V. Acuña, E. Birmelé, L. Cottret, P. Crescenzi, F. Jourdan et al., Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets, Theoretical Computer Science, vol.457, p.19, 2012.

V. Acuña, P. V. Milreu, L. Cottret, A. Marchetti-spaccamela, L. Stougie et al., Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks, Bioinformatics, vol.28, issue.19, p.2824742483, 2012.
DOI : 10.1093/bioinformatics/bts423

H. W. Aung, S. A. Henry, and L. P. Walker, Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism, Industrial Biotechnology, vol.9, issue.4, p.215228, 2013.
DOI : 10.1089/ind.2013.0013

G. Ausiello, P. G. Franciosa, and D. Frigioni, Directed Hypergraphs: Problems, Algorithmic Results, and a Novel Decremental Approach, Italian Conference on Theoretical Computer Science, p.312328, 2001.
DOI : 10.1007/3-540-45446-2_20

W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe, Methanogens: reevaluation of a unique biological group, Microbiological Reviews, vol.43, issue.2, p.260296, 1979.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van-dien et al., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nature Chemical Biology, vol.149, issue.8, p.593599, 2009.
DOI : 10.1038/nchembio.186

H. C. Bernstein and R. P. Carlson, MICROBIAL CONSORTIA ENGINEERING FOR CELLULAR FACTORIES: IN VITRO TO IN SILICO SYSTEMS, Computational and Structural Biotechnology Journal, vol.3, issue.4, p.201210017, 2012.
DOI : 10.5936/csbj.201210017

M. Binns, P. De-atauri, A. Vlysidis, M. Cascante, T. et al., Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes, BMC Bioinformatics, vol.30, issue.59, p.49, 2015.
DOI : 10.1016/B978-0-444-59520-1.50134-2

M. Bizukojc, D. Dietz, J. Sun, and A. P. Zeng, Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions, Bioprocess and Biosystems Engineering, vol.142, issue.4, p.507523, 2010.
DOI : 10.1007/s00449-009-0359-0

A. Bock, A. Prieger-kraft, and P. Schönheit, Pyruvatea novel substrate for growth and methane formation in methanosarcina barkeri, Archives of Microbiology, vol.161, issue.1, p.3346, 1994.

P. Bonatti, F. Calimeri, N. Leone, R. , and F. , Answer set programming. In A 25-year perspective on logic programming, p.159182, 2010.
DOI : 10.1007/978-3-642-14309-0_8

N. Bourdakos, E. Marsili, and R. Mahadevan, A dened co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell, Biotechnology and Bioengineering, vol.111, p.709781, 2014.

K. Brenner, L. You, A. , and F. H. , Engineering microbial consortia: a new frontier in synthetic biology, Trends in Biotechnology, vol.26, issue.9, p.483489, 2008.
DOI : 10.1016/j.tibtech.2008.05.004

L. Bulteau, A. Julien-laferrière, V. Lacroix, D. Parrot, and M. Sagot, DINGHY: Dynamic Interactive Navigator for General Hypergraphs in Biology, Jobim, 2015.

A. P. Burgard, E. V. Nikolaev, C. H. Schilling, and C. D. Maranas, Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions, Genome Research, vol.14, issue.2, p.30112, 2004.
DOI : 10.1101/gr.1926504

A. P. Burgard, P. Pharkya, and C. D. Maranas, Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnology and Bioengineering, vol.18, issue.6, p.64757, 2003.
DOI : 10.1002/bit.10803

N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman et al., Biology: a global approach, Macromolecules and Lipids, 2015.

P. Carbonell, D. Fichera, S. B. Pandit, and J. And-faulon, Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms, BMC Systems Biology, vol.6, issue.1, p.10, 2012.
DOI : 10.1016/j.cor.2003.11.014

P. Carbonell, P. Parutto, J. Herisson, S. B. Pandit, and J. And-faulon, XTMS: pathway design in an eXTended metabolic space, Nucleic Acids Research, vol.42, issue.W1, p.42389394, 2014.
DOI : 10.1093/nar/gku362

P. Carbonell, A. G. Planson, D. Fichera, and J. And-faulon, A retrosynthetic biology approach to metabolic pathway design for therapeutic production, BMC Systems Biology, vol.5, issue.1, p.122, 2011.
DOI : 10.1016/j.ymben.2011.01.006

S. Carneiro, E. C. Ferreira, and I. Rocha, Metabolic responses to recombinant bioprocesses in Escherichia coli, Journal of Biotechnology, vol.164, issue.3, p.396408, 2013.
DOI : 10.1016/j.jbiotec.2012.08.026

C. Chassagnole, N. Noisommit-rizzi, J. W. Schmid, K. Mauch, and M. Reuss, Dynamic modeling of the central carbon metabolism of Escherichia coli, Biotechnology and Bioengineering, vol.79, issue.1, p.5373, 2002.

