
HAL Id: tel-01351187
https://theses.hal.science/tel-01351187v2

Submitted on 7 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The analysis and co-design of weakly-consistent
applications

Mahsa Najafzadeh

To cite this version:
Mahsa Najafzadeh. The analysis and co-design of weakly-consistent applications. Databases [cs.DB].
Université Pierre et Marie Curie - Paris VI, 2016. English. �NNT : 2016PA066205�. �tel-01351187v2�

https://theses.hal.science/tel-01351187v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Mahsa NAJAFZADEH

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

The Analysis and Co-design of Weakly-Consistent Applications

soutenue le

devant le jury composé de :

M. Marc SHAPIRO Directeur de thèse

M. Vivien QUEMA Rapporteur

Mme.Carla FERREIRA Rapporteur

M. Philippe PUCHERAL Examinateur

Mme. Beatrice BERARD Examinateur

M. Pascal MOLLI Examinateur

M. Pierre-Evariste DAGAND Examinateur

Abstract

Distributed databases take advantage of replication to bring data close to the client, and to

always be available. The primary challenge for such databases is to ensure consistency. The

inherent trade-off between consistency, performance, and availability represents a fundamental

issue in design of the replicated database serving applications with integrity rules. Recent

research provide hybrid consistency models that allow the database supports asynchronous

updates by default, but synchronisation is available upon request. To help programmers exploit

the hybrid consistency model, we propose a set of useful patterns, proof rules, and tool for proving

integrity invariants of applications. The main goal of this thesis is to co-design the application

and the associated consistency in order to ensure application invariants with minimal consistency

requirements.

In the first part, we study a sound proof rule that enables programmers to check whether

the operations of a given application semantics maintain the application invariants under a

given amount of parallelism. We have developed a SMT-based tool that automates this proof, and

verified several example applications using the tool. A successful analysis proves that a given

program will maintain its integrity invariants. If not, the tool provides a counter-example, which

the program developer can leverage to adjust the program design, either by weakening application

semantics, and/or by adding concurrency control, in order to disallow toxic concurrency.

In the second part, we apply the above methodology to the design of a replicated file system.

The main invariant is that the directory structure forms a tree. We study three alternative

semantics for the file system. Each exposes a different amount of parallelism, and different

anomalies. Using our tool-assisted rules, we check whether a specific file system semantics

maintains the tree invariant, and derive an appropriate consistency protocol. Our co-design

approach is able to remove coordination for the most common operations, while retaining a

semantics reasonably similar to POSIX.

In the third part of this thesis, we present three classes of invariants: equivalence, partial

order, and single-item generic. Each places some constraints over the state. Each of these classes

maps to a different storage-layer consistency property: respectively, atomicity, causal ordering,

or total ordering. Given a class of invariant, we introduce a set of common patterns where

synchronisation is not necessary i.e., nothing bad happens for any arbitrary order of operation

executions. We also identify patterns where synchronisation is necessary, but can be relaxed in a

iii

disciplined manner.

iv

Acknowledgement

I would like to express my sincere gratitude to my adviser, Marc Shapiro, for his guidance and

enthusiastic encouragement. This work would not be possible without his support, patience, and

continuous advice.

I am really thankful to all my committee members, especially Vivien Quéma and Carla

Ferreira, for accepting to be in my jury without hesitation, and offering me their precious time

and comments.

I am very grateful to Alexety Gostman, Carla Ferreira, Pierre Evariste Dagand, Nuno

Pregusica, and Valter Balegas for all helpful and inspiring conversations. Thank you Alexey

Gotsman and Carla Ferreira for our weakly meetings, and all the ideas they contributed with.

Among many others, I would like to particularly thank Tyler Crain, Alejandro Z. Tomsic,

Masoud Saeida Ardekani, and Vinh Tao Thanh. Thank you Tyler for all helpful and inspiring

conversations. Thank you Lyes Hamidouche, Marjorie Bourna, Gauthier Voron Laure Mille, and

Maxime Lorrillere for all translations.

I want thank my best friends Neda Karimopour and Farzaneh Zareie for their care and

precious friendship. No matter how much distance exists between us, they are always there when

I need them. My gratitude also to Shahin Mahmoodian for her friendship and spiritual support

in particular in my last year of PhD in LIP6.

I would like to express the profound gratitude from my deep heart to my beloved parents, my

sister, my brother, and my aunt for their love, continuous support and encouragement in every

step of my life. I love all of you so much and appreciate everything you have done to get me where

I am today.

v

To my beloved and encouraging parents, Mahmoud and Farrokh

and to my wonderful siblings, Asma and Pouria

vii

Table of Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Contributions . 2

1.1.1 The CISE Tool: Proving Weakly-Consistent Applications Correct 2

1.1.2 A Scalable and Verified Design of a POSIX-Like File System 3

1.1.3 Efficiently Implementable Patterns of Invariants 3

1.2 Outline of the thesis . 4

I Preliminaries 5

2 Models and Definitions 7

2.1 Model . 8

2.1.1 Database Model . 8

2.1.2 System Model . 8

2.2 Application Invariants . 8

2.3 Operation Executions in a Replicated Databases . 9

2.3.1 Program Execution . 11

2.3.2 Happened-Before . 11

2.4 Correctness Criteria for Replicated Databases . 12

2.4.1 State Convergence . 12

2.4.2 Safety . 12

2.4.3 Conflicting Operations . 13

2.5 Tokens: Concurrency Control Abstraction . 13

3 Replicated Data Types 15

3.1 CRDTs . 16

3.1.1 Add-Wins Set . 17

ix

TABLE OF CONTENTS

3.1.2 Remove-Wins Set . 18

3.1.3 Map . 19

II The CISE Analysis 21

4 CISE’s Proof Obligations 23

4.1 Motivation . 24

4.2 Consistency Models . 26

4.2.1 Sequential Consistency . 26

4.2.2 Causal Consistency . 26

4.2.3 RedBlue Consistency . 26

4.2.4 General Case . 27

4.3 CISE Analysis . 27

4.3.1 Effector Safety . 27

4.3.2 Commutativity Analysis . 28

4.3.3 Stability Analysis . 29

5 The CISE Tool 33

5.1 Automatic Solver for CISE Analysis . 34

5.2 Application Model . 34

5.2.1 Database . 34

5.2.2 Operations . 36

5.2.3 Invariants . 36

5.2.4 Tokens . 37

5.3 Solver . 38

5.4 CISE Tool’s Parser . 39

6 The CISE Proof Tool’s Application 41

6.1 Application/Consistency Co-design . 42

6.2 Bank Application . 42

6.3 Counter With Escrow . 45

6.4 Courseware Application . 47

6.5 Auction Application . 51

6.5.1 Database . 51

6.5.2 Invariant . 53

6.5.3 Operations . 54

7 Related Work 57

7.1 Related Work . 58

x

TABLE OF CONTENTS

7.1.1 Consistency Models . 58

7.1.2 Reasoning About Consistency in Distributed Systems and Databases . . . 60

7.2 Conclusion . 61

7.3 Future Work . 62

IIIVerifying and Co-designing File System Semantics 63

8 A Scalable and Verified Design of a POSIX-Like File System 65

8.1 Motivation . 66

8.2 Definitions and Database Model . 66

8.3 A Formal Model of a Replicated File System Semantics 68

8.4 Correctness Criteria . 71

8.5 Verifying Sequential Correctness of the File System 72

8.6 Replicated File System With Concurrency Control 73

8.7 Fully Asynchronous Replicated File System . 75

8.7.1 Name Conflict . 78

8.7.2 Remove/Update Conflict . 79

8.8 Mostly Asynchronous Replicated File System . 82

9 Related Work 87

9.1 Related Work . 88

9.1.1 Formal Reasoning about File Systems . 88

9.1.1.1 First-Order Logic Reasoning . 88

9.1.1.2 Separation Logic Reasoning . 89

9.1.2 Conflict Resolution in File systems . 90

9.2 Conclusion . 91

9.3 Future Work . 91

IV Safe Applications on the Cheap with Invariant Patterns 93

10 Efficiently Implementable Patterns of Invariants 95

10.1 Classes of Invariant . 97

10.2 Generic Invariants on a Single Item (Gen1) . 98

10.2.1 Protocols and Mechanisms for Gen1-Invariants 98

10.2.2 Total-Order . 99

10.3 EQ Invariants . 100

10.3.1 Protocols and Mechanisms for EQ-Invariants 100

10.3.2 EQ Invariants and Convergence Resolutions 101

xi

TABLE OF CONTENTS

10.4 PO Invariants . 101

10.4.1 Protocols and Mechanisms for PO-invariants 102

10.5 Composite Invariant Patterns . 103

10.5.1 Composing Gen1-Invariants . 103

10.5.2 Composing Gen1-Invariant with EQ-Invariant 104

10.5.3 Composing Gen1-Invariant with PO-Invariant 104

10.5.4 Composing EQ-Invariants . 104

10.5.5 Composing EQ-Invariant with PO-Invariant 105

10.5.6 Composing PO-Invariants . 105

10.6 Consistency Models . 106

10.6.1 Strict Serialisability (SSER) . 106

10.6.2 Serialisability (SER) . 106

10.6.3 Snapshot Isolation (SI) . 107

10.6.4 Causal Consistency (CC) . 108

10.6.5 Eventual Consistency (EC) . 108

10.6.6 Invariant Anomaly Comparison . 108

10.7 Conclusion and Future work . 109

Bibliography 111

xii

List of Tables

5.1 Some member functions of Z3 context. 35

6.1 Auction invariants. 50

7.1 A summery of applications verified by CISE analysis . 61

8.1 File system commands and their effectors. 70

8.2 Corrected preconditions of file system operations after effector safety analysis. 72

8.3 Combined effect of concurrent operations using different convergence semantics. . . . 76

10.1 Some consistency models and their invariant guarantees. 107

xiii

List of Figures

2.1 A simple banking application (incorrect). 9

2.2 A causally-consistent program execution. 11

3.1 Counter-example: set with concurrent add and remove. 16

3.2 An implementation of add-wins set(AWset). 17

3.3 A program execution using an add-wins set. 17

3.4 A implementation of remove-wins set(RWset). 18

3.5 A program execution using a remove-wins set. 18

3.6 An implementation of map (AWmap). 19

4.1 Stability analysis for bank application: counter-example. 29

4.2 Corrected bank account application. 30

4.3 Execution illustrating the unsoundness of the roof rule for non-commutative operations. 31

5.1 CISE stability rule code. 38

6.1 A simple bank application (incorrect). 43

6.2 Corrected bank application differs from Figure 6.1 as follows: improving precondition

of operations and using tokens. 44

6.3 Counter With Escrow (incorrect). 45

6.4 Corrected Counter With Escrow differs from Figure 6.3 as follows: using tokens and

improving preconditions. 47

6.5 Courseware application (incorrect). 48

6.6 Corrected courseware application differs from Figure 6.5 as follows: using tokens and

improving preconditions. 49

6.7 Auction database state . 51

6.8 Auction application (incorrect). 52

6.9 Corrected auction application. 55

8.1 Example of a directory tree structure. 67

8.2 A simple file system application (incorrect). 71

xv

LIST OF FIGURES

8.3 Corrected file system application with mutually exclusive tokens. 73

8.4 Asynchronous file system design using add-wins semantics. 77

8.5 Asynchronous file system design using remove-wins semantics. 78

8.6 Example of concurrent creating directories with the same name. 80

8.7 Counter-example for stability analysis of concurrent moves. 81

8.8 Mostly asynchronous and corrected file system (add-wins). 83

8.9 Counter-example: the parent relation anomaly. 84

10.1 Atomicity and different concurrent set semantics . 100

xvi

Chapter 1

Introduction

To achieve high availability and responsiveness, many distributed systems rely on replicated

databases that maintain copies (replicas) of data at multiple servers [33, 70, 93]. A user can

access a local replica and perform operations locally, without synchronising with others. This

local access avoids the cost of network latency between replicas, and is insensitive to failures,

such as replica disconnection [33, 35, 70, 91].

A major challenge in the design of replicated databases is consistency [46]. Strong consis-

tency provides a familiar sequential model to application developers, but it requires to execute

operations in a global total order at all replicas (synchronous replication). In contrast, a weak

consistency model, e.g., eventual consistency [35, 81], guarantees immediate response at all times,

but it is prone to application bugs, such as state divergence or invariant violation [33].

Designers of a replicated database face a vexing choice between strong consistency, which

guarantees a large class of application invariants, but is slow and fragile, and asynchronous

replication, which is highly available and responsive, but exposes the programmer to concurrency

anomalies. To bypass this conundrum, some research [18, 69, 93, 97] and commercial [8, 21, 73]

databases now provide hybrid consistency models that allow the programmer to request stronger

consistency for certain operations and thereby introduce synchronisation.

Unfortunately, using hybrid consistency models effectively is far from trivial. Requesting

stronger consistency in too many places may hurt performance and availability, and requesting it

in too few places may violate correctness. Striking the right balance requires the programmer

to reason about the application behaviour above the subtle semantics of the consistency model,

taking into account which anomalies are disallowed by a particular consistency strengthening

and whether disallowing these anomalies is enough to ensure correctness.

This thesis studies the analysis and co-design of the application and the associated consistency

in order to ensure application invariants with minimal consistency requirements.

1

CHAPTER 1. INTRODUCTION

1.1 Contributions

This thesis makes three main contributions:

1. We propose the first static analysis tool for proving integrity invariants of applications

using databases with hybrid consistency models.

2. We present a case study of the application of our analysis tool for designing an efficient file

system semantics that provides a choice of behaviours similar to POSIX at a reasonable

cost.

3. We propose a set of useful patterns, which help application developers to implement common

application invariants.

In the remainder of this section, we review our contributions in more detail.

1.1.1 The CISE Tool: Proving Weakly-Consistent Applications Correct

To exploit hybrid consistency models, we propose to apply a polynomial static analysis for

causally-consistent distributed databases, called CISE ("Cause I’m Strong Enough") [45]. The

CISE analysis checks whether an application is correct under a given synchronisation protocol in

the following sense. An application consists of some data items, a set of operations, and invariants

over the data items. The semantics of each operation is given by its effect, and preconditions. This

model is formally described in first-order logic. Two operations may execute concurrently, unless

this is disallowed by an abstract concurrency control mechanism, called token.

The application is correct if every concurrent execution of its operations, allowed by its tokens,

eventually results in the same state across all replicas, and if every state transition maintains its

invariant. The CISE analysis relies on the following three proof rules:

• effector safety analysis: verifies that each individual effector maintains the given invariant.

• commutativity analysis: verifies that any two concurrent operations commute.

• stability analysis: verifies that every operation’s precondition is stable under concurrent

updates.

The CISE analysis is sound [45]. A successful CISE analysis proves that any execution of the

given application, under the given synchronisation protocol, maintains the given invariants. If

unsuccessful, the application developer can fix either the application by weakening the updates

or the invariants, or its consistency requirements by adding synchronisation, at the expense of

availability and performance. After this refinement, the developer repeats the analysis; and so

on, until the analysis succeeds.

2

1.1. CONTRIBUTIONS

1.1.2 A Scalable and Verified Design of a POSIX-Like File System

We apply the CISE analysis to co-design a widely-replicated file system. Initially, the file system

specification models the POSIX file system API. The main invariant is that the file system

structure must be shaped as a tree. From the invariant, we derive the sequential precondition for

every file system operation. For instance, the precondition of a move operation forbids to move a

directory underneath itself.

We extend the sequential semantics to support concurrent users. We study several alternative

semantics for the file system. Each exposes a different amount of parallelism, and different

anomalies. The strict POSIX specification disallows many concurrent updates, such as writes to

the same file, and it therefore requires a lot of synchronisation.

Using the co-design approach, we carefully remove synchronisation on most operations while

retaining a semantics reasonably similar to POSIX. The application of the CISE analysis proves

that the precondition of a move operation is not stable under concurrent move operation: it

follows that no file system can support an unsynchronised move without anomalies, such as loss

or duplication. One of our file system models allows all operations to be concurrent except a small

fraction of moves. The CISE analysis proves the correctness of this model.

1.1.3 Efficiently Implementable Patterns of Invariants

Our experience of analysing applications shows that many applications share common styles of

invariants. Understanding these common patterns could minimise the cost of verifying a large

variety of programs. We present the following three major classes of invariants: Generic1(Gen1),

Equivalence(EQ), and Partial-Order(PO) invariants. A Gen1 invariant specifies a constraint over

the value of a single data item. PO and EQ invariants relate the state of different data items.

Given a class of invariant, we first introduce a set of common program execution patterns,

which always maintain the invariant, called safe patterns.

In the case of concurrent execution of operations, the sequential invariants might be violated.

A replicated database may need to provide a certain consistency guarantee in order to ensure

the invariant. The EQ invariant requires the "all-or-nothing" concept in ACID transactions

(atomicity), ensuring that all replicas see either the effect of all operations over EQ-dependent

data items as a unit, or none of them. The PO invariant requires causal delivery, ensuring that

all replicas in the system see causally dependent operations in the order of the happened-before

relation [64]. The Ge1 invariant requires total ordering, which serialises all operations. These

three consistency guarantees are mostly independent. Given an invariant class, we integrate

its consistency requirement with operation executions, and propose program patterns, which

maintain the invariant.

The invariant patterns can be combined using conjunction (∧), and disjunction (∨). We discuss

the protocol for maintaining different combination of the invariant patterns. Implementing

3

CHAPTER 1. INTRODUCTION

disjunction needs at least one of the sub-patterns is satisfied, but conjunction entails that the

program execution preserves all sub-patterns.

1.2 Outline of the thesis

The thesis is divided into four parts. Part I presents our replicated database model, and then

reviews specification model of some useful replicated data types.

The second part presents a set of proof obligations and tool for analysing and co-designing ap-

plications using a replicated database. In Chapter 4, we formulate the analysis, and demonstrate

its poof rules. In Chapter 6, we describe our SMT-based tool developed to discharge the analysis,

and verify several example applications using the tool. We discuss related work, and summarise

our analysis results in Chapter 7,

The third part presents the design of a replicated file system. In Chapter 8, we apply the

CISE analysis to study three alternative semantics for the file system. We discuss related work

in Chapter 9.

The forth part of the thesis identifies three common classes of invariants, and present a set of

distinct patterns to preserve each of them.

4

Part I

Preliminaries

5

Chapter 2

Models and Definitions

Contents

2.1 Model . 8

2.1.1 Database Model . 8

2.1.2 System Model . 8

2.2 Application Invariants . 8

2.3 Operation Executions in a Replicated Databases . 9

2.3.1 Program Execution . 11

2.3.2 Happened-Before . 11

2.4 Correctness Criteria for Replicated Databases . 12

2.4.1 State Convergence . 12

2.4.2 Safety . 12

2.4.3 Conflicting Operations . 13

2.5 Tokens: Concurrency Control Abstraction . 13

7

CHAPTER 2. MODELS AND DEFINITIONS

In this chapter, we model our replicated database and its assumptions. We focus on two main

correctness properties: convergence, and safety.

2.1 Model

2.1.1 Database Model

A database contains a set of mutable, replicated data items. Each data item x has a value ∈Val at

any one time, and a type type(x) ∈ Type that determines the operations Op= {o, . . .} that can be

invoked on the object. We assume that operation arguments are a part of the operation name. For

instance, we can define a bank account with an integer balance. The database stores the balance

of the account that clients can read, make deposits to, withdrawals from, and compute interest.

Let State be the set of possible states of the data managed by the database. The initial state

is given by σinit.

2.1.2 System Model

We assume a distributed system composed of n processes P = {p1, . . . , pn} that communicate

through asynchronous and reliable channels. We assume that replicas never fail.

We rely on a full replication model where every process or replica in the system stores a full

copy of the database. For instance, in a bank application, the data for a bank account is replicated

at all the bank’s branches. The replication model uses a Read-One-Write-All (ROWA) approach

[24]. Users interact with the database system through running applications. An application

invokes a set of query and update operations on the data stored in the database. A query will be

executed against one of the copies, called its origin replica. An update operation invoked at some

origin replica eventually execute at all replicas. There is no global notion of state: each replica

changes its local database state independently by the (replicated) execution of operations.

A simple query returns the value of objects without changing the database state, but update

operations modify the state.

2.2 Application Invariants

An application might have a set of invariants, which explicitly stated. An invariants is a predicate

over the database state that restricts the correct values that may be observed by users accessing

the database, and determines the safe behaviour of the application. An invariant I deals with

one or more objects and their allowed states. For instance, the bank application may require an

invariant I stating that the account balance must be non-negative:

I = balance≥ 0

8

2.3. OPERATION EXECUTIONS IN A REPLICATED DATABASES

State = N

σinit = 0

I = (balance≥ 0)

Token = ;

⊲⊳ = ;

Fdeposit(amount)(balance) = (⊥, (λbalance′.balance′+amount),;)

Finterest()(balance) = (⊥, (λbalance′. (1.05∗balance′)),;)

Fquery()(balance) = (balance,skip,;)

Fwithdraw(amount)(balance) = (⊥, (λbalance′.balance′−amount),;)

Precondition Operation

amount≥ 0 deposit(amount)

true interest()

amount≥ 0 withdraw(amount)

Figure 2.1: A simple banking application (incorrect).

2.3 Operation Executions in a Replicated Databases

Following Hoare logic [52], an operation o ∈Op can be represented as follows:

{Po} oeff {Qo}

where Po and Qo denote the precondition and post-condition of operation o, whose effect is oeff .

The precondition is an assertion about the conditions that must hold of the database state while

post-condition is an assertion that must to be true after executing the operation. The effect oeff

describes the changes done by the operation to the database state. For instance, consider the

operation deposit in the bank application, which guarantees that the account balance is increased

by the positive amount specified as its argument. This operation can be represented as follows:

{amount≥ 0} { balance := balance+amount} { balance= balance+amount}

In this section, we provide a generic execution model for operations running on replicated

databases based on the formal model proposed by Gotsman et al. [45]. The execution of each

operation consists of two phases: generator and deliver. The generator executes on origin replica,

and the deliver phase executes at all replicas. Assume that a user submits an operation o ∈Op at

some origin replica. The generator includes first reading the state σ ∈ State, and then mapping

the operation o to a return value value ∈Val, a state transformation function, called effector, and

a set of tokens. More precisely, the semantics of operations is defined by a function

F ∈Op→ (State→ (Val× (State→ State)× set(Token))). (2.1)

9

CHAPTER 2. MODELS AND DEFINITIONS

The function is formulated as follows for some operation o:

∀σ ∈ State, o ∈Op, Fo(σ)= (Fval
o (σ),Feff

o (σ),Ftok
o (σ)),

F
val
o (σ) ∈Val

F
eff
o (σ) ∈ State→ State

F
eff
o (σ) ∈ set(Token)

Given a state σ ∈ State in which an operation o ∈Op executes at its origin replica,

• F
val
o (σ) is the return value of operation o form a set Val. We use ⊥∈Val for operations that

return no value.

• F
eff
o (σ) is its effector that will be applied by every replica to its state.

• F
tok
o (σ) is the set of tokens that the operation o requires, and used to introduce synchroni-

sation. We will explain tokens later in Section 2.5. Until then, assume that the token set is

empty.

Figure 2.1 illustrates the operational semantics of a simple bank account application using

our model. A user can read the balance from the local replica, make deposits to and withdrawals

from the account, and compute interest, all without communicating with the other replicas. Each

operation is associated with a precondition (Po), a predicate over the state of its origin replica

and parameters that determines when the operation can be safely executed (and the F function

defined). A minimal precondition of the deposit(amount) and withdraw(amount) operations is

amount ≥ 0. Their effectors add amount to (respectively, subtract it from) the balance if the

preconditions are hold over the origin replica’s state. Otherwise, they generate skip as their effect

where skip= (λbalance′.balance′).

As an example, consider the semantics of operations for withdrawing an amount, and accruing

a 5% interest using the interest operation.

Fwithdraw(amount)(balance) = if amount≥ 0 then (⊥, (λbalance′.balance′−amount),;)

else (⊥, (λbalance′.skip),;)

Finterest(balance) = (⊥, (λbalance′. (1.05∗balance′),;));

The interest operation’s precondition is true and its effector multiplies the balance by the

interest rate. We will see later, the analysis shows that the precondition of withdraw needs to be

strengthened, and that this effector of interest is incorrect (not commutative). Note, in Figure 2.1,

we assume that operation’s precondition holds at the origin replica and ignore the other case.

The generator does not have any side effects; it executes atomically. After preparing the

operation, its effector is sent and eventually delivered to all replicas, including the origin replica.

Upon receiving the effect, each replica delivers the effector by applying it to its state.

A replica applies an effect atomically, i.e., either all effects of the operation take place, or

none. For instance, consider a transfer operation. Bob transfers e100 from his account into Alice’s

10

2.3. OPERATION EXECUTIONS IN A REPLICATED DATABASES

r1:

r3:

o oeff

oeff

o′

o′eff

r2:

o′′oeff

o′eff

o′eff

o′′eff

o′′eff

o′′eff

Figure 2.2: A causally-consistent program execution.

account, this includes subtracting e100 from Bob’s balance and adding e100 into Alice’s balance.

Each replica either sees both updates as part of the same operation or none of them. We give the

semantics of the transfer operation updating multiple accounts later in Chapter 6.

2.3.1 Program Execution

A program execution H is a tuple H = (Op,tokens,hb) such that

• Op is the set of operations appearing in H

• tokens is the set of tokens acquired by the operations Op

• hb ⊆Op×Op, is a strict partial order between operations

where hb is a happened-before relation that determines causal dependencies between operations

in the program execution.

2.3.2 Happened-Before

We say that operation o′ causally depends on operation o, noted o <hb o′, if and only if:

• Operations o and o′ has the same origin replica, in which operation o executes before

operation o′.

• The effector of operation o′ reads the updates by the effector of operation o over the same

object.

• There is an operation o′′ such that o <hb o′′ and o′′ <hb o′.

Two operations o and o′ are concurrent, denoted o‖ o′, if neither o <hb o′ nor o′ <hb o. Concur-

rent operations are causally independent.

Under causal consistency model defined for a shared database [7], all replicas in the sys-

tem observe the effects of causally-dependent operations in the order in which they happened.

However, different replicas may apply effect of causally-independent operations in different

orders.

11

CHAPTER 2. MODELS AND DEFINITIONS

For instance, Alice adds e100 into her account in Europe. She flies to NewYork and withdraws

e100 from her account. Causal consistency ensures that all bank branches delivers the effector

of deposit before delivering the effector of withdraw.

Figure 2.2 illustrates a causally-consistent program execution in which operations o′ and o′′

are both causally-dependent on operation o, but mutually concurrent. All three replicas observe

the effector of operation o before operations o′ and o′′, but operations o′ and o′′ may execute in

different orders at the different replicas.

2.4 Correctness Criteria for Replicated Databases

In this thesis, we focus on two main consistency properties that a replicated database must fulfil

from the application perspective: 1) state convergence: the concurrent execution of operations

produce the same results at different replicas, and 2) safety: any program execution maintains

the application invariants, which are typically specified in the form of predicates on the database

state.

The replication protocol must forbid operation executions that break these two properties.

2.4.1 State Convergence

A replicated system is said to be convergent if all replicas that observed the same set of updates

have equivalent state. State convergence is guaranteed if effect of all concurrent operations

commute, i.e., they are insensitive to the order of execution. Commutativity ensures convergence

across replicas despite concurrency [102].

2.4.2 Safety

An application invariant I specifies a predicate over the database state. We say that state σ is

safe with regard into invariant I iff it satisfies the invariant, denoted by I(σ). Program execution

is safe if every reachable state is safe.

Definition 2.1 (Safe Update). Given a safe initial state σinit with regard into invariant I,

operation o is said to be a safe update, iff, after applying the effect of operation o to state σ,

invariant I remains true.

To guarantee the application invariant I in any program execution, the replication protocol

needs to ensure that:

• Every operation in isolation maintains invariant I.

• Concurrent executions maintain invariant I.

12

2.5. TOKENS: CONCURRENCY CONTROL ABSTRACTION

2.4.3 Conflicting Operations

We call a conflict execution of two updates o and o′ that either do not commute, or whose

concurrent execution violates the invariant.

For instance, consider a program execution consisting of the interest and deposit operations,

originated at two replicas r1 and r2, respectively. The balance is initially e100, balance = 100.

The deposit operation adds e20 into the balance, and the interest operation accrues a 5% interest.

The operations may execute in different orders at different replicas: replica r1 first performs

interest and then deposit effector, where replica r2 performs them at opposite order. The result

is different; the replicas diverge. Thus, the effector of interest does not commute with deposit

effector.

Commutativity alone is not sufficient to verify a program execution. Towards what value the

state converges is also important; the state must preserve the application invariant. For instance,

in the bank account application with the initial balance of e100, two withdraw(60) operations are

conflicting because their concurrent execution would make the balance negative (e-20).

2.5 Tokens: Concurrency Control Abstraction

To address conflicting updates, we introduce a concurrency control abstraction, called token.

