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�Work in physiological �uid dynamics needs very close and intimate col-
laboration between specialists in physiological science and specialists in
the dynamics of �uids. The necessary collaboration has to be preceded
by a process of mutual education su�ciently prolonged to bring about
on each side an adequate understanding of the other side's language and
modes of expression, as well as recognition of which are the main ar-
eas where the other discipline has developed a particularly extensive and
intricate body of knowledge and skills which can be called upon when re-
quired. After this, real communication between the di�erent specialisms
becomes possible, and can lead to e�ective research progress."

Sir James Lighthill [Lighthill, 1975]. 1
Introduction
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This work is the result of 10 years of collaboration with clinicians. It is an attempt to
both bring about [...] an adequate understanding of the other side's languageand to bring new
bricks into the intricate body of knowledge and skillsnecessary fore�ective research progress
[Lighthill, 1975]. Medicine itself is a science that is increasingly becoming quantitative. This
new direction calls for sophisticated mathematical models and engineering approaches to
unearth deep (patho-)physiological understanding and propose targeted interventions. Such
development is supported by recent progress in data acquisition in medicine and biology.

1.1 Cross-talk between mathematical models, numerical meth-
ods and biomedical applications

The contribution of my work is to bridge frontiers between applied mathematics, bioengineer-
ing and biology or medicine. The interactions between these di�erent components are both
interesting and challenging. They are challenging, as the �uid mechanics of the application is
sometimes so complex that existing numerical methods to solve e.g. the Navier-Stokes equa-
tions may be insu�cient and necessitate targeted numerical developments (chap. 3). Also
the hemo/respiratory in vivo data may not have been acquired with a precision that is high
enough to impose coherent boundary conditions in �uid simulations (chap. 4). They are
interesting in the sense that applications can drive the development of numerical methods.
E.g. blood �ow simulations in patient speci�c geometries and under physiological conditions
often led to numerical divergence ten years ago. Ad-hoc strategies �rst palliated the prob-
lem, such as adding more or longer vessels. However this was not always desirable (increase
of computational time) or possible (image data resolution), and thus this led the numerical
community to revisit stability analysis and stabilization strategies in this context (chap. 3).
The physiologically realistic respiratory �ow simulations that appeared a few years later than
in blood �ow, further demonstrated this numerical need. The numerical handling of such
complexity in turn made possible for me to simulate pathophysiological conditions that would
not have been possible otherwise (chap. 4).

In other words, a characteristic of this work is that it is a dynamic loop. The starting point
is the goal of answering a biomedical question. This drives the development of mathematical
models or numerical tools (applied mathematics/computational mechanics). They are then
transferred to the speci�c application (selection of relevant parameters, inputs from real data,
generation of �rst answer to the biomedical question - bioengineering aspect) to a point
where the biomedical question can be addressed (robustness of results assessed based on
multiple cases - medicine/biology), thus closing the loop. In this context, my contributions
involve adapting or developing models of blood and air�ow, at di�erent scales or degrees of
precision (chap 2): 3D Navier-Stokes for �ow in large conduits, 3D poroelastic formulation
compatible with large strain for heart perfusion, 1D equations of blood �ow, 0D electric
analog for macro or micro-circulation of blood and for respiratory mechanics. Moreover, I
have worked on developing numerical methods that are necessary to couple these di�erent
models (multidomain or multiscale coupling, with monolithic or robust iterative strategies)
and to handle instabilities (contributions in numerical instability analysis, treatment - with
or without stabilization - and comparison of di�erent methods, chap. 3). I have also devised
strategies to parameterize models from real experimental (animal) or clinical data (depending
on the type and amount of data available, based on variational or Kalman �lter approaches
- chap. 4). Each time, these models and methods are illustrated by a speci�c biomedical
application (contributions in applying these numerical methods to circulation understanding
of systemic, in particular coronary, and pulmonary blood circulations, to surgical planning
and device design for several congenital heart diseases, to better understanding of emphysema
air�ow and particle transport in the lung). At the microscale level, my contribution is in
the coupling of multiphysics/multiscale systems for modeling the dynamic interplay between
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tumor cells and their environment, which includes blood perfusion. The manuscript ends with
an outlook on topics that necessitate further research (chap 5).

This work could not have been done without collaboration with students and colleagues in
Applied Mathematics/Engineering from INRIA (REO, MAMBA, M3DSIM, Asclepios), from
the USA (Stanford U., U. of California Berkeley, U. of California San Diego, U. of Michi-
gan, Cornell U.), UK (UCL), Italy (Politecnico di Milano) and Germany (DKFZ/Heidelberg
U., Leipzig U.), and with medical doctors from France (Necker-Enfants Malades hop., Paul
Brousse hosp.), Germany (Thorax Klinik Heidelberg, U. Heidelberg Clinics), UK (GOSH), the
USA (Lucile Packard Children's Hospital Stanford, MUSC, U. of Michigan Health System).
The names of these colleagues appear in the cited references. For non-published work, indi-
viduals are listed. Funding sources are also gratefully acknowledged in the references and here
for work in progress. They include: Whitaker foundation, NSF (American national science
foundation), American Heart Association, Fondation Leducq, INRIA national and interna-
tional seed funding, France-Stanford Center for Interdisciplinary Studies, BMBF (German
national research agency), ANR (French national research agency).

1.2 Biomedical motivation: why modeling blood and air �ow?

Flow is interesting to model because of its mechanistic link to biological or medical aspects. In
bio�uids, a traditional example which has become a matter of vascular biology research, is the
one of endothelial cells (cells lining blood vessels): if exposed to higher shear, they elongate
in the direction of �ow, have an increased barrier integrity, and change their gene expression
[Kamiya and Togawa, 1980, Levesque and Nerem, 1985, Abaci et al., 2014]. These modi�ca-
tions have important implications for disease understanding and treatment in cardiovascular
(atherosclerosis) and cancer research. In the next sections, we show several examples of how
blood and air �ows are intimately linked to tissue growth and disease understanding (sections
1.2.1 and 1.2.2). Moreover we explain why their study can be a basis for surgical planning
(section 1.2.3) and device design (section 1.2.4).

1.2.1 Coupling of �ow and growth

Embryo development (morphogenesis in tetrapods) has been proposed to be the result of vor-
tices formation [Fleury, 2012]. Vasculogenesis, the formation of the heart and primitive blood
vessels, and angiogenesis, the remodeling and expansion of the existing network of blood ves-
sels during or after development [Patan, 2004], are also thought to be the outcome of inner
�ow, �ow demand and tissue biomechanics forces [Boselli et al., 2015, Lindsey et al., 2014a].
The normal human blood circulation is shown in �g. 1.1. Abnormal vasculogenesis of the
precursor arteries is associated with over 50% of clinically presented congenital heart defects
[Go et al., 2013] (see �g. 1.4). These defects are among the most severe congenital abnormal-
ities [Pradat et al., 2003], accounting for nearly 30% of deaths from developmental abnormal-
ities in the USA [Lloyd-Jones et al., 2010]. Yet their etiology remains to be fully understood
in order to prevent or palliate them. Even though chick embryo experiments of �ow pertur-
bation lead to altered vasculogenesis [Yashiro et al., 2007, Nomura-Kitabayashi et al., 2009,
Lindsey et al., 2014a], the hemodynamics triggers to these alterations still need to be un-
raveled. Blood �ow simulations in normal and occluded aortic arches may help shed some
light on this question (see �g. 1.2 for our ongoing work with Stephanie Lindsey coadvised
with Jonathan Butcher (Cornell U.), following [Lindsey et al., 2014b]). Coupling of �ow and
growth is further discussed in the context of vascularized tumor modeling (section 2.3).
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Figure 1.1: Normal human blood circulation (direction given by arrows), with the
four heart chambers, the main arteries (oxygen rich blood = red) and veins (oxy-
gen poor blood - blue), and the branching into vascular trees leading to capil-
lary beds where functional exchanges occur. Adapted fromhttp://www.urgo.co.uk/
260-the-venous-system-within-the-cardiovascular-system . The time-scale of the
heart-beat is 1s in an adult at rest. The ventricles muscle contracts and blood is expelled
from the ventricles into the aorta and the main pulmonary artery during systole; when the
valves in-between close, diastole begins and blood �lls in the ventricles.

Figure 1.2: Wall shear stress in dyn=cm2 computed in normal (left) versus one day after
occlusion of the IVth right arch (right) chick embryo pharyngeal aortic arches (precursor to
great arteries).
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1.2.2 Disease understanding

In vascular biology, it has been shown that �ow modulates diameter [Lee and Langille, 1991,
Kamiya and Togawa, 1980] and pressure controls wall thickness [Wolinsky and Glagov, 1969].
These mechanisms entail vascular adaptation to functional changes or demands. However,
they can also promote disease progression. Computational �uid dynamics (CFD) is a comple-
mentary tool to in-vitro or in-vivo experiments to better understand the link between hemo-
dynamics and disease development. For example in [1], we have seen a decrease of infrarenal
aortic wall shear stress in spinal cord injury patients compared to normal subjects, that may
explain why these patients are more prone to abdominal aneurysm development. Similarly, the
fact that their legs atrophy, and consequently their downstream arterial impedance changes
is likely to favor aneurysm development due to the computed sustained high pressure during
the cardiac cycle. These two factors, which are the results of computer simulations, would
not have been easily measured in patients. Note that such simulations can only be carried
out if appropriate boundary conditions are used (see sections 2.1.1, 2.1.2, 3.1).

Figure 1.3: The respiratory system of
mammals. During inspiration (� 2s
for an adult patient at rest), air
goes into the lung through the tra-
chea that branches into smaller and
smaller airways in the di�erent lung
zones, calledlobes. The smaller air-
ways lead to the functional units,
the compliant balloons calledalveoli.
In expiration ( � 3s for an adult pa-
tient at rest), air goes out in the re-
verse direction. In emphysema, alve-
oli volume is increased due to in-
ner wall damage, leading to reduced
exchange surface with the blood.
From http://www.pdrhealth.com/
patient_education .

An example in respiratory �ow of how CFD
can shed light on diseases, is the one of parti-
cle fate in emphysematous ventilation. This dis-
ease is characterized in part by expanded alveoli
volume (�g. 1.3) and enlarged tissue compliance
[Thurlbeck and Muller, 1994]. Empirical models, in-
vitro experiments and in-vivo data give con�icting in-
formation on impact of the disease for aerosol depo-
sition in the lungs. Numerical simulations of air �ow
and particle transport and deposition in rat airways
have shown the asynchronous breathing dynamics be-
tween normal and diseased regions, and that emphyse-
matous regions are more ventilated and thus delivered
more particles during inspiration (see section 4.1).

These two cases are examples among many
studies that have been carried out in the bio�uid
dynamics community to explain underlying mech-
anisms to disease symptoms and progression
(e.g. [Olufsen et al., 2012, Kheyfets et al., 2013,
Sanchez et al., 2014, Milner et al., 1998,
Taylor et al., 1998a, Peeters et al., 2015] [2]). This
�eld has especially focused on understanding acquired
cardiovascular diseases, i.e. diseases that develop
after birth, in contrast with congenital heart diseases
(CHD) which revenue market is much smaller. Yet,
better treating these diseases can a�ect patients for a
lifetime.

1.2.3 Surgical planning

Single ventricle physiology(SV), e.g. hypoplastic left
heart (see �g. 1.4) or tricuspid atresia, is one of the
most complex and least understood forms of CHD.
These babies are born with only one functional pump
in the heart and require the systemic and pulmonary
circulations to be placed in series through several oper-
ations performed during early childhood (see �g. 1.4).
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The �rst operation, the Norwood procedure, replaces the neonatal ductus arteriosus with a
stable source of pulmonary blood �ow and insures unrestricted �ow from the single ventricle
to the aorta (studied in sections 2.1.3, 3.3.3, 4.2, 4.3). The second of three stages in the
usual palliative approach, the cavopulmonary connection or Glenn procedure involves discon-
necting the superior vena cava (SVC), which drains oxygen-poor blood of the upper body,
from the right atrium and connecting it directly to the pulmonary circulation, namely to the
right pulmonary artery (RPA) (studied in section 4.2). However, the proportion of systemic
venous return from the lower body increases with age. The generally �nal operation, the total
cavopulmonary connection (TCPC) or Fontan procedure, connects then the inferior vena cava
(IVC) directly to the pulmonary arteries as well (studied in section 2.1.1). These connections
form arti�cial junctions. As �ow to the lungs is then passive in nature, optimal architecture
and physiology are paramount for successful long-term clinical outcomes. Despite the increas-
ing e�ort in trying to understand the physiology at each stage, reasons why the procedures
fail or succeed are still not clear [DeGro�, 2008]. Furthermore, even if the surgical procedures
and patient management have much improved the prognosis of the patients, signi�cant mor-
bidities still remain, such as arrythmias, exercise intolerance, pulmonary thrombotic events,
liver dysfunction, heart failure, etc. [de Leval and Dean�eld, 2010].

Physicians have expressed the need for a better understanding of the hemodynamic con-
ditions in subjects with congenital heart defects, pre- and postoperatively. Experimental,
clinical and numerical methods have been used to study di�erent aspects of the anatomic and
physiologic conditions [Taylor and Figueroa, 2009, Taylor and Steinman, 2010], before and af-
ter interventions (see [DeGro�, 2008] for a comprehensive review of these di�erent techniques
developed over the last decades to study this multistage procedure, and references therein).
Integrating patient speci�c clinical information into numerical simulations is critical to yield
results which accurately represent a patient's speci�c condition as we have shown e.g. in
[3]. Predictive modeling for surgical planning has �rst been demonstrated in [3] for a Fontan
patient: pressure in the SVC, which if too high can lead to cognitive development issues,
has been well predicted. Prediction of clinically critical hemodynamics quantities however is
still in its infancy. Moreover each surgical stage described above can be in fact performed in
di�erent ways, which are matter of clinical debate (�g. 1.4). The power of simulation is here
its ability to test di�erent surgical options, which obviously is not possible on a patient [4].

1.2.4 Device design and optimization

Previous studies have demonstrated that the arti�cial graft geometry and anastomosis shape
play an important role in Fontan hemodynamics. A novel Y-shaped design was proposed
to improve upon traditional designs, and results have shown promising hemodynamics
[Marsden et al., 2009]. Multidomain simulations (section 3.1) have permitted us to study
how geometry and boundary conditions a�ect the performance of these virtual surgical de-
signs under rest and exercise conditions [5]. In particular, we have investigated if and how
the IVC �ow (which contains an important biological factor from the liver) can be optimally
distributed among both lungs [6]. This Y design has been successfully implanted on patients
in a pilot study at Stanford Children's hospital [Martin et al., 2015].

The e�ect of implanted device is also studied by subject-speci�c CFD
[Bazilevs et al., 2009a, Prasad et al., 2013, Caputo et al., 2013, Auricchio et al., 2014].
More generally, device design is increasingly performed with CFD and fracture simulations.
The Food and Drug Administration is integrating computational modeling into its evaluation
and testing processes with increasing frequency and mandate [Stewart, 2008]. The European
Council is currently working on a Medical Device text that includes requirement of modeling
and simulation for market authorization [euR, 2015]. In this context, we have recently
predicted hemodynamics changes due to a new device that has only been tested in animals,
in a Tetralogy of Fallot patient, another important CHD [7] (�g. 1.5). We hope such
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Figure 1.4: Top: normal heart and heart with congenital defect (here HLHS). Bottom: the 3
surgical stages. Stage 1: Norwood palliation with Sano (shown here) or Blalock-Taussig shunt,
stage 2: Glenn (shown here) or Hemi-Fontan conversion, stage 3: Extra-cardiac (shown here)
or lateral tunnel Fontan conversion. The lower-oxygen content blood is in blue, while the
higher-oxygen content blood is in red. Pale pink indicates the heart muscle, the myocardium.
From http://www.heart.org .

Figure 1.5: Top: new device (percutaneous valved reducer), geometrical model, velocity mag-
nitude scale. Bottom: diastolic computed velocity without the device (left, strong regurgi-
tation), with the reducer only (middle, lower regurgitation), with the full device (right, no
regurgitation).
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simulations can help design device before clinical testing.

1.3 What do we need for an accurate analysis?

We have shown above why simulating blood and air �ow is interesting. The question is then
how to do it, and what it means to perform an accurate analysis. The use of computational
simulation to examine common clinical problems is more and more appearing in clinical jour-
nals. In practice, such collaboration can only work if both communities understand each
other's methods and their limitations. Thus, we have written an article in a clinical journal
[3], intended to facilitate this communication by presenting, in the context of CHD, the main
steps involved in performing computational simulation - from the selection of an appropriate
clinical question/problem to the understanding of computational results, and all of theblack
boxesin between. An important step is the selection of mathematical models that are ap-
propriately re�ned given the question at hand, for the �ow and its interacting components
(muscle, device, cells, molecules, etc.) [D'Angelo et al., 2011] [8]. This paper [3] thus describes
the main steps of a successful collaboration, presenting state of the art simulation tools and
clinical data incorporation. Although conceptually more general, this article is illustrated by
(at the time) novel predictive computer simulations in congenital heart disease.

A second question that emerged from collaboration with clinicians, pertains to the choice
of these black boxes. Commercially developed numerical codes have increased the availabil-
ity of such tools to a wider range of research, design, and clinical users. In parallel, but
independently, a number of research speci�c codes have been developed, some of which have
been made available as open sources. A few studies [Pekkan et al., 2005] [9],benchmarks
[Stewart, 2008, Boileau et al., 2015] andsimulation challenges[Radaellia et al., 2008, cha, ,
Steinman et al., 2013] have thus emerged to compare codes or simulation approaches to as-
certain the validity and accuracy of these various codes for a speci�c application. To achieve
e�ective solution, there are several necessary steps to numerically simulate blood or air �ow:

� geometry de�nition (from image data when possible), which leads to di�erent compo-
nents/compartments (for ODE models) or geometrical mesh generation including mesh
adaptation (for PDE models) (see �g. 1.6)

� choice of driving terms or boundary conditions

� choice of numerical algorithm to solve the equations

Figure 1.6: Examples of mesh adaptation: isometric inlet (1rst) and outlet (3rd) meshes, and
corresponding adapted meshes to a thin boundary layer pro�le (2nd) and a complex swirling
�ow (4th) [9].