K. Chater and M. Bibb, Chapter 2. regulation of bacterial antibiotic production, Products of Secondary Metabolism, p.57105, 1997.

W. Chen and Z. Qin, Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters, BMC Microbiology, vol.11, issue.1, p.243, 2011.
DOI : 10.1016/S0378-1119(01)00723-5

K. K. Cheng, H. J. Liu, and D. H. Liu, Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation, Biotechnology Letters, vol.44, issue.1, p.1922, 2005.
DOI : 10.1007/s10529-004-6308-8

A. Cho, H. Yun, J. H. Park, S. Y. Lee, and S. Park, Prediction of novel synthetic pathways for the production of desired chemicals, BMC Systems Biology, vol.4, issue.1, p.35, 2010.
DOI : 10.1186/1752-0509-4-35

A. Chowdhury, A. R. Zomorrodi, and C. D. Maranas, Bilevel optimization techniques in computational strain design, Computers & Chemical Engineering, vol.72, p.363372, 2014.
DOI : 10.1016/j.compchemeng.2014.06.007

C. D. Christensen, J. S. Hofmeyr, and J. M. Rohwer, Tracing regulatory routes in metabolism using generalised supply-demand analysis, BMC Systems Biology, vol.4, issue.1, p.118, 2015.
DOI : 10.1186/s12918-015-0236-1

V. Chubukov, L. Gerosa, K. Kochanowski, and U. Sauer, Coordination of microbial metabolism, Nature Reviews Microbiology, vol.6, issue.5, p.327340, 2014.
DOI : 10.1038/nrmicro3238

V. Chubukov, M. Uhr, L. Chat, L. Kleijn, R. J. Jules et al., Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis, Molecular Systems Biology, vol.176, issue.1, p.709, 2013.
DOI : 10.1038/ng1348

URL : https://hal.archives-ouvertes.fr/hal-01204283

J. A. Cole, L. Kohler, J. Hedhli, and Z. Luthey-schulten, Spatially-resolved metabolic cooperativity within dense bacterial colonies, BMC Systems Biology, vol.340, issue.6137, p.15, 2015.
DOI : 10.1186/s12918-015-0155-1

URL : http://doi.org/10.1186/s12918-015-0155-1

W. B. Copeland, B. Bartley, D. Chandran, M. Galdzicki, K. H. Kim et al., Computational tools for metabolic engineering, Metabolic Engineering, vol.14, issue.3, p.270280, 2012.
DOI : 10.1016/j.ymben.2012.03.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361690

A. Cornish-bowden, Failure of channelling to maintain low concentrations of metabolic intermediates, European Journal of Biochemistry, vol.1, issue.1, p.103108, 1991.
DOI : 10.1146/annurev.biochem.56.1.89

R. S. Costa, A. Hartmann, and S. Vinga, Kinetic modeling of cell metabolism for microbial production, Journal of Biotechnology, vol.219, p.126141, 2015.
DOI : 10.1016/j.jbiotec.2015.12.023

R. S. Costa, A. Veríssimo, and S. Vinga, Ki MoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems, BMC Systems Biology, vol.7, issue.1, p.85, 2014.
DOI : 10.1186/s12918-014-0085-3

L. Cottret, P. Milreu, V. Acuña, A. Marchetti-spaccamela, F. Viduani-martinez et al., Enumerating Precursor Sets of Target Metabolites in a Metabolic Network, Lecture Notes in Computer Science, p.233244, 2008.
DOI : 10.1007/978-3-540-87361-7_20

URL : https://hal.archives-ouvertes.fr/hal-00428200

L. Cottret, P. V. Milreu, V. Acuña, A. Marchetti-spaccamela, L. Stougie et al., Graph-based analysis of the metabolic exchanges between two coresident intracellular symbionts, Baumannia cicadellinicola and Sulcia muelleri, with their insect host, Homalodisca coagulata, PLoS Computational Biology, vol.6, issue.9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00690650

L. Cottret, D. Wildridge, F. Vinson, M. P. Barrett, H. Charles et al., MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic Acids Research, vol.38, issue.Web Server, pp.38-132, 2010.
DOI : 10.1093/nar/gkq312

URL : https://hal.archives-ouvertes.fr/hal-00690651

G. P. Da-silva, M. Mack, C. , and J. , Glycerol: A promising and abundant carbon source for industrial microbiology, Biotechnology Advances, vol.27, issue.1, p.3039, 2009.
DOI : 10.1016/j.biotechadv.2008.07.006

P. Daran-lapujade, M. L. Jansen, J. M. Daran, W. Van-gulik, J. H. De-winde et al., Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae: A CHEMOSTAT CULTURE STUDY, Journal of Biological Chemistry, vol.279, issue.10, p.27991259138, 2004.
DOI : 10.1074/jbc.M309578200

P. Daran-lapujade, S. Rossell, W. M. Van-gulik, M. A. Luttik, M. J. De-groot et al., The uxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels, Proceedings of the National Academy of Sciences of the United States of America, p.1575315758, 2007.