A programmer may associate a set of token T = {τ, . . .} with an operation to explicitly control

concurrent accesses over database state. The symmetric incompatibility relation between pairs

of tokens is noted ⊲⊳⊆Token×Token.

We say a set of tokens T1 is not compatible with a set of tokens T2 if there exists token τ1 in

set T1, and token τ2 in set T2 that are not compatible: ∃τ1 ∈ T1,τ2 ∈ T2,τ1 ⊲⊳ τ2.

Operations that acquire incompatible tokens according to ⊲⊳ cannot be performed concur-

rently. For instance, acquiring token τ1 disallows other replicas to concurrently perform changes

that require incompatible tokens.

Definition 2.2 (Incompatibility). For any two operations o and o′, if they acquire incompatible

tokens according to ⊲⊳, they have to be causally-dependent one way or another:

∀o, o′ ∈Op,Ftok
o (σ)⊲⊳F

tok
o′ (σ) =⇒ o <hb o′∨ o′ <hb o

Definition 2.2 implies causal dependency between operations acquiring incompatible tokens

that is one must be causally aware of the other. For instance, if two withdraw operations in the

bank application acquire the exclusive token τ with τ⊲⊳ τ, they cannot be concurrent.

The token’s definition entails that operations to be synchronised [18, 69]. Abstractly, a token

is an abstract lock [50].

A possible implementation would be the following: before a replica can execute an operation,

it acquires the required lock; when the operation returns, it immediately releases the lock.

13

Chapter 3

Replicated Data Types

Contents

3.1 CRDTs . 16

3.1.1 Add-Wins Set . 17

3.1.2 Remove-Wins Set . 18

3.1.3 Map . 19

15

CHAPTER 3. REPLICATED DATA TYPES

S={}
replica r1

replica r2

add(e)

S={}

{}

add(e)

remove(e)

{e}

{e}

{}

{e}

{e}

remove(e)

add(e)

add(e)

Figure 3.1: Counter-example: set with concurrent add and remove.

This chapter specifies some useful replicated data types: set and map data types. The material

in this chapter is useful to following parts of the thesis.

3.1 CRDTs

Commutable updates are desirable. One promising approach is to use replicated data types

(CRDTs) [91], which encapsulate conflict resolution policies for automatically merging the effects

of operations performed concurrently.

CRDTs include many useful data types, such as counters, sets, graphs, and maps. For instance,

a CRDT set semantics supports operations to add to or remove an element from the set, and to

query.

The sequential semantics of the CRDT set is the classical semantics of a set. Adding an

element ensures that it is in the set, whereas removing an element ensures that it is not in the

set. Some operations of a sequential set are commutative, such as operations on different elements,

or idempotent, such as adding (or removing) the same element twice. For these commutative or

idempotent operations, the concurrent CRDT semantics simply reduces to the sequential set

semantics. For instance, users can add elements to or remove elements concurrently from a set

when the elements are different; adding element e commutes with deleting element e′.

However, add and remove of the same element is not commutative. Therefore their concurrent

execution is problematic. It might result in divergent state across replicas, i.e., the result of

concurrent adds and removes depends on the order of execution. To illustrate, consider the simple

specification of a replicated set S in Figure 3.1. Set S is initially empty. Replica r1 adds element

e to set S, and then removes element e; its state is again empty. Concurrently, replica r2 adds

the same element e. After both replica r1 and replica r2 have applied all operations, the state in

replica r1 and replica r2 will be different according to sequential specification of the set.

Thus, a CRDT set must specify a commutative semantics for concurrent add and remove of the

same element. Many approaches are possible. The most common approaches from an application

perspective are called add-wins and remove-wins. They differ by the result of concurrent add and

remove of the same elements. Hereafter, we specify the CRDT set and map data types, using

16

3.1. CRDTS

State = S = set(element×unique− identifier)

σinit = ;

Fadd(e)(S) = (⊥, (λS′. (S′∪ {(e,unique(S))},;)

Fremove(e)(S) = (⊥, (λS′. (S′ \ lookup(e,S),;)

Fquery(S) = (e | ∃i, (e, i) ∈ S,skip,;)

lookup(e,S) = {(e, i) | (e, i) ∈ S}

unique(S) = i | i is unique

Figure 3.2: An implementation of add-wins set(AWset).

S={}
replica r1

replica r2

add(e)

S={}

{}

add(e)

remove(e)

{(e, i2), (e, i1)}

{(e, i2)}

{(e, i2)}

{(e, i1)}

remove(e)

add(e)

add(e)

{(e, i2)}

Figure 3.3: A program execution using an add-wins set.

these convergent heuristics.

3.1.1 Add-Wins Set

In the add-wins semantics, sequence of causally-dependent adds and removes should behave

according to the sequential specification. When there are concurrent add and remove operations

on the same element, the add operation wins and the effects of concurrent remove operations are

ignored. Its semantics is defined as:

F(AWset)(query,H)= {e | ∃o ∈ H, o = add(e)∧ 6 ∃o′ ∈ H, o′ = remove(e)∧ o <hb o′}.

where H is a program execution, and AWset has the same signature as set.

Figure 3.2 presents the basic implementation of an add-wins set by Shapiro et al. [91] using

our notation. Each added element is uniquely tagged. The state consists of a set S with pairs

(element,unique− identifier). A unique() method generates unique identifiers. To add element e

to the replicated set, the add operation in the origin replica creates a unique identifier i. The

effector is then propagated to all replicas, and adds the pair (e, i) to the set S. Thus, every add is

unique.

A lookup(e) method extracts a set of pairs containing element e from the set S. To remove

element e, the operation remove computes a set of pairs that contain e in the origin replica using

the lookup(e) method, and removes this same set from the set S at all replicas. Since removing

17

CHAPTER 3. REPLICATED DATA TYPES

State = S = (set×set)

S = (A,T),T =;, A =;

Fadd(e)(S) = (⊥, (λS′.addToA(e, lookup(e,S),S′)),;)

Fremove(e)(S) = (⊥, (λS′.addToT(e,S′)),;)

Fquery(S) = ({e | (∃i, (e, i) ∈ A)∧ (6 ∃i′, (e, i′) ∈ T)},skip,;)

addToA(e,D, (A,T)) = if (D =;) then (A∪ {(e,unique(S))},T)

else (A∪D,T \ D)

addToT(e, (A,T)) = (A,T ∪ (e, i))

unique(S) = i | i is unique

lookup(e, (A,T)) = D = {(e, i) | (e, i) ∈ T}

Figure 3.4: A implementation of remove-wins set(RWset).

S={}
replica r1

replica r2

add(e)

S={}

A={(e, i1)}

T={}

add(e) A={(e, i1)}

T={}

A={(e, i1), (e, i2)}

T={(e, i1)}

A={(e, i1)}

T={(e, i1)}

A={(e, i1), (e, i2)}

T={(e, i1)}

add(e) A={(e, i1), (e, i2)}

T={}

remove(e)

remove(e)

Figure 3.5: A program execution using a remove-wins set.

any disjoint pairs have independent effects, and also removing common pairs have the same

effect, concurrent removes commute.

Concurrent adding and removing different elements also commute. When there are concurrent

remove and add operations over the same element, the add operation wins, because the new unique

tag is not included in the set computed by the remove operation. This behaviour is illustrated in

Figure 3.3.

3.1.2 Remove-Wins Set

Similar to the add-wins semantics, the outcome of a sequence of causally-dependent adds and re-

moves is the same as the sequential specification of a set. However, the remove-wins specification

has the opposite semantics for handling concurrent add and remove on the same elements: when

an element is removed, concurrent adds of the same element are lost. Its semantics is defined as:

F(RWset)(query,H)= {e | ∀o ∈ H, o = remove(e) =⇒ ∃o′ ∈ H, o′ = add(e)∧ o <hb o′}.

where H is a program execution, and RWset has the same signature as set. Element e is in the

remove-wins set if all remove(e) operations are covered by add(e) operations, according to the

18

3.1. CRDTS

State = M =map((key×unique− identifier)×value)

σinit = ;

Fadd(k,v)(M) = (⊥, (λM′.addToM(k,v, M′,unique(M))),;)

Fremove(k)(M) = (⊥, (λM′. M′ \ lookup(k, M)),;)

Fquery(k)(M) = (v | ∃i, (k, i,v) ∈ M,skip,;)

addToM(k,v, M′, i) = if (6 ∃v′, (k, .,v′) ∈ M′) then (M′[(k, i) 7→ v])

else (M′[(k, i) 7→merge(v,v′)])

lookup(k, M) = {(k, i,v) | ∃i,v, (k, i,v) ∈ M}

unique(M) = i | i is unique

Figure 3.6: An implementation of map (AWmap).

happened-before relation.

Figure 3.4 illustrates an implementation of the remove-wins set. A remove-wins se is repre-

sented by a pair of disjoint sets: a set of add instances A with pairs (e, i), where e is an element

and i is a unique identifier, and a set of remove instances T with the same type of pairs. The

query method returns an element e iff there is an add(e) instance and no remove(e) instance.

When an element e is added into the replicated set, the add operation first identifies existing

remove instances for element e in the origin replica, and turns them into add instances, and

if there is no remove instance, it creates a new add instance for element e and adds to set A.

The replication protocol is similar to the add-wins set, it propagates the changes to set A and

T to all replicas, which apply the corresponding changes. Thus, concurrent adds of the same

element commute because every add is effectively unique. The remove(e) operation removes an

element e by adding it to the set T, called the tombstone set. Removing an element is allowed

only if the element exists, i.e., remove(e) can occur only after add(e). Concurrent removes on the

same element commute because they have the same effect. Concurrent add(e) and remove(e′) on

different elements e 6= e′ also commute, and if e = e′ the remove wins.

This behaviour is illustrated in Figure 3.5: The set S is initially empty. Replica r1 adds a to

set S using the add(a) operation. Replica r2 observes the operation and applies its effect. Then

replica r2 adds the same element a using the add(a) operation, concurrently, replica r1 removes

the element a using the remove(a) operation. After exchanging operations, a query returns an

empty set in both replicas.

3.1.3 Map

The specification of a CRDT map is based on CRDT sets, as the two set specifications presented

earlier can extend to a map. An element is a (key,value) pair. The map semantics supports

operations to add to, remove from, and query elements in the map. In an add-wins map, concurrent

19

CHAPTER 3. REPLICATED DATA TYPES

add(k,v) and remove(k′) commute: if k 6= k′ they are independent, and if k = k′ the add wins. Its

semantics is defined as:

F(AWmap)(query(k),H)= {v | H |add(k,.) 6= ;∧ 6 ∃o′ ∈ H, o′ = remove(k)∧ o <hb o′∧

∀o = add(k,v′), o′ = add(k,v′′), o‖ o′ =⇒ v =merge(v′,v′′)}.

where H is a program execution, and H |o is the restriction of operations in H to operations o.

The merge(v′,v′′) function merges the value of concurrent add operations of the same key.

Figure 3.6 illustrates an implementation of an add-wins map M as follows: The state is a map

of pairs (key,unique− identifier) to a value. The add(k,v) operation creates a new triplet ((k, i),v),

and adds to map, and if there is a mapping ((k, i′),v′) in the map, which has created by concurrent

add operation, then it uses a merge function to address concurrent adds. We assume that all

values in the map are also CRDTs as concurrent adds to the same key can merge. The remove

operation computes the set of triplets with the given key, which its effect removes all existing

mappings for a given key at all replicas. The precondition is that the corresponding add has been

delivered, i.e., the element exists in the origin replica.

20

Part II

The CISE Analysis

21

Chapter 4

CISE’s Proof Obligations

Contents

4.1 Motivation . 24

4.2 Consistency Models . 26

4.2.1 Sequential Consistency . 26

4.2.2 Causal Consistency . 26

4.2.3 RedBlue Consistency . 26

4.2.4 General Case . 27

4.3 CISE Analysis . 27

4.3.1 Effector Safety . 27

4.3.2 Commutativity Analysis . 28

4.3.3 Stability Analysis . 29

23

CHAPTER 4. CISE’S PROOF OBLIGATIONS

In this chapter, we present the CISE analysis, which allows application developers to co-

design the application and its consistency model, in order to adjust synchronisation to precisely

meet the application’s correctness requirements.

Section 4.1 describes the motivation for CISE logic. We outline what problems it addresses,

and what is specific to the CISE approach. Section 4.2 defines some well-known consistency

models in CISE model using our notations from the previous chapter. In Section 4.3, a formal

model of the CISE analysis is presented. The analysis includes three proof obligations. We

illustrate each rule by analysing and co-designing the simple bank application example from the

previous chapter.

4.1 Motivation

There is growing demand for distributed systems to serve more clients, to minimise response

times, and to maximise high availability. To address these requirements, these systems often take

advantage of replicated databases that replicate data at multiple servers [33, 70, 93]. Thanks to

replication, a user can access his own copy of data and perform operations independently from

the others. This local access avoids slow long-haul WAN communication between replicas, and

improves availability and fault tolerance [33, 35, 70, 91].

A major challenge in the design of replicated databases is consistency [46]. The strongest

consistency model (strict serializability) guarantees that a user always accesses the most up-

to-date version of data, just like in a centralised database, but requires to execute operations

in a global total order at all replicas (synchronous replication) 1. Many replicated databases

choose a weak consistency model, e.g., eventual consistency [35, 81], to improve availability (and

performance). Under eventual consistency, a replica can execute an update without synchronising

a priori with another replicas. The effect of the update is propagated to all replicas, and eventually

every replica performs the same update (asynchronous replication).

Unfortunately, asynchronous replication exposes applications to undesirable concurrency

behaviours, which poses a major challenge to the implementation of the applications [33]. Conflicts

happen, because concurrent operations may execute in different orders at different replicas. The

challenge is then detection of concurrent conflicting updates, and their resolution. For instance,

consider a bank account replicated at two different bank branches, where the possible operations

are deposit and withdraw, under the application invariant that forbids the account balance to be

negative. If the balance is initially e100, and two users, connecting to different bank branches,

concurrently withdraw e60, then the balance will become negative(e-20).

Ensuring application invariants entails in the general case that replication protocols introduce

synchronisation, which is expensive and not avoidable.

1Although the implementation may parallelise some operations when the result remains equivalent to the total
order.

24

4.1. MOTIVATION

The CAP theorem [43] asserts that in the presence of failures, system designers must choose

to maintain either availability (and performance) or consistency: both are not possible together.

There is no single consistency model best suited for all uses: can provide acceptable application

semantics without performance and availability cost [93]. Recent work has begun to provide

hybrid consistency models that support different consistency guarantees depending on the

operation [8, 18, 69, 93, 97]. In this approach, the replicated database supports the asynchronous

replication model by default, and adds synchronisation for certain operations when necessary

[69]. For instance, to avoid a negative balance in the bank application, a hybrid consistency

protocol may execute deposit operations in an asynchronous manner, i.e., users can add to the

account in all circumstances, but the bank branches are synchronised before accepting a withdraw

operation.

However, using hybrid consistency models effectively in replicated databases is far from

trivial. To minimise synchronisation, while ensuring application correctness, the programmer

needs to decide under which consistency guarantees each different operation executes. The right

decision entails reasoning globally about the application behaviour above the semantics of the

consistency model, in order to understand which anomalies can happen and whether a particular

consistency strengthening is enough to disallow these anomalies.

To exploit hybrid consistency models, we propose to apply a recently-developed static analysis

for causally-consistent distributed databases, called CISE ("Cause I’m Strong Enough") [45]. The

CISE analysis checks whether an application is correct under a given synchronisation protocol,

in the following sense. An application consists of some data items, a set of operations, some

invariants over the data items. The semantics of each operation is given by its effect, and by its

preconditions. This model is formally described in first-order logic. Two operations may execute

concurrently, unless this is disallowed by their tokens.

The application is correct if every concurrent execution of its operations allowed by its tokens

eventually results in the same state across all replicas, and if every state maintains its invariant.

The CISE analysis consists of the three following proof rules:

• effector safety analysis: verifies that each individual effectors maintains the given invariant.

• commutativity analysis: verifies that any two effectors commute.

• stability analysis: verifies that every operation’s precondition is stable under concurrent

effectors.

The CISE analysis is sound [45]. A successful CISE analysis proves that any execution of

the given application, under the given synchronisation protocol, maintains the given invariants.

If unsuccessful, the application developer needs to correct this issue either by weakening the

updates or the invariants, and/or by adding synchronisation. After this refinement, the developer

repeats the analysis; and so on, until the analysis succeeds.

25

CHAPTER 4. CISE’S PROOF OBLIGATIONS

4.2 Consistency Models

We now review, and formally define some well-known consistency models for replicated databases

in the CISE model.

4.2.1 Sequential Consistency

Sequential consistency models provide replication transparency to the application, i.e., offers

applications a single common view of the replicated database. Examples of sequential consistency

models include strong consistency, linearisability [51], serialisability [24] or strict serialisability

[80]. All replicas agree on the same global ordering of operations. To model the former, every

operation is required to acquire a mutual exclusion token:

Token= {τ}; ⊲⊳= {(τ,τ)}; ∀σ ∈ State, o ∈Op,Ftok
o (σ)= {τ}

Reasoning about replicated databases implementing sequential consistency is easy, because

the database behaves sequentially. Total order of effectors implies state convergence. If any

sequential execution of an application maintains invariant I, any execution of the application

under sequential consistency will maintain invariant I.

4.2.2 Causal Consistency

When high performance and availability of update operations are important to the application, an

alternative is to use a weaker consistency model that allows concurrent operations. The baseline

consistency model of CISE is causal consistency, which does not require any tokens:

Token=;; ⊲⊳=;; ∀σ ∈ State, o ∈Op,Ftok
o (σ)=;

Causal consistency is the strongest achievable model that is available in the presence of network

partitions [72]. Under causal consistency, concurrent updates may execute in different orders

at different replicas. However, causally-consistent databases guarantee that the effect of an

operation is visible only after the effects of operations that it causally depends upon are visible

[7].

4.2.3 RedBlue Consistency

RedBlue consistency [69] is a hybrid consistency model that classifies application’s operations as

red and blue based on application’s invariants: Op=Opr ⊎Opb. Blue operations commute with

all others; they are asynchronous under causal consistency. Red operations must be mutually

ordered, requiring system-wide synchronisation; they ensure strong consistency. To express this

consistency model, we use a mutual exclusion token τ, where Red operations acquire τ, and blue

operations acquire no tokens:

Token= {τ}; ⊲⊳= (τ,τ); ∀σ ∈ State, o ∈Opb, o′ ∈Opr,Ftok
o (σ)=;∧F

tok
o′ (σ)= {τ}

26

4.3. CISE ANALYSIS

4.2.4 General Case

We model a general case in which some operations acquire tokens, and their preconditions must

be sufficient for invariants. For any two operations o and o′, if they acquire incompatible tokens

according to ⊲⊳, they have to be mutually ordered,

∀σ ∈ State, o, o′ ∈Op,Ftok
o (σ)⊲⊳F

tok
o′ (σ) =⇒ o′ <hb o∨ o <hb o′

4.3 CISE Analysis

The CISE analysis is a static analysis for distributed applications running above a replicated

database. A successful CISE analysis proves that any execution of the application under a given

synchronisation protocol is correct.

The analysis checks whether an application is correct, in the following sense. An application

consists of some data, a set of operations with their preconditions, and some invariants over

the data, which are explicitly specified as a set of assertions over database state. This model is

described formally in first-order logic. Two operations may execute concurrently, unless this is

forbidden by their tokens.

The analysis assumes that the database guarantees causal consistency. The application is

correct if every combination of its operations allowed by its tokens ensures that replicas converge,

and its invariants are maintained.

The CISE analysis allows to verify any concurrent execution of operations by testing only

pairs of concurrent updates, thus it has only polynomial complexity. It consists of three proof

obligation rules. The remainder of this chapter describes in detail each CISE’s rule.

4.3.1 Effector Safety

The first CISE proof obligation, called effector safety, verifies that each effector individually

satisfies the desired invariant. It follows that sequential execution of operations also satisfies

the invariant. The execution of a set of operations Op is sequential if for any two operations o

and o′ appearing in the execution, either o executes before o′ or o′ executes before o. Thus, every

operation executes to completion before the next operation begins.

An operation has a sufficient precondition if its execution guarantees the correctness [29, 76].

We formulate effector safety proof obligation as follows:

∀o ∈Op, I ∈ Inv,σ ∈ State, I(σ)∧Po(σ) =⇒ I(Feff
o (σ)) (4.1)

In other words, it must be true that if the initial state σ satisfies invariant I and the

operation’s precondition Po, then applying the effector of operation o to state σ maintains the

invariant I.

27

CHAPTER 4. CISE’S PROOF OBLIGATIONS

Let’s try out effector safety analysis to the simple (incorrect) bank account application

presented in Figure 2.1. The database state is a single account balance balance. The integrity

invariant requires the balance to be non-negative. The effector for deposit adds some amount to

the balance, similarly; the effector for withdraw subtracts some amount from the balance. The

operations both have the precondition that the amount must be positive. Applying the effector

safety proves that the deposit operation is safe. However, the withdraw effector may violate the

non-negatively invariant. This means that its precondition is not strong enough.

We fix the issue by strengthening the precondition of withdraw operation: the amount debited

must be positive and less than the current balance. Then, we again perform the effector safety to

verify that the precondition is indeed sufficient.

4.3.2 Commutativity Analysis

Concurrent effectors may execute in different orders at different replicas. Two effectors are said

to commute with one another, if executing them in any mutual order yields the same result,

whatever the initial state. For instance, increments to a shared counter x, inc(), commute with

one another: two effectors inc(x, 1) and inc(x, 2) can safely be ordered by first executing inc(x,

1), and then inc(x, 2) at one replica where another replica performs them at opposite order, in

both cases the end result is to increment x by 3.

The second CISE proof obligation, called commutativity analysis, is to check that effect of

concurrent operations commute, in order to prove that replicas always converge to the same state

[61, 102].

∀σ,σ′
∈ State, o, o′ ∈Op, (Ftok

o (σ)⊲⊳F
tok
o′ (σ′))∨ (Feff

o (σ).Feff

o′
(σ′)=F

eff

o′
(σ′).Feff

o (σ)). (4.2)

Informally, the rule is to check all possible concurrent pairs of operations, and to verify

that their effect are commutative. Since operations acquiring incompatible tokens are mutually

ordered across all replicas, we only require commutativity for operations that do not acquire

incompatible tokens, i.e., they can be concurrent.

Recalling the bank operations in Figure 2.1, we check the commutativity rule for all possible

concurrent pairs and for all possible initial states and all arguments: deposit‖deposit, deposit‖

withdraw, withdraw‖withdraw, interest‖interest, deposit‖interest, and withdraw‖interest. Given the

effectors for deposit and withdraw, predictably, applying the commutativity analysis proves that

deposit and withdraw operations are commutative, because addition and subtraction commute.

However, commutativity is not guaranteed for arbitrary operations. For instance, the interest

operation may not commute with other bank operations. Consider a program execution consisting

of operations interest and deposit, originating at replicas r1 and r2, respectably. The deposit

operation adds e20 into the balance. The balance is initially e100. Replica r1 first performs

interest and then deposit(20), where replica r2 performs them at opposite order. Since Figure 2.1

28

4.3. CISE ANALYSIS

balance=2

balance=2

balance -＝ 1

balance -＝ 1

withdrawPRE

{1 ≤ 2}

withdrawPRE

{ 1 ≤ 0 }

balance -＝ 2 balance = –1

Figure 4.1: Stability analysis for bank application: counter-example.

defines accruing a 5% interest as multiplying the local balance by 1.05, replica r1 computes 125,

whereas replica r2 computes 126, and hence they diverge.

F
eff

interest−buggy
(balance).Feff

deposit(20)(balance) 6=F
eff

deposit(20)(balance).Feff

interest
(balance)

100+5+20 6= 100+20+6

This problem can be fixed by implementing the interest operation by computing the amount of

interest at the origin replica, and the effector adds that amount to the local balance.

Finterest(balance)= (⊥, (λbalance′. balance′+0.05∗balance)),;). (4.3)

Now, with this new semantics, the interest operation commutes with deposit operation. Indepen-

dent of the order of execution, any concurrent execution of interest and deposit generates the

same result.

F
eff

interest−corrected
(balance).Feff

deposit(20)(balance′))=F
eff

deposit(20)(balance).Feff

interest
(balance)

100+5+20= 100+20+5

The application of commutativity analysis proves that concurrent executions of the deposit

and withdraw in Figure 2.1, and the interest defined by equation 4.3 always commute.

4.3.3 Stability Analysis

By applying the effector safety analysis, we verified that in any sequential execution, the invariant

I holds. However, concurrently executing operations may violate the invariant. Now, consider the

following verification problem: given a set of tokens tokens and their conflict relations captured

by ⊲⊳, prove that any possible execution of operations Op maintains integrity invariant I over

database states.

The third rule of CISE analysis, called stability analysis, is to check if concurrent executions

maintain the invariant I. To do this, the stability analysis checks that if operation’s precondition

is stable under concurrent effectors.

The insight behind this proof obligation is that if precondition of an operation remains true

after applying concurrent effectors then we know (by the sequential analysis) that applying

29

CHAPTER 4. CISE’S PROOF OBLIGATIONS

State = balance

σinit = ;

Token = {τ}

⊲⊳ = {(τ,τ)}

Fdeposit(amount)(balance) = (⊥, (λbalance′.balance+amount),;)

Finterest()(balance) = (⊥, (λbalance′. (1.05∗balance′)),;)

Fquery()(balance) = (balance,skip,;)

Fwithdraw(amount)(balance) = (⊥, (λbalance′.balance−amount), {τ})

Precondition Effector

amount≥ 0 Fdeposit(amount)(balance)

true Finterest()(balance)

amount≥ 0∧balance≥ amount Fwithdraw(amount)(balance)

Figure 4.2: Corrected bank account application.

effector of the operation is safe, i.e., the invariant remains true.

∀σ ∈ State, I ∈ Inv, o, o′ ∈Op, (Ftok
o (σ)⊲⊳F

tok
o′ (σ))∨ (I(σ)∧Po(σ) =⇒ Po(Feff

o′
(σ))). (4.4)

In other words, if precondition of operation o is stable under all concurrent changes allowed,

then the invariant is maintained, assuming that the sequential analysis and stability analysis

are also verified. Since operations acquiring incompatible tokens are causally dependent, i.e.,

they cannot be concurrent, we do not need to check the stability analysis for them.

Assume that operation o is submitted at some origin replica r1. The initial database state σ

in replicas r1 verifies invariant I. The effector of the operation o is generated against state σ, and

propagated into all replicas. Upon receiving the effector o, another replica r2 maybe in a different

state σ′, due to the effect of operation o′ executed at r2 concurrently with o. The stability analysis

checks if o’s precondition is true over state σ′. If so, this verification succeeds.

We now use our proof rule to check the stability condition for the bank operations in Figure

2.1. All bank operations except the withdraw pass the stability analysis. We explain the result

for the withdraw operation. Applying the stability analysis shows that the precondition of the

withdraw operation is stable under the concurrent execution of the deposit and interest operations

for all possible initial states and all arguments, but it is not stable under the concurrent execution

of another withdraw with the same or different arguments. Figure 4.1 illustrates the counter-

example. The balance is initiallye2. The precondition to withdraw(1) is OK. However, a concurrent

withdraw(2) makes the balance zero, thus violating the precondition of withdraw(1). If we were to

continue and apply the effect of the first withdrawal operation, the balance will become negative,

thus violating the invariant.

30

4.3. CISE ANALYSIS

balance=100

balance=100

balance +＝ 20depoit(20)

balance = –1

interest

balance = 1.05*balance

balance = 1.05*balance
balance +＝ 20

withdraw(20)

balance -＝ 126

balance -＝ 126

Figure 4.3: Execution illustrating the unsoundness of the roof rule for non-commutative opera-

tions.

To fix the problem, different alternatives are possible. If freedom from synchronisation is

important, the only alternative is to weaken the invariant e.g., remove the non-negative invariant.

The traditional approach is to add some concurrency control in order to disallow the concurrent

execution of conflicting operations.

We choose the latter approach for the bank application example. We add an exclusive token

τ that disallows any withdraw operation to be concurrent with any other withdraw. Thus, we

co-design the bank application by adding the corresponding token to the withdraw operation.

Figure 4.2 presents the correct specification of bank account application, which passes all three

CISE rules.

Thus, programmer can reason about invariants in the context of different consistency models.

Gotsman et al. in [45] have formally proved the soundness of stability analysis assuming causality

and commutativity.

The rule would be unsound over a consistency model that does not guarantee causality. For

instance, consider the following scenario in the bank application: Alice has e100 in her account.

She deposits e50 and some time later she were to withdraws e120. Then, she reads her account.

If the query sees the withdrawal, violating causality, it returns e-20; violating the invariant.