These steps will be de�ned in the next chapter according to the model at hand. Any
misstep or inaccurate performance along the simulation algorithm can lead to erroneous results
and potentially misleading conclusions. Therefore, we sought to systematically examine the
choices of each of these step to assess whether the choice of solver code remains an important
determinant on the reliability and accuracy of the solution [9]. We have demonstrated the
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importance of de�ning accurate boundary conditions as a prerequisite for accurate simulation
[3]. The main conclusions are the following [9]. The precise setup of the numerical cases
has more in�uence on the results than the choice of numerical codes. The need for detailed
construction of the numerical model that requires high computational cost depends on the
precision needed to answer the biomedical question at hand and should be assessed for each
problem on a combination of clinically relevant geometry and physiological conditions.
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The objective of this chapter is to present �uid dynamics models of cardiovascular (�g.
1.1) and respiratory (�g. 1.3) �ows at di�erent scales, to which I contributed in develop-
ments or simulations. Blood and air �ow through an architecture of branching networks from
larger to smaller conduits (arterial side, inspiration), arrive to micro-units designed to ensure
proper functioning of the body (capillaries, alveoli), and �ow back from small to large con-
duits (venous side, expiration) into a pressure chamber (the heart, outside air). Numerical
simulations shed light on some deregulations in order to better palliate them (see sections 1,
4). Flow in the larger conduits can be modeled in detail by Navier-Stokes equations solved in
3D domains reconstructed from non invasive patient-imaging data, possibly with �uid-solid
interaction of the conduit. Section 2.1.1 highlights in particular the importance of boundary
conditions. The integration of these equations over a cross-section gives rise to the so called
1D equations (PDEs). Although they cannot model the detailed 3D structure of the �ow,
their advantages are that less geometrical information is needed and they can capture wave-
propagation phenomena and �uid dynamics over a more extended domain, owing to their
lighter simulation costs. Section 2.1.2 presents this model, including the e�ect of vessel wall
viscoelasticity. A further integration over the axial dimension leads to the so calledlumped
models or 0D models, a system of ODEs describing air or blood �ow with electric analogy.
Spatial di�erences are only represented by the number ofcompartments. But these models
are fast to solve. They can thus represent the time dynamics of the entire blood circulation,
including di�erent organs and heart chambers, or of the entire respiratory system, including
the e�ects of the elastic tissues and diaphragm. Section 2.1.3 illustrates blood circulation and
respiratory models of varying complexity.

The models above are usually referred to asmacro-scale modelssince they describe �ow or
�uid-solid interaction in large conduits or their e�ect at the organ or body scale. However, to
better understand organ perfusion, i.e. the delivery of blood and what it transports through
the vascular trees of the tissue, porous media models are sometimes favored. These `sponge-
like' models describe at themesoscalehow blood �ows through a tissue, without explicitly
representing the geometry of each vessel. Poroelasticity takes into account the �uid interaction
with the elastic tissue but each constitutes a di�erent phaseof the tissue seen as a continuum.
Section 2.2 describes the development of such a perfusion model valid for large strain in
the beating heart. In respiratory modeling the e�ect of air in alveoli connected within the
parenchyma, i.e. lung tissue, by the respiratory tree has been taken into account via explicitly
or e�ectively poroelastic tissue models [Berger et al., 2015, Cazeaux and Grandmont, 2015].

Finally, microcirculation of the blood is sometimes necessary to model due to its cross-talk
with tissue cells, e.g. in the understanding, diagnosis or treatment of cancer. Since spatial
gradients play a role, vessels are explicitly represented but with statistically representative
distributions. Cells are also explicitly represented, but molecular scales are treated with
continuum reaction-di�usion models. An example of such a system is presented in section
2.3.

2.1 Macro-scale �ow modeling

The macro-scale �ow models mentioned above are de�ned more precisely in this
section. Each type (3D, 1D, 0D) has been the matter of numerous works.
In model derivation and mathematical/�uid-mechanics study, this has been the
case particularly for 1D models of blood �ow since the '60s [Barnard et al., 1966,
Anliker et al., 1971, Hughes and Lubliner, 1973, Pedley, 1980] after the seminal work of Wom-
ersley [Womersley, 1955] and Lambert [Lambert, 1958]. In numerical analysis, the question
of boundary conditions at arti�cial boundaries for Stokes or Navier-Stokes equations in dif-
ferent formulations has been studied in the '90s [Heywood et al., 1996, Begue et al., 1988,
Bruneau and Fabrie, 1994]. 3D blood �ow simulations started to emerge as a �eld then, and
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very rapidly led to revisit this question since patient-data gives rise to defectuous bound-
ary conditions. To take into account the rest of the circulation in modeling �ow in the
domain of interest emerged as a need to achieve physiological simulations: this lead to nu-
merous numerical analysis works onmulti scale or multidomain coupling of 3D or 1D models
with reduced models (1D or 0D), both in terms of coupling conditions and stable and ef-
�cient algorithms (see sections 3.1, 3.2). Numerical instabilities due to complex �ow have
become more crucial to tackle for both patient-speci�c hemodynamics modeling and respi-
ratory modeling, and matter of intense research in the last 10 years (see section 3.3). In
the meantime, 1D and 0D models have begun to answer clinical questions based on pa-
tient data [Ottesen et al., 2013, Bode et al., 2012], driving the �eld into parameter estima-
tion (see section 4) and inclusion of larger time-scale phenomena than the heart or respira-
tory beat (see section 5). For more complete recent perspectives on these models for blood
�ow see e.g. [Nichols et al., 2011, Formaggia et al., 2010] and for respiratory �ow see e.g.
[Bates, 2009, Maury, 2013].

2.1.1 3D Navier-Stokes equations and �uid-structure interaction: the im-
portance of boundary conditions

The simplest three-dimensional description of blood �ow only considers the �uid motion as
an internal �ow in a rigid solid, the wall, where a no-slip condition is applied if the �uid
is considered as viscous (which is generally the case for blood �ow) [10, 11]. We refer to
[12, 13] for the extension to �uid-solid interaction at that level. Blood is besides assumed
to be a Newtonian �uid. The incompressible Navier-Stokes equations are thus solved in the
domain 
 1 with no-slip condition on the wall � and with a Dirichlet boundary condition on
the velocity at the inlet � in (the notation is de�ned in Figure 2.1):

�
@u
@t

+ � (u � r u ) + r p � 2� r � " (u ) = 0 (2.1)

r � u = 0 (2.2)

u j � = 0 (2.3)

u j � in
= u in (2.4)

where u : 
 1 � R+ ! R3 is the velocity, p : 
 1 � R+ ! R is the pressure, and
" (u ) = 1

2(r u + r u T ) denotes the strain rate tensor. The initial conditions for this problem
are given by a divergence free velocity vector �eld.

Here the names 'inlet' and 'outlet' are chosen for convenience, but any of these can have
some positive or negative �ow rate over time. They can each refer to a single planar conduit
face or a set of them. We refer to [3] for di�erent ways of de�ningu in based on the available
clinical or experimental data (PC-MRI �ow data, ultra-sound Doppler velocity data, etc.).
The system (2.1)-(2.4) has to be complemented with boundary conditions at the outlet� out

which take into account the rest of the vessels.
Remarkable progress has been made in simulating blood �ow in realistic anatomical mod-

els constructed from three-dimensional medical imaging data. Arguably, accurate anatomic
models are of primary importance in simulating blood �ow. However, as we demonstrate in
[11], realistic boundary conditions are equally important in computing velocity and pressure
�elds. Yet, at the time this subject has received far less attention than image-based model
construction for three-dimensional simulations. Three-dimensional numerical methods have
been used to compute velocity �elds and quantify shear forces acting on the surface of blood
vessels. However, since most three-dimensional models of blood �ow use zero or constant
pressure, zero traction, or prescribed velocity pro�les as outlet boundary conditions, blood
pressure is not computed accurately and notably absent from reports of hemodynamic in-
vestigations. For simulations of blood �ow in large arteries, the outlet boundary conditions



14 CHAPTER 2. BLOOD AND AIR FLOW MODELS

represent the downstream vasculature including smaller arteries, arterioles, capillaries, venules
and veins returning blood to the heart. Clearly, the vast extent and complexity of the cir-
culation precludes a three-dimensional representation of the entire circuit, yet ignoring the
e�ect of the downstream circulation results in grossly inaccurate predictions of velocity and
pressure �elds for many problems where the distribution of �ow between the major arteries
is unknown. If equal pressures or tractions are used for di�erent outlets, the �ow split is
dictated solely by the resistance to �ow in the domain of interest, neglecting the e�ect of the
resistance or �ow demands of the downstream vascular beds. In most cases, this e�ect is how-
ever dominant. An alternative approach is to utilize 3D models for the major arteries where
high-�delity information is needed, and reduced order models to represent the remainder of
the system (see sections 3.1 and 4 for modeling aspects and 3.3.3 for typical Navier-Stokes
Neumann boundary conditions).

Figure 2.2: Left: detailed in�ow and out�ow distributions for homogeneous pressure (blue)
versus resistance (green) PA outlet boundary conditions. Arrows indicate the direction of
blood. Velocity is prescribed on the 2 inlets (SVC and IVC). Right: overall lung �ow dis-
tribution (top) and corresponding velocity magnitude for (bottom left) zero pressure and
(bottom right) resistance outlet boundary conditions [3].

We illustrate the importance of boundary condition on a Fontan patient case (see section
1.2.3 and �g. 1.4). The resulting geometry in the shape of a 'cross' is peculiar for the
cardiovascular system: �ows from the two venae-cavae merge and get distributed into the two
pulmonary trees, sometimes creating very complex �ow and unique hemodynamics that are at
the time of [10, 14, 3] not well understood. In this context, we analyze the in�uence of di�erent
boundary conditions on �ow and pressure. First, let us compare the zero pressure boundary
condition case to a simulation where resistances (de�ned in section 2.1.3) are prescribed at
each outlet proportional to their areas, enforcing a 50%/50% �ow distribution between the two
lungs. The simulations are run with rigid wall and steady input �ows based on MRI data [3].
Despite the fact that this is a resting, steady regime, the resulting �ow distribution between
the left and the right lungs varies signi�cantly with the type of boundary condition, as shown in
�g. 2.2. Patient-speci�c blood �ow distribution cannot be taken into account when imposing
the same pressure at all the outlets. Furthermore, this has a direct impact on the velocity
�eld (see �g. 2.2), and thus on the wall shear stress, as well as on the level of pressure in the
system (which is particularly important for �uid-solid interaction applications) and the energy
losses. This example illustrates the impact of outlet boundary conditions, but several studies
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have also demonstrated that taking into account the (cardiac [Shandas, 2002] or respiratory
[14]) pulsatility of the in�ow as opposed to prescribing a steady value also signi�cantly a�ects
the results. For our more thorough study of boundary conditions impact, we refer to the
paper [11] for pressure, resistance and impedance boundary conditions in blood �ow, [13]
for Windkessel boundary conditions in hemodynamics FSI simulations considering periodic
assumption versus fully transient phenomena emerging from natural heart-rate variability or
�ow complexity in restricted geometries, and [15] comparing RC versus homogeneous constant
pressure for respiratory �ows. All these outlet reduced models are de�ned in section 2.1.3.

Figure 2.1: Top: 3D domain of a Navier-Stokes
model (section 2.1.1) coupled to a Windkessel
model (section 2.1.3), corresponding to the 3D-
0D coupling scheme in section 3.3.3). Bottom:
3D-3D coupling scheme in section 3.3.3).

In terms of formulation, although in
this thesis (and in most cited articles),
the advective form has been primarily
used, the conservative form has also been
tested for multidomain coupling in [11] as
well as other formulations for the natu-
ral emergence of di�erent Neumann bound-
ary conditions [16]. Numerically, it is only
with the development of computer meth-
ods that the three-dimensional equations
have been solved in their generality, i.e.
for both steady and pulsatile �ow, in sin-
gle tubes, bifurcations and patient-speci�c
complex multi-branched geometrical models,
for rigid and then moving walls. Finite-
volume methods (e.g. [Lagana et al., 2005]
or other articles using commercial codes
such as ANSYS CFX, ANSYS Fluent)
have been widely used to discretize the
spatial domain, especially for �uid sim-
ulations in simple domains, in conjunc-
tion with standard time-integration meth-
ods. Finite element methods have been
used for both �uid and solid discretiza-
tions, in space e.g. [Perktold and Rappitsch, 1995, Lagana et al., 2002, Cebral et al., 2003,
Taylor et al., 1998b, Moore et al., 1999, Stuhne and Steinman, 2004, Quarteroni et al., 2000,
Gerbeau et al., 2005] or in space and time [Torii et al., 2006]. In this work - except when
the commercial code Fluent is indicated (e.g. in [9]), stabilized �nite element methods have
been used either in the code PHASTA (see references and complete formulation in [11])
that is included in the open source code Simvascular [Schmidt et al., 2008, sim, 2015], or in
the code FELiScE [fel, ] [17]. Adaptative meshing has also been generally necessary for the
di�erent applications, particularly when �ow is complex, such as in multi branched geome-
tries [9]: MeshSim [Muller et al., 2005, Sahni et al., 2006] has been used with PHASTA (e.g.
[13, 18, 9, 19]) andfe�o [Loseille and Löhner, 2010] has been used with FELiScE [16, 17, 20].

2.1.2 1D equations of �ow: wave propagation due to viscoelastic walls

Of the �ow models cited above, lumped-parameter models do not capture wave propagation
phenomena, which are in some diseases of clinical importance. On the other hand, 3D methods
are anatomically accurate but computationally expensive. A good compromise may be found
with 1D models of blood �ow that enable the study of wave propagation phenomena while
being computationally inexpensive compared to 3D �uid-structure interaction models.

The one-dimensional equations for the �ow of a Newtonian, incompressible �uid in a
deforming, elastic domain consist of the continuity equation, a single axial momentum bal-
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ance equation, a constitutive equation, and suitable initial and boundary conditions. The
governing equations have been derived in a general form (i.e. without assuming axisym-
metry or shape of the cross-sectional area, and allowing for permeable walls) by Hughes
[Hughes and Lubliner, 1973]. This theory assumes that the velocityu is mostly in the axial
direction, the vessel is longitudinally tethered between two �xed planes, the no-slip condition
holds at the wall and that the axial velocity can be separated in a pro�le function times the
mean velocity. As a consequence pressure is uniform in a given cross sectional area. The
partial di�erential equations for mass and momentum balance are given by (z is the axial
coordinate along a segment between two �xed planes, or the union of such segments
 � see
[Peiró and Veneziani, 2009] for curved cases)

@S
@t

+
@Q
@z

= �  (2.5)
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The primary variables are the cross-sectional areaS : 
 � R+ ! R+ , the pressureP :

 � R+ ! R, and the volumetric �ow rate Q : 
 � R+ ! R de�ned from the 3D velocity as
Q :=

R
S( z;t )

u � n , n being the normal to the cross-section at axial positionz. The density of

the �uid is given by � (assumed constant), the kinematic viscosity by� (assumed constant)
and  : 
 � R+ ! R is an out�ow function at the wall (taken to be zero for impermeable
vessels, which will be the case thereafter). In the momentum equation, inertia (left of the
equation) is balanced by the pressure force and two viscous losses. The parameters� and
N are dependent upon the choice of a pro�le function for the velocity over the cross-section
[Hughes and Lubliner, 1973]. For a parabolic pro�le,� = 1

3 and N = � 8�� . Note that mean
axial velocity U := QnS is sometimes chosen as variable instead ofQ. The �ow rate or the
pressure are typically speci�ed at the inlets or outlets, but other conditions are considered
later as well. Initial conditions need to be given. In order to complete the above system, a
constitutive relationship for the vessel wall is chosen that relates pressure and cross-sectional
area. For example in the case of a linearly elastic thin wall assuming independent radial
movement of the di�erent sections [Olufsen, 1999]:

P(S; z) = P0(z) +
4Eh

3r 0(z)
(1 �

p
(
S(z; t)
S0(z)

)) (2.7)

where the Young's modulus E and the wall thickness h relate to the nominal radius
r 0 =

p
(S0=� ), 0 denoting a reference con�guration. But other choices can be made

[Pedley et al., 1996, Quarteroni et al., 2000, Formaggia et al., 2003] and in particular we will
study viscoelasticity later in this section. The �ow through bifurcations, where three
segments join, is governed by conservation of mass and balance of momentum or conti-
nuity of pressure. Note that balance of momentum is more desirable energetically, but
a di�erence has not been seen in practice [Formaggia et al., 2003]. This set of equa-
tions cannot, in general, be solved analytically. Therefore, a numerical approximation is
needed. Often, the viscous term� @2Q

@z2 is neglected in equation 2.6 due to its magni-
tude. The resulting equations are then hyperbolic and can be solved using the method
of characteristics ([Lambert, 1958, Anliker et al., 1971] and many others at that time and
later). The �nite di�erence method is often used to numerically solve these equations
[Stergiopulos et al., 1992, Curcio et al., 2004, Pontrelli, 2002], and in particular the two step
Lax-Wendro� �nite di�erence scheme [Smith et al., 2002, Olufsen et al., 2000, Cani¢, 2002].
Sherwin et al. [Sherwin et al., 2003b, Sherwin et al., 2003a] compared the combination of the
discontinuous Galerkin �nite element spatial discretization and the Adams-Bashforth time
integration scheme with a Taylor-Galerkin scheme, �nite element counterpart of the two-
step Lax Wendro� �nite di�erence scheme, which was also developed by Formaggia et al.
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[Formaggia et al., 2002b]. The comparison, veri�cation and validation of numerical meth-
ods has recently regained some attention [Wang et al., 2015, Boileau et al., 2015], and we
refer to these papers for pros and cons of these methods. The conclusion is that, except
for rare shock-like phenomena, these di�erent schemes give very similar results. Following
Hughes [Hughes and Lubliner, 1973], the Taylor group [Wan et al., 2002, Steele et al., 2007]
[21] included the viscous term� @2Q

@z2 . The system becomes parabolic, which is well known
to exhibit better regularity properties than hyperbolic systems [Curcio et al., 2004]. This
also happens in certain viscoelastic formulations [Quarteroni et al., 2000]. A space-time �-
nite element method, treating time as a space variable was developed to numerically solve
these equations as this scheme had been shown to yield stable and time-accurate solutions for
advective-di�usive systems in �uid-mechanics [Wan et al., 2002].

The size and complexity of the cardiovascular system necessitate a multidomain ap-
proach (see sections 2.1, 3), withupstream regions of interest (large arteries) coupled to
reduced-order models ofdownstream vessels. Previous e�orts to [21] to couple upstream
and downstream domains in 1D have included specifying resistance and impedance out�ow
boundary conditions for the nonlinear 1D wave propagation equations, but the theoretical
framework to couple these di�erent domains is missing. In [21] we propose such a multidomain
framework. Numerically, we solve the 1D nonlinear equations of blood �ow in conservative
form utilizing a space-time �nite element method with Galerkin Least Square stabilization
for the upstream domain, and a boundary term to couple to the downstream domain. The
motivation to work with the conservative form rather than the advective form as in previous
work [Wan et al., 2002], is to be able to integrate by part the convective term and obtain a
non-negligible �ux through which the multidomain coupling can be performed. The out�ow
boundary conditions are derived following an approach analogous to the Dirichlet-to-Neumann
(DtN) method (see 3.2). In the downstream domain, we solve simpli�ed zero/one-dimensional
equations to derive relationships between pressure and �ow accommodating periodic and
transient phenomena with a consistent formulation for di�erent boundary condition types. In
this work, we also present a new boundary condition that accommodates transient phenomena
based on a Green's function solution of the linear, damped wave equation in the downstream
domain. Results show minimal arti�cial wave re�ection. Alternative downstream models are
compared by solving idealized and patient-speci�c problems. We demonstrate that a DtN
map can be calculated for the impedance of complex vascular trees and that this approach
incorporates naturally occurring wave re�ections from a downstream bed. Wave propagation
in transient and periodic states is simulated and the importance of selecting appropriate
boundary conditions is demonstrated for one-dimensional simulations of blood �ow (see �g.
2.3). We �nd that the best boundary condition for cardiovascular applications is not the one
that exhibits no wave re�ection, since wave re�ections naturally arising from downstream
beds (from bifurcations, tapering, and variations in wall properties) should propagate
back upstream into the numerical domain. We conclude that, at present, impedance-based
boundary conditions (computed on linearized 1D equations integrated on fractal trees) are the
best approach for incorporating natural sites of wave re�ection in the downstream vasculature.

