee that the
covariance matrix remains positive-definite along the Euler method. Here,
apart from finding a closed form for the geodesics, we have two solutions.

We can enforce this a posteriori : if the covariance matrix we find is not
positive-definite after a GIGO step, we repeat the failed GIGO step with a
reduced Euler step size (in our implementation, we divided it by four; see
Algorithm 4 in the Appendix.).

The other solution is to obtain differential equations on a square root of
the covariance matrix (any matrix A, such that Σ = AAT).

128

Theorem 8.15 (GIGO-A). If µ : t 7→ µt and A : t 7→ At satisfy the
equations:

µ̇t = AtA
T
t Jµ, (8.28)

Ȧt =
1

2
(JΣ − JµµTt)TAt, (8.29)

where:
Jµ = (A−1

0)TA−1
0 µ0

and:
JΣ = (A−1

0)TA−1
0 (µ̇0µ

T
0 + Ȧ0A

T
0 +A0Ȧ

T
0),

then t 7→ N (µt, AtA
T
t) is a geodesic of Gd.

Proof. This is a simple rewriting of Theorem 8.14: if we write Σ := AAT ,
we find that Jµ and JΣ are the same as in Theorem 8.14, and we have:

µ̇ = ΣJµ,

and:

Σ̇ = (ȦAT +AȦT) =
1

2
(JΣ − JµµT)TAAT +

1

2
AAT (JΣ − JµµT)

=
1

2
(JΣ−JµµT)TΣ+

1

2
Σ(JΣ−JµµT) =

1

2
Σ(JΣ−JµµT)+

1

2
[Σ(JΣ−JµµT)]T .

By Theorem 8.14, Σ(JΣ − JµµT) is symmetric (since Σ̇ has to be sym-
metric). Therefore, we have Σ̇ = Σ(JΣ − JµµT), and the result follows.

Notice that Theorem 8.15 gives an equivalence, whereas Theorem 8.14
does not. The reason is that the square root of a symmetric positive-definite
matrix is not unique. Still, it is canonical; see the discussion in Section 8.4.

As for Theorem 8.14, we can solve Equations (8.28) and (8.29) numer-
ically, and we obtain another algorithm (Algorithm 5 in the Appendix; we
will call it GIGO-A), with a behavior similar to the previous one (with Equa-
tions (8.26) and (8.27)). For both of them, numerical problems can arise
when the covariance matrix is almost singular.

We have not managed to find any example where one of these two al-
gorithms converged to the minimum of the objective function, whereas the
other did not, and their behavior is almost the same.

More interestingly, the performances of these two algorithms are also the
same as the performances of the exact GIGO algorithm, using the equations
of Section 8.3.2.

Notice that even though GIGO-A directly maintains a square root of
the covariance matrix, which makes sampling new points easier (to sample
a point from N (µ,Σ), a square root of Σ is needed), both GIGO-Σ and
GIGO-A still have to invert the covariance matrix (or its square root) at
each step, which is as costly as the decomposition, so one of these algorithms
is roughly as expensive to compute as the other.

129

8.3.2 Explicit Form of the Geodesics of Gd (from [CO91])

We now give the exact geodesics of Gd: the following results are a rewriting
of Theorem 3.1 and its first corollary in [CO91].

Theorem 8.16. Let (µ̇0, Σ̇0) ∈ TN (0,I)Gd. The geodesic of Gd starting from

N (0, 1) with initial speed (µ̇0, Σ̇0) is given by:

expN (0,I)(sµ̇0, sΣ̇0) = N
(

2R(s)sh(
sG

2
)G−µ̇0, R(s)R(s)T

)
, (8.30)

where exp is the Riemannian exponential of Gd, G is any matrix satisfying:

G2 = Σ̇2
0 + 2µ̇0µ̇

T
0 , (8.31)

R(s) =

((
ch(

sG

2
)− Σ̇0G

−sh(
sG

2
)

)−1
)T

(8.32)

and G− is a pseudo-inverse of G

In [CO91], the existence of G (as a square root of Σ̇2
0 +2µ̇0µ̇

T
0) is proven.

Notice that, anyway, in the expansions of (8.30) and (8.32), only even powers
of G appear.

Additionally, since, for all A ∈ GLd(R), for all µ0 ∈ Rd, the application:

φ : Gd → Gd

N (µ,Σ) 7→ N (Aµ+ µ0, AΣAT)
(8.33)

preserves the geodesics, we find the general expression for the geodesics of
Gd.

Corollary 8.17. Let µ0 ∈ Rd, A ∈ GLd(R) and (µ̇0, Σ̇0) ∈ TN (µ0,A0AT0)Gd.

The geodesic of Gd starting from N (µ,Σ) with initial speed (µ̇0, Σ̇0) is given
by:

expN (µ0,A0AT0)(sµ̇0, sΣ̇0) = N (µ1, A1A
T
1), (8.34)

with:

µ1 = 2A0R(s)sh(
sG

2
)G−A−1

0 µ̇0 + µ0, (8.35)

A1 = A0R(s), (8.36)

where exp is the Riemannian exponential of Gd, G is any matrix satisfying:

G2 = A−1
0 (Σ̇0Σ−1

0 Σ̇0 + 2µ̇0µ̇
T
0)(A−1

0)T , (8.37)

R(s) =

((
ch(

sG

2
)−A−1

0 Σ̇0(A−1
0)TG−sh(

sG

2
)

)−1
)T

, (8.38)

and G− is a pseudo-inverse of G.

130

It should be noted that the final values for mean and covariance do not
depend on the choice of G as a square root of:

A−1
0 (Σ̇0Σ−1

0 Σ̇0 + 2µ̇0µ̇
T
0)(A−1

0)T .

The reason for this is that ch(G) is a Taylor series in G2, and so are sh(G)G−

and G−sh(G).
For our practical implementation, we actually used these Taylor series

instead of the expression of the corollary.

8.4 Using a Square Root of the Covariance Matrix

The IGO framework (on Gd, for example) emphasizes the Riemannian man-
ifold structure on Gd. All of the algorithms studied here (including GIGO,
which is not strictly speaking an IGO algorithm) define a trajectory in Gd

(a new point for each step), and to go from a point θ to the next one (θ′),
we follow some curve γ : [0, δt] → Gd, with γ(0) = θ, γ(δt) = θ′ and γ̇(0)
given by the natural gradient (γ̇(0) =

∑N
i=1 ŵi∇̃θPθ(xi) ∈ TθGd).

To be compatible with this point of view, an algorithm giving an update
rule for a square root (any matrix A such that Σ = AAT : since we do not
force A to be symmetric, the decomposition is not unique) of the covariance
matrix A has to satisfy the following condition: for a given initial speed, the
covariance matrix Σt+δt after one step must depend only on Σt and not on
the square root At chosen for Σt.

The xNES algorithm does satisfy this condition: consider two xNES
algorithms, with the same learning rates, respectively, at (µ,At1) and (µ,At2),
with At1(At1)T = At2(At2)T (i.e., they define the same Σt), using the same
samples xi to compute the natural gradient update , then we will have
Σt+δt

1 = Σt+δt
2 . Using the definitions of Section 9.2, we have just shown that

what we will call the “xNES trajectory” is well defined.
It is also important to notice that, in order to be well defined, a natural

gradient algorithm updating a square root of the covariance matrix has to
specify more conditions than simply following the natural gradient.

The reason for this is that the natural gradient is a vector tangent to Gd:
it lives in a space of dimension d(d + 3)/2 (the dimension of Gd), whereas
the vector (µ,A) lives in a space of dimension d(d + 1) (the dimension of
Rn ×GLn(R)), which is too large: there exists infinitely many applications
t 7→ At, such that a given curve γ : t 7→ N (µt,Σt) can be written γ(t) =
N (µt, AtA

T
t). This is why Theorem 8.15 is simply an implication, whereas

Theorem 8.14 is an equivalence.
More precisely, let us consider A in GLd(R) and vA, v′A two infinitesimal

updates of A. Since Σ = AAT , the infinitesimal update of Σ corresponding
to vA (resp. v′A) is vΣ = AvTA + vAA

T (resp. v′Σ = Av′TA + v′AA
T).

131

It is now easy to see that vA and v′A define the same direction for Σ (i.e.,
vΣ = v′Σ) if and only if AMT + MAT = 0, where M = vA − v′A. This is
equivalent to A−1M antisymmetric.

For any A ∈ Md(R), let us denote by TA the space of the matrices
M , such that A−1M is antisymmetric or, in other words, TA := {u ∈
Md(R), AuT + uAT = 0}. Having a subspace SA in direct sum with TA
for all A is sufficient (but not necessary) to have a well-defined update rule.
Namely, consider the (linear) application:

φA : Md(R) → Sd(R)
vA 7→ AvTA + vAA

T ,

sending an infinitesimal update of A to the corresponding update of Σ. It
is not bijective, but as we have seen before, KerφA = TA, and therefore, if
we have, for some UA,

Md(R) = UA ⊕ TA, (8.39)

then φA|UA is an isomorphism. Let vΣ be an infinitesimal update of Σ. We
choose the following update of A corresponding to vΣ:

vA := (φA|UA)−1(vΣ). (8.40)

Any UA, such that UA ⊕ TA = Md(R), is a reasonable choice to pick vA
for a given vΣ. The choice SA = {u ∈ Md(R), AuT − uAT = 0} has an
interesting additional property; it is the orthogonal of TA for the norm:

‖vA‖2Σ := Tr(vTAΣ−1vA) = Tr((A−1vA)TA−1vA). (8.41)

and consequently, it can be defined without referring to the parametrization,
which makes it a canonical choice. To prove this, remark that TA = {M ∈
Md(R), A−1M antisymmetric} and SA = {M ∈ Md(R), A−1M symmetric}
and that if M is symmetric and N is antisymmetric, then

Tr(MTN) =

d∑
i,j=1

mijnij =

d∑
i=1

miinii +
∑

16i<j6d

mij(nij + nji) = 0. (8.42)

Let us now show that this is the choice made by xNES and GIGO-A
(which are well-defined algorithms updating a square root of the covariance
matrix).

Proposition 8.18. Let A ∈Mn(R). The vA given by the xNES and GIGO-
A algorithms lies in SA = {u ∈ Md(R), AuT − uAT = 0} = SA.

Proof. For xNES, let us write γ̇(0) = (vµ, vΣ) and vA := 1
2AGM . We

have A−1vA = 1
2GM , and therefore, forcing M (and GM) to be symmet-

ric in xNES is equivalent to A−1vA = (A−1vA)T , which can be rewritten as
AvTA = vAA

T . For GIGO-A, Equation (8.27) shows that Σt(JΣ − JµµTt) is
symmetric, and with this fact in mind, Equation (8.29) shows that we have
AvTA = vAA

T (vA is Ȧt).

132

Chapter 9

Blockwise GIGO, twisted
GIGO

9.1 Decoupling the step size

9.1.1 Twisting the Metric

As we can see, the IGO framework does not allow one to recover the learning
rates for xNES and pure rank-µ CMA-ES, which is a problem, since usually,
the covariance learning rate is set much smaller than the mean learning rate
(see either [Han11] or [GSY+10]).

A way to recover these learning rates is to incorporate them directly into
the metric (see also blockwise GIGO, in Section 9.1.2). More precisely:

Definition 9.1 (Twisted Fisher metric). Let ηµ, ηΣ ∈ R, and let (Pθ)θ∈Θ

be a family of normal probability distributions: Pθ = N (µ(θ),Σ(θ)), with µ
and Σ C1. We call the “(ηµ, ηΣ)-twisted Fisher metric” the metric defined
by:

Ii,j(ηµ, ηΣ)(θ) =
1

ηµ

∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

ηΣ

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
. (9.1)

All of the remainder of this section is simply a rewriting of the work
in Chapter 7 with the twisted Fisher metric instead of the regular Fisher
metric. We will use the term “twisted geodesic” instead of “geodesic for the
twisted metric”.

This approach seems to be somewhat arbitrary: arguably, the mean and
the covariance play a “different role” in the definition of a Gaussian (only the
covariance can affect diversity, for example), but we lack a reasonable intrin-
sic characterization that would make this choice of twisting more natural.
This construction can be slightly generalized (see the Appendix).

133

The IGO flow and the IGO algorithms can be modified to take into
account the twisting of the metric; the (ηµ, ηΣ)-twisted IGO flow reads:

dθt

dt
= I(ηµ, ηΣ)−1(θ)

∫
X
W f
θt(x)∇θ lnPθ(x)Pθt(dx). (9.2)

The only difference with (7.8) is that I−1(θ) has been replaced by I(ηµ, ηΣ)−1(θ).
This leads us to the twisted IGO algorithms.

Definition 9.2. The (ηµ, ηΣ)-twisted IGO algorithm associated with parametriza-
tion θ, sample size N , step size δt and selection scheme w is given by the
following update rule:

θt+δt = θt + δtI(ηµ, ηΣ)−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
.