The stability rule is also unsound if effect of operations do not commute. For instance, if

we used the non-commutative semantics of interest operation in Figure 2.1, there are program

executions that violate the invariant. Consider a shared account, accessed by Alice and Bob,

with initial balance e100: Bob computes a 5% interest. Concurrently, Alice deposits e20 into the

account. After receiving both updates, Alice withdraws e126. This propagates to Bob’s replica.

Applying the withdrawal in Bob’s replica leaves the balance negative, thus, violating the invariant.

The reason is that the effect of withdraw is generated in Alice’s replica, which orders deposit(20)

before interest, whereas the state in Bob’s replica follows the opposite order, resulting in a smaller

balance. The execution in Figure 4.3 illustrates the scenario.

The CISE analysis stability rule constitutes of a form of rely-guarantee (RG) reasoning [56].

RG provides a well-known method for verification of concurrent programs using a pair of rely

R and guarantee G conditions. The rely condition R specifies the state transitions performed

31

CHAPTER 4. CISE’S PROOF OBLIGATIONS

concurrently by the environment. The guarantee G specifies the state transitions made by the

program itself. To prove that the invariant I will always hold, we can introduce a guarantee

relation G(τ) that describes all possible state changes that a concurrent operation acquiring

token τ can cause at any replica. We also have a guarantee relation G0, describing the possible

state changes that can be performed by a concurrent operation without acquiring any tokens.

Assume that the initial state σ verifies the invariant I, and the guarantees preserve the invariant

I, i.e., the changes allowed by G0 and the changes allowed by G(τ) over state σ end up in

a state in which the invariant I also holds. For each operation o ∈ Op, separately, we need

to prove that the precondition of operation o is stable under changes allowed by G0 and the

changes that other operations whose tokens do not conflict with any of the tokens acquired by

the operation o, i.e., G0 ∪G((Ftok
o (σ))⊥). For instance, consider the withdraw operation in the

bank application, o = withdraw(balance). The guarantee G0 allows increasing a non-negative

balance, and computing interest. Since F
tok
o (σ)= {τ}, we have that (Ftok

o (σ))⊥ =;. Applying the

rule verifies that o′s precondition is stable under changes allowed by the guarantees.

32

Chapter 5

The CISE Tool

Contents

5.1 Automatic Solver for CISE Analysis . 34

5.2 Application Model . 34

5.2.1 Database . 34

5.2.2 Operations . 36

5.2.3 Invariants . 36

5.2.4 Tokens . 37

5.3 Solver . 38

5.4 CISE Tool’s Parser . 39

33

CHAPTER 5. THE CISE TOOL

In this chapter, we describe our SMT-based tool, developed to automate the CISE analysis.

5.1 Automatic Solver for CISE Analysis

We have developed a tool that automates the CISE analysis by discharging the proof obligations

on Satisfiability Modulo Theories (SMT) queries.

A SMT solver checks the satisfiability of first-order formulas with respect to some logical

rules. Several SMT solvers have been developed in academia and industry. We built the CISE

tool on the Z3 SMT solver [1], developed by Microsoft Research for the verification and analysis

of software applications.

Our CISE tool is currently implemented as a few hundred lines of Java code that interface

with the Z3 engine via the library provided for Java.

Z3 has a number of built-in functions that operate on Booleans, integers, and more complex

data types. We expose these functions directly in our tool development. The main interaction with

Z3 happens via Context. A Context manages all Z3 objects, and its global configuration options.

After a context ctx is created, the configuration cannot be changed.

To prove some claim, the tool negates the claim, and looks for a model satisfying the negation.

If found, it constructs a counter-example to the claim.

5.2 Application Model

The main CISE tool interface is application interface. An application is described by its operational

semantics (preconditions and effects), its invariants, and its tokens.

5.2.1 Database

An application model starts with a declaration of its database. Each object in the database has

a type (aka sort). The underlying Z3 supports primitive data types: Int, Set, and Bool. Every

type defines a set of values that an object can have and also operations can be invoked on the

object. For instance, the Z3 built-in integer type assigns integer values to data items, and support

arithmetic operations such as addition and subtraction.

To interact with Z3 through Java, we need a Context object. Variables and numerals are

modelled as expression Expr objects. We get objects using member functions in the Context object.

For instance, a Z3 context has functions of the form mksort to get a type, and function mkConst

to create an object. Consider, a simple bank account application. Its database stores balance of

the account. The balance is integer. In the CISE tool, definition of the balance variable looks like

this:

IntExpr balance = ctx.mkConst("balance", ctx.mkIntSort());

34

5.2. APPLICATION MODEL

Functions Definition

mkIntSort() Create a new integer sort.

mkAdd (ArithExpr... t) Create an expression representing

t[0] + t[1] + ...

mkSub (ArithExpr... t) Create an expression representing

t[0] - t[1]- ...

mkEq(Expr x, Expr y) Creates the equality x=y.

mkGt (ArithExpr t1, ArithExpr t2) Create an expression representing t1>= t2

mkSetSort(sort ty) Create a set of type ty.

mkSetAdd(ArrayExpr set, Expr element) Add an element to the set.

mkSetMembership(Expr element, ArrayExpr set) Check for set membership.

mkSetDel(ArrayExpr set, Expr element) Remove an element from the set.

Table 5.1: Some member functions of Z3 context.

where function mkConst of context ctx creates an integer variable in Z3 named balance, and

function mkIntSort gets an integer type.

Table 5.1 illustrates a list of common member functions in the Context object for integer and

set data types.

Applications may need to declare new data types and relations. A convenient way for specifying

new types and relations is using Z3 sorts and tuples. Each tuple is a finite list of elements. Each

element has a name and a type.

For instance, in a file system application, one may define following data types.

// A file in the file system

Sort File = ctx.mkUninterpretedSort(ctx.mkSymbol("File"));

// A directory in the file system

Sort Dir = ctx.mkUninterpretedSort(ctx.mkSymbol("Dir"));

// A parent relation in the file system

TupleSort Parent = ctx.mkTupleSort(ctx.mkSymbol("mk_tuple"), // name of tuple

new Symbol[]{ctx.mkSymbol("parent"), ctx.mkSymbol("child")}, // the name of elements

new Sort[]{Dir, Node}; // types of elemen

// A set of directories

Expr Dir_set = ctx.mkConst("Dir_set", ctx.mkSetSort(Dir));

This example creates two data types: File and Dir, and a parent relation Parent. Function

mkUninterpretedSort creates an uninterpreted sort. Function mkTupleSort creates a tuple. It

has three arguments: the name of tuple, the name of its elements, and their type. Using function

mkSetSort(Dir), we create a set of directories.

35

CHAPTER 5. THE CISE TOOL

5.2.2 Operations

An application consists of a set of operations. Each operations is specified by a precondition and

an effect.

The precondition of each operation is expressed using a Z3 boolean expression (BoolExpr). Z3

Java API supports the usual Boolean operators and, or, xor, not, implication, and ite (if-then-else).

For instance, in a bank application, the precondition for a withdraw operation is that balance

is greater than the debited amount. This is modelled as follows:

public BoolExpr precondtion(Context ctx) throws Z3Exception {

BoolExpr precondition = ctx.mkGe(balance, amount);

return precondition;

}

where function mkGe of context creates balance greater than or equal to amount.

The effect of each operation changes the state of database. For instance, in the bank appli-

cation, the effect for a withdraw operation is to subtract some amount from balance. Using the

context’s functions for integer day type, we can model the effect as follows:

public Expr effect(Context ctx) throws Z3Exception {

balance = ctx.mkSub(balance, amount);

return balance;

}

where the function mkSub of context ctx subtracts amount from balance.

5.2.3 Invariants

An application model contains a set of invariants that restrict the database state. Like pre-

conditions, invariants are boolean expressions over database state. For example, the following

invariant expresses that the balance of an account must be positive,

public BoolExpr invariant(Context ctx) throws Z3Exception {

return ctx.mkGe(balance, ctx.mkInt("0"));

}

However, an invariant may be more complex. They often require universal and existential

quantifiers are denoted by (∀) and (∃), respectively. For instance, consider an invariant that a

directory structure may not form a cycle. To model this invariant, we declare a function ancestor

capturing the ancestor relation between two directories in its argument. The ancestor relation

is the transitive closure of parent relation. We say directory u is an ancestor of directory v iff

either u is parent of v, or there is a directory w, which is a child of u, and an ancestor of v. The

acyclic property implies that if directory u is an ancestor of directory v, then directory v cannot

be an ancestor of directory u. The invariant requires that for any pairs of directories, this acyclic

property to be true.

36

5.2. APPLICATION MODEL

public BoolExpr invariant(Context ctx) throws Z3Exception {

FuncDecl ancestor = ctx.mkFuncDecl("ancestor", new Sort[]{(Dit, Dir)};

Expr u = ctx.mkUninterpretedSort(ctx.mkSymbol("Dir"));

Expr v = ctx.mkUninterpretedSort(ctx.mkSymbol("Dir"));

Expr[] argAncestor1 = new Expr[3];

argAncestor1[0] = u;

argAncestor1[1] = v;

argAncestor1[2] = ancestor;

//creating the ancestor relation between u, and v (u is an ancestor of v)

Expr ancestorTuple1 = filesystem.Reachability.mkDecl().apply(argAncestor1);

Expr[] argAncestor2 = new Expr[3];

argAncestor2[0] = v;

argAncestor2[1] = u;

argAncestor2[2] = ancestor;

//creating the ancestor relation between v, and u (v is an ancestor of u)

Expr ancestorTuple2 = filesystem.Reachability.mkDecl().apply(argAncestor2);

Expr acyclic = ctx.mkImplies((BoolExpr) ancestorTuple1, ctx.mknot((BoolExpr) ancestorTuple2));

//creating (assert(forall((u Dir)(v Dir)) (acyclic u v)))

Sort[] nodes = new Sort[2];

nodes[0] = ctx.mkUninterpretedSort(ctx.mkSymbol("Dir"));

nodes[1] = ctx.mkUninterpretedSort(ctx.mkSymbol("Dir"));

Symbol[] namess = new Symbol[2];

namess[0] = ctx.mkSymbol("u");

namess[1] = ctx.mkSymbol("v");

//building quntificar

BoolExpr invariant = ctx.mkForall(nodes, namess, acyclic, 1, null, null, null, null);

return invariant;

}

where ancestorTuple1 and ancestorTuple2 specify the ancestor relation between directories

u and v. The acyclic property uses an implication function mkImplies. The function mkForall

applies the acyclic property for all pairs of directories.

5.2.4 Tokens

Each operation might be associated with a set of tokens. For instance, consider an account a in

the bank application. The withdraw operation might be associated with a token τ(a), such that

τ(a) ⊲⊳ τ(a), in order to avoid concurrent withdrawals from the same account. The CISE tool

provides a function conflict determining the conflict relation between two operations according to

their tokens.

public BoolExpr conflict(Operation u, Operation v) throws Z3Exception {

return bowTie(u.tokens, v.tokens);

37

CHAPTER 5. THE CISE TOOL

public BoolExpr invariant(Context ctx) throws Z3Exception {

// get precondition of operation op1

BoolExpr precondition_old = app.getPrecondition(ctx, op1));

// get invariant

BoolExpr invariant = app.getInvariants(ctx));

BoolExpr expr = ctx.mkAnd(invariant, precondition_old);

// apply effect of operation op2

Expr effect = app.applyEffect(ctx, op2);

// get precondition of operation op1 over new state

BoolExpr precondition_new = app.preCondition(ctx, op1));

// stabilityRule

BoolExpr stabilityRule =ctx.mkOr (conflict(op1, op2), ctx.mkImplies(expr, precondition_new));

//create a new solver

Solver solver = ctx.mkSolver();

// solve the negation of proof

solver.add(ctx.mkNot(correct));

// find a model(counter−example) that satisfies the solver’s rule

Model model =solver.check(ctx, Status.SATISFIABLE);

}

Figure 5.1: CISE stability rule code.

}

where the function bowtie compares sets of tokens for operations u and v and returns true if

there is at least one token τ1 in u’s tokens, and one token τ2 in v’s tokens, which are incompatible.

Otherwise, it returns false.

5.3 Solver

To verify the application model against a CISE rule, we need to create a Z3 solver using

Context.MkSolver(). The tool negates the rule, and looks for an operation execution model sat-

isfying the negation using a Solver.Check(). If found, it constructs a counter-example to the

rule.

For instance, consider the stability analysis that checks the stability of operation’s pre-

condition despite concurrent effectors. Figure 5.1 illustrates the code for checking stability of

precondition of operation op1 against the effect of operation op2. Functions getPrecondition()

38

5.4. CISE TOOL’S PARSER

and getInvariants() return precondition of operations and application invariants, respectively.

Function applyEffect() applies the effect of an operation. The stabilityRule expression has two

boolean expressions, connected by a disjunction. The first expression checks whether tokens

of two operations op1 and op2 are incompatible. The second expression checks whether the

precondition of operation op1 is true after observing the effect of operation op2. To prove a rule,

the tool negates the rule. The tool returns a counter-example if there is a program execution

satisfying the negation.

5.4 CISE Tool’s Parser

Unfortunately, writing the application model in the CISE tool is difficult. In the current version of

tool, converting the first-order logic formulas into Z3 format is almost manual. We are developing

a translator from some high-level DSL to Z3. Jabczynsk has developed the first version of the

Z3 parser for the CISE tool during his master internship in our group. The parser parses Java

annotations in a high-level language and translates them to the Z3 internal format. So far, we

verified the simple application examples, e.g., bank application using the parser.

Below is a code sample of our tool integrated with the parser for the simple bank account

application of previous chapter with two operations deposit and withdraw. The invariant is to

keep the balance zero or positive.

@XPR("Int balance")

@XPR(value = "balance >= 0", type = XPR.Type.INVARIANT)

@Op(Account.Deposit.class)

@Op(Account.Debit.class)

public class Account extends AnnotatedSchema {

@XPR(value ={"Int amount","Int balance" },type =XPR.Type.ARGUMENT)

@XPR(value ="amount >= 0",type = XPR.Type.PRECONDITION)

@XPR(value ="balance := balance + amount",type =XPR.Type.EFFECT)

public static class Deposit extends AnnotatedOperation { }

@XPR(value ={"Int amount","Int balance"},type =XPR.Type.ARGUMENT)

@XPR(value ="amount >= 0",type = XPR.Type.PRECONDITION)

@XPR(value ="balance := balance − amount",type =XPR.Type.EFFECT)

public static class Debit extends AnnotatedOperation { }

}

}

To use the tool, users can express the application specification in terms of a set of expressions

XPR. Each expression XPR has a value and a type. The value of each expression is given by

a high-level DSL. For instance, to write the non-negative invariant, we only need to define an

expression with value "balance>= 0" and invariant type.

‘

39

Chapter 6

The CISE Proof Tool’s Application

Contents

6.1 Application/Consistency Co-design . 42

6.2 Bank Application . 42

6.3 Counter With Escrow . 45

6.4 Courseware Application . 47

6.5 Auction Application . 51

6.5.1 Database . 51

6.5.2 Invariant . 53

6.5.3 Operations . 54

41

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

In this chapter, we show how to use the tool to verify and co-design several example ap-

plications. These include a generalised banking application, an escrow datatype, a courseware

application, and an online auction service. Later, in Chapter 8 we will address a more complex

example, the file system.

6.1 Application/Consistency Co-design

We have developed a tool that automates the CISE analysis. The tool checks whether a given

application semantics satisfies the three CISE rules, and if it does not, the tool generates a

counter-example.

An application developer can leverage the counter-example to identify the source of the

problem. The developer corrects the problem either by weakening update semantics or invariants,

and/or by strengthening the tokens in order to disallow the execution of conflicting updates. After

this refinement, the developer repeats the analysis; and so on, until verification succeeds. Thus,

the developer can co-design the application and the consistency protocol, in order to minimise

synchronisation, while ensuring correctness.

To illustrate, consider the bank application example. Given its naïve specification in Figure

2.1, our tool finds a counter-example for withdraw. It shows that if the balance is initially zero,

withdraw will make it negative. Thus, we derive a sufficient precondition for withdraw, that the

balance must be greater than the amount debited. It also finds that this precondition is not

stable, generating the following counter-example: if the balance is initially e2, two concurrent

debits of e2 each violate the invariant. The bank application developer can then, either disallow

concurrent withdrawals with a mutually exclusive token, or remove the non-negative balance

invariant. Figure 4.2 shows the co-designed bank specification using tokens, which successfully

passes the CISE analysis.

6.2 Bank Application

We first analyse a simple bank application. We extend the example from previous chapter to

support multiple bank accounts. The application provides the common bank operations to access

and to modify bank accounts. We assume the type Account for account number, and Balance

for balance. The database state is a map, named A, of account number a1 ∈Account to balance

b1 ∈Balance. The integrity invariant I that we would like to maintain is that every bank account

has a non-negative balance.

I =∀a1 ∈Account,b1 ∈Balance, (a1,b1) ∈ A =⇒ b1 ≥ 0.

We define function balance(a1, A) to return the current balance for account a1 stored in map A.

We use notation A[a1 7→ b1] for setting the balance of account a1 to b1, while keeping the balance

42

6.2. BANK APPLICATION

State = A

A = map(Account,Balance)

σinit = (;,;)

Token = {τa1 | a1 ∈Account}

⊲⊳ = {(τa1 ,τa1) | a1 ∈Account}

Fcreate(a1)(A) = (⊥, (λA′. (A′∪ {(a1,0)})),;)

Fdeposit(a1,v)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)+v])),;)

Finterest(a1)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)+0.05∗balance(a1, A)])),;)

Fquery(a1)(A) = (b1 | (a1,b1) ∈ A,skip,;)

Fwithdraw(a1,v)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)−v])),;)

Ftransfer(a1,a2,v)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)−v][a2 7→ balance(a2, A′)+v])),;)

Precondition Operation

true Fcreate(a1)(A)

v ≥ 0 Fdeposit(a1,v)(A)

true Finterest(a1)(A)

true Fquery(a1)(A)

v ≥ 0 Fwithdraw(a1,v)(A)

v ≥ 0 Ftransfer(a1,a2,v)(A)

Figure 6.1: A simple bank application (incorrect).

of other accounts unchanged:

A[a1 7→ b1], A \{(a1,b2) | b2 ∈Balance}∪ (a1,b1). (6.1)

The bank application supports operations to access and modify bank accounts. They can

create an account a1 ∈Account with initial balance 0 using create(a1) operation. The pair (a1,0)

is added to the map A. We assume the account numbers are unique. After creating the account, a

user can deposit to or withdraw from the account a1 some positive amount v using deposit(a1,v),

and withdraw(a1,v) operations. A user can transfer some positive amount v from an account a1

to another account a2 using the transfer(a1,a2,v) operation; its effect is to withdraw amount v

from account a1, and deposit the same amount v into account a2. The application defines the

interest(a1) operation for accruing a 5% interest over account a1, and query(a1) for querying the

balance of a1.

We start with a very weak specification for the bank application, shown in Figure 6.1. Recall

that the we assume the state at origin replica satisfies the operation’s precondition. Using the

CISE tool, we automatically uncover inconsistencies and resolve them. The CISE tool shows that

the withdraw and transfer operations violate the effector safety rule, generating counter-examples.

For example, if the balance of account a1 is initially zero, any withdrawal or transfer from the

43

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

State = A

A = map(Account,Balance)

σinit = (;,;)

Token = {τa1 | a ∈Account}

⊲⊳ = {(τa1 ,τa1) | a ∈Account}

Fcreate(a1)(A) = (⊥, (λA′. (A∪ {(a1,0)})),;)

Fdeposit(a1,v)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)+v])),;)

Finterest(a1)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)+0.05∗balance(a1, A)])),;)

Fquery(a1)(A) = (b1 | (a1,b1) ∈ A,skip,;)

Fwithdraw(a1,v)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)−v])), {τa1 })

Ftransfer(a1,a2,v)(A) = (⊥, (λA′. (A′[a1 7→ balance(a1, A′)−v][a2 7→ balance(a2, A′)+v])), {τa1 })

Precondition Operation

true Fcreate(a1)(A)

v ≥ 0 Fdeposit(a1,v)(A)

true Finterest(a1)(A)

true Fquery(a1)(A)

balance(a1, A)≥ v ≥ 0 Fwithdraw(a1,v)(A)

balance(a1, A)≥ v ≥ 0 Ftransfer(a1,a2,v)(A)

Figure 6.2: Corrected bank application differs from Figure 6.1 as follows: improving precondition

of operations and using tokens.

account a1 will make its balance negative. Therefore, to fix this issue, we add preconditions to

ensure that a withdrawal is possible only if the account has sufficient balance.

Then, we run the commutativity test. It shows that all bank operations are commutative.

Note that we compute interest at the origin replica, and the effector adds this amount to the local

balance at each replica.

Finally, we check the stability rule. It shows that the precondition of the withdraw(a1, .)

operation is not stable, under the concurrent effect of other withdraw(a1, .) operations, and under

the concurrent effect of transfer(a1,a2, .) operations. The tool returns the following counter-

example. Let balance of account a1 be initially e2. The precondition to withdraw(a1,1) is verified.

However, a concurrent withdraw(a1,2) (whose precondition is also OK) makes the balance zero,

now violating the precondition of withdraw(a1,1).

To fix this problem, different alternatives are possible. If freedom from synchronisation is

important, the only alternative is to weaken the invariant, e.g., remove the non-negative invariant.

The traditional approach is to add some concurrency control in order to disallow the concurrent

execution of conflicting operations. We choose the latter approach. A token τa1 is associated to

a withdrawal from account a1, such that τa1
⊲⊳ τa1

. Thus, withdrawals from the same account

44

6.3. COUNTER WITH ESCROW

State = Credit×map(ReplicaID×Credit)

Token = {τr | r ∈ReplicaID}

⊲⊳ = {(τr,τr) | r ∈ReplicaID}

Fincrement(r,k)(n,C) = (⊥, (λ(n,C′). (n,C′[r 7→ c+k])), {τr})

Fdecrement(r,k)(n,C) = (⊥, (λ(n,C′). (n,C′[r 7→ c−k])), {τr})

FacquireCredit(r,k)(n,C) = (⊥, (λ(n,C′). (n−k,C′[r 7→ c+k])),;)

FreleaseCredit(r,k)(n,C) = (⊥, (λ(n,C′). (n+k,C′[r 7→ c−k])),;)

Precondition Operation

k ≥ 0 Fincrement(r,k)(n,C)

k ≥ 0 Fdecrement(r,k)(n,C)

k ≥ 0 FacquireCredit(r,k)(n,C)

k ≥ 0 FreleaseCredit(r,k)(n,C)

Figure 6.3: Counter With Escrow (incorrect).

synchronise. However, withdrawals from different accounts can execute without synchronisation,

because τa1
6⊲⊳ τa2

for a1 6= a2. In order to preserve the non-negativity of balance, both withdraw

and transfer must acquire the corresponding token. Figure 6.2 depicts the modified specification

of bank account application with the changes outlined above. The application semantics now

successfully passes the CISE analysis.

6.3 Counter With Escrow

Counters are useful abstractions in many applications, such as counting ad impressions, or virtual

wallets. A counter has a value and supports increment and decrement operations to update its

value. The value of the counter should represent the sum of increments minus the decrements.

Many applications require the counter to be bounded. For instance, consider an advertisement

application counting the number of times a specified ad is displayed. The ad should not be shown

any more once it has been displayed some maximum of times.

However, if concurrency is allowed, the counter may violate its limit. The CISE analysis

proves that it is not possible to enforce the upper bound of the replicated counter without avoiding

concurrent increments. Balegas et al, [19] propose a new replicated data type, called the bounded

counter, which enforces this kind of invariants, while removing synchronisation from the critical

execution path. The authors further extend their work to exploiting reservation techniques in

geo-replicated clouds [18]. The main idea behind bounded counters comes from escrow [78], which

partitions shares of resource among replicas. Thus, a credit is assigned to each replica. The replica

can perform an update without synchronising with other replicas, as long as it has sufficient local

credit. Otherwise, a demarcation protocol [20] or a synchronous protocol [27] is required to allow

45

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

the replica to acquire the more credits.

To help programers to exploit escrow, we design and verify a new data type, called Counter

With Escrow. It is similar to the bounded counter. We assume a set of local credits Credit, and

a set of replica identifiers ReplicaID. The database is a map of local credits to replicas, named

C. A replica r ∈ ReplicaID is assigned with a local credit c ∈ Credit, i.e., (r, c) ∈ C. There is a

global credit with operations acquireCredit(r,k) and releaseCredit(r,k). The global credit initially

has value n. Replica r can send a request to get some k credits of the global credit using the

acquireCredit(r,k) operation; its effect is to decrease global credit available n by k if k ≤ n, and

to increase local credit c by amount k. Replica r can release k credits of its local credit using

the releaseCredit(r,k) operation; its effect is to decrease local credit by k, and to increase global

credit (n) by k. An increment(r,k) operation executed at replica r increases its local credit c by

k. For instance, consider a non-negative counter, performing increment operations at a replica

increases the replica’s local credit. A decrement(r,k) operation executed at replica r decreases its

local credit c by k. Each replica is sequential, meaning that all operations within a single replica

execute in some sequential order. To capture this behaviour in our specification, we assign an

artificial token τr to replica r, such that τr ⊲⊳ τr. Thus, no concurrent updates to a local credit

happens. However, different replicas can modify their local credit independently, i.e., τr 6⊲⊳ τr′ for

r 6= r′.

The invariant I that we must maintain is that the credit is always positive:

I = (∀c ∈Credit, r ∈ReplicaID, (r, c) ∈ C =⇒ c ≥ 0)∧ (n ≥ 0)

where n is the value of the global credit.

We use the CISE analysis to verify the specification of Counter with Escrow in Figure 6.3.

The effector safety analysis returns a counter-example for the acquireCredit operation if

sufficient global credit does not exist. The tool returns the following counter-example. Let the

global credit be initially zero. Applying the effect of operation acquireCredit(r,1) would make it

negative. The analysis also shows that the decrement(r,k) operation requires that sufficient local

credit exists in the replica r. Otherwise, applying it’s effect might violate the invariant. Assume

that replica r has no local credit, any decrement will make its local credit negative. We add the

corresponding preconditions.

The commutativity analysis proves that all escrow operations are commutative.

Finally, running the tool for stability analysis returns counter-examples for the acquireCredit

operation. Let the global credit be initially 1. Replica r wants to acquire one credit using the

acquireCredit(r,1) operation. The precondition of acquireCredit(r,1) is verified. However, a con-

current acquireCredit(r′,1) operation makes the global credit zero, and so, the precondition of

acquireCredit(r,1) is not true anymore. If replica r was to acquire the credit, then the invari-

ant would become false. To address this problem, we assign a mutually exclusive token τ, to

acquireCredit operations, so that they cannot be concurrent. We run the tool again to verify that

the problem is resolved.

46

6.4. COURSEWARE APPLICATION

State = Credit×map(ReplicaID×Credit)

Token = {τr | r ∈ReplicaID}∪ {τ}

⊲⊳ = {(τr,τr) | r ∈ReplicaID}∪ {(τ,τ)}

Fincrement(r,k)(n,C) = (⊥, (λ(n,C′). (n,C′[r 7→ c+k])), {τr})

Fdecrement(r,k)(n,C) = (⊥, (λ(n,C′). (n,C′[r 7→ c−k])), {τr})

FacquireCredit(r,k)(n,C) = (⊥, (λ(n,C′). (n−k,C′[r 7→ c+k])), {τ})

FreleaseCredit(r,k)(n,C) = (⊥, (λ(n,C′). (n+k,C′[r 7→ c−k])),;)

Precondition Operation

k ≥ 0 Fincrement(r,k)(n,C)

Credit(r,C)≥ k ≥ 0 Fdecrement(r,k)(n,C)

n ≥ k ≥ 0 FacquireCredit(r,k)(n,C)

k ≥ 0 FreleaseCredit(r,k)(n,C)

Figure 6.4: Corrected Counter With Escrow differs from Figure 6.3 as follows: using tokens and

improving preconditions.

Note, if we remove the token τr assigned into decrement and increment operations, the tool

returns another counter-example for two concurrent decrement operations within a replica.

Figure 6.4 gives the design of counter with escrow after applying all changes detailed above.

Running the tool again, we verify that the semantics successfully passes all CISE rules.

Returning to the bank application, we can use Counter With Escrow design to implement

the balance. Thus, a particular bank branch could acquire a portion of the account’s balance, say

e1000 out of a balance of e5000. This gives the branch the capability to make any number of

debits, up to e1000, without communicating.

6.4 Courseware Application

The next application that we analyse and co-design is a courseware application. Its database

stores information about students and courses. The operations are as follows: A user can add a

course c using addCourse(c) operation and register a student s using register(s) operation. The

registered student s can enroll in the course c using enroll(s, c). The student registration and

enrollment can be cancelled using deregister(s), and disenroll(s, c) operations. Course c can be

removed using remCourse(c) operation. We also have a query operation.