However it is well known that blood vessels exhibit viscoelastic properties
([Learoyd and Taylor, 1966] and other references in [22]), although most 1D models of blood
�ow, have employed elastic constitutive behaviors. Vessel wall viscoelasticity introduces a
phase di�erence between pressure and wall deformation. This leads to the well-known hys-
teresis loop where the region within the loop is representative of the energy dissipated by the
vessel wall under periodic loading. Viscoelasticity of the vessel wall is an important source
of physical damping and its presence is usually attributed to smooth muscle cells. It a�ects
clinically relevant quantities such as �ow and pressure in normal and pathological conditions.
Studies have shown that viscous properties of the vessel wall are altered by hypertension,
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Figure 2.3: E�ect of boundary conditions on wave re�ection. An inlet �ow pulse and a
transient �ow rate at the outlet were presented for an elastic vessel with a radius of 0.3
cm and a length of 80 cm. Results at the outlet are shown for di�erent outlet boundary
conditions. Note that the outlet �ow rate for the characteristic impedance BC and the 1D-
wave BC curves coincide with theexact solution. The zero exit pressure BC gives rise to a
large spurious re�ection, whereas the high resistance case overly damps the pulse.

which in turn is a risk factor for atherosclerosis and aneurysm disease. For instance, vis-
cous energy dissipation in the carotid artery was reported to be higher under hypertension
conditions.

When taken into account, viscoelastic equations of blood �ow are modeled in the litera-
ture with di�erent mathematical forms and experimental bases. The wide range of existing
viscoelastic wall models may produce signi�cantly di�erent blood �ow, pressure, and vessel
deformation solutions in cardiovascular simulations. In this work [22], we present a novel
comparative study of two di�erent viscoelastic wall models modifying the nonlinear 1D equa-
tions of blood �ow described above. The viscoelastic models are from papers by Holenstein
et al. in 1980 (model V1) [Holenstein et al., 1980] and Valdez-Jasso et al. in 2009 (model
V2) [Valdez-Jasso et al., 2009]. The static elastic or zero-frequency responses of both models
are chosen to be identical. The 1D blood �ow equations incorporating wall viscoelasticity are
solved using a space-time �nite element method and the implementation is veri�ed with the
Method of Manufactured Solutions.

Simulation results using models V1, V2 and the common static elastic model are compared
in three examples of increasing complexity: (i) wave propagation study in an idealized vessel
with re�ection-free out�ow boundary condition; (ii) carotid artery model with non-periodic
boundary conditions; and (iii) subject-speci�c abdominal aorta model under rest and sim-
ulated lower limb exercise conditions 2.4. In the wave propagation study the damping and
wave speed are largest for model V2 and lowest for the elastic model. In the carotid and
abdominal aorta studies the most signi�cant di�erences between wall models are observed in
the hysteresis (pressure-area) loops, which were larger for V2 than V1, indicating that V2 is a
more dissipative model. The cross-sectional area oscillations over the cardiac cycle are smaller
for the viscoelastic models compared to the elastic model. In the abdominal aorta study, dif-
ferences between constitutive models are more pronounced under exercise conditions than at
rest. Inlet pressure pulse for model V1 is larger than the pulse for V2 and the elastic model in
the exercise case. In this work, we have successfully implemented and veri�ed two viscoelas-
tic wall models in a nonlinear 1D �nite element blood �ow solver and analyzed di�erences
between these models in various idealized and physiological simulations, including exercise.
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The computational model of blood �ow presented here can be utilized in further studies of
the cardiovascular system incorporating viscoelastic wall properties, although comparison to
experimental data would be needed to delineate the domain of validity of each model.

Figure 2.4: Cross-sectional area over one heart beat and pressure-area hysteresis under lower
limb exercise conditions at the inlet and right external iliac outlet of the subject-speci�c
abdominal aorta model [22].

2.1.3 Reduced modeling of the entire system

The concept of peripheral resistance and the notion of the arterioles and capillaries constitut-
ing the major vascular resistance was probably �rst described by Hales in his bookHaemo-
statics in 1733. Around 1838, the physician Poiseuille (and Hagen in 1939) then related the
resistance (R) to steady �ow in a cylindrical tube to the �uid viscosity � and the dimensions
of the tube (length L and radius r ): R = 8�L

�r 4 . The so called (Hagen-)Poiseuille relation
which linearly relates the pressure loss� P to the �ow Q and resistance as� P = RQ, can be
derived from the Navier-Stokes equations assuming steady, axisymmetric, uniaxial, developed
�ow of a Newtonian �uid in a cylindrical, straight and rigid tube. As a consequence, the
pressure is uniform on a given cross section. An equivalent resistance to �ow, or resistance
operator, in a 3D domain or a network of branching tubes can also be de�ned under some
assumptions [Maury, 2014]. The case of a dyadic tree, and its convergence when in�nite, is
studied in [Grandmont et al., 2006].

The RCR or Windkesselmodel is an electric analog that has a proximal resistanceRp in
series with a parallel arrangement of a capacitanceC and a distal resistanceRd (see �g. 2.1,
4.15). A downstream pressure potentially varying in time, can be used, e.g. to represent the
pressure in the right atrium. The Windkessel model was originally derived by the German
physiologist Otto Frank in an article published in 1899 to describe the afterload of the heart
related to pumping blood through the pulmonary or systemic arterial system. The proximal
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Table 2.1: Pressure and �ow-rate relationship for various components:p represents pressure
and q represents �ow-rate

component p-q relationship component p-q relationship

p1
R q

p2 p1 � p2 = R q p1
q

p2
K

p1 � p2 = K qjqj

p1
L q

p2
p1 � p2 = L _q

q1 p

C

q2

q1 � q2 = C _p

resistance represents the resistance to �ow in the major arteries that have the capacity due to
their wall elasticity to store blood during systole and restore it during diastole. It is assumed
that after these major arteries, the rest of the vascular bed is purely resistive, represented
by Rd. The end pressure of the circuit is assumed to be a known function of time (typical
values are zero for the systemic side and the left atrium pressure for the pulmonary side).
This model retains the same spatial assumptions as for Poiseuille �ow.

Respiration on the other hand is a dynamic process where air �ows in (inspiration) and out
(expiration) through a resistive tree of airways terminated by elastic alveoli and surrounding
tissue (�g. 1.3), which simplest model (the 'pipe-balloon' model orRC model) is a resistanceR
in series with a capacitanceC [Bates, 2009, Maury, 2013]. Note that the resistance e�ectively
also represents dissipation due frictional forces in the lung tissue.

These models are the simplest forms of a lumped parameter model, i.e. �ow description
as a dynamical system. It is also called0D model as it neglects the spatial variation of the
parameters and variables, and thus the only variable is time. If the model is distributed, these
parameters and variables are assumed to be uniform in each spatial compartment. Therefore,
a lumped parameter model is described by a set of coupled ordinary di�erential equations
representing the dynamics of the variables in each compartment. By electric analogy, the
blood circulation and the respiratory system are described as networks, where pressure plays
the role of voltage and �ow rate the role of current. The impedance of a compartment can
represent conduitsexplicitly - such as in arterial, venous and respiratory systems modeled
as structured or morphometric trees [Olufsen, 1999, Spilker et al., 2007, Oakes et al., 2012]
[21, 11] and in explicit microcirculation representation (see section 2.3, [8]) -, ore�ectively ,
e.g. lung lobe by lung lobe for respiration (�g. 4.1, 4.4), entire vessel trees distal to a vessel
of interest ([13, 23, 19] and �g. 4.8) or even groups of organs in blood circulation [24, 25, 26].

Resistance, capacitance and inductance (representing �uid inertia) relations to con-
duit geometry and �uid properties can be derived by spatial integration of the 1D equa-
tions of section 2.1.2 [Peiró and Veneziani, 2009]. But in case of e�ective network rep-
resentations, their values are not easy to de�ne (see chap. 4). Nonlinear components
are rather phenomenological descriptions of a more complex behavior, e.g. for nonlin-
ear lung capacitance [Bates, 2009, Martin and Maury, 2013], for nonlinear resistance in
the aorta ([20] and �g. 4.15) or in shunts [Migliavacca et al., 2001], for heart chambers
[Suga and Sagawa, 1974, Arts et al., 1991, Migliavacca et al., 2001, Caruel et al., 2014], for a
new regurgitant valve model [26]. Shown in �g. 2.5 is an example of aclosed-loopmodel of
the circulation (recall �g. 1.1), meaning where the only driving source term of the dynamical
system is the activation of the heart, and neither pressure nor �ow are given at a certain node.
Table 2.1 gives the algebraic relations or ODEs representing the most common components.

The resulting model is a coupled system of ODEs and algebraic equations, usually
quite sti� due to the heart model. It can be solved with libraries such as the IDA
solver, a part of SUNDIALS (Suite of Nonlinear and Di�erential/Algebraic Equation Solvers)
[Hindmarsh, 2000, Hindmarsh et al., 2005]. But other methods (Runge-Kutta 4, etc.) have
been used and we refer to the above cited papers for more information.
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Figure 2.5: Closed-loop 0D model for single-ventricle circulation with heart, lungs, lower and
upper body compartments. Measurements are shown in red for parameter estimation and in
blue for validation (see section 4.3 or [26]).

2.2 Tissue-scale (multiphysics) modeling

Blood and air �ow can be a�ected by the surrounding elastic wall and tissue. The interaction
between the �uid and the surrounding structure (FSI) can be modeled by di�erent approaches,
which has been the subject of intense research in the last 10 years (see references in the cited
papers next). In [12], we took into account the vessel elasticity as a membrane, simulating for
the �rst 3D FSI in the aorta. This permitted to study repair e�ects in coarctation of the aorta,
an aortic narrowing which is a common CHD [2, 27]. We studied vessel wall viscoelasticity in
1D models of blood �ow [22] (see section 2.1.2). These works were later extended by others
to add the surrounding tissue e�ect and their parameter estimation [Moireau et al., 2012,
Moireau et al., 2013].

All these works are based on the detailed 1D or 3D representation of the vessel geometry.
If the latter is not known explicitly but that FSI e�ects are important, poroelasticity is an
alternative option. This is what will now be developed in this section, as a summary of our
work in [28]. This work is motivated by the modeling of blood �ows through the beating
myocardium, namely cardiac perfusion. The main contribution of this study is the derivation
of a general poroelastic model valid for a nearly incompressible medium which experiences
�nite deformations. A numerical procedure is proposed to iteratively solve the porous �ow
and the nonlinear poroviscoelastic problems. Three-dimensional numerical experiments are
presented to illustrate the model. The �rst test cases consist of typical poroelastic con�gura-



22 CHAPTER 2. BLOOD AND AIR FLOW MODELS

tions: swelling and complete drainage. Finally, a simulation of cardiac perfusion is presented
in an idealized left ventricle embedded with active �bers. Results show the complex temporal
and spatial interactions of the muscle and blood, reproducing several key phenomena observed
in cardiac perfusion.

2.2.1 Poromechanics: a di�erent �uid-structure interaction model

Despite recent advances on the anatomical description and measurements of the coro-
nary tree � see e.g. [Spaan et al., 2008, Horssen et al., 2009] � and on the corresponding
physiological, physical and numerical modeling aspects � see e.g.[Westerhof et al., 2006,
Smith and Kassab, 2001, Smith, 2004] � the complete modeling and simulation of blood �ows
inside the coronaries from the arteries to the veins via the capillaries is still out of reach.
Therefore, in order to model blood perfusion in the cardiac tissue, we must limit the descrip-
tion of the detailed �ows at a given space scale, and simplify the modeling of the smaller scale
�ows by aggregating these phenomena into macroscopic quantities, by some kind of 'homog-
enization' procedure. To that purpose, the modeling of the �uid-solid coupling within the
framework of porous media appears appropriate.

Poromechanics is a simpli�ed mixture theory where a complex �uid-structure interac-
tion problem is replaced by a superposition of both components, each of them represent-
ing a fraction of the complete material at every point. It originally emerged in soils me-
chanics with the work of Terzaghi [Terzaghi, 1943], and Biot [Biot, 1956, Biot, 1972] later
gave a description of the mechanical behavior of a porous medium using an elastic formu-
lation for the solid matrix, and Darcy's law for the �uid �ow through the matrix. Finite
strain poroelastic models have already been proposed [May-Newman and McCulloch, 1998,
Almeida and Spilker, 1998, Yang and Smolinski, 2006, Borja, 2006], albeit withad hoc for-
mulations for which compatibility with thermodynamics laws and incompressibility condi-
tions is not established. Poroelastic models have also been considered in the framework
of �uid-structure interaction, e.g. to model blood vessel walls [Badia et al., 2009], with
some extensions including lipid (LDL) [Koshiba et al., 2007] and drug [Calo et al., 2008,
Feenstra and Taylor, 2009] transport. Other formulations have been proposed with multiple
�uid compartments � or a continuum of such compartments � coupled with each other and
with the solid medium [Huyghe and van Campen, 1991a, Huyghe and van Campen, 1991b,
Cimrman and Rohan, 2003], and with applications to the modeling of living tissues
[Vankan et al., 1997], but of course such models are extremely di�cult to validate with ex-
perimental evidence in practice.

2.2.2 A poroelastic model valid for large strain

We introduce a general poroelastic formulation valid for �nite strains and compatible with
incompressibility, as these two features are deemed to be important in the modeling of living
tissues. We follow the strategy � presented in [Coussy, 1995] in a linear framework � of deriv-
ing the formulation from an appropriate free energy functional, which is crucial to guarantee
that fundamental thermodynamics principles are satis�ed. In this section, we �rst introduce
kinematical and conservation laws of the porous medium. Based on thermodynamics consider-
ations we then develop the constitutive laws that characterize the solid phase, the �uid phase
and their interaction. The saturated porous continuum consists of a solid part � referred to
as the "skeleton" � and a �uid part that accounts for fraction � of the combined volume in
the deformed con�gurations. The subscript "0" will be used to refer to the reference con�gu-
ration. Let y be the displacement �eld of the skeleton as de�ned in a Lagrangian formulation,
namely, given with respect to a �xed reference con�guration. Then as classically in mechanics

F = 1 + r x̂ y; J = det F ; C = F T � F ; e =
1
2

�
C � 1

�
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are respectively the deformation gradient, local volume change, right Cauchy-Green deforma-
tion tensor and the Green-Lagrange strain tensor. Denoting indi�erently by a dot symbol
or by d�

dt the Lagrangian time derivatives � namely, obtained when following �solid particles�
� geometrical considerations lead to

J r � us =
dJ
dt

; (2.8)

whereus = _y is the velocity of a solid particle. The divergence is here considered in Eulerian
form. Denoting by m the change in �uid mass per unit volume of the reference con�guration,
by de�nition,

m = � f J� � � f
0 � 0; (2.9)

where � f is the �uid mass per unit of �uid volume. Furthermore, conservation of �uid mass
is in Eulerian form:

@
@t

(� f � ) + r � (� f � u f ) = � f s; (2.10)

with uf the velocity of a �uid particle, and s a general sink or source term. Combining the
equations (2.8) and (2.10) with the de�nition of the perfusion velocity w = � (uf � us), and of
the added massm in (2.9), we obtain the general conservation of �uid mass in porous media

r � (� f w) +
1
J

dm
dt

= � f s: (2.11)

In addition, conservation of mass of the solid phase can be written as

J� s(1 � � ) = � s
0(1 � � 0): (2.12)

The balance of momentum of the porous medium written in Lagrangian form:

(� 0 + m) •y = r x̂ �
�
F � �

�
: (2.13)

In the inertia term, we have neglected the discrepancy between the �uid and solid accel-
erations, and � 0 denotes the total mass per unit volume in the reference con�guration, i.e.
� 0 = � 0� f

0 +(1 � � 0)� s
0. We then propose some constitutive equations to adequately represent

poromechanics in �nite strain in a formulation compatible with the incompressible limit.
Thermodynamics considerations [Coussy, 1995, de Buhan et al., 1998] entail the existence

of a Helmholtz free energy	 = 	( e; m; T ), whereT denotes the temperature. In the absence
of internal dissipation we then have

� =
@	
@e

; gm =
@	
@m

; (2.14)

where � denotes the second Piola-Kirchho� stress tensor andgm (p; T) the free enthalpy (also
called Gibbs free energy) of the unit �uid mass, which characterizes the �uid constitutive
behavior through

1
� f =

@gm
@p

; (2.15)

where p is the �uid pressure � also called interstitial pressure. The constitutive behavior of
the poroelastic material is then entirely characterized by the choice of the functionals	 and
gm . Assuming an isothermal regime, we propose to extend the linear theory of [Coussy, 1995]
by considering

	 = W hyp(e) � Mb
m

� f
0

(J � 1)f (J ) +
1
2

M
�

m

� f
0

� 2

f (J ); (2.16)
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gm =
p � p0

� f
0

: (2.17)

In the expression (2.16),W hyp denotes some hyperelastic potential to be chosen,M is the
so-called Biot modulus,ba parameter characteristic of the skeleton andf a function to de�ne.
Note that the choice (2.17) directly implies with (2.15) that the �uid considered is incom-
pressible. Concerning (2.16) the most straightforward extension of the linear theory would
correspond to f (J ) = 1 , but this choice as demonstrated in [28] is in general incompatible
with incompressible conditions, by which we now mean incompressibility of the �uid and the
solid individually. With the choices (2.16)-(2.17) the direct application of (2.14)-(2.15) then
gives

� =
@Whyp

@e
� Mb

m

� f
0

�
f + ( J � 1)f 0� JC � 1 +

1
2

M
�

m

� f
0

� 2

f 0JC � 1; (2.18)

p � p0 = Mf (J )
�

b(1 � J ) +
m

� f
0

�
: (2.19)

In order to be consistent with incompressibility, the singularity arising from the hypere-
lastic stress in the incompressible limit � associated with a �large� bulk modulus � must be
compensated by the second term in the right-hand side. Indeed, in the poroelastic material in-
compressibility does not induce constraints on the strainsper se, as added �uid can change the
apparent volume without violating the incompressible assumption. Hence, we need to adapt
the expression off (J ) according to the speci�c hyperelastic potential considered. In particu-
lar, when using the modi�ed Ciarlet-Geymonat expression (see [Ciarlet and Geymonat, 1982]
for the original formulation, J1 and J2 being the �rst two invariants of the left Cauchy-Green
deformation tensor)

W hyp = � 1(J1 � 3) + � 2(J2 � 3) + K (J � 1) � K ln J; (2.20)

where nearly-incompressible materials are obtained by taking the bulk modulusK large com-
pared to the other material parameters� 1 and � 2, we obtain

� =
@WMR

@e
+

�
K � Mb2J

�
f + 1

2(J � 1)f 0�
�
(J � 1)C � 1 � b(p� p0)JC � 1 +

1
2

(p � p0)2

M
f 0

f 2 JC � 1;

(2.21)
where we denote byW MR the Mooney-Rivlin type potential W MR = � 1(J1 � 3) + � 2(J2 � 3).
In the form (2.21) we can see that a necessary and su�cient condition for canceling the
singularity is to ensure

J
�
f + 1

2(J � 1)f 0� = 1 ; 8J; (2.22)

and have� s = K � Mb2 remain �nite when K grows large. This leads to

f (J ) =
2(J � 1 � ln J )

(J � 1)2 ; f (1) = 1 ; (2.23)

� s can be interpreted as an elasticity modulus for the skeleton; it also plays the role of the
apparent bulk modulus of the drained material, which remains �nite in the incompressible
limit when K tends to in�nity, since the drained poroelastic material can freely absorb or
expel some �uid.