L. F. De-figueiredo, A. Podhorski, A. Rubio, C. Kaleta, J. E. Beasley et al., Computing the shortest elementary ux modes in genome-scale metabolic networks, Bioinformatics, issue.23, p.2531583165, 2009.

D. Ruyter, P. Kuipers, O. P. , D. Vos, and W. M. , Controlled gene expression systems for lactococcus lactis with the food-grade inducer nisin, Applied and Environmental Microbiology, issue.10, p.6236623667, 1996.

L. M. Dersch, V. Beckers, and C. Wittmann, Green pathways: Metabolic network analysis of plant systems, Metabolic Engineering, vol.34, p.124, 2015.
DOI : 10.1016/j.ymben.2015.12.001

M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller, Identifying functional modules in protein-protein interaction networks: an integrated exact approach, Bioinformatics, vol.24, issue.13, p.24223231, 2008.
DOI : 10.1093/bioinformatics/btn161

D. S. Donaldson and N. A. Mabbott, The inuence of the commensal and pathogenic gut microbiota on prion disease pathogenesis, Journal of General Virology, issue.97, p.9717251738, 2016.

A. Eng and E. Borenstein, An algorithm for designing minimal microbial communities with desired metabolic capacities, Bioinformatics, vol.32, issue.13, 2016.
DOI : 10.1093/bioinformatics/btw107

K. Faust, D. Croes, and J. Van-helden, Prediction of metabolic pathways from genomescale metabolic networks, BioSystems, vol.105, issue.2, p.10921, 2011.

A. M. Feist, C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce et al., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Molecular Systems Biology, vol.64, issue.121, p.121, 2007.
DOI : 10.1038/msb4100155

A. M. Feist and B. O. Palsson, The biomass objective function, Current Opinion in Microbiology, vol.13, issue.3, p.344349, 2010.
DOI : 10.1016/j.mib.2010.03.003

D. Fell and A. Cornish-bowden, Understanding the control of metabolism Enzyme activity: the molecular basis for its regulation, 1997.

D. Fell and A. Cornish-bowden, Understanding the control of metabolism Introduction: regulation and control, 1997.

D. A. Fell, Metabolic control analysis: a survey of its theoretical and experimental development, Biochemical Journal, vol.286, issue.2, p.313330, 1992.
DOI : 10.1042/bj2860313

M. Fellows, R. , and F. , The complexity ecology of parameters: an illustration using bounded max leaf number, Computation and Logic in the Real World, p.268277, 2007.

J. Field, A. J. Stams, M. Kato, and G. Schraa, Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia, Antonie van Leeuwenhoek, vol.27, issue.5, p.4777, 1995.
DOI : 10.1007/BF00872195

G. Fiermonte, V. Dolce, L. Palmieri, M. Ventura, M. J. Runswick et al., Identication of the human mitochondrial oxodicarboxylate carrier bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location, Journal of Biological Chemistry, issue.11, p.27682258230, 2001.

V. Franssens, T. Bynens, J. Van-den-brande, K. Vandermeeren, M. Verduyckt et al., The benets of humanized yeast models to study Parkinson's disease, Oxidative Medicine and Cellular Longevity, 2013.

H. Friedmann and A. Zeng, Process and apparatus for the microbial production of a specic product and methane, US Patent, vol.8426, p.162, 2013.

G. Gallo, G. Longo, S. Pallottino, and S. Nguyen, Directed hypergraphs and applications, Discrete Applied Mathematics, vol.42, issue.2-3, p.177201, 1993.
DOI : 10.1016/0166-218X(93)90045-P

URL : http://doi.org/10.1016/0166-218x(93)90045-p

M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of np-completeness, 1979.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Clingo = ASP + control: Preliminary report, Leuschel and Schrijvers Theory and Practice of Logic Programming, 2014.