We assume types course Course and student Student. A database state (S,C,E) consists of

a set of students S, a map C for courses, and the enrolment relation E between students and

courses. Each course c has a capacity capacity(c), representing the maximum number of students

that can be enrolled. The map C maps a course c ∈ Course to an integer number n ∈N, which

counts the number of students enrolled in course c. Counter n is initially zero, and increments by

47

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

State = S×C×E

S = AWset(Student), C =AWmap(Course,N), E =AWset(Student×Course)

σinit = (;AWset,;AWmap,;AWset)

Token = ;

⊲⊳ = ;

Fregister(s)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′.add(s),C′,E′)),;)

Fderegister(s)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′.remove(s),C′,E′)),;)

FaddCourse(c)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′,C′.add(c,0),E′)),;)

Fenroll(s,c)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′,C′.add(c,n++),E′.add(s, c)),;)

Fdisenroll(s,c)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′,C′.add(c,n−−),E′.remove(s, c)),;)

FremCourse(c)(S,C,E)) = (⊥, (λ(S′,C′,E′). (S′,C′.remove(c),E′)),;)

Precondition Operation

true Fregister(s)

s ∈ S Fderegister(s)(S,C,E)

true FaddCourse(c)(S,C,E)

s ∈ S∧ (c,n) ∈ C Fenroll(s,c)(S,C,E)

(s, c) ∈ E Fdisenroll(s,c)(S,C,E)

c ∈Course FremCourse(c)(S,C,E)

Figure 6.5: Courseware application (incorrect).

one when a student is enrolled in course c, and decreases if a student cancels her enrolment in

the course c. There are two integrity invariants: I1 and I2. Invariant I1 states that the number of

students enrolled in a course must not exceed its capacity. Invariant I2 states that the enrolment

relation refers to existing courses and registered students; it is an instance of a foreign key

integrity rule in databases, which requires a data item referenced in one part of the database to

exist in another.

I1 = ∀c ∈Course, (c,n) ∈ C =⇒ n ≤ capacity(c)

I2 = ∀c ∈Course, s ∈ Student, (c, s) ∈ E =⇒ s ∈ S∧∃n ∈N, (c,n) ∈ C

We exploit CRDTs to ensure commutative semantics for all operations. See Part I. Figure

6.5 gives the simple specification for the courseware application using an add-wins approach.

Operations’ effectors use the add and remove operations of a replicated set or map. For instance,

consider the replicated map C. The concrete implementation of AWmap data type attaches a

unique tag to each added element. To add a course c, the effector F(addcourse(c)) adds the pair

(c,n) to C using the add(c,n) function provided by the AWmap API. The course c is removed by

the remove(c) function provided by the AWmap API.

The effector safety analysis identifies and verifies sufficient preconditions. It shows that the

effector safety analysis shows that the effect of the enroll(c, s) operation may break invariant I2.

48

6.4. COURSEWARE APPLICATION

State = S×C×E

S = AWset(Student), C =AWmap(Course,N), E =AWset(Student×Course)

σinit = (;AWset,;AWmap,;AWset)

Token = {τe(c),τr(c),τc,τe(s),τr(s) | c ∈Course, s ∈ Student}

⊲⊳ = {(τe(c),τr(c)), (τr(c),τe(c)), (τc,τc), (τe(s),τr(s)), (τr(s),τe(s)) |

c ∈Course, s ∈ Student}

Fregister(s)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′.add(s),C′,E′)),;)

Fderegister(s)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′.remove(s),C′,E′)), {τr(s)})

FaddCourse(c)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′,C′.add(c,0),E′)),;)

Fenroll(s,c)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′,C′.add(c,n++),E′.add(s, c)), {τe(c),τe(s),τc})

Fdisenroll(s,c)(S,C,E) = (⊥, (λ(S′,C′,E′). (S′,C′.add(c,n−−),E′.remove(s, c)),;)

FremCourse(c)(S,C,E)) = (⊥, (λ(S′,C′,E′). (S′,C′.remove(c),E′)), {τr(c)})

Precondition Operation

true Fregister(s)

s ∈ S∧ 6 ∃c ∈Course, (s, c) ∈ E Fderegister(s)(S,C,E)

true FaddCourse(c)(S,C,E)

s ∈ S∧ (c,n) ∈ C∧n < capacity(c) Fenroll(s,c)(S,C,E)

(s, c) ∈ E Fdisenroll(s,c)(S,C,E)

c ∈Course∧ 6 ∃s ∈ Student, (s, c) ∈ E FremCourse(c)(S,C,E)

Figure 6.6: Corrected courseware application differs from Figure 6.5 as follows: using tokens and

improving preconditions.

The counter-example is when a student s enrolls in a non-existing course or a non-registered

student enrolls in a course. To avoid such anomalies, we add sufficient preconditions, such that

enroll(s, c) operation requires that student s is registered and course c exists.

The commutativity analysis shows that the effect of operations using CRDTs commute. The

add-wins CRDT set semantics guarantees the commutativity property. For instance, suppose

Alice adds a course c using addCourse(c) operation, then changes her mind and removes the

course using remCourse(c) operation; concurrently, Bob adds the same course c using addCourse(c)

operation. Independent of the order in which the replicas apply the effects of the concurrent

operations addCourse(c) and remCourse(c), the result of execution will be the same in both Bob’s

and Alice’s replica. A query operation will return the same result c ∈Course.

The concurrent executions of operations may break invariants I1 and I2. The stability analysis

generates a counter-example, indicating that the precondition of the enroll operation is not stable

under concurrent effect of another enroll operation. The counter example is the same as a bounded

counter. Thus, to preserve the capacity limit, a mutual token τc is associated to a course c, such

that τc ⊲⊳ τc. Then enrolments in the same course will have to synchronise. However, users can

49

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

Invariant

I1 = ∀s ∈ Seller, p ∈Product, (s, p) ∈O =⇒ (s, .) ∈ S∧ (p, .) ∈ P

I2 = ∀a ∈Auction, s ∈ Seller, (a, s) ∈ E =⇒ (a, .) ∈ A∧ (s, .) ∈ S

I3 = ∀b ∈Bid,a ∈Auction, c ∈Customer, (b,a, c, .) ∈ B =⇒ (a, .) ∈ A∧ c ∈ C

I4 = ∀l ∈ Lot,a ∈Auction, s ∈ Seller, p ∈Product, (l,a, s, p, .) ∈ L =⇒ (a, s) ∈ E∧ (s, p) ∈O

I5 = ∀a ∈Auction, c ∈Customer, (a, c) ∈W =⇒ (a, .) ∈ A∧ c ∈ C

I6 = ∀p ∈Product,stock(p,P)≥ 0

I7 = ∀l ∈ Lot,a ∈Auction, s ∈ Seller, p ∈Product, (l,a, s, p,k) ∈ L =⇒ (s,n) ∈ S∧k ≤ n

∧(p,m) ∈ S∧k ≤ m

I8 = ∀a ∈Auction,active(a)∨closed(a) =⇒ ∃p ∈Product, (l,a, p,k) ∈ L∧k > 0

I9 = ∀a ∈Auction, (a, c) ∈W =⇒ closed(a)

I10 = ∀a ∈Auction,closed(a) =⇒ ∃c ∈Customer, (a, c) ∈W ∧ (b,a, c, .) ∈ B∧b ==max(B)

I11 = ∀a,a′ ∈Auction, (active(a)∧ (close(a′)∨open(a′))∨ (open(a)∧

(closed(a′)∨active(a′))∨ (closed(a)∧ (open(a′)∨active(a′)) =⇒ a 6= a′

Table 6.1: Auction invariants.

enroll in different courses without synchronisation, i.e., τc 6⊲⊳ τc′ for c 6= c′.

The stability analysis also identifies that concurrent execution of enroll and deregister opera-

tions, or of enroll and remCourse operations is not safe, as they may violate invariant I2. Here

is a counter-example: consider that no students enrolled in course c. Alice removes the course

while Bob enrolls concurrently into it. The results is that Bob is enrolled into a non-existent

course. To disallow such situations, we can define a mutually exclusive token τc that both enroll

and remCourse operations must acquire. The token τc totally orders the enroll and remCourse

operations. However, this incurs unnecessary synchronisation. For instance, acquiring this token

disallows concurrent removing the same course.

Similar to readers-writer locks from shared memory [18], we can define multi-level tokens in

order to reduce the cost of the mutually exclusive token. We provide a multi-level lock abstractions

to each data item: token τe giving the shared right to forbid removing the data item, and token

τr giving the shared right to allow removing the data item, such that token τe is incompatible

with token τr over the same data item.

Therefore, we assign a pair of incompatible tokens τe(c) and τr(c) to a course c, such that

τe(c) ⊲⊳ τr(c), and a pair of incompatible tokens τe(s) and τr(s) to a student s, such that τe(s) ⊲⊳ τr(s).

Neither of these tokens are incompatible with itself. Operation enroll(s, c) acquires both tokens

τe(c), and τe(s), whereas operation remCourse(c) and deregister(s) acquire token τr(c) and token

τr(s). Then for every pair of operations enroll(s, c) and remCourse(c) (or deregister(s)), either the

enrolment operation is aware that the course (or the student) has been removed, or the removal

is aware of the enrolment operation; in either case the corresponding operation has no effect.

50

6.5. AUCTION APPLICATION

State : set(Customer) (customer id)

×map(Seller ,N) (seller id, limit)

×map(Product ,N) (product id, stock)

×map(Auction ,{open,active,closed}) (auction id, status)

×set(Seller×Product) (seller id, product id)

×set(Auction×Seller) (auction id, seller id)

×set(Auction×Customer) (auction id, customer id)

×set(Bid× Auction×Customer×N) (bid, auction id, customer id, price)

×set(Lot×Auction×Seller×Product×N) (lot, auction id, seller id, product id, size)

Figure 6.7: Auction database state

However, other pairs of operations can be concurrent, and do not have to synchronise.

Figure 6.6 illustrates the corrected courseware semantics, which includes the sufficient

precondition, the set of required tokens, and their incompatibility relation. The CISE analysis

verifies that the preconditions and the token assignments are indeed sufficient to ensure the

application invariants.

6.5 Auction Application

Our most complex example in this chapter concerns an online auction application similar to

eBay. The application maintains information about customers, sellers, products, and auctions.

Customers and sellers can register in the application and unregister from it. Registered sellers

can create auctions and then add products as lots into the auctions. The status of auction can be

one of: open, active, or closed. While an auction is active, a registered customer can place a bid.

Auctions may involve one or more product items, one or more sellers, and one or more bidders.

Once the auction is closed, the bidder with the highest bid is declared the winner.

6.5.1 Database

We assume the type customers Customer, sellers Seller, products Product, auctions Auction, bids

Bid, and lots Lot. The database state is composed of the set of customers C, the map S for sellers,

the map P for products, and the map A for auctions. Map S maps a seller s ∈ Seller to a limit

limit(s), the maximum number of products that seller s can auction. Map P maps a product

p ∈Product to its available quantity, denoted by stock(p,P). Map A stores data about auctions

and their status. To store the status of an auction, we use a "linear type" that has successive states

S1 = open, S2 = active, and S3 = closed with operations read and advance(Si), where advance(Si)

has precondition status= S(i−1) and sets state to Si. Function open(a) states that auction a exists

51

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

State = C×S×P×A×O×E×W×B×L

C = AWset(Customer), S =AWmap(Seller,N), P =AWmap(Product,N),

A = AWmap(Auction,status), O =AWset(Seller×Product),

E = AWset(Auction×Seller), W =AWset(Auction×Customer),

B = AWset(Bid×Auction×Customer×N), L =AWset(Lot×Auction×Seller×N)

σinit = (;AWset,;AWmap,;AWmap,;AWmap,;AWset,;AWset, ,;AWset,;AWset,;AWset)

Token = ;

⊲⊳ = ;

FregCustomer(c)(σ) = (⊥, (λ(σ′.C). (σ′.C.add(c))),;)

FunRegCustomer(c)(σ) = (⊥, (λ(σ′.C). (σ′.C.remove(c))),;)

FregSeller(s,n)(σ) = (⊥, (λ(σ′.S). (σ′.S.add(s,n))),;)

FunRegSeller(s)(σ) = (⊥, (λ(σ′.S). (σ′.S.remove(s))),;)

FaddProduct(p,m,s)(σ) = (⊥, (λ(σ′.P,σ′.O). (σ′.P.add(p,m),σ′.O.add(p, s))),;)

FremProduct(p)(σ) = (⊥, (λ(σ′.P,σ′.O). (σ′.P.remove(p),σ′.O.remove(p, s))),;)

FctrAuction(a,s)(σ) = (⊥, (λ(σ′.A,σ′.E). (σ′.A.add(a,open),σ′.E.add(a, s))),;)

FremAuction(a)(σ) = (⊥, (λ(σ′.A,σ′.E). (σ′.A.remove(a),σ′.E.remove(a, s))),;)

FaddLot(l,a,s,p,k)(σ) = (⊥, (λ(σ′.P,σ′.L). (σ′.P.add(p,stock(p,σ′.P)−k),σ′.L.add(l,a, s, p,k))),;)

FremLot(l,a,s,p,k)(σ) = (⊥, (λ(σ′.P,σ′.L). (σ′.P.add(p,stock(p,σ′.P)+k),σ′.L.remove(l,a, s, p,k))),;)

FplaceBid(b,a,c,v)(σ) = (⊥, (λ(σ′.B). (σ′.B.add(b,a, c,v))),;)

FremBid(b,a,c,n)(σ) = (⊥, (λ(σ′.B). (σ′.B.remove(b,a, c,v))),;)

FstartAuction(a)(σ = (⊥, (λ(σ′.A). (σ′.A.add(a,active))),;)

FcloseAuction(a,c)(σ) = (⊥, (λ(σ′.A,σ′.W). (σ′.A.add(a,closed),σ′.W .add(a, c))),;)

Precondition Operation

true FregCustomer(c)(σ)

c ∈σ.C FunRegCustomer(c)(σ)

true FregSeller(s,n)(σ)

(s, .) ∈σ.S FunRegSeller(s)(σ)

true FaddProduct(p,m,s)(σ)

(p, .) ∈σ.P FremProduct(p)(σ)

true FctrAuction(a,s)(σ)

(a, .) ∈σ.A FremAuction(a)(σ)

true FaddLot(l,a,s,p,k)(σ)

(l, ., ., .) ∈σ.L FremLot(l,a,s,p,k)(σ)

true FplaceBid(b,a,c,v)(σ)

(b, ., ., .) ∈σ.B FremBid(b,a,c,v)(σ)

(a, .) ∈σ.A∧open(a) FstartAuction(a)(σ)

(a, .) ∈σ.A∧active(a) FcloseAuction(a,c)(σ)

Figure 6.8: Auction application (incorrect).

52

6.5. AUCTION APPLICATION

and is open, i.e., (a,open) ∈ A. Function active(a) states that auction a exists and is started, i.e.,

(a,active) ∈ A. Function closed(a) states that auction a exists and is closed, i.e., (a,closed) ∈ A.

The database also maintains several relations: owner relation O between sellers and products,

promoter relation E between auctions and sellers, winner relation W between auctions and

customers, bid relation B between auctions and customers, and lot relation L between auctions

and products. Bid relation B maps a customer to a price v, which she offers for a particular

auction. Lot relation L maps quantity of products to a given auction. Figure 6.7 illustrates the

database.

6.5.2 Invariant

This application has eleven integrity rules listed in Table 6.1, which include: foreign key con-

straints, stock constraints, and restrictions over auction’s status. Invariants I1− I5 are referential

integrity rules over the owner, promoter, bid, lot, and winner relations. Invariant I1 states that

an owner maps to an existing product and a registered seller. Invariant I2 states that a promoter

maps to an existing auction and a registered seller. Invariant I3 states that a bid maps to a

registered customer and an existing auction. Invariant I4 states that a lot maps to an existing

auction, a registered seller, and an existing product. Invariant I5 ensures that winner of each

auction is a customer, who has been registered.

Invariant I6 ensures that no product is out of stock. Invariants I7 states that the size of a

product lot must be less than the stock, and the seller’s limit. Invariant I8 states that there is at

least one lot for any closed or active auction. Invariant I9 states that if a winner is declared for

an auction, then the auction must be closed. Invariant I10 states that when an auction is closed,

it has a winning bidder, and her bid is the maximal one. Invariant I11 states that an auction can

be only in one of three statuses.

In addition, there might be some restrictions over state transitions. For instance, the ap-

plication might require to ensure that lots are not placed or removed from a closed or active

auction. For this, when the auction starts, the application stores all its lots in another list, say

AL, which can later be checked against the list of lots L. If (a, l) ∈AL asserts that lot l is added

in the auction a before it begins, and active(a) asserts that auction a is active, we can introduce

following invariant:

I12 =∀l ∈ Lot,a ∈Auction,active(a)∧ (l,a, ., ., .) ∈ L =⇒ (l,a) ∈AL

The same condition may be required for bids, as customers add bids to or remove from an

auction only when the auction is active. We define another invariant I13, where a list BL stores

all bids placed in an auction before the auction is closed. To avoid changes into set B for auctions,

which are not active, the list BL is checked against the list of bids B:

I13 =∀b ∈Bid,a ∈Auction,closed(a)∧ (b,a, ., .) ∈ B =⇒ (b,a) ∈BL

53

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

Alternatively, temporal logic expressions can be used to address such forms of temporal speci-

fications [65]. However, temporal logic would entail more complex specification for programmers,

and more complex analysis.

6.5.3 Operations

The auction application supports different update operations. For instance, one can register seller

s using the regSeller(s,n) operation, which its effect adds (s,n) to map S, and can unregister seller

s using the unRegSeller(s) operation, which removes (s,n) from the map S. Once seller s has been

registered, she can add or remove a product p with initial stock m, using the addProduct(p, s,m)

and remProduct(p) operations, respectively. After adding the product, she can create an auction

a, using the ctrAuction(a, s) operation. The addLot(a, s, p,n) operation allows seller s to add some

lots of product p to the auction a if its status is open. After activating the auction a using the

startAuction(a) operation, no changes are allowed to the auction’s lots. A registered customer

c can place a bid b valued v over the auction a using the placeBid(b,a, c,v) operation. Until an

auction is active, bids can be added to, or removed from the auction. When the auction a is closed

by the closeAuction(a, c) operation, customer c is declared the winning bidder if her bid is the

maximal of all bids placed on the same auction. As usual, we also have a query operation.

Similar to the courseware application, we exploit CRDTs to ensure commutative semantics for

all operations of the auction application without introducing synchronisation. We use add-wins

approach to implement set or map data items. Figure 6.8 shows simple specification model for

the auction application.

Preconditions guarantee sequential invariants. Running the tool for effector safety on the

auction specification model enables us to identify and verify sufficient preconditions for each

operation. For instance, to ensure invariant I3 in any sequential execution, the effector safety

analysis shows that the placeBid operation may not place a bid into an auction that does not exist.

We add the corresponding precondition.

Thanks to CRDTs, the commutativity analysis proves that the effect of operations commute.

However, running the CISE tool for stability analysis shows that the precondition of some

operations is not stable under concurrent execution. For instance, the stability check for the

placeBid operation fails under concurrent remAuction operation. The tool returns the following

counter example. Alice removes auction a, which has no bids, and concurrently Bob places a bid

on the auction a, thinking that the auction exists. This results in placing bid on a non-existent

auction. To avoid such situations, we specify a pair of conflicting tokens for each auction a ∈

Auction: τa(a) and τr(a). Thus, the operation placeBid acquires τa(a), and the operation remAuction

acquires τr(a). Using the stability analysis, we identify which pairs of operations must not be

concurrent, i.e., those whose precondition is not be stable under concurrent effect of another,

and then define sufficient tokens to disallow toxic concurrency. Figure 6.9 illustrates the correct

semantics of auction application using the above modifications. Thanks to the tool, we are able to

54

6.5. AUCTION APPLICATION

State = C×S×P×A×O×E×W×B×L

C = AWset(Customer), S =AWmap(Seller,N), P =AWmap(Product,N),

A = AWmap(Auction×status), O =AWset(Seller×Product),

E = AWset(Auction×Seller), W =AWset(Auction×Customer),

B = AWset(Bid×Auction×Customer×N), L =AWset(Lot×Auction×Seller×N)

Token = { τr(a),τa(a),τc(a),τm(a),τa | a ∈Auction}∪ { τr(c),τa(c) | c ∈Customer}

{ τr(p),τa(p),τp) | p ∈Product}∪ { τr(s),τa(s),τs(s) | s ∈ Seller}

⊲⊳ = {(τa(a),τr(a)), (τr(a),τa(r)), (τm(a),τc(a)), (τc(a),τm(a)), (τa,τa) | a ∈Auction}

∪(τr(c),τa(c)), (τa(c),τr(c)) | c ∈Customer}

∪(τr(p),τa(p)), (τa(p),τr(p)), (τp,τp) | p ∈Product}

∪(τr(s),τa(s)), (τa(s),τr(s)), (τs(s),τs(s)) | s ∈ Seller}

FregCustomer(c)(σ) = (⊥, (λ(σ′). (σ′.C.add(c))),;)

FunRegCustomer(c)(σ) = (⊥, (λ(σ′.C). (σ′.C.remove(c))), {τr(c)})

FregSeller(s,n)(σ) = (⊥, (λ(σ′.S). (σ′.S.add(s,n))),;)

FunRegSeller(s)(σ) = (⊥, (λ(σ′.S). (σ′.S.remove(s))), {τr(s)})

FaddProduct(p,m,s)(σ) = (⊥, (λ(σ′.P,σ′.O). (σ′.P.add(p,m),σ′.O.add(p, s))), {τa(s)})

FremProduct(p)(σ) = (⊥, (λ(σ′.P,σ′.O). (σ′.P.remove(p),σ′.O.remove(p, s))), {τr(p)})

FctrAuction(a,s)(σ) = (⊥, (λ(σ′.A,σ′.E). (σ′.A.add(a,open),σ′.E.add(a, s))), {τa(a),τa})

FremAuction(a)(σ) = (⊥, (λ(σ′.A,σ′.E). (σ′.A.remove(a),σ′.E.remove(a, s))), {τr(a)})

FaddLot(l,a,s,p,k)(σ) = (⊥, (λ(σ′.P,σ′.L). (σ′.P.add(p,stock(p,σ′.P)−k),σ′.L.add(l,a, s, p,k))), {τa(a),

τm(a),τa(p),τa(s),τp,τs(s)})

FremLot(l,a,s,p,k)(σ) = (⊥, (λ(σ′.P,σ′.L). (σ′.P.add(p,stock(p,σ′.P)+k),σ′.L.remove(l,a, s, p,k))), {τm(a)})

FplaceBid(b,a,c,v)(σ) = (⊥, (λ(σ′.B). (σ′.B.add(b,a, c,v))), {τm(a),τa(a),τa(c)})

FremBid(b,a,c,n)(σ) = (⊥, (λ(σ′.B). (σ′.B.remove(b,a, c,v))), {τm(a)})

FstartAuction(a)(σ) = (⊥, (λ(σ′.A). (σ′.A.add(a,active))), {τa(a),τm(a),τa})

FcloseAuction(a,c)(σ) = (⊥, (λ(σ′.A,σ′.W). (σ′.A.add(a,closed),σ′.W .add(a, c))), {τa(a),τm(a),τa})

Precondition Operation

true FregCustomer(c)(σ)

c ∈σ.C∧ 6 ∃a ∈Auction, (b,a, c,n) ∈σ.B∧ (a, c) ∈σ.W FunRegCustomer(c)(σ)

true FregSeller(s,n)(σ)

(s, .) ∈σ.S∧ 6 ∃p ∈Product,a ∈Auction, (s, p) ∈σ.O∧ (a, s) ∈σ.E FunRegSeller(s)(σ)

(s,n) ∈σ.S FaddProduct(p,m,s)(σ)

(p, .) ∈σ.P∧ 6 ∃l ∈ Lot,a ∈Auction, (l,a, p,n) ∈ L FremProduct(p)(σ)

(s,n) ∈σ.S FctrAuction(a,s)(σ)

open(a)∧ 6 ∃b ∈Bid, l ∈ Lot, (b,a, c,n) ∈σ.B∧ (l,a, p,k) ∈σ.L FremAuction(a)(σ)

open(a)∧ (s, p) ∈σ.O∧ (a, s) ∈σ.E∧k ≤ limit(s)∧k ≤ stock(p,σ.P) FaddLot(l,a,s,p,k)(σ)

open(a) FremLot(l,a,s,p,k)(σ)

active(a)∧∃c ∈Customer, c ∈σ.C FplaceBid(b,a,c,v)(σ)

active(a)∧ 6 ∃c ∈Customer, (a, c) ∈σ.W FremBid(b,a,c,v)(σ)

open(a)∧∃l ∈ Lot, (l,a, p,k) ∈σ.L∧k > 0 FstartAuction(a)(σ)

active(a)∧∃b ∈ bids, (b,a, c,v) ∈σ.B∧b ==max(σ.B) FcloseAuction(a,c)(σ)

Figure 6.9: Corrected auction application.

55

CHAPTER 6. THE CISE PROOF TOOL’S APPLICATION

verify that this token assignment is indeed sufficient to ensure all invariants for such complex

application.

56

Chapter 7

Related Work

Contents

7.1 Related Work . 58

7.1.1 Consistency Models . 58

7.1.2 Reasoning About Consistency in Distributed Systems and Databases . . . 60

7.2 Conclusion . 61

7.3 Future Work . 62

57

CHAPTER 7. RELATED WORK

In this chapter, we present the related work, and conclude this part of thesis with a summery

of CISE analysis, and developed tool and identify areas for future work.

7.1 Related Work

7.1.1 Consistency Models

Many replicated databases provide only eventual consistency [4, 100], because of the high latency

of strong consistency protocols in wide-area networks. However, eventual consistency models

expose applications to undesirable concurrency behaviour; they cannot guarantee application

invariants. Several previous works aim at designing consistency models that provide meaningful

semantics to the application, without compromising availability and incurring high latencies [6,

9, 10, 22, 32, 41, 70, 93]. However, the performance and availability benefits of these consistency

protocols are still not well understood.

Haifeng et al. [105] propose three consistency metrics: unseen writes, uncommitted writes

and staleness in order to measure consistency. The first metric determines the number of updates

not seen by a replica. The uncommitted writes is the number of local updates not been seen by all

replicas. The staleness indicates how recent a copy of data is compared to its most current version.

Thus, an application can describe its inconsistency thresholds in terms of these three metrics.

A replica executes operations of the application asynchronously if the thresholds stated by the

application are satisfied. Otherwise, the operations must be synchronised for ensuring consistency

promises. However, the three metrics are not expressive enough to capture all the dimensions of

consistency required by an application. In particular, they do not consider application invariants.

Sovran et al. [93] propose a hybrid consistency model for key-value store, where some trans-

actions execute under causal consistency and some under parallel snapshot isolation (PSI), a

weaker form of snapshot isolation [44]. PSI weakens snapshot isolation semantics by allowing

non-conflicting transactions execute in any mutual order among replicas. The hybrid model

use two main ideas: preferred replicas and counting set. Each object is assigned to a preferred

replica, which is responsible for handling all updates to the object. The counting set, called cset,

provides commutative and concurrent semantics for set objects. An operation would execute

asynchronously in its origin replica if, either the replica is the preferred replica of written objects

by the operation, or the operation updates objects of cset type. Otherwise, the origin replica

forwards the objects’ updates to their preferred replicas using a two phase commit protocol.

However, application developers must carefully reason about asynchronous operations in order to

avoid invariant violations.

Lioyd et al. [70] provide a key-value geo-replicated system that offers stronger semantics

than causal consistency, called Causal+ consistency. Like causally-consistent systems, COPS

delays updates on a data item until all dependencies are satisfied. Under causal consistency,

concurrent users updating the same key in different replicas might observe different values

58

7.1. RELATED WORK

forever. Causal+ extends causal consistency by ensuring state convergence among replicas. For

this, the work exploits commutative merge functions, such as last-writer-win rules [54]. However,

causal+ consistency is still too weak to guarantee application invariants.

PNUTS [32] is a highly available (and scalable) relational database based on asynchronous

replication. It provides per-key sequential consistency model to order updates to a key at all

replicas. PNUTS relies on a multi-master replication schema, which forwards all updates to

a primary replica. The primary replica propagates updates to other replicas in background

(based on a centralised pub/sub mechanism). However, an update remains unavailable when a

primary replica is unresponsiveness due to network partitions. PNUTS’s API supports different

primitive calls, in which different levels of consistency are possible. Each record is versioned, so

that a desired version can be retrieved. Local reads might return stale data in favour of latency

and availability. For write calls, PNUTS provides a test-and-set write interface with version

numbers to update data only if it is not staler than the required version. However, PNUTS does

not guarantee consistency among keys, as it might violate safety properties such as referential

integrity rules.

