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Chapter 1

Introduction

In the beginning of the electronic computation era, when computers (then called
supercomputers) were as big as office rooms, those gigantic machines typically used
punched cards to read the program to execute and the data to set the input and the
parameters of the computation. Before they were attached to electronic screens, they
used to communicate the results of their elaboration by printing long lists of num-
bers, characters and symbols on rolls of papers. The human operator was responsible
of encoding the input and decoding the output in order to make sense of the results.

Soon enough, the technological progress brought us keyboards to type in num-
bers and commands, monitors to read the results of the running processes in
real-time and, later, speakers to hear the sounds produced by the machines and
microphones to record the user’s voice. The dream of the early computer era was
clearly that of a more or less intelligent electronic machine that understands its hu-
man counterpart and communicates bidirectionally using their language. The his-
tory shows that expecting computers to be able to “sit at the table” and converse
with humans in a few years was a naïve idea, and that the field of human-computer
communication had a long way to go.

Developers of computer applications have always used natural language in their
software to communicate to humans, but the opposite, i.e., human communicating
to the computer using natural language, is a way less frequent occurrence. This has
to do with the fact that for a computer it is not easy to “understand” the fuzzy, po-
tentially ambiguous natural language (e.g., English) that the user may type in. In
fact, the greatest portion, by far, of the research work in the field of Natural Lan-
guage Processing (NLP) revolves around the analysis of language, rather than its
production.

An example of computer programs that understand, to a certain extent, natu-
ral language typed in by the user is found among the textual adventures that were
popular in the eighties. Those were pieces of text-based interactive fiction where the
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Welcome to ZORK.

Release 12 / Serial number 990623 / Inform v6.14 Library 6/7

WEST OF HOUSE

This is an open field west of a white house, with a boarded

front door.

There is a small mailbox here.

A rubber mat saying ’Welcome to Zork!’ lies by the door.

> look at the mat

Welcome to Zork!

> look inside the mailbox

The mailbox is closed.

> open the mailbox

You open the mailbox, revealing a small leaflet.

> take the leaflet

Taken.

Figure 1.1: A snippet of the interactive fiction Zork showing the command line in-
puts and the program’s output.

user (reader? player?) reads a description of the environment on the screen and in-
teracts with the story by providing instructions through a command line interface.
Such commands can be simple ones like moving in the direction of one cardinal
point, or complex instructions involving the entities found through the story. Fig-
ure 1.1 shows an example of an interaction taken from the classic textual adventure
Zork developed at the Massachussets Institute of Technology.

Notice, from the example, how the interactive fiction software must be able to
interpret commands more sophisticated than single words or fixed phrases. Com-
mands like “take the leaflet” for instance have to be analyzed as a verb-determiner-
noun structure.

There are many more examples of modern technology that relies on natural lan-
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guage understanding, from the automatic assessment of plagiarism to large-scale
systems that monitor customer satisfaction, to the virtual assistants provided by
modern smartphones. All the while, the generation of proper expressions in natural
language is trivial as far as many applications go. The text-based adventure, for
example, only has to print out pre-written snippets of text when certain events are
triggered. Nevertheless, there are actual applications that need to generate text (or
speech) on-the-fly based on a variety of possible inputs, and they are neither few
not easy to implement. The field of research that studies these kind of problems and
the methodologies for their solution is called Natural Language Generation (NLG),
and it will be treated to a great deal of detail in this thesis.

The goal of this introductory chapter is to present the what and the why:

� What is Natural Language Generation, how it is done, what are the input and
the output, and what are its restrictions.

� Why NLG represents a challenge for the research fields of logic, linguistics and
computer science, and what are the motivations to undertake such challenge.

The rest of the thesis, instead, is concerned with the how, that is, the methodolo-
gies to create a working NLG system with particular focus on an input formalism
that allows statistical techniques to be employed. It is structured as follow:

� Chapter 2: overview of the state of the art in the field of Natural Language
Generation, with special emphasis on the solutions that make use of large
datasets and statistics. This chapter also contains a small survey of working
NLG software.

� Chapter 3: here I introduce a novel approach to natural language generation
based on statistical models. The architecture of the proposed system is ex-
plained, and the chapter goes into the details of the formalism for abstract
meaning representation that is the input to the system, and an algorithm that
leverages this representation to produce surface forms.

� Chapter 4: the system presented in Chapter 3 is based on supervised learning,
that is, its components learn from data. In this case, the source of data is a
large collection of textual documents paired with their linguistic and semantic
analysis. This chapter presents the work done in order to build such resource.

� Chapter 5: one of the two main modules of the NLG system deals with the
prediction of the order of words and phrases in the output. This module and
the rationale behind its design are described in this chapter.
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� Chapter 6: this chapter describes the problem of the choice of words that ex-
press given concepts, and presents two alternative approaches to its solution
and a pilot study on the prediction of morphological inflections.

� Chapter 7: in this final chapter the reader will find a series of considerations a
posteriori on several aspects of the work presented throughout the thesis, along
with ideas for future directions of research.

The following sections of this chapter will cover in more depth what the gener-
ation of natural language implies, its parallels with automatic machine translation,
and why it is important as a research area.

1.1 The Generation of Natural Language

To give a definition of Natural Language Generation is at the same time an easy task
and a hard one. On the one hand, every algorithmic process that takes some kind
of information as input and produces a natural language expression that describes
it is an example of an NLG system. For instance, the function in the software of an
electronic cashier machine that dictates that one apple should be written as “1 ap-
ple” on the receipt, but any number more than one should be written as “apples”, is
performing an NLG task. On the other hand, a definition that covers the entirety of
the generation process is always forced to include vague terms like the above “some
kind of information” to describe what is the input, the starting point of the process
itself. The definition given on the “What is Text Generation?” section of the website
of the the Special Interest Group on Natural Language Generation of the Association
for Computational Linguistics1 leaves the input completely underspecified:

The objective of natural language generation (NLG) or text generation
systems is to produce coherent natural language texts which satisfy a set
of one or more communicative goals.

The generation of natural language is tightly tied to the the representation of
the information that needs to be generated. Different representation formalisms can
have very different characteristics. There is a quote in the field of NLG, usually
attributed to Yorick Wilks, that goes approximately like this:

Natural Language Understanding is like counting from one to infinity.
Natural Language Generation is like counting from infinity to one.

1http://www.siggen.org/nlg.html
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The quote, based on an anecdote contained in Remarks on the Foundations of Mathe-
matics by Ludwig Wittgenstein, hints at the fact that while in Natural Language Un-
derstanding the input is always the same (i.e., text or speech) and the output may
be of different natures, in Natural Language Generation the opposite is true. While
we want a complete NLG system to produce text (or speech), there is no consensus
on what its input should look like.

Some ways of representing data are more or less shallow, such as numeric tables,
time series and the like. Others are more structured and can integrate rules and
constraints on the data, such as databases or computational ontologies. Another di-
mension of discrimination between representations is the level of abstraction with
respect to the language. A sequence of numeric values describing, for instance, the
temperature and atmospheric pressure measured in some location arguably does
not carry any linguistic material, while a semantic network made of concepts and
relations expressed as nouns and verbs is closer to the natural language form. The
ideal representation that could serve as the basis for every NLG-related task does
not exists, or at least it has not been uncovered yet. Each problem involving NLG
has its own definition and thus demands its specific input representation. Neverthe-
less, methods developed for one problem can be (and in fact are) transferred across
multiple domains and applications.

Regardless of the properties of its input, an NLG system performs one or a series
of transformations of representations. Such operations aim at modifying the language
in which a piece of information is expressed while retaining its meaning. Some sys-
tems are modular and consists of several component each feeding the next, in a
pipeline-like architecture performing separate steps towards the final goal, while
others are focused on one type of transformation only. Some systems introduce syn-
tactic and lexical information during the process, some do not, and the list of differ-
ences may go on. The next chapter provides an overview of several approaches to
NLG known found in the literature.

1.2 Semantics and Predicate Logic

The ultimate goal of a system that does Natural Language Generation is to convey
a meaning, simple or complex, through natural language. But how do we describe
and represent meaning in the first place?

When children start to learn their (parents’) language, they develop associations
between the sound of words and their sensorial experience. For example, the child
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hears the word “dog” while looking at the family dog and petting the animal and
thus the association is made in the brain (this is of course a gross oversimplification
of the real brain chemistry processes). As the child grows, the brain develops more
and more and it becomes capable of processing the meaning of full sentences rather
than isolated words.

We do not know much about the representation of meaning in the human brain.
Modern science tells us that the brain operates by sending electric impulses across
a network of cells, and researchers are making progresses towards mapping the ob-
served activity in certain regions of the brain to the process of elaboration of certain
meaning. While this area of study has enormous importance for all kind of appli-
cations, from medical to behavioral research, if we want a computer to be able to
process language and meaning we need to look at the representation of meaning
from a different, more abstract perspective.

Since the ancient times of Greek philosophers (Aristotle in primis), scholars have
tried to formalize the meaning of natural language, so to have unambiguous ways
of interpreting it. Since then, the field of semantics, that is, the study of meaning,
has turned to logic in order to have a formal language to describe the meaning of
natural language. Predicate logic, in particular, has been successfully employed to
represent abstract meaning, but also to reason about the meaning itself in a formal
way, e.g., by means of deduction. There are many formal systems that fall under
the categorization of predicate logic, first-order logic being probably the most well
known. A simple instance of a first-logic formula looks like this:

@x : GREEKpxq ÑMORTALpxq

It only takes a high-school level of knowledge of logic to see how such a formula
can be used to represent a sentence like “all Greeks are mortal”. However, there are
many pitfalls to be aware of when dealing with a logic-based representation of the
meaning of natural language. For instance, the symbols GREEK and MORTAL in
the formula are just symbols, that is, they are not words of the English language,
and thus they should be treated accordingly. Later in this thesis more specific for-
mal systems will be introduced that have been designed explicitly to represent the
meaning of natural language.
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1.3 Natural Language Generation and Machine Trans-
lation

Machine Translation is the field that studies and develops computer-based methods
to obtain translations of natural language across languages. There are similarities
between machine translation and NLG, both in principle and in practice. From a
certain perspective, NLG can be seen as a translation task, where instead of trans-
lating from a natural language to another one, one translates from an abstract, for-
mal language to a natural one. This section gives a brief overview of how Machine
Translation works, focusing on the methods that exploit statistics. and point out its
relevance with respect to the field of Natural Language Generation and to the work
presented in this thesis in particular.

Machine Translation is one of the oldest application of NLP, towards which a
gigantic body of work has been done in the past decades. In its beginning, around
the middle of the twentieth century, Machine Translation was performed by systems
based on translation rules mapping words and phrases from a source language to a
target language. This approach, however, is limited in that the rules have to be
compiled by hand, e.g., by expert translators, and a new set of rules is necessary for
each new pair of languages/varieties/domains to translate.

Starting from the 1980s, thanks to the increasing computing power available to
the researcher, statistical methods of Machine Translation started to surface. These
methods generally work by automatically extracting the most likely translations of
(sequences of) words in context from large amount of parallel text, that is, text pre-
sented in two or more languages at the same time. In order for parallel text corpora
to be exploitable by a Machine Translation algorithm, the parallel versions of the
text must be somehow aligned at the sentence, phrase or word level. The alignment
is actually of crucial importance, being the extra information that a computer system
needs in order to learn how to translate the words in different ways, based on the
context where they occur. Once a parallel corpus of sufficient size has been aligned,
the task of the Statistical Machine Translation algorithm will be that of translating
words, phrases and ultimately sentences and documents by looking at various fea-
tures of the context of the words to translate and leveraging the information learned
by the aligned data. Sentence-level alignment of parallel text is the most basic form
of alignment, adding a layer that specifies which sentence(s) of the source language
text are translated by which sentence(s) in the target language text. Here is an ex-
ample of sentence alignment of a two-sentence short text in English (on the right)
and Italian (on the left):
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1. Clinton’s mother prayed fer-
vently that Bill would grow up
and be president.

2. So far, half of her prayer has
been answered.

1. La madre di Clinton ha pregato
con fervore che Bill crescesse e
diventasse presidente.

2. Finora, metà delle sue preghiere
sono state esaurite.

Sentence-level alignment is useful in breaking down the alignment to single, po-
tentially short sentences, but obviously it is too coarse-grained to find an application
in learning translation rules. Phrase-level and word-level alignment are a much
richer way of annotating a parallel text in order to learn how expressions in the
source language translate to the target language based on their context. The first
pair of sentences from the example above, for instance, would be word-aligned as
follow:

Clinton
’s

mother
prayed

fervently

that
Bill

would
grow

up

and
be
the

president
.

La
madre

di
Clinton

ha
pregato

con

fervore
che
Bill

crescesse
e

diventasse
presidente

.

A computer algorithm equipped with linguistic analysis and informed by the
alignment would be able to predict that “would grow up” in this context is trans-
lated into the Italian inflected verb “crescesse”. The context is actually key in this
process — a correct translation would not be achieved, in this case, simply by trans-
lating word by word “would”, “grow” and “up” separately. Aligning word by word
a parallel corpus of decent size is a hard and demanding jog though, while sentence
alignment, even if it is not always just a one-to-one mapping of sentences, is consid-
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erably easier.

But what has Machine Translation to do with Natural Language Generation? If
we consider whatever formalism is used as input to a NLG component as a language
in itself, then suddenly the generation problem becomes a translation problem, from
a formal language expressing some abstract concept into a chosen natural language.
As a consequence of this consideration, in the design of a statistical component for
generation, some form of alignment between the generation input and the text must
be implemented. The problem of this particular kind of alignment is not trivial, be-
cause the objects to align are different in nature, and also because the formalism in
which the input is specified has to be suitable for a fine-grained word-level align-
ment.

interlingua

source text target text

source language
syntax

source language
syntax

transfer

direct translation

Figure 1.2: Bernard Vauquois’ pyramid showing different kind of translations and
the relationships between them.

Another way of seeing the relevance of NLG to Machine Translation is to con-
sider the NLG process as part of a bigger process of translation. Figure 1.2 shows
the so called “Bernard Vauquois’ pyramid”, a schematic way to represent different
approaches to machine translation.

Following the diagram, literal translation is a superficial way to translate a text
that relies on words and phrases direct translation from one language to the other. In
contrast, transfer-based machine translation is the process of analyzing the source text
in order to obtain a (language dependent) syntactic representation, then converting
it to the analogous representation in the target language, and finally generating the
translated text from the syntactic representation. The approach to machine transla-
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tion that involves the deepest kind of analysis is called interlingual Machine Transla-
tion and it involves the analysis of the source text to obtain a language-independent,
abstract representation that preserves the meaning of the original text. From the in-
terlingua representation then the target text is generated with some NLG technique.

1.4 Why NLG from Logical Forms?

Now that the ideas of natural language generation and logical forms have been in-
troduced, this final section of the introduction has the goal of answering the ques-
tion: why would one want to use logical forms as a foundation for NLG?

While a straightforward answer is hard to come up with, there are several advan-
tages in the integration of formal logic into an NLG system as its meaning represen-
tation formalism. First, logical forms are agnostic with respect to natural languages.
As hinted at in the previous section, the same abstract meaning representation can,
in principle, be translated into different languages, while two sentences who are one
the translation of the other should be represented by the same logical formula.

Logical forms are also formal by definition, which means that the reasoning de-
vices of logic can be applied in order to derive new information from existing logical
forms. By being formal, logical forms are also directly tractable with computational
methods. The modular system which is the main topic of this thesis is in fact one
example of a computational method (or a set thereof) to generate natural language
expressions that would not be possible if its input would have been different in na-
ture.

1.5 Research Questions

This chapter introduced the problem of natural language generation from logical
forms, setting the stage for the work that is presented in the rest of the thesis. Before
going further, let us make clear the directions that this thesis will take, by formulat-
ing a series of research questions that will be answered throughout the thesis itself:

1. What logical formalism can represent the meaning of natural language expres-
sions in a way that facilitates fine-grained alignment with the surface form?

2. How can we produce natural language from a logical form, provided that its
alignment with the surface form is known?
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3. Given an arbitrary logical form, what methods are the most effective at pre-
dicting the alignment with the surface form?

4. In the case of supervised statistical methods for natural language generation,
resources like annotated corpora are needed. What characteristics should such
a resource have, and how is it possible to build one that is rich enough to be
employed to train statistical models?

These research questions drive the entirety of the work presented in this thesis.
However, single chapters tend to focus on specific questions. In particular, the
questions 1 and 2 are addressed in Chapter 3, question 3 is extensively treated in
Chapters 5 and 6, and question 4 is the main topic of Chapter 4.





Chapter 2

Related Work

The field of Natural Language Generation is not a novelty in the landscapes of Com-
puter Science and Information Technology. In fact, the first examples of NLG mod-
ules stem from early machine translation projects in the 50s and 60s. Despite the
common origin, NLG as a field has not progressed at the same pace as Natural
Language Understanding, with the result that the vast majority of work presented
at modern conferences and journals in NLP focuses on the latter. Nevertheless,
the field of NLG has continued to grow steadily over the years, and has become
vastly diverse with its international community working on all kinds of sub-topics.
The NLG special interest group of the Association for Computational Linguistics
(SIGGEN) brings together the NLG experts worldwide and organizes yearly inter-
national meetings and workshops.

By reviewing the literature, three macro-approaches to NLG emerge. First, the
NLG as translation approach that reduces the NLG problem to finding a suitable
map between an abstract language, i.e., some formal meaning representation, and
the natural language. This approach may involve defining or learning a bidirec-
tional grammar to form the basis for both language understanding (in one verse)
and generation (in the opposite verse). The second approach, or better a family of
heterogeneous approaches, is engineering one’s way through the NLG process. This
way of doing NLG is popular in those cases where the problem is application-driven
and where specific sub-tasks are considered, i.e., generating referring expressions or
surface realization, rather than the full process that goes from, e.g., a logical form
to its natural language expression. Finally, a set of alternative approaches cast the
NLG problem as a choice problem, specifically as a “functionally motivated choice”
between the many possible realizations of an abstract meaning representation van
Deemter [2009], Bateman [1997a].

The purpose of this chapter is to give an overview of the state of the art of NLG
at the moment of this writing, to give an impression of what are the challenges that
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need to be addressed by a generation method like the one put forward by this thesis.
Of course it would be overly ambitious to try to be complete, so a few limitations are
needed. Particular attention is given to statistical approaches, mainly because being
data-driven is one of the characteristics of the work presented in this thesis. This
chapter is also limited to general approaches to NLG and methods that are interest-
ing for the process as a whole or significant components of the NLG pipeline, while
work related to more specific topics is reviewed in the respective relevant chapters.
Finally, at the end of the chapter, I review actual software packages produced by the
NLG scientific community from the user perspective.

2.1 The NLG Pipeline

Many modern articles begin by referring to a Natural Language Generation
pipeline, a chain of modules each solving a specific sub-task and passing its out-
put to the next module. This type of architecture, introduced by Reiter and Dale
[2000], has the merit of proposing “standard” modules of an ideal NLG system, but
its contribution is especially valuable because it identifies the actual problems that
needs to be solved for the generation process. This also explains the success of this
model, where the slot corresponding with different sub-tasks can be filled by dif-
ferent systems while the general pipeline architecture is retained. In fact, in Reiter
and Dale [2000] the authors provide several examples of such modules eg. for the
sub-task of Surface Realization.

At a high level of abstraction, the document planning module is responsible
to decide what to say, that is, determining what information is relevant to perform
the NLG task at hand. For instance, in a system that answers queries about airplane
transport, it is the document planner’s duty to pick the right flights, days, times, etc.
that will constitute the material for the generation. The microplanning component
is roughly responsible for how to say the final utterance, by taking care of problems
such as lexicalization, aggregation and the generation of referring expressions. The
output of the microplanner is an abstract structure containing all the information
needed to produce the surface form, including the content words. The final com-
ponent, is responsible for the surface realization, the task of producing the text by
transforming the abstract representation provided by the microplanner into actual
text for the system’s users.

While the naming and scope of individual components may vary, the general
structure is fixed, at least in terms of the division of the NLG process into sub-tasks.
However, the specifications for the input and output of each module can and do
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Communicative goal
Document planning

Content determination
Document structuring

Microplanning

Lexicalization
Referring expression

Aggregation

Surface realization

Linguistic realization

Structure realization
Text

Document plan

Text specification

Figure 2.1: The NLG pipeline proposed by Reiter and Dale [2000].

vary from one system to another, a reason why most existing systems are standalone
and not easily interoperable. A depiction of the NLG pipeline architecture proposed
by Reiter and Dale [2000] is given in Figure 2.1.

2.1.1 Document Planning

The document planner encapsulates the functionalities for retrieving the informa-
tion that needs to be produced in natural language, and organizing the information
in some kind of structured format. The latter function is especially important when
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the extent of the communication goal exceeds what can be conveyed by simple,
short sentences, that is, when some sort of discourse information is needed.

Arguably, the document planning module is not necessarily a component of an
NLG pipeline per se, as apart from general principles, its way of working may be
drastically different based on the target application.

The output of the document planner is a document plan, that is, a structure that
contains the information to be communicated in an organized way, e.g., a tree. The
content of the document plan results from the choices made by the module on mat-
ters such as isolating the relevant information and deciding the right level of speci-
ficity. As an example, a document plan for a system that generates weather reports
based on tabular data might contain information items about temperature and rain-
fall levels in the past 24 hours, while the traffic congestion or the temperature of the
past six months should be left out.

The document plan cannot be realized linguistically in its form, because even
if such mapping could be made it would result in a very clumsy, computer-like
generation. For this reason the plan is fed to the next module on the pipeline, the
microplanner.

In this thesis, generation from a certain kind of logical forms is targeted, thus the
decision process proper of the document planning is considered as already given
to the NLG system. However, while the focus is not on the document planning in
itself, it is important to notice that the format of the output of the planner, that serves
as input for the next module, is crucial to the rest of the process. In other words,
choosing the right formalism to encode a document plan will affect the capabilities
of the NLG system.

In Chapter 3 a specific formalism is proposed as the basis for the NLG system
object of this thesis, that can be compared in a way to the output of a document
planning stage.

2.1.2 Microplanning

To produce a linguistically sound surface form from the document plan, a series of
non trivial problems must be solved. In the standard pipeline of Reiter and Dale
[2000], three tasks at this level are taken care of by the microplanning module: lexi-
calization, generating referring expressions, and aggregation.

Lexicalization — sometimes referred to as “lexical choice”, depending on how the
problem is approached — is the problem of choosing the (content) words that best
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express the concepts to communicate, depending on the context of the communi-
cation. Even considering just single concepts to be mapped to single expressions,
lexicalization is crucial to provide fluent realizations. Consider for instance the dif-
ference between the two sentences:

1. Economic activity is limited to providing services to the military.

2. Economic activity is circumscribed to catering services to the war machine.

While the sentences are similar, and both are comprehensible, they certainly show
a difference in terms of fluency to the human reader. Lexicalization is difficult be-
cause often the choice of words has to be informed by extra-linguistic information
such as the identity of the parts involved in the communication process, or prag-
matics. Moreover, one needs more than a direct mapping between content words
and concepts. Consider for instance the following two realizations of a possessive
construction:

1. the car owned by Mary

2. Mary’s car

While at a logical level the two expressions have the same meaning, (1) stresses the
ownership property more than the neutral (2). In (1) the word “owned” maps to
some concept of property while in (2) this concept is expressed by the particle “’s”.
Arguably, the former is a content word in its own right, while the latter is not.

The system presented in this thesis comprises a module to solve the lexicaliza-
tion task by choosing from given sets of words associated to the concepts the most
appropriate. The lexicalization problem is further explored in Chapter 6, where dif-
ferent methods are proposed that fits into the general architecture for NLG proposed
in this thesis.

Another problem solved in the microplanning phase is the generation of referring
expressions. There are many ways of introducing concepts in a discourse, and not
all of them are equally effective, so a system must pay attention to how entities are
referred to, both the first time they are introduced and the subsequent times. For
instance, the first time the entity Valerio is introduced in his autobiography it could
be referred to by first name, or full name including titles, or “A PhD candidate”,
and so on, depending on the nature of the writing and the audience of the message.
Likewise, the following times the writer refers to Valerio, a personal pronoun will
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be likely used, unless other entities have been introduced that makes the use of
pronouns ambiguous.

Lastly, aggregation is the process of transforming the abstract structures to make
them closer to natural-sounding expressions, by putting together elements that can
be communicated in a single clause. For example, the following two sentences,
taken from the output of a weather forecast system, show much repetition: “The
month was cooler than average. The month was drier than average.” Even though
technically correct, it appears immediately clear that this is the output of an auto-
matic system. By means of aggregation, the system could instead express the same
meaning with “The month was cooler and dried than average”, which sounds more
natural. When done effectively, aggregation can significantly enhance the quality of
the final surface realization.

The output of the microplanner is a text specification, a structured container for
the words and phrases to generate (again, this can be a tree), which abstracts away
from grammatical and morphological aspects. The text specification, in turn, is fed
to the last module of the pipeline, the surface realizer.

2.1.3 Surface Realization

With a rich microplanning module as the one proposed by Reiter and Dale [2000],
the final step of the NLG process has only a few tasks left to take care of in order to
produce the final output of the system.

The morphological aspects in the text specification could be underspecified. If
that is the case, the surface realizer is responsible to predict morphology for the sur-
face form. In some cases, the input to the surface realization module contains more
abstract structures such as syntax specifications or lexicalized case frames, which
are typically harder to realize.

Other than that, the surface realizer is also responsible for the presentation layer,
that is, to produce a usable output that can be consumed by users. This is not trivial
when the expected output is not simple raw text but rather has some structure, e.g.
HTML pages, PDF files, etc.

The system presented in this thesis is characterized by a fuzzier distinction be-
tween the microplanner and the surface realizer. Rather, it tries to map abstract
meaning representations to the text directly, tackling word order prediction, lexical
choice and morphology realization in parallel. The architecture of the NLG pipeline
employed by such system is presented in detail later in the thesis, in Chapter 3.
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2.2 Statistical Approaches to NLG tasks

Just as in Natural Language Analysis the development of statistical, data-driven
methods has led to improvements of the performance of computer systems on a
wide variety of tasks, recent developments in the same direction are pushing for-
ward the capabilities of NLG systems. In the following section, a review of statistical
approaches to several problems related to NLG is given.

Given the modularity of the pipeline architecture, it is not surprising that many
scholars have opted for tackling one NLG-related task at a time, while others have
try to solve the problem at once. An example of the latter group is the work of
Konstas and Lapata [2012], where content selection and surface realization are per-
formed jointly by means of data-driven methods. Another aspect highlighted by
the aforementioned paper is that the authors cast the problem explicitly in terms
of learning a PCFG grammar, in their specific case one that maps the structure of
a database holding the domain knowledge to the natural language expressions to
realize it. Section 2.5, later in this chapter, contains further hints at the parallel be-
tween NLG and grammar learning.

Zhou et al. [2002] employ statistical methods to produce natural language ex-
pressions from semantic representations that act as interlingua in a transfer-based
machine translation system. The authors use a manually annotated corpus to train
a maximum-entropy model. The NLG component then applies the statistical model
together with a dictionary of phrase translations to produce the output surface form.

Statistical methods have also been used to approach NLG tasks located earlier
in the NLG pipeline. Duboue and McKeown [2003], for instance, developed a two-
stage approach to content selection based on statistical techniques. Their method
employs clustering to derive content selection rules for the purpose of automatic
generation of biographies.

Bohnet et al. [2011b] developed a statistical system to generate sentences from
semantic structures. Here, the input to the NLG process is a semantic representa-
tion based on the CoNNL syntactic annotation, with nodes corresponding to func-
tion words removed and other modifications made in order to abstract from the
syntactic specificity of the natural language. The system of Bohnet et al. [2011b] is
rooted in the framework of the Meaning Text Theory [Mel’cuk, 1988], a linguistic
theory that models formally all the steps from semantics to phonetics, and consists
of a pipeline of decoders that transform semantic structures into deep syntactic struc-
tures, then into syntactic parse trees, and finally into a linearized surface string —
lexical choice is left out of the process. In a similar line of work, Ballesteros et al.
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[2014] propose two approaches based on Support Vector Machine (SVM) classifiers
to map semantic and syntactic structures, overcoming the problem of their inherent
non-isomorphy. This method also works by constructing a pipeline of processes,
essentially the inverse of a typical NLP analysis pipeline, made of subsequent steps
each informing the following one.

An alternative approach to the pipeline architecture is that of Mairesse et al.
[2010], which aims at learning the mapping between meaning and text directly, from
a data set made of text annotated with stack-based meaning representations. The
Bagel system developed by the authors employs Bayesian networks to learn from
text aligned with semantic representations akin to linearized semantic trees.

2.3 Generation from Knowledge Bases

The process of generating text from formally defined databases of information has
been studied in the past, although in the majority of the cases with specific applica-
tions in mind.

Bouayad-Agha et al. [2012b] propose a layered ontology architecture as a basis
for generation made of three RDF/OWL computational ontologies, where the do-
main ontology and the domain communication ontology depend on the generation task
at hand, while the communication ontology provides the general concept needed by
the document planner to produce a text plan. While this approach is an improve-
ment over using a single domain-specific knowledge base or a template-based ap-
proach, it is still partly dependent on the application of the NLG pipeline, or at least
on its domain.

RDF/OWL is an XML based formalism to define computational ontologies. De-
spite its many interesting properties, such as being modular and promoting inter-
operability, RDF/OWL is not ubiquitous in the NLG area. Interestingly, there exists
a mapping between RDF/OWL and Discourse Representation Structures proposed
by Presutti et al. [2012] that helps to fill the gap between broadly used knowledge
bases and generation from deep semantic structures.

Recent work from Gyawali and Gardent [2014] combines the generation from
a knowledge base with a statistical approach. The authors derive a tree adjoining
grammar from annotated data, and then use the grammar to generate text for new
instances from the knowledge base, with particular measures to account for unseen
items to lexicalize. The methods works by learning a pre-made alignment of the
knowledge representations with the corresponding surface forms at the event and
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entity level.

While RDF/OWL ontologies are a popular format to encode domain and general
knowledge, there are alternatives. It is debated, for instance, whether one should
consider WordNet [Miller, 1995] a computational ontology in the proper sense. Re-
gardless of its definition, WordNet has been used both as a standalone knowledge
base and as a mean to augment existing RDF/OWL ontologies [Lin and Sandkuhl,
2008].

WordNet has been rarely been applied to NLG, despite its wide application in
other NLP fields, such as, for instance, Word Sense Disambiguation (WSD). A no-
table exception is the work by Jing [1998] who proposes WordNet-based methods to
address specific NLG tasks, in particular lexicalization and paraphrasing.

The author shows that the open-domain nature of WordNet makes it a robust
knowledge base to support generation in open-domain scenarios, but also that it
can also used in combination with other knowledge bases, i.e., to adapt to a partic-
ular domain. Later in this thesis (Chapter 6) this claim is tested with the implemen-
tation of a novel method for lexicalization that incorporates WordNet as linguistic
knowledge base to provide natural sounding generations.

2.4 Surface Order

If grounding an NLG system to some form of knowledge representation database
is fundamental for having a repository of words and phrases to use, the other side
of the coin is that at some point this lexical material has to be laid down in a linear
for that requires a precise order of its constituents. This task is often referred to as
linearization.

In many cases, the order of the words in a sentence is determined by constraints
defined in the target language’s grammar, although there might be other factors.
In some languages, for instance, different orderings of the same words are used to
convey different communication intents, that is, sentences with different word or-
der each convey its specific semantics — this is the case in some Eastern European
languages such as Czech. These considerations bring up the question of what de-
termines the word order of a realization, given the semantic content to be realized.
Korbayova et al. [2002] have exploited systemic ordering, a language-specific concept
imposing an order on the types of possible complements (actor, patient and so on),
to control the word order of their proposed NLG pipeline. In this thesis, the prob-
lem of word order is tackled at an early point of the generation process, i.e., by the
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sentence planning module.

Not all languages are on the same level in terms of freedom of word order. Ger-
man, for instance, is known to be a relatively free word order language, which in
turn increase the difficulty of the task of ordering words and constituents in gen-
eration. Bohnet [2007] developed a technique to induce grammars for linearization
using rule patterns on the topological models of several languages, in an effort to de-
rive a language-independent method for predicting word order.

An alternative approach is that of generating all the possible orderings and then
let a further elaboration step rank them in order to select the most appropriate.
While this approach may work to different extent based on the target language,
as mentioned earlier, it is in practice an effective one and potentially straightfor-
ward to implement. Most modern systems implement this approach by imposing
a statistical language model over a selection of possible realization [Langkilde and
Knight, 1998], ranking them by how their word order matches that of observed nat-
ural language, thus enforcing syntactic and semantic constraints only in an implicit
way.

2.5 Logic-based Representations for NLG

So far we have looked at Natural Language Generation from a rather engineering-
oriented point of view, that is, as a collection of techniques and architectures geared
towards the solution of a series of sub-problems in order to translate some abstract
representation of information into a human-readable text. Looking at the generation
of text from a more theoretical perspective, one can see it as the problem of mapping
abstract meaning representations to linguistic surface representations. This thesis,
in particular, focuses on a formalism for generation that is essentially grounded in
formal logic.

Neither the use of logical formulas to encode the meaning of natural language
nor the generation of natural language expressions from logical forms are com-
pletely new ideas. Already in the eighties, tin Wang [1980] was designing a com-
puter system capable of generating sentences and questions from logical formulas,
based on the generation of intermediate template-like representation called semiotic
interpretations. Other authors, later in the nineties, also propose to employ logi-
cal forms as the basis for natural language generation, e.g., Phillips [1993]. More
recently, Coppock and Baxter [2010] employed logical forms as the formalism for
meaning representation in the NLG component of Cyc [Lenat, 1995], a large knowl-



2.5. Logic-based Representations for NLG 23

Table 2.1: Three sentences with equivalent meaning and their respective logical
forms. Example from Shieber [1993].

item String
Canonical Logical Form

(i) John threw a large red ball.
Dx:throwpj; xq ^ largepxq ^ redpxq ^ ballpxq

(ii) John threw a red ball that is large.
Dx:throwpj; xq ^ redpxq ^ ballpxq ^ largepxq

(iii) John threw a large ball that is red.
Dx:throwpj; xq ^ largepxq ^ ballpxq ^ redpxq

edge base of common sense. The component performs a series of transformation op-
erations on the input logical form, such as the extraction of clausal skeletons, to fa-
cilitate its mapping to natural language expressions. While becoming more refined
over time, all the cited systems are based on rules, which makes them inevitably not
scalable and language dependent.

When the abstract representations are based on some kind of formal logic, a
problem arises called the problem of logical-form equivalence. Shieber [1993] formulates
the problem using first-order logic, and shows how different, but equivalent, logical
forms generate different sentences with the same meaning, while the mappings are
not easily interchangeable. For instance, the three logical forms in Table 2.1 are
logically equivalent, but a generator would never produce, for instance, the second
sentence from the first logical form.

Why is logical-form equivalence a problem? Logical equivalence is, in general,
non computable. Even though in some logics, including propositional logic, equiv-
alence is decidable,1 in any formalism sufficiently expressive to represent the mean-
ing of natural language determining whether two formulas are equivalent is an in-
tractable problem. This is a problem only when analyzing a text to produce a logical
formula representing its meaning, because it is impossible to just produce all possi-
ble analysis of a sentence and then select the most correct one. When the direction
of the process is reversed, that is, when performing generation of text from logical
formulas, the logical formula is given as input. Still, the ambiguity of the map-
ping between meaning representations and surface form makes it hard to solve the
generation problem by constructing a grammar to treat generation as a translation
problem from logic to natural language.

1Decidability of propositional logic can be proved by constructing truth tables. Since in propositional
logic every argument is finite, a truth table for a given argument is guaranteed to be finite.
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There is no straightforward solution to the problem of logical-form equivalence,
although methods have been proposed to address some weaker variants of the prob-
lem. However, according to Shieber [1993], it is important to choose the right formal-
ism to represent meaning, one in which the variations in the semantics is mirrored
by variations in the natural language syntax. Appelt [1987] also hints at a solution
in this direction when analyzing the reversible grammar approach to NLG. From
such perspective, the NLG process is the application of a bidirectional grammar in
one direction, whereas the analysis of the language is the application of the same
formalism in the opposite direction. That is, one grammar for both problems. An
interesting examples of such formalisms is the Reversible Stochastic Attribute-Value
Grammars proposed by Kok et al., a kind of grammar in which a single statistical
model is employed for both parsing and fluency ranking. Among the characteristics
of a bidirectional grammar suitable for generation, Appelt [1987] mentions the need
to be enough fine-grained to catch in the semantic representation all the linguistic
variations. Consider for example the sentence “The resistance of R1 is 500 ohms”.
In some formalism the meaning of this sentence would be written as the following
logical formula:

ResistanceOf pR1; ohmp500qq (2.1)

While this representation is perfectly fine from the logic perspective, its structure
is sensibly far from the original text. In other words, it is difficult to map the elements
of 2.1 to the words of the sentence “The resistance of R1 is 500 ohms” in a natural
way. Now consider the following first-order logic formula equivalent to 2.1:

DxResistanceOf pR1; xq &

x � ohmp500q
(2.2)

While 2.1 and 2.2 are logically equivalent, the latter is easier to align to the surface
form. The equality predicate in 2.2, for instance, maps naturally to the verb be. Here
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is another example:

Dx1x2x3 &

resistancepx1q &

namedpx2; r1; namq &

ofpx1; x2q &

ohmpx3q &

|x3| � 500 &

x1 � x3

(2.3)

The predicates and operators in 2.3 are even more fine-grained, in terms of ex-
pressing the linguistic variation — for instance the binary relation of directly maps
to the homonym preposition in the original sentence.