I. Getsin, G. H. Nalbandian, D. C. Yee, A. Vastermark, P. C. Paparoditis et al., Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor, BMC Microbiology, vol.13, issue.1, p.279, 2013.
DOI : 10.1007/s00203-003-0561-4

N. Hadadi and V. Hatzimanikatis, Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways, Current Opinion in Chemical Biology, vol.28, p.99104, 2015.
DOI : 10.1016/j.cbpa.2015.06.025

A. L. Halweg-edwards, W. C. Grau, J. D. Winkler, A. D. Garst, and R. T. Gill, The emergence of commodity-scale genetic manipulation, Current Opinion in Chemical Biology, vol.28, p.150155, 2015.
DOI : 10.1016/j.cbpa.2015.07.009

T. J. Hanly and M. A. Henson, Dynamic ux balance modeling of microbial co-cultures for ecient batch fermentation of glucose and xylose mixtures, Biotechnology and Bioengineering, vol.108, issue.2, p.376385, 2011.

V. Hatzimanikatis, C. Li, J. Ionita, C. S. Henry, M. D. Jankowski et al., Exploring the diversity of complex metabolic networks, Bioinformatics, vol.21, issue.8, p.2116039, 2005.
DOI : 10.1093/bioinformatics/bti213

B. Henriques-normark and S. Normark, Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host, Experimental Cell Research, vol.316, issue.8, p.31614081414, 2010.
DOI : 10.1016/j.yexcr.2010.03.003

M. A. Henson, Genome-scale modelling of microbial metabolism with temporal and spatial resolution, Biochemical Society Transactions, vol.43, issue.6, p.11641171, 2015.
DOI : 10.1042/BST20150146

M. A. Henson and T. J. Hanly, Dynamic ux balance analysis for synthetic microbial communities, IET Systems Biology, vol.8, issue.5, p.21429, 2014.

J. L. Hjersted and M. A. Henson, Steady-state and dynamic ux balance analysis of ethanol production by Saccharomyces cerevisiae, IET Systems Biology, p.3167, 2008.

W. Hollinshead, L. He, and Y. J. Tang, Biofuel production: an odyssey from metabolic engineering to fermentation scale-up, Frontiers in Microbiology, vol.2, p.18, 2014.
DOI : 10.1039/b818694d

S. Hoops, R. Gauges, C. Lee, J. Pahle, N. Simus et al., COPASI--a COmplex PAthway SImulator, Bioinformatics, vol.22, issue.24, pp.223067-3074, 2006.
DOI : 10.1093/bioinformatics/btl485

A. Hoppe, S. Homann, and H. Holzhütter, Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks, BMC Systems Biology, vol.1, issue.1, p.23, 2007.
DOI : 10.1186/1752-0509-1-23

K. Hosoda, S. Suzuki, Y. Yamauchi, Y. Shiroguchi, A. Kashiwagi et al., Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism, PLoS ONE, vol.256, issue.2, p.17105, 2011.
DOI : 10.1371/journal.pone.0017105.s006

C. J. Huang, H. Lin, Y. , and X. M. , Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements, Journal of Industrial Microbiology & Biotechnology, vol.349, issue.1, p.383399, 2012.
DOI : 10.1007/s10295-011-1082-9

B. Hube, From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans, Current Opinion in Microbiology, vol.7, issue.4, p.336341, 2004.
DOI : 10.1016/j.mib.2004.06.003

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, p.524531, 2003.
DOI : 10.1093/bioinformatics/btg015

L. Issel-tarver, K. R. Christie, K. Dolinski, R. Andrada, R. Balakrishnan et al., Saccharomyces genome database, Methods in Enzymology, vol.350, p.329346, 2002.
DOI : 10.1016/S0076-6879(02)50972-1

N. Jagmann and B. Philipp, Design of synthetic microbial communities for biotechnological production processes, Journal of Biotechnology, vol.184, 2014.
DOI : 10.1016/j.jbiotec.2014.05.019

P. R. Jensen and K. Hammer, Articial promoters for metabolic optimization, Biotechnology and Bioengineering, vol.58, issue.2-3, p.191195, 1998.

T. Jewison, C. Knox, V. Neveu, Y. Djoumbou, A. C. Guo et al., YMDB: the Yeast Metabolome Database, Nucleic Acids Research, vol.40, issue.D1, p.40815820, 2012.
DOI : 10.1093/nar/gkr916

P. A. Jose, S. Robinson, and D. Jebakumar, Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery, Frontiers in Microbiology, vol.4, 2008.
DOI : 10.3389/fmicb.2013.00240

A. Julien-laferrière, L. Bulteau, D. Parrot, A. Marchetti-spaccamela, L. Stougie et al., A Combinatorial Algorithm for Microbial Consortia Synthetic Design, Scientific Reports, vol.6, issue.1, p.29182, 2016.
DOI : 10.1371/journal.pone.0017105