Consistency rationing [59] provides a hybrid consistency model by categorising data items

into three types (A, B and C); each with an appropriate consistency level. Category C contains

data for which consistency violation is tolerable; operations on data C are fast and available even

when disconnected; it ensures session consistency [96]. For instance, in a web shop application,

log data is C, i.e., inconsistencies on log information are acceptable. Category A contains data that

require system-wide synchronisation; it ensures strong consistency. In the web shop application,

bank transactions must be serialisable, because the system needs to stop operations that would

violate system correctness (e.g. negative balance). The consistency level of category B varies over

time depending on specific policies including: cost, the probability of conflicts, time constraints

and the availability of data. Returning to the example, product inventory is categorised as B. As

long as the high amount of the product is available in stock, temporary inconsistency is allowed.

Otherwise, it requires serialisability to avoid selling an item that is not in stock. However,

categorising data is an error-prone task and difficult to design for and to test. Some complex

data structures like streams either cannot be categorised or is too hard to categorise. Moreover,

consistency rationing is conservative. Not all transactions over strong data require to be ordered.

For instance, deposit operations in bank application are always safe, and hence, they can execute

under weaker consistency models.

Li et al. [69] have proposed hybrid consistency model, called RedBlue, that adaptively tunes

consistency model based on application requirements. To provide both performance (and availabil-

ity) and consistency guarantees, RedBlue classifies operations as red and blue. Blue operations

commute with all others; they execute asynchronously and quickly even when partitions occur;

they ensure causal consistency. For example, in a bank application, deposit operation are blue,

i.e., the user can add to his account in all circumstances. Red operations must be mutually

59

CHAPTER 7. RELATED WORK

ordered, requiring system wide synchronisation; they ensure strong consistency. In the banking

application, withdraw are red, because the system needs to stop a withdrawal that would make

the balance negative. However, their model does not have a formal semantics.

7.1.2 Reasoning About Consistency in Distributed Systems and Databases

Li et al. [68] have presented static analysis in order to classify operations into synchronous and

asynchronous operations in a hybrid consistency model. The analysis checks that if executing

operations on causal consistency preserves a given integrity invariant; if not, the analysis

concludes that the operations require synchronisation. However, the analysis does not check

that whether the result of operation executions guarantee the invariant. In contrast, the CISE

analysis allows to assign a set of tokens into operations and then reason about their correctness.

Bailis et al. [14] have proposed a necessary and sufficient condition, called I−confluent

analysis, to check whether operation executions on a replicated database need syntonisation or

not. The work analyses various operations of an application, and its desired invariants in order to

detect necessary synchronisation. However, the I−confluent analysis is manual, and error-prone

for verifying applications with complex and arbitrary invariants. Moreover, it does not address

how to strengthen the consistency protocol in the case of invariant violations.

Sivaramakrishnan et al. [92] have proposed a static analysis that automatically maps appli-

cation requirements to consistency levels in a replicated database. Consistency requirements

of each application are captured by some contracts. Each contract specifies the fine-grained

application consistency properties, such as the happens-before relation between operations. The

analysis verifies that if operation executions satisfy the contracts under a given consistency

protocol. However, the contracts are more low-level than invariants, and there is no guideline on

how application developers write the right contracts for their application.

Lu et al. [68] have proposed correctness conditions under which transactions can be safely ex-

ecuted at a weaker isolation level than serialisability, such as snapshot isolation. The correctness

criteria determines the appropriate isolation level for each type of application’s transactions. Un-

der snapshot isolation, read operations can execute concurrently with updates. A read operation

may return a stale version of data. Since a single isolation level can be chosen for each transaction,

the most conservative isolation level is chosen. In contrast, the CISE analysis focus on analysing

and verifying an application running on a replicated database based on its invariants.

To reduce the synchronisation cost, Fekete [38] has proposed a hybrid consists model, where

some transactions run under snapshot isolation, but others use two-phase locking for concurrency

control. The hybrid model allows that transactions use local snapshots of the database on the

replica, while still ensuring serialisable executions. He has proposed sufficient conditions based

on analysing read-write and write-write conflicts between transactions in order to determine

which transactions in an application need to execute under serialisability. The work shows how an

application can be modified to satisfy the conditions. However, the analysis relies on serialisability

60

7.2. CONCLUSION

Application #OP #Tokens #Invariant Time(ms)

Bank 5 1 1 385

Escrow 4 2 1 187

Courseware 6 5 2 534

Auction 14 13 13 6542

Table 7.1: A summery of applications verified by CISE analysis

as the correctness criteria for executions of a set of transactions in a replicated database, whereas

the CISE analysis allows weaker consistency models as long as the application invariants are

preserved.

Roy et al. [89] have presented an analysis algorithm for extracting invariants from application

code. Subsequently, they propose a consistency protocol that allows a replica to execute operations

independently without any communications with other replicas, as long as the replica can meet a

set of local conditions. If an operation cannot execute locally in the replica, a new set of conditions

is recomputed using two-phase commit. The work is complementary to the CISE analysis, because

the proposed techniques could be used to automatically infer invariants form code.

7.2 Conclusion

We proposed CISE analysis that helps programmers to check whether execution of a given applica-

tion in replicated databases maintains the application invariants under a given synchronisation

protocol. The CISE analysis includes three proof obligations: the effector analysis verifies that

the operations’ preconditions are sufficient for sequential correctness, the commutativity analysis

ensures that the replicas converge, and the stability analysis verifies that preconditions are stable

under concurrent updates. The total time complexity of the CISE analysis is O(m2), where m

represents the number of operations. The effector analysis takes m steps, whereas commutativity,

and stability analysis each takes m2 steps, to be completed.

Following the proof rules, we have developed a SMT-based tool that automates the analysis.

The tool verifies whether the current application semantics satisfies the CISE rules. If an

obligation fails, the tool provides a counter-example, which the developer can use to understand

the source of the problem and resolve it either by weakening the updates or invariants, or by

adding some tokens to strengthen the synchronisation at the expense of reduced performance

and availability.

Using the tool, we have verified several example applications: a bank application, an escrow

data type, a courseware application, and an auction service. The tool has particularly verified

applications using convergent replicated data types (CRDTs), which encapsulate techniques

for merging the effects of operations without synchronisation cost. Table 7.1 summarises the

applications verified and the time taken by the tool. The tool was run on a Mac Mini, 3 GHz Intel

61

CHAPTER 7. RELATED WORK

Core i7. The numbers of operations and tokens are given without taking into account operation

arguments, and tokens associated with different instances of the same object.

7.3 Future Work

The soundness of the CISE analysis relies on fact that the replication protocol must guarantee at

least causal consistency. Although causal consistency can be implemented without synchroni-

sation, its implementation entails to explicitly track causal dependencies. Weaker consistency

models, which do not preserve causality for all operations, are widely used in many distributed

systems. One direction of interest is to propose proof rules that allow to reason about integrity

invariants for weaker consistency models.

To support the CISE analysis, one future research direction is to design and implement a

replicated database, which uses the analysis. The system provides asynchronous replication

by default, and integrates the CISE analysis in order to add extra synchronisations when it is

necessary. The challenge of implementing such hybrid model is that synchronous operations may

hinder the latency advantage of asynchronous operations.

Although the CISE tool is automatic, the later steps of identifying the sufficient tokens, and

then to translate them into an efficient concurrency control protocol, are currently manual, which

is tedious and error-prone. They open several avenues for improving the tool. One improvement

would be to automate the analysis of counter-examples, in order to explore a correct token

assignment.

In the future, we plan to automate the translation of the token assignments into an efficient

concrete lock protocol. There are different ways to optimise a lock implementation, each with

own cost and complexity. Examples include multi-level locks [71], lock coarsening [62], and early

lock release [55]. For instance, each operation may be protected by its own fine-grain lock, at the

high cost of acquiring and releasing locks. A well-known optimisation is to coarsen, replacing

several fine-grain locks with a single coarse-grain one. Although a coarser lock reduces the

synchronisation cost, it also delays (or blocks) concurrent updates, which costs performance too.

From a performance perspective, there is no single best locking protocol, since this will depend on

dynamic characteristics of the workload, namely on how often updates are blocked (contention)

vs. how often locks are acquired (overhead). Combining static and dynamic analysis improves

the reliability of system. A future research direction is to develop profiling or monitoring tools

in order to measure the efficiency of the concurrency control protocol under different workloads,

and heuristics to improve it.

Finally, verifying that the concurrency control protocol does not cause deadlock, through

analysis, heuristics, and/or automated testing is another good direction.

62

Part III

Verifying and Co-designing File

System Semantics

63

Chapter 8

A Scalable and Verified Design of a

POSIX-Like File System

Contents

8.1 Motivation . 66

8.2 Definitions and Database Model . 66

8.3 A Formal Model of a Replicated File System Semantics 68

8.4 Correctness Criteria . 71

8.5 Verifying Sequential Correctness of the File System 72

8.6 Replicated File System With Concurrency Control 73

8.7 Fully Asynchronous Replicated File System . 75

8.7.1 Name Conflict . 78

8.7.2 Remove/Update Conflict . 79

8.8 Mostly Asynchronous Replicated File System . 82

65

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

8.1 Motivation

Distributed file systems take advantage of replication to improve performance and be highly

available by allowing operations to execute concurrently at different replicas. A user can access a

file as long as at least one replica is available [48, 90]. Unfortunately, asynchronous replication

faces the challenges of replica divergence and violations of invariant due to concurrent updates

[81, 100]. These anomalies are undesirable for users, and pose an important challenge to the

design of a replicated file system [63].

A conservative solution to this problem is to forbid concurrent updates. Before a replica accepts

an update, the replica must synchronise its state with the others (synchronous replication). This

approach ensures that operations execute in a global total order at all replicas, and offers

applications a single common view of the distributed database [24, 25]. However, it forgoes

availability and performance in order to achieve consistency [34].

Experience with real-world file systems has shown that concurrent updates to a shared file

or directory occur infrequently [16, 57, 79, 99, 101]. Thus, a file system design relying on the

conservative approach causes unnecessary synchronisation. A synchronisation is unnecessary if

concurrent execution of operations ensures the application correctness properties.

In order to alleviate the tension between consistency, and availability or performance, we

leverage the CISE analysis to adjust a file system design, either by weakening application seman-

tics, and/or by adding concurrency control. The file system design exhibits a behaviour similar to

the POSIX specification [83]. Its operational semantics resemble major POSIX commands used

for creating, removing, and changing directory entries, as well modifying individual files. The

main invariant that the specification must maintain is that the directory structure forms a tree.

We study three alternative semantics for the file system. Each exposes a different amount

of parallelism, and different anomalies. Using our CISE tool, we check whether a specific file

system semantics maintains the tree invariant. We first prove that the sequential execution of

various operations of the file system preserves the tree invariant. Then, we extend the sequential

semantics to support concurrent users. The underlying consistency model guarantees causal

consistency by default. The commutativity and stability analyses enable us to verify each three

semantics, and to derive an appropriate synchronisation protocol. Application of the CISE analysis

confirms that our co-design approach is able to remove synchronisation for the common file system

operations, while retaining a semantics reasonably similar to POSIX.

8.2 Definitions and Database Model

The abstract state of a file system consists of a naming tree of directory. A directory maps a

locally-unique name n ∈Name, to a file system object, called a node. A node is either a directory

66

8.2. DEFINITIONS AND DATABASE MODEL

u

“/”

u

v w

root

f

“foo”

“bar” “tmp”

“var”

Figure 8.1: Example of a directory tree structure.

or a file,
Dir : Name→Node

Node : File|Dir

Each node object is identified by a path. The path is a sequence of directory names, and

possibly a final file name, separated by a separator or delimiter. Following the Unix convention,

we use the "/" character as a separator. The origin of this hierarchical file system structure is

a single root directory. The empty path holds the root of file system. A path is either relative or

absolute. An absolute path starts from the root. A relative path is defined related to the current

working directory. We use Greek letters for paths. For instance, in the directory tree shown in

Figure 8.1, the path π= "/foo/bar" is an absolute path representing directory object v, and the

path π= "bar" identifies directory v relative to directory u.

Every node, except the root, has a single parent directory.

Definition 8.1 (Parent Relation). Directory u is direct parent of node v, denoted by u ↓ v, if and

only if u contains a mapping to v, i.e., there is a name n ∈Name, such that (n,v) ∈ u.

Assume that directory u is identified by path π, and node v is identified by path γ. The parent

relationship implies that path π is the longest prefix of path γ. We call n the unique name of node

v relative to the parent directory u.

Definition 8.2 (Path Prefix). Path π is called a prefix of path γ, with notation π⊑ γ, if and only

if γ=π/α for some path α.

The transitive closure of parent relation defines the ancestor relation in the tree hierarchy.

We say directory u is an ancestor of node v, noted by u ↓+ v, if and only if:

u ↓+ v=

{

true if u ↓ v

∃w ∈Dir,u ↓ w∧w ↓+ v otherwise

Definition 8.3 (Least Common Ancestor). The Least Common Ancestor of nodes u and v, noted

LCA(u,v), is the ancestor of both u and v that is the lowest (i.e., deepest) node in the tree.

Given u’s path π and v’s path γ, LCA(u,v) is the directory whose path is the longest common

prefix of π and γ. For instance, the LCA of nodes v and w in Figure 8.1, is node u.

67

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

The root is a common ancestor of any pair of nodes.

Definition 8.4 (Validity). Node u said to be valid or reachable iff the root is an ancestor of u in

the tree, i.e., there is a path from the root to u.

A database state (D, F) of the file system consists of the set of directories D, and the set

of files F. Each directory maps unique names to its children. We use notation D.d[n 7→ e] to

update directory d in set D, mapping a name n to a node e in directory d, while keeping the

other directories in set D unchanged. When the node e is removed (or moved) from directory d,

the existing mapping for the node in directory d is removed, noted by d[n 7→;]. We also use the

notation F. f .content(c) to update content of a file f in set F, writing c to file f , while keeping the

other files in set F unchanged.

A user accesses a node by its path. We compute the path of a node by recursively following

name of its ancestors using the parent relation up to the root.

Every node has a type assigned to it upon creation. The type defines that whether the node is

a directory or a file. We assume a function create(type) to create a new and unique node object

and add that to the database, where the argument type specifies its type. If type equals Dir, a

new directory object without children is created in set D. If it equals File, an empty file object is

created in set F.

8.3 A Formal Model of a Replicated File System Semantics

A large part of POSIX, the Portable IEEE Operating System Interface for computing environ-

ments, describes the file system. The file system semantics that we study in this chapter consists

of a set of commands, which abstract major POSIX commands to manipulate the tree structure

and to update file content. They include creating, deleting, and renaming directories or files.

Users submit the following commands in a file system interface:

• mkdir(path)

This command creates a new empty directory identified by the path argument. If the

directory is created, the operation returns 0. Otherwise, it returns −1 to indicate an error,

for example, attempting to add a directory that already exists is an error.

• rmdir(path)

This command removes an empty directory, which is addressed by the specified path.

The directory must not contain any files or sub-directories. Note, we ignore the special

sub-directories . and .. that exist in the Unix file system. Upon successful completion,

the directory is removed, and the operation returns 0. Otherwise, it returns −1, and the

directory remains unchanged.

68

8.3. A FORMAL MODEL OF A REPLICATED FILE SYSTEM SEMANTICS

• mkfile(path)

The POSIX "creat(path, mode)" command creates an open file descriptor referring to the file

identified by the path argument. The open file descriptor is a record holding information

that controls file accesses, such as the inode and current offset in the file. The mode

argument specifies the access modes of the file. The creat command has many uses based

on its access mode. We abstract the case of creating a file with read and write permissions

with a mkfile(path) command. Upon successful execution, it returns a non-negative integer

representing a file descriptor for the file, which is used by other I/O functions, such as read

and write to refer to the file. The operation returns −1 on failure, and no file is created.

• write(fd,buf,nbyte)

This command writes nbyte bytes from the buffer specified by buf argument to the file

associated with the open file descriptor fd. Upon successful completion, the command

updates the content of the file and returns the number of bytes actually written to the file.

Otherwise, it returns −1.

• rmfile(path):

The POSIX "unlink(path)" command removes a link to a file. The file is removed when all

references to the file are removed, i.e., no process has the file open. We abstract the case

of removing a file with a command rmfile(path). Upon successful execution, the operation

returns 0, otherwise, it returns −1.

• mvfile(old,new)

The POSIX "rename(old, new)" command has different meanings depending on the value of

its arguments. We abstract the case where the old argument refers to a file to be moved,

and the new argument refers to the new path for the file with a command mvfile(old,new).

Upon successful completion, the file is removed from its old parent directory and added to

its new parent directory. Otherwise, the operation returns −1, and the file’s path does not

change. The effect of the move operation is applied atomically, i.e., the file is located either

in the old path or in the new path, never in both or neither of them.

• mvdir(old,new)

Assume that the old argument of the POSIX rename command is path of a directory. We

define another command mvdir(old,new), which resembles the semantics of the POSIX

rename(old, new) command for moving the source directory, identified by the old argument,

into the destination directory, identified by the new argument, either under the same

name or different name. Upon successful completion, the source directory moves into the

destination directory. Its content (files and sub-directories) is unaffected. Otherwise, the

operation returns −1, and nothing changes. The effect of the move operation is applied

69

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

Command Path Resolution Effector

mkdir(path) path=π/n∧d′ =L(π)∧d = create(Dir) Fmkdir(d′,n,d)

rmdir(path) path=π/n∧d =L(path)∧d′ =L(π) Frmdir(d′,n,d)

mkfile(path) path=π/n∧d =L(π)∧ f = create(File) Fmkfile(d,n, f)

rmfile(path) path=π/n∧ f =L(path)∧d =L(π) Frmfile(d,n, f)

write(fd,buf, fd) π/n = getPath(fd)∧ c = buf ∧ f =L(π/n)∧d =L(π) Fwrite(d,n, f ,c)

mvfile(old,new) old=π/n∧new= γ/n∧ f =L(old)∧d =L(π)∧d′ =L(γ) Fmvfile(d,n,d′, f)

mvdir(old,new) old=π/n∧new= γ/n∧d =L(old)∧d′ =L(π)∧d′′ =L(γ) Fmvdir(d′,n,d′′,d)

Table 8.1: File system commands and their effectors.

atomically, i.e., the directory is located either in the old directory or in the new directory,

never in both or neither of them.

Given the natural-language specification of the file system commands, we now present a

formal model of the file system semantics. We assume a replicated file system consisting of N

replicas. Each replica carries a full copy of the database state. A replica can fail by crashing,

but it eventually recovers. A user can access and modify the file system state using the above

commands. A command is initially submitted against the origin replica.

A file system command follows paths to access and modify files or directories. We assume

that node identifiers are unique across replicas. To ensure that effector for a command produces

the same effects as the original command in all replicas, we evaluate the path argument of the

command against the database state σ at the origin replica in order to determine the nodes that

it refers to. Given a path, the generator of each operation includes a resolution function L to find

the node located in the path,

L : Context×Path→Node. (8.1)

where the Context determines the starting lookup directory of the resolution function. If the path

starts with the "/" character, i.e., it is an absolute path, the starting lookup directory is the root

directory. Otherwise, the path is relative to the current directory specified by Context.

The effector takes the node determined by the generator as argument rather than its path in

order to refer to the same node at all replicas despite concurrent changes in the node’s path. Table

8.1 illustrates the file system commands and their corresponding effector. Function getPath(fd)

returns the path of a file referred by the file descriptor fd.

For instance, consider that Alice accesses a shared directory located in path "/share/album".

She wants to create a new directory in the shared directory using the command

mkdir("/share/album/paris"). The path argument evaluates against Alice’s replica to name "paris",

its parent directory, which we will note d′, and a new directory object d, which must be created.

Thus, a corresponding effector Fmkdir(d′,"paris",d) is generated, and propagated to all replicas. On

delivering the effector, a replica applies its effect, which is to create directory object d in directory

70

8.4. CORRECTNESS CRITERIA

State = set(Dir)⊎set(File)

σinit = ({root},;)

Token = ;

⊲⊳ = ;

Fmkfile(d,n, f)((D,F)) = (fd,λ(D′,F ′). (D′.d[n 7→ f],F ′∪ { f }),;)

Frmfile(d,n, f)((D,F)) = ("0",λ(D′,F ′). (D′.d[n 7→;],F ′ \{ f }],;)

Fwrite(d,n, f ,c)((D,F)) = (nbytes,λ(D′,F ′). (D′,F ′. f .content(c)),;)

Fmkdir(d′,n,d)(D,F)) = ("0",λ(D′,F ′). (D′∪ {d}∪D′.d′[n 7→ d],F ′),;)

Frmdir(d′,n,d)((D,F)) = ("0",λ(D′,F ′). (D′ \{d}∪D′.d′[n 7→;],F ′),;)

Fmvfile(d,n,d′, f)((D,F)) = ("0",λ(D′,F ′). (D′.d[n 7→;]∪D′.d′[n 7→ f],F ′),;)

Fmvdir(d′,n,d′′,d)(D,F)) = ("0",λ(D′,F ′). (D′.d′[n 7→;]∪D′.d′′[n 7→ d],F ′),;)

Precondition Operation

6 ∃e ∈Node, (n, e) ∈ d Fmkfile(d,n, f)(D,F)

root ↓+ f Frmfile(d,n, f)(D,F)

root ↓+ f Fwrite(d,n, f ,c)(D,F)

root ↓+ f Fmvfile(d,n,d′, f)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′
Fmkdir(d′,n,d)(D,F)

root ↓+ d Frmdir(d′,n,d)(D,F)

root ↓+ d Fmvdir(d′,n,d′′,d)(D,F)

Figure 8.2: A simple file system application (incorrect).

set D, and to update the parent directory d′ by mapping the name "paris" to directory d, denoted

by D.d′["paris" 7→ d].

Figure 8.2 presents the semantics of each effector function of the replicated file system. Note,

for simplicity, we only consider the case, where a node moves into another location under the

same name. For now, we assume that the set of token is empty.

8.4 Correctness Criteria

In this section, we describe the notion of correctness for the file system, beginning informally

with some examples illustrating unintended behaviour, followed by more formal definition.

Consider Alice and Bob both access a shared file f at different replicas r1 and r2, respectively.

Type of file f is register with operations to read and write the value of a register to the file. A write

to the register rewrites its last successful written value. Alice writes a to the file. Concurrently,

Bob writes b to the same file f . After exchanging the updates, the content of file f will be different

at replicas r1 and r2. This violates the expectation of convergence to the same state. We can

ensure that state converges by ensuring that every pair of concurrent operations to commute. For

71

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

Precondition Operation

6 ∃e ∈Node, (n, e) ∈ d∧ root ↓+ d Fmkfile(d,n, f)(D,F)

root ↓+ f Frmfile(d,n, f)(D,F)

root ↓+ f Fwrite(d,n, f ,c)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧d ↓ f ∧ root ↓+ f ∧ root ↓+ d′
Fmvfile(d,n,d′, f)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧ root ↓+ d′
Fmkdir(d′,n,d)(D,F)

6 ∃e ∈Node,n′ ∈Name, (n′, e) ∈ d∧ root ↓+ d Frmdir(d′,n,d)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′′∧ root ↓+ d∧d′ ↓ d∧ root ↓+ d′′∧d 6↓+ d′′
Fmvdir(d′,n,d′′,d)(D,F)

Table 8.2: Corrected preconditions of file system operations after effector safety analysis.

instance, we can replace the register type with any CRDT type that merges concurrent updates

(e.g. LWW register).

However, convergence alone is not sufficient. Towards what value the state converges is

also important. Consider Alice creates directory d named n in parent directory d′, and Bob

concurrently deletes the parent directory d′. Each of these two operations are propagated to

the other replicas. Although both replicas observe the same database state at the end, i.e.,

d ∈ D∧d′ 6∈ D∧D.d′[n 7→ d], we know that the state is incorrect: there is a directory whose parent

is removed. The database state must satisfy certain desirable file system properties, i.e., its

invariants. The main invariant of the file system is that the directory structure forms a tree. The

tree invariant I includes three main assertions: (1) the root is an ancestor of every node in the

tree. (2) every node has exactly one parent except the root. (3) there is no cycle in the directory

structure. The tree invariant formulated can be formulated as:

I =∀e ∈Node,d,d′
∈Dir, (root ↓+ e)∧ (d ↓ e∧d′

↓ e =⇒ d = d′
∧ e 6= root)∧ (d ↓

+ d′
=⇒ d′

6↓
+ d)

Any possible execution of file system operations must ensure that replicas converge, and the

tree invariant is maintained. Otherwise, we say a conflict occurs.

8.5 Verifying Sequential Correctness of the File System

We apply the CISE effector safety to check that if file system operations illustrated in Figure

8.2 preserve the tree invariant in isolation. Unsuccessful analysis of an operation returns a

counter-example, indicating that the operation’s precondition is too weak. We leverage the

counter-example to identify and solve the problem. We strengthen the precondition accordingly,

and repeat the analysis until no counter-example is found.

For instance, the CISE tool found a counter-example for moving directory. The counter-

example shows that the source directory must not be an ancestor of the destination directory;

otherwise, a cycle would occur after moving the directory. We add the corresponding preconditions.

72

8.6. REPLICATED FILE SYSTEM WITH CONCURRENCY CONTROL

State = set(Dir)⊎set(File)

σinit = ({root},;)

Token = { τe | e ∈Node}

⊲⊳ = {(τe,τe) | e ∈Node}

Fmkfile(d,n, f)((D,F)) = (fd,λ(D′,F ′). (D′.d[n 7→ d],F ′∪ { f },), { τd})

Frmfile(d,n, f)((D,F)) = ("0",λ(D′,F ′). (D′.d[n 7→;],F ′ \{ f }), { τ f })

Fwrite(d,n, f ,c)((D,F)) = (i,λ(D′,F ′). (D′,F ′. f .content(c)), { τ f })

Fmkdir(d′,n,d)((D,F)) = ("0",λ(D′,F ′). (D′∪ {d}∪D′.d′[n 7→ d],F ′), { τd′ })

Frmdir(d′,n,d)((D,F)) = ("0",λ(D′,F ′). (D′ \{d}∪D′.d′[n 7→;],F ′), { τd})

Fmvfile(d,n,d′, f)((D,F)) = ("0",λ(D′,F ′). (D′.d[n 7→;]∪D′.d′[n 7→ f],F ′), { τ f ,τd′ })

Fmvdir(d′,n,d′′,d)((D,F)) = ("0",λ(D′,F ′). (D′.d′[n 7→;]∪D′.d′′[n 7→ d],F ′),

{ τd ,τd′′ }∪ tokens(d,d′′))

tokens(d,d′′) = {τe | e ∈ D, e ↓+ d′′∧D.LCA(d,d′′) ↓+ e}

Precondition Operation

6 ∃e ∈Node, (n, e) ∈ d∧ root ↓+ d Fmkfile(d,n, f)(D,F)

root ↓+ f Frmfile(d,n, f)(D,F)

root ↓+ f Fwrite(d,n, f ,c)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧d ↓ f ∧ root ↓+ f ∧ root ↓+ d′
Fmvfile(d,n,d′, f)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧ root ↓+ d′
Fmkdir(d′,n,d)(D,F)

6 ∃e ∈Node,n′ : Name, (n′, e) ∈ d∧ root ↓+ d Frmdir(d′,n,d)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′′∧ root ↓+ d∧d′ ↓ d∧ root ↓+ d′′∧d 6↓+ d′′
Fmvdir(d′,n,d′′,d)(D,F)

Figure 8.3: Corrected file system application with mutually exclusive tokens.

Table 8.2 illustrates the sufficient preconditions of various file system operations verified by the

CISE effector safety.

8.6 Replicated File System With Concurrency Control

A highly available distributed file systems entails that an operation is submitted to an origin

replica, without coordination with remote replicas [15]. Thus, update operations can execute

concurrently at different replicas and propagate asynchronously.

However, concurrent execution of operations may cause state divergence or the invariant

violation. We use tokens in order to disallow toxic concurrent executions.

A developer may associate a set of tokens T = {τ, . . .} with an operation to explicitly control

concurrent operations. Operations that acquire tokens incompatible according to ⊲⊳ may not

execute concurrently; the token implementation entails that the operations to be synchronised

[18, 69].

73

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

To ensure the correctness criteria of the file system, we define a mutually exclusive token

for each node e ∈Node : τe, such that τe ⊲⊳ τe. Conflicting operations must acquire the token τe

before applying any changes over the node e.

Consider operation o that creates a new file f under a parent directory d, and operation o′

that removes the directory d. Both operations must acquire token τd. The mutually exclusive

token τd forbids these operations to execute concurrently, i.e., either the operation o is aware

that the parent directory d has been removed, or the operation o′ is aware that there is a file f

added into the directory d; in either case the precondition of corresponding operation fails, and

hence the operation cannot generate any effect.