Definition 9.3. The (ηµ, ηΣ)-twisted geodesic IGO algorithm associated
with sample size N , step size δt and selection scheme w is given by the
following update rule:

θt+δt = expθt(Y δt) (9.3)

where:

Y = I(ηµ, ηΣ)−1(θt)
N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
. (9.4)

By definition, the twisted geodesic IGO algorithm does not depend on the
parametrization (but it does depend on ηµ and ηΣ).

There is some redundancy between δt, ηµ and ηΣ: the only values actu-
ally appearing in the equations are δtηµ and δtηΣ. More formally:

Proposition 9.4. Let k, d,N ∈ N, ηµ, ηΣ, δt, λ1, λ2 ∈ R and w : [0; 1]→ R.
The (ηµ, ηΣ)-twisted IGO algorithm with sample size N , step size δt and

selection scheme w coincides with the (λ1ηµ, λ1ηΣ)-twisted IGO algorithm
with sample size N , step size λ2δt and selection scheme 1

λ1λ2
w. The same

is true for geodesic IGO.

In order to obtain the twisted algorithms, the Fisher metric in IGO has
to be replaced by the metric from Definition 9.1. In practice, the equations
found by twisting the metric are exactly the equations without twisting, ex-
cept that we have “forced” the learning rates ηµ, ηΣ to appear by multiplying
the increments of µ and Σ by ηµ and ηΣ.

We can now describe pure rank-µ CMA-ES and xNES with separate
learning rates as twisted IGO algorithms:

134

Proposition 9.5 (xNES as IGO). The xNES algorithm with sample size
N , weights wi and learning rates ηµ, ησ = ηB = ηΣ coincides with the
ηµ
δt ,

ηΣ
δt -twisted IGO algorithm with sample size N , weights wi, step size δt

and in which, given the current position (µt, At), the set of Gaussians is
parametrized by:

(δ,M) 7→ N

(
µt +Atδ,

(
At exp(

1

2
M)

)(
At exp(

1

2
M)

)T)
,

with δ ∈ Rm and M ∈ Sym(Rm).
The parameters maintained by the algorithm are (µ,A), and the xi are

sampled from N (µ,AAT).

Proposition 9.6 (Pure rank-µ CMA-ES as IGO). The pure rank-µ CMA-
ES algorithm with sample size N , weights wi and learning rates ηµ and
ηΣ coincides with the (

ηµ
δt ,

ηΣ
δt)-twisted IGO algorithm with sample size N ,

weights wi, step size δt and the parametrization (µ,Σ).

The proofs of these two statements are an easy rewriting of their non-
twisted counterparts: one can return to the non-twisted metric (up to a ηΣ

factor) by changing µ to
√
ησ√
ηµ
µ.

We give the equations of the twisted geodesics of Gd in the Appendix.

9.1.2 Blockwise GIGO, an almost intrinsic description of
xNES

Although xNES is not GIGO, it is possible to define a family of algorithms
extending GIGO and including xNES, by decomposing our family of prob-
ability distributions as a product and by following the restricted geodesics
simultaneously.

Definition 9.7 (Splitting). Let Θ be a Riemannian manifold. A splitting of
Θ is n manifolds Θ1, ...,Θn and a diffeomorphism Θ ∼= Θ1 × ...×Θn. If for
all x ∈ Θ, for all 1 6 i < j 6 n, we also have Ti,xM ⊥ Tj,xM as subspaces
of TxM (see Notation 9.8), then the splitting is said to be compatible with
the Riemannian structure. If the Riemannian manifold is not ambiguous,
we will simply write a “compatible splitting”.

We now give some notation, and we define the blockwise GIGO update:

Notation 9.8. Let Θ be a Riemannian manifold, Θ1, ...,Θn a splitting of
Θ, θ = (θ1, ..., θn) ∈ Θ, Y ∈ TθΘ and 1 6 i 6 n.

• We denote by Θθ,i the Riemannian manifold

{θ1} × ...× {θi−1} ×Θi × {θi+1} × ...× {θn},

with the metric induced from Θ. There is a canonical isomorphism of
vector spaces TθΘ = ⊕ni=1TΘθ,i. Moreover, if the splitting is compati-
ble, it is an isomorphism of Euclidean spaces.

135

• We denote by Φθ,i the exponential at θ of the manifold Θθ,i.

Definition 9.9 (Blockwise GIGO update). Let Θ1, ...,Θn be a compatible
splitting. The blockwise GIGO algorithm in Θ with splitting Θ1, ...,Θn as-
sociated with sample size N , step sizes δt1, ..., δtn and selection scheme w is
given by the following update rule:

θ ← (θt+δt11 , ..., θt+δtnn) (9.5)

where:

Y = I−1(θt)

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
, (9.6)

θt+δtkk = Φθt,k(δtkYk), (9.7)

with Yk the TΘθ,k-component of Y . This update only depends on the splitting
(and not on the parametrization inside each Θk).

The compatibility condition ensures that the natural gradient of W f
θt

(defined in Section 7.2) in the whole manifold Θ really is the sum of the
gradients of this same function in the submanifolds Θk. A practical conse-
quence is that the Yk in Equation (9.7) can be computed simply by taking
the natural gradient in Θk:

Yk = I−1
k (θti)

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θk
, (9.8)

where Ik is the metric of Θk.
Since blockwise GIGO only depends on the splitting (and the tunable

parameters: sample size, step sizes and selection scheme), it can be thought
of as almost parametrization-invariant.

Notice that blockwise GIGO updates and twisted GIGO updates are two
different things: firstly, blockwise GIGO can be defined on any manifold with
a compatible splitting, whereas twisted GIGO (and twisted IGO) are only
defined for Gaussians. However, even in Gd(ηµ, ηΣ), with the splitting (µ,Σ),
these two algorithms are different: for instance, if ηµ = ηΣ and δt = 1, then
the twisted GIGO is the regular GIGO algorithm, whereas blockwise GIGO
is not (actually, we will prove that it is the xNES algorithm). The only
thing blockwise GIGO and twisted GIGO have in common is that they are
compatible with the (ηµ, ηΣ)-twisted IGO flow Equation (9.2): a parameter
θt following these updates with δt→ 0 and N →∞ is a solution of Equation
(9.2).

We now have a new description of the xNES algorithm:

Proposition 9.10 (xNES is a Blockwise GIGO algorithm). The Blockwise
GIGO algorithm in Gd with splitting Φ : N (µ,Σ) 7→ (µ,Σ), sample size N ,
step sizes δtµ, δtΣ and selection scheme w coincides with the xNES algorithm
with sample size N , weights wi and learning rates ηµ = δtµ, ησ = ηB = δtΣ.

136

Proof. Firstly, notice that the splitting (µ,Σ) is compatible, by Proposition
7.2.

Now, let us compute the Blockwise GIGO update: we have Gd
∼= Rd×Pd,

where Pd is the space of real positive-definite matrices of dimension d. We
have Θθt,1 = (Rd × {Σt}) ↪→ Gd, Θθt,2 = ({µt} × Pd) ↪→ Gd. The induced
metric on Θθt,1 is the Euclidean metric, so we have:

µ← µt + δt1Yµ.

Since we have already shown (using the notation in Definition 7.6) that
Yµ = AGµ (in the proof of Proposition 7.7), we find:

µ← µt + δt1AGµ.

On Θθt,2, we have the following Lagrangian for the geodesics:

L(Σ, Σ̇) =
1

2
tr(Σ̇Σ−1Σ̇Σ−1).

By applying Noether’s theorem, we find that

JΣ = Σ−1Σ̇

is invariant along the geodesics of Θθt,2, so they are defined by the equa-

tion Σ̇ = ΣJΣ = ΣΣ−1
0 Σ̇0 (and therefore, any update preserving the in-

variant JΣ will satisfy this first-order differential equation and follow the
geodesics of Θθt,2). The xNES update for the covariance matrix is given
by A(t) = A0 exp(tGM/2). Therefore, we have Σ(t) = A0 exp(tGM)AT0 ,
Σ−1(t) = (A−1

0)T exp(−tGM)A−1
0 , Σ̇(t) = A0 exp(tGM)GMA

T
0 and, finally,

Σ−1(t)Σ̇(t) = (A−1
0)TGMA

T
0 = Σ−1

0 Σ̇0. Therefore, xNES preserves JΣ, and
therefore, xNES follows the geodesics of Θθt,2 (notice that we had already
proven this in Proposition 9.13, since we are looking at the geodesics of Gd

with a fixed mean).

Although blockwise GIGO is somewhat “less natural” than GIGO, it
can be easier to compute for some splittings (as we have just seen), and in
the case of the Gaussian distributions, the mean-covariance splitting seems
reasonable.

9.2 Trajectories of Different IGO Steps

As we have seen, two different IGO algorithms (or an IGO algorithm and
the GIGO algorithm) coincide at first order in δt when δt → 0. In this
section, we study the differences between pure rank-µ CMA-ES, xNES and
GIGO by looking at the second order in δt, and in particular, we show that
xNES and GIGO do not coincide in the general case.

137

We view the updates done by one step of the algorithms as paths on the
manifold Gd, from (µ(t),Σ(t)) to (µ(t+ δt),Σ(t+ δt)), where δt is the time
step of our algorithms, seen as IGO algorithms. More formally:

Definition 9.11. 1. We call the GIGO update trajectory the application:

TGIGO : (µ,Σ, vµ, vΣ) 7→
(
δt 7→ expN (µ,AAT)(δtηµvµ, δtηΣvΣ)

)
.

(exp is the exponential of the Riemannian manifold Gd(ηµ, ηΣ))

2. We call the xNES update trajectory the application:

TxNES : (µ,Σ, vµ, vΣ) 7→
(
δt 7→ N (µ+ δtηµvµ, A exp[ηΣδtA

−1vΣ(A−1)T]AT)
)
,

with AAT = Σ. The application above does not depend on the choice
of a square root A.

3. We call the CMA-ES update trajectory the application:

TCMA : (µ,Σ, vµ, vΣ) 7→
(
δt 7→ N (µ+ δtηµvµ, AA

T + δtηΣvΣ)
)
.

These applications map the set of tangent vectors to Gd (TGd) to the
curves in Gd(ηµ, ηΣ).

We will also use the following notation: µGIGO := φµ ◦ TGIGO, µxNES :=
φµ ◦TxNES, µCMA := φµ ◦TCMA, ΣGIGO := φΣ ◦TGIGO, ΣxNES := φΣ ◦TxNES

and ΣCMA := φΣ ◦ TCMA, where φµ (resp. φΣ) extracts the µ-component
(resp. the Σ-component) of a curve.

In particular, Im(φµ) ⊂ Rd and Im(φΣ) ⊂ Pd, where Pd (the set of real
symmetric positive-definite matrices of dimension d) is seen as a subset of
Rd2

.

For instance, TGIGO(µ,Σ, vµ, vΣ)(δt) gives the position (mean and co-
variance matrix) of the GIGO algorithm after a step of size δt, while µGIGO

and ΣGIGO give, respectively, the mean component and the covariance com-
ponent of this position.

This formulation ensures that the trajectories we are comparing had the
same initial position and the same initial speed, which is the case provided
the sampled points (the values directly sampled from N (µ,Σ), not from
N (0, I) and transformed) are the same.

Different IGO algorithms coincide at first order in δt. The following
proposition gives the second order expansion of the trajectories of the algo-
rithms.

Proposition 9.12 (Second derivatives of the trajectories). We have:

µGIGO(µ,Σ, vµ, vΣ)′′(0) = ηµηΣvΣΣ−1
0 vµ,

138

µxNES(µ,Σ, vµ, vΣ)′′(0) = µCMA(µ,Σ, vµ, vΣ)′′(0) = 0,

ΣGIGO(µ,Σ, vµ, vΣ)′′(0) = η2
ΣvΣΣ−1vΣ − ηµηΣvµv

T
µ ,

ΣxNES(µ,Σ, vµ, vΣ)′′(0) = η2
ΣvΣΣ−1vΣ,

ΣCMA(µ,Σ, vµ, vΣ)′′(0) = 0.

Proof. We can immediately see that the second derivatives of µxNES, µCMA

and ΣCMA are zero. Next, we have:

ΣxNES(µ,Σ, vµ, vΣ)(t) = A exp[tA−1ηΣvΣ(A−1)T]AT

= AAT + tηΣvΣ +
t2

2
η2

ΣvΣ(A−1)TA−1vΣ + o(t2)

= Σ + tηΣvΣ +
t2

2
η2

ΣvΣΣ−1vΣ + o(t2).

The expression of ΣxNES(µ,Σ, vµ, vΣ)′′(0) follows.
Now, for GIGO, let us consider the geodesic starting at (µ0,Σ0) with ini-

tial speed (ηµvµ, ηΣvΣ). By writing Jµ(0) = Jµ(t), we find µ̇(t) = Σ(t)Σ−1
0 µ̇0.