With the above poroelastic constitutive law, we may encounter some di�culties with the
evolution of the porosity � which is simply deduced fromm and J by (2.9). This may indeed
lead to the violation of the constraint 0 < � < 1 which should always hold. Here we slightly
modify the free energy (2.16) by considering

	 = W hyp(e) � Mb
m

� f
0

(J � 1)f (J ) +
1
2

M
�

m

� f
0

� 2

f (J ) � � 0 ln
�

m

� f
0

+ � 0

�
; (2.24)
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where the additional term will result in m=� f
0 + � 0 > 0, hence� > 0 by (2.9). This leaves the

constitutive equation (2.18) unchanged, while (2.19) is transformed into

p � p0 = Mf (J )
�

b(1 � J ) +
m

� f
0

�
�

� 0

m=� f
0 + � 0

: (2.25)

This shows that p � p0 can become arbitrarily large (in negative values) whenm=� f
0 tends to

� � 0 from above, as desired.
Finally, the second principle of thermodynamics � the dissipation associated with the

transport of �uid mass [Coussy, 1995] � leads to the last equation needed to fully characterize
the system, also known as Darcy's law:

w = � K � r p: (2.26)

K being the permeability tensor, conceptually similar to a distributed inverse of a resistance
to �ow. The system of equations characterizing the porous media dynamics follows from
(2.13), (2.11), (2.26) and (2.19): Findy, w, p and m such that

8
>>>>>>><

>>>>>>>:

(� 0 + m)•y = r x̂ �
�
F � �

�
;

r � w +
1

JMf
dp
dt

�
f 0

Mf 2 (p � p0)r � us = � br � us + s;

w = � K � r p;

p � p0 = Mf (J )
�

b(1 � J ) +
m

� f
0

�
�

� 0

m=� f
0 + � 0

:

(2.27)

This system needs to be complemented by adequate boundary conditions, typical of solid
and �uid equations. Finite-element codes tailored for the solid and �uid parts are iteratively
coupled and the nonlinear system is solved through an accelerated �xed point algorithm on
m. More information can be found in [28].

2.2.3 Numerical results

In this section we present two test problems to illustrate the behavior of this poroelastic
model under large deformations: swelling and drainage of a cube. In the swelling test, no
external force is applied on the skeleton but a �uid pressure gradient is imposed between two
opposite faces whereas a null �ux condition is applied on the four other faces (see �g. 2.6).
As a consequence, �uid enters in the medium from the inlet face. Velocity increases as the
inlet pressure rises. The cube swells like a sponge undergoing large deformation as shown
in �g. 2.6. When the inlet pressure has reached its limit value, a steady state takes place:
the elastic forces are in equilibrium with the pressure increase due the added �uid. Although
pressure decreases roughly linearly withx, the added �uid mass decreases nonlinearly (see the
plots of p and m over time for three points across the cube in �g. 2.6). The perfusion velocity
goes mainly in thex direction, but unlike for a purely Darcy �ow, it is not homogeneous in
space (see the arrows on the deformed cube).

By contrast, in the drainage test, an external pressurePv of the order of magnitude of
the left ventricle pressure in systole10 kPa is gradually applied on all the faces of the cube
(skeleton part). For the �uid, a null �ux condition is applied on all the faces but the pores
are connected to a pressure sink terms = � � (p � psink ). As a result, the �uid is drained
out of the sponge and the cube shrinks. If the external pressure is high enough to drain all
the �uid, the penalization introduced in equation (2.25) prevents � from being negative. The
results thus show two di�erent phases (�g. 2.6). In the �rst phase, �uid is drained until the
porosity is nearly zero, at which point m � � � 0. In the second phase, the skeleton behaves
as its solid component (we only see the compressibility e�ects through the bulkK ). The
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Figure 2.6: Swelling and drainage tests of a cube.Left : Swelling test boundary conditions
and solution. Dark grey represents the initial cube, and light grey the deformed cube. The
arrows are the velocity vectors, colored by their magnitude.Upper right: pressure and mass
are plotted against time for three points (the lower point attached to the inlet face in black,
the middle point in blue and the upper point attached to the outlet face in cyan). Lower right
graph: drainage test of the porous medium by applying an external pressure on the exterior
of the skeleton. Fluid is �rst drained out of the media until � = 0 . Then the medium is
compressed according to the compressibility of the solid phase.
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theoretical steady state is thus given by the equilibrium of the volume terms in (2.18), i.e.

K (1 � 1=J) + Mb � 0

� f
0

�
f + ( J � 1)f 0

�
+ 1

2M
�

� 0

� f
0

� 2

f 0 = � Pv : The numerical results verify this

analytical expression.

Finally, we present the application to cardiac perfusion. The active contraction of the
myocardium forces blood into the aorta and the coronaries, which supply the myocardium
with blood, and thus oxygen. Unlike most of the organs, this �ow of blood occurs in a very
dynamic network of vessels, due to the beating of the heart. Until now we have considered a
passive poroelastic material. In order to represent the active behavior of the cardiac tissue,
we extend the approach described in [Sainte-Marie et al., 2006] to incorporate porous �ow.
The complete expression of the 3D stress tensor reads

�
heart

= �
�
e; m

�
+ � _e+ � 1D n 
 n; (2.28)

where �
 � denotes tensorial product for the activation along the 1D �bers and � represents
the viscosity of the tissue.

Heart perfusion consists of a �ow through coronary arteries, arterioles, capillaries, venules
and veins. Several compartments could be modeled individually by a porous medium �ow
and coupled through exchange terms (seee.g. [Vankan et al., 1997]). Our experience with
this kind of approach is that it can be extremely di�cult to parametrize each compartment
in order to get meaningful behaviors in realistic 3D con�gurations, in particular to avoid non-
physiological back�ows. Here we use a single compartment poroviscoelastic model, which is
supposed to only describe small arteries, capillaries and small veins. The venous network is
modeled as a simple sink term in the porous �ow equations. The porous �ow is assumed for
simplicity to be fed by a distributed arterial source term. Thus in the second equation of
(2.27), s = � a(pa � p) � � v(p � pv); where � a; pa and � v ; pv are given constants, respectively
characterizing the small arteries and small veins compartments.

We now present a simulation of the model described above on a 3D analytical geometry
that mimics the left ventricle. Fibers are embedded with an orientation that varies nonlinearly
across the wall [Sainte-Marie et al., 2006]. The activation of the muscle occurs during 0.25 s,
after which the muscle relaxes so that the heart beat lasts 0.8 s. The contraction is such that
the ejection fraction is normal (around 50%). The top part that would be attached to the
atrium is constrained to zero displacement. On the epicardium, the e�ect of the pericardium
is neglected and thusPv = 0 . To investigate the e�ect of the contraction decoupled from the
ventricular pressure, there is no valve in this model and the ventricle is unloaded (Pv = 0
on the endocardium). On the �uid side, blood cannot enter into or leak from the ventricle
(a null �ux condition is applied on the whole boundary). Instead, blood enters in the my-
ocardium from a distributed source with pa = 2 :7kPa which corresponds to a typical small
artery pressure of 20 mmHg, and leaves through the venous side at a pressure of 10 mmHg
modeled as a distributed sink withpv = 1 :3kPa. The pressure di�erential across the capillary
bed is thus of 10 mmHg. These values are consistent with literature data for the myocardium
and skeletal muscles [Zinemanas et al., 1995, Kassab et al., 1999, Fronek and Zweifach, 1975].
The inverse of the volume resistance to �ow from the small arteries and into the small veins is
3 10� 5 Pa� 1s� 1, chosen so that the average �ow rate for the whole myocardium corresponds
to 4% of a normal cardiac output [Berne and Levy, 2001]. The blood porosity� 0 is 0.15
[Gonzalez and Bassingthwaighte, 1990, May-Newman et al., 2001], representing here the vol-
ume fraction of blood in the capillaries, which is ten times larger than the ones of the other
small vessels [Ghista and Ng, 2007]. The permeabilityK is isotropic and homogeneous with a
scalar value of2 10� 9 m2Pa� 1s� 1 [Huyghe et al., 1992]. The simulation was run with a mesh
of 15,000 elements.

The resulting time-averaged behavior is a system in which blood �ows continuously from
the small arteries into the capillaries, and from the capillaries into the small veins, at a
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�ow rate of 4 mL s� 1, a mean pressure of 15 mmHg (2kPa) and a muscle volume of260 mL.
Figure 2.7 shows the variation in time around this state. During contraction, myocardium
volume decreases, while it increases during relaxation. This phenomenon has been reported
in [Ashikaga et al., 2008] and references herein. Fibers contraction induces a rise of pressure.
As a consequence, �ow from the small arteries into the capillariesqa is considerably reduced
- which corresponds to the so called�ow impediment ([Westerhof et al., 2006] and references
herein) - and blood is squeezed out of the capillaries (lowering ofm) into the small veins (rise
of qv). During relaxation, the opposite happens: m rises asqa increases andqv decreases,
�lling up the capacitance of the capillaries. The mainly systolic �ow in the small arteries and
mainly diastolic �ow in the small veins are consistent with the measured velocities in small
arteries and small veins in the left ventricle given in [Ghista and Ng, 2007].

Figure 2.7: Variations over two cardiac cycles
of myocardium volume with the contraction (c)
and relaxation (r) phases, the pressure aver-
aged over the volume, the added blood mass
averaged over the volume, and the �ow rates
that come from the small arteries (qa) and leave
into the small veins (qv).

Furthermore, as can be seen in Fig-
ure 2.8, pressure and mass vary nonlin-
early across the myocardium wall. Dur-
ing contraction, pressure, and consequently
�ows as well, is more a�ected by the con-
traction in the subendocardium than in
the subepicardium. The model is thus
able to reproduce the fact that �ow im-
pediment is known to be higher in the
subendocardium than in the subepicardium
[Goto et al., 1991, Ghista and Ng, 2007]. In
[28] we also show that the solution is het-
erogeneous in the di�erent regions of the
myocardium, which supports the choice of
such a 3D model. During the cardiac cy-
cle, the myocardium undergoes large defor-
mation, e.g. here 24% at the apex.

2.2.4 Conclusion

We have proposed a poroelastic model ac-
counting for large strains and compati-
ble with incompressible conditions. The
modeling, numerical implementation and
some veri�cations were presented. A spe-
cial emphasis was placed on the com-
patibility with thermodynamics principles
(see [Chapelle and Moireau, 2014] for a more
general formulation). The model has dis-
played an excellent behavior when used in
the veri�cation tests characteristic of essen-
tial poroelastic phenomena with large dis-
placements and strains, including when un-
dergoing complete drainage of the �uid. As
far as cardiac perfusion is concerned, the ma-
jor di�culty lies in the complexity of the
physiological phenomena and the lack of suf-
�ciently detailed measurements to validate the various modeling assumptions. Nevertheless,
in spite of the relative simplicity of the model, the proposed numerical experiments have
shown that important mechanisms of perfusion appear to be adequately captured. In particu-
lar, the results indicate that taking into account the ventricle cavity pressure is not necessary
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Figure 2.8: Mean pressure and mass traced over one cardiac cycle (upper left graphs). Pres-
sure, mass, and arterial and venous �ow rates traced for endocardium (endo) and epicardium
(epi), at exact locations shown in the 3D �gure. Pressure and mass gradients across the my-
ocardium wall between these two points are represented on the lower right graphs (d is the
distance from the endocardium point).
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to model �ow impediment during systole and to obtain a higher impediment in the endo-
cardium than in the epicardium. At the time of [28], this 3D perfusion model represents
a signi�cant step forward of realistic simulations in a beating ventricle. We therefore be-
lieve that this model can be viewed as a tool to investigate the mechanisms of cross-talk
between the myocardium and coronary �ow, taking into account both the stresses gener-
ated by the contraction as in this study, as well as the e�ect of the left ventricular pres-
sure. Cardiac perfusion modeling and simulation have since then gained more attention
[Bradley et al., 2011, Cookson et al., 2012, Vuong et al., 2015].

The present study can be extended in many directions. For example: coupling of the
porous �ow with models representing the circulation in larger arteries (results not shown
here); simulation of some characteristic pathologies, e.g. an infarcted area as re�ected in a
�ow impediment combined with a decrease of local muscular contractility; modeling of the
supply of the nutrients necessary for the cardiac muscle activity; transport and retention
modeling of injected material [29, 30]; validation and calibration with clinical data.

2.3 Micro-scale �ow modeling

At the micro scale, the exact vasculature geometry is even more di�cult to access. Yet, if
the spatial arrangement of tumor cells with their microenvironment is important, one may
choose to explicitly represent the di�erent components. Here, we focus on the blood vessels.
One of the main steps from benign tumors to invasive cancer is a process called angiogenesis,
i.e. the formation of new blood vessels. In this work [8], multiscale simulations of tumor
growth are performed to study the in�uence of vascularization and angiogenesis on tumor cells
development. The model includes the cellular (individual cells and vessels, development and
death) and the molecular (oxygen, glucose and angiogenic growth factors reaction/di�usion)
interplays. We show how experimental observations can be explained by the interplay of
processes on the molecular and the cellular scale within a framework using individual-based
models. More precisely, we explore the impact of angiogenesis on the growth dynamics of
small tumors by direct comparison to situations where angiogenesis would not occur.

2.3.1 Tumor growth and angiogenesis modeling

In liquid suspension many tumor cells form multi-cellular spheroids. At small popula-
tion sizes their radii grow exponentially as cell growth and division are unconstrained.
They then show a transition from exponential to linear growth at a population size that
vary with the cell types but at nutrient conditions similar to those in vivo. Such linear
growth can also be found in-vivo, for example in xenografts of human NIH3T3 cells in the
mouse model [Radszuweit et al., 2009] indicating a generic character of this growth law. In
vitro growing multi-cellular spheroids form an approximately central spheroidal necrosis at
about 400�m [Mueller-Klieser, 1987]. However, the linear expansion is almost una�ected by
the formation of the necrotic core unless very unfavorable nutrient and oxygen conditions
[Freyer and Sutherland, 1986]. This may be explained by a biomechanical form of contact in-
hibition as the key growth-limiting factor ([Drasdo and Höhme, 2003] and following papers).
Freyer and Sutherland observed a signi�cant slow down of the tumor expansion only if both,
oxygen and glucose concentrations were low. Multicellular spheroids grow only up to about
a millimeter in diameter. By contrast, tumors can grow to several centimeters. As the multi-
cellular spheroids, the xenografts have a largely spherical shape but contrarily to spheroids
they are well vascularized and in many cases show only modest necrotic and apoptotic �g-
ures. Hence the induction of new vessels permits growth of tumor cell population size up
to about 3-4 magnitudes more than multi-cellular spheroids and, can avoid formation of a
central necrotic core.
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The in vivo situation is extensively described in [Marmé and Adam, 2008]. A tumor may
grow up to a size of a few mm in diameter, nourished by oxygen and nutrients di�using from
the existing vasculature. This phase is often called theavascular growth; many aspects of this
growth phase are extensively studied in-vitro by growing multicellular spheroids. A tumor
can remain stable at that size. However, if as a consequence of their proliferation, tumor
cells lack oxygen and nutrients, they can trigger several mechanisms to generate a higher
density of blood vessels and thus increase their needed supply [Bergers and Benjamin, 2003],
[Ribatti et al., 2003]. The main mechanism is the formation of new capillaries (angiogene-
sis), sprouting from existing vessels. Hypoxic and underfed tumor cells and other cells from
the micro-environment secrete soluble factors, such as vascular endothelial growth factors
(VEGF), that target the nearby blood vessels, make their endothelial cells proliferate, mi-
grate, sprout and form a tube. In addition to these angiogenic factors, anti-angiogenic factors
are also produced. The so calledangiogenic switchoccurs if growth factor promoters over-
balance anti-angiogenic factors [Hanahan and Folkman, 1996]. New blood vessels are created
towards the hypoxic regions of the tumor [Carmeliet, 2003]. Many cancer tissues have indeed
extensive regions of hypoxia compared to normal tissue [Vaupel, 2004], usually associated with
necrotic regions. This is due to the rapid growing of tumor mass that increases the distance
between some cells and blood vessels, and to the non-functioning of some of the generated
blood vessels (structural malformation, �uctuation in blood �ow). A constant vessel network
remodeling thus occurs, as the blood vessels inside the tumor may not be very functional (i.e.
carry too low �ow or experience too low wall shear stress), may collapse due to the high pres-
sure generated by the surrounding proliferating tumor cells that cannot be counter balanced
by a too unstable �ow, or may die due to hypoxia or anti-angiogenic factors (see in addition
the references to biological articles in [Bartha and Rieger, 2006] and [Mantzaris et al., 2004]).