We co-design the semantics of file system operations and their associated consistency re-

quirements by adding tokens to operations appropriately as shown in Figure 8.3. Consider for

instance, the effector F(mvdir(d′,n,d′′,d)) that moves a directory d from directory d′ to a destination

directory d′′. Its effect is to remove the mapping n 7→ d from d′ and add the mapping to the

destination directory d′′. The operation is associated with tokens τd, and τd′′ over the source

and destination directories, and a set of tokens τe, for all nodes e that are an ancestor of the

destination directory d′′ up to LCA(d,d′′). Concurrent move operations are allowed as long as

their token are compatible.

Lemma 8.1. Let d be a source directory, d′′ be a destination directory, and A be the set of ancestors

of the destination directory d′′ up to LCA(d,d′′). T = {τd,τd′′}∪ {τe | e ∈ A} represents necessary and

sufficient tokens required by the mvdir operation.

Proof. To show that set T is sufficient for maintaining the tree invariant when concurrent move

operations are executing, we explain how the tokens in set T are able to preserve all three

conditions of the tree invariant. The invariant implies that every node has exactly a parent.

This condition is violated when concurrent operations move the source directory into different

locations. Acquiring token τd in set T makes this impossible.

The invariant also requires that the root to be an ancestor of every node, and no cycle

exists in the tree structure. However, when the source directory moves under itself, i.e., there is a

concurrent operation moving the destination directory under the source directory, a cycle happens,

and the nodes in the cycle will become disconnected from the root. To forbid such situation, a

move operation must acquire tokens over the destination directory and its ancestors. However, it

only needs to acquire tokens over ancestors of the destination directory up to the least common

ancestor of the source and destination directory.

The intuition behind acquiring tokens over d′′’s ancestors until the LCA(d,d′′) is: if a directory

is a common ancestor of source directory d and destination directory d′′, the directory cannot

move under source directory d, i.e., it is forbidden by its precondition.

Using the CISE analysis, we show that the set of tokens and their incompatibility relation

are indeed sufficient to prevent conflicts for concurrent move operations.

74

8.7. FULLY ASYNCHRONOUS REPLICATED FILE SYSTEM

Now, we prove that T contains the minimal set of tokens by contradiction: We assume that T

is not minimal, meaning that it includes unnecessary tokens. We remove a token τ ∈ T, and then

check whether concurrent executions of move operations still maintain the tree invariant. If so,

set T is not minimal. We consider three cases:

1. τ is the token over the source directory d. Removing token τ from set T allows concurrent

operations to moves the same directory d to another destination directory c. If c 6= d′′, then

the source directory d will have two parents; violating the tree invariant.

d′′
↓ d∧ c ↓ d

2. τ is the token over destination directory. Removing token τ from set T allows another move

operation that concurrently moves destination directory d′′ to directory c. If c = d, or if

directory c is a descendent of source directory d, i.e., d ↓+ c, then cycles occur.

c ↓ d′′
∧d′′

↓ d∧d ↓
+ c

3. τ is the token of one of ancestors, called c, of the destination directory d′′. Removing token

τ from set T allows another move operation to concurrently move directory c to directory e.

If e = d, or if directory e is a descendent of source directory d, i.e., d ↓+ e, then cycles occur.

e ↓ c∧ c ↓+ d′′
∧d′′

↓ d∧d ↓
+ e

Figure 8.3 illustrates a correct semantics of the file system after adding all sufficient tokens

and preconditions. The CISE analysis proves that the semantics results in a convergent state

and maintains the tree invariant.

8.7 Fully Asynchronous Replicated File System

We cannot expect good performance and high availability from the synchronous file system design.

Even if there is an efficient implementation of tokens, synchronisation remains a performance

and availability bottleneck. This problem becomes worse when a replica is unavailable, for

instance due to crash or a network failure, in which case operations are blocked because they

cannot acquire their tokens. Moreover, experience with file accesses by typical users has shown

that many files are only accessed by a single user [16, 79], and hence synchronisation may be

unnecessary.

To avoid this synchronisation cost, one alternative approach is to optimistically accept all

concurrent updates, and resolve conflicts. This trades sequential safety semantics for availability.

There are three main approaches to resolve conflicts. A common policy is to accept one update of

75

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

Executions Combined Effect (Add-Wins) Combined Effect (Remove-Wins)

Fmkfile(d,n, f) D.d[n 7→ f] D.remove(f)∪D.remove(d)

‖ ∪ ∪

Frmdir(d′,n′,d) D.d′[n′ 7→ d] D.d′[n′ 7→;]

Fwrite(d,n, f ,c) D.d[n 7→ f] D.remove(f)∪D.remove(d)

‖ ∪ ∪

Frmdir(d′,n′,d) D.d′[n′ 7→ d] D.d′[n 7→;]

Fmkdir(d′,n,d) D.d′[n 7→ d] D.remove(d)∪D.remove(d′)

‖ ∪ ∪

Frmdir(d′′,n′,d′) D.d′′[n′ 7→ d′] D.d′′[n′ 7→;]

Fmvfile(d,n,d′, f) D.d′[n 7→ f] D.remove(f)∪D.remove(d′)

‖ ∪ ∪

Frmdir(d′′,n′,d′) D.d′′[n′ 7→ d′] D.d′′[n′ 7→;]

Frmdir(d′′′,n′,d′′) D.d′′[n 7→ d] D.remove(d)∪D.remove(d′′)

‖ ∪ ∪

Fmvdir(d′,n,d′′,d) D.d′′′[n′ 7→ d′′] D.d′′′[n′ 7→;]

Table 8.3: Combined effect of concurrent operations using different convergence semantics.

the two conflicting updates, and ignore the other, e.g., Thomas’s write rule chooses the update

with a higher timestamp and ignores older update [54]. For instance, AFS file system employs

the last-writer-wins approach to resolve concurrent updates on the same file [66].

The second approach is that the replicated file system may support some application-specific

resolution strategies. For example, some systems simply store the set of concurrently-written

values of an object and it is up to application to resolve the conflict [35, 98]. This approach is used

in replicated file systems such as LOCUS, Coda, Ficus, and Roam [57, 82, 85, 86].

Alternatively, the database itself may automatically resolve conflicting updates by exploiting

object semantics. This assumes that the database has knowledge of resolution semantics in order

to integrate the conflict resolution in the replication protocol.

The Fully Asynchronous File System exploits Conflict-Free Replicated Data Types (CRDT)

[91] to design an asynchronous file system semantics that behaves similar to the semantics

introduced in Section 8.3, and that converges by design. The file system specification includes

two replicated sets: one for directories, and another for files. We rely on the specification of CRDT

maps and sets presented in Chapter 3. A directory maps unique names to node objects; a node

is either a directory or a file. A directory is implemented by a map. The CRDT map supports

operations to add and remove nodes in a directory, and to query. When a user wants to add node e

with name n to directory d that contains no node with the same name, the pair (n,e) is added

to directory d using the map’s function d.add(n,e). Removing node e deletes the mapping from

76

8.7. FULLY ASYNCHRONOUS REPLICATED FILE SYSTEM

State = (AWset(Dir)⊎AWset(File))×map(Node×Dir)

σinit = ({(root,Unique−Tag)} ,;AWset,;)

Token = ;

⊲⊳ = ;

Fmkfile(d,n, f)((D,F,P)) = (fd,λ(D′,F ′,P ′). (D′.d.add(n, f)∪ recursiveAdd(ancestor(d,P),D′)∪

update(ancestor(d,P),D′,P ′),F ′.add(f),P ′[f 7→ d]),;)

Frmfile(d,n, f)((D,F,P)) = ("0",λ(D′,F ′,P ′). (D′.d.remove(n),F ′.remove(f),P ′),;)

Fwrite(d,n, f ,c)((D,F,P)) = (nbytes,λ(D′,F ′,P ′). (D′.d.add(n, f)∪ recursiveAdd(ancestor(d,P),D′)∪

update(ancestor(d,P),D′,P ′),F ′.add(f)∪F ′. f .content(c),P ′),;)

Fmkdir(d′,n,d)((D,F,P)) = ("0",λ(D′,F ′,P ′). (addD(d,D′)∪D′.d′.add(n,d)∪

recursiveAdd(ancestor(d′,P),D′)∪update(ancestor(d′,D),D′,P ′),F ′,P ′[d 7→ d′]),;)

Frmdir(d′,n,d)((D,F,P)) = ("0",λ(D′,F ′,P ′). (remD(d,D′),F ′,P ′),;)

Fmvfile(d,n,d′, f)((D,F,P)) = ("0",λ(D′,F ′,P ′). (D′.d′.add(n, f)∪ recursiveAdd(ancestor(d′,P),D′)∪

update(ancestor(d′,D),D′,P ′)∪D′.d.remove(f),F ′.add(f),P ′[f 7→ d′]),;)

Fmvdir(d′,n,d′′,d)((D,F,P)) = ("0",λ(D′,F ′,P ′). (addD(d,D′)∪D′.d′′.add(n,d)∪ recursiveAdd(ancestor(d′′,D),D′)

∪update(ancestor(d′′,P),D′,P ′)∪ (A.d′.remove(d),T),F ′,P ′[d 7→ d′′]),;)

contents() = {d | ∃i, (d, i) ∈ A∧ (d, i) 6∈ T}

addD(d, (A,T)) = (A∪ (d, i),T)

remD(d,D) = if (∃e ∈ D.contents(), (., e) ∈ d∨∃ f ∈ F, (., f) ∈ d) then (A,T)

else (A,T ∪ (d, i))

update(S,D,P) = (D.d′.add(n′, e) | e ∈ S∧ e 6∈ D.contents()∧d′ = parent(e,P)∧d′.query(n′)= e)

recursiveAdd(S, (A,T)) = T \{(e, i) | e ∈ S∧ e 6∈ (A,T).contents()∧ (e, i) ∈ T}

parent(d,P) = d′ | P[d 7→ d′]

ancestor(e,P) = {e}∪ {d | d ↓+
P

e}

Precondition Operation

6 ∃e ∈Node, (n, e) ∈ d∧ root ↓+ d Fmkfile(d,n, f)(D,F)

root ↓+ f Frmfile(d,n, f)(D,F)

root ↓+ f Fwrite(d,n, f ,c)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧d ↓ f ∧ root ↓+ f ∧ root ↓+ d′
Fmvfile(d,n,d′, f)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧ root ↓+ d′
Fmkdir(d′,n,d)(D,F)

6 ∃e ∈Node,n′ : Name, (n′, e) ∈ d∧ root ↓+ d Frmdir(d′,n,d)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′′∧ root ↓+ d∧d′ ↓ d∧ root ↓+ d′′∧d 6↓+ d′′
Fmvdir(d′,n,d′′,d)(D,F)

Figure 8.4: Asynchronous file system design using add-wins semantics.

directory d using the replicated map’s function d.remove(n).

The Fully Asynchronous File System design must handle several conflict cases as a result of

concurrent execution of operations. The remainder of this section will discuss these conflicts and

77

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

State = RWset(Dir)⊎RWset(File)

σinit = ({(root,Unique−Tag)} ,;RWset)

Token = ;

⊲⊳ = ;

Fmkfile(d,n, f)((D,F)) = (fd,λ(D′,F ′). (addF(f ,n,d,D′,F ′)),;)

Frmfile(d,n, f)((D,F)) = ("0",λ(D′,F ′). (D′.d.remove(n),F ′.remove(f)),;)

Fwrite(d,n, f ,c)((D,F)) = (nbytes,λ(D′,F ′). (D′,updateF(f , c,F ′)),;)

Fmkdir(d′,n,d)((D,F)) = ("0",λ(D′,F ′). (addD(d,n,d′,D′),F ′),;)

Frmdir(d′,n,d)((D,F)) = ("0",λ(D′,F ′). (recursiveRem(d,n,d′,D′)),;)

Fmvfile(d,n,d′, f)((D,F)) = ("0",λ(D′,F ′). (moveF(f ,n,d′,d,D′,F ′)),;)

Fmvdir(d′,n,d′′,d)((D,F)) = ("0",λ(D′,F ′). (moveD(d,n,d′′,D′)∪D.d′.remove(d),F ′),;)

addD(d,n,d′,D) = if (d′ ∈ D) then (D.add(d)∪D.d′.add(n, f)) else D

addF(f ,n,d,D,F) = if (d ∈ D) then (D.d.add(n, f),F.add(f)) else (D,F)

updateF(f , c,F) = if (f ∈ F) then F. f .content(c) else skip

recursiveRem(d,n,d′,D) = if (∃e ∈ D,n′ ∈Name, (n′, e) ∈ d) then recursiveRem(e,n′,d,D)

else D.remove(d)∪D.d′.remove(n)

moveD(d,n,d′,D) = if (d′ ∈ D) then (D.d′.add(n,d)) else D.remove(d)

moveF(f ,n,d′,d,D,F) = if (d′ ∈ D) then (D.d′.add(n, f)∪D.d.remove(f),F)

else (D.d.remove(f),F.remove(f))

Precondition Operation

6 ∃e ∈Node, (n, e) ∈ d∧ root ↓+ d Fmkfile(d,n, f)(D,F)

root ↓+ f Frmfile(d,n, f)(D,F)

root ↓+ f Fwrite(d,n, f ,c)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧d ↓ f ∧ root ↓+ f ∧ root ↓+ d′
Fmvfile(d,n,d′, f)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧ root ↓+ d′
Fmkdir(d′,n,d)(D,F)

6 ∃e ∈Node,n′ : Name, (n′, e) ∈ d∧ root ↓+ d Frmdir(d′,n,d)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′′∧ root ↓+ d∧d′ ↓ d∧ root ↓+ d′′∧d 6↓+ d′′
Fmvdir(d′,n,d′′,d)(D,F)

Figure 8.5: Asynchronous file system design using remove-wins semantics.

show how the file system design manages them.

8.7.1 Name Conflict

Users may perform concurrent updates to a directory. Concurrently adding or moving nodes

under the same name in the same directory is problematic (name conflict).

To handle name conflicts, we choose the following merge semantics: concurrently adding or

moving two nodes under the same name to the same parent directory merge these nodes. For

directories, this means taking their union, and for files, this means merging their contents.

78

8.7. FULLY ASYNCHRONOUS REPLICATED FILE SYSTEM

The Fully Asynchronous File System assumes that a file is also implemented by an object of

some CRDT type. Thus, concurrent updates on the same file can be merged. The semantics of

merging two files is given by the merge semantics of their type. We assume that the type of each

file is embedded in its name. This ensures that only files of the same type need to be merged.

Consider replica r1 creates directory d with name n in the root using command

mkdir(root,n,d). Concurrently, another replica r2 creates directory d′ with the same name n

using command mkdir(root,n,d′). After observing both operations, the merge function creates a

new directory d′′, whose content is the union of contents of directories d and d′; ensuring that

each name is mapped into only one directory.

However, a concurrent effector may still use the old directories. Figure 8.6 illustrates the

problem in the context of the previous example. Replica r3 observes directory d′, and adds file f

to directory d′ using command mkfile(d′,n′, f), where n 6= n′. When the replica r2 receives effector

Fmkfile(d′,n′, f), directory d′ has been superseeded by d′′. To solve this problem, each replica keeps a

record of this following merge, in set G containing equivalent pairs, e.g., (d′,d′′) ∈G. Thus, when

a replica receives an effector with old directories, the replica queries set G to identify the merge

directory. We define the merge function as follows:

merge(d,d′)=λ(D,G). (D.add(d′′)∪D.d′′′[n 7→ d′′],G[d 7→ d′′,d′
7→ d′′]) (8.2)

where d′′ is a new directory that merges two directories d and d′ with the same name n under

parent directory d′′′. The CISE analysis shows that the merge function resolves the name conflict.

8.7.2 Remove/Update Conflict

A different kind of conflict happens when a replica updates a node, while another replica con-

currently removes the node. This kind of conflict is called a remove/update conflict. For instance,

when a replica receives an operation to add directory u to directory v, if directory v has been

removed by a concurrent user, the operation execution results in an unreachable directory u.

The replicated data types support two main approaches, called add-wins and remove-wins, to

address this problem. Both approaches implement the combined effect of non-commutative adds

and removes. In the add-wins semantics, when there are concurrent add or remove of the same

element, add wins and the effects of concurrent removes are ignored. Remove-wins follows the

opposite semantics. When a node is removed, any concurrent adds of the same node are lost.

We propose two different replicated file system semantics based on these approaches. Table

8.3 shows the combined effect of conflicting adds (or moves) and remove operations. Since add-

wins semantics does not lose the contents of a recently updated node, it is generally considered

preferable.

Figure 8.5 illustrates the add-wins specification for the file system application. In the add-

wins semantics of file system, set D and F each stores a pair of elements and unique tags,

attached to each element. Each directory in set D is a AWmap that stores a set of (n, e) pairs,

79

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

mkdir(root,n,d’)

replica r1

replica r2

mkdir(root,n,d)

{root,d}

{root,d’}

replica r3
addfile(d’,n’,f)

{root}

{root}

{root}

{root,d”}

{root,d”}

{root,d’}

mkdir(root,n,d’)

mkdir(root,n,d) addfile(d’,n’,f)

Figure 8.6: Example of concurrent creating directories with the same name.

where a name n is associated with a node e. Given a directory d′ ∈ D, D.d′.add(n,d) denotes d′

is updated by mapping n to d, i.e., adding directory d to d′, while D.d′.remove(n) denotes d′ is

updated by removing the pair (n,d) from d′, i.e., removing directory d from d′.

The add and remove functions of AWmap semantics, defined in Chapter 3, handle concurrent

adds and removes of the same nodes in a directory. Concurrent adds commute since each one is

unique. Concurrent removes commute because removing disjoint pairs has independent effects,

and removing the same pair has the same effect. Concurrent D.d′.add(n,d) commute with

D.d′.remove(n), i.e., the add wins because the unique tag generated by add cannot be observed

by remove.

Writing to a file in a replica and concurrently removing the same file in another replica cause

is also a remove/update conflict. The add-wins file system semantics re-creates the removed file.

To implement this, each write to a file is considered as an add to the set F, so that it wins over a

concurrent remove.

Now, consider the case of concurrent removing a directory and adding a node to the same

directory. The add-wins specification of file system re-creates the missing directories. For instance,

when directory u is added to directory v, which has been concurrently removed, the missing

directory v is reinstated and then directory u is stored in directory v.

To implement this behaviour, the set directory D is represented by a pair of sets A and T.

Set A is a set of active directory instance pair (d, i), and set T is a set of removed directory

instance pair (d, i), where i is an unique tag for each added directory d. Function addD(d,D)

adds an active instance of directory d to set A, and function remD(d,D) adds a removed instance

of directory d to set T if there is no file or directory, which is concurrently added to directory

d. A directory d is in the set D, i.e., is included in return value of contents, if there is an active

instance of the directory in the set D.A, which does not exist in the tombstone set D.T.

We assume that set S contains all ancestors’s of a node in the origin replica. To re-create an

ancestor of a node, which has been concurrently removed, each replica stores a relation P that

keeps the mapping information between nodes and their parent. For every node e, if any of its

ancestors is removed, function recursiveAdd re-creates them by removing all removed instances

of e’s ancestors from set T. To make a valid path from the root to node e, function update in a

80

8.7. FULLY ASYNCHRONOUS REPLICATED FILE SYSTEM

mvdirPRE:d d’

mvdir(root,n’,d,d’)

mvdir(root,n,d’,d)

root

d

root

dd’

root

d

↓+
replica r1

replica r2

Precondition
is not stable

mvdirPRE:d d’↓ +

d’

d’

Figure 8.7: Counter-example for stability analysis of concurrent moves.

replica reads the relation P, and then adds e’s ancestors to their parent.

For instance, consider a file system with the root, and a directory d, where d is located under

the root. The database state is ({ (d, i2), (root, i1)} , { } ,P[(d 7→ root)]}). Replica r1 adds a file f to

directory d, concurrently replica r2 removes directory d. The effector Fmkfile(d,n, f) includes two

functions update and recursiveAdd in order to re-create the full path of parent directory d if the

directory is concurrently removed. Upon receiving the effector at replica r2, function update adds

directory d to the root again, and function recursiveAdd removes all instances of d from set T.

Concurrent moving and removing of the same node is addressed by considering each move

operation as an add operation as it wins over a concurrent remove.

Figure 8.5 illustrates the remove-wins semantics for the file system application. Unlike the

add-wins semantics, when there is concurrent update and remove operation on the same element,

the remove operation wins and the update operation is lost. For instance, consider a directory

d shared by Alice and Bob. Alice adds a file f to directory d in replica r1, and concurrently

Bob removes directory d in replica r2. When Alice receives the removal, she applies the effector

F(rmdir(d′,n,d)) that removes the directory d and file f . On the other hand, when Bob receives the

Alice’s add operation, he ignores adding file f because its parent directory d does not exist. Thus,

the remove-wins semantics of file system entails recursive remove operation. We rely on the

add and remove functions of a remove-wins set described in Chapter 3. To create a directory d,

function addD(d, ...) checks that if its parent directory exists, if so, directory d will be added to

set D using the add function, otherwise, the directory is not created. To remove a directory in

a replica, if the directory contains sub-directories or files as a result of performing concurrent

add or move operations in the replica, the remove effector recursively removes the directory and

all its content using the function recursiveRem. Thus, concurrent removes will win over adds.

Concurrent moving a node and removing its destination directory addressed by considering each

move operation as an add operation as the removal wins over a concurrent add, and hence the

node will be removed.

We use the CISE analysis to verify the Fully Asynchronous File System design, consider-

ing both the add-wins and the remove-wins approaches. The analyser passes the sequential

correctness analysis, verifying that all operation preconditions are sufficient to maintain the

81

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

tree invariant. The commutativity analysis verified that the concurrent operations results in a

convergent state because all possible pairs of concurrent operations commute.

However, neither the add-wins semantics nor the remove-wins semantics passes the stability

analysis when there are two concurrent move operations. Figure 8.7 illustrates a counter-example:

Consider a file system with three directories, root, d and d′, replicated at two replicas. Initially,

the root is parent of d and d′. One replica asks to move directory d named n under directory

d′ using the move operation mvdir(root,n,d′,d). The precondition of this move operation is true,

i.e., the directory d is not an ancestor of directory d′. However, concurrently, other replica moves

directory d′ under directory d, and hence, the precondition of move is not true any more. And

indeed, if we were to continue and apply effect of the first move operation, we come to the state,

with a cycle of d and d′, disconnected from the root. Obviously, it is not a tree.

8.8 Mostly Asynchronous Replicated File System

The application of the CISE analysis for the asynchronous file system design verifies that most

operations of a replicated file system can execute without synchronisation, and only concurrent

move operations may violate the tree invariant. The precondition of move directory operation is

not stable when there is another concurrent move operation. If high performance and availability

of update operations are important to the file system application, a simple approach to fix this

issue is to allow operations to execute without restriction, and to repair the tree invariant

violations after the fact. For instance, Microsoft One Drive [3] accepts all concurrent operations,

and if cycles occur due to concurrent moving two directories d and d′, it will lose both directories

d and d′ with all their contents. Other file systems such as Google Drive [2] or geoFS [95] exhibit

other anomalies. The system using GeoFS duplicates all the directories in the cycle and the

system using Google Drive puts all the directories in the cycle in root.

Our Mostly Asynchronous File System chooses the alternative approach: to add synchro-

nisation in order to avoid concurrent execution of move operations that would violate the tree

invariant. Thus, we co-design a file system semantics, in which the common operations run in

asynchronous mode, and only some move directory operations need synchronisation.

The CISE analyser helps us to identify which pairs of the move operations are conflicting, i.e.,

whose concurrent execution violates the tree invariant.

To ensure that cycles do not happen, we use a pair of incompatible tokens for each directory

d ∈ D: τs(d) and τd(d), called source and destination tokens, respectively. This is equivalent to

associating every directory with a multi-level lock [18] that can be in one of two modes. Each

mode restricts executing some operations. Given a directory d, source token τs(d) disallows to

move directories in to d, and destination token τd(d) disallows to move directory d itself. Neither

token τs(d) nor τd(d) is incompatible with itself.

Assume that a client wishes to move a source directory d to a destination directory d′. Let the

82

8.8. MOSTLY ASYNCHRONOUS REPLICATED FILE SYSTEM

State = (AWset(Dir)×AWset(File))×map(Node×Dir)

σinit = ({(root,Unique−Tag)},;AWset,;)

Token = { τe,τs(d),τd(d) | e ∈Node,d ∈Dir}

⊲⊳ = {(τe,τe), (τd(d),τs(d)), (τs(d),τd(d)) | e ∈Node,d ∈Dir}

Fmkfile(d,n, f)((D,F,P)) = (fd,λ(D′,F ′,P ′). (D′.d.add(n, f)∪ recursiveAdd(ancestor(d,P),D′)∪

update(ancestor(d,P),D′,P ′),F ′.add(f),P ′[f 7→ d]),;)

Frmfile(d,n, f)((D,F,P)) = ("0",λ(D′,F ′,P ′). (D′.d.remove(n),F ′.remove(f),P ′),;)

Fwrite(d,n, f ,c)((D,F,P)) = (nbytes,λ(D′,F ′,P ′). (D′.d.add(n, f)∪ recursiveAdd(ancestor(d,P),D′)∪

update(ancestor(d,P),D′,P ′),F ′.add(f)∪F ′. f .content(c),P ′),;)

Fmkdir(d′,n,d)((D,F,P)) = ("0",λ(D′,F ′,P ′). (addD(d,D′)∪D′.d′.add(n,d)∪

recursiveAdd(ancestor(d′,P),D′)∪update(ancestor(d′,D),D′,P ′),F ′,P ′[d 7→ d′]),;)

Frmdir(d′,n,d)((D,F,P)) = ("0",λ(D′,F ′,P ′). (remD(d,D′),F ′,P ′),;)

Fmvfile(d,n,d′, f)((D,F,P)) = ("0",λ(D′,F ′,P ′). (D′.d′.add(n, f)∪ recursiveAdd(ancestor(d′,P),D′)∪

update(ancestor(d′,D),D′,P ′)∪D′.d.remove(f),F ′.add(f),P ′[f 7→ d′]), { τ f })

Fmvdir(d′,n,d′′,d)((D,F,P)) = ("0",λ(D′,F ′,P ′). (addD(d,D′)∪D′.d′′.add(n,d)∪ recursiveAdd(ancestor(d′′,D),D′)

∪update(ancestor(d′′,P),D′,P ′)∪ (A.d′.remove(d),T),F ′,P ′[d 7→ d′′]),

{ τd ,τs(d),τd(d)}∪ tokens(d,d′′))

contents() = {d | ∃i, (d, i) ∈ A∧ (d, i) 6∈ T}

addD(d, (A,T)) = (A∪ (d, i),T)

remD(d,D) = if (∃e ∈ D.contents(), (., e) ∈ d∨∃ f ∈ F, (., f) ∈ d) then (A,T)

else (A,T ∪ (d, i))

update(S,D,P) = (D.d′.add(n′, e) | e ∈ S∧ e 6∈ D.contents()∧d′ = parent(e,P)∧d′.query(n′)= e)

recursiveAdd(S, (A,T)) = T \{(e, i) | e ∈ S∧ e 6∈ (A,T).contents()∧ (e, i) ∈ T}

parent(d,P) = d′ | P[d 7→ d′]

ancestor(e,P) = {e}∪ {d | d ↓+
P

e}

tokens(d,d′′) = {τd(e) | e ∈Dir∧ e ↓+ d′′∧LCA(d,d′′) ↓+ e}

Precondition Operation

6 ∃e ∈Node, (n, e) ∈ d∧ root ↓+ d Fmkfile(d,n, f)(D,F)

root ↓+ f Frmfile(d,n, f)(D,F)

root ↓+ f Fwrite(d,n, f ,c)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧d ↓ f ∧ root ↓+ f ∧ root ↓+ d′
Fmvfile(d,n,d′, f)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′∧ root ↓+ d′
Fmkdir(d′,n,d)(D,F)

6 ∃e ∈Node,n′ : Name, (n′, e) ∈ d∧ root ↓+ d Frmdir(d′,n,d)(D,F)

6 ∃e ∈Node, (n, e) ∈ d′′∧ root ↓+ d∧d′ ↓ d∧ root ↓+ d′′∧d 6↓+ d′′
Fmvdir(d′,n,d′′,d)(D,F)

Figure 8.8: Mostly asynchronous and corrected file system (add-wins).

83

CHAPTER 8. A SCALABLE AND VERIFIED DESIGN OF A POSIX-LIKE FILE SYSTEM

D={root,d,d’}

replica r1

replica r2

addfile(d,n,f)

︎

mvfile(d,n,d’,f)addfile(d,n,f)

root[n↦f]

d’[n↦f]

mvfile(d,n,root,f)

d’[n↦f]

root[n↦f]

mvfile(d,n,root,f) mvfile(d,n,d’,f)

Figure 8.9: Counter-example: the parent relation anomaly.

set A.d′ contain all directories that are d′’s ancestors up to the least common ancestor of d and

d′, noted LCA(d,d′). In order to move directory d under directory d′, it is necessary to acquire d’s

source token, τs(d), d′’s destination token, τd(d′), and the destination tokens for all directories in

set A.d′. For instance, in Figure 8.7, operation mvdir(root,n,d′,d) acquires tokens {τs(d),τd(d′)},

and operation mvdir(root,n′,d,d′) acquires the tokens {τs(d′),τd(d)}. Their token sets are not

compatible, token τs(d′) is not compatible with token τd(d′), and token τs(d) is not compatible with

τd(d), i.e., ⊲⊳= {(τs(d′),τd(d′)), (τs(d),τd(d))}. Therefore, the program execution of Figure 8.7 cannot

occur.