We then easily have µ̈(0) = Σ̇0Σ−1
0 µ̇0. In other words:

µGIGO(µ,Σ, vµ, vΣ)′′(0) = ηµηΣvΣΣ−1
0 vµ.

Finally, by using Theorem 8.14 and differentiating, we find:

Σ̈ = ηΣΣ̇(JΣ − JµµT)− ηΣΣJµµ̇
T ,

Σ̈0 = ηΣΣ̇0
1

ηΣ
Σ−1

0 Σ̇0 −
ηΣ

ηµ
µ̇0µ̇

T
0 = η2

ΣvΣΣ−1
0 vΣ − ηΣηµvµv

T
µ .

In order to interpret these results, we will look at what happens in di-
mension one. In higher dimensions, we can suppose that the algorithms
exhibit a similar behavior, but an exact interpretation is more difficult for
GIGO in Gd.

• In [GSY+10], it has been noted that xNES converges to quadratic
minima slower than CMA-ES and that it is less subject to premature
convergence. That fact can be explained by observing that the mean
update is exactly the same for CMA-ES and xNES, whereas xNES
tends to have a higher variance (Proposition 9.12 shows this at order
two, and it is easy to see that in dimension one, for any µ, Σ, vµ, vΣ,
we have ΣxNES(µ,Σ, vµ, vΣ) > ΣCMA(µ,Σ, vµ, vΣ)).

139

• At order two, GIGO moves the mean faster than xNES and CMA-
ES if the standard deviation is increasing and more slowly if it is
decreasing. This seems to be a reasonable behavior (if the covariance
is decreasing, then the algorithm is presumably close to a minimum,
and it should not leave the area too quickly). This remark holds only
for isolated steps, because we do not take into account the evolution
of the variance.

• The geodesics of G1 are half-circles (see Figure 9.1 below; we recall that
G1 is the Poincaré half-plane). Consequently, if the mean is supposed
to move (which always happens), then σ → 0 when δt → ∞. For
example, a step whose initial speed has no component on the standard
deviation will always decrease it. See also Proposition 10.1, about the
optimization of a linear function.

• For the same reason, for a given initial speed, the update of µ always
stays bounded as a function of δt: it is not possible to make one step
of the GIGO algorithm go further than a fixed point by increasing δt.
Still, the geodesic followed by GIGO changes at each step, so the mean
of the overall algorithm is not bounded.

θt+dt
θt

µ

σ

Y

Figure 9.1: One step of the geodesic IGO (GIGO) update.

We now show that xNES follows the geodesics of Gd if the mean is fixed,
but that xNES and GIGO do not coincide otherwise.

Proposition 9.13 (xNES is not GIGO in the general case). Let µ, vµ ∈
Rd, A ∈ GLd, vΣ ∈ Md.

Then, the GIGO and xNES updates starting at N (µ,Σ) with initial
speeds vµ and vΣ follow the same trajectory if and only if the mean remains
constant. In other words:

TGIGO(µ,Σ, vµ, vΣ) = TxNES(µ,Σ, vµ, vΣ) if and only if vµ = 0.

Proof. If vµ = 0, then we can compute the GIGO update by using Theorem
8.14: since Jµ = 0, µ̇ = 0, and µ remains constant. Now, we have JΣ =
Σ−1Σ̇; this is enough information to compute the update. Since this quantity
is also preserved by the xNES algorithm (see, for example, the proof of
Proposition 9.10), the two updates coincide.

140

If vµ 6= 0, then ΣxNES(µ,Σ, vµ, vΣ)′′(0)−ΣGIGO(µ,Σ, vµ, vΣ)′′(0) = ηµηΣvµv
T
µ 6=

0 and, in particular, TGIGO(µ,Σ, vµ, vΣ) 6= TxNES(µ,Σ, vµ, vΣ).

141

Chapter 10

Numerical experiments

We conclude this part with some numerical experiments to compare the be-
havior of GIGO, xNES and pure rank-µ CMA-ES (we give the pseudocodes
for these algorithms in the Appendix). We made two series of tests. The
first one is a performance test, using classical benchmark functions and the
settings from [GSY+10]. The goal of the second series of tests is to illus-
trate the computations in Section 9.2 by plotting the trajectories (standard
deviation versus mean) of these three algorithms in dimension one.

The source code is available at https://www.lri.fr/~bensadon.

10.1 Benchmarking

For the first series of experiments, presented in Figure 10.1, we used the
following parameters, taken from [GSY+10] (we recall that xNES and pure
rank-µ CMA-ES are seen as IGO algorithms):

• Varying dimension.
• Sample size: b4 + 3 log(d)c.
• Weights: wi =

max(0,log(n
2

+1)−log(i)∑N
j=1 max(0,log(n

2
+1)−log(j)

− 1
N .

• IGO step size and learning rates: δt = 1, ηµ = 1, ηΣ = 3
5

3+log(d)

d
√
d
..

• Initial position: θ0 = N (x0, I), where x0 is a random point of the
circle with center zero, and radius 10.

• Euler method for GIGO: Number of steps: 100. We used the GIGO-A
variant of the algorithm. No significant difference was noticed with
GIGO-Σ or with the exact GIGO algorithm. The only advantage of
having an explicit solution of the geodesic equations is that the update
is quicker to compute.

• We chose not to use the exact expression of the geodesics for this
benchmarking to show that having to use the Euler method is fine.
However, we did run the tests, and the results are basically the same
as GIGO-A.

142

https://www.lri.fr/~bensadon

We plot the median number of runs to achieve target fitness (10−8). Each
algorithm has been tested in dimension 2, 4, 8, 16, 32 and 64: a missing
point means that all runs converged prematurely.

10.1.1 Failed Runs

In Figure 10.1, a point is plotted even if only one run was successful. Below
is the list of the settings for which at least one run converged prematurely.

• Only one run reached the optimum for the cigar-tablet function with
CMA-ES in dimension eight.

• Seven runs (out of 24) reached the optimum for the Rosenbrock func-
tion with CMA-ES in dimension 16.

• About half of the runs reached the optimum for the sphere function
with CMA-ES in dimension four.

For the following settings, all runs converged prematurely.

• GIGO did not find the optimum of the Rosenbrock function in any
dimension.

• CMA-ES did not find the optimum of the Rosenbrock function in
dimension 2, 4, 32 and 64.

• All of the runs converged prematurely for the cigar-tablet function in
dimension two with CMA-ES, for the sphere function in dimension
two for all algorithms and for the Rosenbrock function in dimension
two and four for all algorithms.

143

Dimension d From 2 to 64
Sample size N 4 + 3 log(d)

Weights (wi)i∈[1,N]
max(0,log(n

2
+1)−log(i)∑N

j=1 max(0,log(n
2

+1)−log(j)
− 1

N

IGO step size δt 1
Mean ηµ 1
learning rate

Covariance ηΣ
3
5

3+log(d)

d
√
d

learning rate

Euler step-size h 0.01(100 steps)
(for GIGO only)
GIGO implementation GIGO-A

Sphere function x 7→
∑d

i=1 x
2
i

Cigar-tablet x 7→ x2
1 +

∑d−1
i=2 104x2

i + 108x2
d

Rosenbrock x 7→
∑d−1

i=1 (100(x2
i − xi+1)2 + (xi − 1)2)

x-axis Dimension
y-axis Number of function calls

to reach fitness 10−8.

102

103

104

105

2 4 8 16 32 64

Cigar-tablet

CMA
GIGO
xNES

102

103

104

105

2 4 8 16 32 64

Sphere

CMA
GIGO
xNES

102

103

104

105

2 4 8 16 32 64

Rosenbrock

CMA
xNES

Figure 10.1: Median number of function calls to reach 10−8 fitness on 24
runs for: sphere function, cigar-tablet function and Rosenbrock function.
Initial position θ0 = N (x0, I), with x0 uniformly distributed on the circle of
center zero and radius 10. We recall that the “CMA-ES” algorithm here is
using the so-called pure rank-µ CMA-ES update.

10.1.2 Discussion

As the last item in Section 10.1.1 shows, all of the algorithms converge
prematurely in a low dimension, probably because the covariance learning

144

rate has been set too high (or because the sample size is too small). This is
different from the results in [GSY+10].

This remark aside, as noted in [GSY+10], the xNES algorithm shows
more robustness than CMA-ES and GIGO: it is the only algorithm able to
find the minimum of the Rosenbrock function in high dimensions. However,
its convergence is consistently slower.

In terms of performance, when both of them work, pure rank-µ CMA-
ES (or equivalently, IGO in the parametrization (µ,Σ)) and GIGO are ex-
tremely close (GIGO is usually a bit better). An advantage of GIGO is
that it is theoretically defined for any δt, ηΣ, whereas the covariance matrix
maintained by CMA-ES (not only pure rank-µ CMA-ES) can stop being
positive definite if ηΣδt > 1. However, in that case, the GIGO algorithm is
prone to premature convergence (remember Figure 9.1 and see Proposition
10.1 below), and in practice, the learning rates are much smaller.

10.2 Plotting Trajectories in G1

We want the second series of experiments to illustrate the remarks about the
trajectories of the algorithms in Section 9.2, so we decided to take a large
sample size to limit randomness, and we chose a fixed starting point for the
same reason. We use the weights below because of the property of quantile
improvement proven in [AO13]: the 1/4-quantile will improve at each step.
The parameters we used were the following:

• Sample size: λ = 5, 000
• Dimension one only.
• Weights: w = 41q61/4 (wi = 4.1i61,250)

• IGO step size and learning rates: ηµ = 1, ηΣ = 3
5

3+log(d)

d
√
d

= 1.8, varying

δt.
• Initial position: θ0 = N (10, 1)
• Dots are placed at t = 0, 1, 2 . . . (except for the graph δt = 1.5, for

which there is a dot for each step).

Figures 10.2–10.6 show the optimization of x 7→ x2, and Figures 10.7–
10.9 show the optimization of x 7→ −x.

145

Figure 10.2: Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in
dimension one with δt = 0.01, sample size 5000, weights wi = 4.1i61250 and
learning rates ηµ = 1, ηΣ = 1.8. One dot every 100 steps. All algorithms
exhibit a similar behavior

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

σ

µ

GIGO
CMA
xNES

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-2 0 2 4 6 8 10

σ

µ

GIGO
CMA
xNES

Figure 10.4: Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in
dimension one with δt = 0.1, sample size 5000, weights wi = 4.1i61250 and
learning rates ηµ = 1, ηΣ = 1.8. One dot every 10 steps. All algorithms
exhibit a similar behavior, and differences start to appear. It cannot be
seen on the graph, but the algorithm closest to zero after 400 steps is CMA
(∼ 1.10−16, followed by xNES (∼ 6.10−16) and GIGO (∼ 2.10−15).

146

Figure 10.3: Trajectories of GIGO, CMA and xNES optimizing x 7→ x2

in dimension one with δt = 0.5, sample size 5000, weights wi = 4.1i61250

and learning rates ηµ = 1, ηΣ = 1.8. One dot every two steps. Stronger
differences. Notice that after one step, the lowest mean is still GIGO (∼ 8.5,
whereas xNES is around 8.75), but from the second step, GIGO has the
highest mean, because of the lower variance.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-2 0 2 4 6 8 10

σ

µ

GIGO
CMA
xNES

0

1

2

3

4

5

6

7

8

-2 0 2 4 6 8 10

σ

µ

GIGO
CMA
xNES

Figure 10.5: Trajectories of GIGO, CMA and xNES optimizing x 7→ x2

in dimension one with δt = 1, sample size 5000, weights wi = 4.1i61250

and learning rates ηµ = 1, ηΣ = 1.8. One dot per step. The CMA-ES
algorithm fails here, because at the fourth step, the covariance matrix is
not positive definite anymore (it is easy to see that the CMA-ES update
is always defined if δtηΣ < 1, but this is not the case here). Furthermore,
notice (see also Proposition 10.1) that at the first step, GIGO decreases the
variance, whereas the σ-component of the IGO speed is positive.

147

Figure 10.6: Trajectories of GIGO, CMA and xNES optimizing x 7→ x2 in
dimension one with δt = 1.5, sample size 5000, weights wi = 4.1i61250 and
learning rates ηµ = 1, ηΣ = 1.8. One dot per step. Same as δt = 1 for CMA.
GIGO converges prematurely.

0

1

2

3

4

5

6

7

8

9

-2 0 2 4 6 8 10

σ

µ

GIGO
CMA
xNES

1

100

10000

1e+006

1e+008

1e+010

1e+012

1e+014

1 100 10000 1e+006 1e+008 1e+010 1e+012 1e+014

σ

µ

GIGO
CMA
xNES

Figure 10.7: Trajectories of GIGO, CMA and xNES optimizing x 7→ −x in
dimension one with δt = 0.01, sample size 5000, weights wi = 4.1i61250 and
learning rates ηµ = 1, ηΣ = 1.8. One dot every 100 steps. Almost the same
for all algorithms.