M. Jung, S. Mazumdar, S. H. Shin, K. Yang, J. Lee et al., Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene, Applied and Environmental Microbiology, vol.80, issue.19, p.806195203, 2014.
DOI : 10.1128/AEM.02069-14

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.28, issue.1, p.2730, 2000.
DOI : 10.1093/nar/28.1.27

L. Katz and R. H. Baltz, Natural product discovery: past, present, and future, Journal of Industrial Microbiology & Biotechnology, vol.42, issue.2-3, 2016.
DOI : 10.1007/s10295-015-1723-5

S. M. Kelk, B. G. Olivier, L. Stougie, and F. J. Bruggeman, Optimal ux spaces of genome-scale stoichiometric models are determined by a few subnetworks, Scientic Reports, p.580, 2012.

A. Khodayari, A. R. Zomorrodi, J. C. Liao, and C. D. Maranas, A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant ux data, Metabolic Engineering, vol.25, p.5062, 2014.

M. K. Kim and D. S. Lun, Methods for integration of transcriptomic data in genomescale metabolic models, Computational and Structural Biotechnology Journal, issue.18, p.115965, 2014.

S. Klamt, O. Hädicke, V. Kamp, and A. , Stoichiometric and Constraint-Based Analysis of Biochemical Reaction Networks, Large-Scale Networks in Engineering and Life Sciences, p.263316, 2014.
DOI : 10.1007/978-3-319-08437-4_5

C. C. Klein, A. Marino, M. Sagot, P. Vieira-milreu, and M. Brilli, Structural and dynamical analysis of biological networks, Briefings in Functional Genomics, vol.11, issue.6, p.1142033, 2012.
DOI : 10.1093/bfgp/els030

URL : https://hal.archives-ouvertes.fr/hal-00737455

S. Koch, D. Benndorf, K. Fronk, U. Reichl, and S. Klamt, Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process, Biotechnology for Biofuels, vol.135, issue.2, p.17, 2016.
DOI : 10.1186/s13068-016-0429-x

N. Koesnandar, N. Kuroda, K. Nagai, and S. , Methanogenesis of glucose by dened thermophilic coculture of Clostridium thermoaceticum and Methanosarcina sp, Journal of Fermentation and Bioengineering, vol.70, issue.6, p.398403, 1990.

D. P. Leader, K. Burgess, D. Creek, and M. P. Barrett, Pathos: A web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry, Rapid Communications in Mass Spectrometry, vol.37, issue.22, p.2534223426, 2011.
DOI : 10.1002/rcm.5245

S. Lee, C. Phalakornkule, M. M. Domach, and I. E. Grossmann, Recursive MILP model for nding all the alternate optima in LP models for metabolic networks, Computers & Chemical Engineering, vol.24, pp.2-7711716, 2000.

N. E. Lewis, H. Nagarajan, and B. Ø. Palsson, Constraining the metabolic genotypephenotype relationship using a phylogeny of in silico methods, Nature Reviews Microbiology, vol.81, issue.4, p.291305, 2012.

H. Link, T. Fuhrer, L. Gerosa, N. Zamboni, and U. Sauer, Real-time metabolome proling of the metabolic switch between starvation and growth, Nature Methods, issue.11, pp.121091-1097, 2015.

H. Link, K. Kochanowski, and U. Sauer, Systematic identication of allosteric proteinmetabolite interactions that control enzyme activity in vivo, Nature Biotechnology, vol.357, issue.4, pp.31-61, 2013.

L. R. Lynd, P. J. Weimer, W. H. Vanzyl, and I. S. Pretorius, Microbial cellulose utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, issue.3, p.66506577, 2002.

D. Machado and M. Herrgard, Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism, PLoS Computational Biology, vol.5, issue.4, p.1003580, 2014.
DOI : 10.1371/journal.pcbi.1003580.s010

G. Madalinski, E. Godat, S. Alves, D. Lesage, E. Genin et al., Direct Introduction of Biological Samples into a LTQ-Orbitrap Hybrid Mass Spectrometer as a Tool for Fast Metabolome Analysis, Analytical Chemistry, vol.80, issue.9, p.3291303, 2008.
DOI : 10.1021/ac7024915

R. Mahadevan and M. A. Henson, GENOME-BASED MODELING AND DESIGN OF METABOLIC INTERACTIONS IN MICROBIAL COMMUNITIES, Computational and Structural Biotechnology Journal, vol.3, issue.4, p.201210008, 2012.
DOI : 10.5936/csbj.201210008

R. Mahadevan and C. Schilling, The eects of alternate optimal solutions in constraintbased genome-scale metabolic models, Metabolic Engineering, vol.5, issue.4, p.264276, 2003.