Order matters too. While in most logics scrambling the relative order of the pred-
icates of a formula results in an equivalent expression, that information can be used
to express different phrasing of the same utterance. The paraphrase “R1’resistance
is 500 ohms”, for instance, is not easily derived from 2.3 (and neither from 2.1 or 2.2,
for that matters), but an equivalent formula can express the same meaning while
preserving the information relative to the order of the words:

Dx1x2x3 &

namedpx2; r1; namq &

resistancepx1q &

ofpx2; x1q &

ohmpx3q &

|x3| � 500 &

x2 � x3

(2.4)

The take away message from this sequence of examples is that choosing the right
formalism to represent the natural language meaning is important from a genera-
tion perspective. Even when the NLG problem is not cast as learning a grammar,
the consequences of the problem of logical-form equivalence have an impact on the
amount of ambiguity a system will have to deal with, especially when the underly-
ing formalism used for meaning representation lacks the capabilities to express all
the dynamics of natural language.
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In Chapter 4 I introduce a formalism to encode meaning representations that
provides several desirable properties from the generation perspective, and I show
how it is capable of performing an alignment between its logical formulas and the
correspondent surface form in order to automatically learn such mapping from the
data.

2.6 NLG Software

The Association for Computational Linguistics has a Web page with a list of NLG
systems available for download.2 The list has been created on 7th February 2009
and to date the last update has been made on 27th November 2013. In this section I
evaluate the current state of the NLG software by going through the aforementioned
list item by item, installing each software package and testing it. The tests are con-
ducted on a modern desktop PC running a common distribution of the GNU/Linux
operating system (Ubuntu 14.04.1 LTS).

� ASTROGEN is a Prolog program comprising sets of rules to translate lexical-
ized logical forms into English language. Included in the system there are
rules for several kind of aggregation and for surface realization. Tested with
SWI-prolog it worked out of the box.

� LKB (Linguistic Knowledge Builder) is a framework for grammar engineering
built as part of the DELPH-IN project. Installing and running the software
is straightforward following the instructions on the project website, and the
GUI makes it easy to experiment with example grammars. The package also
contains a surface realization component, not accessible through the user in-
terface but only as a Lisp library. LKB is developed with Minimal Recursion
Semantics as its focus semantic formalism, although it supports a variety of
grammars.

� MUG workbench is a Web-based tool for the development and testing of Mul-
timodal Functional Unification Grammar composed by a Prolog backend and
a Web interface to interact with the models. Following simple instructions the
system was up and running in short time, however the generation capabilities
are not working, throwing exceptions for every example tested. As a tool to
explore and develop grammars, knowledge bases, and models, MUG is user-
friendly and has lots of useful features.

2http://aclweb.org/aclwiki/index.php?title=Downloadable_NLG_systems

http://aclweb.org/aclwiki/index.php?title=Downloadable_NLG_systems
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� NaturalOWL is a plugin for Protégé3, a popular editor for OWL Ontologies.
With NaturalOWL it is possible to annotate an ontology with a layer of lin-
guistic information such as word forms for concepts, and use the annotations
to produce natural language descriptions based on the original ontology. As
a Protégé plugin, NaturalOWL is very easy to install although it requires spe-
cific versions of Protégé and the Java virtual machine. Once installed, it is
straightforward to activate the plugin, annotate existing ontologies, and pro-
duce automatically generated text previews.

� SimpleNLG is a Java library for surface realization. Following the provided
instruction the library is easy to integrate with the Eclipse IDE4 and get up
and running. The website also contains a tutorial with which the user can
get the hang of the basic functionalities in a few minutes. The library pro-
vides a large number of features to transform lexical items enriched with their
properties into fully realized sentences, including custom lexicons, modifiers,
prepositional phrases, multiple clauses, and more.

Some packages could not be tested for a variety of reasons.

� CLINT: template system augmented with a noun-phrase generator; reasons:
1) not available for download (broken FTP link), 2) only available for the MS
Windows operating systems.

� CRISP [Koller and Stone*, 2007]: a system for microplanning and sentence re-
alization that treats the problem in the AI planning perspective; reason: unable
to build.

� DAYDREAMER: a “computer model of the stream of thought”; reason: broken
link.

� FUF, SURGE, SURGE 2.3, SURG-SP, SURG-IT: a large grammar of English
(SURGE) built on top of FUF, a CLisp interpreter for a functional unification
formalism, and their respective variations for Spanish (SURG-SP) and Italian
(SURGIT); reason: broken links.

� GenI: Haskell-based surface realization module that uses Tree Adjoining
Grammar; reason: unable to build following the instructions on the website.

3http://protege.stanford.edu/
4http://eclipse.org/downloads/

http://eclipse.org/downloads/
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� Grammar Explorer: a tool to explore large-scale systemic-functional gram-
mars, including KPML grammars, for coverage and other features; reason:
only available for MS Windows operating systems.

� KPML: framework for grammar engineering tailored for NLG; reason: only
available for MS Windows operating systems.

� NLGen: component for sentence generation based on probabilistic inference
that generates from the structures produced by the RelEx dependency rela-
tionship extractor; reason: there were files missing in the software distribu-
tion. A video shows a demo of a virtual pet answering few simple questions
with generated short sentences.

� NLGen2: like NLGen it uses the RelEx dependencies as input, but it employs
a different sentence generation strategy from NLGen; reason: could not run
the software, no valid executable was found.

� OpenCCG: library for parsing and realization for Combinatory Categorial
Grammar; reason: impossible to run the system following the instructions in
the documentation.

� RAGS (Reference Architecture for Generation Systems): collection of pack-
ages including a genetic algorithm based text planner and a wrapper for
FUF/SURGE; reason: broken link.

� SPUD: software for sentence planning and surface realization based on a lex-
icalized tree-adjoint grammar; reason: unable to run the software with the
provided instructions.

� STANDUP: a tool for generating word-based jokes with the purpose of aiding
non-speaking children to communicate. Reason: unable to run the software
due to errors. However, the website of the project provides an excellent on-
line interface to the program, complete with the explanation of the generation
process.

� Suregen: system for generating text for clinical medicine from an ontology-
based formalism. It employs NLG techniques as part of the interactive user
interface. Reason: only a demo for MS Windows operating systems is avail-
able for download, although a screencast video shows an example of the soft-
ware in action.

� TG/2: hybrid component for surface realization that supports context-free
grammars as well as templates and canned text. Reason: broken link.
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Of course, the fact that some of the reviewed software packages were not work-
ing properly out of the box means nothing with respect to the scientific value of their
respective underlying ideas. Ideas from these systems are sometimes implemented
in commercial software distributed by companies such as Arria5 and Yseop6.

2.7 Conclusion

This chapter have shown that the field of Natural Language Generation is a var-
iegated galaxy of tasks, methods, theoretical frameworks, and applications. While
many researchers stick to a de facto standard architecture while building single com-
ponents or entire NLG systems, others have experimented with alternative architec-
tures to map abstract representations of meaning to natural language expressions.
Moreover, some are interested in particular applications, while others have looked
at the NLG problem from the theoretical perspective of being the image in the mirror
of Natural Language Understanding.

Statistical approaches are relatively new in the panorama of NLG, which is un-
surprising, considering that such methods typically require language resources that
are expensive and hard to obtain. The previous work discussed in 2.2 and the work
presented in this thesis indicate that the use of statistical methods is indeed promis-
ing for the future developments in NLG.

Sections 2.3 and 2.4 refer to existing work done on specific aspects of NLG,
namely the lexicalization of concepts from formal knowledge bases and the pre-
diction of surface order (treated respectively in this thesis in Chapters 6 and 5. For
both problems, valid and relevant literature was found. However, in both cases the
solutions proposed in literature (and this thesis is no exception) are somewhat tied
to the input representation and its level of abstraction.

As underlined by Evans et al. [2002] when answering the question “What is
NLG?”, the definition of NLG is asymmetrical. While it is easy to agree on what
the output of an NLG component should look like (i.e., natural language text or
speech) there is no agreement on the format and the characteristics of its input. With
this consideration in mind, it is not surprising that so many different approaches to
NLG and its sub-tasks have been proposed over the years, as different types of input
require different ways of processing. As such, the formalism used for the represen-
tation of the input to an NLG system is just as important as its architecture.

5http://www.arria.com/
6http://yseop.com/EN
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Finally, the small survey of NLG software presented in Section 2.6 shows that
there exist robust free software packages to build NLG systems both for practical
applications and experimental work. Unfortunately, a good deal of existing software
is not ready for the general public yet (probably some of the packages were not
meant for non-academic users at all).

This chapter concludes the introductory part of this thesis, where the informa-
tion presented to the reader has been distilled from previously existing work. The
next chapters, instead, will contain new material, including theoretical considera-
tions and experimental evidence.



Chapter 3

Generation of Text from Aligned Logical
Forms

In the past chapter we have seen what is the state of the art of Natural Language
Generation, in particular the solutions based on statistical methods. In this chapter
I introduce a novel solution to the problem of generating natural language expres-
sions, in particular from formal representations of meaning. This is also the first
chapter where new material is presented, in the form of a modular system for NLG
based on the idea of aligning meaning representations and text in order to train a
supervised statistical model. Such model is then used to predict the text aligned to
unlabeled input meaning representations and ultimately construct natural language
utterances to express them.

This chapter presents an overview of the system, then goes into the details of
the meaning representation, the alignment procedure and how to create a complete
text out of partial surface forms corresponding to single entities. The central com-
ponents of the system, responsible to construct the text alignment, need more space
to be described in details, and for this reason they are covered by the Chapters 5
and 6, while Chapter 4 presents a linguistic resource collected in order to leverage
statistical methods.

The goal of this chapter is threefold:

� To introduce a logic formalism capable of representing the meaning of natural
language expressions. These abstract meaning representations can be aligned
to the natural language with a word-based granularity.

� To present a modular system that, given an arbitrary meaning representation
written in the formalism mentioned in the previous item, produces its align-
ment with the surface structure.

� To show how, with such an alignment in place, the final surface form can be
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constructed in a deterministic way by composing partial surface forms corre-
sponding to the entities in the meaning representation.

In the rest of this chapter, I will present the plan for a novel system that generates
a natural language string to express the meaning of a logical formula. The system
is based on a statistical, supervised approach, and is made of several components
which are described in detail in the following sections of this chapter.

Before a panoramic of the entire system is given, it is important to grasp all the
details of the meaning representation formalism on which the system is based on, in
particular its capabilities of being able to represent the meaning of arbitrary open-
domain natural language, as well as being aligned to the surface structure word by
word. The formalism is introduced and described in the next two sections. 1

3.1 Introduction

Some of the approaches found in literature work very well for the particular appli-
cations they focus on, but they are not intended as general-purpose NLG solutions.
This is not meant to be a critique, as these systems are designed to be application-
oriented. Other methods are more general and aimed at generation of open do-
mains, however the abstract representations they employ as their input are too close
to syntactic forms and far from general semantic representations. This can be a
problem when incorporating such NLG components in contexts other than NLP, for
instance as part of a larger pipeline that also includes some kind of knowledge rep-
resentation and reasoning modules. In such a situation, it is desirable to work with
representations that abstract away from linguistic information like syntactic struc-
ture. There are however cases when retaining some syntax structure helps, such as
transfer-based machine translation.

From an applicative point of view, the typical place of NLG in a larger system is
that of a translator from data to text or speech. The problem is of course in the word
“data” and its vagueness. Whether the data to be expressed come from weather
forecasts, medical sensors, GPS coordinates of birds, or football matches, they de-
scribe events happening that involve entities. Entities often have attributes, and
they must be realized in a way that sounds natural, using the correct referring ex-
pressions, e.g., pronouns vs. repetition of explicit mentions. A single abstract lan-
guage to describe the knowledge to be generated would serve as a pivot for the

1This chapter is based on the work published in Basile and Bos [2011] and Basile and Bos [2013a], and
on [Basile and Bos, 2013b, unpublished].
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Table 3.1: Example of data in tabular format: football match Italy-Germany 17 June
1970

Minute Player Team
8 Boninsegna Italy

90 Schnellinger Germany
94 Müller Germany
98 Burgnich Italy

104 Riva Italy
110 Müller Germany
111 Rivera Italy

many different data representation formats, pushing forward the development of
open-domain application-oriented NLG systems. Table 3.1 shows a simple exam-
ple of data in tabular format, describing a football match, one score per row. There
are many ways of describing this data using natural language, for instance “Bonin-
segna (Italy) scores at the eight minute, Müller (Germany) scores at 94’ and 110’,
...” or “Italy wins 4-3”. The records in the table describe an homogeneous series of
events (goal scores) involving entities like players and minutes.

entity(BONINSEGNA, player) event(GOL, 8, BONINSEGNA)
entity(SCHNELLINGER, player) event(GOL, 90, SCHNELLINGER)
entity(MULLER, player) event(GOL, 94, MULLER)
entity(BURGNICH, player) event(GOL, 98, BURGNICH)
entity(RIVA, player) event(GOL, 104, RIVA)
entity(MULLER, player) event(GOL, 110, MULLER)
entity(RIVERA, player) event(GOL, 111, RIVERA)
entity(ITALY, team) event(WIN, ITALY)
entity(GERMANY, team)

Figure 3.1: Example of data in terms of events and entities: football match Italy-
Germany 17 June 1970

A possible alternative to the tabular format based on a formalization of the con-
cepts of event and entity is given in Figure 3.1. This format, albeit retaining the same
amount of information of the alternative one, is more generic, that is, capable of en-
coding different kinds of information without recurring to specialized predicates
and rules.

Finally, an ideal representation of information should be formal so that machines
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and automatic systems can manipulate it in a systematic way, for instance by means
of software that parses such representations and extract information from them. For
instance, with access to some external source of knowledge (encoding the rules of
football, in this case), a computer can infer the last event in the example (the in-
formation that one of the two teams wins, encoded as event(WIN, ITALY)) from the
previous ones.

3.2 General Ideas

The statistical NLG method of the system proposed in this thesis is based on the
idea of an alignment between the abstract representation of meaning and the text
that expresses such meaning. The alignment must comply with certain character-
istics, for example a sufficiently fine granularity must be assured. Apart from that,
different meaning representations call for different strategies of alignment. While
the alignment of logic with text is a more general process than just a part of the
system pipeline, it is essential to explain how it is done and the choices that have
been made, as they actively affect the way the alignment is learned by the system.
This section is therefore a necessary digression to introduce the idea of alignment
between text and logic, before delving into the internals of the architecture of the
NLG system.

Several different formal semantic representations have been proposed in the lit-
erature, such as Minimal Recursion Semantics [Copestake et al., 2005], Abstract
Meaning Representation [Banarescu et al., 2013], the deep syntactic structures from
Meaning Text Theory [Mel’cuk, 1988] and their transformation in semantic structures
proposed by [Bohnet et al., 2011b]. Although they might differ in various aspects,
they also have a lot in common. Many semantic representations are variants of
first-order logic and share basic building blocks such as entities, properties, and re-
lations, complemented with quantifiers, negation and further scope operators. In
other words, those representations encode the logical form of natural language. A
simple snippet of a formal meaning representation based on first order logic is the
following, where symbols are used to abstract away from actual words:

DxpBLUEpxq ^ CUPpxqq

How could this logical form be expressed in natural language? Literally, its
translation looks like “there exists something that is blue and that is a cup”. To
put it differently, how could we realize the variable x in text? As simple as it is, x
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describes “a blue cup”, or if your target language is Italian, “una tazza blu”, or vari-
ants like “there is a blue cup”, or perhaps as “una tazza azzurra”, using a different
adjective to express blueness. Moving away from simple examples, what is needed
is a systematic way of translating the logic predicates into natural language expres-
sions that is able to scale up to larger and more complex semantic representations.

Dx ( BLUEpxq ^ CUPpxq )

A blue cup

Figure 3.2: The surface form “a blue cup” word-aligned to the logical form repre-
senting its meaning.

As pointed out already in this thesis, NLG can be viewed as a machine transla-
tion task, but unlike translating from one natural language into another, the task is
here to translate a formal (unambiguous) language into a natural language like En-
glish or Italian. Current statistical MT techniques are based on large parallel corpora
of source and target text aligned at the word of phrase level. Similarly, statistical
NLG is based on exploiting a collection of text aligned with logical forms represent-
ing its meaning. Figure 3.2 shows an example of aligning the logical form of the
example above with the text “a blue cup”.

Even from this simple example it can be noted how decisions have to be made in
the alignment strategy. For instance, here the determiner is attached to the existen-
tial quantifier and the introduction of the variable x, while a different strategy could
be of aligning the phrase “a cup” to the predicate CUPpxq.

In this section I introduce a method for precise alignment of formal semantic
representations, with certain characteristics, and text. Once we have a good method
to do that, the next step is the creation of a large corpus to open the way for statis-
tical approaches to NLG, in the same vein as those used in machine translation. A
resource of this kind is described in Chapter 4.

There are different ways of alignment semantic representations and surface
strings, each with its advantages and drawbacks. The simplest strategy, but also
the least informative, is to align the semantic representation with a sentence or com-
plete text without further information on which part of the representation produces
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what part of the surface form. This might be enough to develop statistical NLG sys-
tems for a small set of short sentences, but it does not scale up to handle larger texts,
because the learning system would quickly hit the data sparseness problem. If we
want a machine learning approach that is able to predict the alignment of unseen
sentences, then the compositional aspects of natural language should be modeled
somehow, rather than rigidly learn entire sentences with their respective semantic
representations. To do that, one could devise more complex schemes that allow for a
more fine-grained alignment between parts of the semantic representation and sur-
face strings (words and phrases). Here there are two routes to follow, namely the
minimal and maximal alignment.

Minimal alignment is the method where every word in the surface string points
to one element of the semantic representation. This alignment method forms a good
starting point for the development of a statistical NLG component because the learn-
ing system does not have to deal with the redundancy of links between words and
logical forms. The alignment in Figure 3.2 is an example of minimal alignment.

Dx ( BLUEpxq ^ CUPpxq )

A blue cup

Figure 3.3: The surface form “a blue cup” word-aligned to the logical form repre-
senting its meaning using maximal alignment.

In maximal alignment, each single piece of the semantic representation corre-
sponds to the words that express that part of the meaning. One possible problem
with this approach is that it could be hard to find a direct correspondence between
some bits of the semantic representation and the surface form. The resulting align-
ment puts words and elements of the semantic representation in a n-to-n relation,
where a single word could correspond to various pieces in the semantic representa-
tion. A possible maximal alignment of “a blue cup” to its meaning representation is
shown in figure 3.3.

Both the maximal and the minimal alignment strategies provide a sufficiently
fine-grained alignment to employ for statistical generation, however minimal align-
ment allows for an easier implementation in practice, since each element of the
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meaning representation is either aligned to one word or nothing. In Section 3.4 I
propose a method to align semantic representations to the surface form at the word
level that is based on a minimal alignment strategy, rather than maximal alignment,
having found that the former is best suited for the specific abstract meaning repre-
sentation introduced in the next section.

With sufficient data in the form of texts aligned with semantic representations,
this information, independently from which strategy one chooses, can be automat-
ically learned, thus creating a statistical model to generate surface forms from ab-
stract, logical representations. For instance, events in a logical form have a high
chance of being expressed, in English, by verbs.

x

BLUE

∃

CUP

Figure 3.4: Logical form graph representing the meaning of “A blue cup”.

However, aligning semantic representations with words is a difficult enterprise,
primarily because formal semantic representations are not flat like a string of words
and often form complex structures. While a complete definition of a flat formalism
for representing abstract meaning is given in the next section, here a tuple-based
format is informally introduced in order to present the features of the alignment
method. The basic idea is that formal semantic representations are represented as a
set of tuples of fixed cardinality. Returning to the earlier example representation for
“a blue cup”, the logical form corresponding to its meaning could be represented
by a sequence of tuples like xBLUE,instance,xy and xCUP,instance,xy, meaning re-
spectively that BLUE is a predicate over x and CUP too. For readability, the tuples
(triples, actually, in this case) can be displayed as edges of a directed graph, where
the elements of the tuple serve, in order, as tail node, edge label and head node. An
example of such visualization is shown in Figure 3.4.
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x

BLUE
"blue"

∃ "a"

CUP

"cup"

Figure 3.5: Logical form graph representing the meaning of “A blue cup” aligned
with the surface form.

x

BLUE

2

∃ 1

CUP

3

Figure 3.6: Encoding local word order.

Note that in this example some information is missing, such as the conjunction,
which is implicitly represented by the fact that multiple edges are incident on the
same node. Further down in this chapter a complete formalism is introduced that
can indeed represent every bit of semantic information without sacrificing the ca-
pability of alignment with the text. The important thing now is to show how align-
ments between tuples and words can be realized, which is done by adding an ele-
ment to each tuple denoting the surface string, for instance xCUP,instance,x,”cup”y,
as in Figure 3.5.
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Note how the node labeled by the existential quantifier in the graph is used to
accommodate for the alignment of the determiner. A real, complete formalism will
have to account for this kind of representations, for example including the concepts
of clauses and scope.

The alignment can be further refined by adding information about the local or-
der of surface expressions. Again, this is done by adding an element to the tuple,
in this case one that denotes the local order of a logical term. This will be clear by
continuing with the example, where word order information is added, encoded as
numerical indexes in the tuple, e.g., xCUP,instance,x,”cup”,3y, as Figure 3.6 shows.
There are arguably different ways of aligning words with the tuples of a meaning
representation besides the difference between maximal and minimal alignment. In
this case, the information necessary to keep the words in the right order must be
encoded somehow. There are at least two strategies to put the word order into the
alignment, namely global and local ordering. With global ordering, the absolute po-
sition of each word in the surface form is added as an index to the tuple the word is
aligned to. Using the local ordering strategy, instead, means to locally rank subsets
of tuples that share the same head.

x

y

z

agent

1HIT "hit"
2

theme

3

Figure 3.7: Graph for a meaning representation aligned with a partial surface form.

These graphs show the association of the term x with the surface strings “a blue
cup”, but the way to express local order is not limited to words and can be em-
ployed for partial phrases as well. This can be achieved by using the same kind of
numerical indexes already used for the alignment of words. The example in Fig-
ure 3.7 shows how to represent an event “hit” with the terms filling its roles agent
and theme, preserving their relative order. Note that this is a particular way of repre-
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senting events, entities and the relationship between them — a neo-Davidsonian kind
of representation. The choice of this representation actually plays an important role
in the method of alignment presented here, that will be clear later in this chapter.
The partial surface form corresponding to the semantics encoded in the figure is “y
hit z”, where y and z are placeholders for parts of the surface that have not been
realized yet. Surface forms like the one in the example are partial, or incomplete,
because they contain variables. Conversely, a surface form is complete when it only
contain words. In a way, this scheme defines a sort of context-free grammar for the
variables contained in the logical forms and their respective surface forms. In the
example above, we can say that the production rule x Ñ y hit z applies, so that the
surface form of x depends on the surface forms of y and z.

e1

x1

¬

PAY

"not"

CUSTOMER

agent

"pay"

"customer"

∃

"a"

Figure 3.8: Meaning representation of “a customer did not pay”. The word “did”
cannot be easily aligned within this schema.

This is the basic idea of aligning surface strings with parts of a deep semantic
representation. Note that precise alignment is only possible for words whose lexical
semantics include variables, e.g., nouns, verbs, etc. For words that introduce scope
operators (negation particles, coordinating conjuncts) one cannot have the cake and
eat it: specifying the order of the tuples with respect to an entity or event variable
directly and at the same time associating it with an operator is not always possible.
Figure 3.8 illustrates this problem with an example meaning representation of the
text “a customer did not pay” — the auxiliary verb “did” does not find an intuitive
place in the alignment. The next section explains how this issue can be addressed by
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introducing extra tuples that complement the semantic representation to facilitate
perfect alignment.

xBLUE

∃

∧

CUP

Figure 3.9: Logical form graph representing the meaning of “A blue cup” with the
conjunction explicitly represented.

As mentioned earlier, the graph-based representations used as examples
throughout this section are arguably incomplete. For ease of presentation, some
information has been left outside the graphical representation. For instance, the con-
junction in the formula DxpBLUEpxq ^ CUPpxqq is rendered implicit, since the main
point of these examples is to show how the meaning representation is aligned to the
surface, rather than to give a complete formalism (which is done in the next sec-
tions). A version of the example in Figure 3.4 where the conjunction is explicitly
represented would look like the graph in Figure 3.9.

3.3 A Semantic Representation for Generation

The formalism to encode the input of an NLG system does not have a standard
definition in literature, mainly because different systems have different needs and
in general they aim at different goals. For instance, the system subject of this the-
sis focuses on the generation of natural language from structures that already con-
tain the information to be conveyed, although expressed in a formal and language-
independent way. This leaves the problem of selecting the relevant information out
of the picture, which is not always the case among NLG systems. On the other hand,
if the formalism is too close to the natural language, for instance including syntactic
or lexical information, then the system would suffer from a loss of generality of the
utterances it can produce.
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Moreover, as mentioned before, a theoretically sound formalism is an ideal input
of a general purpose system for NLG, because of it being capable, for instance, of
supporting logical inference. In this section I argue for one specific formalism as a
suitable candidate for this task. The formalism is based on an existing one rooted
into formal semantics, with the important addition of being transformed into a flat
formalism in order to facilitate the alignment with surface. In fact, the formalism
makes possible a fine-grained alignment with the surface structure at the level of
words, of the type described in the previous section.

3.3.1 Discourse Representation Theory

The choice of semantic formalism should ideally be independent from the applica-
tion of natural language generation itself, to avoid bias and specific tailoring the
semantic representation to one’s (technical) needs. Furthermore, is it a desirable
property for such formalism to have a model-theoretic backbone, to ensure that the
semantic representations one works with actually have an interpretation, and can
consequently be used in inference tasks using, for instance, automated deduction
for first-order logic. Given these criteria, a good candidate is Discourse Representa-
tion Theory (DRT) by Kamp [1984], a dynamic theory of the meaning of natural lan-
guage. DRT models the way humans interpret language by building formal struc-
tures called Discourse Representation Structures (DRSs) and updating them when
new pieces of discourse are considered. Here, the input consists of a variant of such
DRSs, that are in fact abstract representations of meaning. The dynamic aspect of
DRT is not relevant for the purpose of this thesis, because here DRSs are used as
static representations of meaning, i.e., a formal language to encode meaning.

One of the reasons behind the original formulation of DRT in the eighties is that
the formalisms that were existent at the time were not capable of expressing the
meaning of certain kinds of sentences. Consider for instance the following two sen-
tences:

1. If Pepe owns a donkey, he beats it.

2. If a farmer owns a donkey, he beats it.

In the first sentence, the pronoun he clearly refers to Pepe, the subject of the first
clause, and it refers to the the donkey he owns. In the second sentence, however, he
does not refer to a singular farmer, but rather to every farmer that owns a donkey,
while the pronoun it refers to the donkey that he owns. The problem is that the indefi-
nite article a in natural language is typically translated into an existential quantifier,
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but, in the case of the second sentence, the donkey should be represented in the
scope of a universal quantifier. DRT is indeed capable of dealing with quantifiers
(such as every) and their scope, thanks to the way DRSs are built. A DRS comprises
two parts: a set of discourse referents (the entities introduced in the text), and a set of
conditions, describing the properties of the referents and the relations between them.

x

PEPE(x)
y

DONKEY(y)
OWN(x,y)

ñ
BEAT(x,y)

x y

FARMER(x)
DONKEY(y)
OWN(x,y)

ñ
BEAT(x,y)

Figure 3.10: DRSs representing the meaning of the two sentences “if Pepe owns a
donkey, he beats it.” (left) and “if a farmer owns a donkey, he beats it.” (right).

DRSs are traditionally visualized as boxes, with the referents placed in the top
part, and the DRS conditions in the bottom part. Figure 3.10 shows the two DRSs
representing the meaning of the two donkey sentences above.

x y z

MARY(x)

y:

w

RUN(w)
AGENT(w,x)

WANT(z)
AGENT(z, x)
THEME(z, y)

Figure 3.11: DRS for the sentence “Mary wants to run”.

The DRS conditions can be divided into basic and complex conditions. The ba-
sic conditions are used to describe names of discourse referents (named entities),
events, entities, relations between discourse referents, cardinality of discourse ref-
erents denoting sets of objects, or to express identity between discourse referents.
The complex conditions introduce embedded DRSs: implication (ñ), negation ( ),
disjunction (_), and modalities (l, �). DRSs are thus of recursive nature, and the



44 Chapter 3. Generation of Text from Aligned Logical Forms

embedding of DRSs restricts the resolution of pronouns (and other anaphoric ex-
pressions), which is one of the trademarks properties of DRT. Figure 3.11 shows an
example of DRS representing the meaning of a sentence containing a subordinate
clause, specifically the one introduced by the control verb “want” in the sentence
“Mary wants to run”.

The representation introduced in this chapter and used through the rest of the
thesis comprises a particular set of well-known extensions of standard DRT, namely
thematic roles from VerbNet Kipper et al. [2008], treatment of rhetorical relations
[Asher and Lascarides, 2003], presuppositions [Van der Sandt, 1992b], modal logic,
and hybrid conditions (conditions connecting a discourse referent to a DRS via la-
beling). These extensions are implemented in the version of DRSs contained in the
linguistic resource introduced in the next chapter. The DRS in Figure 3.11 highlights
a couple of features of this kind of semantic representation. First, the embedded DRS
is labeled (y) in order to allow the outer condition THEME(z, y) to refer to it (“to run”
is the object of what Mary wants). Second, a particular way of encoding semantics
is used here, namely a neo-Davidsonian semantic representation [Parsons, 1990].
In this kind of representation events are explicit variables and the participation of
an entity in an event is encoded by an additional condition (a thematic role) rather
than as an argument of the event itself, e.g. OWN(x,y) vs. OWN(z) ^ AGENT(z,y) ^
THEME(z,y). Both of these two characteristics are play a role in the new formalism
proposed in the next section as a basis for natural language generation.

DRSs are formal structures and come with a model-theoretic interpretation. This
interpretation can be given directly [Kamp, 1984] or via a translation into first-order
logic [Muskens, 1996]. This is interesting from a practical perspective, because it
permits the use of efficient existing inference engines developed by the automated
deduction community. Applying logical inference can play a role in tasks surround-
ing NLG (e.g., summarization, question answering, or textual entailment), but also
dedicated components of NLG systems, such as generating definite descriptions,
which requires checking contextual restrictions [Gardent et al., 2004].

3.3.2 Discourse Representation Graphs

DRSs are capable of effectively representing the meaning of natural language, cov-
ering many linguistic phenomena including pronouns, quantifier scope, negation,
modality, and presuppositions. They are recursive structures put together by logical
and non-logical symbols, as in predicate logic. The way DRSs are nested inside each
other give DRT the ability to explain, among other phenomena, the behavior of pro-
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nouns (see the example in Figure 3.10) and presuppositions [Van der Sandt, 1992b].
However, aligning DRSs with text with fine granularity is hard because words and
phrases introduce different kinds of semantic objects in a DRS: discourse referents,
predicates, relations, but also logical operators such as negation, disjunction and im-
plication that introduce embedded DRSs. A precise alignment of a DRS with its text
on the level of words is therefore a non-trivial task. However, since the constructs
of DRT are designed to represent natural language, the alignment is more intuitive
compared to first-order logic formulas.

x y

r(x,y)

 

z

p(x)
s(z,y)

K1:

x y

c1:r(x,y)

c2: K2:

z

c3:p(x)
c4:s(z,y)

Figure 3.12: From DRS to DRG: labeling.

To overcome this issue, the format of DRSs must be transformed, making all
recursion implicit while retaining the same amount of information and not intro-
ducing ambiguity. Note that labeling conditions is crucial to distinguish between
syntactically equivalent conditions occurring in different (embedded) Here the as-
sumption that conditions appear in the DRS in which their discourse referents are
introduced is absent. The example in Figure 3.12 illustrates that this assumption is
not sound: the condition p(x) is in a different DRS than where its discourse referent x
is introduced. The reification procedure yields “flatter” representations than similar
formalisms [Copestake et al., 2005, Reyle, 1993], and this makes it more convenient
to align surface strings with DRSs with a high granularity.

While the basic ideas for this new format are already introduced in Section 3.2,
here I present a concrete formalism. The format is based on a tuple-based represen-
tation of a DRS, where each bit of information in the original structure is translated
into triples that can also be seen as edges connecting nodes of a directed graph. The
new structure is called a Discourse Representation Graph (DRG). A DRG can there-
fore be written in both formats, as a directed graph or as a set of triples <node, edge,
node>, so to obtain a tabular representation. Figure 3.13 shows, side by side, a DRS
and the corresponding DRG written in tuple-based format and graph format. While
the graph notation makes some notions about the DRG format easier to grasp, the
representation commonly used in computer implementations is the tuple-based one.
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k1:
 k2:

x1 e1

CUSTOMER(x1)
PAY(e1)
AGENT(e1,x1)

k1 unary  

 scope k2

k2 referent e1

k2 referent x1

k2 event PAY

k2 concept CUSTOMER

k2 role AGENT

CUSTOMER instance x1

PAY instance e1

AGENT internal e1

AGENT external x1

k1 ¬unary k2

e1

referent

x1
referent

pay
event

customerconcept

agent

role
scope

internal

external

CUSTOMER

instance

PAY instance

Figure 3.13: DRS and corresponding DRG for “A customer did not pay.”

Throughout the thesis both formats are used, depending on whether the emphasis
has to be put on readability or on implementation details.

The trick, well-known in computer science, that makes possible this translation
of formats is the application of a form of reification over DRSs. Every DRSs gets
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a unique label, and, accordingly, the arity of DRS conditions increases by one for
accommodating a DRS label — see for instance the newly introduced labels k1 and
k2 in the example in Figure 3.13, corresponding to the main and embedded DRSs.

A DRS is an ordered pair of discourse referents (variables over entities) and DRS-
conditions. DRS-conditions are basic (representing properties or relations) or com-
plex (to handle negation and disjunction). To reflect these different constructs, we
distinguish three types of tuples in DRGs, each with their own sub-classification:

� xK,referent,Xymeans that X is a discourse referent in K.

� xK,condition,Cy means that C is a condition in K, having sub-type concept,
event, relation, role, named, cardinality, attribute, unary, and binary.

� xC,argument,Aymeans that C is a condition with argument A.

The hypothesis is that the DRG format is convenient for the alignment with the
surface form. In particular, by “unrolling” every element of the original DRS into a
fine-grained set of tuples, the format lends itself naturally to a minimal alignment,
where to each tuple can correspond a lexical item. The next section shows with
concrete examples how this alignment is made.

With the help of a concrete example, it is easy to see that DRGs have the same
expressive power as DRSs. Consider for instance a DRS with negation, before and
after labeling it (Figure 3.12).

Now, from the labeled DRS one can derive the following three referent
tuples: xK1,referent,xy, xK1,referent,yy, and xK2,referent,zy; the following
four condition tuples: xK1,relation,c1:ry, xK1,unary,c2: y, xK2,concept,c3:py,
and xK2,relation,c4:sy; and the following argument tuples: xc1:r,internal,xy,
xc1:r,external,yy, xc2: ,scope,K2y, xc3:p,instance,xy, xc4:s,internal,zy, and
xc4:s,external,yy. From these tuples, it is straightforward to recreate a labeled
DRS, and by dropping the labels subsequently, the original DRS resurfaces again.

The formalism of Power [1999] consists of semantic networks enriched with
scope information for content planning. Power’s scoped semantic networks have
a lot in common with DRGs, but there are also formal differences, as they do not
have the same expressive power. For instance, scoped semantic networks cannot
encode phrases like “a red or blue car” with the correct scope assignments. This is
possible with a DRG.
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3.4 Word-Aligned DRGs

The two components of the pipeline described in the previous sections have the
role of constructing an alignment between the input DRG and the surface form,
like the one sketched in Section 3.2. In this section I show how such an alignment
between surface text and its logical representation is realized in practice by adding
information to the tuples that make up a DRG. This sounds more straightforward
than it is. For some word classes this is indeed easy to do. For others, additional
machinery needs to be introduced in the formalism.

Determiners are usually associated with referent tuples. Content words, such
as nouns, verbs, adverbs and adjectives, are typically directly associated with one-
place relation symbols, and can be naturally aligned with argument tuples. Verbs
are assigned to instance tuples linking its event condition; likewise, nouns are typ-
ically aligned to instance tuples which link discourse referents to the concepts they
express; adjectives are aligned to tuples of attribute conditions. Finally, words ex-
pressing relations (such as prepositions), are attached to the external argument tuple
linking the relation to the discourse referent playing the role of external argument.

k1 unary  

 scope k2

k2 referent e1

k2 referent x1 1 A
k2 event PAY

k2 concept CUSTOMER

k2 role agent

CUSTOMER instance x1 2 customer
PAY instance e1 4 pay
agent internal e1 1
agent external x1

k2 surface e1 2 did
k2 surface e1 3 not
k2 surface e1 5 .

Figure 3.14: Word-aligned DRG for “A customer did not pay.” All alignment infor-
mation (including surface tuples) is highlighted.