148

Figure 10.8: Trajectories of GIGO, CMA and xNES optimizing x 7→ −x in
dimension one with δt = 0.1, sample size 5000, weights wi = 4.1i61250 and
learning rates ηµ = 1, ηΣ = 1.8. One dot every 10 steps. It is not obvious
on the graph, but xNES is faster than CMA, which is faster than GIGO.

1

100

10000

1e+006

1e+008

1e+010

1e+012

1e+014

1 100 10000 1e+006 1e+008 1e+010 1e+012 1e+014

σ

µ

GIGO
CMA
xNES

0.0001

0.01

1

100

10000

1e+006

1e+008

1e+010

1e+012

1e+014

1 100 10000 1e+006 1e+008 1e+010 1e+012 1e+014

σ

µ

GIGO
CMA
xNES

Figure 10.9: Trajectories of GIGO, CMA and xNES optimizing x 7→ −x in
dimension one with δt = 1, sample size 5, 000, weights wi = 4.1i61,250 and
learning rates ηµ = 1, ηΣ = 1.8. One dot per step. GIGO converges, for the
reasons discussed earlier.

149

Figures 10.5, 10.6 and 10.9 show that when δt > 1, GIGO reduces the
covariance, even at the first step. More generally, when using the GIGO
algorithm in G̃d for the optimization of a linear function, there exists a
critical step size δtcr (depending on the learning rates ηµ, ησ and on the
weights wi), above which, GIGO will converge, and we can compute its value
when the weights are of the form 1q6q0 (for q0 > 0.5, the discussion is not
relevant, because in that case, even the IGO flow converges prematurely.
Compare with the critical δt of the smoothed cross entropy method and
IGO-ML in [OAAH11]).

Proposition 10.1. Let d ∈ N, k, ηµ, ησ ∈ R∗+; let w = k.1q6q0; and let

g : Rd → R
x 7→ −x1

.

Let µn be the first coordinate of the mean, and let σ2
n be the variance

(at step n) maintained by the (ηµ, ησ)-twisted geodesic IGO algorithm in G̃d

associated with selection scheme w, sample size ∞ 1 and step size δt, when
optimizing g.

There exists δtcr, such that:

• if δt > δtcr, (σn) converges to zero with exponential speed and (µn)
converges.

• if δt = δtcr, (σn) remains constant and (µn) tends to ∞ with linear
speed.

• if 0 < δt < δtcr, both (σn) and µn tend to ∞ with exponential speed.

The proof and the expression of δtcr can be found in the Appendix.
In the case corresponding to k = 4, n = 1, q0 = 1/4, ηµ = 1, ησ = 1.8,

we find:
δtcr ≈ 0.84. (10.1)

1It has been proven in [OAAH11] that IGO algorithms are consistent with the IGO
flow, i.e., they get closer and closer to the IGO flow as sample size tends to infinity. In
other words:

lim
N→∞

N∑
i=1

ŵi
∂ lnPθ(xi)

∂θ
= ∇̃θ

∫
X

W f
θt(x)

Pθ(dx).

Sample size ∞ means that we replace the IGO speed in the GIGO update by its limit for
large N . In particular, it is deterministic.

150

Conclusion

1 Summary

In this thesis, we introduced two different algorithms, generic Context Tree
Weighting and GIGO, motivated respectively by minimum description length
considerations and invariance principles.

1.1 Expert Trees

By defining a new formal context, we generalized the Context Tree Weight-
ing and Context Tree Switching algorithms, obtained an elegant proof of the
property of the former, and introduced edgewise versions of these algorithms.
As for the original CTW, the new algorithms introduced here consider si-
multaneously a large quantity of models explaining the data, and, for the
generalized CTW, computes Bayesian posteiors efficiently.

We also investigated the behavior of context tree switching algorithms,
using different switch distributions than the ones used in [VNHB11], and
showed that for regression, the corresponding Context Tree Switching algo-
rithms achieve better performance than Context Tree Weighting or Bayesian
histograms on a specific sequence.

1.2 GIGO

We introduced GIGO, a fully parametrization-invariant black-box optimiza-
tion algorithm, and, thanks to Noether’s theorem, we obtained first order
equations for the geodesics of Gd.

Moreover, we described xNES as a “blockwise GIGO” algorithm, giving
it an almost intrinsic description.

2 Future directions

The following questions are still open:
GIGO on other manifolds. We only studied GIGO on Gd. Geodesics

are usually hard to compute, except in some cases, such as the manifold of
Bernoulli distributions. However, in that case the length of the geodesics

151

is finite, so definition problems arise. Noether’s theorem could be useful to
obtain equations for computing GIGO updates on other manifolds.

Stochastic IGO. (mentioned in [OAAH11]) The IGO algorithm can
be seen as a stochastic process θt+δt = θt + δtXt

N , where Xt
N is computed

from N random samples of f(xi). Because of computation time considera-
tions, it is natural to take N ∝ δt (we want the same number of calls of the
objective function f to go from θt to θt+T).

The stochastic differential equation obtained when δt→ 0, with N ∝ δt
should be easier to study theoretically than the actual IGO update.

From experts to specialists. In order to recover the specialists frame-
work, it is necessary to define a Bayesian combination for experts with do-
mains that are not necessarily identical. It cannot be done directly since by
definition, experts are not penalized when data falls outside of their domain,
so it seems necessary to define a “domain extension” for experts.

Parameters of the switch distribution in expert trees. Our nu-
merical tests were conducted with generic settings for the switch distribu-
tions in the expert trees. Putting more prior mass on sequences starting
closed and opening at some time (i.e. of the form 0n1∞, n ∈ [0,∞)) might
yield better results, since this seems to be the “reasonable behaviour”. This
remark can be extended to switch distributions out of expert trees: more
prior mass should be put to sequences that go from simple models to more
complex (in the sense that they have more parameters to estimate) ones.
Experiments are needed to confirm or infirm this intuition.

Testing expert tree algorithms on real data, with more refined
experts. The expert tree algorithms introduced in part II are a general
framework for expert aggregation, and as such, they could be used in a
large variety of situations. It would be interesting to study their perfor-
mance with more sophisticated experts at the leaves.

152

Appendix A

Expert Trees

Lemma A.1 (Useful computation). Let K ∈ N. We have:

K−1∑
k=0

k2k = K2K +O(2K). (A.1)

Proof.

K−1∑
k=0

k2k = (K − 1)
K−1∑
k=0

2k −
K−2∑
k=0

2k − ...−
0∑

k=0

2k (A.2)

= (K − 1)(2K − 1)− (2K−1 − 1)− ...− (21 − 1) (A.3)

= K2K − 2K −K + 1− (2K−1 − 1)− ...− (21 − 1) (A.4)

= K2K +O(2K), (A.5)

Corollary A.2. Let K ∈ N, let t ∈ (2K−1, 2K].
We have:

ln 2
K−2∑
k=0

k2k + (t− 2K−1)(K − 1) ln 2 = t ln t+O(t) (A.6)

Proof. We have, by Lemma A.1 (since O(t) = O(2K) = O(2K−1)):

ln 2
K−2∑
k=0

k2k + (t− 2K−1)(K − 1) ln 2 = 2K−1(K − 1) ln 2 + (t− 2K−1)(K − 1) ln 2 +O(t)

(A.7)

= t(K − 1) ln 2 +O(t) (A.8)

= t ln t+O(t), (A.9)

which is what we wanted.

153

Lemma A.3. Let X, Y be two sets, Let T be an infinite binary edgewise
weighted expert tree from X to Y such that for all s ∈ T, the domain of Es
is fixed1, and Tar(Es) = Y . Let x = (x1, x2, ...) ∈ XN, let (y1, y2, ...) ∈ Y N,
let zk = (xk, yk) for all k ∈ N∗, and let I = I(x) be an edgewise switching
pattern such that for any s ∈ T, and t ∈ c(s)

• Is→t = 0∞ if |s| = K − 1.

• Is→t = 01∞ otherwise.

Then, to predict yn, EI tries to use the deepest expert that has seen at
least one other data point before xn.

In other words, for all n > 1, EI(zn|zn−1) = Es(xn)(zn|zn−1), where
s(xn) ∈ T is defined by: xn ∈ Dom(Es(xn)), x

n−1 ∩ Dom(Es(xn)) 6= ∅, and
either |s(xn)| = K − 1 or xn−1 ∩Dom(Et(xn)) = ∅, where t(xn) is the child
of s(xn) containing xn.

Proof. Firstly, we recall that by Definition 4.40:
EIs→t(y|z, x) := 1(Is→t)φt(z)=0(Es)|Dom(Et)(y|z, x) + 1(Is→t)φt(z)=1EI,t(y|z, x),

where φt(z
n) = |{xk|1 6 k 6 n, xk ∈ Dom(Et)}|, if we use the fixed domain

convention, and the fact that Dom(Et) = Y .
Let n ∈ N and let us write s = s(xn).

Now, let s′ ∈ T such that |s′| < |s| (in particular, |s′| < K), and
xn ∈ Dom(Es′) (i.e. s is a descendent of s′); and let t′ be the child of s′ such
that xn ∈ Dom(Et′).

By definition of s(xn), xn−1 ∩ Dom(Es(xn)) 6= ∅. Consequently, xn is at
least the second point in Dom(Et′). Since Is′→t′ = 01∞, (Is′→t′)1+|xn−1∩Dom(Et′)| =

1, so EI,s′(xn|xn−1) = EI,t′(xn|xn−1).
We have just show that for any ascendent s′ of s, we have EI,s′(xn|xn−1) =

EI,t′(xn|xn−1), where t′ is the child of s′ which is also an ascendent of s (or
s itself). Consequently, EI = EI,ε = EI,s(xn).

Moreover, either xn−1 ∩ Dom(Et(xn)) = ∅ or |s(xn)| = K − 1. In
both cases, (Is(xn)→t(xn))1+|xn−1∩Dom(Et(xn))| = 0, so EI,s(xn)(xn|xn−1) =

Es(xn)(xn|xn−1), which concludes the proof.

A.1 Balanced sequences

Proposition A.4. Let K > 1. If (xi) is well K-balanced, and I, J are
two intervals such that |I| = |J |, then the first point in I appears before the
K2 + 1-st point in J . In other words, if tI is the index of the first point in
I:

|{i|1 6 i < tI , xi ∈ J}| 6 K2 (A.10)

1So formally, Dom(Es) = (X×Y)∗×Ds for some Ds, but we will write Dom(Es) = Ds.

154

Proof. Let NJ(t) be the number of points in J at time t. We prove that
NJ(t) > K2 implies NI(t) > 1.

By definition, NJ(t) 6 K|J |t, so NJ(t) > K2 implies K2 < K|J |t =
K|I|t (since NJ(t) > 1), so 1 < 1

K |I|t and therefore 1 6 b 1
K |I|tc 6 NI(t).

A.1.1 Specific sequence achieveing the bound in Section 5.3.1

We recall that (un)n∈N is the sequence defined by: u0 = 0, and for all k,m,
if 0 6 m < 2k, u2k+m = 2m+1

2k+1 .

If 0 6 m < 2k, we write Ik,m := [m
2k
, m+1

2k
)

Lemma A.5. Let k, k′ ∈ N, 0 6 m < 2k, 0 6 m′ < 2k
′
.

u2k+m ∈ Ik′,m′ iff m′ = b2k′−k−1(2m+ 1)c.

Proof.

u2k+m ∈ Ik′,m′ ⇔ m′ = max{n ∈ N,
n

2k′
6

2m+ 1

2k+1
} (A.11)

⇔ m′ = max{n ∈ N, n 6 2k
′−k−1(2m+ 1)}, (A.12)

which is what we wanted.

and

Lemma A.6. We have, for all k > 0, 0 6 m < 2k:

1. u2k+m is the second point in Ik,m: |{k′,m′|2k′+m′ < 2k+m,u2k′+m′ ∈
Ik,m}| = 1

2. u2k+m is at least the third point in Ik−1,bm/2c: |{k′,m′|2k
′

+ m′ <

2k +m,u2k′+m′ ∈ Ik−1,bm/2c}| > 2

Proof. Firstly notice that for all k for all 0 6 m < k, Ik,m = Ik+1,2m ∪
Ik+1,2m+1. Consequently, if k > 0, Ik,m ⊂ Ik−1,bm/2c.

2 is therefore a consequence of 1 applied to Ik−1,bm/2c (the second point
in Ik−1,bm/2c was u2k−1+bm/2c, so u2k+m is at least the third).

Now, we can see that {u0} ∪ {u2k′+m′ |k
′ < k, 0 6 m′ < 2k

′} = { n
2k
|0 6

n < 2k} (by induction: The odd n are by definition the u2k−1+m, and the
even n come frome the previous u2k′+m′). Since Ik,m is exactly of length 1

2k
,

there is exactly one of the u2k′+m′ , k
′ < k, 0 6 m′ < 2k

′
in Ik,m.