For any pair of move operations, if their tokens are incompatible, only one of them can take

effect, because token semantics requires that they exchange messages, which ensure that one of

the operations is aware of the other. However, other move operations are causally independent,

and hence can proceed in parallel.

We add the corresponding tokens to the move semantics, and perform the CISE stability

analysis again.

This time, the tool generates a counter-example that indicates that two concurrent users

might move the same node to different locations. Thus, the node would end up with two parent

directories; violating the tree invariant. The counter-example is as follows: Initially, the file

system has three directories: D= {root,d,d′}. Replica r1 adds file f to directory d. Replica r2

observes file f , and later moves f in to directory d′; concurrently, replica r1 moves file f in to the

root. After exchanging the updates, the file f will have two parents, as shown in Figure 8.9.

To avoid this issue of moving the same node concurrently, we create a new token type, move

token. We assign an exclusive move token τe for each node e. A move operation must acquire

the token τe. For instance, the move operation F(mvDir(d′,n,d′′,d)), acquires the mutually exclusive

token τd before its execution.

Figure 8.8 illustrates the replicated file system semantics using the hybrid consistency

model. It relies on CRDTs to ensure convergent state, and use the move tokens to ensure the

tree invariant. Unlike the synchronous semantics, only move operations require tokens. The

semantics successfully passes all three CISE analyses. The analyser proves that the consistency

choices for different operations are sufficient to preserve the tree invariant, while provides an

84

8.8. MOSTLY ASYNCHRONOUS REPLICATED FILE SYSTEM

acceptable behaviour similar to POSIX.

85

Chapter 9

Related Work

Contents

9.1 Related Work . 88

9.1.1 Formal Reasoning about File Systems . 88

9.1.1.1 First-Order Logic Reasoning . 88

9.1.1.2 Separation Logic Reasoning . 89

9.1.2 Conflict Resolution in File systems . 90

9.2 Conclusion . 91

9.3 Future Work . 91

87

CHAPTER 9. RELATED WORK

In this chapter, we discuss some related work, and conclude this part of thesis with a summary

of findings of the application of CISE analysis in the design of a replicated file system, and identify

areas for future work.

9.1 Related Work

9.1.1 Formal Reasoning about File Systems

There has been substantial work on formal specification of file systems in different specification

languages, which are based on either first-order logic, or separation logic [87].

9.1.1.1 First-Order Logic Reasoning

A number of formalisations of file systems have been proposed using first-order logic [39, 40, 58,

75, 104]. Most of them focus only on primitive file I/O operations, such as reading and writing

file content [58, 75]. Morgan and Sufrin [75] have proposed a formal specification for a UNIX file

system using the Z notations [94], which is later proved correct [39]. The formal model represents

each file system object by its path, i.e., a sequence of directories names, and defines operations to

create files and update their contents. However, the specification model does not completely cover

all POSIX behaviour, so that it does not consider the structure manipulation operations, such

as move directories. In addition, users can access shared files without any permission controls.

Similarly, Arkoudas et al. [58] have proved the correctness of read and write operations for a

basic file system implementation using Athena, an interactive theorem prover. Given a simple

file system implementation, Athena constructs 283 lemmas and theorems in order to verify the

isolation of reading and writing files in a directory.

Huges [53] has specified a visual file system using the Z notations [94]. He focuses on

modelling of a hierarchical file system, so that his model covers basic operations affecting the tree

structure, including move and remove directories. However, his specification does not consider the

no-loop property, it only takes transitive closure (i.e., reachability) as the main property of a tree

structure. Inspired by Hughes’s specification, Kriangsak et al. [60] have formalised and proved a

tree-structured file system by using Event-B and Rodin platform [5]. Like our specification, their

model is based on acyclic directory structure. A set of permissions are attached to an object, so

that accesses to the object depends on the permissions allowed. The Rodin toolset generates 162

proof obligations to verify the specification model. Hesselink [104] has introduced an alternative

approach to formulate the file structure using partial functions from paths to data.

Experiences with formal specification and verification of file systems show that first-order

logic reasoning is adequate for high-level specification, and implementation of real file systems.

However, the first-order logic does not scale well when reasoning about operation executions

of a POSIX file system [77]. The POSIX English specification defines a set of preconditions

for each operation, which must be satisfied before its execution. For instance, moving a source

88

9.1. RELATED WORK

directory into a destination directory takes effect, if the source directory is not an ancestor of

the destination directory. Encoding such conditions using first-order logic entails many proof

obligations and constraints that increase non-linearly with respect to the size of programs [77].

9.1.1.2 Separation Logic Reasoning

Recent work on file system verification relies on separation logic. Chen et al. [49] have introduced

Crash Hoare Logic (CHL) for developing and verifying sequential and fault-tolerant file systems.

The CHL logic checks whether a storage system implementation will recover to a state consistent

with its specification after a failure. Using the analysis, the authors specified and verified FSCQ,

a crash-safe user-space file system implemented in Haskell. The FSCQ’s interface consists of a

series of Hoare triples over high-level operations. The specification model of FSCQ relies on the

separation logic to reason about operations at different level of abstractions including disk, files,

directories, and logical disk. FSCQ uses a write-ahead log for failure recovery. The CHL analysis

proved that the write-ahead log guarantees atomicity of updates by adding fault-conditions into

the Hoare triples.

Ernst et al. [37] have presented a formal POSIX model, and verified that if a heap-based

implementation of of Virtual File system Switch (VFS) meets the POSIX specification model.

They take advantage of separation logic to map directories to pointer structures of VFS in order

to reason about the implementation. The work introduces proof obligations by symbolic execution

of operations, and use an interactive theorem prover for discharging the proof obligations. Their

rules check that if any possible behaviour (output) of VFS operations is captured by the POSIX

specification model.

Biri and Galmiche [26] have proposed a separation logic rule for trees and local reasoning

over global paths. However, their simple tree model forbids structural’s modifications, as neither

new nodes can be created nor nodes can be moved, i.e., the tree structure is static.

Gardner et al. [42] have proposed a formal model of POSIX file system based on separation

logic. The semantic of POSIX operations are captured with preconditions and postconditions

in a Hoare-logic style. Some permissions are associated into each operation to control access to

shared paths. Before applying an update, the necessary permissions must be obtained in order to

ensure that effect of the update is propagated to entries whose path may overlap. However, the

specification model does not support concurrent POSIX users.

Our co-design approach uses CISE logic, which is based on rely/guarantee to reason about a

given file system semantics. Although, we focus on the tree structure of file system, the proof rules

are not limited to the POSIX model, so that they can be applied to any file systems with different

invariants. Existing specifications of file systems are mostly based on its sequential behaviour,

and hence, using them to reason about concurrent operations is far from trivial. Concurrency is

an essential part of a replicated file system. Concurrent updates may cause consistency issues

that must be addressed. For instance, describing an operation, which creates a new directory in

89

CHAPTER 9. RELATED WORK

some parent directory is trivial, but specifying how to deal with two concurrent operations, which

add two different directory under the same under to the same parent directory is much harder.

Our specification model co-designs the semantics of file system’s operations and the consistency

requirements. Using the CISE analysis, we were able to verify the file system semantics in

polynomial time.

9.1.2 Conflict Resolution in File systems

Semantic-based concurrency control has been studied extensively in Database community. Several

works have explored the semantics of applications (and data types), including commutativity and

invariants, to design more scalable system and amortize locks [12, 103].

Clements et al. [31] have proposed a cache conflict-free implementation of POSIX file system

on a shared-memory multiprocessor system. They explore the commutativity of POSIX opera-

tions to design a scalable file system implementation. They have presented an analyser, called

COMMUTER, which checks the commutativity of POSIX operations. COMMUTER relies on sym-

bolic executions for program testing. A symbolic model tests all permutations of operations, and

computes necessary conditions under which those operations commute. Using the commutativity

conditions, they modify the POSIX semantics. COMMUTER generates different test cases to

verify the semantics in a real implementation. However, they focus only on scalability, not on the

safety of executing commutative operations; they do not check that if the commutative operations

maintain the tree invariant.

Balasubramaniam and Pierce [17] have proposed an optimistic files system replication model

from a semantics perspective. Causally-dependent operations are ordered according into happen-

before relation, while concurrent operations may be executed at any orders. Concurrent updates

on the same directory are allowed if they do not conflict. For instance, concurrent users can add

different files with different names to the same directory, but if one user modifies a file, and

another deletes its parent directory, a conflict happens. The model requires users to manually

resolve conflicts. This specification model was later formalised and proved by Ramsey and Csirmaz

[84]. However, the operation-based model is limited i.e., the algebra model contains 51 different

rules for few operations, including create, remove, and edit. It is not clear how one can extend

the model to support more complex operations, such as move operations involving different

directories. In addition, the model does not check the tree invariant; it is difficult to describe

acyclic property by using their model.

Bjørner et al. [28] have proposed a replicated file system reconciler (DFS-R) that automatically

resolve conflicts when they arise. They use model checkers to verify the conflict resolution

strategies. Similar to our CISE-enabled tool, the analysis gives a counter-example for concurrent

moves, meaning that concurrent move operations do not maintain directory hierarchies as tree-

like structure. However, they do not address how to add synchronisation when the tree invariant

is violated.

90

9.2. CONCLUSION

9.2 Conclusion

The inherent complexity of file systems demands automated techniques for understanding and

reasoning about correctness in concurrent environments. In this work, we formalised and verified

a replicated file system that supports most primitives POSIX commands. The specification of the

file system focused on a tree structure and basic operations modifying the tree structure: create,

delete, and move nodes that can be files or directories. In the specification model, we focused on

the three main properties of a tree structure: (1) every node in a tree is reachable from the root

(2) every node, except the root, has a single parent (3) there are no cycles in the tree structure.

Our main contribution is a case study of the application of the CISE analysis for designing an

efficient file system semantics that provides a behaviour similar to POSIX at reasonable cost. The

CISE analysis allowed us to concisely and precisely reason about a given file system semantics.

We presented three different semantics of file system, each provides different levels of parallelism

and anomalies. Using the co-design approach, we were able to remove synchronisation on most

operations while retaining a semantics reasonably similar to POSIX. Applying the CISE analysis

proved that the precondition of a move operation is not stable under another concurrent move

operation: it follows that no file system can support an unsynchronised move without anomalies,

such as loss or duplication.

Thanks to CISE’s proof automation tool, the average running time to verify a given file system

semantic was 1297 ms. The challenge of file system verification using the SAT solver was to

translate reachability property because the SMT solver does not support any built-in transitive

closure operator. We employed the tactics and strategies proposed in [67] and [36] to incorporate

the reachability property in the context of the SMT solver.

9.3 Future Work

There are several avenues for future work from both verification and performance perspective.

First, the file system verification based on CISE analysis requires that the database guarantees

causal consistency. However, causal consistency does not sale week, as many file systems opt

for weaker consistency models, such as eventual consistency. We plan to propose proof rules for

weaker models where causality preservation is not mandatory for operation executions.

Second, we are going to implement the three file system semantics to compare their actual

performance under real workloads. The plan is to integrate our findings from the CISE analysis

into a highly-scalable geo-replicated file system. The challenge is to translate the tokens into an

efficient concurrency control protocol. There are different ways to implement tokens in the file

system hierarchy. A simple approach is to represent each token by a lock, so that each operation

acquires the corresponding locks when called, and releases them when returning. However, it

incurs a significant synchronisation cost. One optimisation is lock coarsening, where locks are

acquired on entire directory when any node in the directory is accessed. Although a coarser lock

91

CHAPTER 9. RELATED WORK

reduces the synchronisation cost, it also delays concurrent updates, which costs performance too.

We are looking for dynamic and heuristic analysis that allow to measure and improve the token

implementations.

Finally, the CISE analysis only verifies the correctness of the file system against concurrent

executions. In the future, we plan to propose proof rules that allow developers to reason about the

operation executions in the presence of replica and network failures. Thus, programmers would

be able to prove that a file system specifications model handles properly any possible faults. This

entails formalisation of failure models, as the specification of the file-system API captures its

semantics under crashes.

92

Part IV

Safe Applications on the Cheap with

Invariant Patterns

93

Chapter 10

Efficiently Implementable Patterns

of Invariants

Contents

10.1 Classes of Invariant . 97

10.2 Generic Invariants on a Single Item (Gen1) . 98

10.2.1 Protocols and Mechanisms for Gen1-Invariants 98

10.2.2 Total-Order . 99

10.3 EQ Invariants . 100

10.3.1 Protocols and Mechanisms for EQ-Invariants 100

10.3.2 EQ Invariants and Convergence Resolutions 101

10.4 PO Invariants . 101

10.4.1 Protocols and Mechanisms for PO-invariants 102

10.5 Composite Invariant Patterns . 103

10.5.1 Composing Gen1-Invariants . 103

10.5.2 Composing Gen1-Invariant with EQ-Invariant 104

10.5.3 Composing Gen1-Invariant with PO-Invariant 104

10.5.4 Composing EQ-Invariants . 104

10.5.5 Composing EQ-Invariant with PO-Invariant 105

10.5.6 Composing PO-Invariants . 105

10.6 Consistency Models . 106

10.6.1 Strict Serialisability (SSER) . 106

10.6.2 Serialisability (SER) . 106

10.6.3 Snapshot Isolation (SI) . 107

10.6.4 Causal Consistency (CC) . 108

10.6.5 Eventual Consistency (EC) . 108

95

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS

10.6.6 Invariant Anomaly Comparison . 108

10.7 Conclusion and Future work . 109

96

10.1. CLASSES OF INVARIANT

In this chapter, we identify three main classes of common application invariants. We associate

each class with useful programming patterns that help application developers to implement the

invariant on a replicated database. Finally, we review some well-known consistency protocols,

and compare them in terms of guarantees they provide for the same three classes of invariants.

10.1 Classes of Invariant

An application invariant specifies some safety properties that all states must satisfy. An invariant

restricts the possible values observed by users, and the possible updates that a replica may

perform.

The invariant is guaranteed in any sequential execution if and only if each individual

operation has sufficient precondition. For instance, in a bank application with non-negative

balance invariant, a withdraw form an account is legal only if the account has sufficient balance.

Concurrent execution of operations may violate it even if a sequential execution satisfies

the invariant. For instance, if balance of an account be initially e2. Concurrent execution of two

withdraw(2) operations would make the balance negative (e-2).

Programming an application is much harder if replicated databases do not support invariants,

as application developers need to deal with invariant violations. The database may implement

some consistency guarantees, i.e., without application-level intervention. Different consistency

models provide different guarantees. For instance, the strongest consistency model, called Strict

Serialisability [80] (SSER), preserves sequential invariants, but it requires to synchronise the

critical path of every operation’s execution across the whole database. More relaxed consistency

models have potential for higher performance, but they make weaker guarantees and might

violate some kinds of invariants.

One promising approach to understanding which invariants are enforced by the consistency

model, is to leverage our static CISE analysis.

However, our experience shows that many applications share invariants of a similar flavour.

For instance, the foreign key invariant is a common kind of invariant, required by many ap-

plications. This invariant constrains an object to a subset of values that match values of a

different object. Understanding these common invariants could minimise the cost of developing

and verifying a large variety of programs.

In this chapter, we present the following three classes of invariants: Generic1(Gen1), Equiv-

alence(EQ), and Partial-Order(PO) invariants. We argue that many application invariants are

combination of these classes. A Gen1 invariant specifies a constraint over the value of a single

data item, ranging from simple properties (for instance, that a value is non-negative) to complex

properties of whole data structures (for instance, acyclic graph). PO and EQ invariants relate the

state of different data items. For instance, xi = xj, and xi ≥ xj represent invariants of EQ type, and

of PO type, respectively.

97

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS

We propose to associate some programming patterns to these classes of invariants where

synchronisation is not necessary. For instance, in a bank application under a non-negative balance

constraint, deposit operations are always safe.

We also identify patterns where synchronisation is necessary, but can be relaxed in a disci-

plined manner. If the application follows the pattern, this extends the database’s guarantees

to the associated class of invariants, often without synchronisation. Each of these invariant

patterns matches to a certain consistency property: multi-operation transaction, i.e, atomicity,

causal ordering, and total ordering, respectively. Atomicity is the "all-or-nothing" concept in ACID

transactions, meaning that all replicas either see the effect of all the operations in the transaction

as a unit, or none of them. Causal ordering ensures that operation executions respect Lamport’s

happened-before relation [64]. Total ordering serialises all operations. Atomicity, causal ordering

and total ordering are orthogonal properties. Only total ordering requires full synchronisation

(i.e., consensus). Given an invariant class, we identify its consistency requirement, and propose

programming patterns, which maintains the invariant.

10.2 Generic Invariants on a Single Item (Gen1)

A Generic single-item invariant (Gen1) places constraints over the state of a single data item,

i.e., it prevents some particular set of value from appearing in a database. For instance, the

non-negative constraint for balance in the bank application, the capacity limit for course objects in

the courseware application, and the stock limit for products in the auction application (Chapter 6)

are examples of Gen1 invariants. A Gen1 invariant may be more complex, for instance, the SHA-2

hash of an object is equal to some constants, or that the invariant that some graph structure may

not form a cycle.

10.2.1 Protocols and Mechanisms for Gen1-Invariants

In a sequential environment, the protocol to ensure Gen1 invariants is straightforward. We only

need to ensure that the effect of each operation in isolation preserves the invariant. Thus, the

verification of sequential execution reduces to verifying every single operation. An operation

maintains the invariant if it has sufficient precondition to ensure that. If the initial state, before

the operation, satisfies its precondition, then the final state, after applying the operation, must

satisfy the invariant. For instance in the bank application with non-negative balance, a sufficient

precondition for the withdraw operation to maintain this invariant is that the balance is greater

than the amount debited,

{balance≥ 0∧balance≥ amount≥ 0} withdraw(amount) {balance≥ 0}

98

10.2. GENERIC INVARIANTS ON A SINGLE ITEM (GEN1)

To implement the Gen1 invariant in concurrent executions, we consider two cases: bounded

and unbounded concurrency. In the bounded concurrency model, both the number of concurrent

processes, and the number of updates that each process independently performs, are limited. To

verify the Gen1 invariant in such environments, we define the precondition of each individual

operation to take into account all possible concurrent updates. For instance, consider there

are only two bank branches, and each one may withdraw up to e100 from the same account.

The precondition that verifies that the balance in each branch is greater than e200 before

performing a withdrawal, is enough. Generalising to a bank application with up to k concurrent

withdraw operations, each withdrawing some bounded amount amounti from the same account,

precondition of a withdraw operation must include the effect of all possible concurrent k withdraw

operations,

balance≥
k
∑

i=1
amounti

where k is bounded.

However, under unbounded number of concurrent withdraw operations, there is no sufficient

precondition that can ensure non-negative balance.

Thus, Gen1 invariant requires to limit the concurrency. The general pattern for concurrency

control is to totally order operations. For instance, we need to totally order withdraw operations

in order to stop a withdrawal that would make the balance negative.

10.2.2 Total-Order

Two operations u and v are totally-ordered if and only if their effectors execute in the same order

at all replicas. Total order of effectors ensures that all replicas that have observed the same set of

(deterministic) operations have the same state.

There are different ways to order updates, ensuring that all replicas observe updates in

the same order. One ways is for each replica to independently assign unique timestamps to its

updates. The total order is given by the timestamps. This approach is known as last-writer-wins

(LWW) (also called Thomas’s write rule [54]). LWW guarantees Gen1 invariant, but updates may

be arbitrarily lost. It may drop an update u when there is an update v concurrently executing with

u, and with a larger timestamp. For example, consider a LWW register with a write(a) operation

that sets value of the register to a. Two replicas r1 and r2 concurrently perform operations

write(1), and write(2), where write(1) has timestamp t1 and write(2) has timestamp t2. If t2 is

higher than t1, whatever the order of execution, only write(1) takes effect, i.e., the value of the

register will be 1.

To avoid such anomalous behaviour, an agreement protocol, such as Paxos [47] or atomic

broadcast [30] is needed to deliver and execute all updates in the same order, to all replicas.

99

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS



































Figure 10.1: Atomicity and different concurrent set semantics

10.3 EQ Invariants

EQ invariants capture some equivalence relation between multiple data items. A simple example

is a bi-directional relationship constraint, such that if Bob is a friend of Alice, then Alice must be

a friend of Bob, i.e., either both relationships should be established, or neither should be,

∀x, y, x.friend(y)⇐⇒ y.friend(x)

The friendship relation is an EQ constraint, which requires to update Alice’s friends and Bob’s

friends together.

10.3.1 Protocols and Mechanisms for EQ-Invariants

An EQ invariant indicates that state of one object must be equivalent to that of some other object.

In other words, every change to the former requires a change to the latter. Consider a scenario

where Bob and Alice befriend each other. To maintain the EQ invariant, the operation that adds

Bob to the set of Alice’s friends must simultaneously add Alice to the set of Bob’s friends. Then,

the database must guarantee that every replica sees these two updates together. Thus, every user

either observes both Bob ∈ friends(Alice) and Alice ∈ friends(Bob) or, both Bob �∈ friends(Alice) and

Alice �∈ friends(Bob). The atomicity property ensures either effect of all updates inside a unit of

execution ("transaction") are observed, or none.

The simple strategy to provide atomicity in a replicated database is to implement a mutual

exclusion concurrency control policy. For example, if a replica wants to atomically update two sets

si and s j with EQ invariant si = s j, it can acquire exclusive locks for each of sets si and s j, update

both sets, then release the lock. No other replicas will observe partial updates to sets si and s j.

However, the locking strategy incurs a significant synchronisation cost and limits concurrency.

The alternative and asynchronous solution to ensure atomicity is using highly-available

atomic transactions [13]. Using transactions, we are able to group all updates affecting the

EQ-dependent data items, and treat them as a single update. Atomicity guarantees that every

replica either applies all effects of a transaction together or none.

100

10.4. PO INVARIANTS

10.3.2 EQ Invariants and Convergence Resolutions

However, in the absence of the total order, atomicity is not sufficient to preserve an EQ invariant in

a replicated database, which leverages some convergence conflict resolution policies for handling

concurrent updates on data items. The combination of different convergence heuristics used for

EQ-dependent data items may violate the EQ invariant between them. For instance, consider

the program execution illustrated in Figure 10.1. Initially sets s1 and s2 are empty, with an EQ

invariant s1 = s2. Set s1 follows an add-wins semantics, whereas set s2 follows a remove-wins

semantics in case of concurrent adds and removes on the same elements. Replica r1 atomically

adds element a to sets s1 and s2. Replica r2 observes the operation and applies the same effect

over its state. Now the state in both replicas is a ∈ s1, and a ∈ s2. Some time later, replica r1

atomically removes a from these sets, concurrently, replica r2 atomically adds the same element a

to sets s1 and s2. After exchanging the replica’s updates, a query in both replicas sees the element

a in set s1, but not in set s2: a ∈ s1 and a ∉ s2, violating the EQ invariant between s1 and s2.

The challenge is then to design a replication protocol that will converge to a same value that

integrates all updates on a single data item, still maintains EQ invariants among different data

items. To locally ensure the EQ invariant, the application must choose to provide a compatible

convergence policy for the EQ-dependent data items. Returning to the above example, if the sets

s1 and s2 both follow the same convergence policy, i.e., either add-wins semantics or remove-wins

semantics, the convergent result will be correct with regard to the EQ invariant.

10.4 PO Invariants

Another interesting class of invariants imposes a partial order relation over the state of multiple

data items. This type of invariant is called PO Invariant. Unlike the EQ-invariant, for PO-

dependent objects, only a subset of the updates affects their dependency relation. For instance, in

an auction application, there might be an invariant stating that the number of a product that a

seller is auctioning is less than its stock. Adding a product to an auction may violate the invariant,

whereas increasing the stock is always safe. Another example is the foreign key integrity rule in

database, which constrains an object to a subset of values that match values of a different object.

For instance, the foreign key invariant in the courseware application states that an enrolment

relation refers to an existing course and a registered student:

(c,s) ∈Enrollment =⇒ c ∈Course∧s ∈ Student

Enrolling students preserves the invariant, but removing students or courses may violate the

invariant.

101

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS

10.4.1 Protocols and Mechanisms for PO-invariants

Common instances of PO invariants include: numeric order (≤), subset (⊆), and implication (=⇒).

We use the general notation LHS¹RHS to represent a PO invariant, where LHS and RHS are

the expressions on the left-hand side and right-hand side of the relation, respectively.

An implication rule (x =⇒ y) logically puts a partial order restriction over database state

that relates object x (LHS) partially into object y (RHS), i.e. x ¹ y. Different application invari-

ants are defined based on the implication rule, such as security rules and foreign keys. For

instance, the foreign key invariant in the courseware application is an implication rule, in which

LHS= (c,s) ∈Enrollment(c,s), and RHS= (c ∈Course∧s ∈ Student).

One simple pattern to preserve a PO invariant in an asynchronous manner is: if effect of

some operation u updates only either the RHS to RHS′ where RHS≤RHS′, or the LHS to LHS′

where LHS′ ≤LHS, then executing operation u always preserves the invariant. For example, in

the courseware application, adding new courses (increasing RHS), say c ∈Course, or disenrolling

a student from a course (decreasing LHS), say (c, s) 6∈Enrollment(c, s), are safe with regard into

the foreign key invariant.

However, updating the LHS to LHS′ where LHS≤LHS′, (respectively, updating the RHS to

RHS′ where RHS′ ≤RHS) may violate the PO invariant, i.e., it is unsafe. For instance, enrolling

a student s into a course c (increasing LHS), say (c, s) ∈Enrollment(c, s), is unsafe, its effect might

violate the PO invariant, e.g., student s enrolled into a non-existent course c.

To ensure the PO invariant in sequential execution, we need a sufficient precondition on

every unsafe update. For instance, the precondition to enroll a student into a course is that the

course exists.

However, operation’s precondition may not be stable under the concurrent executions, result-

ing into the invariant violation [45]. For instance, a user wants to enroll a registered student s

into an existing course c; the precondition is verified. Another user, concurrently, removes the

course c. Now the precondition becomes false. If we were to continue the enrollment operation,

student s is enrolled into a course that does not exist; violating the PO invariant.

The synchronous approach to guarantee the PO invariant after executing these unsafe

operations is to totally order them. For instance, we can make every enrollment and removing

operations mutually exclusive.

However, there is also a safe asynchronous approach, called the Demarcation Protocol [20].

The basic idea is to perform a safe operation before an unsafe one, in order to compensate in

advance for any possible unsafe side effect. Thus, the execution of every unsafe operation u

depends on a set of safe operations, called its safe-dependent operations, which must execute

before the update, in order to maintain the PO invariant. The execution of the safe updates

implies that the precondition of operation u is true, and hence the effect of operation is safe.

For instance, the unsafe enroll(s, c) operation depends on addCourse(c) and register(s) operations.

Before a replica applies the effector of the operation enroll(s, c), it must apply the effector of

102

10.5. COMPOSITE INVARIANT PATTERNS

addCourse(c) and register(s) operations, which guarantee student s is registered and course c

exists.

Definition 10.1. Given a partial order ¹, operation u can increase LHS (resp. decrease RHS),

if and only if there is some operation v happened before the operation u that increases RHS (

resp. decreases LHS), such that ∀σ ∈ State,Pu(Feff
v (σ)).

To preserve the PO invariant, the replicated database needs to provide causal delivery

ensuring that all safe operations that an unsafe update u depends upon, are delivered before the

update u at all replicas. Returning into above example, adding a new course must be delivered

before enrolling a student into the course.

10.5 Composite Invariant Patterns

The invariant patterns can be combined using conjunction (∧) and disjunction (∨).

Implementing disjunction needs at least one of the sub-patterns is satisfied, but no order

requirement among these sub-patterns. Conjunction restricts the program execution to preserve

all sub-patterns, but no order is required among these sub-patterns. The remainder of this section

will discuss the protocol for maintaining different combination of invariants in more detail.

10.5.1 Composing Gen1-Invariants

Let I1 and I2 be two invariants of Gen1 invariant class.

Conjunction Conjunction of a set of invariants is satisfiable if there is at least a program exe-

cution that preserves all invariants in the set simultaneously. A sequential execution maintains

the conjunction invariant if every of its operations has sufficient precondition. For instance, let

P1, and P2 be preconditions of an operation o required for maintaining invariants I1, and I2,

respectively. Then the o’s precondition to maintain the conjunction invariant is P = P1 ∧P2. If

the precondition P is true, applying the effect of the operation o is always safe.

