Écoulements et rupture en milieu poreux déformable. Application au stockage géologique de CO2 - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Thèse Année : 2015

Fracture and multiphase flow in porous media within the context of geological storage of CO2

Écoulements et rupture en milieu poreux déformable. Application au stockage géologique de CO2

Résumé

Underground carbon dioxyde (CO2) storage operation in deep geological formation like saline aquifers or gas reservoirs is considered to be a prospective solution to reduce the emission of greenhouse gases into the atmosphere. However CO2 sealing injection has to be assured for centuries. Once setting, the cement is a few centimeters thickness interface between the rock and the casing. This cementeous interface appears as the most critical point for the sealing and containment of CO2. A continuous stream of CO2 being injected into reservoir rock formation will cause in a region around the injection water desaturation and drying shrinkage of the reservoir and the cement paste and potentially hydraulic fracture. Therefore, the moisture balance with the CO2 reservoir induces water desaturation and drying shrinkage. Some local stresses are then expected because of the strain incompatibility between the cement and the steel casing and the high pressures levels. These stresses may result in a cracking process along the interface and in a secondary cracks network. In this context, we investigate how the poromechanical theory should be extended using a energy approach framework to describe the fracture mechanic induced by the fluid injection in a porous medium. The original idea of this approach consists in deriving the poro-mechanical equations introducing explicitly the multiphase flow. This model, aims at describing coupled flows in a damageable elastic porous medium, due to the combined influence of hydraulic and pressure gradients simultaneously imposed. The numerical implementation is based on a standard finite element discretization and adaptation of a eigenerosion model to simulate cracking.
Une des solutions visant à atténuer le changement climatique est le stockage géologique de CO2 dans des aquifères salins ou des réservoirs de pétrole - ou de gaz - en fin de vie. L'étanchéité des puits d'injection de CO2 doit cependant être garantie pour des durées séculaires. En théorie, le ciment coulé après le forage du puits entre le cuvelage en acier et la formation rocheuse a pour vocation de rétablir l'étanchéité naturelle entre les différentes couches géologiques traversées par le puits. Une fois pris, le ciment constitue une interface de quelques centimètres d'épaisseur entre la roche et le cuvelage. Cette interface cimentaire apparaît comme le point le plus critique vis-à-vis de l’étanchéité et du confinement CO2. En effet, le CO2 injecté étant sec et sous pression, la zone « proche puits » au niveau du point d'injection va s'assécher progressivement et s'étendre vers le toit du réservoir au fur et à mesure que le CO2 est injecté. L’interface se retrouve alors soumise à de fortes sollicitations hydriques induisant un séchage et de fortes contraintes mécaniques (réservoir de CO2). On s'attend donc à ce que ces contraintes engendrées par les incompatibilités de déformation entre les différents matériaux et les pressions d'injection soient par conséquent à l'origine d'une fissuration le long de l'interface et dans la zone proche puits. Dans ce contexte, nous nous intéressons à la manière dont le formalisme de la poromécanique doit être étendu en utilisant une approche énergétique de la mécanique de la rupture pour décrire ces phénomènes induit par l'injection de fluide sous pression dans un milieu poreux confiné. L’idée originale de cette démarche est de pouvoir décrire des écoulements couplés dans un milieu poreux élastique déformable et endommageable induits par une action combinée des gradients hydrauliques et de pressions imposés simultanément. Ce modèle devrait permettre une bonne compréhension, ainsi qu'une analyse théorique, de la physique mise en jeu dans ces processus complexes de transport pouvant provoquer la dégradation d’une structure. L’implémentation numérique s'appuie sur une discrétisation éléments finis standard et sur l’adaptation d’un modèle d'eigenerosion pour simuler l’apparition de fissures.
Fichier principal
Vignette du fichier
2015PA066535.pdf (7.56 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01322384 , version 1 (27-05-2016)

Identifiants

  • HAL Id : tel-01322384 , version 1

Citer

Walid Saber-Cherif. Écoulements et rupture en milieu poreux déformable. Application au stockage géologique de CO2. Mécanique [physics]. Université Pierre et Marie Curie - Paris VI, 2015. Français. ⟨NNT : 2015PA066535⟩. ⟨tel-01322384⟩
297 Consultations
599 Téléchargements

Partager

Gmail Facebook X LinkedIn More