Finally, for m′ < m, u2k+m′ = 2m′+1
2k+1 < m

2k
, so u2k+m′ /∈ Ik,m, which

concludes the proof.

155

A.2 Loss of Normal–Gamma experts

This section contains various bounds on the loss incurred by Normal–Gamma
experts. They are used in section 5.3.

Lemma A.7 (General loss for a Normal–Gamma expert). Let d ∈ N, D ∈
Rd, λ, α, β ∈ R, D ⊂ Rd, and let ED,µ0,λ,α,β be a Normal-Gamma expert on
D with regularization µ0, λ, α, β. We have:

−ln ED,µ0,λ,α,β(z|∅) = (α+t/2) ln(
t+ λ

2
)−ln Γ(α+t/2)+(α+t/2) lnV0+

1

2
ln(t+λ)−1

2
lnλ+

t

2
ln(2π)+ln Γ(α)−α lnβ,

(A.13)

where V0 =
2β+

∑
y2
i

t+λ − (
∑
yi

t+λ)2.

Proof.

ED,0,λ,α,β(z|∅) =

∫
µ

∫
τ

βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτe−

λτ(µ−µ0)2

2 Pµ,τ (y)dτdµ (A.14)

=
βα
√
λ

Γ(α)
√

2π
t+1

∫
τ
τα+t/2−1/2e−βτ

∫
µ
e−

λτµ2

2 e−
τ
2

∑
(yi−µ)2

dµdτ

(A.15)

:=
βα
√
λ

Γ(α)
√

2π
t+1

∫
τ
τα+t/2−1/2e−βτIτdτ, (A.16)

where Iτ =
∫
µ e
−λτµ

2

2 e−
τ
2

∑
(yi−µ)2

dµ. Now,

Iτ =

∫
µ
e−

λτµ2

2 e−
τ
2

∑
(yi−µ)2

dµ = e−
τ(t+λ)

2
(
∑
y2
i

t+λ
−(

∑
yi

t+λ
)2)

√
2π

(t+ λ)τ
, (A.17)

so we have:

ED,0,λ,α,β(z|∅) =
βα
√
λ

Γ(α)
√

2π
t√

(t+ λ)

∫
τ
τα+t/2−1e−βτe−

τ(t+λ)
2

(
∑
y2
i

t+λ
−(

∑
yi

t+λ
)2)dτ

(A.18)

=
βα
√
λ

Γ(α)
√

2π
t√

(t+ λ)

∫
τ
τα+t/2−1e

−
(
β+ t+λ

2
(
∑
y2
i

t+λ
−(

∑
yi

t+λ
)2))

)
τ
dτ

(A.19)

=
βα
√
λ

Γ(α)
√

2π
t√

(t+ λ)

∫
τ
τα+t/2−1e−

t+λ
2
V0τdτ (A.20)

=
βα
√
λ

Γ(α)
√

2π
t√

(t+ λ)

Γ(α+ t/2)

(t+λ2)α+t/2V
α+t/2

0

(A.21)

The lemma follows.

156

We also add a useful decomposition of V0:

Lemma A.8 (Another form of V0). Let t ∈ N, β, λ > 0, (yi) ∈ Rt. We
have:

V0 :=
2β +

∑
y2
i

t+ λ
−
(∑

yi
t+ λ

)2

=
2β

t+ λ
+

λ

t+ λ

∑
y2
i

t+ λ
+

(
t

t+ λ

)2

Var(yi)

(A.22)

Proof.

2β +
∑
y2
i

t+ λ
−
(∑

yi
t+ λ

)2

=
2β

t+ λ
+

(∑
y2
i

t+ λ
− t2

(t+ λ)2

∑
y2
i

t

)
+

t2

(t+ λ)2

∑
y2
i

t
−
(

t

t+ λ

)2(∑ yi
t

)2

(A.23)

=
2β

t+ λ
+

λ

t+ λ

∑
y2
i

t+ λ
+

(
t

t+ λ

)2

Var(yi) (A.24)

We can extract the important terms under Condition 5.8 in the loss of
the Normal-Gamma experts computed in Lemma A.7:

Lemma A.9 (Loss of Normal–Gamma experts satisfying Condition 5.8).
Let t ∈ R, let S be a set of Normal-Gamma experts satisfying Condition
5.8 such that λ is bounded on S. We have, for all zt = (x, y)t such that
xt ∈ Dom(E)t:

−ln E(zt|∅) = (α+t/2) lnV0+
1 + ln 2π

2
t+ln t−1

2
lnλ−α lnβ+O(1), (A.25)

uniformly on S, where λ, α, β are the parameters of E, and V0 =
2β+

∑
y2
i

t+λ −
(
∑
yi

t+λ)2.

Proof. By Lemma A.7:

−ln E(zt|∅) = (α+t/2) ln(
t+ λ

2
)−ln Γ(α+t/2)+(α+t/2) lnV0+

1

2
ln(t+λ)−1

2
lnλ+

t

2
ln(2π)+ln Γ(α)−α lnβ.

(A.26)
By Stirling’s formula:

(α+ t/2) ln(
t+ λ

2
)− ln Γ(α+ t/2) = (α+ t/2) ln(

t+ λ

2
)− (α+

t− 1

2
) ln(α+ t/2) + (α+ t/2) +O(1)

(A.27)

= (α+ t/2)(ln(
t+ λ

2
)− ln(

t+ 2α

2
)) + t/2 +

1

2
ln(α+ t/2) +O(1)

(A.28)

= (α+ t/2)((1 +
λ

t
)− (1 +

2α

t
) + o(1/t)) + t/2 +

1

2
ln(α+ t/2) +O(1)

(A.29)

= t/2 +
1

2
ln t+O(1). (A.30)

157

Since α is a constant, we can conclude.

Lemma A.10 (Uniform upper bound on the empirical average cost of a
point under condition 5.8). Let t ∈ R, let S be a set of Normal-Gamma ex-
perts satisfying Condition 5.8 with λ(E) = |Dom(E)|2, such that λ is bounded
on S. We have, for all f : I → R K-Lipschitz, for all zt = (x, y)t such that
xt ∈ Dom(E)t:

− 1

t− 1
ln E(z2, ..., zt|z1) 6 ln |Dom(E)|+O(1), (A.31)

uniformly on S, where zn := (xn, f(xn)).

Proof. Let E ∈ S, and let us write ε = |Tar(E)|. By Lemma A.7, if we write

V0 = 2β+
∑
f(xi)

2

t+λ − (
∑
f(xi)
t+λ)2:

− ln E(z2, ..., zt|z1) = (α+ t/2) ln(
t+ λ

2
)− ln Γ(α+ t/2) + (α+ t/2) lnV0(t)

(A.32)

− (α+ 1/2) ln(
1 + λ

2
) + ln Γ(α+ 1/2)− (α+ 1/2) lnV0(1)

(A.33)

+
1

2
ln(t+ λ)− 1

2
lnλ+

t

2
ln(2π) + ln Γ(α)− α lnβ

(A.34)

− 1

2
ln(1 + λ) +

1

2
lnλ− 1

2
ln(2π)− ln Γ(α) + α lnβ

(A.35)

= d1 + d0 +
1

2
ln(

t+ λ

1 + λ
) +

t− 1

2
ln(2π) (A.36)

= d0 + d1 +O(t), (A.37)

where d1 = (α+t/2) ln(t+λ2)−ln Γ(α+t/2)−(α+1/2) ln(1+λ
2)+ln Γ(α+1/2),

and d0 = (α+t/2) lnV0(t)−(α+1/2) lnV0(1). We have, by Stirling formula,

d1 = (α+ t/2) ln(
t+ λ

2
)− (α+ 1/2) ln(

1 + λ

2
)− ln Γ(α+ t/2) + ln Γ(α+ 1/2)

(A.38)

= (α+ t/2) ln(
t+ λ

1 + λ
)− (α+ (t− 1)/2) ln(α+ t/2) +O(t) (A.39)

=
t

2

(
ln(

t+ λ

1 + λ
)− ln(α+ t/2)

)
+O(t) = O(t). (A.40)

158

and

d0 = (α+ t/2) lnV0(t)− (α+ 1/2) lnV0(1) (A.41)

= (α+ t/2) lnV0(t)− (α+ 1/2) lnV0(t) + (α+
1

2
) lnV0(t)− (α+ 1/2) lnV0(1)

(A.42)

=
t− 1

2
lnV0(t) + (α+

1

2
)(lnV0(t)− lnV0(1)) (A.43)

Now, since |I| = ε, and f is K-Lipschitz, Var(f(xi)) 6 (K ε
2)2, and

λ = ε2, so:

V0(t) =
2β

t+ λ
+ λ

1

t+ λ

∑
f(xi)

2

t+ λ
+ (

t

t+ λ
)2Var(f(xi)) (A.44)

= ε2 2β

λ(t+ λ)
+ ε2 1

t+ λ

∑
f(xi)

2

t+ λ
+ (

t

t+ λ
)2Var(f(xi)) (A.45)

6 ε2(
β

λ

2

(t+ λ)
+

1

t+ λ
max
I

(f)2 + (
t

t+ λ
)2K

2

4
). (A.46)

Consequently lnV0(t) 6 2 ln ε+ cst.
Moreover

V0(1) =
2β

1 + λ
+ λ

1

1 + λ

f(x0)2

1 + λ
(A.47)

> ε2(
2B

(1 + λ)2
). (A.48)

Therefore, we have:

lnV0(t)− lnV0(1) 6 O(1) (A.49)

Consequently, we have d1 6 O(t) and d0 6 (t − 1) ln ε + O(t), and
therefore,

− ln E(z2, ..., zt|z1) 6 (t− 1) ln ε+O(t), (A.50)

which is what we wanted.

More generally, we have:

Lemma A.11 (Uniform upper bound on the empirical average cost of a
point under condition 5.8, with an arbitrary number of previous points).
Let t, u ∈ R, let S be a set of Normal-Gamma experts satisfying Condition
5.8 with λ(E) = |Dom(E)|2, such that λ is bounded on S. We have, for
all f : I → R K-Lipschitz, for all zt ∈ (Dom(E) × R)t, for all (z′)u ∈
(Dom(E)× R)u with u > 1:

− 1

t
ln E(zt|(z′)u) 6 ln |Dom(E)|+O(1) +O(

1

t
u lnu), (A.51)

uniformly on S, where zn := (xn, f(xn)) and z′n := (x′n, f(x′n)).

159

Proof. Let E ∈ S, and let us write ε = |Dom(E)|. By Lemma A.7, if we

write V0 = 2β+
∑
f(xi)

2

t+λ − (
∑
f(xi)
t+λ)2:

− ln E(zt|(z′)u) = (α+ (t+ u)/2) ln(
t+ u+ λ

2
)− ln Γ(α+ (t+ u)/2) + (α+ (t+ u)/2) lnV0(t+ u)

(A.52)

− (α+ u/2) ln(
u+ λ

2
) + ln Γ(α+ u/2)− (α+ u/2) lnV0(u)

(A.53)

+
1

2
ln(t+ u+ λ)− 1

2
lnλ+

t+ u

2
ln(2π) + ln Γ(α)− α lnβ

(A.54)

− 1

2
ln(u+ λ) +

1

2
lnλ− u

2
ln(2π)− ln Γ(α) + α lnβ

(A.55)

= d1 + d0 +
1

2
ln(

t+ u+ λ

u+ λ
) +

t− 1

2
ln(2π) (A.56)

= d0 + d1 +O(t), (A.57)

where d1 = (α+(t+u)/2) ln(t+λ2)− ln Γ(α+(t+u)/2)− (α+u/2) ln(u+λ
2)+

ln Γ(α+ u/2), and d0 = (α+ (t+ u)/2) lnV0(t+ u)− (α+ u/2) lnV0(u). We
have, by Stirling formula,

d1 = (α+ (t+ u)/2) ln(
t+ u+ λ

2
)− (α+ u/2) ln(

u+ λ

2
)− ln Γ(α+ (t+ u)/2) + ln Γ(α+ u/2)

(A.58)

= (α+ (t+ u)/2) ln

(
t+ u+ λ

2α+ t+ u

)
− (α+ u/2) ln

(
u+ λ

2α+ u

)
+O(t)

(A.59)

=
u

2
(ln

(
t+ u+ λ

2α+ t+ u

)
− ln

(
u+ λ

2α+ u

)
) +O(t) (A.60)

=
u

2
(ln

(
1 +

λ− 2α

2α+ t+ u

)
− ln

(
1 +

λ− 2α

2α+ u

)
) +O(t) (A.61)

=
u

2

(
λ− 2α

2α+ t+ u
− λ− 2α

2α+ u
+O(

1

u2
)

)
+O(t) (A.62)

= O(t). (A.63)

and

d0 = (α+ (t+ u)/2) lnV0(t+ u)− (α+ u/2) lnV0(u) (A.64)