Many aspects of tumor growth have been studied using mathematical models. In
most cases deterministic models of the reaction-di�usion type or continuum mechani-
cal models have been used (for comprehensive reviews see e.g. [Mantzaris et al., 2004,
L.Preziosi, 2003, Roose et al., 2007]). They assume that growth is mechanically reg-
ulated [Ambrosi and Mollica, 2002, Byrne and Preziosi, 2003] or nutrient-limited (e.g.
[Ward and King, 1997, Macklin et al., 2009]). They either describe how the solid tumor
front grows (see e.g. [Byrne and Drasdo, 2009]), or how the density of the di�erent com-
ponents evolves in time and space (see e.g. [Wise et al., 2008, Preziosi and Tosin, 2009]).
These are well suited to the description of large scale phenomena where the cell and tis-
sue properties vary smoothly over a length scale of several cell diameters. In order to
study small-scale phenomena or situations in which the properties of the cells vary over
distances comparable to the size of a cell, single-cell-based models that describe each en-
tity individually (for example, at the cellular level and individually how tumor and en-
dothelial cells grow, divide, move and die) permit a higher degree of spatial resolution
than models in which sub-cellular properties are replaced by locally-averaged quantities
(for reviews, see e.g. [Drasdo, 2003, Anderson et al., 2007]). The di�erent approaches
have also been combined in hybrid or multiscale models, mostly in 2D. Examples include
agent-based models for cells and continuum models [Schaller and Meyer-Hermann, 2005,
Jiang et al., 2005, Alarcón et al., 2005, Kim et al., 2007, Welter et al., 2008] or simpli�ed as-
sumed pro�les [Bartha and Rieger, 2006, Lee and Rieger, 2006] for di�usion of oxygen, nutri-
ents and/or growth factors or inhibitors. Note that in [Kim et al., 2007] the di�erent tumor
zones were represented with either agent-based models or continuum models. The e�ect
of the vasculature is explored with a given network [Alarcón et al., 2005] or includes angio-
genesis and remodeling [Bartha and Rieger, 2006, Lee and Rieger, 2006, Macklin et al., 2009,
Owen et al., 2009], angiogenesis being by itself an active subject of modeling (see e.g.
[McDougall et al., 2006, Mantzaris et al., 2004, Capasso and Morale, 2009]).

The dynamic and the heterogeneous three-dimensional spatial structure of a tumor is thus
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governed by a complex interplay of di�erent components and scales (from gene expression
changes to population competition at the tissue level). Here we model the key players of
the �rst stages of the tumor growth: tumor cells, factors in�uencing them or secreted by
them and the in�uence of and on the vascularization. The models consider the competition
between contact inhibition-limited and nutrient/oxygen limited growth. For these questions
it turns out to be su�cient to model individual cells within a cellular automaton model where
the dynamics is rule-based. The advantage of this model type is that it permits e�cient
simulations at moderate computation time while the dynamics has been shown to be as for
more detailed biophysically-related individual based models [Drasdo, 2005]. The subcellular
scale of oxygen, nutrients and growth factors induces the choice of a continuum description
of their respective conservation of mass. The diameter of a capillary is of the same order of
magnitude as the size of the tumor cells. Therefore blood vessels are represented explicitly
as discrete objects with a simpli�ed hemodynamics reduced model relating �ow and pressure
inside them. Constitutive laws and threshold-based rules express the interplay between the
di�erent components of the system. This section aims at describing through modeling the key
mechanisms of tumor growth rather than targeting a speci�c system for which more precise
information would be needed to go beyond qualitative results, though parameters were chosen
to be as realistic as possible to obtain relevant macroscopic behaviors.

2.3.2 The multiscale model and numerical methods

For the precise equations and parameters of this hybrid multiscale model, see [8]. We now
brie�y describe each model block (�g. 2.9). The stochastic agent-based model is a cellular
automaton model de�ned by a set of rules on cell position, cell cycle and replication, growth,
division and necrosis, a�ected by local oxygen and glucose concentrations. The time evolution
of the system is computed using the Gillespie algorithm [Gillespie, 1977] assuming that the
underlying system dynamics of the multi-cellular system can be modeled by a master equation
for the multivariate probability distribution to �nd the con�guration of the whole system at
every time step X , where X = f x1; x2; :::g denotes the state vector of the multicellular
con�guration. One way is to enumerate all lattice sites and denote byxk the state vector of
the cell localized at lattice sitek. If this lattice site is empty, the state is zero. The dynamics
is then formalized by

@P(X; t )
@t

=
X

X 0

(� X 0! X ) � 1P(X 0; t) � (� X ! X 0) � 1P(X; t ): (2.29)

P(X; t ) is the probability of the system being in con�guration X at time t. The possible
transitions from this X into another con�guration X 0 are denoted by rates(� X ! X 0) � 1 for
each process (cell growth, division, and death). A process is then chosen with a probability
that corresponds to its relative weight, calculated as the rate for this process divided by the
sum of the rates for all other processes. To eliminate �uctuation e�ects that emerge from
individual time evolution paths observables are averaged over many realizations.

The nearby vasculature releases oxygen and glucose that di�use in the local environment
and nourishes the tumor. This behavior is described by a reaction-di�usion equation, where
the concentration is set at the blood vessel nodes, and cells represent distributed sinks. These
cancer cells consumption rates of glucose and oxygen are coupled non-linear terms. Similarly,
VEGF is released by the (hypoxic) necrotic cells and di�uses into the tumor environment.

The models for the vascularization and its adaptation to the micro-environment are largely
inspired by the models of [Bartha and Rieger, 2006, Lee and Rieger, 2006], and part of the
stochastic agent-based model above. The preexisting network of vessels is generated on the
random lattice, common with the tumor cells. Flow through a vessel and pressure at the
nodes are computed based on the simplest resistance law (Poiseuille law, see section 2.1.3).
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Figure 2.9: Components of the hybrid multiscale tumor model and their relations. Upper
right: schematic showing tumor growth (yellow), sending growth factors (green) triggering
growth of new blood vessels (from http://www.medivizor.com).

Pressure is prescribed as a boundary condition at the entrances and exits of the network, and
solved at nodes using conservation of mass and continuity of pressure at each junction. Shear
stress in the vessel is also calculated. A sprout can form from a blood vessel according to
certain rules, and in particular if the growth factor concentration is higher than the threshold
that characterizes the angiogenic switch. Within the living tumor zone (proliferating and qui-
escent zones), blood vessels cannot sprout but they can dilate due to proliferation induced by
growth factors. In contrast, under-perfused vessels can also collapse due to the high pressure
generated by the proliferation of tumor cells or disappear because they are not functional
enough and thus experience themselves hypoxia, or are sensitive to the anti-angiogenic fac-
tors. This is modeled by the collapse of a vessel if its shear force is too low and the density
of tumor cells is too large. The vessel can also be removed if the �ow is zero and the local
concentration of oxygen is too low. The vascular network responds to the changes of the local
micro environment by angiogenesis or remodeling. The local radius, pressure, �ow and shear
values are thus continuously updated. In turn, the changing vascular network in�uences the
growth of the tumor as explained in the cellular model above.

From an algorithm point of view, at each new event as de�ned by the Gillespie algorithm
(i.e. cell death, vascular sprouting, etc.) the blood �ow model is updated (pressure, �ow, shear
stress) and then the nutrients and growth factor reaction-di�usion equations are updated and
solved. State transition probabilities are then computed for the vascular network and the
cells, before a new event is computed to occur.

2.3.3 Numerical results

We study the interplay of biomechanically induced contact inhibition, i.e. inhibition of cell
division by mechanical stress exerted from surrounding cells, and oxygen/nutrient limitation
on the growth kinetics of tumors in three cases: (1) tumor growth that is not constrained
by the lack of oxygen or nutrients as it can be partly observed in monolayers and the early
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avascular phase of tumors or multi-cellular spheroids growing in-vitro, (2) tumor growth in
a static vascular network, where neovascularization does not occur and, (3) tumor growth in
case the tumor cells can induce the formation of new vessels.

In Figure 2.10 left, the radius of the tumor is plotted versus time for three cases: (1) with
neither oxygen nor nutrient limitation, (2) with nutrient limitation but without the angiogenic
switch, and (3) with nutrient limitation and angiogenesis. In the "no limitation" scenario, all
cells can divide and the tumor thus �rst expands exponentially (zone a of Figure 2.10 left).
After some time, the cells in the center cannot divide anymore due to contact inhibition and
they become quiescent. When the proliferating rim reaches a constant thickness, the radius
becomes a linear function of time (zone c of Figure 2.10 left). For the two other simulated
scenarios there isnutrient limitation : oxygen and nutrients are supplied by sources (blood
vessels) and di�use out of them in the interstitial space but they are also locally consumed
by the cells. As the tumor mass expands, there is a �rst period where demands are lower
than supplies (as seen by the superposition of the three curves in zone a of Figure 2.10 left).
Then, supplies cannot balance demands anymore, due to an increasing consumption: this is
the nutrient limitation phase. This slows down the growth of the tumor, as can be seen by
the decreasing slope in zone b of curves (2) & (3) of Figure 2.10 left. After some time, the
angiogenic switch occurs and enables the tumor to expand with a higher speed as indicated
by the higher slope of the curve (3) compared to curve (2) in zone c of Figure 2.10 left: its
demands of oxygen and nutrients are better ful�lled. Note that this slope is here as high
as the one of theno limitation scenario, since the latter constitutes an upper bound to the
growth speed. If angiogenesis is not made strong enough, then lower slopes are obtained.

In addition to the tumor size, its structure varies signi�cantly with the di�erent en-
vironmental conditions. When there are neither oxygen nor nutrient limitations (Figure
2.10 1a&b&c, 2a, 3a), cells are either proliferating (yellow) or quiescent (green), but none
of the cells are necrotic. In contrast, when oxygen or nutrients are lacking because their
di�usions from blood vessels are not fast enough and their local concentrations are too low,
necrotic cells (blue) appear in the center (Figure 2.10 2b&3b). As a response to hypoxia
and hyponutrition, cells produce growth factors that di�use through the tissue, reach the
existing blood vessels and �nally trigger sprouting from them to create new blood vessels
(Figure 2.10 3c). If no new blood vessels are created, the necrotic zone increases (blue region
in Figure 2.10 2c larger than in Figure 2.10 3c, where only little necrosis can be observed).
Note the quiescent zones around the blood vessels inside the tumor (Figure 2.10 2c&3c): in
these regions, there is enough oxygen and nutrients for the cells but they cannot divide due
to contact inhibition of growth. As time goes, the case without limitation continues to grow
with a spherical shape and without any necrosis (Figure 2.10 1c). In the limited case, the
tumor continues to grow, although it tries to grow towards or along blood vessels (Figure 2.10
2c). In the angiogenic case, new vessels are forming towards and inside the tumor (Figure
2.10 3c) as it continues to grow with a speed closer to the no limitation case (Figure 2.10
left).

2.3.4 Conclusion

In all cases we found the tumors to grow approximately spherical so the expansion can be
quanti�ed by studying the time development of the tumor radius. The latter grows exponen-
tially fast for small times changing to linear growth later on. This is precisely what could be
observed in monolayers, multi-cellular spheroids and in xenografts. The existence of linear
growth is closely related to a proliferating rim of constant size. In case (1) the speed of growth
is controlled by a biomechanical form of contact inhibition (e.g. [Drasdo and Hoehme, 2005]
and refs. therein) explained by the degree of compression of cells within the tumor caused
by the local pressure within the tumor tissue. During tumor expansion this pressure pro�le
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Figure 2.10: Left: time evolution of the radius of a tumor cell population for the three di�erent
scenarios. Right: screenshots from the simulations at timest=� = 4 :8 (left ), t=� = 9 :6
(center) and t=� = 17:6, � being the cell-cycle time (right ). Each �gure is composed by an
exterior view on the left-hand side and a central-cropped view of the simulated domain on the
right-hand side. The colors indicate proliferating (yellow), quiescent (darkpastelgreen) and
necrotic cells (blue) as well as blood vessels (red). The upper sequence shows the reference
simulation of growth without any nutrient limitation (1). The lower sequences show the
scenarios of nutrient limited tumor growth in vascularized tissue without (center, (2)) and
with angiogenesis (bottom, (3)).

increases from a small value at the tumor border (marking the outer border of the proliferat-
ing rim) towards a value at which cell proliferation is contact inhibited (marking the interior
border of the proliferating rim). In case (2) the speed of growth is controlled by at which
penetration depth the concentrations of the oxygen and nutrient fall below the value nec-
essary to permit cell proliferation. This case is representative of an anti-angiogenesis drug,
which lowers the growth speed but does not necessary stops tumor progression. In case (3)
angiogenesis after its onset generates su�cient new blood vessels so that oxygen and nutrient
supply is - after a short transient - not limiting: the tumor grows with the same speed as in the
oxygen/nutrient-unlimited case (1). Moreover, in case (3) we �nd only modest mitotic �gures.
Both, the linear growth and the modest mitotic �gures have been observed in xenografts of
NIH3T3 cells which are well vascularized [Schi�er et al., 2003].

Although this work [8] reproduced known interplays between tumor cells and their mi-
croenvironment, in particular blood vessels, the parametrization of such model from in-vivo
data remains a challenge. Recently we successfully parameterized the components that can
be accessed in-vitro [31]. In this article, we develop a quantitative single cell-based mathe-
matical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell
lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the
simulations performed with this model with data on the growth kinetics and spatial labeling
patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We
start with a simple model capturing part of the experimental observations. We then show, by
performing a sensitivity analysis at each development stage of the model that its complexity
needs to be stepwise increased to account for further experimental growth conditions. We thus
ultimately arrive at a model that mimics the MCTS growth under two conditions to a great
extent (�g. 2.11). Interestingly, the �nal model, is a minimal model capable of explaining all
data simultaneously in the sense, that the number of mechanisms it contains is su�cient to
explain the data and missing out any of its mechanisms did not permit �t between all data
and the model within physiological parameter ranges. Finally, the model is constructed on
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Figure 2.11: Growth dynamics (two left graphs) and spatial organization (bottom 3 graphs)
found in experiments (labeled in legends with [G] and [O]) are well captured by the hybrid
model. Simulations reveal spatio-temporal structures for cellular and sub-cellular contents
(upper right picture) not easily measurable in experiments. Two spheroid cuts stained for Ki67
positive cell (proliferation, red), TUNEL positive cells (apoptotic cells, blue) and collagen V
as a marker for extra-cellular matrix (ECM, green) are shown after image processing (middle
right) as inputs for quantitative image analysis (red and green curves in the bottom graphs).
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two nutrient conditions but further predict well growth of two other very di�erent nutrient
conditions (�g. 2.12).

Figure 2.12: Predicted growth dynamics (solid line) of two very di�erent nutrient conditions
and validation with experimental data (labeled in legends with [G] and [O]).

Current work consists in understanding how to extract vascular parameters (architecture
and function) from invasive histological information from biopsies or tissue resection and non-
invasive in-vivo imaging (see 5.1). An extension of the model could be to take into account
the �uid interaction between the vascular network and surrounding interstitial �uid, as well
as transport phenomena [Cattaneo and Zunino, 2014]. Interesting questions are also how to
derive continuum models (important to capture in-vivo tumor sizes) from agent-based models,
and to mathematically study their di�erent regimes [32].
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40 CHAPTER 3. NUMERICAL CHALLENGES

Flow is simulated in branched geometrical models in a number of engineering applications,
including the modeling of blood and air in their larger conduits. In these applications, 3D
Navier-Stokes simulations (section 2.1.1) can only be realistically carried out in a few branches,
while the rest of the circulation or respiratory system, represented by reduced models (section
2.1.3), must be taken into account through appropriate coupling conditions (section 3.1).
Several strategies exist to couple these di�erent models, and this topic constitutes a continuing
matter of research. In this work, the coupling is done implicitly (with a monolithic solution
strategy described in [21, 11]) or explicitly [24]. The former is numerically more stable while
the latter more modular, especially for closed-loop models of the circulation. We have recently
proposed an approach that combines these two features [33]: a quasi-Newton approach is
devised such that the contribution of the reduced model to the 3D domain is taken into
account in the tangent matrix of the nonlinear Navier-Stokes solver, without adding a new
iteration loop. Section 3.2 concentrates on the proposed implicit approaches. Flow at the
boundaries where the velocity pro�le is not prescribed, is often complex, an interplay between
patient-speci�c geometry and �uid dynamics (Reynold number, inertia, ...). Due to this or to
physiological �ow rate time oscillations, �ow reversal can occur at the coupling boundaries,
inducing numerical instabilities. This is enhanced in air�ow, where in�ow occurs at the trachea
during inspiration and a large �ow reversal happens at the distal branches during expiration.
The kinetic energy of the �ow is not controlled at the continuous level and hence it might
lead to numerical instabilities at the discrete level. Several remedies have been proposed
and compared (section 3.3, [34, 16]), in particular the inertial boundary stabilization and a
novel modi�ed Navier-Stokes approach. These solution methods are tested on typical �ow
geometries and on realistic cardiovascular and air�ow application cases.

3.1 Multidomain approaches

The three-dimensional Navier-Stokes simulation of blood or air �ow in large conduits requires
inlet and outlet boundary conditions that represent dynamics at these locations (section 2.1).
However, in patient-speci�c settings, pressure or velocity are rarely clinically measured exactly
there, or they can be part of the desired output [3]. Thus, boundary conditions are usually sub-
stituted for transmission conditions with reduced models of the rest of the circulation or res-
piratory system. This typically involves coupling to 1D models (e.g. [Formaggia et al., 2001,
Blanco and Feijoo, 2013, Oshima et al., 2012, Ismail et al., 2014] [11]), themselves often cou-
pled to 0D models, or directly to simple lumped parameter 0D models (e.g. [13, 5, 20, 19, 15]
[Prasad et al., 2011, Fouchet-Incaux, 2014]) or airway tree based reduced respiratory model
[Ba�co et al., 2010, Ismail et al., 2014, Ismail et al., 2013a] and closed loop hemodynamics
0D models (e.g. [35, 25, 36], [Migliavacca et al., 2006, Blanco and Feijoo, 2013]). This cou-
pling methodology transfers in various forms pressure and �ow rate between 3D and reduced
models, for which there is a loss of information (section 3.2).

The importance of applying proper boundary conditions to achieve physiological results
is demonstrated in our work �rst in hemodynamics in 1D [21], then in 3D [11, 3]. In [13]
we show several examples where taking into account non-periodicity changes the results. In
mechanically ventilated respiratory �ow, we make evident that the dynamics in the 3D domain
is driven by the choice of reduced model, which permits to model diseases such as emphysema
[15, 18]. The number of papers that have emerged in the last 10 years on boundary conditions
in hemodynamics and respiratory �ows highlights the importance of this topic.

3.1.1 3D model coupled to a 0D model of the heart and distal vasculature

These three papers [37, 38, 35] present a number of modeling and computational tools to
simulate blood �ow and pressure in deformable patient-speci�c models of the aorta and the
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Figure 3.1: 3D-0D coupling for simulations of blood �ow in a thoracic aorta model with
coronary outlets driven by a heart model. Note that all the outlets of the three-dimensional
computational model feed back in the 0D model at (V).

coronary arteries (feeding the heart). Using a 0D coronary vascular model along with the
in�ow boundary condition that couples the 0D heart model and the almost closed loop sys-
tem of the circulation (�g. 3.1), we can predict coronary �ow and pressure realistically using
anatomic data obtained from medical imaging techniques and study how changes in car-
diac and arterial properties a�ect coronary �ow and pressure and vice versa. This could
not have been studied without coupling of the 3D domain with heart and distal 0D mod-
els. Rest and exercise conditions are studied, and �ow reduction due to stenosis sever-
ity predicted (�g. 3.2). It would be interesting to couple this model to the poroelastic
model of the heart muscle studied in section 2.2, so that the heterogeneous action of the
heart contraction on the vessels can be taken into account in the various coronary sub-trees.