However, concurrent executions may violate the sequential invariant. A replicated database

needs to totally order an operation execution that violates at least one of the invariants I1 and

I2, i.e., it is unsafe with regard to invariant I1 or invariant I2.

Disjunction To implement the disjunction pattern for Gen1 invariants, a replicated database

needs to totally order an operation o only if applying the effect of the operation o may violate

both invariants I1 and I2. Consider the counter x has a disjunction invariant I = x ≥ 0∨ x ≤ 3.

Although applying the effect of inc() is unsafe with regard to the sub-invariant x ≤ 3, but it still

maintains invariant I because its effect ensures the sub-invariant x ≥ 0.

103

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS

10.5.2 Composing Gen1-Invariant with EQ-Invariant

Let invariant I1 be a Gen1 invariant on a data item x, and invariant I2 relates the state of data

item z into another data item y.

Conjunction The conjunction protocol implies that every operation updates atomically z and

y, and if applying its effect is unsafe with regard to invariant I1, then the operation must be also

serialised.

Disjunction The asynchronous pattern to execute an operation o, while still maintaining the

disjunction invariant is: if applying the effect of operation o is always safe regards to invariant

I1, or, if the effect of the operation atomically changes z and y, then operation o satisfies the

disjunction invariant.

The synchronous pattern is to serialise the operation o for ensuring invariant I1.

10.5.3 Composing Gen1-Invariant with PO-Invariant

Let invariant I1 be a Gen1 invariant, and invariant I2 be a PO invariant.

Conjunction The asynchronous pattern to maintain the conjunction invariant is: if applying

an operation o is safe with regard to both invariant I1 and I2, then its effect always satisfies the

conjunction, but if it may violate the invariant I2, then we need to ensure causal delivery for

operation o and all its safe-dependent operations.

However, if applying the effect of operation o may violate the invariant I1, it must be

serialised.

Disjunction The asynchronous pattern to maintain the disjunction invariant is: if the oper-

ation o is safe with regard to either invariant I1 or invariant I2, then its effect satisfies the

disjunction. Otherwise, we only need to provide causal delivery, ensuring that operation o satisfies

invariant I2.

The synchronous pattern is to serialise the operation o for ensuring invariant I1.

10.5.4 Composing EQ-Invariants

Let I1, and I2 be two EQ invariants.

Conjunction The pattern to maintain the conjunction between I1 and I2 is to ensure that the

effect of each operation atomically changes all EQ-dependent data items. For instance, if I1 is

x = y, and I2 is w = z, then every operation needs to atomically update x and y together, and

atomically update w and z.

104

10.5. COMPOSITE INVARIANT PATTERNS

Disjunction Returning into the previous example, every operation needs to either atomically

update x, and y, or, atomically update w, and z.

10.5.5 Composing EQ-Invariant with PO-Invariant

Let invariant I1 be a PO invariant, and invariant I2 is an EQ-Invariant.

Conjunction The pattern to maintain the conjunction invariant is: an operation o maintains

the conjunction only if it atomically updates the EQ-dependent operations, and its effect is

safe with regard to invariant I1. However, if applying the effect of operation o may violate

the invariant I1, its execution needs causal delivery between the operation o, and all its safe-

dependent operations.

Disjunction An operation o maintains the disjunction if it either atomically updates the

EQ-dependent data items or it preserves the partial invariant I1.

10.5.6 Composing PO-Invariants

Let I1, and I2 be two PO invariants.

Conjunction The pattern to preserve the conjunction is: an operation o maintains the con-

junction invariant if it is safe with respect to both invariants I1, and I2, i.e., applying its effect

is safe with regard to both PO invariants. However, if applying the effect of an operation o

does not maintains any of them, causal delivery must be applied to the operation o and all its

safe-dependent operations.

Disjunction The pattern to preserve the disjunction invariant is: an operation o maintains

the disjunction invariant if it is safe with respect to at least one of the invariants I1, and I2.

Otherwise, causal delivery is required for the operation, so that it can ensure at least one of the

partial relations.

Composite patterns are useful from two points of view. First, it helps to express more com-

pound invariants using the three invariant classes. For instance, disjunction pattern allows to

support some forms of temporal integrity rules. Suppose in the bank example, the application

might want to state, for example, an account x can have a negative balance on the condition that

it gets some rights. This places a temporal constraint over the balance, i.e., balance needs to keep

positive only when its account has no right. The above rule can be specified using a disjunction

as follows: right= true∨balance≥ 0, where right= true represents the EQ invariant that asserts

the account has the right to be negative, and the second assertion is a Gen1 invariant.

Moreover, composite patterns allow to decompose an invariant pattern into a number of

sub-patterns and solve each one. Protocols to the sub-patterns are then combined to give a

105

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS

solution to the original invariant. Consider an integrity rule x+ y≤ z+w, where x, y, z, and w

each represents different data items. One solution to implement this invariant is to decompose

it into two sub-patterns x ≤ z and y ≤ w using conjunction rule, and ensuring that operation

executions maintain each sub-pattern.

10.6 Consistency Models

So far, we showed that each of our invariant patterns matches to a certain consistency property:

multi-operation transaction, i.e, atomicity, causal ordering, and total ordering, respectively.

Different consistency models may provide different guarantees or or even no guarantee for the

same three properties. In this section, we study some of the main consistency models, along with

invariant anomalies that they may expose.

10.6.1 Strict Serialisability (SSER)

Strict serialisability (SSER) [80] is the strongest consistency model: it provides the intuition of a

single server that executes all operations, even non-conflicting operations, in real-time order. For

instance, Alice transfers e100 into Bob’s account, and some time later Bob reads his account. A

database providing SSER will guarantee that Bob sees e100 in his account. A program execution

under SSER has the following three main features:

• Operations appear to occur in some sequential order.

• The total ordering of operations is consistent with the external order established by real

time.

• A read operation sees either the effect of all operations done within a transaction, or none.

Each of these features is sufficient to maintain one of the three invariant classes, and hence,

relaxing a feature may result into weakening the corresponding invariant. The first condition

totally orders operations, which is required by some operations for ensuring Gen1 invariants.

The external ordering implies causal delivery between operations required to maintain the PO

invariant, and the third condition is the atomicity required by the EQ invariant. SSER also

enforces generic invariants across data items.

10.6.2 Serialisability (SER)

Serialisability (SER) ensures that every execution of operations is equivalent to some serial

execution. However, the serial order does not necessarily respect the external or causal ordering.

For instance. Alice transfers e100 into Bob’s account, and then e200 into Sara’s account, some

one else may observe Sara’s e200, but not Bob’s e100.

106

10.6. CONSISTENCY MODELS

Consistency Criteria Consistency Guarantees Invariant Guarantees

Strict Serializability (SSER) atomic, total order, external order PO, EQ, Gen1

Serialisability (SER) atomic, total order PO*, EQ, Gen1

Snapshot Isolation (SI) atomic, causal and total order (writes) PO*, EQ, Gen1

Causal Consistency (CC) atomic, causal order PO, EQ

Eventual Consistency (EC) - -
PO* indicates that the model maintains some PO invariants

Table 10.1: Some consistency models and their invariant guarantees.

Violating the causal ordering may cause that operation executions under SER violate some

kind of partial oder invariants. Consider an advertisement application with view() and like()

operations. The view() operation increases the number of times that an ad is viewed, and the

like() operation increases the number of people who liked the ad. The application requires that

the number of times an ad that is viewed is less than the number of people who liked the ad.

This invariant entails that like() operation must happen before view() operations. However, a

serialisable execution may order the view() transaction before like() transaction, meaning that a

client sees an ad before she likes the ad; violating the invariant.

10.6.3 Snapshot Isolation (SI)

Snapshot isolation (SI), introduced by Berenson et al. [23], is one of the most popular consistency

models provided by commercial database systems, such as Oracle [88] and Microsoft SQL Server

[74]. Under snapshot isolation, atomicity is divided into two properties: reads happen logically

at the start of the transaction and writes happen logically at the end of the transaction. Read

operations return a consistent snapshot of database that reflects the effect of all updates executed

before the transaction starts. SI disallows the concurrent writes on the same data items.

SI does not ensure a serialisable behaviour, i.e., it allows concurrent reads on the same data

items. It allows write skew anomaly. A write skew occurs when two concurrent users read the

same data items, but modify disjoint data items. For instance, consider Alice’s bank account and

Bob’s bank account are linked with each other, and the integrity rule over the linked accounts

allows that one of the account balances to be negative, as long as that the total balance is never

negative; this is a PO invariant. Assume a scenario where Alice and Bob each have e50 in their

account. Under SI, if they both want to withdraw e60 concurrently from their account, they first

take a consistent snapshot from their accounts. Alice reads her balance and Bobs’s balance and

concludes that they still have e100 available. In the same way, Bob also concludes that they have

e100 available. Alice then withdraws e60 from her account. At the same time, Bob withdraws

e60 from his account. This results in e-10 balance for each account, violating the invariant.

107

CHAPTER 10. EFFICIENTLY IMPLEMENTABLE PATTERNS OF INVARIANTS

10.6.4 Causal Consistency (CC)

The strongest available and convergent consistency model is causal consistency (CC) [70, 72].

Causal consistency [11] implements causal delivery, i.e., guaranteeing that updates are executed

in their happened-before order in a distributed system. Under CC, the effect of an operation is

visible only after all operations, which happened before the operation are observed. A replica

delays applying the effect of an update on a data item until all the update’s dependencies are

satisfied.

Maintaining causal delivery is important for applications with partial order invariants. A

causally-consistent replicated database can implement the PO invariant without any need for

synchronisation, ensuring the visibility order required by every unsafe update and all its safe-

dependent operations inside a session. For instance, a CC protocol that always orders removing a

data item after referring to the data item, ensures the foreign key invariant. Thus, programmers

never have to deal with the situation where they can get the reference to a data item that does

not exist.

However, causal consistency does not restrict the execution order of concurrent operations,

and hence may break some integrity rules. For instance, Gen1 invariants require concurrent

clients updating the same data item being ordered.

10.6.5 Eventual Consistency (EC)

Eventual consistency (EC) [100] provides a highly-available (and scalable) data storage based on

asynchronous replication model. Under eventual consistency, an operation may execute at some

origin replica without synchronising with other replicas. The origin replica propagates the update

to other replicas in background. The effect of any update is eventually applied at all replicas,

but possibly in different orders. EC does not restrict the order in which updates execute across

replicas, even for those are causally related. Hence, data replicas are allowed to diverge.

Eventually-consistent data stores ensure that all replicas eventually converge to the same

state. However, applications can be exposed to consistency anomalies that may arise from

arbitrary update ordering.

10.6.6 Invariant Anomaly Comparison

Table 10.1 summarises all the consistency models that we reviewed in this section, and compare

them in terms of the invariant preservation. While SSER preserves all the three sequential

invariants, weaker consistency models than SSE may provide weaker guarantees or even no

guarantee for the same three classes.

108

10.7. CONCLUSION AND FUTURE WORK

10.7 Conclusion and Future work

In this chapter, we have proposed three classes of invariants. We illustrated each of the three

classes, the associated consistency property, and some programming patterns to implement the

invariant. We also studied some cases of composite invariants. Finally, we reviewed several

consistency models and consider possible invariants that they might violate.

One future research direction is to prove the correctness of our invariant patterns. As an

initial step, we plan to apply the CISE analysis to verify the invariant patterns on a causally-

consistent replicated database. One could also consider a database that implements our invariant

patterns as a basis for exploring the consistency choice of various operations.

109

Bibliography

[1] https://github.com/Z3Prover/z3.

[2] Google Drive. https://www.google.com/drive/, 2015.

[3] Microsoft OneDrive. https://onedrive.live.com/, 2015.

[4] Daniel J. Abadi. Consistency Tradeoffs in Modern Distributed Database System Design:

CAP is Only Part of the Story. IEEE Computer, 45(2):37–42, February 2012.

[5] J.-R. Abrial. A system development process with event-b and the rodin platform. In

Proceedings of the Formal Engineering Methods 9th International Conference on For-

mal Methods and Software Engineering, ICFEM’07, pages 1–3, Berlin, Heidelberg, 2007.

Springer-Verlag.

[6] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for

Distributed Transactions. Ph.d., MIT, Cambridge, MA, USA, March 1999.

[7] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal

memory: definitions, implementation, and programming. Distributed Computing, 9(1):37–

49, March 1995.

[8] Amazon. Supported operations in DynamoDB. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/APISummary.html/, 2015.

[9] Masoud Saeida Ardekani. Ensuring Consistency in Partially Replicated Data Stores. Ph.d.,

UPMC, Paris, France, September 2014.

[10] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot

Isolation: scalable and strong consistency for geo-replicated transactional systems. In

32nd Symposium on Reliable Distributed Systems (SRDS), pages 163–172, Braga, Portugal,

October 2013. IEEE Comp. Society.

[11] Hagit Attiya, Faith Ellen, and Adam Morrison. Limitations of highly-available eventually-

consistent data stores. In Symp. on Principles of Dist. Comp. (PODC), pages 385–394,

Donostia-San Sebastián, Spain, July 2015. ACM.

111

BIBLIOGRAPHY

[12] B. R. Badrinath and Krithi Ramamritham. Semantics-based concurrency control: beyond

commutativity. Trans. on Database Systems, 17(1):163–199, March 1992.

[13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Highly available transactions: Virtues and limitations. Proc. VLDB Endow.,

7(3):181–192, November 2013.

[14] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Coordination avoidance in database systems. PVLDB, 2015.

[15] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey of real-world

communications failures. ACM Queue, 2014.

[16] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Ouster-

hout. Measurements of a distributed file system. In Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles, SOSP ’91, pages 198–212, New York, NY,

USA, 1991. ACM.

[17] S. Balasubramaniam and Benjamin C. Pierce. What is a file synchronizer? In Int. Conf. on

Mobile Comp. and Netw. (MobiCom ’98). ACM/IEEE, October 1998.

[18] Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, Carla Ferreira, Mahsa

Najafzadeh, and Marc Shapiro. Putting consistency back into eventual consistency. In

Euro. Conf. on Comp. Sys. (EuroSys), pages 6:1–6:16, Bordeaux, France, April 2015.

[19] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno M.

Preguiça, Marc Shapiro, and Mahsa Najafzadeh. Extending eventually consistent cloud

databases for enforcing numeric invariants. CoRR, abs/1503.09052, 2015.

[20] Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol: A technique

for maintaining constraints in distributed database systems. The VLDB Journal, The Int.

J. on Very Large Data Bases, 3(3):325–353, July 1994.

[21] Basho Inc. Using strong consistency in Riak. https://docs.basho.com/riak/latest/

dev/advanced/strong-consistency/, 2015.

[22] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.

A critique of ANSI SQL isolation levels. In Int. Conf. on the Mgt. of Data (SIGMOD), pages

1–10, New York, New York, USA, 1995. ACM Press.

[23] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.

A critique of ansi sql isolation levels. In Proceedings of the 1995 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’95, pages 1–10, New York, NY, USA,

1995. ACM.

112

BIBLIOGRAPHY

[24] Philip Bernstein, Vassos Radzilacos, and Vassos Hadzilacos. Concurrency Control and

Recovery in Database Systems. Addison Wesley Publishing Company, 1987.

[25] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control—theory and

algorithms. ACM Transactions on Database Systems, 8(4):465–483, December 1983.

[26] N. Biri and D. Galmiche. Models and separation logics for resource trees. Journal of Logic

and Computation, 17(4):687–726, 2007.

[27] Ken Birman and Thomas A. Joseph. Reliable communication in the presence of failures.

Trans. on Computer Systems, 5(1):47–76, January 1987.

[28] Nikolaj Bjørner. Models and software model checking of a distributed file replication

system. In Formal Methods and Hybrid Real-Time Systems, pages 1–23, 2007.

[29] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Footprint

analysis: A shape analysis that discovers preconditions. In Proceedings of the 14th Inter-

national Conference on Static Analysis, SAS’07, pages 402–418, Berlin, Heidelberg, 2007.

Springer-Verlag.

[30] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication,

volume 5959 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg,

2010.

[31] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and Eddie

Kohler. The scalable commutativity rule: Designing scalable software for multicore pro-

cessors. In Symp. on Op. Sys. Principles (SOSP), pages 1–17, Farmington, PA, USA, 2013.

ACM SIG on Op. Sys. (SIGOPS), Assoc. for Computing Machinery.

[32] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts:

Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

[33] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Fur-

man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson

Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,

David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s

globally-distributed database. In Symp. on Op. Sys. Design and Implementation (OSDI),

pages 251–264, Hollywood, CA, USA, October 2012. Usenix.

[34] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in a partitioned

network: a survey. ACM Computing Surveys, 17(3):341–370, September 1985.

113

BIBLIOGRAPHY

[35] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. Dynamo: Amazon’s highly available key-value store. In Symp. on Op. Sys. Principles

(SOSP), volume 41 of Operating Systems Review, pages 205–220, Stevenson, Washington,

USA, October 2007. Assoc. for Computing Machinery.

[36] Aboubakr Achraf El Ghazi and Mana Taghdiri. Analyzing alloy constraints using an smt

solver: A case study. In 5th International Workshop on Automated Formal Methods (AFM),

Edinburgh, United Kingdom, 2010.

[37] Gidon Ernst, Gerhard Schellhornand Dominik Haneberg, Jörg Pfähler, and Wolfgang Reif.

Verification of a Virtual Filesystem Switch, pages 242–261. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[38] Alan Fekete. Allocating isolation levels to transactions. In PODS, 2005.

[39] L. Freitas, Zheng Fu, and J. Woocock. Posix file store in z/eves: an experiment in the

verified software repository. In Engineering Complex Computer Systems, 2007. 12th IEEE

International Conference on, pages 3–14, July 2007.

[40] L. Freitas, Jim Woodcock, and A. Butterfield. Posix and the verification grand challenge: A

roadmap. In Engineering of Complex Computer Systems, 2008. ICECCS 2008. 13th IEEE

International Conference on, pages 153–162, March 2008.

[41] Hector Garcia-Molina and Gio Wiederhold. Read-only transactions in a distributed

database. Trans. on Database Systems, 7(2):209–234, June 1982.

[42] Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the posix file system.

In Zhong Shao, editor, Programming Languages and Systems, volume 8410 of Lecture Notes

in Computer Science, pages 169–188. Springer Berlin Heidelberg, 2014.

[43] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[44] Daniel Gómez Ferro and Maysam Yabandeh. A critique of snapshot isolation. In Euro.

Conf. on Comp. Sys. (EuroSys), pages 155–168, Bern, Switzerland, April 2012. Assoc. for

Computing Machinery.

[45] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.

’Cause I’m strong enough: Reasoning about consistency choices in distributed systems. In

Symp. on Principles of Prog. Lang. (POPL), St. Petersburg, FL, USA, 2016.

[46] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of replication and

a solution. In Int. Conf. on the Mgt. of Data (SIGMOD), pages 173–182, Montréal, Canada,

June 1996. ACM SIGMOD, ACM Press.

114

BIBLIOGRAPHY

[47] Jim Gray and Leslie Lamport. Consensus on transaction commit. Trans. on Database

Systems, 31(1):133–160, March 2006.

[48] Richard Guy, John S. Heidemann, Wai Mak, Gerald J. Popek, and Dieter Rothmeier.

Implementation of the ficus replicated file system. In In USENIX Conference Proceedings,

pages 63–71, 1990.

[49] Chen Haogang, Ziegler Daniel, Chajed Tej, Chlipala Adam, Kaashoek M. Frans, and

Zeldovich Nickolai. Using crash hoare logic for certifying the fscq file system. In Proceedings

of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 18–37, New York,

NY, USA, 2015. ACM.

[50] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-

concurrent transactional objects. In Symp. on Principles and Practice of Parallel Prog.

(PPoPP), pages 207–216, New York, NY, USA, 2008. ACM.

[51] Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condition for concur-

rent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,

July 1990.

[52] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–

580, October 1969.

[53] J. Hughes. Specifying a visual file system in z. In Formal Methods in HCI: III, IEE

Colloquium on, pages 3/1–3/3, Dec 1989.

[54] Paul R. Johnson and Robert H. Thomas. The maintenance of duplicate databases. Internet

Request for Comments RFC 677, Information Sciences Institute, January 1976.

[55] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia

Ailamaki. Aether: A scalable approach to logging. Proc. VLDB Endow., 3(1-2):681–692,

September 2010.

[56] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress. North-

Holland, 1983.

[57] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system.

ACM Trans. on Comp. Sys. (TOCS), 10(5):3–25, February 1992.

[58] Viktor Kuncak Konstantine Arkoudas, Karen Zee and Martin Rinar. Verifying a file system

implementation. In Formal Methods and Software Engineering, pages 373–390, Berlin,

Heidelberg, 2004. Springer Berlin Heidelberg.

115

BIBLIOGRAPHY

[59] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency

rationing in the cloud: Pay only when it matters. Proc. VLDB Endow., 2(1):253–264, August

2009.

[60] Damchoom Kriangsak, Butler Michael, and Abrial Jean-Raymond. Modelling and proof of

a tree-structured file system in event-b and rodin. In Proceedings of the 10th International

Conference on Formal Methods and Software Engineering, ICFEM ’08, pages 25–44, Berlin,

Heidelberg, 2008. Springer-Verlag.

[61] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Keshav Pingali.

Exploiting the commutativity lattice. In Conf. on Prog. Lang. Design and Implementation,

pages 542–555, San Jose, California, USA, June 2011. Assoc. for Computing Machinery.

[62] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter, Kavita Bala,

and L. Paul Chew. Optimistic parallelism benefits from data partitioning. In Proceedings

of the 13th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XIII, pages 233–243, New York, NY, USA, 2008. ACM.

[63] Puneet Kumar and M. Satyanarayanan. Flexible and safe resolution of file conflicts. In

Usenix Tech. Conf., New Orleans, LA, USA, January 1995.

[64] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-

nications of the ACM, 21(7):558–565, July 1978.

[65] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems, 16(3):872–923, 1994.

[66] L.B.Hustonand and Peter Honeyman. Disconnected operation for afs. In In USENIX

Conference Proceedings, page 1?10, 1993.

[67] K. Rustan M. Leino. Automating induction with an smt solver. In Proceedings of the

13th International Conference on Verification, Model Checking, and Abstract Interpretation,

VMCAI’12, pages 315–331, Berlin, Heidelberg, 2012. Springer-Verlag.

[68] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor

Vafeiadis. Automating the choice of consistency levels in replicated systems. In Proceedings

of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX

ATC’14, pages 281–292, Berkeley, CA, USA, 2014. USENIX Association.

[69] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo

Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In

Symp. on Op. Sys. Design and Implementation (OSDI), pages 265–278, Hollywood, CA,

USA, October 2012.

116

BIBLIOGRAPHY

[70] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t

settle for eventual: scalable causal consistency for wide-area storage with COPS. In Symp.

on Op. Sys. Principles (SOSP), pages 401–416, Cascais, Portugal, October 2011. Assoc. for

Computing Machinery.

[71] David Lomet. Simple, robust and highly concurrent B-Trees with node deletion. In Proc.

20th Int. Conf. on Data Engineering (ICDE’O4), pages 18–28, Boston, MA, USA, April 2004.

IEEE Computer Society, IEEE.

[72] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and conver-

gence. Technical Report UTCS TR-11-22, Dept. of Comp. Sc., The U. of Texas at Austin,

Austin, TX, USA, 2011.

[73] Microsoft. Consistency levels in DocumentDB. https://azure.microsoft.com/en-us/

documentation/articles/documentdb-consistency-levels/, 2015.

[74] Microsoft Corporation. Transact-sql reference. https://msdn.microsoft.com/en-us/

library/ms173763.aspx/, 2014.

[75] Carroll Morgan and Bernard Sufrin. Specification of the unix filing system. Software

Engineering, IEEE Transactions on, SE-10(2):128–142, March 1984.

[76] Yannick Moy. Verification, Model Checking, and Abstract Interpretation: 9th International

Conference, VMCAI 2008, San Francisco, USA, January 7-9, 2008. Proceedings, chapter

Sufficient Preconditions for Modular Assertion Checking, pages 188–202. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008.

[77] Gian Ntzik and Philippa Gardner. Reasoning about the posix file system: Local update and

global pathnames. In Proceedings of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,

pages 201–220, New York, NY, USA, 2015. ACM.

[78] Patrick E. O’Neil. The escrow transactional method. Trans. on Database Systems, 11(4):405–

430, December 1986.

[79] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and

James G. Thompson. A trace-driven analysis of the unix 4.2 bsd file system. SIGOPS Oper.

Syst. Rev., 19(5):15–24, December 1985.

[80] Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of

the ACM, 26(4):631–653, October 1979.

[81] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible update

propagation for weakly consistent replication. In Symp. on Op. Sys. Principles (SOSP),

pages 288–301, Saint Malo, October 1997. ACM SIGOPS.

117

BIBLIOGRAPHY

[82] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel. Locus: A

network transparent, high reliability distributed system. In Symp. on Op. Sys. Principles

(SOSP), pages 169–177. ACM, 1981.

[83] POSIX.1-2008. The open group base specifications issue 7.

[84] Norman Ramsey and Előd Csirmaz. An algebraic approach to file synchronization. Techni-

cal Report TR-05-01, Harvard University Dept. of Computer Science, Cambridge MA, USA,

May 2001.

[85] David Ratner, Peter Reiher, and Gerald Popek. Roam: A scalable replication system for

mobile computing. In Int. W. on Database & Expert Systems Apps. (DEXA), pages 96–104,

Los Alamitos, CA, USA, 1999. IEEE Comp. Society.

[86] Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and Gerald J. Popek.

Resolving file conflicts in the Ficus file system. In Usenix Conf. Usenix, June 1994.

[87] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02,

pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

[88] Richard Strohm. Oracle Database Concepts, 11g Release 1 (11.1), January 2011.

[89] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate

Foster, and Johannes Gehrke. The homeostasis protocol: Avoiding transaction coordination

through program analysis. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages 1311–1326, New York, NY, USA,

2015. ACM.

[90] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H.

Siegel, and David C. Steere. Coda: A highly available file system for a distributed worksta-

tion environment. IEEE Trans. on Computers, 39(4):447–459, April 1990.

[91] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free repli-

cated data types. In Xavier Défago, Franck Petit, and V. Villain, editors, Int. Symp. on

Stabilization, Safety, and Security of Distributed Systems (SSS), volume 6976 of Lecture

Notes in Comp. Sc., pages 386–400, Grenoble, France, October 2011. Springer-Verlag.

[92] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative program-

ming over eventually consistent data stores. In PLDI, 2015.

[93] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for

geo-replicated systems. In Symp. on Op. Sys. Principles (SOSP), pages 385–400, Cascais,

Portugal, October 2011. Assoc. for Computing Machinery.

118

BIBLIOGRAPHY

[94] J. M. Spivey. The z notation: A reference manual. In Engineering Complex Computer

Systems, 2007. 12th IEEE International Conference on, 1998. Prentice-Hall.

[95] Vinh Tao, Marc Shapiro, and Vianney Rancurel. Merging semantics for conflict updates

in geo-distributed file systems. In ACM Int. Systems and Storage Conf. (Systor), pages

10.1–10.12, Haifa, Israel, May 2015.

[96] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,

and Brent B. Welch. Session guarantees for weakly consistent replicated data. In Int. Conf.

on Para. and Dist. Info. Sys. (PDIS), pages 140–149, Austin, Texas, USA, September 1994.

[97] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-

cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agreements for

cloud storage. In SOSP, 2013.

[98] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer,

and Carl H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated

storage system. In Symp. on Op. Sys. Principles (SOSP), pages 172–182, Copper Mountain,

CO, USA, December 1995. ACM SIGOPS, ACM Press.

[99] Werner Vogels. File system usage in windows nt 4.0. In Proceedings of the Seventeenth

ACM Symposium on Operating Systems Principles, SOSP ’99, pages 93–109, New York,

NY, USA, 1999. ACM.

[100] Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19, October 2008.

[101] A.-I.A. Wang, P. Reiher, R. Bagrodia, and G.H. Kuenning. Understanding the behavior of

the conflict-rate metric in optimistic peer replication. In Database and Expert Systems

Applications, 2002. Proceedings. 13th International Workshop on, pages 757–761, Sept

2002.

[102] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE

Trans. on Computers, 37(12):1488–1505, December 1988.

[103] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE

Trans. on Computers, 37(12):1488–1505, December 1988.

[104] M.I. Lali Wim H. Hesselink. Formalizing a hierarchical file system. Formal Aspects of

Computing, 24(1):27–44, 2010.

[105] Haifeng Yu and A. Vahdat. Building replicated internet services using tact: a toolkit for

tunable availability and consistency tradeoffs. In Advanced Issues of E-Commerce and

Web-Based Information Systems, 2000. WECWIS 2000. Second International Workshop on,

pages 75–84, 2000.

119