= (α+ (t+ u)/2) lnV0(t+ u)− (α+ u/2) lnV0(t+ u) + (α+
u

2
) lnV0(t+ u)− (α+ u/2) lnV0(u)

(A.65)

=
t

2
lnV0(t+ u) + (α+

u

2
)(lnV0(t+ u)− lnV0(u)) (A.66)

160

Now, since |I| = ε, and f is K-Lipschitz, Var(f(xi)) 6 (K ε
2)2 for any

(xi), and λ = ε2, so for any T :

V0(T) =
2β

T + λ
+ λ

1

T + λ

∑
f(xi)

2

T + λ
+ (

T

T + λ
)2Var(f(xi)) (A.67)

= ε2 2β

λ(T + λ)
+ ε2 1

T + λ

∑
f(xi)

2

T + λ
+ (

T

T + λ
)2Var(f(xi)) (A.68)

6 ε2(
β

λ

2

(T + λ)
+

1

T + λ
max
I

(f)2 + (
T

T + λ
)2K

2

4
). (A.69)

Consequently lnV0(T) 6 2 ln ε+ cst for any T .
Moreover

V0(u) =
2β

u+ λ
+ λ

1

u+ λ

∑u
i=1 f(xi)

2

u+ λ
+ (

u

u+ λ
)2Var16i6u(f(xi)) (A.70)

>
2β

u+ λ
(A.71)

>
2Bλ

(u+ λ)(1 + λ)
(A.72)

> ε2 1

u+ λ

2B

1 + λ
, (A.73)

so lnV0(u) > 2 ln ε− ln(u) + cst and finally

lnV0(t+ u)− lnV0(u) 6 ln(u) +O(1) (A.74)

Consequently, we have d1 6 O(t) and d0 6 t ln ε+O(t) +O(u lnu), and
therefore,

− ln E(zt|(z′)u) 6 t ln ε+O(t) +O(u lnu), (A.75)

which is what we wanted.

Lemma A.12 (Uniform lower bound on the average loss at interval size
ε with n observations under condition 5.8). Let S be a set of Normal-
Gamma experts satisfying Condition 5.8 such that λ(E) = |Dom(E)|2 and
E 7→ |Dom(E)| is bounded on S. We have, for any E ∈ S, for any (zn) ∈
(Dom(E)× R)n

L̄n,ε :=
1

n
E(zn|∅) > (1− 1

n
) ln |Dom(E)| − 1

2
lnn+O(1), (A.76)

where O(1) is uniform on S.

Proof. Let E ∈ S, and let ε := |Dom(E)|. By Lemma A.9, we have:

− ln E(zn|∅) = (α+ n/2) lnV0 +
1 + ln 2π

2
n+ lnn− 1

2
lnλ− α lnβ +O(1),

(A.77)

161

where, if zk = (xk, yk), V0 =
2β+

∑
y2
i

n+λ − (
∑
yi

n+λ)2 > 2β
n+λ , and by Condition

5.8, we have: α = cst, β = Bε2 + o(ε2), so lnβ = 2 ln ε+O(1).
Consequently:

− 1

n
ln E(zn|∅) > (

α

n
+ 1/2) ln

2β

n+ λ
− 1

2n
lnλ− α

n
lnβ +O(1) (A.78)

> (
α

n
+ 1/2)(2 ln ε− lnn)− 1

n
ln ε− 2

α

n
ln ε+O(1),

(A.79)

which is what we wanted.

A.3 Pseudocode for CTW

Notation for the algorithm below:
The latest data point is xn, the previous data is zn−1 = (x, y)n−1, and

we want to predict f(xn).
Each node s of the tree contains, in addition to the expert Es: two weights

ws ∈ [0, 1] the posterior weights for closing the node s,ns ∈ N (initialized
to the prior weight), the number of data points that have already fallen in
Dom(Es), and xs ∈ s (useful only if ns = 1, the exact value of the data point
in Dom(Es).

162

Algorithm 2 Infinite depth CTW algorithm for regression: computing
E(yn|zn−1, xn), and updating the tree

Current node: sc ← ε, buffer node sb.
Temporary variables: x ∈ R, P0 ∈ R
Final probability density at yn, P ∈ R
1. Reach the deepest node that is relevant for xn with at least one observation.
while nsc > 1 do
nsc ← nsc + 1
sc ← t(xn), where t(xn) is the child of sc such that xn ∈ Dom(Et(xn))

end while
2. Separate the two observations by going deeper into the tree
x← xsc
sb ← sc
while sb = sc do
nsc = 2
sb ← t(x), where t(x) is the child of sc such that x ∈ Dom(Et(x))
sc ← t(xn), where t(xn) is the child of sc such that xn ∈ Dom(Et(xn))

end while
nsb = 1; xsb = x
nsc = 1; xsb = xn
3. Updating the weights, starting from the leaves
P ← Esc(yn|zn−1, xn)
while sc 6= ε do
sc ← father(sc)
P0 ← P
P ← wscEsc(yn|zn−1, xn) + (1− wsc)P
Bayesian update of ws: ws ← wsEsc (yn|zn−1,xn)

P

end while
return P

The generalization to other algorithms (edgewise or using switch) is
straightforward.

163

Appendix B

Geodesic IGO

Proof of Proposition 10.1. Let us first consider the case k = 1.
When optimizing a linear function, the non-twisted IGO flow in G̃d with

the selection function w : q 7→ 1q6q0 is known [OAAH11], and in particular,
we have:

µt = µ0 +
β(q0)

α(q0)
σt, (B.1)

σt = σ0 exp(α(q0)t), (B.2)

where, if we denote by N a random vector following a standard normal
distribution and F the cumulative distribution of a standard normal distri-
bution,

α(q0, d) =
1

2d

(∫ q0

0
F−1(u)2du− q0

)
, (B.3)

and:
β(q0) = E(N1N6F−1(q0)). (B.4)

In particular, α := α(1
4 , 1) ≈ 0.107 and β := β(1

4) ≈ −0.319.
With a minor modification of the proof in [OAAH11], we find that the

(ηµ, ησ)-twisted IGO flow is given by:

µt = µ0 +
β(q0)

α(q0)
σ0 exp(ηµα(q0)t), (B.5)

σt = σ0 exp(ησα(q0)t), (B.6)

Notice that Equation (B.5) shows that the assertions about the conver-
gence of (σn) immediately imply the assertions about the convergence of
(µn).

Let us now consider a step of the GIGO algorithm: The twisted IGO
speed is Y = (ηµβσ0, ησασ0), with ασ0 > 0 (i.e., the variance should be
increased: this is where we need q0 < 0.5).

164

Proposition B.5 shows that the covariance at the end of the step is (using
the same notation):

σ(δt) = σ(0)=(
dievδt − c
cievδt + d

) = σ(0)
evδt(d2 + c2)

c2e2vδt + d2
=: σ(0)f(δt), (B.7)

and it is easy to see that f only depends on δt (and on q0). In other words,
f(δt) will be the same at each step of the algorithm. The existence of δtcr

easily follows (furthermore, recall Figure 8.1 in Section 8.2.1), and δtcr is
the positive solution of f(x) = 1.

After a quick computation, we find:

exp(vδtcr) =

√
1 + u2 + 1√
1 + u2 − 1

. (B.8)

where:

u :=

√
ηµ

2nησ

β

α
, (B.9)

and:

v :=

√
η2
σα

2 +
ηµησ
2n

β2. (B.10)

Finally, for w = k.1q6q0 , Proposition 9.4 shows that:

δtcr =
1

k

1

v
ln

(√
1 + u2 + 1√
1 + u2 − 1

)
. (B.11)

B.1 Generalization of the Twisted Fisher Metric

The following definition is a more general way to introduce the twisted Fisher
metric.

Definition B.1. Let (Θ, g) be a Riemannian manifold, (Θ1, g|Θ1), ..., (Θn, g|Θn),
a splitting (as defined in Section 9.1.2) of Θ compatible with the metric g.

We call (η1, ..., ηn)-twisted metric on (Θ, g) for the splitting Θ1, ...,Θn

the metric g′ on Θ defined by g′|Θi = 1
ηi
g|Θi for 1 6 i 6 n, and Θi ⊥ Θj for

i 6= j.

Proposition B.2. The (ηµ, ηΣ)-twisted metric on Gd with the Fisher metric
for the splitting N (µ,Σ) 7→ (µ,Σ) coincides with the (ηµ, ηΣ)-twisted Fisher
metric from Definition 9.1.

Proof. It is easy to see that the (ηµ, ηΣ)-twisted Fisher metric satisfies the
condition in Definition B.1.

165

B.2 Twisted Geodesics

The following theorem can be used to compute the twisted geodesics from
the non twisted geodesics. It is a simple calculation.

Theorem B.3. Let ηµ, ηΣ ∈ R, µ0 ∈ Rd, A0 ∈ GLd(R), and (µ̇0, Σ̇0) ∈
TN (µ0,A0AT0)Gd. Let

h : Gd → Gd

N (µ,Σ) 7→ N (
√

ηµ
ηΣ
µ,Σ)

. (B.12)

We denote by φ (resp. ψ) the Riemannian exponential of Gd (resp. Gd with

the (ηµ, ηΣ)-twisted Fisher metric) at N (
√

ηµ
ηΣ
µ0, A0A

T
0) (resp. N (µ0, A0A

T
0)).

We have:

ψ(µ̇0, Σ̇0) = h ◦ φ(

√
ηΣ

ηµ
µ̇0, Σ̇0) (B.13)

Proof. Let us denote by:

(
Iµ 0
0 IΣ

)
the Fisher metric in the parametriza-

tion µ,Σ, and consider the following parametrization of Gd: (µ̃,Σ) 7→
N (
√
ηΣ√
ηµ
µ̃,Σ).

The Riemannian exponential at N (µ0, A0A
T
0) in this parametrization is:

h ◦ φ ◦ (dh(µ0, A0A
T
0))−1 (B.14)

However, in this parametrization, the Fisher metric reads:(ηΣ
ηµ
Iµ 0

0 IΣ

)
, (B.15)

which is proportional to the (ηµ, ηΣ)-twisted Fisher metric up to a factor
1
ηΣ

. Consequently, the Christoffel symbols are the same as the Christof-
fel symbols of the (ηµ, ηΣ)-twisted Fisher metric, and so are the geodesics.
Therefore, we have:

ψ = h ◦ φ ◦ (dh(µ0, A0A
T
0))−1, (B.16)

which is what we wanted.

For the remainder of this section, we fix ηµ and ηΣ; Gd is endowed with
the (ηµ, ηΣ)-twisted Fisher metric, and G̃d is endowed with the induced
metric. The proofs of the propositions below are a simple rewriting of their
non-twisted counterparts that can be found in Sections 8.2 and 8.3 and can
be seen as corollaries of Theorem B.3.

166

Theorem B.4. If γ : t 7→ N (µ(t), σ(t)2I) is a twisted geodesic of G̃d, then
there exists a, b, c, d ∈ R, such that ad− bc = 1, and v > 0, such that

µ(t) = µ(0) +
√

2dηµ
ησ

µ̇0

‖µ̇0‖ r̃(t), σ(t) = =(γC(t)), with r̃(t) = <(γC(t)) and:

γC(t) :=
aievt + b

cievt + d
. (B.17)

Proposition B.5. Let n ∈ N, vµ ∈ Rn, vσ, ηµ, ησ, σ0 ∈ R, with σ0 > 0.

Let vr := ‖vµ‖, λ =
√

2nηµ
ησ

v :=

√
1
λ2 v

2
r+v2

σ

σ2
0

, M0 := 1
λ
vr
vσ2

0
and S0 := vσ

vσ2
0

.

Let c :=

(√
M2

0 +S2
0−S0

2

) 1
2

and d :=

(√
M2

0 +S2
0+S0

2

) 1
2

.

Let γC(t) := σ0
dievt−c
cievt+d .

Then:

γ : t 7→ N
(
µ0 + λ

vµ
‖vµ‖

<(γC(t)),=(γC(t))

)
(B.18)

is the twisted geodesic of G̃n satisfying γ(0) = (µ0, σ0) and γ̇(0) = (vµ, vσ).
The regular geodesics of G̃n are obtained with ηµ = ησ = 1.

Theorem B.6. Let γ : t 7→ N (µt,Σt) be a twisted geodesic of Gd. Then,
the following quantities are invariant:

Jµ =
1

ηµ
Σ−1
t µ̇t, (B.19)

JΣ = Σ−1
t (

1

ηµ
µ̇tµ

T
t +

1

ηΣ
Σ̇t). (B.20)

Theorem B.7. If µ : t 7→ µt and Σ : t 7→ Σt satisfy the equations:

µ̇t = ηµΣtJµ (B.21)

Σ̇t = ηΣΣt(JΣ − JµµTt) = ηΣΣtJΣ −
ηΣ

ηµ
µ̇tµ

T
t , (B.22)

where:

Jµ =
1

ηµ
Σ−1

0 µ̇0,

and:

JΣ = Σ−1
0

(
1

ηµ
µ̇0µ

T
0 +

1

ηΣ
Σ̇0

)
.

then t 7→ N (µt,Σt) is a twisted geodesic of Gd.