Figure 3.2: Prediction of �ow changes with severity of
coronary stenosis. Comparison with experimental data
from Gould et al.

3.1.2 Predictability en-
hanced by 3D-closed loop
model of the entire circula-
tion

In a �rst step to study di�er-
ent virtual surgical designs in con-
genital heart disease, simulations
have been run with hypotheses on
the boundary conditions [5]. Out-
let boundary conditions are kept
unchanged compared to preoper-
atively, state for which they are
designed based on patient-speci�c
clinical measurements as described
in section 4.2. At the outlets, a
relationship between pressure and
�ow is prescribed, so both could
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adapt to the virtual surgery where a graft was connected in di�erent ways to the preop-
erative geometry and thus bringing additional �ow. By contrast, �ow rates are prescribed at
the inlets based on preoperative PC-MRI measurements boundary conditions and hypotheses
on how they might change from preoperatively to postoperatively. To rather predict these
in�ow changes, a closed-loop 0D model of the entire circulation is thus tuned for one patient
to its MRI, ultrasound and catheterization pressure measurements and coupled to the 3D
model [24]. Results show that �ow rates at both inlets (SVC, IVC) changed from the pre-
operative to the postoperative states, in coherence with physiological knowledge. Of course,
the closed-loop model presents many parameters that are not easy to tune based on clinical
measurements section 4.3, and it remains to be validated that the parameters do not change
signi�cantly due to the surgery, but such an approach enhances the predictability potential
of virtual surgeries. Other examples where a closed-loop model of the circulation has been
necessary for the application at hand include optimization study of a shunt for single-ventricle
stage 1 surgery [34], comparison between two di�erent surgical approaches at the second stage
[4] and surgical planning study of di�erent patients [Kung et al., 2013, 40].

3.2 Numerical coupling strategies

The coupling between the 3D domain and the reduced order model must ensure conser-
vation of mass � which imposes constraints on �ow rates �, and continuity of pressure
or normal stress. However, it is known that this can lead to the imposition of so called
defective boundary conditions, i.e. where only mean values are known on a boundary
[Formaggia et al., 2002a, Veneziani and Vergara, 2005,?]. Besides, it can generate prob-
lems of well-posedness [Formaggia et al., 2002a, Quarteroni and Veneziani, 2003]. Numeri-
cally, coupling between the 3D domain and a lower order 1D or 0D model can be solved using
either a monolithic or a partitioned approach. We here summarize the approach in [21, 11]
and the later discussion in [33].

3.2.1 The multidomain formulation and its monolithic resolution

In a monolithic approach, the complete coupled system is solved simultaneously, either by
analytic implementation of the lower order model, or by numerical integration. A simple 0D
model with a known analytical solution can be directly implemented inside the 3D solver
as a hard coded boundary condition, with a monolithic implementation of the Dirichlet-to-
Neumann operator [11].

The Dirichlet-to-Neumann (DtN) method [Givoli, 1992] is one method among many (sub-
structuring, boundary integral and element methods, in�nite elements, arti�cial boundary
conditions, and �ltering schemes) that reduces a very large or in�nite problem to a bounded
and numerically tractable domain. It has the main advantages of providing an exact boundary
condition at the truncation of the domain, of being compatible with standard �nite element or
�nite di�erence methods and of not requiring the original domain to be 'regular' (i.e. homo-
geneous, isotropic and governed by linear equations). The idea is the following. After having
introduced an arti�cial boundary, the domain is cut into the domain of interest and the rest
of the domain. In the latter, the PDE solution is solved analytically, providing a relationship
at the arti�cial boundary between the Dirichlet and the Neumann conditions, de�ning the
so calledDtN map or Steklov-Poincaré operator. The PDE is then solved in the domain of
interest with this DtN boundary condition.

We have applied this method to derive themultidomain method in 1D [21] and in 3D
[11, 13]. Note that here the arti�cial boundary condition is not exact because the equations
in the analytical domains are simpli�ed versions of the ones in the numerical domains. In other
words, in addition to the usual geometric complexities that are encountered in many physics
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or engineering problems, we are facing mathematical complexities for blood and respiratory
�ow problems: neither the 1D nor the 3D equations of blood �ow can be solved analytically
in the far-�eld domains (arterial trees and rest of circulation). We therefore use simpler
mathematical models that can be solved analytically or semi-analytically to represent the
physics in these domains. For each model, we derive the equivalent to the DtN map, as
a relationship between �ow and pressure (in the 1D case) or between pressure (or normal
traction) and velocities (in the 3D case).

Monolithic implementation of open-loop coupled boundary conditions, such as resistance,
Windkessel (RCR), impedance, or simple heart models, in which the relation between the
pressure and the �ow rate of this boundary is precisely known, has been demonstrated for up to
second order ODEs, including coronary artery models [13, 41, 38] & section 3.1. However from
a practical point of view, any modi�cation to these hard-coded boundary conditions requires
detailed end-user knowledge of the 3D solver and intrusive implementation. A modular,
and easily modi�able system for coupling an arbitrary 0D model network to a 3D solver
is therefore desirable, as it increases applicability to a variety of disease applications, and
does not require end-user modi�cation of the 3D solver. Similarly, when the 0D network is
more complex, leading to higher order or nonlinear networks of ODEs or coupling of multiple
outlets the DtN operator must be computed numerically if there is no analytical solution
for the ODE system. The monolithic coupling approach has been compared in detail to its
explicit-in-time counterpart, in the context of fractional step methods [Bertoglio et al., 2013].
The monolithic solution of such a 3D-0D coupled system requires a signi�cant change in the
3D solver, and may lead to an ill-conditioned numerical system, unless proper care is taken
for its preconditioning [Urquiza et al., 2006, Blanco et al., 2007].

3.2.2 A strongly coupled iterative multidomain formulation

An alternative to the fully coupled monolithic schemes is the partitioned approach, which
has been the focus of much work in the last decade. In the partitioned approach, having a
separate solver for the 0D domain enables us to relate �ow rates and pressures at the coupled
boundaries for any arbitrary closed-loop, high order, nonlinear 0D model. Such an approach
facilitates the use of existing solvers and allows for the use of di�erent numerical schemes in
the 0D and 3D domains. With the partitioned approach, coupling in time between the 3D
and the reduced (0D or 1D) domains can be either explicit, at one extreme, or implicit at
the other. This choice may be motivated by the time-step requirement of the Navier-Stokes
solver, which must be su�ciently small to use an explicit method [Quarteroni et al., 2001], or
by issues of numerical stability. Several recent studies have used a partitioned approach with
implicit staggered schemes. Gauss-Seidel schemes has been found to require too many sub-
relaxation steps for realistic values [Urquiza et al., 2006]. Some partitioned strategies have
used a general heterogeneous coupling approach in which average quantities are passed at the
interface [Leiva et al., 2010, Malossi et al., 2011], with two nonlinear iteration loops required
in the former. These studies also advocated use of Newton methods to achieve convergence.
In another previous study, a cycle by cycle open-loop simulation was used, and the outlet
boundary conditions were corrected to re-balance outlet �ow rates [Johnson et al., 2011]. De-
spite this recent work, the e�ectiveness of an iterative implicit coupled approach with complex
closed-loop 0D models, in which simultaneous temporal data in the 0D model is required, has
not been established yet. As noted in [Quarteroni et al., 2001], these systems may su�er from
ill-conditioning, and special care must be taken to ensure numerical stability.

In this work [33], a time-implicit approach is proposed to couple the Navier-Stokes equa-
tions solved in the 3D domain, to complex closed-loop 0D models. This overcomes current
limitations related to the numerical instability and restrictive time step choices. The con-
tributions of the coupling to both the tangent matrix and the residual vector are evaluated
with an independent code. The DtN operator is thus numerically, rather than analytically,
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determined. With proper communication protocols between the two domains, this approach
provides much higher �exibility for modeling the entire circulatory system, with no require-
ment for modi�cation or intrusion into the 3D solver, once the coupling framework has been
implemented. In particular it avoids invasive changes in the 3D solver when the reduced
model is changed, both of which are di�cult for end-users with complex reduced models that
are becoming more and more common practice for cardiovascular and pulmonary applica-
tions. Hence this method incorporates attractive features of both monolithic and partitioned
approaches. The adopted time discretization scheme is second order accurate or higher, and
allows both domains to be marched in time simultaneously using apredictor-corrector algo-
rithm. This facilitate use of an implicit integration scheme in the 0D domain. We also aim to
overcome previous restrictions that required use of only Neumann boundary conditions in the
3D domain, by expanding our formulation to include Dirichlet coupling. This o�ers greater
�exibility in choosing 0D model components, yet maintains the well-posedness of the problem.
In previous partitioned approaches, coupling with Dirichlet boundary conditions used a La-
grange multiplier method, requiring appropriate numerical strategies to solve the 3D system,
and increased computational cost [Kim et al., 2009], [34]. Here, the coupling is applied as
a Dirichlet condition, with a chosen velocity pro�le. The coupling term in this case is not
strictly a part of the variational formulation, since it is an essential boundary condition that
changes at each nonlinear iteration of the 3D solver, according to the 0D numerical solution.

We therefore propose an implicit in time coupling algorithm (�g. 3.3). Depending on
the reduced model, the coupling variables may vary. If �ow information is received from the
reduced model, it is applied to the 3D model as a Dirichlet boundary condition (de�ning� g),
and sends back pressure at this outlet to the reduced model at each nonlinear iteration of
the Navier-Stokes quasi-Newton solver. If pressure information is received from the reduced
model, it is applied to the 3D model as a 'Neumann' boundary condition (de�ning � h), and
sends back �ow at this outlet to the reduced model. We note that due to the coupling this
boundary condition is not strictly a classic Neumann condition. In fact in this case, a quasi-
Newton approach is devised such that the contribution of the reduced model to the 3D domain
is taken into account in the tangent matrix of the nonlinear Navier-Stokes solver. In our for-
mulation these data are indeed exchanged between the two domains at each Newton iteration
of the nonlinear Navier-Stokes solver to ensure convergence of both domains simultaneously.
This contribution is computed by �nite di�erences.

We present next the general idea of the algorithm (see [33] for more precisions on the
implementation). At the start of the simulation, the 0D and 3D domains are initialized
with the 0D state variables X 1 and 3D velocity and pressuref U 1; P 1g, respectively. In the
generalized-� time discretization method, the solution at n is �xed and the solution at n +1 is
corrected after each nonlinear Newton-Raphson iteration [Jansen et al., 2000]. In each time
step, from n to n + 1 in the 3D domain, the following steps are performed:

1. Predict unknowns at time step n + 1 and iteration kth in the 3D domain based on the
solution at time step n,

k = 0 ; U n+1
(k) = U n ; P n+1

(k) = P n :

2. Compute the �ow rate, f Qn
i ; Qn+1

i (k) g 8i 2 � h , and averaged pressure of coupled bound-

aries, fP n
i ; Pn+1

i (k) g 8i 2 � g, and pass them to the 0D domain.

3. After receiving the �ow and pressure data at time stepsn and n + 1 in the 0D domain
and retrieving X n as the starting point of integration, integrate the ODE's up to n + 1 .

4. After receiving Pn+1
i (k) 8i 2 � h and Qn+1

i (k) 8i 2 � g from the 0D domain, calculate the
traction at the coupled Neumann boundaries and the nodal velocities at the coupled
Dirichlet boundaries, respectively.
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5. Compute the residual and tangent matrix coupling contributions below, and solve the
linearized Navier-Stokes equations to �nd� U and � P :

(Rm )Ai  (Rm )Ai +
R

� j
NA Pn+1

j ni d� ; j 2 � h ;

~K AiBj  ~K AiBj + @(Rm )Ai

@Qn +1
l

@Qn +1
l

@Un +1
Ck

(3.1)

where NA (x ) is the shape function for node A and i 2
f 1; � � � ; number of spatial dimensionsg.

6. Correct velocity and pressure in the 3D domain

7. Set k  k + 1 and go back to the second step if the residual is not small enough,
jjR jj > � , or the number of iterations exceeds the maximum speci�ed value,k > k max .

8. Before going to the next 3D-domain time step, calculateX n+1 based on the corrected
�ow rate and pressure. Then setn  n + 1 and go back to the �rst step.

Compared to the method implemented in [Quarteroni et al., 2001], the coupling in our
approach is implicit in time (�g. 3.3). This framework o�ers thus the �exibility to use either
an implicit or explicit time-integration method in the 0D domain. Note that for the Neumann-
type coupling, the velocity pro�le is not enforced. Flow at these coupling boundaries is often
complex, as a result of the interplay between geometry and �ow conditions elsewhere in the
3D domain. Due to this or to physiological �ow rate time oscillations, �ow reversal can occur
at the coupling boundaries that usually rapidly lead to numerical instabilities (see section
3.3).

Figure 3.3: 3D-0D multiscale example. Left: 3D domain (1 inlet i with Neumann coupling, one
outlet o with Dirichlet coupling), 0D model (closed loop). Right: implicit coupling algorithm
at time step n + 1 , via Neumann (average normal traction related to the 0D pressure, P)
or Dirichlet (velocity U imposed in the 3D domain, from the �ux Q in the 0D domain) 3D
domain boundary condition at iteration k. � is the 0D state variable vector.

We summarize here the main results found in [42]. After a successful veri�cation example
by comparison to the analytic solution and the monolithic multidomain approach of [11],
results for this multidomain framework then include a comparison of various contributions
to the tangent matrix of the reduced model in the 3D-closed loop 0D example shown in �g.
3.3 left, but with Neumann couplings at both ends. A static contribution is found the best
trade-o� to obtain convergence with di�erent meshes and time-steps. This indicates that the
time-accumulated contribution of the nonlinear 0D components in a cardiac cycle is negligible
compared to the linear components. Results also show that the Dirichlet coupling case (at
both ends) is more robust, but it necessitates the prescription of the velocity pro�le at the
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coupling boundaries. Besides, inductors have to be added at the coupling boundaries to obtain
a stable coupling (the coupling pressure received from the 3D domain is then a source term
for the 0D dynamical system). Finally, this iterative coupling strategy is successfully tested
on realistic cardiovascular and air�ow cases [42, 15]. Such a coupling permits to study the
interaction between changes in the 3D domain and the rest of the circulation (see examples
in section 3.1).

3.3 Analysis and handling of numerical instabilities

3.3.1 Possible origins for boundary instabilities

The occurrence of back�ow divergence is a well-known but not su�ciently addressed prob-
lem in the �eld of cardiovascular or respiratory �ow simulation. This problem usually arises
in large tubes (blood vessels or airways) that are exposed to back�ow in 3D and 2D �ow
simulations. There are three main situations that lead to numerical divergence caused by
back�ow. First, back�ow divergence can result from bulk reversal of the �ow through an
inlet or an outlet, such that there is negative �ow over the entire face. Second, there may
be localized areas of �ow reversal on a face with bulk outward positive �ow. And third, the
use of multidomain modeling (see section 3.2) may necessitate the passing of pressure and
�ow information for which there is a lack of velocity pro�le information, leading to numerical
instabilities on either the coupled in�ow or out�ow faces. All of these numerical instabili-
ties emanate from the use of Neumann boundary conditions on the outlet faces, for which
velocity pro�le information is not speci�ed [Heywood et al., 1996, Formaggia et al., 2002a,
Formaggia et al., 2008, Taylor et al., 1998b]. For the second case, seminal work on robust
arti�cial boundary conditions in the presence of strong vortices can be found e.g. in
[Bruneau and Fabrie, 1994, Bruneau and Fabrie, 1996]. In fact, this physiological back�ow
divergence has led the bio�uid community to revisit these fundamental numerical analy-
sis contributions on robust boundary conditions for Navier-Stokes incompressible equations
[Begue et al., 1988, Sani et al., 2006].

Bulk back�ow (complete �ow reversal at an outlet) is a physiologic and commonly occur-
ring phenomenon in the cardiovascular system in both healthy and diseased states. It often
occurs in vessels during diastole and �ow deceleration, particularly in certain regions. Thus,
accurately capturing back�ow phenomenon is essential for reproducing realistic conditions
in many cardiovascular problems. Examples of physiologic �ow reversal include �ow in the
descending abdominal aorta during diastole [11], �ow reversal in the brachiocephalic artery
after the stage 1 repair for single-ventricle heart patients (BT-shunt surgery) [42] and reversed
�ow due to respiratory e�ects in Fontan patients [14]. In air�ow, it occurs even more strongly,
since �ow necessarily reverses between inspiration and expiration. Inertial e�ects can even be
exacerbated with mechanical ventilation [15, 18].

Back�ow divergence due to local �ow separation or �ow recirculation is commonly caused
by complex geometries such as the presence of stenoses, anastomoses, or increased cross
sectional area, near the outlets of a model. These geometric features often lead to either
steady or unsteady separation regions close to the out�ow faces of a model, particularly
at peak systolic �ow. Similarly, geometric features can also lead to vortex shedding, and
convection of vortices through the out�ow faces, also leading to back�ow divergence (see
example in 3.3.3).

Multidomain modeling, in which a closed-loop 0D parameter network of ODEs is coupled
to the in�ow and out�ow faces, usually requires 'Neumann' boundary conditions on both
in�ows and out�ows (section 3.2). In these situations, it is common that �ow reversal is dic-
tated by the pressure passed to the 3D model, causing a bulk inward �ow without prescribing
velocity pro�le information. In these situations, instabilities can occur, particularly in cases
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with rapidly changing dynamics that may alternate between positive and negative �ow within
a cardiac cycle.

Simulation divergence due to the above causes, requires careful consideration of the out�ow
boundary conditions. Use of a mixed boundary condition, while successful in air convection
simulations [Tezduyar et al., 2008, Tezduyar et al., 2010], in which a Dirichlet boundary con-
dition is used for the normal component of the velocity (either on the entire outlet or only in
the region with back�ow) along with a Neumann boundary condition for tangential velocity
components, requires extra information about the velocity pro�le and the �ow rate magnitude,
which is generally unknown for the outlets.

The simplest solution to the back�ow issue is to arti�cially elongate the outlets by adding
long straight sections, thereby dissipating the vortices before they reach the outlet. While
this has been commonly used in simulations [de Zelicourt et al., 2009, Marsden et al., 2008,
Borazjani et al., 2010], this method poses several major problems. First, for the case of total
�ow reversal at the outlet, the instabilities occur at the boundary so there is no reason
this solution should work. Second, the addition of arti�cial extensions to the outlets has
potential to change local hemodynamics, particularly in patient speci�c models or in multiscale
modeling networks, where information at the boundary faces is coupled to another system.
And third, there is a non-negligible additional computational cost incurred by the need to
mesh and simulate long outlet extensions. This added cost increases for high Reynolds number
�ows, since longer extensions will be needed to dissipate the vortices. Another option is to add
additional vessels to the model until the �ow becomes unidirectional and the Reynolds number
at the outlet is reduced [10]. While this method has proven to be e�ective in patient-speci�c
cases, it can only be used in a non-arti�cial way if the image resolution is adequate enough
to permit inclusion of additional levels of branching. Additionally, this method increases
the model generation and computational costs signi�cantly. Due to these issues, we will not
consider outlet extensions or additional branches as viable methods in the current work.