Although the strategy presented for DRG–text alignment is intuitive and
straightforward to implement, there are surface strings that don’t correspond to
something explicit in the DRS. To this class belong punctuation symbols, and se-
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k1 ¬unary k2scope

k2 e1referent

x1

k2 referent
"A"

1

CUSTOMER

instance
"customer" 2

e1

x1

k2

referent

surface
"did"

2
surface
"not"

3
surface

"." 5

PAY

event instance
"pay"

4

theme

internal

1

external

Figure 3.15: Discourse referents of the DRG shown in Figure 3.14 (k1, k2, e1 and x1
and their incident edges).
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mantically empty words such as (in English) the infinitival particle, pleonastic pro-
nouns, auxiliaries, there insertion, and so on. Furthermore, function words such as
“not”, “if”, and “or”, introduce semantic material, but for the sake of surface string
generation could be better aligned with the event that they take the scope of. To deal
with all these cases, DRGs are extended with surface tuples of the form xK,surface,Xy,
decorated with the required surface strings. Figure 3.14 shows an example of a DRG
extended with such surface tuples.

Note that these kind of tuples don’t have any influence on the meaning of the
original DRS — they just serve for the purpose of alignment of the required surface
strings. Also note in Figure 3.14 the indexes that were added to some tuples. They
serve to express the local order of surface information.

Following the idea sketched in Section 3.2, the total order of words is trans-
formed into a local ranking of edges relative to discourse referents. This is possible
because the tuples that have word tokens aligned to them always have a discourse
referent as third element (the head of the directed edge, in terms of graphs). Tuples
that share the same discourse referent are grouped and then labeled with indexes re-
flecting the relative order of how these tuples are realized in the surface form. This
process is described in greater detail in Chapter 5.

Illustrating this with the example in Figure 3.14, in the DRG there are two dis-
course referents: x1 and e1. The discourse referent x1 is associated with three tu-
ples, of which two are indexed (with indexes 1 and 2). Generating the surface
string for x1 succeeds by traversing the edges in the order specified, resulting in
[A,customer] for x1. The referent e1 associates with six tuples, of which four are in-
dexed (with indexes 1–4). The order of these tuples would yield the partial surface
string [x1,did,not,pay,.] for e1. The relevant four sub-graph are shown in Figure 3.15
where tuple indexes are written on the head of the edges.

Note that the syntax of DRSs ensures that all discourse referents are linked to
each other by taking the transitive closure of all binary relations appearing in a DRS,
and therefore it is possible to reconstruct the total order from composing the local
orders. The next section will introduce an algorithm that generalizes this process in
order to construct the complete surface form corresponding to the whole DRG.

3.5 Overview of the System

The traditional architecture of many NLG systems is a pipeline in which the output
of a component forms the input for the following one. The previous chapter already
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covered this kind of architecture and its building blocks, i.e., Macro-planning (or
Content Planning), Micro-planning and Surface Realization, in this order.

The system introduced in this section is called the Unboxer, a pun on being the
inverse of Boxer, the tool for semantic analysis of natural language. It is based on
a pipeline architecture, but there are a few distinctions from the standard architec-
ture. First, Content Planning is considered already taken care of. This is because the
structures from which the Unboxer generates natural language expressions already
encode a kind of content plan, that is, the content to be conveyed but also discourse-
level information. Secondly, some components of the Unboxer pipeline may work
in parallel, and they do not correspond to the usual NLG modules in their behavior.

Unboxer

meaning
representation

prediction of
surface order

prediction of
lexical items

text-aligned
meaning

representation

surface
realization

surface form

Figure 3.16: A schematic view of the architecture of the Unboxer system.

The Unboxer is a modular system made of three main components that takes in
input an abstract meaning representation and produces a text string. a depiction of
the architecture of the system is in Figure 3.16.

The format of the input is a text file containing an abstract representation of
meaning. This format is rooted in the semantic theory described in the previous
sections and it is able to effectively represent any kind of information to be gener-
ated. This file could be, for instance, the output of an external component acting
as content planner, or taken from an existing database. The origin of the input of
the Unboxer pipeline is out of the scope of this dissertation, as it is not important
to answer the research questions relative to the generation of natural language from
such structures.

The input meaning representation is fed to two modules that serve the purpose
of constructing an alignment between the abstract structure and the text. The align-
ment strategy introduced in Section 3.2 is a key idea of the whole process, and it con-
sists in the association of information about the surface form (content words, their
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order, etc.) to the abstract structure at a sufficiently fine-grained level. The module
labeled “prediction of lexical items” is responsible for the choice of the words to be
used to produce the surface form, since the input structure only contains abstract
representation of entities, events, attributes and the like. The “prediction of surface
order” module is instead responsible for the information on the relative position
of words and phrases in the surface form, which is absent in the abstract meaning
representation. Sections 3.5.1 and 3.5.2 briefly describe the surface order module
and the lexicalization module of the pipeline, while their principles and ways of
working are treated in greater detail in two dedicated chapters.

The two modules, in this architecture, work in parallel, starting from the same in-
put and producing different outputs. In this respect, the architecture of the Unboxer
deviates from a classic pipeline model, where each transformation step strictly fol-
lows the preceding one. Alternative architectures, for instance one in which the two
modules somehow inform each other, are left for future exploration. The combina-
tion of the output of these two modules is a structure that contains the information
needed to generate the final output. Once the surface-aligned structure is ready, the
final module of the pipeline uses it to construct the final output, that is, the surface
form that expresses the meaning encoded in the input structure. This module is
based on an algorithm that works by composition, with interesting properties, that
is described in Section 3.5.3.

3.5.1 Surface Order

A DRG is a logical formula, containing no information about the surface form what-
soever, therefore the need for machine learning approaches to predict the alignment
with the text. The usual approach found in literature is based on language modeling,
that is, to produce all possible generations and then rank them based on a statistical
model of the target language. Such statistical models can predict the probability of
a given sentence from the probability of the single n-grams it is made of. Language
modeling is a field on its own and a very important one in Computational Linguis-
tics, with many applications. For a survey of language modeling methods see Zhai
[2008].

The Unboxer approach to the prediction of word order is different from the over-
generation and ranking approach. The component for the prediction of word order
is a supervised statistical system that uses the alignment information in gold stan-
dard DRGs to learn to predict the same alignment in arbitrary DRGs. In particular,
the system exploits the strategy of representing the order of the tuples locally with
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respect to the discourse referents. Each referent in a DRG is associated with a (usu-
ally small) list of edges to rank, and ordering such lists is enough to predict the total
order of the final surface form due to the connected structure of the DRGs.
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Figure 3.17: Difference between global ordering (left) and local ordering (right) in
the alignment of a DRG with the surface form “The customer pays the bill.”

Casting the problem this way, the prediction of word order in generation from
a DRG is reduced to a learning to rank problem, a type of machine learning prob-
lem. The elements to rank are the tuples, that is, the problem is to assign a numeric
index to each tuple. Each list of tuples linked to each discourse referent is an in-
stance of the problem, and text-aligned DRGs provides a gold standard for training
a statistical model. The strategy to encode word order used here is local order (see
Section 3.2), that is, indexes are added to the tuples encoding their order relative to
each discourse referent. It is possible to recover the full word order from an align-
ment in which local ordering is used, while at the same time thanks to this strategy
the task can be cast as a machine learning problem with a manageable input. For
these two reasons the strategy implemented in the Unboxer system is local ordering.
Figure 3.17 shows the difference between global and local ordering. Note that local
ordering needs a higher number of indexes on the tuples.

To automatically learn and predict the order of the words in an alignment in a su-
pervised way is ranking problem. Chapter 5 is dedicated entirely to the component
that solves this problem implementing a supervised solution.
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3.5.2 Lexicalizaton

DRGs are abstract logical forms in which the symbols do not necessarily hold a
meaning outside the formula. In order for DRGs to be useful for practical purposes
they have to express predicates and relations over real word entities. For this reason
the semantic representation must provide links to some kind of real-world knowl-
edge base. A very basic example of such a knowledge base is a dictionary, where
each entry is a particular sense of a word and in general multiple entries correspond
to single words. However, the simple flat structure of a common dictionary is not
suitable for the representation of knowledge in general, as it often lacks information
such as semantic relations between concepts and events.

A better way of formally representing world knowledge is to use an ontology,
that is, a structured collection of concepts, relations and rules, organized taxonomi-
cally and encoded in a format readable by computers. The Unboxer indeed employs
a knowledge base that somehow is positioned halfway through an electronic dictio-
nary and a full-fledged computational ontology (see 6.4).

Once the abstract meaning representation is linked to a knowledge base, the
problem remains to generate proper words in the target natural language in the
surface form. If the knowledge base already provides alternatives in the form of
words and phrases, then the problem becomes lexical choice, i.e., the task of choosing
the most apt words to express a given concept. The result of the lexical choice step
must be then complemented with the generation of the correct morphological form of
the chosen words, in order for the final result to be grammatical, because the lexical
choice step only provides uninflected lemmata.

Just as the prediction of surface order, the component of the Unboxer that imple-
ments the solution to the lexicalization step is complex, and therefore it requires a
chapter on its own. This part of the NLG process, along with the choice of a knowl-
edge base suitable for generation are treated in detail in Chapter 6.

3.5.3 Surface Realization

A completely aligned DRG contains all the information necessary to generate its
corresponding surface form, that is, the word forms and the order in which they
occur. Still, it is not trivial to use this information to put the pieces together, because
the information is scattered all around the (aligned) semantic representation, far
from resembling a linear structure. This section introduces an algorithm to generate
surface forms by composing partial surface forms expressing concepts, events and
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discourse units.

The algorithm works in two steps. First, a complete or incomplete surface form is
associated with each discourse referent, that is, a sequence of tokens and variables is
constructed for each discourse referent in the input structure and its alignment with
the surface form. As a second step, these surface forms are put together in a bottom-
up fashion, to generate the complete output. The goals of this composition phase
is that of associating all of the discourse referents with their own complete surface
representation. The surface form associated with the discourse unit that contains all
other discourse units is then the text aligned with the original DRG.

The surface forms of discourse referents are lists made of tokens and other dis-
course referents. Recall that the order of the elements of a discourse referent’s sur-
face form is reflected by the local ordering of tuples, as explained in the previous
section, and tuples with no index are simply ignored when reconstructing surface
strings.

The surface form is composed by taking each tuple belonging to a specific dis-
course referent, in the correct order, and adding the tokens aligned with the tuple
to a list representing the surface string for that discourse referent. Additionally, an
important part of this process is that binary DRS relations, represented in the DRG
by a pair of internal and external argument tuple, are followed unidirectionally: if
the tuple is of the internal type, then the discourse referent on the other end of the
relation (i.e., following its external tuple edge) is added to the list. Surface forms for
embedded DRSs include the discourse referents of the events they contain. Going
back to the examples of discourse referents in Figure 3.15, let us focus on x1 and
e1, representing respectively the customer entity and the event of (not) paying. The
construction of the surface for x1 is straightforward: the algorithm considers the
two inward edges <k2, referent, x1> and <CUSTOMER, instance, x1> in this order as
specified by the indexes, thus creating the list of two work tokens r“A”, “customer”s
for the discourse referent x1. This is an example of complete surface form, the final
surface form for this discourse referent. The situation is different for e1, where the
inward edge with index 1 is of type internal, thus triggering the algorithm to follow
the link and include the discourse referent on the other side of the theme relation
(x1) into the surface form. Following the usual procedure, the algorithm obtains
then [x1, “did”, “not”, “pay”, “.”] as the incomplete surface form for the discourse
referent e1. The surface forms at this step for k2 is given just by e1, while that of k1
is k2, that is, the surface form corresponding to a DRS is ultimately coming from its
head event.

Typically, discourse units contain exactly one event (the main event of the
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clause). Phenomena such as gerunds (e.g., “the laughing girl”) and relative clauses
(e.g., “the man who smokes”) may introduce more than one event in a discourse
unit. To ensure correct order and grouping, the alignment implements a tech-
nique borrowed from description logic [Horrocks and Sattler, 1999] and invert roles
in DRGs. Rather than representing “the laughing girl” as [girl(x) ^ agent(e,x) ^
laugh(e)], the formalism represents it as [girl(x) ^ agent�1(x,e) ^ laugh(e)], making
use of R(x,y) � R�1(y,x) to preserve meaning. This trick ensures a correct encoding
of that the local order of noun phrases with relative clauses and alike.

To wrap things up, a composition operation is used to derive complete surface
forms for DRGs. Composition puts together two surface forms, where one of them
is complete, and one of them is incomplete. It is formally defined as follows:

�1 : � �2 : �1�1�2

�2 : �1��2

(3.1)

where �1 and �2 are discourse referents, � is a list of tokens, and �1 and �2 are mixed
lists of word tokens and discourse referents. In the example from Figure 3.14, the
complete surface form for the discourse unit k1 is derived by means of composition
as formulated in (3.1) as follows:

k2 : e1

x1 : A customer e1 : x1 did not pay

e1 : A customer did not pay .

k2 : A customer did not pay .

The procedure for generation described here is reminiscent of the work of
Shieber [1988] who also employs a deductive approach. In particular the compo-
sition operation can be seen as a simplified completion.

3.6 Discussion and Conclusion

To test the strategy for alignment and the algorithm for surface realization presented
in this chapter, I took advantage of an existing database of surface-alignment DRGs
that will be introduce extensively in the next chapter. After implemented a first
prototype of the realization algorithm and running it on examples taken from such
annotated corpus, naturally, I came across phenomena that are notoriously hard to
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analyze. Most of these cases can be handles adequately, but not all of them, which
will require further work. Here is a list of interesting and somewhat challenging
phenomena.

3.6.1 Embedded Clauses

In the variant of DRT used for this thesis, propositional arguments of verbs intro-
duce embedded DRSs associated with a discourse referent. This is a good test for the
surface realization formalism, because it would show that it is capable of recursively
generating embedded clauses.
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Figure 3.18: Word-aligned DRG for the sentence “Michelle thinks that Obama
smokes.”

Figure 3.18 shows the DRG for the sentence “Michelle thinks that Obama
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k1 : e4

x1 : Michelle e1 : x1 thinks p1
e1 : Michelle thinks p1

p1 : that e2

x2 : Obama e2 : x2 smokes .

e2 : Obama smokes .

p1 : that Obama smokes .

e1 : Michelle thinks that Obama smokes .

k1 : Michelle thinks that Obama smokes .

Figure 3.19: Surface composition of embedded structures. The complete surface
forms are highlighted.

smokes.” Here the surface forms of two discourse units (main and embedded)
are generated. In order to generate the complete surface form, first the embedded
clause is generated, and then composed with the incomplete surface form of the
main clause, as shown in Figure 3.19. As noted earlier, during the composition pro-
cess, the complete surface form for each discourse referent is generated (highlighted
in bold face in the figure), showing a clear alignment between the elements of the
semantic representation and the surface forms they represent.

3.6.2 Coordination

Coordination is another good test case for a linguistic formalism. Consider for
instance the sentence “Subsistence fishing and commercial trawling occur within
refuge waters”, where two noun phrases are coordinated, giving rise to either a
distributive (introducing two events in the DRS) or a collective interpretation (intro-
ducing a set formation of discourse referents in the DRS).

Interestingly, using the distributive interpretation DRG as input to the surface
realization component could result, depending on how words are aligned, in the
surface form “fishing occurs and trawling occurs”, rather than “fishing and trawling
occur”. This kind of phenomena poses the problem of what dimensions are taken
into account during the evaluation of NLG. The former realization is not wrong in
that it preserves the intended meaning, but yet it is arguably worse than the former
in terms of fluency.

The formalism proposed in this chapter can account for both interpretations, as
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Figure 3.20: Analysis of NP coordination, in a distributive (left) and a collective
interpretation (right).

shown in Figure 3.20.

3.6.3 Long-Distance Dependencies

Cases of extraction, for instance with WH-movement, could be problematic to cap-
ture with the DRG formalism. This is in particular an issue when extraction crosses
more than one clause boundary, as in “Which car does Bill believe John bought”.
Even though these cases are rare in the real world, a complete formalism for that
serves as the basis for a general-purpose NLG pipeline must be able to deal with
such cases. The question is whether this is a separate generation task in the do-
main of syntax [White et al., 2007], or whether the current formalism needs to be
adapted to cover such long-distance dependencies. Another range of complications
is caused by discontinuous constituents common in languages other than English.
For instance, consider the Dutch sentence “Ik heb kaartjes gekocht voor Berlijn”
(literally: “I have tickets bought for Berlin”), where the prepositional phrase “voor
Berlijn” is an argument of the noun phrase “kaartjes”. In the proposed formalism the
only alignment possible would result in the sentence “Ik heb kaartjes voor Berlijn
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gekocht”, which is arguably a more fluent realization of the sentence, but does not
correspond to the original text. If one uses the original text as gold standard, this
could cause problems in evaluation. One could also benefit from this deficiency, and
use it to generate more than one gold standard surface string. This is something to
explore in future work.

3.6.4 Control Verbs

In constructions like “John wants to swim”, the control verb “wants” associates its
own subject with the subject of the infinitival clause that it has as argument. Seman-
tically, variable binding is used to account for this kind of constructions. Generating
an appropriate surface form for semantic representation with controlled variables is
a challenge: a naive approach would generate “John wants John to swim”. One pos-
sible solution is to add another derivation rule for surface composition dedicated to
deal with cases where a placeholder variable occurs in more than one partial surface
form, substituting a null string for a variable following some heuristic rules. A sec-
ond, perhaps more elegant solution is to integrate a language model into the surface
composition process as a post-processing step to filter out correct but not natural
sounding realizations.

3.6.5 Surface Tuples

Arguably, “surface” tuples as described in Section 3.4, are not part of a logical form.
Even when integrating the logic with world knowledge, for instance by linking en-
tities and events to entries in an ontology, it is usually impossible to align all the
words. In particular, particles such as infinitivals and logic connectives, or punctu-
ation marks, do not always fit in the structure of a DRG in an intuitive way. More-
over, some of this particles can carry important semantic information, as is the case
of logical connectives (“not”, “if”, “and”, “or”, ...), but due to the alignment strategy
chosen for generation purposes, they find a better place when aligned with surface
tuples. The problem with surface tuples is that a realistic DRG that acts as input
for an NLG system, e.g., the translation into logic of numeric data, will not con-
tain them. There are two way of approaching this problem. One is to change the
procedure of alignment to try and fit every word in the surface form into the logic
structure, for instance by aligning sequences of words to single non-surface tuples.
This approach presents a problem if applied together with the current surface com-
position procedure, that is, when the words to be aligned to a single tuple are not
consecutive. Considering for instance a question in English like “Did John go to
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the park?”, the words “did” and “go” would be aligned on the same tuple, caus-
ing troubles during the composition process that would halt because the operation
3.1 cannot deal with such cases. An alternative approach to eliminate the need of
surface tuples is to automatically learn the non-semantic information them from the
data. Experiments to test the feasibility of this solution are left for future work.





Chapter 4

A Semantically Annotated Corpus for
Generation

The basis of any method that employs statistics to learn from existing data is in the
big numbers. Automatic systems need to be fed a vast number of examples in order
to learn useful patterns and be able to generalize and apply the learned information
to new, unseen instances. The more information is provided to a learning system,
the better it will perform at its task. In Natural Language Processing the data sets
used for such purposes typically come in the form of text corpora, that is, large col-
lection of digitized texts. Text corpora can be also enriched by manual or automatic
annotation. The size of the collection, the coverage and depth of the annotation,
the conventions and the theories vary wildly, as do many other factors such as lan-
guage(s) genre, medium, purpose, and so on. The chapter on related work covers
some of the attempts at building large resources for statistical NLP that have been
made in the past decades.

From the standpoint of the statistical generation process, there is the need for a
corpus that is not only large enough to be statistically relevant, but also enriched
with deep semantic analysis. A sizable collection of natural language text paired
with formulas expressed in a coherent, formal logic system represents a resource
whose potential goes beyond that of the classical syntax-driven treebanks. For one
thing, the semantic level of analysis of text is more abstract than syntactic analysis,
closer to the abstract representation of information that would be input to a real-
world NLG pipeline. As an indirect consequence, formal logic formulas are gener-
ally independent from a specific language, thus positioning semantically-motivated
NLG in the context of Machine Translation.

At the time of the start of the work described in this thesis, there was no publicly
available resource that encompassed all the characteristics of a corpus for statistical
generation from logical forms, therefore the need to create such a resource. The
Groningen Meaning Bank (GMB) represents an effort to build a large, free corpus
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of modern English text annotated with several layers of information ranging from
the boundaries of words and sentences to complete logical forms representing entire
documents.

Building a resource with such features is far from being a trivial task. Regard-
less, in this chapter I prove that it is indeed possible to construct a semantically
annotated corpus to be employed in the framework of statistical general-purpose
NLG, by reporting about the work, started in early 2011, that had led to the creation
of the GMB. The other important question is about the quality of the data, that is,
how to ensure a gold standard level of linguistic annotation. The final part of this
chapter will cover how this aspect is approached by means of two complementary
strategies.1

4.1 The Groningen Meaning Bank

In this chapter I detail the story of how the Groningen Meaning Bank has been con-
ceived, designed and made into existence. Before going further, it is important to
clarify that this is by no means a one man job. The GMB is the result of the joint
effort of many people, including the co-authors of the articles cited throughout this
chapter, external experts on linguistics and semantics that helped with the annota-
tion, and anonymous Internet users from around the world that played our linguis-
tic games. Secondly, the GMB is, and it will probably be for a long time, a work in
progress. While the resource has been already employed in other people’s work and
it is proving its usefulness, it also keeps growing in new directions, be it gathering
more raw data, annotation from new sources, or software components added to the
existing infrastructure.

First of all, I will try and answer the obvious question that might come to mind:
do we really need a new resource like the GMB? As we will see, although the GMB
is not the first of its kind, some of its design principles make it stand out as an
innovative resource. Later in the chapter I describe the step taken to build the GMB.
At a glance, we

� collected public domain English text from the Web

� constructed an integrated software system to automatically analyze the text
and produce linguistic annotation

1This chapter is based on the work published in Basile et al. [2012a], Basile et al. [2012b] and Venhuizen
et al. [2013a]. Throughout this chapter the pronoun we refers to the authors of said articles.
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� created a collaborative Web interface to allow expert linguists to review and
correct the computer-generated annotation

� created a series of computer games to gather linguistic knowledge from the
non-expert crowd in a cheap way

For each of these steps several design decisions had to be made, and in some
cases a considerable amount of software has been written. Nevertheless, the GMB
is currently a stable resource, publicly available, that can be (and has been already)
employed for many purposes by the NLP community. One of these purposes is in
fact the main subject of this dissertation.

4.1.1 Related Work

Text corpora are not a novel idea. Perhaps the most popular is the PennTree-
Bank [Marcus et al., 1993], a large corpus annotated with syntactic structures. In the
PTB, sentences from various sources are annotated with skeletal parses, i.e., tree-like
structures showing dependencies between the words. Countless statistical models
have been trained on the PTB data, which can be considered the de facto standard
in the world of annotated text corpora. Despite its success, there is space for im-
provement in a corpus like the PTB. For start, we now have the tools to perform
deeper analysis of text, that goes beyond the syntactic dependencies and towards
the translation of text into purely semantic logical forms.

In Chapter 2, I reviewed some semantic representation formalisms that could
serve as an alternative to DRT, in particular Minimal Recursion Logic and Lexical
Functional Grammar. The problem with using MRS for statistical generation, de-
spite the expressiveness of the formalism, is that, as of this writing, there is no large
semantically annotated corpus available to train a model,. As we will see in the
rest of this chapter, even if one would employ a reasonably accurate MRS-based se-
mantic parser to a large collection of documents, there would still be the need for
some kind of expert check — a task that requires a non-trivial effort. PARC 700 King
et al. [2003] is a dependency bank consisting of sentences parsed semi-automatically
to provide LFG-based representations. Unfortunately its size (700 sentences, hence
the name) is orders of magnitudes smaller than what is needed for robust statistical
generation. Finally, Ontonotes Hovy et al. [2006] is a resource comparable in size
to the GMB that has been annotated with syntactic parse trees, predicate-argument
structure and shallow semantics (the word senses are linked to a foundational on-
tology). The lack of a deep semantic level of analysis in Ontonotes, however, makes
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it unsuitable for serving as training material for a NLG pipeline that aims at gener-
ating from logical forms.

4.1.2 Motivation

Many factors vary between annotated language resources. A very large number of
text corpora exist nowadays that have all kind of different features. When designing
the GMB, we decided to focus on written text. Moreover we consider only descrip-
tive kind of text, that is, not containing dialogue and direct speech. These two re-
strictions works towards getting better analyses from the computer tools, since the
more advanced tools to date are more accurate when applied to this type of text.
Regarding languages, the GMB is designed to be a multi-language resource, with
the long term goal of being suitable for machine translation. However, so far only
English documents are included in the collection, mostly because of the language
analysis tools only being available for that language. Most of the work in statistical
NLP, before the GMB, has been carried out on existing annotated corpora.

Thanks to the software infrastructure described later in this chapter, the GMB
comprises analyses that integrate many linguistic phenomena, from the “superfi-
cial” ones such as morphology and part-of-speech, to deeper structures representing
concepts, predicates and relations. A level of linguistic knowledge that is missing in
many state-of-the-art corpora is that of discourse. Most existing resources focus on
the analysis of isolated sentences, leaving out discourse relations such as causation,
explanation, etc. A notable exception is the Penn Discourse TreeBank, a resource
built on top of the PTB annotated with many kinds of discourse relations. Unfor-
tunately, the additional layer provided by the PDTB is not sufficient to overcome
some of the limitations of the PTB, for instance cross-sentence anaphora are still un-
treated. The GMB, instead, provides single analyses for complete documents, one
analysis per document, including the semantics of discourse units as well as their
relations.

The analyses of the GMB are constructed in a way that makes it easy to align
them to the original text, that is, linking the text with its meaning with fine gran-
ularity. This is particularly useful for the system subject of this thesis, but also for
every system that tries to models computationally the relationship between words
and their meaning.

Last but not least, most existing corpora provide the analysis of texts that are sub-
ject to some form of copyright restrictions. Even when the annotation is freely dis-
tributed, the underlying text often cannot be distributed as well, making the whole
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process more complicated. In the GMB, we explicitly decided to include only pub-
lic domain text such as, for instance, products of government enterprises. This way,
we ensure that the GMB is not only accessible, but redistributable in its entirety.

Besides the final result, the methodology for creating the GMB is innovative on
its own. At no point during the development we relied on classic manual anno-
tation in the form of trained subjects going over the whole corpus and analyzing
everything to produce a gold standard. Our crowdsourcing approach made neces-
sary to take some measures to ensure that the resulting annotation has high quality,
but at the same time allowed us to build a large and multi-layered corpus with rel-
atively less effort.

4.1.3 A Collection of Public Domain Text

The foundation of an annotated text corpus is of course the text itself. In many cases
the textual data of a corpus is chosen among a particular genre (e.g., bio-medical
text), medium (speech/written) or linguistic phenomena (e.g., pair of sentences for
RTE tasks). The problem of where to find the text might seem a trivial aspect at first
but, when the aim is a multi-genre, domain-independent corpus, finding a reliable
and abundant source for data is a challenge in itself. Fortunately, in the era of the
Web the collection of large quantities of text has become, at least at the technical
level, a feasible task. Still, one cannot just run a program and download what-
ever text comes to mind, as accessibility, appropriateness, language usage, size, and
many other factors are involved in the process.

One important consideration is that of the terms of use of a text. Written doc-
uments are in general products of human work and therefore their distribution is
regulated under copyright laws. As we decided that one of the key feature of the
GMB would have been the possibility to redistribute the resource in its entirety, we
opted for the inclusion of only public domain text. This is a rather strong stance that
severely limits the possible sources of raw data for our corpus. Nevertheless we
concluded that it is the only way to ensure a durable resource that can be used by
the community without any legal constraint.
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4.1.4 Data Sources

We identified the first candidate source of data for the GMB in an online newspa-
per from the United States of America called Voice of America 2, for several reasons.
Firstly, VoA is funded by the U.S. Government, so its content is by default in the
public domain. Secondly, the structure of the mark-up used to publish the articles
online is simple and consistent, allowing for a relatively painless process of scrap-
ing the text from the Web. Finally, being a collection of newswire text, VoA provides
factual descriptions of events, a type of text that lends itself nicely to semantic analy-
sis. We downloaded and cleaned tens of thousands of articles from VoA via custom
Python scripts. The VoA articles spanning the period from 2005 to 2009 form the
first iteration of the GMB.

To this day, VoA constitutes the majority of the data in the GMB, but in the mean-
time other sources (subcorpora) have been added to account for other genres of text.
Here is a list of the additional sources of GMB documents:

� The CIA World Factbook, a “world manual” containing detailed information
about every geo-political entity recognized by the United States. We down-
loaded parts of the CIA World Factbook, specifically the general descriptions
of the countries and those of their economies. The CIA World Factbook pro-
vides relatively short descriptive texts written in plain English and contains a
notably large number of named entities.

� MASC (Manually Annotated Sub Corpus), a subset of the Open American
National Corpus. By including the MASC into the GMB we leverage the work
of the experts that annotated the corpus in the MASC project. The texts are of
various nature, with some of them unsuitable for the GMB in its present form,
e.g., containing direct speech or heavy formatting.

� English translations of ancient Greek fables. These texts are typically written
in a simple English, as they are intended for an audience that includes chil-
dren, and are of reasonable size. They also present interesting challenges for
the semanticist, in particular for classification of entities, such as animals that
speak as if they were humans.

� A collection of jokes downloaded from the Web. These are short humorous
stories with no copyright claim that help balance the topics in the corpus.

2http://www.voanews.com/

http://www.voanews.com/
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� Data from the Third Recognising Textual Entailment Challenge. 3 This is a col-
lection of pairs of short texts manually created to train and test RTE systems,
that is, methods to identify semantic entailment.

4.1.5 Structure of the GMB Data

When including new data in the GMB, we follow a specific process that starts with
downloading (or otherwise coming into possession of) the text, and subsequently
organizing them following the standard of the GMB: one directory per document
containing two text files, i.e., the document itself and a file with the metadata in-
formation. The document directories are in turn organized in 100 distinct parts, to
prevent the number of files in one directory to grow excessively. Moreover, the di-
vision of the corpus in parts is useful in other contexts such as dividing the data in
training and test set, or focusing the annotation on a subset of the documents. New
documents are added to the collection in an horizontal fashion, so to preserve the
balance of genres across the parts.

The documents in the GMB are labeled following their status. Newly included
documents are labeled uncategorized and are then subject to manual scan. If a doc-
ument is found unsuitable for the GMB, for instance because contains corrupt data,
duplicate text or perhaps offensive content, it is rejected. Some times a document can
be difficult to process due to a limitation in the current software employed for the
analysis, thus it is marked postponed. Finally, if the document passes the manual test,
it is classified as accepted and as such it becomes immediately accessible online and
considered as candidate to be included in the next release. At the time of this writ-
ing, the GMB comprises 76,648 documents in total, of which 11,441 are accepted,
6,343 are postponed and 459 are rejected.

4.2 The Annotation of the GMB

The GMB aims at being a self-contained resource while retaining interoperability
with complementary resources. Each text in the GMB is coupled with several lay-
ers of annotation, which I review in this Section. Different annotation layers follow
different formats, but they all have in common the property of being stand-off anno-
tations, that is, the original text is never modified and instead new files are created
that specify bits of linguistic knowledge linked to portions of the text.

3http://pascallin.ecs.soton.ac.uk/Challenges/RTE3/Datasets/
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4.2.1 Word and Sentence Boundaries

Before proceeding with any form of linguistic analysis, the researcher or the soft-
ware system must identify the elementary units of text. In most cases, these are doc-
uments, sentences and words. The GMB is created by collecting single documents,
thus the first level of subdivision is already in place. There remain two distinct tasks
to perform namely sentence splitting and word boundary detection, which respec-
tively divide a text into sentences and a sentence into words.

In the GMB, the boundaries of words and sentences are marked at the character
level, i.e., each single character is assigned a label. In practice, the GMB employs
a modified IOB tagging scheme, where characters are given one of four possible
labels: S (start of a sentence), T (start of a token), I (inside a token) or O (outside
tokens). This simple scheme not only casts the tokenization problem in a format
suitable to statistical methods, but also includes the other task of sentence boundary
detection in a natural way, by identifying the starting word of each sentence.

It didn’t matter if the faces were male,

SIOTIITIIOTIIIIIOTIOTIIOTIIIIOTIIIOTIIITO

female or those of children. Eighty-

TIIIIIOTIOTIIIIOTIOTIIIIIIITOSIIIIIIO

three percent of people in the 30-to-34

IIIIIOTIIIIIIOTIOTIIIIIOTIOTIIOTIIIIIIIO

year old age range gave correct responses.

TIIIOTIIOTIIOTIIIIOTIIIOTIIIIIIOTIIIIIIIIT

Figure 4.1: Example of IOST-labeled characters

This scheme offers some nice features, such as allowing for discontinuous tokens
(e.g., hyphenated words at line breaks) and starting a new token in the middle of
a typographic word if the tokenization scheme requires it, e.g., as in did|n’t. An
example of the tokenization scheme is given in Figure 4.1.

4.2.2 Lexical Items

Words carry information on many levels, from their form to their meaning, to their
origin and usage in context. A complete description of these multiple layers and
their interconnections belongs to the field of lexicography and is way too vast to be
presented in this thesis. The annotation schema of the GMB reflects this characteris-
tic of words by providing several parallel layers of word-level annotation.
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To each word4, defined by the boundaries described in the previous Section,
corresponds a list of tags, one for each level of linguistic knowledge described as
follows.

Perhaps the most informative way of distinguishing the function of different
words is looking at their part-of-speech (POS), i.e., the basic category of the word.
In the GMB we use the part-of-speech tagset of CCGbank [Hockenmaier and Steed-
man, 2007], which is a slight variant of the Penn Treebank tag set comprising 36 POS
tags and 12 other tags for punctuation and other symbols. The Penn TreeBank tag set
is very articulate, and in some cases too fine grained for specific applications such
as for instance word sense disambiguation, so at times the POS tags are reduced to
the smaller sets {noun, adjective, verb, adverb}.

The words of the GMB documents contains other levels of information, each
encoded in its particular layer of annotation. Words (in English, at least) have base
forms and inflections for plurals, past tenses of verbs and so on, as in cars (word
form) Ñ car (lemma). We annotate this information identifying the lemma of each
word.

Moving forward to more semantic-oriented lexical information, the words rep-
resenting named entities are also tagged as such. When a word or phrase is used
to directly indicate a specific instance of an object, person, etc., it is labeled with a
tag specifying what type of named entity it refers to. Named entity classification is
further explained in Section 4.2.3.

Some words may refer to animate, inanimate, or partly animate entities. This
information, referred to as animacy, can be useful for the interpretation of anaphoric
expressions, for instance. The tagset for animacy used in the GMB, based on Zaenen
et al. [2004], is further detailed later in the next section.

Word senses are a fundamental building block to give actual content to a se-
mantic representation. In the GMB we decided to represent the meaning of words
with WordNet synsets Miller [1995]. WordNet is an electronic resource of lexical
knowledge where words are linked together by several kinds of relations, including
synonymy. Each lemma can then be part of many sets of synonyms (synsets) that
define its different meanings. Representing lexical meaning as synsets in WordNet
has proved to be also useful for the main NLG-related goal of this thesis. The char-
acteristics of the WordNet words and meanings network will be further explored in
Chapter 6. In the GMB, each eligible word is linked to the WordNet synset corre-
sponding to its meaning in the particular context.

4Throughout this chapter, sometimes the terms word and word token, as defined in the previous section,
are used interchangeably.
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Finally, there are layers of linguistic information that goes beyond the word level,
such as thematic roles and anaphoric structures. Although we could (and for practi-
cal purposes we do) annotate them at the word level, with references to the other en-
tities involved in the annotation, they are not just lexical information, strictly speak-
ing. I discuss these semantic layers of annotation at the end of this section.

4.2.3 Named Entity Classes and Animacy

When doing hard classification of semantic entities, where exactly one label is as-
signed to each, it is important to choose the right level of granularity. Even though
we leveraged existing work in ontology definition for named entities, we found that
there are exceptions to every rule, so the final scheme for named entity tagging of the
GMB ended up as the result of extensive discussion and trade-offs. The annotation
scheme for named entities used in the GMB is based on the shallow classification
provided by ACE [Doddington et al., 2004], the international program for develop-
ing advanced Information Extraction technologies. We adopted three of their basic
categories, and added four other categories inspired by Satoshi Sekine’s Extended
Named Entity Hierarchy [Sekine et al., 2002]. This results in the following classifi-
cation:

� Person (PER) - Person entities are limited to individuals that are human or
have human characteristics, such as divine entities.

� Organization (ORG) - Organization entities are limited to corporations, agen-
cies, and other groups of people defined by an established organizational
structure.

� Location (LOC) - Location entities are limited to geographical entities such as
geographical areas and landmasses, bodies of water, and geological forma-
tions.

� Artifact (ART) - Artifacts are limited to man-made objects, structures and ab-
stract entities, including buildings, facilities, art and scientific theories.

� Natural Object (NAT) - Natural objects are entities that occur naturally and are
not man-made, such as diseases, biological entities and other living things.

� Event (EVE) - Events are incidents and occasions that occur during a particular
time.