J. Masset, M. Calusinska, C. Hamilton, S. Hiligsmann, B. Joris et al., Fermentative hydrogen production from glucose and starch using pure strains and articial co-cultures of clostridium spp, Biotechnology for Biofuels, vol.5, issue.1, p.1, 2012.

V. Mazumdar, E. S. Snitkin, S. Amar, and D. Segrè, Metabolic Network Model of a Human Oral Pathogen, Journal of Bacteriology, vol.191, issue.1, p.7490, 2009.
DOI : 10.1128/JB.01123-08

C. M. Metallo, V. Heiden, and M. G. , Understanding Metabolic Regulation and Its Inuence on Cell Physiology, Molecular Cell, vol.49, issue.3, p.388398, 2013.

P. V. Milreu, Enumerating Functional Substructures of Genome-Scale Metabolic Networks: Stories, Precursors and Organisations, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00850704

P. V. Milreu, C. C. Klein, L. Cottret, V. Acuña, E. Birmelé et al., Telling metabolic stories to explore metabolomics data: a case study on the yeast response to cadmium exposure, Bioinformatics, vol.30, issue.1, p.6170, 2014.
DOI : 10.1093/bioinformatics/btt597

URL : https://hal.archives-ouvertes.fr/hal-00922567

A. Mithani, G. M. Preston, and J. Hein, Rahnuma: hypergraph-based tool for metabolic pathway prediction and network comparison, Bioinformatics, vol.25, issue.14, p.2518311832, 2009.
DOI : 10.1093/bioinformatics/btp269

I. Mnif, S. Mnif, R. Sahnoun, S. Maktouf, Y. Ayedi et al., Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants, Environmental Science and Pollution Research, vol.164, issue.8, p.1485214861, 2015.
DOI : 10.1007/s11356-015-4488-5

B. Momeni, C. Chen, K. L. Hillesland, A. Waite, and W. Shou, Using articial systems to explore the ecology and evolution of symbioses, Cellular and Molecular Life Sciences, issue.8, p.6813531368, 2011.

C. E. Nakamura and G. M. Whited, Metabolic engineering for the microbial production of 1,3-propanediol, Current Opinion in Biotechnology, vol.14, issue.5, p.454459, 2003.
DOI : 10.1016/j.copbio.2003.08.005

L. Nuñez, C. Méndez, A. Brãna, G. Blanco, and J. A. Salas, The Biosynthetic Gene Cluster for the Beta-Lactam Carbapenem Thienamycin in Streptomyces cattleya, Chemistry & biology, vol.10, p.301311, 2003.

N. M. Oliveira, R. Niehus, and K. R. Foster, Evolutionary limits to cooperation in microbial communities, Proceedings of the National Academy of Sciences, vol.111, issue.50, p.111201412673, 2014.
DOI : 10.1073/pnas.1412673111

J. D. Orth, I. Thiele, and B. Ø. Palsson, What is ux balance analysis?, Nature Biotechnology, vol.28, issue.3, p.245248, 2010.
DOI : 10.1038/nbt.1614

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565

L. Palmieri, G. Agrimi, M. J. Runswick, I. M. Fearnley, F. Palmieri et al., Identication in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate, Journal of Biological Chemistry, vol.276, issue.3, p.19161922, 2001.

J. O. Park, S. A. Rubin, Y. Xu, D. Amador-noguez, J. Fan et al., Metabolite concentrations, uxes and free energies imply ecient enzyme usage, Nature Chemical Biology, issue.7, p.482489, 2016.
DOI : 10.1038/nchembio.2077

P. Pharkya and C. D. Maranas, An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems, Metabolic Engineering, vol.8, issue.1, p.113, 2006.
DOI : 10.1016/j.ymben.2005.08.003

E. Reznik, P. Mehta, and D. Segrè, Flux Imbalance Analysis and the Sensitivity of Cellular Growth to Changes in Metabolite Pools, PLoS Computational Biology, vol.100, issue.(Pt 2, p.9, 2013.
DOI : 10.1371/journal.pcbi.1003195.s005

D. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman et al., Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature, vol.272, issue.7086, p.440940943, 2006.
DOI : 10.1038/nature04640

G. Rodrigo, J. Carrera, K. J. Prather, and A. Jaramillo, DESHARKY: automatic design of metabolic pathways for optimal cell growth, Bioinformatics, vol.24, issue.21, p.2425546, 2008.
DOI : 10.1093/bioinformatics/btn471