In the next section, the numerical exploration of out�ow boundary treatments in di�erent
test cases with zero and non-zero traction boundary conditions, shows the inertial boundary
stabilization as the most robust remedy [34]. This has set the stage for improved stability
in coupled multidomain systems in succeeding works [42, 33, 15, 18]. In section 3.3.3, a new
approach is devised for such coupling [16]. A more thorough numerical analysis of di�er-
ent natural boundary conditions is carried out, illustrated by typical cardiovascular cases in
patient-speci�c geometries.

3.3.2 Comparison of numerical instability treatments

Simulation divergence due to back�ow is a common, but at the time of [34], not fully addressed
problem in three-dimensional simulations of blood �ow in the large vessels. Because back�ow
is a naturally occurring physiologic phenomenon, careful treatment is necessary to realisti-
cally model back�ow without arti�cially altering the local �ow dynamics. In this study, we
quantitatively compare three available methods for treatment of outlets to prevent back�ow
divergence in �nite element Navier-Stokes solvers. The methods examined are:

1. Adding a convective stabilization term to the boundary nodes formulation (see [34] and
section 3.3.3 for its e�ciency origin and formulation)

2. Constraining the velocity to be normal to the outlet (see [34] for exact implementation)

3. Using Lagrange multipliers to constrain the velocity pro�le at all or some of the outlets
(see [34] for exact implementation)

Three model problems, a short and long cylinder with an expansion, a right-angle bend,
and a patient-speci�c aorta model, are used to evaluate and quantitatively compare these
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methods. Detailed comparisons are made to evaluate robustness, stability characteristics,
impact on local and global �ow physics, computational cost, implementation e�ort, and ease-
of-use. We only provide one illustrative example in the following �gure; for all the other
results see [34].

Figure 3.4: Geometrical model (upper left) and longitudinal cut showing streamlines color
coded by velocity magnitude (upper right). Velocity and pressure on the centerline and at
outlet section, at Re = 1000. Steady in�ow and zero traction out�ow boundary condition
were imposed.

This simulation is done with a cylinder with expansion with an inlet Reynolds number
of 1000 and a zero traction boundary condition. Contrary to a more elongated expansion,
here without treatment, the simulation diverges. In �g. 3.4 we observe that the stabilization
and normal constraint method results are very close. For the Lagrange multiplier method,
although it does not change the velocity in the region far from the outlet, the velocity pro�le
is changed signi�cantly at the outlet. This induces changes in the outlet pressure as well. The
reduction of velocity at the center and its increase in the peripheral region requires higher
and lower pressure in those areas, respectively, to satisfy the momentum equations. This
change in pressure is propagated throughout the model. The behavior on an elongated model
is similar, failing to match the stable no-treatment solution contrary to the other methods.
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Using identical numerics, models, and meshes, we have compared the methods of outlet
stabilization, normal velocity constraint, and Lagrange pro�le constraints [34]. We show that
the normal constraint can be safely used in the case of slight �ow reversal, producing a stable
result with little impact on the �ow physics. However, this requires the constrained direction
vector to be close to the direction of reversed �ow and that only the part of the outlet
with �ow reversal be constrained. Our results show that the Lagrange method, while often
successful in stabilizing the solution, su�ers from high impact on the pressure �eld solution,
high computational cost, and increased di�culty in both implementation and ease-of-use.
While results with highly tuned outlet �ows matched very well with the stabilized method
results, a lack of tuning can produce drastically di�erent results that are not con�ned to the
vicinity of the outlet. The stabilization method is shown to have the highest robustness,
and the least impact on the �ow �eld, with no extra computational cost, and high ease of
implementation and use. In addition, the stability of this method is improved to include a
wider range of time steps by adding only a fraction of the convection term in our formulation.
This implementation also reduces the impact of this method on the pressure �eld. To
summarize, the addition of an outlet stabilization term provides an accurate, robust, and
easy-to-use method that reliably prevents back�ow divergence in numerical simulations of
blood �ow.

Recall that the stabilization only acts when velocity vectors point inwards at the coupling
interface. It was introduced in [Bazilevs et al., 2009b] for cardiovascular applications with
an energetically over-stabilizing e�ect as discussed in the next section 3.3.3, and successfully
tested with a smaller energy-dissipative coe�cient (a value of� of 0.5 or less was found enough
to ensure stability) in [34, 33, 15] in cardiovascular and respiratory contexts. In these papers,
without this stabilization the simulations would have diverged. Next the version that exactly
annihilates the energetically destabilizing convective term is considered. It leads in fact to
a similar stabilizing behavior. The results highlight the robustness of this method under
di�erent conditions of complex and back �ows. However such a coupling involves enforcing an
ad-hoc inhomogeneous normal stress over the interface area and in practice generally induces
an over-killing of the inward velocity vectors. Besides, as noted by [Porpora et al., 2012], this
leads to a weak formulation that is not consistent with the original strong boundary condition
of the reduced model coupling. A consistent formulation (with a value of� of one) has been
proposed by [Gravemeier et al., 2012] in respiratory mechanics (see this reference for earlier
references about imposition of total momentum �ux) but it requires to also prescribe the
convective term and thus to know the velocity vectors at the coupling boundary or to make
some further assumption on the velocity pro�le at the boundary [Gravemeier et al., 2012,
Ismail et al., 2014]. It is interesting to note that in respiratory applications for which the
back �ow is very signi�cant (whole expiration phase), the necessity to stabilize the convective
term one way or another has been found crucial [Kuprat et al., 2013, Ismail et al., 2014] [15].

It is not a priori possible to predict which simulation will be stable throughout or diverge.
Since divergence is typically observed with some inward and non-zero tangential velocity vector
or complete back �ow at the coupling interface, natural ideas are to enforce the tangential
component to be zero or to even constrain the whole velocity pro�le. As these have been
shown in this section to be non-ideal, in the next section only the convective stabilization
method is retained among the three remedies to instability.

3.3.3 A novel method: a modi�ed Navier-Stokes equation

When coupling a 3D domain with a 0D model, pressure is usually imposed as a uniform
boundary condition on the 3D boundary. A �rst coupling method consists of enforcing a
uniform pressure obtained from the reduced model at the coupling boundary. Without loss of
generality, the reduced-order model providing the pressurepc here, is assumed to result from
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a standard RCR Windkessel model (see section 2.1.3) as sketched in �g. 2.1 (top):

C
dpp

dt
+

pp � pv

Rd
= q (3.2)

pc � pp = Rpq (3.3)

where q =
R

� out
u � n . For the sake of simplicity, we assumepd = 0 .

Multiplying (3.3) by q and (3.2) by pp leads to the energy equation of the 0D model:

pcq = C
d
dt

�
p2

p

2

�
+ Rpq2 +

p2
p

Rd
(3.4)

When a variational formulation is used, e.g. with the �nite element method, it is more natural
to replace the pressure with the normal component of the normal stress:

� � n = � pcn ; on � out ; (3.5)

But stability analysis shows that the convective term on the boundary can be responsible for
numerical instabilities in the presence of reverse �ow:

d
dt

EK 
 1
+ PV
 1

= Pin �
Z

� out

pcn � u � �
Z

� out

ju j2

2
n � u

Indeed in the presence of reverse �ow at an outlet (u � n < 0) the last term may thus have a
destabilizing e�ect - denoting the kinetic energy, the viscous power and the energy entering
the domain through � in , respectively by:

EK 
 1
=

Z


 1

�
2

ju j2; PV
 1
= 2 �

Z


 1

" (u ) : " (u ); Pin =
Z

� in

� � n � u � �
Z

� in

ju j2

2
n � u : (3.6)

Some Navier-Stokes formulations involve the total pressure in their natural boundary condi-
tions (e.g. [Begue et al., 1988]):

� � n �
�
2

ju j2n = � pcn ; on � out : (3.7)

This 3D-0D-Ptot formulation has been shown to lead to an energetically stable cou-
pling between 3D and reduced models of blood �ow (e.g. [Formaggia et al., 2007,
Formaggia et al., 2013]), since the potentially destabilizing term of (3.6) disappears in the
energy balance:

d
dt

EK 
 1
+ PV
 1

+ C
d
dt

p2
p

2
+

p2
p

Rd
+ Rpq2 = Pin (3.8)

Some of these authors have been expecting instabilities when the total pressure is not included
in the transmission conditions but have not seen them numerically [Formaggia et al., 2013,
Blanco et al., 2013]. In formulations based on static pressure, a dissipative stabilization (3D-
0D-Stab coupling) has been proposed to counteract the destabilizing e�ect of the convective
boundary term (see [Bazilevs et al., 2009b]), here written in a slightly more general form:

� � n = � pcn � �� (u � n ) � u; on � out ; (3.9)

where (u � n ) � is equal to � (u � n ) if u � n � 0, and is equal to0 if not, and where � has to
be �xed. The energy balance thus reads:

d
dt

EK 
 1
+ PV
 1

+ C
d
dt

p2
p

2
+

p2
p

Rd
+ Rpq2 =

�
Pin � �

2

R
� out

ju j2(u � n ), if u � n � 0
Pin � � ( 1

2 � � )
R

� out
ju j2(u � n ), if u � n < 0

(3.10)
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This formulation is therefore stable in the energy norm for� � 0:5. If � = 0 :5, as in [34]
[Porpora et al., 2012], the potentially destabilizing term of (3.6) is exactly balanced by the
arti�cial dissipation when u � n < 0. In some publications, a stronger dissipation is cho-
sen (e.g. � = 1 in [Bazilevs et al., 2009b]). We also refer to [Bruneau and Fabrie, 1994,
Bruneau and Fabrie, 1996] where similar ideas were introduced in a more general class of
boundary conditions, revisited here in the context of physiological �uid dynamics. A bound-
ary condition based on enforcing the continuity of pressure on the one hand and of a linear
combination of �ow and energy �uxes on the other hand, has been proven to be energetically
stable, but it does not necessarily conserve mass [Dobroserdova and Olshanskii, 2013]. More
recently, a local regularization of the �uid velocity along the tangential directions has been
developed in [Bertoglio and Caiazzo, 2014]. In all these methods, the reduced model pressure
is imposed as a uniform boundary condition for the Navier-Stokes equations. Note that this is
not inherent to these methods, but more to the lack of knowledge of what else to prescribe. In
fact in complex �ow, such as when �ow reverses, there isa priori no reason that the normal
traction or the total pressure is uniform on a coupling boundary. For stabilized methods, the
added term introduces some non-uniformity that has also no obvious reason to correspond to
the physiological �ow at hand.

In [16], we propose a new method to handle the out�ow boundary conditions, by cou-
pling the 3D Navier-Stokes equations with another 3D compartment. It consists of coupling
system (2.1)-(2.4) to a modi�ed Navier-Stokes system. Instead of a 0D model, an arti�cial
3D domain 
 2 is added to the 3D domain of interest
 1 (bottom of �g. 2.1). In 
 2, the
Navier-Stokes equations are modi�ed by adding terms to recover an energy balance similar to
the one obtained with the 3D-0D-Ptot formulation. The resulting system can be written in
a compact form in 
 1 [ 
 2:

�
@u
@t

+ � u � r u + r p � 2� r � " (u ) +  u + �
u
2

r � u = 0 (3.11)

�
@p
@t

+ �p + r � u = 0 (3.12)

u j � [ � 2
= 0 (3.13)

where � , � and  vanish in 
 1, to recover the standard equations (2.1)-(2.4), and are pos-
itive in 
 2. Parameter � is a distributed version of the capacitance (C) in the Windkessel
model. Parameters and 1=� play the role of the proximal (Rp) and distal (Rd) resistances
respectively. The additional term � u

2 r � u is necessary to ensure stability in the energy norm,
because the �uid is no longer incompressible in the arti�cial domain
 2. The equations in the
two domains 
 1 and 
 2 are coupled through the usual transmission conditions:

u 1 = u 2; and � 1 � n = � 2 � n ; on � ; (3.14)

which are automatically satis�ed when a standard variational formulation of equations (3.11)-
(3.13) is set on the whole domain
 1 [ 
 2. Due to these transmission conditions (3.14), the
energy balance of this modi�ed Navier-Stokes formulation3D-3D is obtained:

d
dt
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 1 [ 
 2
K + P 
 1 [ 
 2

V + �
d
dt

Z


 2

p2

2
+ �

Z


 2

p2 + 
Z


 2

ju j2 = P 
 1
in : (3.15)

This formulation is therefore stable in the energy norm. Contrary to 3D-0D coupling, an
inequality can be proved to control the energy of the system. Compared to the3D-0D-Stab
formulation, it can let energy enter into the system through � out in the presence of a physical
back�ow. Compared to the 3D-0D-Ptot formulation, it is not based on the total pressure,
and is thus expected to avoid the associated spurious velocity behavior. Comparing (3.15)
with (3.8), we notice an analogy between� , � ,  and the standard Windkessel parameters.
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From this observation, we can set� � C=V, � = 1=(RdV), and  � RpS=L, where V , S and
L respectively denote the volume, the section and the length of the arti�cial domain
 2.

For the weak formulations of the di�erent formulations and their numerical discretization,
we refer to [16].

Figure 3.5: a. Imposed inlet �ow, with the two
dots representing maximum �ow and decelerating
�ow respectively; b. Complete model (for refer-
ence solution); c. Short model (two outlets, RPA
and LPA), and d. Short model with one modi�ed
Navier-Stokes part on each side. Arrows indicate
the inlet.

We present the results obtained on
a child patient-speci�c pulmonary arter-
ies with congenital heart disease. Fig-
ure 3.5 represents the complete geomet-
rical model, that is used for the refer-
ence solution, a short geometrical model
with cut pulmonary artery branches,
that is used for 3D-0D , 3D-0D-Ptot
and 3D-0D-Stab methods, and a short
model with its arti�cial parts at the out-
let surfaces, that is used for3D-3D and
a hybrid between 3D-3D and 3D-0D
noted 3D-3D-0D . The velocity is pre-
scribed at the inlet with a plug pro�le,
following a typical shunt �ow tracing.
The highest Reynolds number is 3000.

In �g. 3.6 velocity �elds in the
RPA are compared between the di�er-
ent methods at the same location dur-
ing maximal forward �ow (left) and de-
celeration �ow (right). The reference
case was run with a3D-0D method. It
presents no instability because the �ow
is smoother at its distal outlets, which is
typical of bifurcations quite downstream
of complex �ow [23]. The other three
methods were run in the cut model. At
maximal forward �ow, the reference
model shows complex �ow in the RPA. This behavior is retrieved with the 3D-0D coupling
method but with inwards velocity vectors. However, the computation is close to divergence.
The 3D-0D-Stab coupling method e�ciently kills the reverse velocity vectors at the cou-
pling surface so that a similar forward �ow motion to the 3D-0D coupling method is retrieved
without back�ow, and similarly for the 3D-3D-0D result. Note that the 3D-3D coupling
leads to a velocity pro�le closer to the reference case.

Regarding blood �ow behavior during the decelerating phase in �g. 3.6 (right column),
there is reverse �ow in reference case and a large proportion of the forward �ow is located
at the bottom of the surface area. With the 3D-0D coupling method at outlet surfaces of
the cut model, the computation is diverging, but the 3D-0D-Stab coupling method leads to
a blood �ow behavior where velocity vectors are underestimated at the center and top of the
coupling surface area. In the3D-3D coupling approach, �ow motion is more homogeneous in
terms of size and direction of the velocity vectors. For the3D-3D-0D coupling, the majority
of �ow is located at the bottom of the coupling surface and back�ow is authorized in the
upper part. The obtained �ow behavior is thus close to thereference case.

In �g. 3.7 the velocity �eld for the 3D-0D-Ptot coupling method behaves as in the
previous patient-speci�c case of adult pulmonary arteries. Moreover, the computation is
diverging.
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Figure 3.6: Velocity �elds in RPA at peak inlet �ow (left) and during decelerating �ow (right)
comparing the reference solution (3D-0D on the complete geometry),3D-0D and 3D-
0D-Stab (on the cut geometry), 3D-3D and 3D-3D-0D (on the extended cut geometry)
coupling methods from top to bottom.

Figure 3.7: The RPA velocity �eld during peak �ow with the 3D-0D-Ptot coupling method.
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These results are representative of the di�erent test cases we ran, with in�ow back
�ow or more extensive deceleration such as what is happening in the aorta [16]. For an in
depth discussion about the results in the context of the existing literature, we also refer to [16].

In conclusion, our contributions with respect to the existing works considering a 3D com-
partment (e.g. [Maury et al., 2005]) are the following. First, our arti�cial compartment is
more complex since it includes two di�erent kinds of dissipation and one term representing an
elastic potential energy. This allows us to mimic an RCR Windkessel model, which is impor-
tant in our applications. Second, we have investigated how this arti�cial compartment a�ects
out�ow instabilities typically encountered in hemodynamics; third, we made a numerical com-
parison of di�erent out�ow boundary conditions in realistic hemodynamics test cases. The
advantages of such an approach are that the coupling 1) does not enforce a uniform traction
at the interface, 2) is energetically close to the usual 3D Navier-Stokes - Windkessel solution,
without the potentially destabilizing convective boundary term (or, in the hybrid variant,
stable in numerical practice), 3) is provably stable in the energy norm without needing a total
pressure formulation, 4) the strategy of adding an arti�cial 3D part can be very useful in a
commercial code that does not allow the users to implement any 0D boundary conditions.

Qualitative and quantitative comparisons of existing coupling methods of three-
dimensional Navier-Stokes equations to 0D reduced models with this modi�ed Navier-Stokes
approach have been made in three patient-speci�c cases of healthy adult and diseased child
pulmonary arteries and healthy adult descending aorta (all of them can be found in [16]).
The 3D-0D and 3D-0D-Ptot methods are sensitive to instabilities, depending on where
the 3D domain is arti�cially cut, while the other methods remain stable in all tests. Results
from earlier coupling methods match those from the literature. Numerical results from the
modi�ed Navier-Stokes approach are especially less invasive during deceleration or reverse
�ow. The hybrid form of this new method, the 3D-3D-0D method, is particularly promis-
ing as it e�ectively stabilizes the simulations, without signi�cantly a�ecting forward �ow but
allowing more freely inward velocity vectors than the3D-0D-Stab method. The compari-
son of the cut-models with the reference, more extended model highlights the importance of
including enough downstream geometry to not a�ect hemodynamics in the area of interest of
the three-dimensional part in biomedical applications.