� Time (TIM) - Time entities are limited to references to certain temporal entities
that have a name, such as the days of the week and months of a year.
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These seven basic entities are considered to cover all named entities. Currently, all
entities receive one named entity tag, but there are infamous ambiguous cases. In
order to reduce such ambiguity, we add an extra category for Geo-political entities,
which is interpreted as a hybrid tag for Location and Organization:

� Geo-political Entity (GPE) - GPE entities are geographical regions defined by
political and/or social groups. A GPE entity subsumes and does not dis-
tinguish between a city, a nation, its region, its government, or its people
(LOCORG).

Technically, each word token in the corpus is labeled independently, so no ex-
plicit multi-word named entity is tagged as such. In named entities consisting
of multiple word tokens, each word token is tagged (e.g., New|LOC York|LOC).
While this scheme works with “simple” multi-word named entities such as Barack
Obama (Person), it is insufficient to fully represent complex expressions where differ-
ent types of entities are present, such as Los Angeles Lakers where the sub-expression
Los Angeles is a city (Location) but the complete phrase refers to a sport team (Or-
ganization). In nested named entities like Los Angeles Lakers, each word token is
tagged with the tag appropriate for the outermost named entity that it is part of
(e.g., New|ORG York|ORG Yankees|ORG).

In general, only entities with part-of-speech tag NNP or NNPS receive a named
entity tag. Exceptions to this rule are demonyms, which have POS tag JJ (e.g., Amer-
ican|ORG), and long names consisting of word tokens with different POS tags (e.g.,
Paradise|ART By|ART The|ART Dashboard|ART Light|ART).

The animacy layer of annotation is separate from the named entity layer, but
they are of course related. For instance, a named entity of type Person would be
almost always tagged as Human. The complete list of animacy tags with examples
is the following, based on Zaenen et al. [2004] with examples from the GMB:

� Human - Mr. Calderon said Mexico has become a worldwide leader ...

� Organization - Mr. Calderon said Mexico has become a worldwide leader ...

� Animal - There are only about 1,600 pandas still living in the wild in China.

� Place - There are only about 1,600 pandas still living in the wild in China.

� Non-concrete - There are only about 1,600 pandas still living in the wild in
China.

� Concrete - The wind blew so much dust around the field today.
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� Time - The wind blew so much dust around the field today.

� Machine - The astronauts attached the robot, called Dextre, to the ...

� Vehicle - Troops fired on the two civilians riding a motorcycle ...

In the context of statstical NLG, named entity classes and animacy are features
that can be exploited in lexicalization (and possibly other tasks. The choice of words
may differ depending on what kind of entities are involved in the situation encoded
in a formal meaning representation, for which the NLG system has to produce a
natural language expression. For instance, China, as an Organization, could ratify a
treaty, while its president, as a person, could be said to sign it. Similarly, animacy
classes could influence the lexical choice and surface order of a target realization. In
the next chapters I will show the results of experiments that help to determine the
precise effect of the semantic information on the NLG output.

Reform

allows

home

schooling

Reform allows home schooling

S

VP

NP NP

Figure 4.2: Dependency tree (left) and constituent tree (right) for the sentence “Re-
form allows home schooling”.

4.2.4 Syntactic Parse Trees

Above the level of the words, in terms of linguistic analysis, there is the level of the
sentences and their syntactic structure. In the literature there is plenty of grammars
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to choose from when it comes to encoding the syntax of natural language, which
mainly belong to one of the two families of dependency grammars and constituent
grammars (also called phrase structure grammars). The grammars of the former group
define links between words, while the grammars of the latter express rules for com-
bining the words into hierarchical structures [Tesnière, 1959, Chomsky, 1957]. In
both cases, the syntactic analysis of a text takes the shape of a parse tree with words
as the leaves, with the difference that every node of a dependency parse is a word,
while in a constituent parse tree words are only the leaves of the tree and inner
nodes are other kind of symbols, depending on the specific grammar . Figure 4.2
shows an example of parse trees based on different types of grammars for the same
sentence.

Categorial grammars [Adjukiewicz, 1935, Bar-Hillel, 1953] are an instance of con-
stituent grammars. These kind of grammars assigns categories to the lexical ele-
ments that can be either atomic or composed by mean of two directional applica-
tion operator slash (“/”) and backslash (“\”). For example, a noun can be tagged
N (atomic category) and an adjective preceding it N/N, meaning takes an N on its
right and returns an N. The functional application can be nested on multiple lev-
els, with categories of increasing complexity such as (S\NP)/NP, ((S\NP)/PP)/NP,
((S[dcl]\NP)\(S[dcl]\NP))/NP, and so forth, with the help of the parenthesis for
disambiguation.

A categorial grammar lends itself extremely well to the syntactic annotation of
the GMB documents because it is lexically driven, which means that the categories
are assigned at the word token level, just like for the other layers of annotation.
Moreover, a categorial grammar has only few grammar rules, and and its type-
transparency principle, which says that each syntactic type (a grammar category)
corresponds to a unique semantic type, results very useful to the subsequent step of
automatic annotation (see next section).

The syntactic formalism used in the GMB is Combinatory Categorial Grammar
(CCG) [Steedman, 2001]. CCG is a variant of categorial grammar in which addi-
tional operators besides functional application allows the grammar to account for
linguistic phenomena traditionally considered problematic. These operators include
left and right composition (B  and B¡) and left and right type raising (T  and T¡).
Composition rules, for instance, allow longer sequences, e.g., coordination, to be
constituents while they would not be in standard categorial grammar. Type-raising
rules turn arguments into functions over functions-over-such-arguments, thus al-
lowing for constructions such as relative clauses.

In the annotation of the GMB, we employ the CCGbank’s [Hockenmaier and
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Figure 4.3: An example of a CCG derivation.

Steedman, 2007] flavor of CCG. Notably, this version of CCG includes feature anno-
tations on some atomic categories, which are appended to them in square brackets.
An example CCG parse tree including type checking and composition is depicted
in Figure 4.3.

The CCG category annotation of the GMB, and the syntactic layer in general, is
an important gear in the mechanism that automatically derives full semantic repre-
sentations of the natural language documents included in the corpus. Nonetheless,
syntax do not directly play a role in the generation process presented in this thesis.
The Unboxer approach aims at constructing a supervised model of the alignment
between text and a formal representation of its meaning expressed as logical form,
thus if any syntactic representation is derived, it is at most an implicit one.
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Table 4.1: List of basic conditions in DRT

Condition Example
predicate HURRICANE(x1), STRONG(x1), HIT(e)
relation AGENT(e,x), in(e, t)
named entity NAMED(x2,Katrina)
time expression TIMEX(t, 2005)
cardinality CARD(x3, 1833)
equality EC(x1, x2)

4.2.5 Semantics and Discourse

One of the main goals of the GMB is to provide the semantic representation of a text
in a single, integrated formalism. Moreover, the ideal semantic analysis goes beyond
the level of isolated sentences with the integration of discourse-related information.
For these reasons we chooose to root the formalism for the semantic representation
in the GMB on one of the most well-known theory based on dynamic semantics:
Discourse Representation Theory [Kamp, 1984]. DRT is a powerful enough logic for-
malism to effectively represent many linguistic phenomena. In DRT, the meaning
of natural language expressions is represented as logical formulas called Discourse
Representation Structures (DRSs for short). A DRS, typically depicted as a box, is
composed of an upper part containing the discourse referents and a lower part con-
taining the conditions over the referents. The conditions can be simple, that is, predi-
cates and relations between discourse referents, or complex, when the operands are
DRSs themselves, thus making DRSs recursive structures. First-order logic opera-
tors such as implication, negation, equality, conjunction and disjunction, can be also
part of a DRS. In fact, a DRS can be translated directly into a FOL formula [Muskens,
1996]. One-place predicates over discourse referents define their type as concepts,
events or attributes. We will see in Chapters 5 and 6 how this distinction is impor-
tant for generation, as producing the surface form for different referents depends
also on their type. Other then predicates, DRT’s basic conditions include named re-
lations, entities, time expressions, cardinality and equality. The possible conditions
found in the GMB’s semantic layer are listed in Table 4.1.

Two-place predicates on pairs of discourse referents encode relations between
them, including thematic roles. Together with word senses, thematic roles of events
are central to formalize the semantic of an expression. In the GMB the thematic roles
are annotated following the role inventory of VerbNet Kipper et al. [2008]. Linguis-
tic structures like noun-noun compound contain, at the semantic level, relations
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x1 p1 e1

person(x1)
p1: x2 s1

male(x2)
here(s1)
topic(s1, x2)

know(e1)
agent(e1, x1)
theme(e1, p1)

Figure 4.4: DRS for the sentence “I know he is here”.

between their constituents. For instance, an export trade is a trade for export, while a
reform agenda could be an agenda on reforms. Currently, in the GMB, constituents of
a compound or a genitival construction are tagged with one of a closes class iden-
tifier, e.g., a preposition. Since each discourse unit is identified by its unique dis-
course referent, they can be arguments of relations. This is necessary, for instance,
to represent subordinate clauses.

k0 :
x2 e4 x6 x8 x9 x10 t12 t13 x15

named(x2, cayman_islands, org)
colonize(e4)
Theme(e4, x2)
british(x6)
Agent(e4, x6)
x9 ⊂ x8
x10 ⊂ x8
18th(x9)
century(x9)
19th(x10)
century(x10)
during(e4, x8)
now(t12)
e4 ⊆ t13
t13 < t12
named(x15, jamaica, loc)
from(e4, x15)

k16 :
x2 e18 x15 x19 t12 t20

named(x2, cayman_islands, org)
administer(e18)
Theme(e18, x2)
named(x15, jamaica, loc)
Agent(e18, x15)
timex(x19,+1863XXXX)
after(e18, x19)
now(t12)
e18 ⊆ t20
t20 < t12

k21 :
x23 x25 e26 t12 t27 x29 x31 x32

island(x23)
territory(x25)
become(e26)
Agent(e26, x23)
Theme(e26, x25)
now(t12)
e26 ⊆ t27
t27 < t12
named(x29, federation, org)
named(x31, west_indies, org)
of(x29, x31)
within(e26, x29)
timex(x32,+1959XXXX)
in(e26, x32)

k33 :
x2 p35 e36 t12 t37

named(x2, cayman_islands, org)
p35:

x39 x40 e41

named(x40, united_kingdom, gpe)
of(x39, x40)
dependency(x39)
remain(e41)
Agent(e41, x2)
Theme(e41, x39)

choose(e36)
Agent(e36, x2)
Theme(e36, p35)
now(t12)
e36 ⊆ t37
t37 < t12

k42 :
x29 e44 t12 t45 x46

named(x29, federation, org)
dissolve(e44)
Patient(e44, x29)
now(t12)
e44 ⊆ t45
t45 < t12
timex(x46,+1962XXXX)
in(e44, x46)

continuation(k0,k16)
parallel(k0,k16)
continuation(k16,k21)
continuation(k21,k33)
when(k33,k42)

Figure 4.5: An example of the semantic representations in the GMB, with DRSs rep-
resenting discourse units.

Consider the DRS in Figure 4.4 for the sentence “I know he is here” and note the
last condition THEME(e1, p1). The explicit scope information that discourse referents
carry in a DRS makes it possible to account for anaphoric expressions. Referring
again to the example in Figure 4.4, the referent x2 is defined in the innermost DRS,
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thus it is not accessible from the outermost one. In the GMB, anaphoric expressions
such as pronouns are linked to the entity they refer to, both in the DRS and at the
word level by specifying the boundaries of the referred word or phrase.

In order to account for the semantics of whole texts, the GMB employs an exten-
sion of DRT called Segmented Discourse Representation Theory [Asher and Lascarides,
2003]. SDRT augments DRT with a set of discourse relations that allow to produce
one single representation for a text made by multiple sentences by putting them in
explicit relations. In a Segmented DRS (SDRS) discourse units are bound together
by binary discourse relations such as continuation (e.g., one sentence simply follows
another), elaboration (e.g., a sentence explains the previous one) and so on.

Figure 4.5 shows an example of a (S)DRS from the GMB, whose original text is
“The Cayman Islands were colonized from Jamaica by the British during the 18th
and 19th centuries and were administered by Jamaica after 1863. In 1959, the islands
became a territory within the Federation of the West Indies. When the Federation
dissolved in 1962, the Cayman Islands chose to remain a British dependency”.

Finally, extensions to DRT provide a representation for verb tenses, cardinality
of entities and presupposition. Van der Sandt [1992a]. A recent study on the gener-
alization of treatment of projective phenomena such as presupposition led to a new
theory that extends DRT called Projective Discourse Representation Theory Ven-
huizen et al. [2013b]. In a near future, PDRT will become the new standard logic
formalism to represent meaning in the GMB.

4.3 A Toolchain for Automatic Annotation

Building a full stack of linguistic annotation on top of a large collection of documents
is a complex task. Fortunately, a set of software packages for a variety of tasks were
available at the time when the GMB was created. We still had to do the work of
assembling the tools into an organic architecture, making them inter-operable with
common formats, and run the resulting system on the whole GMB text corpus.

In this Section I describe the components that form the pipeline of tools that pro-
vides the automatic linguistic annotation on the GMB. I will also provide a descrip-
tion of the general formalism we devised for the annotation that makes it possible
to integrate linguistic knowledge from several sources (including human expertise)
into the automatic process.
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4.3.1 Word and Sentence Segmentation

The first step towards the linguistic analysis of a document in the GMB is the tok-
enization, that is, the process of breaking down the linear string of characters into
meaningful units.

The automatic detection of boundaries of sentences has been addressed in the
past and many solutions are found in literature, for instance Punkt [Kiss and Strunk,
2006] rely on statistical methods to learn the distinction between the dot in an ab-
breviation (“Mr.”) and a sentence-ending full stop. The segmentation of a text into
sentences, and of a sentence into words, commonly referred to as tokenization, is
considered to be an almost “solved” problem, e.g., by Dridan and Oepen [2012], by
means of rule-base approaches, but there are often corner cases that require addi-
tional rules for specific languages and domains.

At the beginning of the development of the GMB we chose to use the tokeniza-
tion script included in the C&C tools called t (just one letter), which is in turn a
replacement of the original C&C tools tokenizer tokkie. t consists of a series of man-
ually crafted rules implemented as Prolog clauses, and performs both tasks of sen-
tence and word boundary detection The GMB approach to tokanization is not based
on rules, but rather on a stochastic system, named Elephant [Evang et al., 2013],
developed with the Wapiti implementation of Conditional Random Fields [Lafferty
et al., 2001, Lavergne et al., 2010], using as features the output label of each character,
combined with 1) the character itself, 2) the output label on the previous character, 3)
characters and/or their Unicode categories from context windows of varying sizes.
For example, with a context size of 3, in Figure 4.1, features for the E in Eighty-
three with the output label S would be E/S, O/S, /S, i/S, Space/S, Lowercase/S.
The intuition is that the 31 existing Unicode categories can generalize across similar
characters whereas character features can identify specific contexts such as abbrevi-
ations or contractions (e.g., didn’t).

In addition to character n-gram features, Elephant makes use of information ex-
tracted from the text in a fully unsupervised way, that is, a neural network-based
feature learning approach. The additional representations correspond to the ac-
tivation of the hidden layer in a simple recurrent neural (SRN) network [Elman,
1990, 1991], implemented in a customized version of Mikolov et al. [2010]’s RNNLM
toolkit. The network is sequentially presented a large amount of raw text and learns
to predict the next character in the sequence. It uses the units in the hidden layer to
store a generalized representation of the recent history.

In order to test the Elephant method, we used context windows of size 0, 1, 3, 5,
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7, 9, 11 and 13, centered around the focus character. The best models (window size
of 7 for English and Dutch, 11 for Italian, with the addition of SRN-based features)
obtained error rates of 0.027% (English), 0.035% (Dutch) and 0.076% (Italian).

A comparison with other approaches, in particular with rule-based meth-
ods, is hard because of the difference in datasets and task definition (combined
word/sentence segmentation). We compared the performance of Elephant only for
sentence segmentation with Punkt. With its standard distributed models, Punkt
achieves 98.51% on out English test set, 98.87% on Dutch and 98.34% on Italian,
compared with respectively 100%, 99.54% and 99.51% of Elephant.

In Evang et al. [2013] further details can be found on the methodology and im-
plementation of the Elephant system, along with the results of experimental tests on
several languages.

Table 4.2: Occurrence rate of several part-of-speech tags in the GMB.

POS tag part-of-speech occurrences in the GMB
NN common noun 2,713,594 (17.861)
NNP proper noun 1,675,408 (11.028)
IN Preposition 1,648,542 (10.851)
JJ adjective 1,189,555 (7.830)
DT determiner 949,180 (5.971)
. full stop 716,418 (4.716)
VB verb, base form 418,205 (2.753)
RB Adverb 363,427 (2.392)
VBD verb, past tense 200,531 (1.320)
MD modal 173,564 (1.142)
PRP personal pronoun 140,753 (0.926)
FW foreign word 3,104 (0.020)
SYM symbol 738 (0.005)
UH interjection 366 (0.002)

4.3.2 Tagging of Lexical Units

Once word boundaries have been defined, we can shift the focus of the analysis to
the word level. Words, as a basic unit of language, carry a great deal of informa-
tion often in a multi-dimensional way, that is, one word have different facets that
are important to different kinds of analysis, as seen in the previous Section. This
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stratified nature of lexical information is reflected in an array of labels attached to
them. POS-tagging is performed by the Entropy-Maximization tagger included in
the C&C tools. To give an idea of the distribution of the POS tags we found in the
GMB corpus, the occurrence rate of some part-of-speech is shown in Table 4.2.

The morphological information is annotated at the word level with just the
lemma as returned by the Morpha [Minnen et al., 2001] software for morphologi-
cal analysis of English. Morpha takes as input a word and its context and returns its
lemma and its inflection in the form of one of the four possible suffixes -s, -ing, -ed
and -en. For instance, given the word living as in “he had been living in Afghanistan
for years”, Morpha analyses it as live (lemma) + -ing (inflection). Morpha is part of a
set of tools comprising also Morphg, a software that implements the inverse process
of Morpha for generation purposes. Morphg takes a lemma and an inflection suffix,
e.g., novelty + -s becomes novelties. Morpha and Morphg also works with irregular
verb tenses like went (go + -ed) and similar irregular forms.

Named entities in the GMB are tagged, like parts-of-speech, by an Entropy-
Maximization named-entity tagger included in the C&C suite [Curran and Clark,
2003]. The tagger is trained on the MUC-7 data set [Chinchor and Robinson, 1997],
originally compiled for the series of shared tasks of the Message Understanding
Conference.

The classification of animacy is carried out by a multiclass logistic regression
model implementing uses a one-vs.-all (OvA) scheme. The animacy classifier is
trained on data extracted from the NXT Switchboard corpus, as well as some of the
gold data in the GMB.

Word senses in the GMB are tagged trivially by their most frequent sense, using
WordNet synset as sense inventory. This is known to be a very strong baseline for
the task of word sense disambiguation — see for instance Preiss et al. [2009]. Despite
the availability of off-the-shelf word sense disambiguation systems for English, this
particular component has not been integrated in the pipeline so far. The rationale
behind this choice is that WSD is a very difficult task, highly dependent on the
contexts of the target words to disambiguate. The annotation of word senses is
still possible though, either manually or by means of automatic scripts. In the next
sections the capabilities of the interface to do so are presented in detail.

The last piece of information at the lexical level is the syntactic category, later
used by the parser to derive its syntactic analysis. In the GMB we use the supertag-
ger included in the C&C tools to assign the categories to the words. The supertagger
is trained on the CCGBank data just as the POS tagger.



4.3. A Toolchain for Automatic Annotation 83

4.3.3 The C&C Parser

The syntactic analysis, usually referred to as parsing, is a very important step in the
pipeline that builds on the results of the previous steps of tagging the lexical units.
The importance of having full parse trees of the sentences is given by the need for
analysis that go beyond the single words. In other words, the meaning of a text
cannot be computed by looking at the words in isolation. Syntactic analysis is also
important in the practice of building the GMB, since it forms the basis upon which
the semantic representation is then constructed.

The existence of CCGbank and the availability of robust parsers trained on
it Clark and Curran [2004] makes CCG a practically motivated choice. The C&C
tools suite provides a single executable that bundles the taggers and the parser, but
also the single executables to run in isolation from one another. For the GMB anno-
tation pipeline we chose to use the latter solution, where the increase in complexity
of the operations is balanced by a higher flexibility that allows us to intertwine the
execution of the single processes with inputs from external tools.

4.3.4 Boxer

Boxer Bos [2008] is a rule-based software component for semantic analysis of text,
based on Combinatory Categorial Grammar and Discourse Representation Theory.
Boxer constructs DRSs for English texts starting from CCG parse trees and several
tags on the lexical units such as part-of-speech and named entity class. The name
“Boxer” in fact refers to the shape of the DRSs, traditionally called “boxes” in an
informal way.

Boxer operates by translating the syntactic categories of the CCG parse tree into
semantic representations, defined as lambda-DRSs. Boxer implements almost all
categories employed by the C&C parser, which is a subset of the ones found in
CCGbank, leaving out extremely rare cases for the sake of efficiency. The additional
information at the lexical level is necessary to define unambiguously the lexical se-
mantics — one lexical category could give rise to several different semantic inter-
pretations.

Presupposition phenomena are also accounted for, e.g., when analyzing different
types of pronouns, proper names, or other anaphoric phenomena. A separate step,
following the building of the semantic representation, takes care of the resolution of
anaphora and presupposition. Bos [2003]
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4.3.5 The Pipeline and the Daemon

In the previous sections I presented, one by one, the software components that forms
the pipeline performing the automatic annotation of the GMB. What is left is how we
assembled them all together to work as a whole, and the design of the automation
procedure.

One of the first design challenges, at the beginning of the development of the
GMB, was the need for an infrastructure capable of processing a large number of
documents in reasonable time. A fair assumption in cases like this is that redun-
dancy of operations is an undesirable property, that is, the same operation on the
same document should not be performed unless a different outcome is expected.
We identified a candidate for a system with these characteristics in the software tool
GNU Make.

Make is a popular tool used in a vast majority of software distributions to auto-
mate the processes of compilation, linking, testing and collateral operations. How-
ever, Make is a more general tool, capable of orchestrating many interdependent
tasks. In a way, our usage of Make for the GMB pipeline is unorthodox, having
nothing to do with compilation of source code, but the tool adapted perfectly to our
needs, which still consist of handling a series of operations on text-based files.

Make is designed to look at the time of the last modification of files to avoid
repeating unnecessary operations. By producing intermediate result files at each
step of the pipeline, we make sure that the only operation performed by the tools
are the ones with the potential to yield new results, leaving the necessary checks to
Make.

Over time, the software infrastructure around the GMB pipeline has grown,
while GNU Make has remained its pivotal component. To increase the level of au-
tomation, we developed an additional component that executes the Make-based ar-
chitecture periodically in a fully automated way. This daemon5 ensure that all the
analyses are updated at any time, for instance when a new version of one of the
tools is available, with a delay of a few hours at most.

5daemon is slang for a computer program that runs as a background process.
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4.4 Manual Correction: Experts and the Crowd

The automatic annotation performed by our pipeline of linguistic analysis tools is
fairly accurate, even though the quality of the annotation varies with the different
layers. To obtain perfectly correct annotation, one cannot rely on automatic systems
only, but, on the other hand, manual annotating a whole corpus the size of the GMB
is a gigantic task. To help alleviate the issues that come with manual annotation,
we devised two parallel ways of obtaining linguistic knowledge from human sub-
jects. The first is an open, wiki-like web interface to access, review and modify the
GMB. Experts in linguistics and logic can provide their annotations on one or more
phenomena in a collaborative effort to produce a corpus of increasingly better qual-
ity. The second tool we developed is an online game with which we collect data
generated by players and distill them into proper linguistic annotations.

4.4.1 Silver Standard and Gold Standard

The two main points of having an annotated text corpus are its sheer size and the fact
that the annotation is correct. Ideally, the annotation is performed or at least checked
by human experts — this is referred to as gold standard annotation. Unfortunately
one cannot have the cake and eat it when it comes to annotated corpora, that is, the
more data is included in the collection the harder and more time-consuming would
be to obtain a gold standard. This is complicated even more by the desire to have
multiple layers of linguistic knowledge which require not only more manual work
but also different expertise.

We have designed the GMB to be an ever-growing resource. To this day, batches
of new documents are added to the collection and processed. More important,
the automatic annotation is continuously improved with the inclusion of linguis-
tic knowledge coming from human judgment. The quality level of the annotation
of the GMB is then silver standard, because of the mixture of automatic and human-
provided annotation.

But how is this correction actually carried out? The first step is to define a mean-
ingful atomic unit of linguistic annotation. We called this unit a Bit Of Wisdom
(BOW). A BOW is essentially a fact stated on a specific span of text that refers to
one layer of annotation. For instance, a BOW can encode that the part-of-speech an-
notation of causes is a verb (3rd person singular present) in the sentence “Smoking
causes diseases”.

BOWs for tokenization and sentence boundaries have a different structure,
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where they simply state that a certain character, specified by its offset in the text,
has one of the labels described in Section 4.2.1. As an example, a tokenization that
wrongly assumes the full stop is a sentence ending in an abbreviation such as “Mr.
Basile” can be corrected with a BOW asserting that the 4th character (the capital B)
is the start of a word rather than the start of a sentence.

4.4.2 The GMB Explorer

Text corpora in electronic formats are typically distributed digitally, altought every
resource comes with its own file types and license. The most basic way of distribut-
ing a corpus is perhaps to make available its files for download, thus enabling other
scholars to manipulate and study the text and annotation with the most suitable
tools. Free access to the raw data files is also crucial to ensure the reproducibility of
experiments.

While machine-readable formats are ideal for corpus studies, sometimes it is con-
venient to provide a more human-friendly tool to access a corpus. Many resources
today are associated with some kind of interactive interface, often Web-based, for
many reasons including ease of querying the corpus or sometimes to restrict the
access to the raw data.

Figure 4.6: The GMB Explorer Web interface showing the tokenization of one docu-
ment and some of the options.

We started the development of a Web-based interface for the GMB at the very be-
ginning of the project, called the GMB Explorer. The first version of the Explorer, on-
line since the beginning of 2011, consisted of a collection of PHP scripts implement-
ing core functionalities such as browsing the documents and searching for words.
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Figure 4.7: The result of searching for the word officials in the GMB Explorer.

Since its inception, the codebase of the GMB Explorer has grown significantly and
it underwent several refactoring, and now it includes many features, detailed in the
following list.

� Document view - the most basic function of the Web interface is to provide
access to the documents and the annotations in the GMB. A document is pre-
sented to the user in a multi-tab page, different tabs provide different views
on the document. The metadata tab shows some basic information on the doc-
ument, that is, its title, origin, genre and license terms. The actual text, exactly
as it is stored on disk, is shown in the raw tab, using a monospaced font to
preserve the original formatting. The tokens table shows again the text of the
document but with the tokenization made explicit, using the convention of
having one sentence token per line and each word token separated by whites-
pace. The next tab, labeled sentences, shows the annotations at the word level
and the syntax tree of each sentence in the document. The visualization of
each single layer of annotation can be switched on and off to improve the
readability, and the CCG parse tree can be folded and unfolded interactively
by clicking on its constituents. Finally, the discourse tab shows a graphical
representation of the semantic analysis of the text in the form of a DRS. Since
a discourse referent in a DRS can appear in multiple places, and in a middle-
sized DRS they can be hard to track, when the mouse pointer hover over one
of them, all the other occurrences are highlighted.

� Browsing and filtering - the default order of the documents in the GMB Ex-
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plorer is by size, that is, they are ordered according to the number of their
words. When opening the interface for the first time, the shortest document
is shown. By clicking on the links in the navigation section of the interface,
it is possible to move through the collection one document at the time, or to
jump at the beginning or the end of the sequence. An additional link opens a
document chosen at random. It is possible to look for documents in a specific
subcorpus of the GMB by selecting from a dropdown menu, as well as only
view documents with/without BOWs or that produce (or do not produce)
warnings.6

� Search function - The GMB Explorer provides a basic search facility to look
up words in the documents. The tokenized files are indexed using Apache
Lucene7, a free text search engine library, then the index is used to retrieve
documents matching one or more words. The result of the text search is pre-
sented in a separate page in a list containing one matching document per row,
with a link to the document page, and the relevant context with the search
key highlighted. In the results page it is also possible to refine the search by
specifying a part-of-speech, a named entity tag and/or a lemma.

A screenshot of the GMB Explorer, showing some of the features described
above, is in Figure 4.6, while Figure 4.7 shows the result of a search in the corpus.

The features described so far, with the exception of the filters on documents, are
immediately accessible to the visitor of the GMB Explorer page. For some other ac-
tions we need to keep track of who performs them, thus some authentication mech-
anism is required. We employ a standard username/password authentication, im-
plemented by the PHP library User Cake8. A visitor can register a new user account
by clicking on the new user link and providing a username, a password and an email
address. To avoid automatic user registration e.g., by Internet bots, an email is sent
to the user with a link to visit in order to activate the account. Once the account
is activated and the user has logged into the system, a few more functions are un-
locked, most notably the possibility to edit the annotation, a feature described in
detail later in this chapter. The features described in the following list require user
authentication.

� Semantic lexicon - in the GMB every word is assigned a semantics in the form
of a lambda calculus expression. A semantic lexicon is extracted from the GMB

6When the software pipeline fails to analyze a document, its error message is shown in the GMB
Explorer as a warning.

7http://lucene.apache.org/core/
8http://usercake.com/
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Figure 4.8: The interface to the semantic lexicon as shown in the GMB Explorer.

data as a catalog of all possible semantics occurring in the analysis of the GMB
text. In the semantic lexicon page in the GMB Explorer, it is possible to browse
all the items or restrict the shown list by searching for items with a specific
syntactic category, part-of-speech or named entity label. At the time of this
writing, the semantic lexicon includes 1,071 entries. An example screen of the
Web interface to browse the semantic lexicon is in Figure 4.8.

� Statistics and logging - the statistics link sends to a page where the numbers
of the GMB are displayed. Here the information is shown about the size of the
collection (number of documents, words and sentences broken down by sub-
corpus) averages (words per sentence, sentences per document), and statistics
on the number of effective BOWs, that is, the BOWs that are actually picked up
by the toolchain. The numbers in the statistics page are all automatically gen-
erated on the fly, thus they are always up to date. A log of all the activities of
the GMB Explorer users and the toolchain is found in the news feed page. The
warnings page gives an overview of the errors returned by the software tools
and provides links to the documents that generate such errors.

� Reprocess document - clicking the button labeled reprocess document will run
remotely the software pipeline on the selected document. Even though the
documents are periodically reprocessed in an automatic way, manually click-
ing the button will speed up the process by prioritizing the document. This
feature is useful when new annotations are added to the document, or when a
new version of the software is available.

� Report issue - this link opens a page containing a Web form in which the user
can enter information such as bug reports or requests for new features. This
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Table 4.3: Examples of Bits of Wisdoms and their meaning.

BOW type BOW content meaning
tag 69,0239,0,5,pos,JJ token Iraqi at 0-5 of doc. 69/0239 has pos tag JJ
tag 02,0293,431,436,sense,videotape.v.01 tape at 431-436 of doc. 02/0293 has sense id videotape.v.01
tag 00,0044,661,665,NE,GPE token U.S. at 661-665 of doc. 00/0044 has ne tag GPE
tag 00,0044,397,406,animacy,human token Officials at 397-406 of doc. 00/0044 has animacy Human

tokenization 33,0234,451,T character at 451 of doc. 33/0234 (,) labeled Start of Token

information, together with a link to the document from which the report is
submitted, is sent to a bug tracking system and assigned to one of the main-
tainers of the GMB.

The edit operations in the GMB Explorer produce BOWs that are stored in a
central database. The BOWs can have different types, yet they share a common
structure. In the database, the BOW entries contain a unique identifier, the identifier
of the document, a string encoding its type (tokenization BOW or tag BOW), and
the value. The value of a BOW follows a different format depending on its type.
Tokenization BOWs assert that a specific character, identified by its offset, has one
of the four character labels used in our tokenization scheme (S, T, I or O). Tag BOWs
contain two character offset to identify a word token, the type of tag (POS, NE,
sense, ...) and the tag itself. In the case of word senses, the tag is the WordNet synset
representing the meaning of the given word. An assorted sample of BOWs is given
as example in Table 4.3

4.4.3 A Game With a Purpose for Linguistic Annotation

Supervised statistical models rely on gold standard data from human annotators,
but this data is very often time-consuming and expensive to obtain. In the con-
text of constructing the Groningen Meaning Bank, we addressed this problem by
outsourcing the manual labor to expert linguists over the Internet, as seen in the
previous Section. The limited number of active participants is not due to technical
issues, on the contrary the GMB Explorer could in theory be used by thousands of
users without changing its structure. The reason why the Explorer is underused
with respect to its capacity is that we are asking difficult questions, and experts are
rare. To overcome this limitation and leverage the potential of global connettivity
we tried the alternative route of crowdsourcing.

The idea of crowdsourcing is that some tasks that are difficult to solve for com-
puters but easy for humans may be outsourced to a large number of people across
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the globe. One of the first and most well-known crowdsourcing platforms is Ama-
zon’s Mechanical Turk9, an online labor marketplace where workers get paid small
amounts to complete small tasks. Mechanical Turk has already been successfully
applied for the purpose of word sense disambiguation and clustering Akkaya et al.
[2010], Rumshisky et al. [2012].

Another crowdsourcing technique that is rapidly gaining momentum is the
“Game with a Purpose”. A GWAP rewards contributors with entertainment rather
than money. GWAPs challenge players to score high on specifically designed tasks,
thereby contributing their knowledge. GWAPs were successfully pioneered in NLP
by initiatives such as ‘Phrase Detectives’ for anaphora resolution Chamberlain et al.
[2008] and ‘JeuxDeMots’ for term relations Artignan et al. [2009]. We have devel-
oped an online GWAP platform for semantic annotation, called Wordrobe.

Figure 4.9: An example question from one of the games of Wordrobe, as shown in
the game interface.

Wordrobe10 is actually a collection of Games With A Purpose, each targeting a
specific level of linguistic annotation. The collection is growing as we design and
add new games to the platform. Current challenges include part-of-speech tagging,
named entity tagging, co-reference resolution, animacy tagging, relation identifi-
cation and word sense disambiguation. Wordrobe is designed to be used by non-
experts, who can use their intuitions about language to annotate linguistic phenom-
ena, without being discouraged by technical linguistic terminology, therefore the
games include as little instructions as possible. All games share the same structure:
a multiple-choice question with a small piece of text (generally one or two sentences)
in which one or more words are highlighted, depending on the type of game. For
each question, players can select an answer or use the button marked skip to go to

9http://aws.amazon.com/mturk/
10http://www.wordrobe.org/

http://aws.amazon.com/mturk/
http://www.wordrobe.org/
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the next question. The way in which questions are actually presented to the players
in the game is depicted in Figure 4.9.

In order to encourage players to answer a large number of questions and to give
good answers there must be some game element involved. In Wordrobe a player
finds two kind of challenges, not mutually exclusive: collecting badges and playing
against other players. The more questions a player answer, the more she unlocks
icons that decorate her personal profile page. While the badge system encourage
players to keep on answering question, scores and leaderboards motivate players to
play with attention. The points are calculated on the basis of two factors: the agree-
ment with other players who answered the same question and a bet that the player
optionally put at stake. Players can place a bet reflecting the certainty about their
answer. The default choice is a minimum bet and once a player adjusts the bet, this
new value is remembered as the new preset value for the next question. Higher bets
will result in higher gains when the answer is correct, and lower points when the
answer is wrong. Since Wordrobe is designed to create gold standard annotations,
the correct choice is unknown (this is exactly what we want to obtain!), therefore
the points are calculated on the basis of the answers given by other players, as in
Phrase Detectives Chamberlain et al. [2008]. The idea is that the majority rules, the
choice that gets selected most by human players is likely to be the correct one. The
more players agree with each other, the more points they gain. As a consequence,
the score of a player is continually updated — even when the player is not playing
— in order to take into account the answers provided by other players answering
the same questions.

The questions of Wordrobe are generated automatically from the GMB data. De-
pending on the game, different set of rules and restrictions are applied to the texts of
the GMB in order to extract elementary questions about single phenomena on spe-
cific unit of text. For instance, in the game Senses, a game of sense disambiguation,
the question generation procedure considers all the word tokens that are tagged as
nouns or verbs, looks them up in WordNet and selects those having four or five
senses. The inventory of possible choices for the questions of Senses is given by
the definitions of the senses of the word to disambiguate. Internally, the possible
answers are represented by BOWs, so that the system keeps tracks of the original
GMB document from where the question was extracted, as well as the answer itself.
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Here is an example of question for the game Senses as stored in the internal
database together with its possible answers.

Question:

� id: 950

� game id: 1

� text: Delp left two notes taped to a door, along with letters to his family and
his fiancee, Pamela Sullivan.