URL : https://hal.archives-ouvertes.fr/hal-00767088

J. M. Rohwer and J. S. Hofmeyr, Identifying and characterising regulatory metabolites with generalised supply???demand analysis, Journal of Theoretical Biology, vol.252, issue.3, p.54654, 2008.
DOI : 10.1016/j.jtbi.2007.10.032

S. Rollié, M. Mangold, and K. Sundmacher, Designing biological systems: Systems Engineering meets Synthetic Biology, Chemical Engineering Science, vol.69, issue.1, p.129, 2012.
DOI : 10.1016/j.ces.2011.10.068

A. Ryll, J. Bucher, A. Bonin, S. Bongard, E. Gonçalves et al., A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models, Biosystems, vol.124, p.2638, 2014.
DOI : 10.1016/j.biosystems.2014.07.002

W. Sabra, D. Dietz, D. Tjahjasari, and A. Zeng, Biosystems analysis and engineering of microbial consortia for industrial biotechnology, Engineering in Life Sciences, vol.9, issue.5, pp.407-421, 2010.
DOI : 10.1002/elsc.201000111

H. M. Sauro, K. Montgomery, R. Bumgarner, R. Samudrala, and J. Mcdermott, Network Dynamics, Computational Systems Biology, pp.269-309, 2009.
DOI : 10.1007/978-1-59745-243-4_13

R. Saxena, P. Anand, S. Saran, and J. Isar, Microbial production of 1,3-propanediol: Recent developments and emerging opportunities, Biotechnology Advances, vol.27, issue.6, p.27895913, 2009.
DOI : 10.1016/j.biotechadv.2009.07.003

C. H. Schilling, D. Letscher, and B. Ø. Palsson, Theory for the Systemic Denition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective, Journal of Theoretical Biology, vol.203, issue.3, p.229248, 2000.

A. Schultz and A. Qutub, Predicting internal cell fluxes at sub-optimal growth, BMC Systems Biology, vol.93, issue.4, p.18, 2015.
DOI : 10.1186/s12918-015-0153-3

S. Schuster, T. Pfeier, and D. A. Fell, Is maximization of molar yield in metabolic networks favoured by evolution?, Journal of Theoretical Biology, vol.252, issue.3, p.497504, 2008.
DOI : 10.1016/j.jtbi.2007.12.008

J. Schwender, C. König, M. Klapperstück, N. Heinzel, E. Munz et al., Transcript abundance on its own cannot be used to infer uxes in central metabolism, Frontiers in Plant Science, vol.5, p.668, 2014.

D. Segrè, D. Vitkup, and G. M. Church, Analysis of optimality in natural and perturbed metabolic networks, Proceedings of the National Academy of Sciences, vol.99, issue.23, p.991511215117, 2002.
DOI : 10.1073/pnas.232349399

P. H. Shetty and L. Jespersen, Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents, Trends in Food Science & Technology, vol.17, issue.2, p.4855, 2006.
DOI : 10.1016/j.tifs.2005.10.004

L. Shivlata and T. Satyanarayana, Thermophilic and alkaliphilic Actinobacteria: biology and potential applications, Frontiers in Microbiology, vol.62, issue.2, p.129, 2015.
DOI : 10.1099/ijs.0.031039-0

W. Shou, S. Ram, and J. M. Vilar, Synthetic cooperation in engineered yeast populations, Proceedings of the National Academy of Sciences, vol.104, issue.6, p.187782, 2007.
DOI : 10.1073/pnas.0610575104

V. Shulaev, Metabolomics technology and bioinformatics, Briefings in Bioinformatics, vol.7, issue.2, p.128139, 2006.
DOI : 10.1093/bib/bbl012

N. J. Stanford, P. Millard, and N. Swainston, RobOKoD: microbial strain design for (over)production of target compounds, Frontiers in Cell and Developmental Biology, vol.98, p.112, 2015.
DOI : 10.1007/s00253-014-6004-0

URL : https://hal.archives-ouvertes.fr/hal-01269218

J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, G. et al., Metabolic network structure determines key aspects of functionality and regulation, Nature, vol.292, issue.6912, p.4201903, 2002.
DOI : 10.1103/PhysRevE.64.036106

S. Stolyar, S. Van-dien, K. L. Hillesland, N. Pinel, T. J. Lie et al., Metabolic modeling of a mutualistic microbial community, Molecular Systems Biology, vol.185, issue.92, p.92, 2007.
DOI : 10.1038/msb4100131

K. B. Storey, Functional metabolism: regulation and adaptation, chapter 2 Enzymes, the basis of catalysis, 2005.
DOI : 10.1002/047167558X

N. Tepper, E. Noor, D. Amador-noguez, H. S. Haraldsdóttir, R. Milo et al., Steady-State Metabolite Concentrations Reect a Balance between Maximizing Enzyme Eciency and Minimizing Total Metabolite Load, PLoS ONE, vol.8, issue.9, p.113, 2013.