Theorem B.8. If µ : t 7→ µt and A : t 7→ At satisfy the equations:

µ̇ = ηµAtA
T
t Jµ, (B.23)

167

Ȧt =
ηΣ

2
(JΣ − JµµTt)TAt, (B.24)

where:

Jµ =
1

ηµ
(A−1

0)TA−1
0 µ̇0

and:

JΣ = (A−1
0)TA−1

0 (
1

ηµ
µ̇0µ

T
0 +

1

ηΣ
Ȧ0A

T
0 +

1

ηΣ
A0Ȧ

T
0),

then t 7→ N (µt, AtA
T
t) is a twisted geodesic of Gd.

B.3 Pseudocodes

B.3.1 For All Algorithms

All studied algorithms have a common part, given here:
Variables: µ,Σ (or A such that Σ = AAT).
List of parameters: f : Rd → R, step size δt, learning rates ηµ, ηΣ, sample

size λ, weights (wi)i∈[1,λ], N number of steps for the Euler method, r Euler
step size reduction factor (for GIGO-Σ only).

Algorithm 3 For all algorithms.
µ← µ0

if The algorithm updates Σ directly then
Σ← Σ0

Find some A, such that Σ = AAT

else {The algorithm updates a square root A of Σ}
A← A0

Σ = AAT

end if
while NOT (Termination criterion) do

for i = 1 to λ do
zi ∼ N (0, I)
xi = Azi + µ

end for
Compute the IGO initial speed, and update the mean and the covariance (the updates
are Algorithms 4 to 8).

end while

Notice that we always need a square root A of Σ to sample the xi, but
the decomposition Σ = AAT is not unique. Two different decompositions
will give two algorithms, such that one is a modification of the other as a
stochastic process: same law (the xi are abstractly sampled from N (µ,Σ)),
but different trajectories (for given zi, different choices for the square root
will give different xi). For GIGO-Σ, since we have to invert the covariance
matrix, we used the Cholesky decomposition (A lower triangular. The the
other implementation directly maintains a square root of Σ). Usually, in
CMA-ES, the square root of Σ (Σ = AAT , A symmetric) is used.

168

B.3.2 Updates

When describing the different updates, µ, Σ, A, the xi and the zi are those
defined in Algorithm 3.

For Algorithm 4 (GIGO-Σ), when the covariance matrix after one step is
not positive-definite, we compute the update again, with a step size divided
by r for the Euler method (we have no reason to recommend any particular
value of r, the only constraint is r > 1).

Algorithm 4 GIGO Update, one step, updating the covariance matrix.
1. Compute the IGO speed:

vµ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi
(
ziz

T
i − I

)
AT .

2. Compute the Noether invariants:
Jµ ← Σ−1vµ,
JΣ ← Σ−1(vµ

tµ+ vΣ).

3. Solve numerically the equations of the geodesics:
Unhappy ← true
µ0 ← µ
Σ0 ← Σ
k = 0
while Unhappy do
µ← µ0

Σ← Σ0

h← δt/(Nrk)
for i = 1 to Nrk do
µ← µ+ hηµΣJµ
Σ← Σ + hηΣΣ(JΣ − JµµT)

end for
if Σ positive-definite then

Unhappy ← false
end if
k ← k + 1

end while
return µ, Σ

169

Algorithm 5 GIGO Update, one step, updating a square root of the co-
variance matrix.

1. Compute the IGO speed:

vµ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi
(
ziz

T
i − I

)
AT .

2. Compute the Noether invariants:
Jµ ← Σ−1vµ,
JΣ ← Σ−1(vµ

tµ+ vΣ).

3. Solve numerically the equations of the geodesics:
h← δt/N
for i = 1 to N do
µ← µ+ hηµAA

TJµ

A← A+
h

2
ηΣ(JΣ − JµµT)TA

end for
return µ, A

Algorithm 6 Exact GIGO, one step. Not exactly our implementation; see
the discussion after Corollary 8.17.

1. Compute the IGO speed:

vµ = A

λ∑
i=1

wizi,

vΣ = A

λ∑
i=1

wi
(
ziz

T
i − I

)
AT .

2. Learning rates

λ←
√
ηΣ

ηµ
µ← λµ
vµ ← ηµλvµ
vΣ ← ηΣvΣ

3. Intermediate computations.

G2 ← A−1
(
vΣ(A−1)TA−1vΣ + 2vµv

T
µ

)
(A−1)T

C1 ← ch(
G

2
)

C2 ← sh(
G

2
)G−1

R←
(

(C1 −A−1vΣ(A−1)TC2)−1
)T

4. Actual update
µ← µ+ 2ARC2A

−1vµ
A← AR
5. Return to the “real” µ

µ← µ

λ
return µ, A

170

Algorithm 7 xNES update, one step.
1. Compute Gµ and GM (equivalent to the computation of the IGO speed):

Gµ =

λ∑
i=1

wizi

GM =

λ∑
i=1

wi
(
ziz

T
i − I

)
2. Actual update:
µ← µ+ ηµAGµ
A← A+A exp(ηΣGM/2)

return µ, A

Algorithm 8 pure rank-µ CMA-ES update, one step
1. Computation of the IGO speed:

vµ =
λ∑
i=1

wi(xi − µ)

vΣ =

λ∑
i=1

wi
(

(xi − µ)(xi − µ)T − Σ
)

2. Actual update:
µ← µ+ ηµvµ
Σ← Σ + ηΣvΣ

return µ, Σ

Algorithm 9 GIGO in G̃d, one step.
1. Compute the IGO speed:

Yµ =

λ∑
i=1

wi(xi − µ) ; Yσ =

λ∑
i=1

wi

(
(xi − µ)T (xi − µ)

2dσ
− σ

2

)
2. Better parametrization:

λ :=

√
2dηµ
ησ

vr :=
ηµ
λ
‖Yµ‖ ; vσ := ησYσ

3. Find a, b, c, d, v corresponding to µ, σ, µ̇, σ̇:

v =

√
v2
r + v2

σ

σ2

S0 :=
vσ
vσ2

; M0 :=
vr
vσ2

C :=

√
S2

0 +M2
0 − S0

2
; D :=

√
S2

0 +M2
0 + S0

2
c :=

√
C ; d :=

√
D

4. Actual Update:

z := σ
dievδt − c
cievδt + d

µ := µ+ λ<(z)
Yµ
‖Yµ‖

; σ := =(z)

return µ, σ

171

Bibliography

[Aka73] Hirotogu Akaike. Information theory and an extension of the
maximum likelihood principle. In Selected Papers of Hirotugu
Akaike, pages 199–213. Springer, 1973.

[Aka09] Nathalie Akakpo. Adaptive estimation by selecting a best par-
tition into dyadic rectangles. Theses, Université Paris Sud -
Paris XI, December 2009. Rapporteurs :
 Fabienne
Comte (Université Paris Descartes)
 Enno Mammen
(Université de Mannheim)
.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Al-
gorithms on Matrix Manifolds. Princeton University Press,
2008.

[AN07] S.I. Amari and H. Nagaoka. Methods of Information Geom-
etry. Translations of Mathematical Monographs. American
Mathematical Society, 2007.

[ANOK10] Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu
Kobayashi. Bidirectional relation between CMA evolution
strategies and natural evolution strategies. Proceedings of Par-
allel Problem Solving from Nature, 2010.

[AO13] Youhei Akimoto and Yann Ollivier. Objective improvement in
information-geometric optimization. FOGA 2013, 2013.

[AVW89] V.I. Arnold, K. Vogtmann, and A. Weinstein. Mathematical
Methods of Classical Mechanics. Graduate Texts in Mathe-
matics. Springer, 1989.

[BC95] Shumeet Baluja and Rich Caruana. Removing the genetics
from the standard genetic algorithm. pages 38–46. Morgan
Kaufmann Publishers, 1995.

[Ben15] Jérémy Bensadon. Black-box optimization using geodesics in
statistical manifolds. Entropy, 17(1):304, 2015.

172

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth International
Group, Belmont, CA, 1984.

[Bou07] J.P. Bourguignon. Calcul variationnel. Ecole Polytechnique,
2007.

[Cha71] Gregory Chaitin. Computational complexity and gödel’s in-
completeness theorem. ACM SIGACT News, 1971.

[CO91] Miquel Calvo and Josep Maria Oller. An explicit solution
of information geodesic equations for the multivariate normal
model. Statistics & Decisions 9, 1991.

[CV] Rudi Cilibrasi and Paul Vitanyi. Clustering by compression.

[Daw84] A.P. Dawid. Statistical theory: the prequential approach (with
discussion). J. R. Statist. Soc. A, 147:278–292, 1984.

[DSG+11] Wierstra. D., T. Schaul, T. Glasmachers, Y. Sun, J. Peters,
and J. Schmidhuber. Natural evolution strategies. CoRR,
abs/1211.0587, 2011.

[EKH10] Henning P. Eberhardt, Vesa Klumpp, and Uwe D. Hanebeck.
Density trees for efficient nonlinear state estimation. In FU-
SION, pages 1–8. IEEE, 2010.

[Eli75] Peter Elias. Universal codeword sets and representations
of the integers. IEEE Transactions on Information Theory,
21(2):194–203, 1975.

[Eri87] P Eriksen. Geodesics connected with the fisher metric on the
multivariate normal manifold. Proceedings of the GST Work-
shop, Lancaster, 1987.

[Fan61] Robert M. Fano. Transmission of information a statistical the-
ory of communications, 1961.

[Fin97] Daniel Fink. A compendium of conjugate priors, 1997.

[Fis22] R.A. Fisher. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society of
London, 1922.

[FSSW97] Yoav Freund, Robert E. Schapire, Yoram Singer, and Man-
fred K. Warmuth. Using and combining predictors that spe-
cialize. In Frank Thomson Leighton and Peter W. Shor, edi-
tors, STOC, pages 334–343. ACM, 1997.

173

[GHL04] S. Gallot, D. Hulin, and J. LaFontaine. Riemannian Geometry.
Universitext (1979). Springer-Verlag GmbH, 2004.

[Gru07] Peter D. Grunwald. The Minimum Description Length Princi-
ple (Adaptive Computation and Machine Learning). The MIT
Press, 2007.

[GSY+10] Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and
Jurgen Schmidhuber. Exponential natural evolution strategies.
GECCO, 2010.

[Han11] Nikolaus Hansen. The CMA evolution strategy: A tutorial.
2011.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning. Springer Series in Statistics.
Springer New York Inc., New York, NY, USA, 2001.

[Hua13] Wen Huang. Optimization algorithms on Riemannian mani-
folds with applications. PhD thesis, Florida state university,
2013.

[Huf52] David A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the Institute of
Radio Engineers, 40(9):1098–1101, September 1952.

[ITW11] Takuro Imai, Akira Takaesu, and Masato Wakayama. Remarks
on geodesics for multivariate normal models. Journal of Math-
for-Industry, 2011.

[Jef61] H. Jeffreys. Theory of Probability. Oxford, Oxford, England,
third edition, 1961.

[JLJ98] J. Jost and X. Li-Jost. Calculus of Variations. Cam-
bridge Studies in Advanced Mathematics. Cambridge Univer-
sity Press, 1998.

[KAW12] Wouter M. Koolen, Dmitry Adamskiy, and Manfred K. War-
muth. Putting bayes to sleep. In Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and
Kilian Q. Weinberger, editors, NIPS, pages 135–143, 2012.

[KdR08] Wouter M. Koolen and Steven de Rooij. Combining expert
advice efficiently. CoRR, abs/0802.2015, 2008.

[KM07] Petri Kontkanen and Petri Myllymäki. Mdl histogram density
estimation. In In Proceedings of the Eleventh International
Conference on Artificial Intelligence and Statistics (to appear,
2007.

174

[KMH+03] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche,
Jiri Ocenasek, and Petros Koumoutsakos. Learning proba-
bility distributions in continuous evolutionary algorithms - a
comparative review. Natural Computing, 3:77–112, 2003.

[Kol65] A. N. Kolmogorov. Three approaches to the quantitative defi-
nition of information. Problems of Information Transmission,
1(1):1–7, 1965.

[KT81] R. Krichevsky and V. Trofimov. The performance of uni-
versal encoding. Information Theory, IEEE Transactions on,
27(2):199–207, Mar 1981.

[LV08] Ming Li and Paul M.B. Vitanyi. An Introduction to Kol-
mogorov Complexity and Its Applications. Springer Publishing
Company, Incorporated, 3 edition, 2008.