Choices:

question id text BOW
950 fasten or attach with tape 02,0293,431,436,sense,tape.v.01
950 record on videotape 02,0293,431,436,sense,videotape.v.01
950 register electronically 02,0293,431,436,sense,record.v.02

In total, we developed eight games. At the moment six games are online in Wor-
drobe, while two of the games have been retired. In Names the player is asked to
identify the Named Entity class of a given sequence of proper nouns. Pointers is a
game about anaphora, where one must find the correct antecedent of a personal pro-
noun. Burgers presents noun-noun compounds in context and asks to identify the
underlying relation between the two nouns, e.g., an emergency plan is a plan for emer-
gency. Animals is a game similar to Names, but concerning Animacy classification.
Finally, in Others the player is asked to find what entity the word other is referring
to in a given context. The two games that are not online anymore are Twins, a sim-
ple game of POS-tag disambiguation between nouns and verbs, and Viittaukset, an
experimental version of Pointers on Finnish text.

4.4.4 Experts vs Crowd: Evaluation

With the system online and working, collecting answers remains only a matter of
time and advertisement, but the annotation problem is not solved yet. There is ob-
viously no one-to-one correspondence between the players’ answers and the BOWs
that we want to obtain at the end, thus there is the need for a method of aggregating
the answers in a meaningful way and extract the linguistic knowledge for the GMB.
The intuition is to resort to some measure of agreement between players, similarly to
the approach followed for granting points during the game. We designed an exper-
iment to investigate agreement-based methods of extracting BOWs from Wordrobe
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answers, and their differences in terms of quality of the annotation. The experiment
is based on the aforementioned game Senses.

The number of automatically generated questions for the first version of Senses
was 3,121. After the first few weeks of Wordrobe going live, we had received 5,478
answers. Roughly half (1,673) of the questions received at least one answer, with an
average of three answers per question. We created a gold standard annotation for
a set of 115 questions with exactly six answers each (a subset of the questions with
a reasonable response rate) which was used to evaluate the answers given by the
players of Wordrobe. Four trained human annotators individually selected the cor-
rect sense for each of the target words in the test set. Fleiss’s kappa was calculated to
evaluate inter-annotator agreement, resulting in � � 0:79, which is generally taken
to reflect substantial agreement. Unanimity was obtained for 64% of the questions
and 86% of the questions had an absolute majority vote. In a second step of evalu-
ation, the non-unanimous answers were discussed between the annotators in order
to obtain 100% agreement on all questions, the result of which was used as the gold
standard annotation.

Given a question and a set of player answers, we tested procedures to decide
whether to accept a particular choice into our annotated corpus. One important
factor, as said earlier, is agreement: if a great majority of players agrees on the same
choice, this choice is probably the correct one. Smaller majorities of players are
more likely to be wrong. Another important factor is the number of answers: the
more players have answered a question, the more we can presumably rely on the
majority’s judgment. In this experiment, we focused on the first factor (agreement)
because the average answer rate per question is quite low throughout our data set.
We tested a couple of simple agreement measures that determine whether a choice
is counted as a winning answer and measured recall and precision for each measure
with respect to the gold standard.

The simplest measure accepts every choice that has a relative majority. It al-
ways accepts some choice, unless the two choices with the most answers are tied. A
stricter measure (“absolute majority”) accepts only the choices that were chosen by
at least a certain fraction of players who answered the question, with some thresh-
old t ¥ 0:5. We used the values 0:5, 0:7 and 1:0 as threshold, the latter only accepting
choices unanimously picked by players.

The measures described above simply choose the majority answer relative to
some threshold, but fail to take into account the total number of players that an-
swered the question and the number of possible choices for a question. These factors
will become more important when we evaluate questions with a higher number of
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answers. We need a measure that determines whether the majority answer is cho-
sen significantly more often than the other answers. This means that the answers
should be significantly skewed towards one answer. In order to test such an effect,
we used Pearson’s chi-square test, which determines the goodness-of-fit of a given
distribution relative to a uniform distribution. If we take the distribution of answers
over the set of possible choices, we can say that only those questions for which this
distribution significantly differs from a uniform distribution (p   0:05) are consid-
ered to provide an acceptable answer. Because the number of answers per question
in our gold standard set is relatively small, a significant result means that there is
one choice towards which the answers accumulate. Determining which choice this
is can accordingly be done using the relative-majority measure described above.

Table 4.4: Precision and recall based on different agreement measures

Strategy Precision Recall F-score

Relative majority 0:880 0:834 0:857

Absolute majority (t � 0:5) 0:882 0:782 0:829

Absolute majority (t � 0:7) 0:945 0:608 0:740

Unanimity (t � 1) 0:975 0:347 0:512

Chi-square test (p   0:05) 0:923 0:521 0:666

We evaluated the annotations obtained from Wordrobe by comparing the data of
the test set (115 questions) to the gold standard. We used each of the agreement
measures described above to select the answers with a high enough majority, and
calculated precision (the number of correct answers with respect to the total num-
ber of selected answers), recall (the number of correct answers with respect to the
total number of questions), and the corresponding F-score. The results are shown in
Table 4.4.

As expected, the highest recall is obtained using the relative majority measure
since this measure is the least conservative in accepting a majority choice. As the
threshold for accepting a choice is set higher, recall drops and precision rises, up to
a very high precision for the unanimity measure, but with a significant loss in recall.
The measure based on Pearson’s chi-square test is similar in being conservative;
having only six answers per question in the test set, only the questions that are very
skewed towards one choice give a significant result of the chi-square test.

As described above, each answer is associated with a bet between 10% and 100%

of the points available for a question, which players can adjust based on how certain
they are about their answer. The distribution of bets over all answers shows two sig-
nificant peaks for these extremes: in 66% of the cases the maximum bet was chosen,
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and the default minimum bet was chosen in 12% of the cases. The main motivation
for inserting the betting function was to be able to identify questions that were more
difficult for players by looking for low bets. We tested the correlation between the
average bet per question and the relative size of the majority (indicating agreement
between players) over all questions using Pearson’s product-moment correlation
and found a small but significant positive effect (r � 0:150, p   0:01). We expect
that this effect will increase if more data is available.

Table 4.5: Precision and recall based on different agreement measures for questions
with b ¥ 80%

Strategy Precision Recall F-score

Relative majority 0:917 0:478 0:629

Absolute majority (t � 0:5) 0:930 0:461 0:616

Absolute majority (t � 0:7) 0:956 0:383 0:547

Unanimity (t � 1) 0:961 0:217 0:355

Chi-square test (p   0:05) 0:950 0:330 0:355

In order to test whether questions with high average bets were easier, we re-
peated the evaluation, including only questions with a high average bet: b ¥ 80%

(see Table 4.5). Recall is reduced strongly, as one would expect, but we do observe
an increase in precision for all measures except unanimity. This higher precision
suggests that indeed the results of the questions for which players on average place
a high bet are more similar to the gold standard. However, we will need more data
to confirm this point.

From its launch in September 2012 to the end of 2013 Wordrobe collected over
60,000 single answers. Of course the actual number of BOWs we can extract is much
smaller. One reason is that there needs to be a minimum number of answers to a
specific question in order to consider the information reliable. Besides, some mea-
sure of inter-player agreement needs to be computed and used to select the answers
on which players mostly agree. A pilot study that explores the data extracted from
one of the Wordrobe games (Senses, a game of sense disambiguation) showed that a
few parameters have to be carefully tuned in order to obtain high quality annotation
from the game. Venhuizen et al. [2013a]

The first BOW coming from the GMB Explorer is dated 18/10/2011. Since then
until the time of this writing (a period of about 2.5 years) we collected through the
Web interface 35,867 BOWs. 18 experts contributed to the resource, with the five
most active users making the 97% of the total number of BOWs.
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To the manually produced BOWs we must add the BOWs automatically pro-
duced by scripts or taken from external resources. To date, the GMB comprises
65,211 BOWs automatically created by running several scripts implementing sim-
ple heuristics, plus 463,843 BOWs converted from the MASC data. The latter set of
BOWs, however, spans the whole collection of documents regardless of the docu-
ment status (accepted, uncategorized, ...) while the other BOWs are relative only to
accepted documents with very few exceptions. The actual number of BOWs from
MASC, mainly POS-tags, relative to accepted documents in the GMB is 7,052.

4.5 Conclusion

In this chapter, I reported about the process of creation of the GMB. This includes
the actual collection of documents, many technical and linguistic choices, the devel-
opment of a software infrastructure for automatic linguistic annotation, the creation
of a series of games to gather data from the Internet crowd, and some evaluation
experiments.

Although this was not the primary intent of the project, the GMB is the resource
that allows the Unboxer to be a supervised approach to NLG, one that learns from
text and annotation and can be made better with the addition of new data.

A supervised model is in principle more robust, whereas designers of rule-based
NLG systems have to hand-craft rules, templates and the like whenever the need
arises for the application to a different domain than the original. Moreover, a sys-
tem that learns from real world data is bound to produce more natural sounding
utterances.

The next chapter will make clear how the Unboxer approach is implemented and
how the GMB data is manipulated in order to create a suitable data set for learning
the surface forms associated with logic formulas.





Chapter 5

Learning Surface Order

In the previous chapter I introduced the Groningen Meaning Bank, a large linguis-
tic resource with many applications in statistical NLP. In fact, the most important
reason why a resource like the GMB needs to be of a considerable size (measured in
millions of words) lies in the need for huge data sets to serve as training material for
supervised statistical models. Among such applications we find Natural Language
Generation and its many sub-tasks.

In Chapter 3 I proposed a new approach to build a complete NLG system that
takes Discourse Representation Graphs as input and produces a surface form that
expresses its meaning. The system, called Unboxer, is made of several intercon-
nected parts, including a statistical component whose purpose is to predict the word
order-related information of the input semantic structure, ultimately predicting the
final surface order in an indirect way. Such a component works in a supervised
fashion, using the data in the GMB as its training base, and it is the topic of this
chapter.

Word order is fundamental information to give meaning to what otherwise
would be a “word salad”. In NLG, one can think of at least two approaches, op-
posite to one another. The first is to rely on information acquired from existing text
on the probabilities of the possible orders of a given list of words, or, in other words,
constructing a statistical model of the language to assign the most probable order
to a set of words. In literature there are many examples of there language models
applied to linearization, that is, the problem of giving a linear structure to a set of
lexical items.

A different approach, adopted in this thesis, consists of computing the order
information inside the meaning representation, that is, before or in parallel to the
generation of the word themselves. This approach has the advantages of (a) being
more robust in those cases where the appropriate word for a concept cannot be
found, or it is so uncommon that a language model do not contains it, and (b) not
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depending on a lexical choice step, thus in principle being more independent of the
language.

In the rest of this chapter, this novel approach to the word order problem is
tested in the framework of generation from logical forms, specifically from DRSs.
The motivation for the experiments presented in this chapter is twofold. First, I
want to prove that it is indeed possible, to a certain extent, to predict the order
of words and constituents based only on the information contained in a structure
representing its meaning. Second, the aim of the multiple runs of the experiments is
to find out which features of the meaning representation are more important to the
prediction of the surface order.

5.1 Method

In Chapter 3, I motivated the choice of local ordering as a strategy to encode word or-
der in a text-to-logic alignment. To recap, each tuple relative to a discourse referent
in a DRG is labeled with an index, that is, an integer positive number that specifies
its position among all other tuples relative to the same referent.

k1 unary  

 scope k2

k2 referent e1

k2 referent x1 1 A
k2 event pay

k2 concept customer

k2 role agent

customer instance x1 2 customer
pay instance e1 4 pay
agent internal e1 1
agent external x1

k2 surface e1 2 did
k2 surface e1 3 not
k2 surface e1 5 .

Figure 5.1: Word-aligned DRG for “A customer did not pay.” The alignment infor-
mation relative to the order is highlighted.

The structure of DRGs ensures that this way of encoding word order makes pos-
sible to reconstruct the global word order of a text. Gold standard DRGs have their
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k2 referent x1 1 A
customer instance x1 2 customer

agent internal e1 1
k2 surface e1 2 did
k2 surface e1 3 not
pay instance e1 4 pay
k2 surface e1 5 .

Figure 5.2: Tuples with local ordering relative to x1 and e1 respectively.

tuples labeled with such indexes, thus providing training material for a supervised
algorithm.

A DRG that has been aligned with one of its potential corresponding surface
form looks like the one depicted in Figure 5.1, where we can see the local ordering
in action. The last two column represent the alignment with the surface form “A
customer did not pay”. In fact, in this example there are two separate groups of or-
dered tuples, relative to the discourse referents x1 (the customer) and e1 (the paying
event). In Figure 5.2 the two groups of tuples are shown separately. Visualizing the
DRG as a directed graph (see Chapter 3), these lists of tuples would be represented
by edges having the same head node, i.e., the discourse referent in question.

As mentioned in the beginning of this chapter, in the Unboxer architecture the
information regarding the order of the words in the output is computed indepen-
dently from the actual words. To do so, the system tries to predict the local ordering
of groups of tuples, that is, it tries to rank sets of tuples, one referent at the time.
This type of machine learning problem is referred to as Learning to Rank, a family
of methods that aims at predicting the correct order of given lists, therefore useful
in settings like the ranking of results of search engines. There are at list three types
of Learning to Rank approaches: point-wise, pairwise and list-wise. The point-wise
approach tries to predict the position in the ranking of each element independently,
which is useful when a large set has to be ranked, or when the size of the set is un-
known. The pairwise approach approximates the ranking problem to a classification
one, predicting the relative position of pairs of elements. The list-wise approach is a
generalization of the two methods averaged over all elements or pairs, that is to say,
a list-wise Learning to Rank algorithm tries to order a whole list of elements at once.
List-wise algorithms are computationally more expensive and needs a training set
made of complete ranked lists. In the DRG edge ranking problem, however, both
these drawbacks are not present, that is, the data set is made of relatively short lists
and the complete rankings are in the gold standard lists provided by the DRGs in
the GMB.
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In order to experiment with Learning to Rank applied to the problem of learning
word order, I implemented a customized version of a list-wise approach algorithm
called ListNet [Cao et al., 2007]. I then applied ListNet to a data set extracted from
the GMB to try and predict the local rankings of tuples connected to discourse ref-
erents.

In the Unboxer approach to learning word order, prominent importance is given
to the selection of a suitable set of features, in particular when information found
far apart in the structure influences the local order of tuples. For instance, consider
an event enter#v#1 where an entity passenger#n#1 is the agent and an entity car#n#2
is the patient. Good predictors for the correct order (“the passenger enters the car”
rather than “the car enters the passenger”) could be that car#n#2 is a vehicle in the
WordNet hierarchy while passenger#n#1 is a person. This information is not attached
to any of the tuples relative to the event referent, so the DRG structure has to be
traversed in order to retrieve it.

The lists of tuples that have to be ranked also contain zero-labeled tuples that
have no index. A typical example would be a concept with no determiner, whose
referent-type tuple contains no surface tokens, thus its position in the local ordering
is irrelevant. An additional task therefore needs to be performed, that is, a binary
classification, zero vs. positive integer index. This problem is more straightforward
than the ordering problem, given a suitable set of features, and can be approached
via a standard logistic regression.

Alternatively, the prediction of the order of the DRG tuples can be approached by
a single method that combines the two subtasks seen before. For instance, one can
assign negative index to the tuples that do not contain an index and then eliminating
them in a successive step, thus only applying a Learning to Rank algorithm to solve
the entire problem. Experiments on this approach are left as future work.

In the following sections, I describe the algorithms implemented in the ordering
component of the Unboxer system (5.1.1). Being supervised learning methods, they
need suitable datasets to be trained on. While the raw data is provided by the col-
lection of lexical-aligned DRGs in the GMB, they need to be transformed to fit the
input format of the algorithms, by extracting features from the tuples to be ordered.
The features used by the learning algorithms are described in Section 5.1.2.
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5.1.1 Algorithms

ListNet is a list-wise Learning to Rank algorithm based on a simple linear neural
network. ListNet is based on, and is a generalization of, RankNet [Burges et al.,
2005], a pairwise approach to Learning to Rank.

As a list-wise algorithm, ListNet is reported to perform better than pairwise al-
gorithms on experimental tasks such as document retrieval. On the other hand,
following the list-wise approach one has to define an appropriate loss function that
can turn up to be hard to compute. ListNet uses a list-wise loss function based on
the idea of top one probability, that is, the probability of an element of being the first
in the ranking. The top one probability model approximates the permutation prob-
ability model that assigns a probability to each possible permutation of an ordered
list, a necessary approximation, given that the number of permutation of a list of n
elements is n!, therefore making the problem intractable.

Formally, the top one probability of an object j is defined as

Pspjq �
¸

�p1q�j;�P
n

Psp�q

that is, the sum of the probabilities of all the possible permutations of n objects
(denoted as 
n) where j is the first element. Here s � ps1; :::; snq is a given list of
scores, that is, the position of elements in the list. Considering two permutations of
the same list y and z (for instance, the predicted order and the gold standard order)
their “distance” is computed using a metric such as cross entropy. This distance,
together with the top one probabilities of the list elements are used as loss function:

Lpy; zq � �
ņ

j�1

PypjqlogpPzpjqq

The list-wise loss function is plugged into a linear neural network model to pro-
vide a learning environment. The learning procedure of ListNet works by taking
as input, sequentially, ordered lists of feature vectors. The features are encoded as
numeric vectors. The weights of the underlying neural network are iteratively ad-
justed by computing a list-wise cost function that measure the distance between the
gold standard ranking and the prediction of the model and passing its value to the
Gradient Descent algorithm for optimization of the parameters.

On top of the algorithm of Cao et al. [2007], presented so far in this section,
I extended ListNet used with the additional feature of a regularization parameter
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�. With � ¡ 0 the list-wise cost is increased by a small factor in order to prevent
overfitting.

As mentioned in the previous section, the problem of predicting the local order of
tuples is not fully solved by the application of a Learning to Rank algorithm, since
one is still left with the task of deciding whether a tuple has an index at all. Un-
like the ordering problem, this task takes single tuples in input and classify them
into either 0-indexed or positive-indexed, that is, the task is an instance of binary
classification and it is easily solved with a regression classifier. For this thesis, I
used an existing implementation of a SVM model [Cortes and Vapnik, 1995] called
svmlight [Joachims, 1999].

Both algorithms works on numeric vectors, where different features of the ele-
ments to classify (or to order) are represented as numbers. The next section explains
in detail these features and how they are represented for the purpose of machine
learning.

x1 x3 s4 s5 e6 t8 t9

named(x1, john, org)
Topic(s4, x3)
big(s4)
Topic(s5, x3)
blue(s5)
bike(x3)
ride(e6)
Agent(e6, x1)
Theme(e6, x3)
now(t8)
e6 � t9

t9 = t8

Figure 5.3: DRS for “John rides a big blue bike.”

5.1.2 Features

As a supervised approach, the present method to learn the order of the tuples of a
DRG needs training data. Specifically, many examples of ordered lists of tuples are
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k10 attribute c2 : big : 0 0
k10 attribute c4 : blue : 0 0
k10 attribute c9 : now : 1 0
k10 concept c5 : bike : 0 0
k10 event c6 : ride : 0 0
k10 named c0 : john : org 0
k10 referent k10 : e6 0
k10 referent k10 : s4 0
k10 referent k10 : s5 0
k10 referent k10 : t8 0
k10 referent k10 : t9 0
k10 referent k10 : x1 0
k10 relation c10 : temp_included : 1 0
k10 relation c11 : equality 0
k10 role c1 : Topic : �1 0
k10 role c3 : Topic : �1 0
k10 role c7 : Agent : 1 0
k10 role c8 : Theme : 1 0
c1 : Topic : �1 ext k10 : s4 0
c10 : temp_included : 1 ext k10 : t9 0
c10 : temp_included : 1 int k10 : e6 0
c11 : equality ext k10 : t8 0
c11 : equality int k10 : t9 0
c3 : Topic : �1 ext k10 : s5 0
c7 : Agent : 1 ext k10 : x1 0
c8 : Theme : 1 ext k10 : x3 0
c9 : now : 1 arg k10 : t8 0
c0 : john : org instance k10 : x1 1 John
c7 : Agent : 1 int k10 : e6 1
k10:e6 main k10 1
c6 : ride : 0 instance k10 : e6 2 rides
k10 referent k10 : x3 1 a
c2 : big : 0 arg k10 : s4 1 big
c1 : Topic : �1 int k10 : x3 2
c4 : blue : 0 arg k10 : s5 1 blue
c3 : Topic : �1 int k10 : x3 3
c5 : bike : 0 instance k10 : x3 4 bike
c8 : Theme : 1 int k10 : e6 3
k10 punctuation k10 : x3 5 .

Figure 5.4: Text-aligned DRG for the sentence “John rides a big blue bike.”.
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needed, and each tuple must provide as much information as possible in order for
the algorithm to create a valid representation.

The training set used here is extracted from the Groningen Meaning Bank — see
Chapter 4. Recall that the GMB makes available a collection of thousands of texts
word-aligned with a formal representation of their meaning, in the form of a DRG.
An example of a gold standard DRG as found in the GMB is shown in Figure 5.4
and will serve as a working example in this section. The example DRG is equivalent
to the DRS in Figure 5.3.

In the GMB, the symbols for concepts, events and attributes of a DRG are also
linked to a WordNet synset to specify their meaning. For readability purposes, the
synsets are hidden in Figures 5.3 and 5.4.

Each DRG in the training set contains several discourse referents. For each dis-
course referent x, the list of local tuples is extracted, that is, the tuples having x as
third element. The discourse referents belong to one of three kinds: entity, event
or discourse unit. Features are extracted per-tuple and transformed into a numeric
vector, each having a fixed number of elements. Here follows a description of the
features, grouped into four classes.

Table 5.1: Features extracted from the tuple <c6 : ride : 0, instance, k10 : e6>

Feature Value
Discourse Unit type main clause
Punctuation false
Surface false
Referent type event
Binary relations Agent, Patient
Concept hypernym none
Verb category travel
Cardinality none
Temporal relations included

Structural Features

� Discourse unit type: this feature specifies if the discourse unit in which the dis-
course referent appear is a main, subordinate or embedded clause (e.g., rela-
tive clause). The type of subordination (e.g., negation, conditional, etc.) is also
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included in the feature value.

� Punctuation, Surface: this binary features indicates the presence of a “punctua-
tion” or “surface” kind of edge.

� Referent type: the type of the node on the other side of the edge. This can be
one of the following: attribute, concept, discourse unit, event, named entity,
referent, binary relation, thematic role.

� Binary relations: if the edge represents one argument of a binary relation, this
feature encodes what type of relation, e.g., thematic role, temporal relation,
equality, etc.

Semantic Features

� Entity hypernym: two-level hypernym of the synset associated with the entity,
from the WordNet. If the entity is already in a high position in the hypernym
hierarchy, then the direct hypernym is taken, or the entity synset itself.

� Event category: category of the synset associated with the event, as defined in
WordNet. One reason to look at noun hypernyms and verb categories, instead
of simply taking the synsets, is to avoid very sparse feature vectors.

Cardinality Features

� Cardinality of entities: information about cardinality of entities, when existing.
For instance, in the example DRG, the referent x3 (the bike) has no cardinality,
thus by default it is considered singular.

Tense Features

� Temporal information of events: following Kamp and Reyle, event referents are
linked to a “reference point” representing the present moment in time, through
temporal relations such as before, included, overlap, or abut. In the example DRG,
the temporal relations in which e6 is involved encode its tense (present, in this
case).
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For practical purposes, the features are transformed into binary vectors. The
final representation of one tuple is then the concatenation of its feature vectors. This
representation also presents the advantage of allowing combinations of values for
each feature. For instance, if a discourse referent is member of two distinct relations,
the “binary relations” section of its feature vector representation will have two 1s
and 0s in the other element places.

As an example of feature extraction, consider the tuple <c6 : ride : 0, instance,
k10 : e6> in the DRG in Figure 5.4 (the last two elements <2, rides> are the gold
standard alignment and play no role in the feature extraction). Table 5.1 shows the
features provided by the DRG for this particular tuple.

5.2 Experimental Setup

The method described in the previous section needs to be systematically tested in
order to be considered valid, and therefore to consider its inclusion in the general
architecture of the Unboxer system. For this reason, I devised a series of experiments
to test the approach to prediction of word order in general, and in particular the
effect of different kind of features on the results.

The experiments described in this section follow a typical pattern in Computa-
tional Linguistics. Starting from a gold standard corpus, a large set of instances of
the problem paired with their solution, a statistical model is trained to learn the pair-
ing by making an inner representation of the problem itself. If the training phase is
successful, the model should be able to generalize, that is, to be able to find a correct
solution for instances of the problem not encountered beforehand. In the present
case, the tasks are the binary realization classification (whether or not a tuple is to
assigned an index) and list-wise ordering of groups of tuples. The training instances
are single tuples for the first task, ordered lists of tuples for the second task. At the
end of the training phase, models will be available that are capable of predict the
indexes of new tuples. To test if and to what extent the algorithm is successful, the
models are used to make predictions, that is, guessing the order of a different set of
instances that were not used for training.

The availability of a resource such as the GMB makes possible to design a series
of experiments on a number of examples large enough for the results to be signifi-
cant. Moreover, these experiments can be carried out in a fully automatic way, thus
eliminating possible selection biases and enabling the researcher to easily reproduce
the results. Still, the data sets have to be extracted and processed, and the necessary
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software infrastructure has to be developed.

In this section, I describe the data I used to test the algorithm for ranking edges
of a DRG, how I extracted and translated them in the right format, and the software
technology underlying the experiments.

5.2.1 Data Set

In order to test the effectiveness of method presented in the previous section, a train-
ing data set is needed. I derived one by extracting 30.000 gold standard DRGs from
the whole GMB corpus, specifically its development version, each corresponding to
a single sentence. Lists of tuples are automatically extracted for two discourse refer-
ent types: entity and event. 442,813 tuples are relative to entities (157,345 referents,
on average 2.8 tuples per list) and 317,657 to events (85,832 referents, on average 3.7
tuples per list). As test set for cross-validation, I extracted the same kind of tuples
from a separate set of 5,000 sentences.

5.2.2 Software Implementation

When running multiple tests while experimenting with a number of parameters,
features, algorithms, and data sets, it is often convenient to structure the body of
running code in an efficient way. Starting by directly writing code can yield quick
results for a pilot study, but it is a practice to avoid, that often leads to duplicate
code, poor documentation, and hardly reusable components. For these reasons, I
designed an object-oriented version of the DRG format, complete with a parser that
reads directly the output of Boxer. The DRG library is powered by the programming
language Python 1, a choice motivated by several factors, mainly its interoperability,
the availability of a large number of working modules, and its shallow learning
curve that makes it a great tool for rapid prototyping of software. The software
developed to support the experiments presented in this chapter consists of roughly
three thousands lines of Python code.

In Section 5.1.1, I mention the implementation of a customized version of the
ListNet list-wise Learning to rank algorithm. The ListNet algorithm has been im-
plemented from scratch for the purpose of the experiments presented on in this
chapter. Nevertheless, the implementation is functional and general-purpose, not
constrained to the specific domain of the topic of this thesis. The software is imple-

1http://www.python.org/
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mented in the GNU Octave language2 and is available online as Free Software3.
GNU Octave is a high level programming language initially designed for linear
algebra. In Octave, matrices are first-class citizens and matrix multiplication is a
built-in operator, thus the number of lines of code to implement neural network-
like functions is drastically reduced. Moreover, Octave makes it easy to vectorize
operations like matrix and vector multiplications or the application of custom func-
tions to vectors of values. Thanks to this feature, paired with built-in support for
concurrent processing, the passage to a parallel version of the code has been trivial
and it yielded a great speed improvement.

Finally, all tasks are kept together and automated by means of scripts for the
GNU/Linux shell and the GNU Make tool 4. Make, in particular, is very effective
for the parallelization of independent tasks on a multi-processor computer, and it
helps to avoid the replication of intermediate steps.

5.3 Evaluation

In this section I present the results of two series of experiments. The evaluation
of the effectiveness of these models for prediction is problematic for a number of
reasons. First, the evaluation metrics are not always directly interpretable in a nat-
ural way. Second, and somehow linked to the first reason, since the Unboxer com-
prises a novel approach to NLG, there is no existing testbed to evaluate against —
no previous results on this specific task, or a comparable one, is available. That
being stated, it is still possible to devise ways of assessing the performance of the
supervised models for learning the order of tuples. The first evaluation method is
a cross-validation experiment carried out on the two subtasks of binary realization
classification (whether or not a tuple has a positive index) and prediction of order.
Although it is difficult to give a meaning to the numeric results of this kind of exper-
iments, they are useful in assessing the impact of different combinations of feature
sets on the output quality.

Some aspects of the quality of generation are not captured by simple numerical
comparisons, therefore I propose an alternate way of assessing the performance of
the Learning to Rank model based on the comparison between an original text and
its re-generated version by means of automatic metrics. This method of evaluation
helps gaining a better perspective on the effect of variating the many parameters of

2http://www.gnu.org/software/octave/
3https://github.com/valeriobasile/listnet
4http://www.gnu.org/software/make/
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the models on the final surface form returned by the system, and it also gives an
idea of the overall quality of the word order generated by the system.

The results presented in this section are obtained by training the models on the
data set described in Section 5.2.1. Several models are trained on data sets consisting
of different combinations of features sets, as described in Section 5.1.2.

5.3.1 Intrinsic Evaluation

The first experiment is a typical cross-validation setup where a statistical model is
trained on a data set and used to predict the target values on a test set. Since both
the training set and the test set are gold standard, the quality of the model prediction
can be measured against the test set, using an appropriate metric.

The results of the binary classification experiment are evaluated in terms of ac-
curacy, that is, percentage of correctly predicted values. This task is expected to be
easier for event referents, because the tuples relative to this type of discourse refer-
ent almost always take part in the realization process. The results confirm this. For
the classification of tuples relative to entities, the measured accuracy is 87.29 using
the “structure” feature set, while for event nodes the accuracy is 98.18. Including
the “semantic” features helps a little, raising the accuracy of the classification for
entity-referents and event-referents respectively to 87.68 and 98.23. Since this binary
classification sub-problem is not the main focus of this thesis and not particularly
hard, in the rest of this section I will focus on the results of experiments conducted
using gold-standard binary classification. Given the reported accuracy, the binary
classification will affect only marginally the final outcome of the combined system.

The performance of the Learning to Rank algorithm is evaluated in terms of
Kendall’s Tau [Kendall, 1938], a measure of rank correlation. Kendall’s Tau (� ) mea-
sures the similarity between two rankings (two ways of ordering the same list of
elements) by counting how many pairs of elements are swapped with respect to the
original ordering out of all possible pairs of elements. Kendall’s Tau is computed by
the following formula:

� �
#concordantpairs �#discordantpairs

1{2npn� 1q

where n is the number of elements to order. Given its definition, Kendall’s Tau
ranges between -1 and 1, i.e., two identical rankings have � � 1 while two rankings
where one is the inverse of the others have � � �1.
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This method of evaluating the order of constituents and the local order of
phrases is similar to that of Bohnet [2007], already mentioned in Chapter 2. Al-
though the author does not explicitly use the Tau measure, in the cited work the
evaluation accounts for the number of switched pairs in the target ordering.

Table 5.2: Rank correlation of reordering different types of referents.

Referent Type Feature Set Tau
Entity Structural 0.698
Entity Structural + Semantic 0.691
Event Structural 0.542
Event Structural + Semantic 0.555

For each given list of tuples of the input, its predicted order is compared against
the gold standard to compute the average correlation (Table 5.2).

Noticeably, the classification relative to event nodes proves to be a harder prob-
lem, compared to entity nodes, probably due to their sparse nature. The structure
of the logical forms provide most of the learning material. Lexical semantics helps
increasing the performance only a little for events but not for entities (rather, noise
is introduced.

5.3.2 BLEU-based Evaluation

One problem with Kendall’s Tau as a measure of performance in this task is that
not all pair swaps affect the final surface form the same way. This problem is not
due to Kendall’s Tau per se, but rather it rises from the use of a rank correlation
measure to evaluate the task at hand. A mistake in the order of just two words has
the same impact on Kendall’s Tau (or similar metric) as a mistake in ordering two
longer constituents. This justifies the need for a string-based metric for evaluation
that captures this kind of errors while simple order correlation does not. To illustrate
the problem consider these examples:

� rthesrmansrrunning in the streets (correct) vs. rthesrrunning in the streetsrmans
(incorrect);

� rthe womansrboughtsra flowers (correct) vs. ra flowersrboughtsrthe womans
(incorrect).
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While both expressions on the right side are incorrect, the first one feels “less
wrong”, while the second one has a completely different meaning from the original,
and yet the intrinsic evaluation method above would give them the same degree of
accuracy.

An alternative way of evaluating the outcome of the model is to use the predic-
tions of the models to re-rank the edges of gold standard LDRGs, then feed it to the
realization algorithm and compare the resulting surface forms with the original texts
associated with the LDRGs. There are in literature many metrics for string-to-string
comparison, starting from the simplest edit distance — the count of the number of
insertion, deletion or substitution needed to transform a string into the other. Of
course, for the evaluation of an NLG-related task, one would want a measure that
works at least at the word level, possible taking linguistic aspects of the string into
account. A distance metric of strings that is widely popular in the fields of Ma-
chine Translation and NLG is the BLEU score [Papineni et al., 2002]. BLEU is an
algorithm that computes the quality of a candidate translation (with respect to a
reference translation) or a generation (with respect to some gold standard surface
form) by counting the number of occurrences of gold standard n-grams. The length
of the n-grams is a parameter of the algorithm, thus by varying it different aspects
of the generation quality are captured. For instance, BLEU-1 counts the occurrences
of single words, basically computing the precision of the generation, so it gives an
estimate of the coverage of the generation (is all lexical material generated?), while
BLEU-4 counts how many 4-grams in the gold standard are correctly generated in
the correct order, thus giving a good indicator of the fluency.

I applied the models trained with varying the feature sets to a dataset made of
2,560 sentences for which the realization algorithm presented in Section 3.5.3 was ca-
pable of outputting the correct surface form (i.e., the original sentence). For this ex-
periment, the focus is on the prediction of constituent order, thus the gold-standard
data for the binary realization classification (whether an edge in the DRG is gener-
ated or not) is used.

Table 5.3: BLEU-4 scores of re-generated LDRGs.

Feature Set Entity Event Entity + Event
Structural 0.653 0.627 0.333
Structural + Semantic 0.660 0.626 0.333

Separate experiments were run, considering only events, only entities, and both
events and entities. I then computed the average BLEU-4 score using the original
sentences as reference text and their respective re-generated versions as candidates.
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Figure 5.5: BLEU score effects caused by reordering the surface form of exactly one
referent (of type entity and event), by number of constituents.

The results are summarized in Table 5.3, showing figures for the model with struc-
tural features and the one with both structural and semantic features.

From the results of this evaluation experiment, it can be seen how predicting
word order for entities, as opposed to events, is generally an easier task. Intuitively,
scrambling the order of tuples relative to an event referent has more chance to com-
promise the structure of a whole sentence. To get a better understanding of the ef-
fect of ordering errors on the BLEU score with respect to the number of constituents
and type of discourse referent (entity or event), I ran an additional experiment. For
each DRG in the test set the constituent order of exactly one discourse referent is
predicted applying the models trained with the structural features and taking the
gold-standard order for all remaining discourse referents. Then the sentences are
re-generated with the realization algorithm. The computed BLEU-4 score is in Fig-
ure 5.5.

As expected, the more constituents are to be ordered, the more difficult the prob-
lem is, resulting in a lower BLEU score. More interestingly, on average, a single
ordering mistake for an event has a higher impact than a single ordering mistake
for an entity-type discourse referent. In the light of these findings, the results in
Table 5.3 are indeed promising, the intuition being that small improvements in the
algorithm could increase non linearly the quality of the output.
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5.3.3 Error Analysis

Re-generation experiments and string-based metrics are efficient and automated
ways to assess the performance of an NLG pipeline, but they do not provide the
complete picture [Belz and Reiter, 2006]. Some errors in the prediction of word order
are only apparent to the eye of the human judge. To reveal these errors, I manually
inspected a hundred sentences from the test set containing at least one error, that is,
incorrectly re-generated in the second experiment.

I found a total of 146 errors in the order prediction. Of these errors, roughly 36%
happened when a relation is involved, in many cases a possessive (which is a very
common phenomenon). This is probably due to the lack of lexical semantic informa-
tion, that is, the WordNet-based features are not sufficient in terms of coverage, and
there is no semantic feature that covers named entities. In 12% of the cases, the error
was due to more than one attribute of an entity, e.g., two consequent adjectives, or to
a noun-noun compound. Again, this type of error is bound to occur less when more
lexical semantics is added, and often lead to marginally acceptable realizations as in
the following example:

Original text
their government is brac-
ing for a possible militant
backlash

Ñ

x1 x3 e5 x6

thing(x1)
of(x3, x1)
government(x3)
brace(e5)
agent(e5, x3)
possible(x6)
militant(x6)
backlash(x6)
for(e5, x6)

Ñ

Re-generated Text
their government is brac-
ing for a militant possible
backlash

Some 28% of the incorrect re-generations involve “surface” tuples (17%), e.g., corre-
sponding to adverbs in a noun phrase, or punctuation (11%). The rest of the errors
occur inside a relative clause (14%) or a coordinated structure (10%). There are still
cases in which a different word order is not necessarily ungrammatical or less fluent,
such as:
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Original Text
A joint Israeli-Egyptian
team is investigating the
incident.

Ñ

x1 x5 e6

joint(x1)
israeli-egyptian(x1)
team(x1)
incident(x5)
investigate(e6)
agent(e6, x1)
patient(e6, x5)

Ñ

Re-generated Text
A Israeli-Egyptian joint
team is investigating the
incident.