N. Tepper and T. Shlomi, Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways, Bioinformatics, vol.26, issue.4, p.536543, 2009.
DOI : 10.1093/bioinformatics/btp704

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B, p.267288, 1996.

D. Timan, Resource Competition and Community Structure, 1982.

L. M. Tran, M. L. Rizk, and J. C. Liao, Ensemble Modeling of Metabolic Networks, Biophysical Journal, vol.95, issue.12, p.9556065617, 2008.
DOI : 10.1529/biophysj.108.135442

T. Uno, T. Asai, Y. Uchida, and H. Arimura, LCM: An Ecient Algorithm for Enumerating Frequent Closed Item Sets, p.90, 2003.

T. Uno, T. Asai, U. Yuzo, and H. Arimura, An ecient algorithm for enumerating closed patterns in transaction databases, Discovery Science, vol.3245, p.1631, 2004.

T. Uno, M. Kiyomi, and H. Arimura, LCM ver.3, Proceedings of the 1st international workshop on open source data mining frequent pattern mining implementations, OSDM '05, p.7786, 2005.
DOI : 10.1145/1133905.1133916

J. Van-helden, L. Wernisch, D. Gilbert, and S. Wodak, Graph-Based Analysis of Metabolic Networks, Bioinformatics and Genome Analysis, p.245274, 2002.
DOI : 10.1007/978-3-662-04747-7_12

K. Vido, D. Spector, G. Lagniel, S. Lopez, M. B. Toledano et al., A Proteome Analysis of the Cadmium Response in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.276, issue.11, p.27684698474, 2001.
DOI : 10.1074/jbc.M008708200

B. Volesky, H. May, and H. , Cadmium biosorption by Saccharomyces cerevisiae, Z. R. Biotechnology and Bioengineering, issue.8, p.41826829, 1993.
DOI : 10.1002/bit.260410809

A. Von-kamp and S. Klamt, Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks, PLoS Computational Biology, vol.17, issue.1, p.1003378, 2014.
DOI : 10.1371/journal.pcbi.1003378.t003

A. Wegner, J. Meiser, D. Weindl, and K. Hiller, How metabolites modulate metabolic ux, Current Opinion in Biotechnology, vol.34, p.1622, 2015.
DOI : 10.1016/j.copbio.2014.11.008

URL : http://doi.org/10.1016/j.copbio.2014.11.008

B. Wei, S. Shin, D. Laporte, A. J. Wolfe, R. et al., Global Regulatory Mutations in csrA and rpoS Cause Severe Central Carbon Stress in Escherichia coli in the Presence of Acetate, Journal of Bacteriology, vol.182, issue.6, p.16321640, 2000.
DOI : 10.1128/JB.182.6.1632-1640.2000

E. H. Wintermute and P. A. Silver, Dynamics in the mixed microbial concourse, Genes & Development, vol.24, issue.23, p.26032614, 2010.
DOI : 10.1101/gad.1985210

R. Wysocki and M. J. Tamás, How Saccharomyces cerevisiae copes with toxic metals and metalloids, FEMS Microbiology Reviews, vol.34, issue.6, p.925951, 2010.

N. Zamboni, S. Fendt, M. Rühl, and U. Sauer, 13C-based metabolic flux analysis, Nature Protocols, vol.101, issue.6, p.878892, 2009.
DOI : 10.1002/(SICI)1097-0290(1999)66:2<69::AID-BIT1>3.0.CO;2-6

C. Zhang, B. Ji, A. Mardinoglu, J. Nielsen, and Q. Hua, Logical transformation of genome-scale metabolic models for gene level applications and analysis, Bioinformatics, vol.31, issue.14, p.3123242331, 2015.
DOI : 10.1093/bioinformatics/btv134

A. R. Zomorrodi, M. M. Islam, and C. D. Maranas, d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities, ACS Synthetic Biology, vol.3, issue.4, p.247257, 2014.
DOI : 10.1021/sb4001307

A. R. Zomorrodi and C. D. Maranas, OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities, PLoS Computational Biology, vol.6, issue.2, p.1002363, 2012.
DOI : 10.1371/journal.pcbi.1002363.s002

A. R. Zomorrodi, P. F. Suthers, S. Ranganathan, and C. D. Maranas, Mathematical optimization applications in metabolic networks, Metabolic Engineering, vol.14, issue.6, p.14672686, 2012.
DOI : 10.1016/j.ymben.2012.09.005