Vers un système de capture du mouvement humain en 3D pour un robot mobile évoluant dans un environnement encombré

Résumé : Dans cette thèse nous intéressons à la conception d'un robot mobile capable d’analyser le comportement et le mouvement d’une personne en environnement intérieur et encombré, par exemple le domicile d’une personne âgée. Plus précisément, notre objectif est de doter le robot des capacités de perception visuelle de la posture humaine de façon à mieux maîtriser certaines situations qui nécessitent de comprendre l’intention des personnes avec lesquelles le robot interagit, ou encore de détecter des situations à risques comme les chutes ou encore d’analyser les capacités motrices des personnes dont il a la garde. Le suivi de la posture dans un environnement dynamique et encombré relève plusieurs défis notamment l'apprentissage en continue du fond de la scène et l'extraction la silhouette qui peut être partiellement observable lorsque la personne est dans des endroits occultés. Ces difficultés rendent le suivi de la posture une tâche difficile. La majorité des méthodes existantes, supposent que la scène est statique et la personne est toujours visible en entier. Ces approches ne sont pas adaptées pour fonctionner dans des conditions réelles. Nous proposons, dans cette thèse, un nouveau système de suivi capable de suivre la posture de la personne dans ces conditions réelles. Notre approche utilise une grille d'occupation avec un modèle de Markov caché pour apprendre en continu l'évolution de la scène et d'extraire la silhouette, ensuite un algorithme de filtrage particulaire hiérarchique est utilisé pour reconstruire la posture. Nous proposons aussi un nouvel algorithme de gestion d'occlusion capable d'identifier et d'exclure les parties du corps cachées du processus de l'estimation de la pose. Finalement, nous avons proposé une base de données contenant des images RGB-D avec la vérité-terrain dans le but d'établir une nouvelle référence pour l'évaluation des systèmes de capture de mouvement dans un environnement réel avec occlusions. La vérité-terrain est obtenue à partir d'un système de capture de mouvement à base de marqueur de haute précision avec huit caméras infrarouges. L'ensemble des données est disponible en ligne. La deuxième contribution de cette thèse, est le développement d'une méthode de localisation visuelle à partir d'une caméra du type RGB-D montée sur un robot qui se déplace dans un environnement dynamique. En effet, le système de capture de mouvement que nous avons développé doit équiper un robot se déplaçant dans une scène. Ainsi, l'estimation de mouvement du robot est importante pour garantir une extraction de silhouette correcte pour le suivi. La difficulté majeure de la localisation d'une caméra dans un environnement dynamique, est que les objets mobiles de la scène induisent un mouvement supplémentaire qui génère des pixels aberrants. Ces pixels doivent être exclus du processus de l'estimation du mouvement de la caméra. Nous proposons ainsi une extension de la méthode de localisation dense basée sur le flux optique pour isoler les pixels aberrants en utilisant l'algorithme de RANSAC.
Liste complète des métadonnées

Littérature citée [99 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/tel-01333772
Contributeur : Dib Abdallah <>
Soumis le : dimanche 19 juin 2016 - 13:39:51
Dernière modification le : jeudi 11 janvier 2018 - 06:27:29
Document(s) archivé(s) le : mardi 20 septembre 2016 - 13:57:24

Identifiants

  • HAL Id : tel-01333772, version 1

Citation

Abdallah Dib. Vers un système de capture du mouvement humain en 3D pour un robot mobile évoluant dans un environnement encombré. Intelligence artificielle [cs.AI]. Université de Lorraine, 2016. Français. 〈tel-01333772〉

Partager

Métriques

Consultations de la notice

243

Téléchargements de fichiers

402