Such alternative re-generations will be penalized by string-based metrics such as
BLEU. However, based on the hundred examples that I looked at, they form just a
small percentage of the whole dataset, and therefore it is my belief that they do not
have a big effect on the actual results.

5.4 Alternative Approaches

The Unboxer’s approach to word and constituent ordering during generation is in
a way atypical. The emphasis on carrying out the two tasks of order prediction
and lexical choice has the drawback of not being able to use the lexical information
to drive the prediction of the word order. This is to say, this method uses only the
structure of the semantic representation and gives it some form or ordering, without
looking at the words themselves (but still leveraging the knowledge contained in the
WordNet synsets).

The common approach in NLG follows from the traditional pipeline that sees the
linearization task as part of the surface realization step, at the end of the generation
process. In this framework the words, or at least the lemmata, are generally already
in place and the task is that of giving them the right order. Starting from the earlier
statistical NLG systems, this task has been approached by generating multiple can-
didate sentences, and subsequently ranking them according to their fluency — see
for instance Langkilde and Knight [1998]. This is achieved typically by employing a
language model, i.e., in its simplest form, a statistical model of the probabilities of se-
quences of words. A basic n-gram language model could consist in a long list of all
the 3-grams or 4-grams found in a text corpus paired with the count of their occur-
rences, which gives an estimate of how probable a sequence of words is in a surface
form. With such a resource, different surface forms generated by a system from the
same abstract meaning representation can be ranked according to the probability of
the occurrences of their n-grams. Finally, all the system has to do is to select the
top ranked realization, deeming it as the most fluent. Consider the two following
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examples of realizations from the previous section:

“their government is bracing for a possible militant backlash” (correct)

“their government is bracing for a militant possible backlash” (wrong)

In a 3-gram model extracted from the GMB documents, the 3-gram for a possible
is more than three times more likely to occur than for a militant, and the same goes
for other 3-grams occurring in the two sentences. Using the 3-gram probabilities
from the language model to compute the probability of the whole sentences, it is
easy to verify that the first is more likely to be a natural language sentence than
the second one, thus it should be selected as realization by a system that adopts the
overgenerate-and-rank approach.

5.5 Discussion and Conclusion

Two important factors that contribute to lower the performance reported in this pa-
per are the size of the training set and the quality of annotations. Although the num-
bers reported in Section 5.2 suggest a large enough dataset for the experiments, it
must be noted that for a ranking problem the number of training examples required
is typically larger, as the unit is represented by the lists of tuples to be ordered.

The Groningen Meaning Bank represents an effort towards a gold standard of
linguistic annotation of the English language; a Web interface provides a tool to
manually correct annotations produced by a toolchain of linguistic and semantic
analysis systems. Even if the quality of the annotations is gradually improving,
there are still many errors in the data, at several levels. This of course has an impact
on the performance of the model(s), which assumes the analysis to be correct.

To make a complete surface realization system for DRSs, along with a component
predicting word order (presented in this chapter), one also needs a lexical choice
component that takes care of generating the actual (content) words. This will be the
topic of the next chapter.

The approach presented in this paper can be extended to a third type of dis-
course referent, that is, discourse units. In DRT, discourse units have the hybrid
nature of containers and units of information at the same time. The surface form of
a complex sentence, or even a complete text, can be derived in a compositional way
by generating surface forms for discourse units and linking them together following
structural relations between them (e.g., subordination) or discourse relations (e.g.,
causation, continuation, implication, etc.). However, in most cases the lists of tuples
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k0 :
x2 x3 x4 e6 x7 x8 x9

named(x3, james, per)
x2 = x3
named(x4, earl, per)
x2 = x4
named(x2, ray, per)
sentence(e6)
Theme(e6, x2)
|x7| = 99
year(x7)
named(x9, tennessee, loc)
x8 = x9
prison(x8)
in(x7, x8)
to(e6, x7)

k10 :
x12 e14 p15

male(x12)
plead(e14)
Agent(e14, x12)
Topic(e14, p15)
p15: s17 x19 x21 x22 x23 x24

guilty(s17)
theme(s17, x12)
murder(x19)
named(x22, martin, org)
x21 = x22
named(x23, luther, org)
x21 = x23
named(x24, king, org)
x21 = x24
named(x21, jr, org)
of(x19, x21)
to(s17, x19)

after(k0,k10)

Figure 5.6: DRS for “James Earl Ray was sentenced to 99 years in a Tennessee prison
after he pleaded guilty to the murder of Martin Luther King Jr.”

relative to discourse unit referents only comprise one element, a fact that may lead
to very sparse data for the task of learning their correct order. To understand the
Unboxer ordering model applied to the discourse level, consider the following ex-
ample sentence: “James Earl Ray was sentenced to 99 years in a Tennessee prison
after he pleaded guilty to the murder of Martin Luther King Jr.”. For this sentence,
the analysis provided by boxer is shown in Figure 5.6 as a segmented DRS.

From the picture it is easy to see that the semantic representation of the exam-
ple sentence is made of two discourse units linked by the relation “after”. This is
reflected in the corresponding DRG (not shown here for it would take too much
space) where the tuple <k0, after, k10> appears, k0 and k10 being the identifiers of
the two discourse units respectively. With this information in the logical form, one
can extend the approach to predicting the constituent order presented here to the
prediction of the order of discourse units, perhaps with additional features such as
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discourse relations.

With respect to the evaluation method presented in this chapter, the BLEU score
metric, although widely used to evaluate the fluency of automatically generated
texts, is not optimal, as it penalizes alternative but permissible constituent orders.
On the other hand, manual evaluation is expensive and time consuming. One
promising way could be to devise a “game with a purpose”, perhaps included in
the Wordrobe collection of games (see Section 4.4.3). Such a judgment game could
be implemented by presenting two version of a sentence (perhaps the gold standard
and the generated one) to the players and ask them to rate their fluency.

Finally, it would be interesting to compare the performance of the ordering ap-
proach presented in this chapter with a traditional overgenerate-and-rank approach
as described in Section 5.4. However, even though the quality of the final generation
can be compared across the two methods, they presuppose different architectures of
the respective NLG pipelines, so the comparison would be meaningful only up to a
certain extent.

From the analysis of the results of the experiments presented in this chapter, I
found that Discourse Representation Structures as an input format for NLG contain
enough information to train a model that correctly predicts word order, to a suf-
ficient extent. Within the framework of DRG-based generation, while the task of
predicting whether or not a tuple takes part in the generation process is an easy one,
to order them correctly is hard, especially with respect to event referents. I have also
found that the method of evaluation of such ranking models based only on a cor-
relation coefficient is incomplete, and an empirical, extrinsic evaluation, e.g., based
on re-generation and BLEU-score, helps gaining new insights.





Chapter 6

Generating Words from Concepts

The word order aspect of Natural Language Generation constitutes a fundamental
block of the whole process, as seen in the previous chapter. However, an equally
important piece is still missing, that is, the production of the actual words that form
the output of an NLG system.

The lexical ambiguity aspect of language makes it necessary for the designer
of an NLG pipeline to take into account the problem of lexical choice, that is, the
task of picking the most appropriated words to produce as part of the final surface
output. Moreover, the words must be produced in the correct morphological form,
as opposed to generate the base form (or lemma), a sub-problem that can be more or
less easy to solve depending on the characteristics of the target natural language.

In this chapter the problem of lexical choice is instantiated as part of a more
general NLG architecture, specifically the Unboxer NLG pipeline introduced in the
previous chapters of this thesis.

The main questions the chapter will try to answer are the following four:

� Is the formalism employed in the Groningen Meaning Bank to represent se-
mantics well-suited for linguistic generation, in particular with respect to the
way it encodes concepts and events?

� Can the problem of lexical choice be solved by a knowledge-based, unsuper-
vised algorithm producing generally acceptable surface forms?

� A supervised model based on aligned data is presented in Chapter 4. Can it
also be used to approach the lexical choice task?

� Can the morphological information, i.e., word inflections, also be generated in
a supervised fashion using similar features?

I will start with presenting the problem and its context (Sections 6.1 and 6.2) and
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Unboxer

meaning
representation

prediction of
surface order

prediction of
lexical items

text-aligned
meaning

representation

surface
realization

surface form

Figure 6.1: A schematic view of the architecture of the Unboxer system with the
lexicalization module object of this chapter highlighted.

motivating the choices made for the input format with respect to the representa-
tion of concepts (Section 6.4). I will then present a novel unsupervised algorithm
to solve a significant part of the lexical choice problem in Section 6.5, and its super-
vised counterpart, trained on the Groningen Meaning Bank data in Section 6.6. The
aspects related to the lexical morphology such as the generation of word inflections,
are briefly treated in Section 6.7. Finally, Section 6.8 presents conclusions and future
work.1

6.1 Introduction

The lexicalization module is responsible for the task of generating the lexical mate-
rial from an abstract representation of meaning. In this chapter, this task is presented
in the framework of the Unboxer pipeline for NLG, introduced in Chapter 3. The
role of the lexicalization module in the system architecture is shown in Figure 6.1.

Many specialized Natural Language Generation systems are designed to convey
messages relative to a given, self-contained domain. In such a context one may
find very often a direct one-to-one mapping between concepts and words. After all,
technical lingos evolve or are designed to be free of lexical ambiguity in situations
where understanding each other with reliability is critical—in places like cruiser
ships or operation rooms misunderstandings can have serious consequences and
must be avoided.

1This chapter is partly based on, and is an extension of, the work published in Basile [2014].
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k1 unary  

 scope k2

k2 referent e1

k2 referent x1 1 A
k2 event PAY

k2 concept CUSTOMER

k2 role agent

CUSTOMER instance x1 2 customer
PAY instance e1 4 pay
agent internal e1 1
agent external x1

k2 surface e1 2 did
k2 surface e1 3 not
k2 surface e1 5 .

Figure 6.2: Word-aligned DRG for “A customer did not pay.” The word-alignment
information is highlighted.

Having exactly one word to express one concept is of course handy from an NLG
perspective, but obviously the constraint is not valid anymore once we move to an
open-domain system whose intended output is natural language. There is in fact
a many-to-many relation, in general, between concepts and the words that express
them: a polysemous word is a word that has many senses, while a concept may be
expressed, in general, by different synonym words. For example, the word “rock” is
polysemous, as it can refer to a lump of mineral matter or to the popular musical
genre. Conversely, the first of the two senses can also be expressed by the word
“stone”, which is a synonym of “rock”.

To show an instance of this problem, consider the DRG already used as an exam-
ple in Chapter 5 and shown again in Figure 6.2. Now, the focus is shifted from the
fourth column, encoding the surface order as discussed in Chapter 5, to the fifth col-
umn, which in a gold standard text-aligned DRG contains the words that compose
the surface form. The non-logical symbols CUSTOMER and PAY are predicates over
entities in the meaning representation, and they need to be linked to some kind of
world-knowledge in order for the whole structure to represent actual information.
The symbol CUSTOMER, for instance, may refer to an entity defined as “someone
who pays for goods or services”, that can be realized in different ways depending
on the circumstances (customer or client in English, cliente in Italian, and so on).

To define the problem, let’s begin with defining what it is given (the input) and



124 Chapter 6. Generating Words from Concepts

c1

c2

:::

cn

lexical choice

w1

w2

:::

wn

concepts sequences of words

Figure 6.3: High-level depiction of the lexical choice problem with its input and
output. The dashed lines represent the alignment between entities and words.

what a solution should look like (the output). As said in the first part of this thesis,
the input to an NLG pipeline, regardless of difference in format and level of abstrac-
tion, is some kind of formal representation of information. Such structures contain,
among other elements, items representing the entities involved in the piece of infor-
mation to express in natural language. They can be already encoded as words, in
which case the system does not have much work left to do for their realization, or
they can be more sophisticated bits of information such as links to items in a knowl-
edge base, e.g., a computational ontology. The set of concepts for which the NLG
pipeline must produce words is the input to the lexical choice task. The output of
the task is made by a set of natural language words, each being the expression of
one of the concepts in the input set. Actually, a sequence made of more than one
word can express a single concept, for instance with a multiword expression such
as “domestic animal” or “body of water”. A simplified representation of the lexical
choice problem in terms of its input and output is depicted in Figure 6.3.

In general, the input to the lexical choice task is independent from a specific lan-
guage, while the output is instead bound to one language. For instance, the entities
linked to the non-logical symbols CUSTOMER and PAY in the example in Figure 6.2
are realized respectively by the words “customer” and “pay”, an alignment that
is only apparently trivial, considering that the non-logical symbols in the DRG are
encoded as English words for the sake of readability. In fact, the representation of
concepts is in principle independent of the target language of the generation pro-
cess.

While this chapter focus on the realization of concepts specifically, the task of
lexicalization in a NLG system extends to events, relations, attributes, and so on.
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The solution to the lexicalization of every bit of an abstract meaning representation
is left out of this thesis, but it is possible to speculate that the methods presented in
the rest of this chapter can be adapted to components of a meaning representation
other than concepts.

6.2 The Lexical Choice Problem

Many linguists argue that true synonyms don’t exist [Bloomfield, 1933, Bolinger,
1968]. Yet, words with similar meanings do exist and they play an important role
in language technology where lexical resources such as WordNet [Miller, 1995, Fell-
baum, 1998] employ synsets, sets of synonyms that cluster words with the same or
similar meaning. The internal structure of WordNet is detailed in the next section,
along with an explanation of the reason why it constitutes a valuable resource for
generation.

It would be wrong to think that any member of a synset would be an equally
good candidate for every application. As an example to explain this phenomenon,
consider the two sentences below extracted from the GMB (documents 01/0423 and
06/0358 respectively):

1. General Barno said he expects a small hard-core remnant of the Taleban to
continue fighting even as the group’s military strength fades away.

2. The conflict is also fueled by ethnic hatred leftover from the 1994 slaughter of
Tutsis in neighboring Rwanda as well as Congo ’s civil wars .

The two words highlighted in bold face are tagged in the corpus with the same
WordNet synset, that is, they represent the same concept, defined as “a small part
or portion that remains after the main part no longer exists”. However, the reason
why the concept is realized in different ways is not casual, but rather it depends
on factors like linguistic context, topic, register, author style, age of the text, and
possibly more. Without entering the domains of psycholinguistics and philology,
it is simple to show with an informal experiment that a native speaker of English
would find the sentence “General Barno said he expects a small hard-core leftover*
of the Taleban to continue fighting” awkward and not natural. 2

2I actually asked a number of native speakers of English their opinion. All eight of them preferred the
version of the sentence with the word “remnant”.
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Here is another example concerning the synset {food, nutrient}, a concept whose
gloss in WordNet is “any substance that can be metabolized by an animal to give
energy and build tissue”. In the two sentences below, extracted from the GMB (doc-
uments 00/0215 and 00/0697 respectively), this concept is realized as “food” in the
first, but as “nutrient” in the second.

1. It said the loss was significant in a region where fishing provides a vital source
of food.

2. The Kind-hearted Physician administered a stimulant, a tonic, and a nutrient,
and went away.

Again, it is not immediate to pinpoint the exact reason for the choice of words.
Intuitively, “food” feels related in meaning to “fishing” and “vital”, while “nutrient”
is in the same realm as “physician” and “tonic”, despite the two words being used
to indicate the same concept.

These examples show how the problem of picking the right word in the right
context is not trivial, even when it is circumscribed to choosing between a fixed list
of given items. However, in some cases there are linguistic clues that seem to be
helpful in restricting the set of possible choices. For instance, in the second sen-
tence above, “food” is a mass term and therefore cannot follow the indefinite article
(putting aside for a moment the fact that typically the generation of articles depends
on the generation of the relevant noun phrase first). The solution that comes to mind
is that of leveraging the word n-gram frequencies extracted from existing corpora
in order to assign some kind of “likelihood” score to every possible outcome of the
generation process. Solutions of this type exploit statistical language models, created
automatically by computing the probability of the occurrence of each word given
the preceding words in the context. This way, the model can predict that, given for
instance the sequence of words “please pass me the”, the next word is more likely to
be “salt” than “window”. Langkilde and Knight [1998], for instance, employ n-gram
language models to rank candidate realizations based on their plausibility accord-
ing to the statistical model. In the example above source of food is arguably a more
common English phrase than source of nutrient.

The language model approach, however, is only applicable when the final sen-
tence is already given and the task is only that of generate the surface form of just
one target synset. Given an abstract representation of meaning such as a DRG, a lan-
guage model cannot be directly employed because the only information contained
in the input structure is made of synsets, predicates, relations and logical symbols.
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A system divided in modules like the Unboxer should solve a few other problems
before the information needed to apply a language model is available:

1. Predict the surface order, as described in Chapter 5.

2. Predict the “surface” tuples to complete the alignment with semantically
empty words and particles (see Section 3.4).

3. Generate all the possible combinations of words for all the concepts in the
DRG, complete with their correct morphological inflections.

In other words, it would be necessary to generate the complete utterance first,
to exploit features based on an n-gram model, and this is not always practical or
even possible, at least not in an early stage of the pipeline. If the generation process
is adapted to produce multiple generations for a given input, then without doubt
statistical language models turn useful for ranking them according to their proba-
bility, thus selecting the version that resembles actually observed language the most.
However, in the Unboxer architecture the tasks of predicting word order and pre-
dicting word forms are carried out independently from each other, so a language
model cannot be applied as a part of the module for the generation of lexical items.
A different solution is therefore needed that builds on the semantic content of a DRG
alone.

The WordNet synsets that are linked to concept nodes in a DRG are good can-
didate representations of word meanings. WordNet could be seen as a dictionary,
where each synset has its own definition in plain English. WordNet synsets are also
well suited for lexical choice, because they consist in actual sets of lemmata, con-
sidered to be synonyms of each other in specific contexts. Thus, the problem is pre-
sented here in a form which is restricted to the choice of lemmata from WordNet synsets,
although it will work with any other lexical resource with a similar structure.

The task of solving the lexical choice problem is an important one in the con-
text of NLG from logical forms, but nevertheless is has not been broadly considered
by the NLG community. One of the reasons is that it is hard to evaluate, because,
as other lexical semantics phenomena, lexical choice is not always subject to crisp
classification. In some cases, for instance, even human annotators cannot reach an
agreement on exactly one lexicalization for a concept in a given context. Techniques
based on information retrieval metrics (i.e., precision, recall and F-score) are often
too strict, so they fail to capture not-so-wrong cases when a system produces a dif-
ferent lemma from the gold standard but still appropriate to the context. Not all
instances of lexical choice are in fact problematic as the leftover|remnant example
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minute(goal-1,34)
player(goal-1, player-1)
name(player-1, Ronaldinho)
minute(goal-2, 56)
player(goal-2,player-2)
name(player-2, Eto’o)

Figure 6.4: Example of the output of the content selection component of Bouayad-
Agha et al. [2011].

above. In many cases the synonyms provided by a WordNet synset are effectively
interchangeable in a given context. Despite the obstacles, however, there has been a
number of studies and projects on the topic, briefly reviewed in the next section.

6.3 Related Work

Relevant literature on the representation of knowledge, can be found in Section 2.3
in the related work chapter of the thesis. In this section, I present previous work
relevant to the lexical choice problem in the framework of NLG, in particular with
respect to systems supported by computational ontologies.

Stede [1993] already pointed out the need to exploit semantic context, when in-
vestigating the criteria for lexical choice in NLG. Other authors try to solve the lexi-
cal choice problem by considering situational aspects of the communication process
such as pragmatics [Hovy, 1987], argumentative intent [Elhadad, 1991] or the de-
gree of salience of semantic elements [Wanner and Bateman, 1990]. In this thesis
I favor the former approach over the latter, as it suits better the kind of structures
from which the Unboxer generates natural language.

A whole line of research in NLG is focused on generation from ontologies,
whether it be domain-specific applications or domain-independent generation sys-
tems like the Unboxer. Several works have underlined the benefits of a general
concept hierarchy, such as the Upper Model [Bateman, 1997b] or the MIAKT ontol-
ogy [Bontcheva and Wilks, 2004], to serve as pivot for different application-oriented
systems. Bouayad-Agha et al. [2012a] employ a layered framework where an up-
per ontology is used together with a domain and a communication ontology for the
purpose of robust NLG.

Many NLG systems make use of computational ontologies in the early stages of
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their generation process. Content planning modules typically produce a representa-
tion of the information to realize made by concepts taken from one or more ontolo-
gies. The concepts in the ontology provides the information items for the content
planner, while the rules of the ontology specify how these can be put together in a
coherent structure. As an example, Bouayad-Agha et al. [2011] use a computational
ontology about the domain of the game of football as the basis of their content se-
lection component. A sample output of the content selection is the set of six triples
shown in Figure 6.4 describing the result of a match. The triples are then passed
on to a discourse planner and finally to a surface realization component that will
produce some natural language expression like “a goal by Ronaldinho in minute 34
and another goal by Etoó in minute 56”. The concepts of minute, goal, player and so
forth are specified in the underlying ontology.

WordNet can be seen as an upper ontology in itself (see Section 6.4), where the
synsets are concepts and the hypernym/hyponym relation is akin to generaliza-
tion/specialization. However, to the author’s knowledge, WordNet has not been
used so far as supporting ontology for a full-fledge generation pipeline, even though
there exists work on the usefulness of such resource for NLG-related tasks such as
domain adaptation and paraphrasing [Jing, 1998].

Statistical methods have also been employed to solve the lexicalization problem.
Langkilde and Knight [1998] used a statistically derived n-gram model of the lan-
guage in order to rank the possible output of their Halogen system. The candidate
realizations are given a score based on how likely their n-grams are according to
the language model, then the best candidate is picked by the system. Bangalore and
Rambow [2000] improved on this approach by employing a tree model derived from
a large corpus that is capable of predicting the likelihood of syntactic constructions.

6.4 WordNet as an Ontology for Generation

Discourse Representation Theory provides an excellent framework to encode the
semantics of natural language from a formal logic standpoint (see Section 3.3.1).
The formulas of DRT can be manipulated with the tools of formal logic, such as
inference, and ultimately truth values can be computed Kamp [1984]. The DRG
formalism introduced in Chapter 3 allows for a fine-grained alignment between the
semantic structure and the surface structure, that in turn facilitates the processing
with statistical methods. However, in order to encode knowledge about the real
world, as opposed to a restricted domain, the need arises to ground the DRSs into
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WordNet Search   3.1
  WordNet home page   Glossary   Help

Word to search for: box Search WordNet

Display Options: (Select option to change)  Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Display options for sense: (gloss) "an example sentence"

Noun

S: (n) box (a (usually rectangular) container; may have a lid) "he rummaged through
a box of spare parts"

direct hyponym / full hyponym
part meronym
direct hypernym / inherited hypernym / sister term

S: (n) container (any object that can be used to hold things (especially a
large metal boxlike object of standardized dimensions that can be loaded
from one form of transport to another))

S: (n) instrumentality, instrumentation (an artifact (or system of
artifacts) that is instrumental in accomplishing some end)

S: (n) artifact, artefact (a man made object taken as a whole)
S: (n) whole, unit (an assemblage of parts that is
regarded as a single entity) "how big is that part
compared to the whole?"; "the team is a unit"

S: (n) object, physical object (a tangible and visible
entity; an entity that can cast a shadow) "it was full
of rackets, balls and other objects"

S: (n) physical entity (an entity that has
physical existence)

S: (n) entity (that which is perceived or
known or inferred to have its own
distinct existence (living or nonliving))

derivationally related form
S: (n) box, loge (private area in a theater or grandstand where a small group can
watch the performance) "the royal box was empty"
S: (n) box, boxful (the quantity contained in a box) "he gave her a box of chocolates"
S: (n) corner, box (a predicament from which a skillful or graceful escape is
impossible) "his lying got him into a tight corner"
S: (n) box (a rectangular drawing) "the flowchart contained many boxes"
S: (n) box, boxwood (evergreen shrubs or small trees)
S: (n) box (any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned) "the umpire warned the batter to stay in the
batter's box"
S: (n) box, box seat (the driver's seat on a coach) "an armed guard sat in the box with
the driver"
S: (n) box (separate partitioned area in a public place for a few people) "the sentry
stayed in his box to avoid the cold"
S: (n) box (a blow with the hand (usually on the ear)) "I gave him a good box on the
ear"

Verb

S: (v) box, package (put into a box) "box the gift, please"
S: (v) box (hit with the fist) "I'll box your ears!"
S: (v) box (engage in a boxing match)

Figure 6.5: The result of the search for box in the Wordnet 3.1 search Web interface.
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some kind of database of facts and relations. In the GMB this is achieved by linking
some of the predicates to WordNet synsets, a format that ultimately is the input
format of the Unboxer.

WordNet was not created with the initial goal of being an ontology, but rather
as an effort to prove psycholinguistic models about the mental organization of con-
cepts. Nevertheless, the electronic lexical database has grown more and more pop-
ular among NLP scholars dealing with the meaning of words and their relations,
and also among ontology experts. As a matter of fact, WordNet can be assimilated
to an ontology by treating the hypernymy relation between synsets as subsumption
between concepts, or in some cases as an instantiation relation between named enti-
ties (cities, countries, people, ...) and their hyponyms in WordNet. Gangemi et al.
[2003b] went as far as defining a “complete formal specification of the conceptual-
izations expressed by means of Wordnet’s synsets” in the OntoWordNet project.

In this section I argue that WordNet constitutes a solid choice as knowledge base
for generation. The main argument is that some unique features of WordNet facili-
tate the NLG process as designed in the Unboxer pipeline, in particular the fact that
concepts are represented in WordNet as sets of words, ready to be picked up for the
generation of surface forms.

WordNet has been mentioned already in this chapter. Before going further, a
few questions need to be answered. First, what is exactly WordNet? What are its
components, its strengths and shortcomings? Second, is WordNet an ontology? If
yes, what kind of ontology is it, and what are its peculiarities in that respect?

The book detailing the WordNet project is titled “WordNet: an Electronic Lexical
Database” [Fellbaum, 1998], thus as a starting point the resource can be defined as
a structured database of words in a format readable by electronic calculators. For
each word in the database, WordNet provides a list of senses and their definition
in plain English. The senses, besides having a inner identifier, are represented as
synsets, i.e., sets of synonym words. Words in general belong to multiple synsets, as
they have more than one sense, so the relation between words and synsets in Word-
Net is a many-to-many one. The synsets are grouped into four categories based on
their parts of speech: noun, verb, adjective or adverb. WordNet is more than only
an electronic dictionary though. As the “net” in the name suggests, WordNet not
only contains words and their definitions, but also a whole set of relations defined
among the word senses. In particular, the hyponymy relation between noun synsets
induces a taxonomical structure of concepts.
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<!-- Class:

http://www.co-ode.org/ontologies/pizza/pizza.owl#QuattroFormaggi

-->

<owl:Class rdf:about="#QuattroFormaggi">

<rdfs:label xml:lang="pt">QuatroQueijos</rdfs:label>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTopping"/>

<owl:someValuesFrom rdf:resource="#TomatoTopping"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="#NamedPizza"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTopping"/>

<owl:someValuesFrom rdf:resource="#FourCheesesTopping"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTopping"/>

<owl:allValuesFrom>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#FourCheesesTopping"/>

<owl:Class rdf:about="#TomatoTopping"/>

</owl:unionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Figure 6.6: A snippet of the Pizza ontology describing the class QuattroFormaggi.

Figure 6.5 shows a screenshot of the WordNet 3.1 search Web interface3 used to
search for the word box. Clicking on the inherited hypernym link under the first sense

3http://wordnetweb.princeton.edu/perl/webwn
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of the word, the full hypernym chain is shown, all the way up to the root node entity.

An ontology is “an explicit specification of a conceptualization” [Gruber, 1993],
a collection of facts about some domain of defined entities4. Ontologies vary on dif-
ferent dimensions, including their size, complexity, domain, and specificity. Some
ontologies have complex logical formulas among their rules, while others are more
shallow collections of classes. Rules in an ontology are if-then-like statements de-
scribing the logical inferences that can be drawn from assertions. Figure 6.6 shows a
snippet of the Pizza ontology5 developed at the University of Manchester for tutorial
purposes, encoded in RDF/OWL, a popular XML-based format for computational
ontologies. This portion of the ontology describes the class QuattroFormaggi, speci-
fying that an instance of the class must have the properties FourCheesesTopping and
TomatoTopping.

WordNet is then an ontology about words, senses, and a series of relations
among them, while still being more ontology-like than, say, a machine-readable
dictionary or a thesaurus. This last point is debatable, as technically WordNet is
a lexical resource, and additional work is necessary to transform it into a formal on-
tology specified in some logic formalism [Gangemi et al., 2003a]. Nevertheless, for
the purpose of designing an NLG system, the difference of definitions is not crucial.

In the Unboxer pipeline, the input (i.e., a DRG) is considered comparable to the
output of a discourse planner. The elements of a DRG as a discourse plan come
either from the theory (discourse units, symbols, roles, etc.) or from WordNet. The
Unboxer approach, therefore, does not only employ WordNet as its supporting on-
tology, but rather WordNet plus the model given by Discourse Representation The-
ory together form the foundational ontology behind the Unboxer pipeline.

6.5 An Unsupervised Solution to Lexical Choice

In this section I introduce a method to tackle the lexical choice problem presented
earlier in the chapter. This method comes in the form of an algorithm that makes use
of an electronic lexical resource and deterministically decides what words to use to
express concepts represented as synsets. A characteristic of the proposed method is
that it is unsupervised, thus it can be applied to any new input without needing long
and expensive training procedures or labeled data, but only some kind of WordNet-

4A more extensive definition of ontology in the field of computer science is given in the Encyclopedia
of Database Systems [Liu and Özsu, 2009].

5http://130.88.198.11/co-ode-files/ontologies/pizza.owl
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like electronic lexicon. Moreover, this method is in principle independent from the
target language, provided that an appropriate lexical resource is available.

In a way, the problem of lexical choice for a concept can be seen as the inverse of
word sense disambiguation [Weaver, 1949/1955]: instead of determining the right
sense from a given inventory for a certain word, the problem is to decide which
word of a synset is the best choice. In both problems, context is key, but while it is
easy to see what the context looks like in the case of WSD (a window of words sur-
rounding the target word, or perhaps the entire sentence in which the target word
occurs), the idea of context in the case of lexical choice needs a precise definition.
This section introduces a solution for the lexical choice problem based on an anal-
ogy with WSD where to generate the surface for a concept the set of synsets of the
whole DRG is taken into account as semantic context.

6.5.1 Word Sense Disambiguation and Lexical Choice

Word sense disambiguation is the task of assigning senses to words, where the
senses are usually taken from a fixed inventory such as a dictionary. This task is
traditionally considered difficult for an automated system, for a number of reasons
including the difficulty of representing word senses and the fact that a proper dis-
ambiguation of a word depends on the context where it occurs. WSD is a popular
topic in NLP research, thus a plethora of methods of all kinds have been proposed
in literature over the years. As often happens with other classification problems in
NLP, it is fairly easy to achieve a decent performance on a WSD task by taking a sim-
ple or even trivial approach, while at the same time it is very difficult to improve
significantly on such results.

As a case in point, the typical baseline employed to evaluate WSD algorithms
consists of choosing the most frequent sense from the available inventory. In stan-
dard evaluation benchmarks, often systems do not achieve scores that are much
higher than the baseline.

The Lesk algorithm is a classic solution to the WSD problem that, despite its sim-
ple scheme, achieves surprisingly good results by only relying on an external knowl-
edge source, e.g., a dictionary [Lesk, 1986]. To disambiguate a word in a context, the
algorithm considers all the definitions of the word itself as found in some dictionary,
then counts how many words are there in common between the context of the word
and each of the definitions. The sense corresponding to the definition that exhibits
the greater word overlap with the context is chosen as the correct sense for the target
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word. Consider for instance the following sentence:

I met her at a party, she was with a group of friends. Then we had dinner
together.

WordNet provides five senses for the word party, with the following glosses:

1. an organization to gain political power “in 1992 Perot tried to organize a third
party at the national level”

2. a group of people gathered together for pleasure “she joined the party after
dinner”

3. a band of people associated temporarily in some activity “they organized a
party to search for food”; “the company of cooks walked into the kitchen”

4. an occasion on which people can assemble for social interaction and entertain-
ment “he planned a party to celebrate Bastille Day”

5. a person involved in legal proceedings “the party of the first part”

The words “group” and “together” occur in the context (the given sentence
above) and in the second definition. The overlap is even greater if we consider the
examples of usage too, i.e., the word “together” occurs in the second entry and
also in the context. The three words overlap of the second gloss with the context
is larger than that of all the other sense definitions, therefore, according to the Lesk
algorithm, the second sense is selected as the correct one for this instance of “party”.

Following the symmetry between lexical choice and word sense disambiguation
stated in Section 6.2, the original idea for the lexical choice algorithm presented
here comes from looking at this existing solutions for WSD and inverting it. The
Lesk approach to WSD provided the inspiration to devise an algorithm that looks
at the semantic similarity between candidate lemmata of a synset and its semantic
context. The resulting algorithm for lexical choice from WordNet synsets is called
Ksel (a word play on the name Lesk) and it is the topic of this section.

6.5.2 The Ksel Algorithm

Lesk computes the relatedness between the candidate senses for a lemma and the
words in its proximity as a function of all the words in the sense definitions and the



136 Chapter 6. Generating Words from Concepts

context itself. In the simplest case the aggregation is done by considering just word
overlap. Over the years, refinements to the Lesk algorithm have surfaced, such as
the approach by Banerjee and Pedersen [2003] that exploits not only the words in the
sense definitions but also a set of related words extracted from WordNet relations.
More recently, Basile, Caputo, and Semeraro [2014] proposed an enhancement to the
Lesk approach where a word space model is used to overcome the need for exact
word overlap of the original algorithm.

Similarly, Ksel computes a score for the candidate lemmata as a function of all
the synsets they belong to and the semantic context6. Just as not every word in a
synset gloss is relevant to the linguistic context, not every synset of a lemma will be
related to the semantic context, but carefully choosing the aggregation function will
weed out the unwanted elements. The intuition is that in most cases the synsets of
a word in WordNet are related to each other, just as the words in a sense definition
are often semantically related. For example, consider the seven senses of the noun
“rock” according to WordNet:

1. rock, stone (a lump or mass of hard consolidated mineral matter) “he threw a
rock at me”

2. rock, stone (material consisting of the aggregate of minerals like those making
up the Earth’s crust) “that mountain is solid rock”; “stone is abundant in New
England and there are many quarries”

3. Rock, John Rock (United States gynecologist and devout Catholic who con-
ducted the first clinical trials of the oral contraceptive pill (1890-1984))

4. rock ((figurative) someone who is strong and stable and dependable) “he was
her rock during the crisis”; “Thou art Peter, and upon this rock I will build my
church” — Gospel According to Matthew

5. rock candy, rock (hard bright-colored stick candy (typically flavored with pep-
permint))

6. rock ’n’ roll, rock’n’roll, rock-and-roll, rock and roll, rock, rock music (a genre of
popular music originating in the 1950s; a blend of black rhythm-and-blues
with white country-and-western) “rock is a generic term for the range of styles
that evolved out of rock’n’roll.”

7. rock, careen, sway, tilt (pitching dangerously to one side)

6Here and in the rest of this chapter, the term semantic context refers to the set of WordNet synsets in
the meaning representation, excluding the synset for which the algorithm is generating a lemma.
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The first two senses are also the predominant ones and they refers to concepts
that are similar in meaning. The third sense is actually a named entity. The fourth
and fifth senses are somewhat related to the first two, one in a metaphorical kind
of way (a person that is stable, unmovable as a rock) and the other as a simile (the
candy is hard to chew just as a rock is hard to manipulate). Finally, the sixth and
seventh senses are not related to the predominant senses, although they are arguably
related to each other and to the verb senses of the word “rock”:

1. rock, sway, shake (move back and forth or sideways) “the ship was rocking”;
“the tall building swayed”; “She rocked back and forth on her feet”

2. rock, sway (cause to move back and forth) “rock the cradle”; “rock the baby”;
“the wind swayed the trees gently”

The word “rock” is highly polysemous: in WordNet 3.0 only 699 out of 117,798
nouns (0.6%) has seven or more senses. Nevertheless, four out of its seven senses
are linked by some kind of semantic relatedness.

semantic
context

candidate
lemmata

lemma
synsets

target synset

cs1 cs2 ... cst ... csm�1 csm

l1 l2 ::: lp

ls11
::: ls1n1 ls21

::: ls2n2 ls
p
1

::: lspnp

Figure 6.7: Elements of the Ksel algorithm.