[MAJ+98] J. S. Marron, S. Adak, I. M. Johnstone, M. H. Neumann, and
P. Patil. Exact risk analysis of wavelet regression. Journal of
Computational and Graphical Statistics, 7(3):278–309, 1998.

[MMP11] Luigi Malagò, Matteo Matteucci, and Giovanni Pistone. To-
wards the geometry of estimation of distribution algorithms
based on the exponential family. In Hans-Georg Beyer and
William B. Langdon, editors, FOGA, pages 230–242. ACM,
2011.

[MP14] Luigi Malagò and Giovanni Pistone. Combinatorial optimiza-
tion with information geometry: The newton method. En-
tropy, 16(8):4260–4289, 2014.

[OAAH11] Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus
Hansen. Information-geometric optimization algorithms : A
unifying picture via invariance principles. Preprint, 2011.

[OHSS12] Alexander O’Neill, Marcus Hutter, Wen Shao, and Peter Sune-
hag. Adaptive context tree weighting. CoRR, abs/1201.2056,
2012.

[PF86] Boaz Porat and Benjamin Friedlander. Computation of the ex-
act information matrix of Gaussian time series with stationary
random components. IEEE Transactions on acoustics speech
and signal processing, February 1986.

[RG11] Parikshit Ram and Alexander G. Gray. Density estimation
trees. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
’11, pages 627–635, New York, NY, USA, 2011. ACM.

175

[Ris76] Jorma Rissanen. Generalized kraft inequality and arithmetic
coding. IBM Journal of Research and Development, 20(3):198–
203, 1976.

[Ris78] J. Rissanen. Modeling by shortest data description. Automat-
ica, 14:465–471, 1978.

[RK05] Mohammad M. Rashid and Tsutomu Kawabata. Analysis of
zero-redundancy estimator with a finite window for markovian
source. IEICE Transactions, 88-A(10):2819–2825, 2005.

[RR07] Jorma Rissanen and Teemu Roos. Conditional NML universal
models. In Information Theory and Applications Workshop,
2007, pages 337–341, Jan 2007.

[Sch78] Gideon Schwarz. Estimating the dimension of a model. The
annals of statistics, 6(2):461–464, 1978.

[Sha48] Claude E. Shannon. A Mathematical Theory of Communica-
tion. The Bell System Technical Journal, 27(3):379–423, 1948.

[Sha51] Claude Elwood Shannon. Prediction and entropy of printed en-
glish. Bell System Technical Journal, 30:50–64, January 1951.

[Sol64] Ray J. Solomonoff. A formal theory of inductive inference.
Information and Control, 7, 1964.

[SSUSCU81] Lene Theil Skovgaard and 005 STANFORD UNIVERSITY.
Stanford (CA US). A riemannian geometry of the multivariate
normal model, 1981.

[vE10] Tim van Erven. When Data Compression and Statistics Dis-
agree. PhD thesis, Centrum voor Wiskunde en Informatica,
2010.

[vEGdR12] Tim van Erven, Peter Grünwald, and Steven de Rooij. Catch-
ing up faster by switching sooner: a predictive approach
to adaptive estimation with an application to the AIC–BIC
dilemma. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 2012.

[VNHB11] Joel Veness, Kee Siong Ng, Marcus Hutter, and Michael H.
Bowling. Context tree switching. CoRR, abs/1111.3182, 2011.

[VWBG12] Joel Veness, Martha White, Michael Bowling, and András
György. Partition tree weighting. CoRR, abs/1211.0587, 2012.

176

[Wil94] Frans M. J. Willems. The context-tree weighting method: Ex-
tensions. IEEE Transactions on Information Theory, 44:792–
798, 1994.

[WSG+14] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan
Peters, and Jürgen Schmidhuber. Natural evolution strategies.
Journal of Machine Learning Research, 15:949–980, 2014.

[WST95] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J.
Tjalkens. The context tree weighting method: Basic proper-
ties. IEEE Transactions on Information Theory, 41:653–664,
1995.

[ZL70] A.K. Zvonkin and L.A. Levin. The complexity of finite ob-
jects and the development of the concepts of information and
randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 1970.

177

Index

Gd, 113
G̃d, 113

Arithmetic Coding, 23

Balanced Sequence, 95
(un), 88
Upper, 95

Context Tree Switching, 67
Edgewise, 72

Context Tree Weighting, 39, 65, 79,
82

Edgewise, 72

Elias Coding, 20
Entropy, 22
Euler–Lagrange equations, 120
Expert, 49

Bayesian Combination, 52
Compatible, 51, 88
Expert Tree, 64
Fixed Domain, 84
Fixed Mixture, 51
No Peeking out, 51
Restriction, 59
Switching Combination, 53
Union, 59

Domain Union, 59
Target Union, 60

Expert (Specific)
Blind Expert, 85
Gaussian Expert, 85
Normal-Gamma Expert, 86

Expert Tree, 64

n-Balanced, 92
Weighted, 64

Edgewise, 72
Proper, 78

Fisher Information, 33
Metric, 112

Twisted, 131

Geodesic, 120
Geodesic equations, 120

Hyperbolic Space, 122

IGO Updates, 114
GIGO Update, 115

Blockwise GIGO Update, 134
Twisted GIGO Update, 132

IGO Speed, 114
pure rank-µ CMA-ES update, 118
Twisted IGO Update, 132
xNES Update, 115

Information Criterion
Akaike, 27
Bayesian, 27

Intersection z ∩ E , 50

Jeffreys’ Prior, 35

KL divergence, 22, 111
Kolmogorov Complexity, 15

Prefix-free, 18
Kraft’s inequality, 19
KT estimator, 36

Lagrangian system, 119

178

Natural Gradient, 112
Noether’s Theorem, 121

Poincaré Half-Plane, 122
Prequential, 31

Riemannian Manifold, 112
Riemannian Exponential, 120

Splitting, 133
Switching Pattern, 64

Edgewise, 73

Universal Probability Distributions,
29

Update Trajectory, 136

179

Applications of Information Theory to Machine Learning

Summary: We study two differ-
ent topics, using insight from infor-
mation theory in both cases: – Con-
text Tree Weighting is a text com-
pression algorithm that efficiently
computes the Bayesian combination
of all visible Markov models: we
build a “context tree”, with deeper
nodes corresponding to more com-
plex models, and the mixture is com-
puted recursively, starting with the
leaves. We extend this idea to a
more general context, also encom-
passing density estimation and re-
gression; and we investigate the ben-
efits of replacing regular Bayesian
inference with switch distributions,
which put a prior on sequences of
models instead of models. – In-
formation Geometric Optimization
(IGO) is a general framework for
black box optimization that recov-
ers several state of the art algo-
rithms, such as CMA-ES and xNES.

The initial problem is transferred
to a Riemannian manifold, yielding
parametrization-invariant first order
differential equation. However, since
in practice, time is discretized, this
invariance only holds up to first or-
der. We introduce the Geodesic IGO
(GIGO) update, which uses this Rie-
mannian manifold structure to define
a fully parametrization invariant al-
gorithm. Thanks to Noether’s the-
orem, we obtain a first order dif-
ferential equation satisfied by the
geodesics of the statistical manifold
of Gaussians, thus allowing to com-
pute the corresponding GIGO up-
date. Finally, we show that while
GIGO and xNES are different in gen-
eral, it is possible to define a new “al-
most parametrization-invariant” al-
gorithm, Blockwise GIGO, that re-
covers xNES from abstract princi-
ples.

Keywords: MDL, Switching, Prediction, Black-box optimization, Rie-
mannian geometry

Applications de la théorie de l’information
à l’apprentissage statistique

Résumé: On considère ici deux sujets
différents, en utilisant des idées issues de la
théorie de l’information:

– Context Tree Weighting est un algo-
rithme de compression de texte qui calcule
exactement une prédiction Bayésienne qui
considère tous les modèles markoviens visi-
bles: on construit un “arbre de contextes”,
dont les nœuds profonds correspondent aux
modèles complexes, et la prédiction est cal-
culée récursivement à partir des feuilles. On
étend cette idée à un contexte plus général
qui comprend également l’estimation de
densité et la régression, puis on montre qu’il
est intéressant de remplacer les mixtures
Bayésiennes par du “switch”, ce qui revient
à considérer a priori des suites de modèles
plutôt que de simples modèles.

– Information Geometric Optimization

(IGO) est un cadre général permettant de

décrire plusieurs algorithmes d’optimisation

bôıte noire, par exemple CMA-ES et

xNES. On transorme le problème ini-

tial en un problème d’optimisation d’une

fonction lisse sur une variété Riemanni-

enne, ce qui permet d’obtenir une équation

différentielle du premier ordre invariante

par reparamétrage. En pratique, il faut

discrétiser cette équation, et l’invariance

n’est plus valable qu’au premier ordre.

On définit l’algorithme IGO géodésique

(GIGO), qui utilise la structure de variété

Riemannienne mentionnée ci-dessus pour

obtenir un algorithme totalement invariant

par reparamétrage. Grâce au théorème de

Noether, on obtient facilement une équation

différentielle du premier ordre satisfaite par

les géodésiques de la variété statistique des

gaussiennes, ce qui permet d’implémenter

GIGO. On montre enfin que xNES et GIGO

sont différents dans le cas général, mais qu’il

est possible de définir un nouvel algorithme

presque invariant par reparamétrage, GIGO

par blocs, qui correspond exactement à

xNES dans le cas Gaussien.

Mots clés: MDL, Switching, Prediction, Optimisation bôıte noire, Géométrie
riemannienne

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Contents
	Introduction
	Regression
	Black-Box optimization: Gradient descents
	Contributions
	Thesis outline

	Notation
	I Information theoretic preliminaries
	Kolmogorov complexity
	Motivation for Kolmogorov complexity
	Formal Definition
	Kolmogorov complexity is not computable

	From Kolmogorov Complexity to Machine Learning
	Prefix-free Complexity, Kraft's Inequality
	Classical lower bounds for Kolmogorov complexity
	Coding integers
	Generic bounds

	Probability distributions and coding: Shannon encoding theorem
	Non integer codelengths do not matter: Arithmetic coding

	Model selection and Kolmogorov complexity
	Possible approximations of Kolmogorov complexity

	Universal probability distributions
	Two-part codes
	Optimal precision
	The i.i.d. case: confidence intervals and Fisher information
	Link with model selection

	Bayesian models, Jeffreys' prior
	Motivation
	Construction
	Example: the Krichevsky–Trofimov estimator

	Context tree weighting
	Markov models and full binary trees
	Prediction for the family of visible Markov models
	Computing the prediction
	Bounded depth
	Generalization

	Algorithm

	II Expert Trees
	Expert trees: a formal context
	Experts
	General properties

	Operations with experts
	Fixed mixtures
	Bayesian combinations
	Switching
	Definition
	Computing some switch distributions: The forward algorithm

	Restriction
	Union
	Domain union
	Target union
	Properties

	Expert trees
	Context Tree Weighting
	Context Tree Switching
	Properties

	Edgewise context tree algorithms
	Edgewise Context Tree Weighting as a Bayesian combination
	General properties of ECTS

	Practical use
	Infinite depth algorithms
	Properties

	Density estimation
	Text compression
	Regression

	Comparing CTS and CTW for regression
	Local experts
	The fixed domain condition
	Blind experts
	Gaussian experts
	Normal-Gamma experts

	Regularization in expert trees
	Choosing the regularization

	Regret bounds in the noiseless case
	CTS
	ECTS
	CTW

	Numerical experiments
	Regression
	Text Compression
	CTS in CTS

	III Geodesic Information Geometric Optimization
	The IGO framework
	Invariance under Reparametrization of : Fisher Metric
	 IGO Flow, IGO Algorithm
	Geodesic IGO
	Comparable pre-existing algorithms
	xNES
	Pure Rank- CMA-ES

	Using Noether's theorem to compute geodesics
	Riemannian Geometry, Noether's Theorem
	GIGO in d
	Preliminaries: Poincaré Half-Plane, Hyperbolic Space
	Computing the GIGO Update in d

	GIGO in Gd
	Obtaining a First Order Differential Equation for the Geodesics of Gd
	Explicit Form of the Geodesics of Gd (from SolGeo)

	Using a Square Root of the Covariance Matrix

	Blockwise GIGO, twisted GIGO
	Decoupling the step size
	Twisting the Metric
	Blockwise GIGO, an almost intrinsic description of xNES

	Trajectories of Different IGO Steps

	Numerical experiments
	Benchmarking
	Failed Runs
	Discussion

	Plotting Trajectories in G1

	Conclusion
	Summary
	Expert Trees
	GIGO

	Future directions

	Appendices
	Expert Trees
	Balanced sequences
	Specific sequence achieveing the bound in Section 5.3.1

	Loss of Normal–Gamma experts
	Pseudocode for CTW

	Geodesic IGO
	Generalization of the Twisted Fisher Metric
	Twisted Geodesics
	Pseudocodes
	For All Algorithms
	Updates

	Bibliography
	Index