The Ksel algorithm builds on this intuition about the average relatedness of the
word senses. Here follows an explanation of how it works in practice. Referring to
Figure 6.7, the task at hand is that of choosing the right lemma li among the candi-
dates l1; l2; :::; lp for the target synset st. The other synsets given in input form the
semantic context C � s1; :::; sm; si � st. The lemma-synset (LS) similarity between a
lemma and a generic synset sj is defined as a function of the similarities of all the
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synsets to which the lemma belongs and the synset under consideration:

sLSplj ; siq � f1psimps1; sj;kq : 1 ¤ k ¤ njq (6.1)

Using the lemma-synset similarity, the relatedness of a lemma to the semantic con-
text (lemma-context similarity, LC) is defined as a function of the similarities of the
lemma itself with the context synsets:

sLCplj ; Cq � f2psLCplj ; siq : si P C; 1 ¤ i ¤ mq (6.2)

The three functions f1, f2 and sim are still not specified in the definitions above, be-
cause they are actually parameters of the algorithm. f1 and f2 are aggregation func-
tions over a set of similarity scores, that is, they take a set of real numbers, typically
limited to the r�1; 1s interval representing similarity values, and return a value in
the same interval. Sim is a similarity measure between WordNet synsets, like one of
the many that have been proposed in literature — see Budanitsky and Hirst [2006]
for a survey and an evaluation of WordNet-based similarity measures. A synset
similarity measure is a function that takes two synsets and returns a score that in-
dicates their similarity as a number between 0 (unrelated synsets) and 1 (identical
synsets).The target lemma, according to the Ksel algorithm, is the one that maxi-
mizes the lemma-context similarity measure (6.2):

lt � argmax
i

sLCpli; Cq (6.3)

Example To better clarify how Ksel works, here follows an example of lexical
choice between two candidate lemmata given a semantic context. The example is
based on the previously shown example about the sense-annotated sentence “The
Kind-hearted Physician administered a stimulant, a tonic, and a food|nutrient, and
went away.”. The context C is the set of the synsets representing the meaning of the
nouns “stimulant” (c1 = {stimulant, stimulant drug, excitant}, “a drug that temporar-
ily quickens some vital process”), “tonic” (c2 = {tonic, restorative}, “a medicine that
strengthens and invigorates”) and “physician” (c3 = {doctor, doc, physician, MD,
Dr., medico}, “a licensed medical practitioner”). The target synset is cst = {food,
nutrient} (“any substance that can be metabolized by an animal to give energy and
build tissue”), for which the algorithm has to decide which lemma to generate be-
tween food and nutrient. food occurs in three synsets, while nutrient occurs in two:

� s1;1: {food, nutrient} “any substance that can be metabolized by an animal to
give energy and build tissue”
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� s1;2: {food, solid_food} “any solid substance (as opposed to liquid) that is used
as a source of nourishment”

� s1;3: {food, food_for_thought, intellectual_nourishment} “anything that pro-
vides mental stimulus for thinking”

� s2;1: {food, nutrient} “any substance that can be metabolized by an animal to
give energy and build tissue”

� s2;2: {nutrient} “any substance (such as a chemical element or inorganic com-
pound) that can be taken in by a green plant and used in organic synthesis”

Table 6.1: Running Ksel to select the best lemma between food and nutrient in a
context composed of the three synsets s1, s2 and s3.

lemma synset sim lemma-synset similarity
(path similarity) (f1 = mean)
c1 c2 c3

food s1;1 .200 .166 .090 .152
food s1;2 .142 .125 .090 .119
food s1;3 .090 .083 .071 .081
lemma-context similarity (f2 = mean): .117
nutrient s2;1 .200 .166 .090 .152
nutrient s2;2 .200 .166 .090 .152
lemma-context similarity (f2 = mean): .152

For the sake of the example, the basic WordNet path similarity measure is used,
that is, the inverse of the length of the shortest path between two synsets in the
WordNet hierarchy. Other similarity measures yield similar results in this case. For
each synset of food, the algorithm computes the mean of its path similarity with all
the context synsets. This represents an aggregate measure of the semantic related-
ness between a lemma (i.e., all of its possible synsets) and the semantic context un-
der consideration. Again, the choice of the mean as aggregation function is arbitrary
here, made just for the sake of the readability of the example. Then the process is re-
peated with nutrient, and finally the algorithm chooses the lemma with the highest
aggregate similarity score. The whole process and the intermediate results are sum-
marized in Table 6.1. Since 0.152 is greater than 0.117, the algorithm picks nutrient
as the best candidate for this semantic context.
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6.5.3 Empirical Evaluation

In this section I describe the outcome of a test conducted in order to investigate how
the parameters of the Ksel algorithm influence the performance on a dataset taken
from the Groningen Meaning Bank. Recall that, in the GMB, concepts are linked
to WordNet synsets. The test consists of generating a lemma for each concept of a
DRG, comparing it to the correspondent gold standard lemma, and computing the
average precision and recall over the set of documents.

Ksel has three parameters functions. For the two aggregating functions, I exper-
imented with mean, median and maximum. For the WordNet similarity measures
between synsets, I took advantage of the Python NLTK library7 that provides im-
plementation for six different measures on WordNet 3.0 data:

� Path similarity (path), based on the shortest path that connects the synsets in
the hypernym/hypnoym taxonomy.

� Leakcock & Chodorow’s measure (LCH), which takes into account the maxi-
mum depth of the taxonomy tree [Leacock and Chodorow, 1998].

� Wu & Palmer’s measure (WUP), where the distances are computed between
the target synsets and their most specific common ancestor [Wu and Palmer,
1994].

� Three methods based on Information Content: Resnik’s measure (RES)
[Resnik, 1995], Jiang’s measure (JCN) [Jiang and Conrath, 1997] and Lin’s mea-
sure (LIN) [Lin, 1998].

In the case of WSD, a typical baseline consists of taking the most frequent sense
of the target word. The most frequent sense baseline in WSD works well (see for
instance Navigli et al. [2007]), due to the highly skewed distribution of word senses,
i.e., typically very few instances of a given word deviate from its most common
meaning. I investigated if the intuition behind the most frequent sense baseline is
applicable to the the lexical choice problem by reversing its mechanics, that is, the
baseline looks at the frequency distribution of the target synset’s lemmata among
the synset occurrences in the data and selects the one that occurs more often.

The implementation of Ksel is run on a dataset comprising 1,000 randomly cho-
sen DRGs from the GMB (32,764 concepts in total), with the goal of finding the best
combination of parameters. Three alternatives for the aggregation functions and six

7http://www.nltk.org/

http://www.nltk.org/
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Table 6.2: Comparison of the performance of the Ksel algorithm with two baselines.

Method Accuracy
Random 0.552
Most Frequent Lemma 0.748
Ksel (median, median, RES) 0.777

Table 6.3: Accuracy scores of the Ksel algorithm measured by the experiment from
Section 6.5.3 with all possible combinations of parameters.

f1 f2 sim Accuracy
mean mean path 0,735
mean median path 0,731
mean max path 0,734
median mean path 0,746
median median path 0,754
median max path 0,748
max mean path 0,775
max median path 0,775
max max path 0,777
mean mean LCH 0,585
mean median LCH 0,604
mean max LCH 0,551
median mean LCH 0,599
median median LCH 0,644
median max LCH 0,595
max mean LCH 0,684
max median LCH 0,705
max max LCH 0,730
mean mean WUP 0,611
mean median WUP 0,621
mean max WUP 0,562
median mean WUP 0,617
median median WUP 0,671
median max WUP 0,600
max mean WUP 0,709
max median WUP 0,714
max max WUP 0,728

f1 f2 sim Accuracy
mean mean RES 0,625
mean median RES 0,741
mean max RES 0,584
median mean RES 0,628
median median RES 0,777
median max RES 0,624
max mean RES 0,705
max median RES 0,761
max max RES 0,727
mean mean JCN 0,757
mean median JCN 0,759
mean max JCN 0,758
median mean JCN 0,757
median median JCN 0,759
median max JCN 0,758
max mean JCN 0,775
max median JCN 0,777
max max JCN 0,776
mean mean LIN 0,601
mean median LIN 0,662
mean max LIN 0,606
median mean LIN 0,601
median median LIN 0,671
median max LIN 0,610
max mean LIN 0,732
max median LIN 0,755
max max LIN 0,746



142 Chapter 6. Generating Words from Concepts

different similarity measures result in 54 possible combination of parameters. For
each possibility, the accuracy relative to the gold standard lemmata in the data set
corresponding to the concepts is reported. The best choice of parameters resulted to
be the median for both aggregation functions and the Resnik’s measure for synset
similarity.

The next step is a comparisons between Ksel (with best-performing parameters),
a baseline that selects one uniformly random lemma among the set of synonyms,
and the most frequent lemma baseline described earlier. The results of the experi-
ment are presented in Table 6.2, showing how Ksel outperforms the baseline, even
though perhaps not in a significant way.

The results of the experiment carried out with all possible combinations of pa-
rameters are listed in Table 6.3. From the figures, it seems that the interactions be-
tween the parameters are not linear, for instance the combination f1 � max; f2 �

median is the one that on average achieves the best result, although if sim � RES

then f1 � median; f2 � median works slightly better. However, the sample on
which the algorithm has been tested is perhaps too small to draw definitive conclu-
sions on this matter.

The experimental test presented in this section shows the potential of the Ksel
algorithm. The main strength of this method for lexical choice is that of being
completely unsupervised. In fact, it does not require a manually labeled dataset,
whereas other methods do, including the most frequent lemma baseline against
which the performance of Ksel is tested. However, the performance itself is not
much better than the baseline, and the difference in the scores is likely not signifi-
cant.

To conclude, the novel algorithm for lexical choice introduced in this section
works well as a bootstrap method when no annotated data is available. In the next
section I present an alternative method based on a supervised statistical model that
exploits labeled data to learn the best lexical items to realize concepts, encoded as
synsets in a given semantic context.

6.6 Supervised approach to Lexical Choice

The previous section introduced a self-contained solution for lexical choice, or at
least the particular flavor of lexical choice that takes place in the NLG pipeline pro-
posed in this thesis (see Chapter 3). However, we know from Chapters 4 and 5
that the proposed system is supervised, and that a corpus providing enough data
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to train the system does exists. Following these considerations, it appears natural to
investigate whether a supervised approach to the lexical choice task is feasible.

For each entity to generate, the DRGs in the GMB provide the link to a synset
in WordNet and the alignment with the surface form provides the actual words.
For now, and for the rest of this section, let’s assume that the alignment contains
lemmata rather than word forms, for the sake of the simplicity of the model. This
assumption is not restrictive with respect to the goal of natural language generation,
as will be clear later in the chapter (see Section 6.7).

In Chapter 5 a series of classifiers are employed to predict part of the alignment,
specifically the information about word and phrase order, by learning it from the
gold standard data. In a similar way, a set of features can be extracted for each
entity in the corpus (thus for each WordNet synset), encoded, and fed to a Machine
Learning algorithm with the goal of predicting the most suitable lemmata for each
concept in the DRG. This section presents the first steps carried out towards this
direction. By the end of this section it will be clear that the supervised approach to
lexical choice is technically feasible, although hindered by data sparseness.

DRG concept
synset

S � tl1; :::; ln}

features
supervised

classification
lemma
li P S

Figure 6.8: Supervised model to predict lemmata for the concepts in a DRG.

A rough design of the proposed solution is sketched in Figure 6.8.

The supervised statistical model for lexical choice is a component of the Unboxer
NLG pipeline that is able to take a DRG and a target concept (which is part of the
DRG itself) and produce the appropriate lemma to use in later steps of the genera-
tion process. Being a supervised method, it relies on an annotated dataset of DRGs
to train its statistical model. In the rest of this section the method is presented in
details, along with the result of an experiment designed to test the method.

6.6.1 A Supervised Model for Lexical Choice

A significant difference with respect to the supervised classifiers for predicting word
order presented in the previous chapter is that in this case the possible outputs do
not form a consistent class. This is to say that while the output of a ranking classifier
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is always a sequence of integer numbers, the set of possible values for a lexical choice
component varies based on the input synset — each different synset corresponds to
its specific set of lemmata. The consequence of this consideration is that either a
dedicated classifier is needed for each particular type of input, or some form of
abstraction has to be implemented. The method presented here explores the former
approach, that is, specialized statistical models are built for each concept for which
a lemma has to be generated.

The idea behind the supervised approach to lexical choice presented in this sec-
tion is that the information contained in the meaning representation surrounding a
concept can help to predict how such a concept is expressed in natural language.
This hypothesis is also at the basis of the unsupervised method presented in the
previous section. However, while the Ksel algorithm only exploits shallow semantic
features, i.e., word senses and their place in the WordNet taxonomy, a supervised
classifier for lexical choice would take as input features extracted from a deep seman-
tic analysis. For example, consider the synset {rock, stone}, defined by WordNet 3.1
as “a lump or mass of hard consolidated mineral matter”. The working hypothesis
of the supervised method for lexical choice is that the concept encoded by the synset
{rock, stone} is expressed by either “rock” or “stone” based on what other concepts,
events, attributes are in the same abstract meaning representation structure, what
relations they are involved in and what role they play in them, and other features
extracted from the semantic context, as opposed to the linguistic context that at this
point of the generation pipeline is not known.

6.6.2 Data and Features

In order to test the feasibility of the supervised model for lexical choice, I collected
a dataset made of text-aligned DRGs taken from the GMB. The dataset consists of
252,214 concepts extracted from 9,161 DRGs. Each concept corresponds to one of
6,348 synsets. This results in an average of about 39 occurrences of each synset,
although this measure is not meaningful considering the skew of the distribution
of the number of the occurrences. To give an idea, one third of the synsets occur
ten times or less in the dataset while one fourth only occur once. On the other
hand, the most frequent concept in the dataset, corresponding to the synset {official,
functionary}, occurs 4,209 times. 8

The datasets corresponding to the synsets contain a variable number of rows, one

8Due to the nature of the documents that are collected in the GMB, a great deal of content is about the
U.S. government and administration.
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for each instance of the synsets found in the corpus, and a fixed number of columns
representing the values of the features extracted for each instance, plus the gold
standard class, i.e., the lemma as found in the data. The features are extracted from
the “neighborhood” of the concept node in the DRG network structure, in a way
similar to the supervised method for learning word order presented in Chapter 5.
Here is a list of the features extracted for each concept found in the DRGs:

� The categories of all the synsets corresponding to concepts in the DRG. Fol-
lowing WordNet’s hypernym/hyponym taxonomy, the category of a synset is
considered as the synset at the third-level from the top of the taxonomy that
appears in the hypernym chain going from the target synset to the root.

� The type of each inward edge attached to the concept node in the DRG.

� The binary relations in which the concept is involved.

� The type of discourse unit in which the concept occurs.

� The types of the other discourse referents that participate in relations with the
target concept.

� Logical operators, if the target concept is in their scope.

These features capture the structural information local to the discourse referent
in the meaning representation for which the system has to generate a lexical ex-
pression. It is difficult to represent the whole structure, recursive and varying in
size by design, in a vectorial format of fixed dimensionality suitable for machine
learning, therefore some information is necessarily lost. In particular, the features
listed here do not capture the information attached to the discourse referents that
are not in a direct relationship with the target discourse referent. Nevertheless, in
the next section an experiment is presented that has been carried out in order to test
the feasibility of the supervised method for lexical choice introduced here.

6.6.3 Experimental Setup

The experiment has been carried out using the Weka framework, an integrated en-
vironment for machine learning that includes many types of classifiers, options and
related tool [Witten et al., 1999]. For this experiment, a SVM classifier is created
for each synset, trained on the correspondent dataset, and the performance of the
classification is tested by means of ten-fold cross-validation.
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As a first step, the dataset of DRGs is processed and the features are extracted,
put into numeric vector format and exactly one file is constructed for each synset
found in the dataset. Next, a script loops over the synset datasets and feed each of
them in turn into Weka.

The result of a run of the experiment is computed by training the model on a
portion of the dataset (90% of the instances, in this case), applying the model to
predict the gold standard labels of the remaining part of the dataset, and finally
computing the accuracy of the prediction. This process is repeated ten times, each
time changing the parts of synset dataset that is used for training and testing (ten-
fold cross-validation) and then repeated for each synset in the global dataset to get
the final result as the average of the accuracy of each classifier.

In the experiment carried out in the setting described so far, the classifiers cre-
ated for each synset were not able to correctly predict lemmata other than the most
common ones. Specifically, they predict always the most common lemma for each
synset, thus performing just as good as the baseline used in the experiments in Sec-
tion 6.5.3.

6.6.4 Results and Discussion

The result of the experiment presented in this section is a negative one, that is, the
statistical approach to lexical choice as formulated here does not give satisfactory
results. This outcome could be caused by several factors. First and foremost, data
sparsity is an issue, i.e., there is simply not enough data for a large number of synsets
to train a lexical choice classifiers. Other characteristics of the dataset that hinder
the success of a statistical approach are the skewed distribution of the number of
occurrences of the synsets and the skewed distribution of lemma occurrences for
most synsets.

Clearly, the shape of the data is an issue that must be addressed in order for a
statistic approach to lexical choice to work properly. To give an idea of the phenom-
ena that one has to deal with when exploring senses and lemmata, in the present
dataset 5,761 out of 6,348 synsets (more than 90%) are realized by one lemma only.
Ignoring these mono-lemma synsets, the realized lemma corresponds to the most
frequent lemma in 77% of the occurrences, on average. These figures do not leave
much space to learn the correct lexicalization from the data.

Data sparsity is not likely to be the only issue that prevents this method from
working properly. The use of a silver standard in terms of word senses causes a
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number of lemmata in the dataset to be annotated with the synset corresponding to
their most frequent sense, thus a contributing to the skew of the sense distribution,
and in general degrading the performance of a supervised method.

Finally, it is not clear whether the features extracted from the semantic context of
the concepts, that is, their surrounding nodes and edges in the DRG, contain enough
information to predict their realization. In some cases, information found farther
away from the discourse referent node in the DRG might contribute to inform the
model. The exploration of such features and their implementation in the supervised
model is left as future work.

6.7 Generation of Word Inflections

Up to this point in this chapter, the difference between word and lemma has not been
the focus of discussion. Technically, the basic unit at the lexical level is the lexeme,
that is, the set of forms that can be assumed by a word. One of such word forms
is considered the “base form” and called lemma. Commonly used dictionaries, for
instance, are indexed by lemmata.

In the previous sections, the problem of lexical choice has been considered solved
if the solution provides a suitable lemma for the each concept to generate. Obviously
this approach is incomplete and would lead to clunky, ungrammatical sentences.
Take for instance the following Chinese proverb:

“Kindness in words creates confidence. Kindness in thinking creates
profoundness. Kindness in giving creates love” —Lao Tzu

In this example, the suffixes -ing and -s are highlighted, underlining how some
of the words (e.g., giv-ing) deviate from their base form (“give”, in this case). The
grammar of the English language specifies that some words in certain cases must
be inflected, i.e., their form is different from the lemma. Languages other than En-
glish are even more inflected, with their words assuming a variety of morphological
forms. Examples of highly inflected languages are Czech, Turkish or the Romance
family of languages (French, Italian, Spanish, Portuguese). For instance, in Italian,
“la bella casa” (the nice home) is singular, while “le belle case” (the nice homes) is
plural. Notice how all three words change their inflection to reflect the change in
number.

It is now clear that, if one of the characteristics of good natural language gen-
eration is being fluent, then the problem of morphological generation has to be ad-
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dressed. In the framework of the Unboxer NLG pipeline (see Chapter 3) this task
is solved by constructing a supervised model similar to the ones employed for pre-
dicting surface order (Section 5.1) and word lemmata (Section 6.6).

The prediction of word inflections given a lemma is then cast as a closed-class
classification problem. At least for English, there is a finite set of inflections to choose
from, and features such as the part-of-speech of the word and its context help predict
the correct inflection.

6.7.1 Related Work

The prediction of morphological information is not a new task in the panorama of
NLP and generation in particular. The standard NLG pipeline described in Chap-
ter 2 inspired several NLG systems to follow a similar architecture, including the
one proposed in this thesis. The StuMaBa NLG system [Bohnet et al., 2011a], for
instance, is based on a pipeline architecture. One of the modules at the end of the
generation pipeline is responsible for the generation of inflected forms starting from
lemmas. This is carried out by computing edit scripts between lemmas and forms
during training, and using the edit distance [Levenshtein, 1966] to score the can-
didate forms. For practical applications, the SimpleNLG software library Gatt and
Reiter [2009] also includes a series of rules for the generation of inflectional mor-
phology of English.

The other strand of work in this area is in the context of machine translation.
Minkov et al. [2007], employ statistical methods to predict the inflections of words
in the generation process in the framework of machine translation, showing how
synctactic features improve the accuracy of the prediction. Toutanova et al. [2008],
following the work of Minkov et al. [2007], successfully applied morphology pre-
diction models to an actual machine translation task.

6.7.2 Generation of Inflectional Morphology

The English language has a fairly regular morphology. In English, usage of the base
forms of words is common, and the inflections belong to a closed class of limited
cardinality. With this consideration in mind, Minnen et al. [2001] have developed a
system for morphological analysis and generation of English that operates on four
possible word inflections: -s for plural of nouns and third person of verbs, -ing for
the present participle, -ed for the past tense and -en for the past principle. These
four cases alone cover most of the inflectional morphology of English, while the
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comparative and superlative form of adjectives, i.e., the suffixes -er and -est, are
left out of the model. However, the choice of this particular model of morphology
of English, rather than a richer one, does not interfere with the main point of this
section of the thesis, that is, the prediction of word inflections can be treated as a
classification task.

k1 unary  

 scope k2
k2 referent e1

k2 referent x1 1 <A, - >
k2 event pay

k2 concept customer

k2 role agent

customer instance x1 2 <customer, - >
pay instance e1 4 <pay, - >
agent internal e1 1
agent external x1

k2 surface e1 2 <do, -ed>
k2 surface e1 3 <not, - >
k2 surface e1 5 <., - >

Figure 6.9: Word-aligned DRG for “A customer did not pay.” Instead of the words,
in the last column there are <lemma, inflection> pairs.

The system created by Minnen et al. [2001] consists of two software packages.
One package, called morpha, is the morphological analyzer and it has been described
briefly in Section 4.3.2. It takes as input a word and optionally its POS tag and it
outputs a lemma and its inflection. Since morpha is already part of the pipeline
of tools used for the linguistic analysis of the documents in the GMB, with little
modification it is possible to bring the morphological information into the DRG-
surface alignment described in Chapter 3. In particular, the words in the alignment
have to be replaced by a pair <lemma, inflection>. For instance, the example text-
aligned DRG shown earlier in Figure 6.2 would now look like the one in Figure 6.9.
Note the pair <do, -ed> corresponding to the word did. Here are a couple of examples
of using morpha interactively on the command line:

$ echo ’John saw the rising sun’ | ./morpha -au

john see+ed the rise+ing sun

$ echo ’Drinks are getting cheaper’ | ./morpha -au
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drink+s be+ get+ing cheaper

The other package included in the software distribution, morphg is the counter-
part of morpha aimed at generation and it also works in a straightforward way by
taking in input a lemma and an inflection and producing the word form. A POS tag
can be optionally passed to morphg in order to increase its accuracy. For instance,
passing the lemma give, (optionally) the POS tag VBZ, and the inflection -ing, mor-
phg will output the word form giving. Here is an example of interactive usage of
morphg:

$ echo ’John see+ed the rise+ing sun’ | ./morphg -u

john saw the rising sun

$ echo ’Drink+s be+ get+ing cheaper’ | ./morphg -u

drinks am getting cheaper

$ echo ’Drink+s_NNS be+_VBR get+ing_VBG cheaper_JJR’ | ./morphg

drinks are getting cheaper

Note how the POS tag is necessary in some cases to correctly associate word
forms to lemmata, otherwise the system does not have access to enough information
to make a decision. For instance, in the second sentence above, morphg has to know
that “drinks” is a plural noun and not the third person of the verb “to drink” in
order to conjugate “to be” as “are”.

By integrating morphg in the Unboxer pipeline the problem of generating in-
flectional morphology is reduced to a classification problem. The system associates
to each entity (concepts and events) in the abstract meaning representation the in-
flection that characterizes the lemma that expresses such entity. The case where no
inflection is needed is also included as one of the possible classification outcome.
While another component is responsible of generating the correct lemma for each
concept in the DRG (see sections 6.5 and 6.6), all that is left is predicting which form
the final word will take.

6.7.3 Predicting Word Inflections: Pilot Study

Now that the task at hand is cast as a classification problem, input and output should
be identified before proceeding. The input for the word inflection component is a
concept in a DRG. Actually, the same set of features extracted to form the input for
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the lexical choice model presented in 6.6.1 can be reused here, as the input is the
same in both tasks.

In addition to such features, two kind of features are added, that is, the cardi-
nality of entities and the tense information related to events. These features are
expected to be quite informative for the generation of concepts and events respec-
tively, in particular in the -s cases for concepts — a concept with cardinality greater
than one is usually realized by a plural noun, unless a mass noun is used.

The output of the statistical component is one out of the four classes contem-
plated by morpha/morphg plus the case where no inflection is present, that is, the
set {s, ed, en, ing, H}, where the empty set symbol indicates the null inflection, i.e.,
that the word is generated in its base form.

Table 6.4: Confusion matrix of the prediction of morphological inflections for con-
cepts.

class en ed s ing H

en 0 0 2 0 0
ed 0 0 22 0 297

s 0 0 1,065 0 474
ing 0 0 18 0 179
H 0 0 552 0 11,971

Table 6.5: Confusion matrix of the prediction of morphological inflections for events.

class en ed s ing H

en 0 15 0 8 12
ed 0 559 0 42 298

s 0 173 0 14 178
ing 0 1 0 60 250
H 0 376 0 18 8,633

A pilot study to assess the feasibility of this method has been carried out. A SVM-
based classifier is trained on a dataset extracted from the same set of DRGs used for
the experiment in Section 6.6 (252,214 concepts extracted from 9,161 DRGs out of
the GMB). For each concept and each event in the dataset, the features extracted are
the same as listed in Section 6.6.2, while the gold standard class is the inflection as
produced by the morpha lemmatizer integrated in the GMB toolchain. A ten-fold
cross-validation experiment resulted in the confusion matrices shown in Tables 6.4
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and 6.5. 89.4% of the concepts in the experiment were classified correctly by the
model, versus the 86.9% of the events.

Each row of the confusion matrices represents a class to be predicted and on the
columns there are the classes that are actually predicted by the model. For example,
in the experiment on concepts the inflection -s is predicted correctly 1,065 times,
while 474 times the concept is misclassified as null inflection.

6.7.4 Discussion

The results that emerge from this pilot study, indicates that the model works, yet
not in a satisfactory way. In particular, in many instances there is misclassification
of null inflection cases and wrong classification of inflected forms as base forms.

Clearly the model misses some of the information needed to predict the right
inflection in some cases. In the case of events, for instance, the English third person
inflection -s is never predicted by the model. This may be due to the small number
of examples in the training data, but also to the lack of certain features. The model
is not able to decide, for instance, that the subject of a verb is a singular noun, and
therefore the event is expressed by a third person verb, because it does not have
access to the information about the cardinality of the concept that is the agent of
the event. The implementation of new features capable of capturing this kind of
information is left for future work, as is a comprehensive error analysis in order to
find out exactly what additional information is missing in the model.

Regardless of the success and the issues of the simple supervised model for mor-
phology prediction presented in this section, its main drawback is that it is strongly
dependent on the language being English. A natural evolution would be that of
generalizing the approach of treating the generation of inflections as a classification
problem, so that it can be applied to other languages as well.

6.7.5 Alternatives

The five-class rigid classification model presented in this section is perhaps too sim-
plistic to account for all the morphological variation of the English language, let
alone that of other languages. Moreover, the method relies on an existing lexicon
that maps lemmata to all their possible forms, including irregular ones such as go+ed
= went. A valid alternative would be to switch to an open-class classification, where
the set of possible predictions for a given concept is not restricted to the set {s, ed,
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en, ing,H} but actually covers all the possibilities given by the language.

Morphological variation can be modeled as sequences of editing operations on
the base form of the target word. For instance, to go from the base form drink to
the inflected form drinks the only operation needed is appending the letter s at the
end of the word. For a slightly more complicated case, the editing operations to
transform the base form rise into rising are, in sequence, a deletion (the letter e) and
three additions (the letters i, n and g). With this scheme one can represent every pos-
sible morphological variation from the base form as a string of editing operations
encoded in some unique way (As for the first example, DAiAnAg for the second ex-
ample, and so on), including the irregular cases such as see becoming saw (DDAaAw).
The advantages of this method are that it accounts for every possible combination
of editing operations and it is independent from the target language and manually
compiled lists of word forms. On the other hand, to implement such scheme in
a supervised model for the prediction of inflections (like the one presented in this
chapter) would require a larger dataset, as some of the instances to learn are rather
sparse, in particular the cases of irregular morphology.

Finally, another alternative is to generate every possible inflection for every gen-
erated lemma and then employ a statistical language model to sort out the best com-
bination by computing ngram frequencies of ngrams of inflected words. As noted in
Section 6.2, this method is not really compatible with the architecture of the system
proposed in this thesis, although it remains a useful way of evaluating the results of
the system.

6.8 Discussion and Conclusion

In this chapter I introduced the problem of lexical choice in the framework of the
Unboxer NLG pipeline presented in Chapter 3. The problem is tackled by dividing
it into two separate tasks, namely lemma prediction and inflection generation (for
the second task a pilot study has been conducted).

For the first task, I presented an unsupervised algorithm for lexical choice from
WordNet synsets called Ksel that exploits the WordNet hierarchy of hypernyms to
produce the most appropriate lemma for a given synset. Ksel performs better than
a baseline based on the frequency of lemmata in an annotated corpus. A supervised
alternative to Ksel is also tested in this chapter, although its performance is hindered
by several factors.

The second task is treated as a classification problem, where the lemma and other
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features extracted from the semantic structure are fed to a supervised classifier to
produce the word inflection out of a fixed set of choices.

The combination of the two solutions makes creates a lexical choice component
that is able to generate the content words that express concepts in a DRG.

6.8.1 Error Analysis

At first glance, it is surprising that the unsupervised WordNet-based method per-
forms well, considering that every possible synset of the candidate lemma takes part
in the computation. Obviously, the aggregation functions play a big role in ruling
out irrelevant senses from the picture (e.g., the third sense of food in the example in
Section 6.5 has nothing to do with the semantic context), but seemingly something
in the underlying structure of WordNet helps too. The intuition is that the intra-
relatedness of different synsets associated with the same words is generally high,
that is, different meanings of polysemous words are typically related to each other
(with not-so-common exceptions).

WordNet synsets usually provide good quality synonyms for English lemmata.
However, this is not always the case, for instance in some cases there are lemmata (or
sequences of lemmata) that are not frequent in common language. As an example,
the first synset of the English noun month is made of the two lemmata month and
calendar_month. The latter occurs very seldom outside specific domains but Ksel
produced it in 177 out of 181 cases in the experiment in Section 6.5.3. Cases like
this result in awkward realizations such as “Authorities blame Azahari bin Husin
for orchestrating last calendar month’s attacks in Bali.” (example from the test set).
Fortunately, only a very small number of synsets are affected by this phenomenon.
Finally, it must be noted that Ksel is a totally unsupervised algorithm that requires
only an external lexical knowledge base such as WordNet. This is not the case for
other methods, including the Most Frequent Lemma baseline.

6.8.2 Future Work

The lexical choice module of the Unboxer pipeline is perhaps the most problematic,
party because the difficulty of the problem itself, and partly because it is actually
formed by two parts that cooperates towards the solution.

Regarding the unsupervised method for lexical choice presented in Section 6.5,
being based purely on a lexical resource the Ksel approach lends itself nicely to



6.8. Discussion and Conclusion 155

be applied to different languages by leveraging multi-lingual resources like Babel-
Net [Navigli and Ponzetto, 2012], that have not been tried yet.

Both Ksel and its supervised alternative have only been tested on the generation
of concepts, leaving the generation of events out of the picture. Although the syntax
of DRGs allows for the same system to be easily adapted to events, it would be
interesting to investigate the differences in the outcome.

Chrupala et al. [2008] have developed a statistical morphological analyzer that
is independent from the specific language. Morfette, this is the name of the system,
treats the analysis of morphological variation as a classification problem, where the
classes are the possible sequences of edits at the character level that transform the
base form into the inflected form. By reversing it, the Morfette system could be
used to generate word inflections from lemmata, in a similar fashion to the model
proposed in Section 6.7, but with the advantage of being language independent.





Chapter 7

Discussion and Conclusions

This is the final chapter of this thesis, and as such it is written with two main goals
in mind: to look behind at the work presented so far, so to try and distill it into
a meaningful conclusion, but also to look forward to new directions of research in
NLG and related fields and to possible applications of the work presented in this
thesis.

At the beginning of the thesis, in the introductory chapter, I wrote down four
research questions to serve as a guide to understand the direction of the work pre-
sented in the thesis. Now those questions can finally have an answer motivated by
the content of the previous chapters.

What logical formalism can represent the meaning of natural language expressions in a
way that facilitates fine-grained alignment with the surface form? The Discourse Repre-
sentation Graphs introduced in Chapter 3 are capable of representing the meaning
of natural language with the same expressive power and flexibility of Discourse
Representation Structures, from which they are derived. At the same time, they are
a flat, tuple-based formalism, as opposed to the recursive DRSs, and as such they
can be effectively aligned with the surface form at the word level.

How can we produce natural language from a logical form, provided that its alignment
with the surface form is known? An aligned DRG contains all the information to re-
construct the surface form. The algorithm presented in Section 3.5.3 does that by
producing the surface forms for individual discourse referents, and subsequently
the complete surface form for the whole structure by composition.

Given an arbitrary logical form, what methods are the most effective at predicting the
alignment with the surface form? The supervised statistical method introduced in
Chapter 5 is capable of predicting the surface order encoded locally for each dis-
course referent by learning the alignment from a corpus of DRGs. The lexicaliza-
tion can instead be solved by applying the unsupervised Ksel algorithm introduced
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in Chapter 6, and predicting the morphological inflections in a supervised fashion
(see 6.7).

In the case of supervised statistical methods for natural language generation, resources
like annotated corpora are needed. What characteristics should such a resource have, and
how is it possible to build one that is rich enough to be employed to train statistical models?
The Groningen Meaning Bank contains a large number of DRGs aligned with text,
thus forming an appropriate base for supervised methods. Such a resource is built
automatically by employing a pipeline of NLP analysis tools, and then corrected
manually via crowdsourcing, as detailed in Chapter 4.

In the rest of this section, I present a few ideas and speculations about alternative
approaches that have not been explored (Section 7.1). Next, in Section 7.2 I present
a catalog of open problems in NLG in general and with respect to the approach of
this thesis in particular. Finally, Section 7.3 presents some ideas for future work.

7.1 A Retrospective Look

The automatic generation of natural language, as many related problems, can be
approached from two different directions. One is the study of the processes that
bring human beings from the representation of information in their brain to the
expression of such information by the use of a language suitable for communica-
tion with other humans. This way of representing knowledge, language, and the
processes that transform and manipulate them, is typical of Computational Linguis-
tics, where the focus is on construct plausible and effective models of language and
communication, and an important byproduct (when not the main goal) is a deeper
understanding of such processes.

The Natural Language Processing approach, on the contrary, shifts the attention
on the development of techniques and resources to successfully achieve the task at
hand. As a consequence, the solutions provided by NLP efforts are often harder to
interpret from a linguistic perspective, even if they are well engineered and efficient
ones.

Both approaches, and a mixture of the two, have been experimented with in
the field of statistical NLG, as highlighted in Chapter 2, although the work found in
literature seems to exhibit an historical trend going from the modeling approach, i.e.,
learning and applying a bidirectional grammar, towards more application-driven
approaches.
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Regarding the system proposed in this thesis, the Unboxer, it started out in a
way that contains a mix of modeling and engineering elements. Specifically, the in-
spiration and motivation came originally from the study of the modeling process
that had led to the creation of the Groningen Meaning Bank. A modification of the
analysis pipeline that translates English texts into abstract meaning representation
has made possible to create a large number of text aligned with the formal represen-
tation of their meaning, laying the foundation for the statistical NLG pipeline of the
Unboxer system. From there on, the core of the system employs machine learning
techniques to learn such alignment and generalize its representation in order to re-
construct it for a given unaligned abstract meaning representation. This is done by
the two components described in Chapters 5 and 6.

Unboxer

DRG
+

WordNet synsets

prediction of
surface order

(local)

prediction of
lexical items

lexical choice

morphology

text-aligned
DRG

surface forms
for discourse

referents

surface
composition surface form

Figure 7.1: A more detailed schematic view of the architecture of the Unboxer sys-
tem.

Considering all the information presented throughout the central part of the the-
sis, after the idea of the Unboxer system is first introduced, an updated, richer pic-
torial representation of the architecture looks like Figure 7.1.

The modular structure of the Unboxer pipeline allows for a more efficient treat-
ment of isolated tasks, but it comes at the cost of a increased difficulty in reading
the results from a linguistic perspective. The experimental section of Chapter 5 is
an example of such problem: it is not trivial to understand clearly what features
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of the alignment are more or less informative for the final surface order, or what
information is missing.

Stepping into an hypothetical time machine and traveling back a few years, the
development of the Unboxer could have followed a different route. Since the goal
would have been to build a supervised system for generating natural language from
logical forms, a resource like the GMB would have still been part of the design.
The alignment of the formulas with the text, however, would be probably different,
for instance experimenting with the global alignment strategy rather than the local
alignment strategy that has been implemented, as discussed in Chapter 3. The rules
that govern the alignment at the word level could also be better defined, and cover
the entirety of the text, avoiding to leave out surface-specific words. With such an
alignment in place, machine learning techniques would have been used to learn the
alignment from scratch, without the need to learn different pieces of information at
a time and then rebuilding the output in a separate step. This is not an easy task
though, because of two main reasons. First, the structure of the input to the NLG
pipeline is complex and sparse, that is, it is impossible to encode a whole DRG as a
vector of features without hitting the data sparseness problem. Even if an algorithm
was created to transform each possible DRG into a fixed-dimensionality vector, the
number of feature required would be so large that each instance would be different
from all the others and a learning algorithm could not infer any kind of generalized
knowledge from a dataset like this. The other problem has again to do with the
sparseness of data, but this time regarding the possible outputs, i.e., all the valid
natural language expressions.

Perhaps these problems render the whole approach completely unfeasible, or
perhaps it is only a matter of adapting and tweaking the appropriate representation
formalism and learning machinery, for instance using modern techniques based on
deep and unsupervised learning. Anyway, an approach like the one sketched here
would learn a bidirectional semantic grammar that maps a language independent
formal meaning representation to expressions in a natural language. Such result
would be an important step towards general-purpose NLG and consequently se-
mantically informed machine translation.

7.2 Known Issues and Challenges

An approach based on a bidirectional grammar would result in a more elegant so-
lution to the NLG problem, although the question remains open whether such an
approach is feasible at all. On the other hand, an engineering-driven solution like
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the one proposed by this thesis has an advantage among others, that is, it helps fo-
cusing on smaller subproblems during the development. This process has indeed
highlighted some issues in several steps of the pipeline, that are discussed in this
section.

This section addresses some of the issues that arise in the typical tasks in the field
of statistical Natural Language Generation as they are formulated under the frame-
work presented throughout the thesis. Traditionally, many models and components
have been developed to solve separate sub-problems of the generation pipeline, of-
ten requiring different input formats and assumptions. Among such tasks are the
problems of generating referring expression, aggregation, and the treatment of rhetor-
ical relations, which are ofter dealt with by micro-planning components. Another
problem one has to solve when dealing with supervised settings is the creation of
a gold standard dataset, a task often too demanding in terms of time and resources.
Finally, the evaluation of natural language generation output is known to be a hard
task, similar to evaluating the quality of automatic translations, that proves to be
particularly difficult to solve in an automatic way.

Part of the traditional NLG pipeline, namely the document-planning compo-
nent, responsible for , among other things, structuring the output and connecting
its parts via their discourse relations, is not taken care of by the Unboxer pipeline.
Rather, the input to the Unboxer is assumed to be already available as a DRG, thus
the issues related to discourse planning, content determination and document struc-
turing are not discussed here.

7.2.1 Lack of a Gold Standard

Throughout the thesis, a problem has consistently shown up in several places,
namely the need for good quality annotated data. In NLP, having a gold stan-
dard means the availability of a sufficiently large set of natural language segments
paired with linguistic knowledge encoded by human experts. Manual annotation is
so important for the quality of the data that a whole community of researchers is
dedicated to develop new methods, interfaces and evaluation strategies, with their
events and publications.

Likewise, a good deal of the work done for this thesis went into the creation of
a gold standard semantically annotated corpus of English and methods to facilitate
the creation of quality annotation. In fact, most of Chapter 4 is devoted at describ-
ing the process of creating the Groningen Meaning Bank, and then using the GMB
Explorer and Wordrobe to provide gold standard annotation on many levels of lin-
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guistic analysis.

While both the Explorer and the Wordrobe game proved successful for their own
goals, the GMB as a whole is far from being a gold standard resource. At the time of
this writing, the GMB consists of 30,788 documents, 2.7 sentence long on average,
for a total of 1,575,487 tokens. The single annotations collected from human experts
are only 42,007, most of which are part-of-speech tags (10,789) and named entity
tags (17,790). This means that only 0.68% of the POS tags of the GMB are manually
corrected. While this number should not let down the reader, because the accuracy
of the POS-tagger used to provide the automatic annotation is still very high, it is
clear that the POS tag layer of the GMB annotation is not at a gold standard level,
and similar conclusions can be drawn for the other layers. The situation is not better
when it comes to the corrections extracted from Wordrobe. From the tens of thou-
sands of answers (a number that is continuously growing) that the game collected
in almost three years of activity, 6,982 single corrections were distilled.

Besides the “horizontal” problem of annotating a large number of tokens, the
other problematic aspect of making a gold standard resource out of the GMB is
the “vertical” nature of its parallel layers of linguistic annotation. Even if all the
tokens in a text are checked by human experts with respect to one or more facet,
this does not guarantee that the annotation is correct for every level. The shortest
document in the GMB at the moment is the single nine-token sentence “Officials
have warned opposition activists not to hold demonstrations”. Nine tokens times
ten layers of annotation (POS, lemmata, namex, animacy, senses, roles, relations,
scope, reference, syntax) result in up to ninety tags to check for the expert linguist.
Moreover, the chance of potential disagreement between experts increases with the
size of the document and when looking into typically hard items to analyze such as
word senses or named entity classes.

All these figures and considerations show that the GMB is a promising resource,
and a useful one for many tasks, but there is still work to be done before being able
to use it confidently for tasks that require large-scale gold standard datasets, such as
statistical ones based on supervised machine learning techniques.

But why is it so important to have a gold standard-quality dataset? The obvi-
ous answer is that if one wants a computer system that learns from examples, such
examples should be correct. But the reason why constructing a gold standard se-
mantically annotated corpus is a delicate job lies in the skewed nature of the distri-
butions of many natural language phenomena. Consider for instance the problem
of word sense disambiguation, and conversely that of lexical choice as presented
in Chapter 6. The popular baseline method for WSD consists in taking the most
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common sense for each word, and this method is known to work surprisingly well,
due to most words having only one sense or a predominant sense that is the in-
tended one most of the times. The most frequent lemma baseline against which
the Ksel algorithm is tested behaved in a similar way, showing how most concepts
have a predominant way of being expressed. As an exercise in manual annotation,
I took the time to check one by one every noun and verb in thirty short documents
from the GMB and confirm or correct their assigned WordNet synset. The process
took several weeks and the quality cannot be confirmed to be perfect, both because
there was just one annotator and because he was not a native speaker of the English
language. As a result, most of the GMB is sense-annotated according to the most
frequent sense baseline, which in turn means that a machine learning algorithm
that tries to learn the surface forms corresponding to concepts in a DRG based on
features of the semantic structure is more likely to fail, i.e., picking consistently the
most frequent occurrence. Unfortunately this kind of issues are ubiquitous in a sil-
ver standard, automatically annotated dataset, sometimes undermining the chance
of running reliable, meaningful experimental tests.

x y

CAR(x)
PASS_BY(y)
AGENT(x,y)

(

x

CAR(x) ;

y

PASS_BY(y)
AGENT(x,y)

)

Figure 7.2: DRSs representing the meaning of the two sentences “A car passes by”
(left) and “The car passes by” (right).

7.2.2 Generating Referring Expressions

In DRT, anaphoric expressions are resolved to a suitable antecedent discourse ref-
erent. Proper names and definite descriptions are too, but if finding a suitable an-
tecedent fails then a process usually referred to as presuppositional accommodation
introduces the semantic material of the anaphoric expression on an accessible level
of DRS. The result of this process yields a DRS in which all presupposed information
is explicitly distinguished from asserted information.

Consider for instance the two DRSs in Figure 7.2. Here the DRS on the left, repre-
senting the text “A car passes by” do not presuppose any material, since its entities
(the car, in the example) are introduced for the first time in the sentence. The DRS
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on the right instead explicitly represents that CAR is part of the presupposed seman-
tic material, reflecting the fact that in “The car passes by” the definite expression
“the car” arguably refers to something that has been introduced elsewhere in the
discourse (or it is to be found somewhere in the world knowledge of the hearer).

This gives rise to an interesting challenge for NLG, in particular when the task
is that of generating a suitable expression for a given entity in an abstract meaning
representation. A system informed by this kind of representation of presupposition
might be better, for instance, at generating definite vs. indefinite determiners.

While in principle a system like the Unboxer has access to this kind of informa-
tion, in practice it is not always easy to encode presupposition as local features of
discourse referents, as seen for instance in the experimental section of Chapter 5. A
possible direction for improvement the quality of the alignment is the new Projec-
tive DRT formalism, an extension to DRT that accounts for presupposition and other
projective phenomena [Venhuizen et al., 2013b]. It is also interesting to explore the
insights from approaches dedicated to generating referring expressions using logi-
cal methods van Deemter [2006], Gardent et al. [2004] with robust surface realization
systems.

7.2.3 Aggregation

Coordinated noun phrases are known to be potentially ambiguous between dis-
tributive and collective interpretations. A simple DRT analysis for the distributive
interpretation yields two possible ways to generate strings: one where the noun
phrases are coordinated within one sentence, and one where the noun phrases in-
volved are generated in separate sentences. For instance, the DRSs corresponding
to “Deep Purple and Pink Floyd played at a charity show” (with a distributive in-
terpretation) and “Deep Purple played at a charity show, and Pink Floyd played at a
charity show”, would be equivalent. This is due to copying semantic material in the
compositional process of computing the meaning of the coordinated noun phrase
“Deep Purple and Pink Floyd”. The collective reading, as in “Deep Purple and Pink
Floyd played together at a charity show” would not involve copying semantic ma-
terial, and would result in a different DRS, with a different interpretation. It is the
task of the aggregation process to pick one of these realizations, as discussed by
White [2006]. Doing this from the level of DRS poses an interesting challenge, be-
cause one would need to recognize that such an aggregation choice is possible in the
first place. Alternatively, instead of copying, one could use an explicit operator that
signals a distributive reading of a plural noun phrase, for instance as suggested by



7.2. Known Issues and Challenges 165

Kamp [1984]. Arguably, this is required anyway to adequately represent sentences
such as “Both Deep Purple and Pink Floyd played at a charity show”.

7.2.4 Discourse Relations

In the classic NLG architecture, a document planning component is responsible for
determining what to say, as opposed to the micro-planner which tells us how to say
it. The document planner has to determine what is the topic of the generation and
how to structure it in a way that is accessible to a human recipient. In (written)
natural language, we decide what it is appropriate to say, then we subdivide it in
documents, paragraphs, sentences and clauses. These divisions also have relations
binding them together, for instance in “Max had a great evening last night. He
ate salmon.” the second sentence is the continuation of the first one, while in “the
population fled abroad because the volcano was erupting” the eruption event clause
is the cause of the main event.

Asher and Lascarides [2003] nicely integrate relations at the discourse level into
the DRT framework, and thanks to the reification mechanism shown in 3.3.2 they
can be easily represented in a DRG. Even though the generation of discourse mark-
ers has been left out of the work presented in this thesis, while focusing on the
generation of single sentences, an simple extension to the alignment strategy pre-
sented in 3.4 would allow a supervised system like the Unboxer to generate whole
documents made of multiple clauses and sentences.

7.2.5 Evaluation of NLG

The evaluation of tasks related to the generation of language is typically harder than
for tasks of analysis. Simply put, the output of a language analysis model is usu-
ally expected to be unique, unambiguous. For instance, to one English sentence
should correspond exactly one syntactic parse tree, or at least only one should be
considered the correct one. This is not the case when the direction of the analysis is
reversed and one deals with a generation component because in general the output
consists of a range of expressions, phrases, words, etc. some of which can be equally
satisfying for the task at hand. The situation is analogous to the evaluation of au-
tomatic translations, where often times the “best” candidate for a translation (as in
“most meaning preserving”) is not the one that sounds more natural or appealing
to the hearer.

Traditionally, NLG systems are evaluated by means of experts manually check-
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ing the output and comparing it to some gold standard text. For some studies,
researchers have resorted to extrinsic evaluation, where the output of a system is
evaluated in the context of a larger system, or as the basis for another task. An ex-
ample of the latter type of evaluation is the GIVE challenge [Byron et al., 2007] where
instructions generated by the participant systems are given to human subjects with
the goal of navigating a virtual 3D environment.

Recently, the interest has increased towards automatic methods of evaluation.
These methods are typically based on some computable metric of “distance” be-
tween the candidate generations and a gold standard. However, the quality of the
evaluation carried out with automatic measures is still not high enough to com-
pletely substitute manual checking [Belz and Reiter, 2006].

In the next section I sketch the idea for a new method of evaluating the output
of natural language generation based on gamification and crowdsourcing.

7.3 Future Work

Any non-trivial research project is bound to leave certain options unexplored. Time
and resources are limited, sometimes perhaps the technical means to develop a par-
ticular solution are not available at the time of the research. It may be nonetheless
interesting for the reader to have some plans for future work sketched out, therefore
the present section.

Throughout the thesis, usually at the end of each chapter, there is a section pre-
senting plans for future work in the area of interest of the relevant chapter. In the
rest of this section, instead, I present the ideas for work that is relevant to this thesis
in a more global sense, or it represent an extension of it, but it has not been carried
out yet.

7.3.1 Gamification for the Evaluation of Generated Sentences

In Chapter 4, I introduced Wordrobe, the collection of online games that was used
(and still is, at the time of this writing) to collect gold standard annotation for the
GMB. By design principle, the games of Wordrobe all share a common structure, that
is, a fixed question, a variable short text with some optional highlighting of words,
and a set of possible choices for the answer. The upside of this simple architecture
is that creating a new game to be included in Wordrobe is a pretty straightforward
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process, consisting in the production of two tabular files, one for the question texts
and another for the multiple choices.

The declared goal of Wordrobe is that of bettering the quality of the annotation of
the GMB, therefore the linguistic material for the questions is generally taken from
the GMB itself. This is not a hard costraint though, the two systems being virtually
independent from each other. In fact, in one case — the game Viittaukset, a clone
of Pointers for Finnish — the questions were generated separately, along with their
possible choices, and subsequently integrated into a Wordrobe game.

With this premise, it is easy to see that the creation of a gamification-based ap-
proach to the evaluation of NLG is a feasible task. Here follows the plan for a game
called Rivers, designed to leverage the Wordrobe crowdsourcing environment in or-
der to collect human evaluation of the Unboxer output.

Figure 7.3: A mock-up example of what the Rivers game will look like.

The player of Rivers is shown pairs of sentences at a time. One of the sentences
is taken from the GMB, while the second one is re-generated following the same
process used for the experiments in 5.3. The question asked to the player is to give
a judgment on the fluency of the text on screen, by saying which sentence sounds
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more natural. The list of possible choices is fixed:

1. The first sentence.

2. The second sentence.

3. Both sentences sound natural.

4. Both sentences do not sound natural.

A screenshot of the game as it is imagined here is provided in Figure 7.3. Note
that in the example the words “leftover” and “remnant” are highlighted, being the
example based on different lexicalizations of a concept (see Chapter 6. However,
the game structure is applicable also to the evaluation of different aspects of the
generation output, for instance the surface order.

With enough answers from different players, it is possible to measure the quality
of the generated sentences for instance by computing the disagreement with respect
to the two first options. The assumption is that a highly fluent generated sentence
different on the surface from the gold standard would cause players to prefer it as
much as the gold standard sentence. Other strategies and sets of possible choice can
also be subject of experiments.

An approach to evaluation of NLG like the one proposed in this section would
retain the desirable properties of traditional human judgment, including the graded
kind of metrics capable of distinguish between a wrong result and a good but not
perfect one. On the other hand, as proved by the other applications of Wordrobe,
gamification techniques applied to NLP tasks can be powerful tools to speed up the
collection of large amount of data.

7.3.2 Global Order Alignment

At the end of Section 3.5.1 it is hinted that there is an alternative way to align the text
to the meaning representation, with respect to the information encoding the order
of words an phrases. To recap, the strategy followed in the method of alignment
proposed in this thesis exploits the network structure of the meaning representation
and encodes the surface order locally to each discourse referent. This kind of align-
ment has been shown to be sufficiently informative to produce complete surface
forms by means of the algorithm introduced in Section 3.5.3.

The alternative way of encoding order information in the alignment is to give a
global order to the tuples composing the meaning representation based on the order
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k1 unary  

 scope k2

k2 referent e1

k2 referent x1 1 1 A
k2 event PAY

k2 concept CUSTOMER

k2 role agent

CUSTOMER instance x1 2 2 customer
PAY instance e1 4 5 pay
agent internal e1 1
agent external x1

k2 surface e1 2 3 did
k2 surface e1 3 4 not
k2 surface e1 5 6 .

Figure 7.4: Word-aligned DRG for “A customer did not pay.” Note the comparison
between local ordering (fourth column) and global ordering (fifth column).

of the surface form. The difference between the two strategies of alignment is shown
in the example in Figure 7.4.

While only the local order alignment strategy has been explored in this thesis,
both strategies have their pros and cons. From an alignment based on local order a
composition-based algorithm is capable of producing partial surface forms for the
single discourse referents. In fact, this is the way the realization algorithm of the Un-
boxer constructs the final, complete surface form, that is, by building surface forms
for each discourse referent and incrementally put them together. This behavior has
desirable properties, e.g., for the purpose of error analysis, and it would be difficult
to replicate it in the presence of an alignment using global ordering. Local order
information also facilitates the supervised learning procedure, because it limits the
size of the input to the problem, that is, the number of tuples to be ranked (see
Chapter 5).

On the other hand, global order alignment is easier to produce, being based triv-
ially on the order of the words in the surface form. While the local order information
in the meaning representations of the GMB is produced by the linguistic analysis
pipeline, the global order is inherent in the surface, thus it reduces the complexity
of the procedure to create the alignment. Moreover, the realization algorithm would
be trivial with an alignment based on global order.
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Following these consideration, it is interesting to explore the alternative path of
an NLG pipeline based on an alignment that follows a global order strategy. The
main challenge would be the design of a new machine learning framework capable
of learning such alignment. Nonetheless, once this problem is solved, a subsequent
step is no longer necessary, potentially leading to an improved quality of the real-
izations.

7.3.3 Challenge: Generating Concepts from Logical Forms

A shared task is an open challenge to solve a specific problem on a given data set, of-
ten used as a mean of evaluating the state-of-the-art in a research area. Even though
there have been various shared tasks on application-driven NLG tasks such as Ques-
tion Generation [Rus et al., 2011], the GIVE challenge [Striegnitz et al., 2011] and
specific NLG-related subtasks [Belz and Kow, 2010], the production of fluent text
from abstract, deep semantic representations has not been fully explored. Since the
sophistication and efficiency of syntactic and semantic parsers has increased con-
siderably the last years [Butler and Yoshimoto, 2012, Bos, 2008, Zettlemoyer and
Collins, 2012], it would be natural to be able to reverse this process, i.e., generating
text from semantic representations. In this section, I propose a shared task aimed at
the generation of natural language expressions for target concepts in a logical form.
This task would be a step in the aforementioned direction, the inverse of semantic
parsing.

This task has much in common with the Surface Realization task [Eugenio et al.,
2012], for which an effort was made to agree on a standardized meaning represen-
tation format that could serve as the input of surface realization systems. How-
ever, finding a common ground in terms of input representation format for NLG
has proven to be a challenge, thus the resulting input representation formats still
contain traces of language-specific syntactic properties (based on dependency tree
structures) and are designed with the goal of generation in mind, rather than being
semantic representations with a model-theoretic interpretation. Rather than propos-
ing new semantic representations to generate natural language from, the proposal
is to take well-established formal semantic representations

The aim of this shared task is to generate text strings that accurately and fluently
describe concepts expressed in a logical representation. More concretely, partici-
pants are given a logical form, one or more concept identifiers within this logical
form, and are asked to generate their English surface string. A simplified example
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would be:

LF: |x|=80,000
BRITAIN-N-1(y)
OF(x,y)
TROOP-N-2(x)

Concept: x
Output: 80,000 British troops

In this example, the logical form contains two variables referring to concepts: x and
y. Here the task is to generate a description for one of them, namely x, where the
gold standard description would be “80,000 British troops”. Other correct descrip-
tions would be thinkable, such as “80K troops from Britain” (slightly different from
the gold standard, but using more words). Informative but incomplete descriptions
would be “80,000" troops”, or just “troops”. In contrast, “Britain” would be incorrect
descriptions.

The syntax of logical forms includes operators for negation, disjunction and im-
plication, and atomic formulas made of non-logical symbols with one (predicates)
or two arguments (relations), formulas for named entities, cardinalities, and time
expressions. There are links to Wordnet synsets (for symbols derived from nouns,
adjectives, adverbs and verbs), thematic roles from VerbNet, preposition symbols
(a closed class of English prepositions or possibly links to the Preposition Project
database [Litkowski and Hargraves, 2005]).

Naturally, a concept can be expressed by various surface forms, but in the
datasets for the shared task only one gold standard output is given. Also possi-
ble is to have the same logical form but ask to generate two or more concepts from
it, as in the following couple of examples:

LF: PRESIDENT-N-2(x)
OF(x,y)
NAMED(y, United_States)
NAMED(x, Barack_Obama)

Concept: x
Output: President of the

United States Barack Obama
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LF: PRESIDENT-N-2(x)
OF(x,y)
NAMED(y, United_States)
NAMED(x, Barack_Obama)

Concept: y
Output: the United States

The examples above are just for illustration. The actual data will be formatted as
DRGs (see Chapter 3 for a description of the formalism).

DRG variable surface form
101 x 80,000 British troops
101 y Great Britain
102 x President Barack Obama
103 x capital of Helmand province

... ... ...

Figure 7.5: Format of the training data set

The training data for the task is a large set of triples consisting of a logical form
of a sentence, the concept variable for which the surface has to be generated, and
the gold standard surface form. The test data would be in a similar format but,
obviously, without the expected surface form. The logical forms are derived from
the Groningen Meaning Bank. A text file is provided to the participants containing,
on each tab-separated line, the identifier of a DRG, the variable name of the concept
to generate, and the expected output surface form An example of the format of the
training data set is shown in Figure 7.5. The algorithm for surface realization of
aligned DRGs presented in Section 3.5.3 is used to produce the gold standard, that
is, for each marked concept a surface form is automatically produced, then checked
manually for correctness.

By targeting the generation of natural language expression for concepts in logi-
cal forms, the focus of the shared task becomes that of exploring the common issues,
abstracting away, as much as possible, from specific representations and languages.
One problem that a candidate system should be able to solve is that of determining
the order of the elements to be generated (see Chapter 5). Looking at the example
above, “troops from Britain” is clearly different from “Britain of troops”. This is not
simply a matter of applying an n-gram language model though, since some of the
elements of the logical form could not generate surface structure at all, e.g., ofpx; yq
within the surface form “80,000 British troops”. Other issues include the ones typi-
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cal of the surface realization pipeline, such as the generation of correct word forms
(gender, number, capitalization, see also Chapter 6) and the generation of connec-
tives and other particles that are not explicit parts of the logical form. The infor-
mation needed to produce the surface forms for the given concepts is contained,
in theory, in the lexical resources linked to the symbols in the logical forms. How-
ever, the full logical form is given as input, so that systems could exploit contextual
information in order to help the lexicalization process.

Logical forms are in principle language-neutral, but the lexical resources used
in this task to link them to world knowledge are not. However, there exist many
examples of cross-language alignment, e.g., for WordNet [Pianta et al., 2002]. By
exploiting such resources, in the future the scope of the task could be extended to
multi-language surface realization from logical forms.

7.4 Final Words

The automatic generation of natural language is a problem that has been on the
radar of computer scientists almost since the beginning of the computing era. The
research community then moved on from the utopia of a computer system capable
of communicating with its human interlocutor using exclusively natural language.
At the same time, many applications of Natural Language Generation have sur-
faced, and the field has partially evolved to accommodate particular applications,
and to divide the problem into more manageable tasks.

This thesis reprises the original goal of NLG of being general, agnostic with re-
spect to its application, and language-neutral. The system described in this thesis
aims at generating full natural language expressions from formal structures based
on logical formulas that represent meaning in an way that abstracts away from
words and syntax. Indeed the emphasis of this thesis on the representation for-
malism is necessary, as it constitutes the motivation for all the choices and the engi-
neering steps that have been taken to complete the project of the system.

Obviously, this is an ambitious project, and the experimental tests conducted on
its several modules show that additional work needs to be done before the perfor-
mance of the system reaches industry-level standards of quality. Yet, the hope is
that the reader will grasp the message that the generation of natural language ex-
pressions from logical formulas is a job as feasible as it is important for the future of
man and machine communication.

As a final note, I believe that Computational Linguistics should be treated with
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no less rigor than any empirical science. This entails that the models developed by
the researchers should be accessible to the public and the experiments should be re-
producible with as little extra effort as possible, as also pointed out in a recent study
by Fokkens et al. [2013]. In this spirit, the software developed during the course
of this study, the datasets, and the instructions on how to replicate the experiments
are all publicly available at the URL https://github.com/valeriobasile/

unboxer.

https://github.com/valeriobasile/unboxer
https://github.com/valeriobasile/unboxer
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English Summary

The central theme of this thesis is the generation of natural language from a formal
representation of meaning. In a nutshell, the problem we want to solve is to go from
a logical formula such as @xpmanpxq Ñ Dypwomanpyq ^ lovespx; yqq to the sentence
“every man loves a woman”. This is achieved by employing several computer al-
gorithms and statistical techniques. Moreover, not all representation formalisms are
equal, some being better than others for the purpose of generation.

The first chapter of this thesis starts by presenting to the reader the problem of Nat-
ural Language Generation in a general way. This chapter introduces the formal
representation of the meaning of natural language, in particular with formalisms
based on logic, followed by the relationship between NLG and Machine Transla-
tion, and the motivation behind the approach to NLG undertaken in this thesis, that
is, robustness and theoretical soundness. Finally, the research questions that drive
the work presented in the rest of the thesis are formulated.

Chapter 2 contains a review of the literature in the field of Natural Language Gen-
eration, with particular focus on methods and problems relevant to several aspects
of the work presented in the rest of this thesis. The chapter begins with present-
ing the traditional architectural organization of NLG tasks, then presents a review
of previous work on statistical generation, generation from knowledge bases, and
prediction of surface order, that is, the order of the words in the final output. The
second part of the chapter shows how the representations of meaning found in the
literature do not support well approaches to generation like the one proposed in this
thesis. The chapter ends with a review of software packages for NLG.

Chapter 3 introduces the plan for the architecture of a novel system that generates
natural language expressions given formal representations of meaning as input.
Two of the modules, namely the surface order prediction module and the lexical-
ization module are covered in greater detail in the central chapters of the thesis. The
surface realization module, positioned at the end of the pipeline, is also described in



this chapter. It takes the output of the previous modules and produces the complete
surface form that expresses the meaning encoded in the original meaning repre-
sentation. This chapter also introduces a novel formalism for the representation of
meaning, based on formal logic. The crucial feature of this formalism, called Dis-
course Representation Graphs, is that it favors the alignment between the abstract
meaning representation and the text at the level of words. Thanks to this schema of
alignment, several tasks of the NLG pipeline can be treated by supervised machine
learning approaches.

Chapter 4 presents a semantically annotated resource called the Groningen Meaning
Bank. This resource is used to train the models introduced in the previous chapter,
as well as to extract data to test the proposed approaches through experimental tri-
als. A number of design choices have been made for the creation and the annotation
of the resource, and several software tools were employed to automatically analyze
large quantity of text. Moreover, crowdsourcing methods were applied to gather
linguistic annotations from the public, through a Web interface for experts and a
Game With A Purpose called Wordrobe.

Chapter 5 covers the module of the system responsible for the prediction of the
order of words and phrases composing the surface form. This problem is solved by
leveraging a dataset of text-aligned meaning representations and building statistical
models for learning to rank to predict the order of small sets of items local to each
concept.

Chapter 6 presents the other central module, that is, the module responsible for
the production of content words for the concepts contained in the original abstract
meaning representation. This module actually solves two problems: the choice of
the correct lemma from a closed set of options, based on the semantic content to
convey, and the production of the correct morphological inflection. For the first
task, two alternative methods are proposed: an unsupervised one and a supervised
one, trained on GMB data. For the second task, a pilot study is presented in which
the problem is solved by a supervised model of inflectional morphology of English.

The final chapter contains a series of reflections to conclude the thesis. A look a
posteriori highlights the decisions that have been made for the design of the NLG
system, thus inviting to speculate about alternative directions. Several problems are
still open and it is important to consider how they affect the performance of the
system. While these issues need to be addressed in order to obtain better results,
the approach to NLG presented in this thesis is a step forward in improving existing
approached to generation from logical forms.



Nederlandse Samenvatting

Het centrale thema van dit proefschrift is het genereren van natuurlijke taal va-
nuit een formele betekenisrepresentatie. Kort gezegd, willen we het volgende
probleem oplossen: gegeven de logische formule @xpmanpxq Ñ Dypvrouwpyq ^

liefhebbenpx; yqq, moet de zin “alle mannen hebben een vrouw lief” worden
afgeleid. Om dit te bereiken, worden verscheidene computeralgoritmes en statistis-
che technieken toegepast. Naast de gebruikte methode, is ook het representationele
formalisme van invloed op de kwaliteit van de gegenereerde zin; sommige formal-
ismen zijn hiervoor meer geschikt dan andere.

Het eerste hoofdstuk van dit proefschrift start met een algemene beschrijving van
het probleem van ‘Natural Language Generation’ (Natuurlijke Taal Generatie; NLG).
Dit hoofdstuk introduceert formele representaties van de betekenis van natuurlijke
taal, met een nadruk op logische formalismen, en de relatie tussen NLG en automa-
tisch vertalen. Vervolgens wordt de motivatie achter de in dit proefschrift genomen
aanpak tot NLG beschreven: het ontwikkelen van een robuuste, breed toepasbare
en theoretisch onderbouwde NLG methode. Tenslotte worden in dit hoofdstuk de
onderzoeksvragen die in dit proefschrift aan bod komen gepresenteerd.

Hoofdstuk 2 bevat een overzicht van de literatuur op het gebied van Natural Lan-
guage Generation, met een focus op de methoden en problemen die relevant zijn
met betrekking tot de aanpak tot NLG in de overige hoofdstukken van dit proef-
schrift. Het hoofdstuk begint met een beschrijving van de traditionele hiërarchische
organisatie van NLG taken, en presenteert vervolgens een overzicht van de vakliter-
atuur over statistische generatie, generatie vanuit zogenaamde ‘knowledge bases’,
en het voorspellen van woordvolgorde. In dit hoofdstuk wordt ook beschreven
welke verschillende betekenisrepresentaties gebruikt zijn in eerdere NLG syste-
men. Aan het einde van het hoofdstuk wordt een overzicht van de verschillende
bestaande softwarepakketten voor NLG gegeven.



Hoofdstuk 3 introduceert de architectuur van een nieuw systeem dat natuurlijke taal
genereert vanuit formele betekenisrepresentaties. De twee belangrijkste modules
van dit systeem, namelijk de module voor het voorspellen van de woordvolgorde en
de lexicalisatiemodule, worden in Hoofdstukken 5 en 6 nader behandeld. De derde
en laatste module van het systeem, welke op basis van de voorgaande modules de
uiteindelijke expressie in natuurlijke taal levert, wordt in dit hoofdstuk beschreven.
Daarnaast wordt in dit hoofdstuk een nieuw formalisme voor het representeren van
betekenis geïntroduceerd, gebaseerd op formele logica. Het cruciale aspect van deze
nieuwe representaties, genaamd Discourse Representation Graphs, is dat deze de
coördinatie tussen de abstracte betekenisrepresentaties en de woorden van een tekst
faciliteren. Dankzij dit nieuwe formalisme kunnen verschillende onderdelen van de
NLG procedure uitgevoerd worden door middel van ‘supervised machine learning’.

Hoofdstuk 4 presenteert een semantisch geannoteerde verzameling teksten,
genaamd de Groningen Meaning Bank (GMB). Een dergelijk corpus kan gebruikt
worden om de modellen die in het vorige hoofdstuk zijn gepresenteerd te trainen.
Daarnaast kan de data worden gebruikt om de voorgestelde NLG methode exper-
imenteel te testen. In dit hoofdstuk worden de ontwerpkeuzes met betrekking tot
de ontwikkeling en annotatie van het corpus gemotiveerd en de softwareapplicaties
beschreven die gebruikt zijn om de grote hoeveelheid teksten automatisch te anal-
yseren. Om deze analyses te optimaliseren, verzamelen we taalkundige annotaties
via verschillende bronnen, zoals een Web interface voor expert taalkundigen en een
online taalkundig spel genaamd ‘Wordrobe’.

Hoofdstuk 5 beschrijft de module van het NLG systeem dat verantwoordelijk is
voor het voorspellen van de volgorde van de woorden waaruit de te genereren zin
bestaat. Dit probleem wordt opgelost door het gebruik van een verzameling teksten
geassocieerd met betekenisrepresentaties. Door middel van de statistische methode
’Learning to Rank’ wordt van deze associaties geleerd om de volgorde van bepaalde
woordgroepen te voorspellen.

Hoofdstuk 6 beschrijft de andere centrale module van het NLG systeem: de mod-
ule die verantwoordelijk is voor het produceren van inhoudswoorden voor de con-
cepten beschreven in de originele abstracte betekenisrepresentaties. De taak van
deze module bestaat uit twee onderdelen: het selecteren van het juiste lemma
gegeven een beperkte verzameling opties, gebaseerd op de betekenis in de huidige
context, en het produceren van de juiste morfologische inflectie. Voor het eerste
onderdeel worden twee alternatieve methoden voorgesteld: een ‘unsupervised’ en
een ‘supervised’ methode, beide getraind op de data van de GMB. Voor het tweede
onderdeel wordt een proefonderzoek gepresenteerd waarin het probleem wordt
opgelost door middel van een ’supervised’ model van inflectie in het Engels.



Het laatste hoofdstuk bestaat uit een reeks beschouwingen om het proefschrift af te
ronden. Het eerste deel van het hoofdstuk bevat een terugblik op het werk dat in
dit proefschrift is gepresenteerd, waarin de gemaakte keuzes worden geëvalueerd
en wordt gespeculeerd over alternatieve benaderingen. In het derde en laatste deel
van dit hoofdstuk worden een aantal openstaande problemen beschreven, en wordt
nagegaan hoe deze de resultaten van het voorgestelde NLG systeem affecteren.
Hoewel deze problemen in toekomstig werk geadresseerd dienen te worden om
nog betere resultaten te verkrijgen, vormt de NLG methode die in dit proefschrift is
gepresenteerd een belangrijke toevoeging op bestaande methoden voor het gener-
eren van taal vanuit logische representaties.
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97. Çağrı Çöltekin (2011). Catching Words in a Stream of Speech: Computational simulations of

segmenting transcribed child-directed speech.
98. Dörte Hessler (2011). Audiovisual Processing in Aphasic and Non-Brain-Damaged Listeners:

The Whole is More than the Sum of its Parts.
99. Herman Heringa (2012). Appositional constructions.

100. Diana Dimitrova (2012). Neural Correlates of Prosody and Information Structure.
101. Harwintha Anjarningsih (2012). Time Reference in Standard Indonesian Agrammatic

Aphasia.
102. Myrte Gosen (2012). Tracing learning in interaction. An analysis of shared reading of picture

books at kindergarten.
103. Martijn Wieling (2012). A Quantitative Approach to Social and Geographical Dialect

Variation.



104. Gisi Cannizzaro (2012). Early word order and animacy.
105. Kostadin Cholakov (2012). Lexical Acquisition for Computational Grammars. A Unified

Model.
106. Karin Beijering (2012). Expressions of epistemic modality in Mainland Scandinavian. A

study into the lexicalization-grammaticalization-pragmaticalization interface.
107. Veerle Baaijen (2012). The development of understanding through writing.
108. Jacolien van Rij (2012). Pronoun processing: Computational, behavioral, and

psychophysiological studies in children and adults.
109. Ankelien Schippers (2012). Variation and change in Germanic long-distance dependencies.
110. Hanneke Loerts (2012). Uncommon gender: Eyes and brains, native and second language

learners, & grammatical gender.
111. Marjoleine Sloos (2013). Frequency and phonological grammar: An integrated approach.

Evidence from German, Indonesian, and Japanese.
112. Aysa Arylova (2013). Possession in the Russian clause. Towards dynamicity in syntax.
113. Daniël de Kok (2013). Reversible Stochastic Attribute-Value Grammars.
114. Gideon Kotzé (2013). Complementary approaches to tree alignment: Combining statistical

and rule-based methods.
115. Fridah Katushemererwe (2013). Computational Morphology and Bantu Language Learning:

an Implementation for Runyakitara.
116. Ryan C. Taylor (2013). Tracking Referents: Markedness, World Knowledge and Pronoun

Resolution.
117. Hana Smiskova-Gustafsson (2013). Chunks in L2 Development: A Usage-Based

Perspective.
118. Milada Walková (2013). The aspectual function of particles in phrasal verbs.
119. Tom O. Abuom (2013). Verb and Word Order Deficits in Swahili-English bilingual

agrammatic speakers.
120. Gülsen Yılmaz (2013). Bilingual Language Development among the First Generation Turkish

Immigrants in the Netherlands.
121. Trevor Benjamin (2013). Signaling Trouble: On the linguistic design of other-initiation of

repair in English Conversation.
122. Nguyen Hong Thi Phuong (2013). A Dynamic Usage-based Approach to Second Language

Teaching.
123. Harm Brouwer (2014). The Electrophysiology of Language Comprehension: A

Neurocomputational Model.
124. Kendall Decker (2014). Orthography Development for Creole Languages.
125. Laura S. Bos (2015). The Brain, Verbs, and the Past: Neurolinguistic Studies on Time

Reference.
126. Rimke Groenewold (2015). Direct and indirect speech in aphasia: Studies of spoken discourse

production and comprehension.
127. Huiping Chan (2015). A Dynamic Approach to the Development of Lexicon and Syntax in a

Second Language.
128. James Griffiths (2015). On appositives.



129. Pavel Rudnev (2015). Dependency and discourse-configurationality: A study of Avar.
130. Kirsten Kolstrup (2015). Opportunities to speak. A qualitative study of a second language in

use.
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