The dynamics accuracy of the proposed method can be increased by better tuning pa-
rameters to match clinical data. This method could also be improved with a space-varying
dissipative term. Finally, this method can be extended to other biological patient-speci�c
simulations, like more extensive hemodynamics reduced models or air �ow into the lungs.
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Multidomain modeling (section 3.1) is more and more common to assess in detailed �ow
in a 3D region of interest (section 2.1.1), while the rest of the blood circulation or respiratory
system is taken into account with reduced models (for 0D see section 2.1.3, for 1D see section
2.1.2). The latter constitute boundary conditions for the 3D part, and drive most of its
dynamics. They are thus crucial for the model. Yet, their parameters area priori unknown:
they need to be identi�ed in order to re�ect blood or air �ow measurements. Depending
on the considered application, available measurements besides imaging data to build the 3D
geometry vary. Here, direct or surrogate measurements of �ow and/or pressure are considered.
Depending on the acquisition method, either full time-varying curves or only mean values are
trusted. We thus present several challenges in this topic:

1. Measurements are not necessarily taken at boundaries of the 3D domain.

2. They are often too few to identify all parameters, and thus need to be complemented
by modeling assumptions or literature data.

3. They are usually not taken simultaneously and are thus not synchronized in time.

4. Computational complexity is often an issue for parameter identi�cation.

Each section is addressing these challenges in its own way. The question of identi�ability is not
addressed here in the formal mathematical sense (see e.g. [Boulakia et al., 2013] for Robin
parameter estimation in the Stokes system), but rather a practical approach is proposed:
either the model is chosen simple enough to ensure identi�ability (section 4.1) or sensitivity
analysis tools give a numerical feedback (section 4.3).

Strategies should be devised according to the available measurements: their implementa-
tion and computational complexity need to be coherent with the amount of information. Thus
parameter identi�cation can be done on purely 0D models (sections 4.1 & 4.3), on loosely cou-
pled 3D-0D models (section 4.3), or on strongly-coupled 3D-0D models (in the sense that each
parameter identi�cation simulation includes the 3D part) (section 4.2). In terms of methods,
variational approaches (simple parameter space search in section 4.1, �xed-point algorithm
in section 4.2) and sequential (unscented Kalman �lter) approaches in section 4.3 have been
implemented. Applications are presented through several real clinical and experimental cases.
They include construction of typical patient setting for device design, preoperative patient
state modeling for virtual surgery (section 4.2), cardiovascular disease assessment (section
4.3) and respiratory disease assessment (section 4.1).

Remark 1 Note that in multiscale models of tissues such as in multicellular spheroids (section
2.3), the model is more complex compared to blood and air�ow cases. Due to the interactions
of agent-based (cellular automaton) cell models with continuum molecular scale models, and
their stochastic nature, the above parametrization strategies do not work. Besides, the data
available are of 2 kinds: 1) partial solution snapshots � spatial labeling by immunochemistry
of proliferating cells, dying cells, etc. on spheroids cuts at several days�, 2) overall growth
dynamics surrogate (projected spheroid area over time). In such a case, time-consuming man-
ual tuning of the parameters, within the acceptable physiological ranges, has permitted to infer
some mechanisms that explain the diversity of data for di�erent nutrient concentrations (�g.
2.11). This will not be presented here, but all details can be found in [31].

4.1 Simplest model when data is scarce: application to better
understanding of emphysema

4.1.1 Parameter estimation for homogeneous emphysema

Simulations of air�ow in the lung (�g. 1.3) can augment experimental knowledge and phys-
iologic understanding only if they can accurately modelin vivo respiratory conditions and
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anatomy. Due to the vast range of length scales in the lung, complex geometry, computa-
tional cost and complex pulmonary tissue mechanics, it is currently impossible to model the
lung in full. Therefore, multidomain methods must be employed that couple here 3D geometry
of the largest airways (section 2.1.1) to lower-dimensional models of the rest of the respiratory
system (section 2.1.3) as in section 3.1.

Deposition in emphysematous lungs (see section 1.2.2) has been previously studied in
vivo [Brand et al., 2009, Sweeney et al., 1987], in vitro [Oakes et al., 2010], and with empir-
ical models [Sturm and Hofmann, 2004, Segal et al., 2002], however with con�icting results
regarding particle deposition in emphysema. This work thus provides a mathematical model-
ing framework to study how ventilation and particle transport di�er in emphysema.

While prior numerical studies have investigated air�ow [Gemci et al., 2008,
Monjezi et al., 2012, Ba�co et al., 2010], particle deposition [Comer et al., 2000,
Longest and Vinchurkar, 2007, Nowak et al., 2003, Walters and Luke, 2011] and
distribution [Darquenne et al., 2011] in the lung, few have incorporated pa-
tient or animal speci�c geometry and breathing parameters. Air�ow
[De Backer et al., 2008, Minard et al., 2012, de Rochefort et al., 2007] and particle de-
position [Fetita et al., 2005, Comerford et al., 2010, Nowak et al., 2003] in the lung were
shown to be highly dependent on geometry and �ow asymmetry [Butler and Tsuda, 2005].
Boundary conditions that describe the upstream and downstream mechanics outside of the 3D
domain must be de�ned on the inlets and outlets for all CFD simulations. Constant pressure
or �ow rate are typically implemented at the mouth/trachea and distal airway outlets.
However, as the �ow patterns change in time, CFD simulations should model the breathing
unsteadiness, to determine air�ow [Malve et al., 2013] and particle [Comerford et al., 2010]
deposition patterns in the lung. Thus, appropriate boundary conditions must be devised.

Multidomain modeling techniques have been applied to numerous studies in the car-
diovascular system (see sections 3.1, 3.2, 4.2, 4.3). However, not until recently have these
methods been applied to the respiratory system [Kuprat et al., 2013, Gravemeier et al., 2012,
Malve et al., 2013, Ba�co et al., 2010]. These models enable more realistic 3D unsteady �ow
simulations because they do not require direct description of time-dependent �ow and pres-
sure waveforms at the distal branches, which are typically unknown [Gravemeier et al., 2012].
However none of these works directly parameterized their lower dimensional mod-
els from animal or patient in-vivo speci�c data. In addition, the recent work of
[Wongviriyawong et al., 2013] showed that their lumped parameter model of the human lung
could only reproduce the ventilation measurements if it included the downstream resistances
and compliances tuned from healthy and asthmatic measurements. These �ndings help mo-
tivate the usage of such 0D parameter models components when solving for air�ow in a 3D
CFD model.

Despite their extensive use in toxicology [Wichers et al., 2006] and therapeutic studies
[Agu and Ugwoke, 2011], relatively few studies have simulated air�ow [Minard et al., 2012]
and particle deposition in the rat lung. In a recent study, CFD and MRI steady �ow mea-
surements agreed well in the conducting airways [Minard et al., 2012]. Empirical models can
be predictive of particle deposition in the rat [Anjilvel and Asgharian, 1995], however there
have been no prior 3D simulations of particle transport and deposition in rat airways.

The goal of this work [15] is to develop a multidomain respiratory model to simulate air-
�ow and particle deposition with the aim of replicating animal aerosol exposure experiments
[Oakes et al., 2013] in both healthy and emphysematous rats [Oakes et al., 2014]. Note that
the experiments were performed before the mathematical modeling.

Five healthy and �ve elastase induced emphysematous [Oakes et al., 2014] anesthetized
rats were mechanically ventilated (�g. 4.1). During inhalation, the piston pump pushed 2.2
mL of particle-laden air into the lung at a breathing frequency (BF) of 80 breaths\ min . The
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Figure 4.1: a) Rat aerosol exposure experiment. b) Reduced global model and driving mea-
sured pressure. c) 3D-0D model. d) 3D velocity �eld rendering (dark blue for low velocity to
red for high velocity) superposed on the excised lung.
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particles had a 0.95�m geometric diameter and a density of 1.35g\ cm3 [Oakes et al., 2013].
At the end of inhalation, the rat passively exhaled through a tube subjecting the rat to
a constant 1 cmH2O end expiratory pressure (PP eep). Pressure P(t) was measured over
time at the trachea and the maximum pressure was signi�cantly lower (p= 0.01) in the
emphysematous rats compared to the healthy rats [Oakes et al., 2014] (�g. 4.1b). The only
other available respiratory measurement is the tidal volume pushed by the pump at the end
of inspiration. Thus, in a �rst step we characterize the respiratory system by a well-known
two-component R-C model (0D global model) (see section 2.1.3 and [Bates and Suki, 2008],
[15] for its derivation):

R
dV
dt

+
V (t)

C
= P(t) � Ppeep: (4.1)

where V : R+ ! R is the instantaneous inhaled volume (deviation of the lung air volume
from the minimum air volume at quiet breathing). As the rats were ventilated at a breathing
frequency and tidal volume representative of normal breathing, it is appropriate to assume
constant resistance and compliance [Diamond and O'Donnell, 1977]. As theR and C param-
eters are unknown, eqn. 4.1 is solved using a large range of values. A unique pair is found
for each rat satisfying the following constraints from the experimental data: a) the maximum
volume is the one imposed by the pump (i.e. 2.2 mL) and b) inspiration ends as set by the
pump (i.e. time of maximum volume was1n(2BF )). Resistance during exhalation is set to
1.5 times the resistance during inhalation following previous work [Rubini et al., 2011]. A
Mann Whitney two-tailed t-test shows that capacitance, contrarily to resistance, is signi�-
cantly higher (p = 0.04)) in the emphysematous rats (C= 0.37� 0.14cm3\ cmH2O) compared
to the healthy rats (C= 0.25� 0.04cm3\ cmH2O). The increase is found consistent with the
literature. The resulting breathing dynamics (�g. 4.2) shows how expiration is delayed in the
emphysematous rat.

The multidomain air�ow simulations are then performed by coupling MRI-derived 3D rat
conducting airways [Oakes et al., 2012] to the 0D global model (�g. 4.1c). In this �rst study
[15], only the �rst branch of each lobe is included. We refer to the paper for model parameters
and numerical methods choices, including multi domain coupling (section 3.2.2), inertial sta-
bilization (section 3.3) and anisotropic mesh adaptation ([Muller et al., 2005], section 2.1.1).
To summarize, the 3D Navier-Stokes equations are solved with the following boundary condi-
tions. The experimental pressure used to estimate the global parameters (�g. 4.2A) is applied
at the trachea as a Neumann boundary condition. At the airway walls, the no-slip zero veloc-
ity boundary condition is set. At each distal face, the 3D Navier-Stokes equations are coupled
to a 0D model as in eqn. 4.1. While a few recent studies have measured ventilation in rat
lungs [Emami et al., 2011], none of these have measured the ventilation distribution to each
lobe. However, Raabe et al. [Raabe et al., 1975] measured the lobar distribution of 0.52�m
particles in spontaneously breathing rat lungs and found the distribution of deposited parti-
cles to be proportional to lung volume. Particles of this size have minimal intrinsic properties
and consequently they closely trace the convective �ow in the lung. Therefore, for each lobe,
the parametersRdistal;i and Cdistal;i are computed assuming that the regional tidal volume to
each lobe is proportional to its volume at total lung capacity, where� i is the volume of each
lobe divided by the total lung volume [Oakes et al., 2012]:

Cdistal;i = � i C ; Rdistal;i =
R
� i

(4.2)

The global resistance is thus distributed among the resistances distal to the 3D domain,
which is justi�ed because the resistance in the 3D domain is negligible. One healthy and
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Figure 4.2: Global 0D model solution for healthy and emphysematous rats. A: experimental
pressure used to solve eqn. 4.1 and applied to the trachea face for the 3D-0D simulations. B
and C: the 0D volume and �ow rate solution. D, E and F: pressure and �ow rate loops, �ow
rate and volume loops and pressure volume loops. Arrows: direction of the breathing cycle.

one emphysematous representative rats are simulated. To compare this data-driven homoge-
neous emphysema case to heterogeneous emphysema, disease localized to one lobe only is also
simulated for the �ve di�erent lobes (see an illustrative example in �g. 4.3).

Finally, particles are tracked in the 3D domain during inspiration to determine deposi-
tion sites within the 3D model and delivery distribution of particles into the �ve rat lobes.
Rigid spherical particles are tracked in the 3D model by solving the Maxey-Riley equation
[Maxey and Riley, 1983]. For small particles the Faxen correction and Basset/Boussinesq
memory terms may be neglected [Maxey and Riley, 1983]. Therefore, the Maxey-Riley equa-
tion reduces to

�
� p +

� f

2

� dv
dt

= ( � p � � f )g +
3
2

� f
Du
Dt

�
9
2

�
a2 (v � u) ; (4.3)

where v : 
 � R+ ! R3 is the particle velocity, a is the particle radius, � is the viscosity
of air, � p is the particle density, � f is the �uid density, u : 
 � R+ ! R3 is the air velocity.
We refer to [15] for the model parameters and the numerical methods. Gravity,g, is either
positioned to represent a rat in the supine position as in the experiments [Oakes et al., 2013],
or such that the rat was in the standing position.

Simulations are performed for a healthy rat lung, one with homogeneously distributed
emphysema, and �ve di�erent cases of heterogeneous emphysema (see [15] for illustration and
discussion of the results). Furthermore, the in�uence of particle size and rat position are
investigated. The regional tidal volume at each of the distal airways is found to match the
expected �ow distribution in these multidomain simulations, unlike when a constant pressure
boundary condition is applied at the distal airway faces. The unsteady simulations exhibit
complex �ow patterns, especially at the triple bifurcation area. These complex �ow patterns
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Figure 4.3: 3D rendering of the velocity magnitude and massless �uid particle pathlines
for homogeneous emphysema (panels 1A-C) and for heterogeneous emphysema (apical lobe
diseased) (panels 2A-C). Time points are mean in�ow during acceleration, peak in�ow, mean
in�ow during deceleration.
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in�uence the particle deposition in the airways; fewer particles travel to the cardiac and
intermediate lobes compared to their corresponding fraction of regional tidal volume. There
is an increase in air�ow, particle deposition in the 3D model, and particle delivery to the
diseased regions for the heterogeneous cases compared to the homogeneous cases. Moreover,
a standing rat position and a larger particle size both increase deposition in the 3D model.
Finally, in some cases the particle deposition analytical models studied here predict a higher
deposition compared to the 3D numerical simulations. This is likely because the analytical
models do not account for the in�uence of unsteady �ow and complex �ow patterns.

In summary, this study presents a novel combination of a subject-speci�c multidomain
air�ow model and its parametrization directly from in-vivo experimental data. The air�ow and
particle deposition in the rat airways were solved under unsteady breathing conditions, and
the CFD model was used to predict the in�uence of emphysema on deposition and distribution
of particles in the conducting airways of the lung. The results highlight the importance of
multidomain numerical simulations to study air�ow and particle distribution in healthy and
diseased lungs. The e�ect of particle size and gravity were studied. In a next step, thesein
silico predictions may be compared to experimental deposition data.

4.1.2 Parameter estimation for heterogeneous emphysema

When the experimental deposition data became available, we realized that emphysema was
heterogeneously distributed within several lobes. Furthermore, we wanted to take into account
all the airways visible given the MRI resolution. These two points led to a second work [18],
summarized in this section.

Computational �uid and particle dynamics simulations provide detailed spatial and
temporal distributions of air�ow and particles in healthy and diseased lungs. How-
ever, to increase con�dence in these models, results must be validated againstin vivo
experimental data. While several groups have shown good agreement between three-
dimensional (3D) �ow [de Rochefort et al., 2007, Mylavarapu et al., 2009] and particle-based
[Longest et al., 2012, Ma and Lutchen, 2009, Ma et al., 2009, Zhang and Kleinstreuer, 2001,
van Ertbruggen et al., 2009] models with in vitro experiments, these comparisons are
not su�cient for validation of in vivo conditions. While 1D particle transport mod-
els have relatively well predicted in vivo data of total and regional deposition in
the human [Darquenne and Paiva, 1994, Asgharian et al., 2006, Katz et al., 2013] and rat
[Schmid et al., 2008, Anjilvel and Asgharian, 1995] lung, they do not provide detailed spa-
tial information. Recently, Minard et al. [Minard et al., 2012] showed promising agreement
betweenin silico predictions and in vivo magnetic resonance (MR) derived �ow �elds in rat
lungs. While these previous studies have advanced the validity of computational models,
none of them compared multidomain simulations to regional particle deposition data in both
healthy and diseased lungs.

Emphysema has been shown to impact particle deposition in the lungs [Oakes et al., 2014,
Sweeney et al., 1987, Brand et al., 2009]. To study the in�uence of emphysema-like morpho-
metric changes on particle deposition, [Oakes et al., 2014] previously employed MR methods
[Oakes et al., 2013] to determine lobar deposition in elastase-treated and healthy rat lungs.
Results showed, for rats ventilated with the same breathing parameters, that particle concen-
tration was higher in the elastase-treated lungs, compared to the healthy lungs. However, the
distribution of particles to the lobes was the same in the healthy and emphysematous rats
[Oakes et al., 2014] despite the MR and histological measurements suggesting heterogeneous
distribution of emphysema-like structures in several lobes of the emphysematous group.

The goal of the current study is to extend the previous 3D geometric model (see
previous section) and to compare regional deposition predictions to experimental data
[Oakes et al., 2014]. These simulations require matching the numerical model as closely as
possible to the experimental conditions and comparing the predicted distribution of inhaled
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particles to the experimental lobar deposition. Using this in silico model, we explore the
in�uence of �ow conditions (unsteady versus steady) and initial particle spatial distribution
on deposition and lobar delivery.

In terms of methods, the multidomain numerical framework is the same as in the above
section (see also [18]), leading here to 3 million elements mesh even after adaptation. What
changes is how the parameters of the 0D equation 4.4 in the 3D-0D simulations are inferred
from data, especially for the emphysema case, which here is heterogeneous.

Ri;j
dV(t) i;j

dt
+

V (t) i;j

Ci;j
= P(t) i;j � Ppeep; (4.4)

where Vi;j is the inspired volume, P(t) i;j is the pressure at each distal face and thej and i
indices identify the distal faces, with lobej and assigned airway numberi . In the next two
paragraphs, the parametersRi;j and Ci;j are estimated using a combination of the experimen-
tal measures and a purely 0D model (e.g. �g. 4.4 C). With this formulation, it is assumed
and veri�ed that the 3D resistance does not in�uence the average �ow repartition in the distal
branches of the 3D tree. Therefore, the driving pressures,PH (t) or PE (t) (�g. 4.4 A) remain
the relevant P(t) i;j for these solely 0D models.

The 0D model parameters for the healthy simulations are de�ned as functions of both the
fractional cross-sectional area within each lobej and experimentally-measured lobar volume
fraction � j , and the global RC parameters identi�ed in the previous section, in the spirit of
eqn. 4.2. Neglecting the 3D region, all the distal RC 0D models in parallel are mathematically
equivalent to a single global RC 0D model. This is due to the fact that the productsRi;j Ci;j are
all equal, i.e. the relaxation times are the same. As before, the 0D resistance during expiration
is set to 1.5 times the 0D resistance during inhalation (Ri;j ex = 1 :5Ri;j ) [Rubini et al., 2011].
Emphysematous regions are heterogeneously located in the lung to match the histological and
MRI experimental �ndings [Oakes et al., 2014]. The lung is divided into normal (Zone 1) and
diseased (Zone 2) regions (�g. 4.4B). Due to this heterogeneity, a new procedure to estimate
the distal parameters is designed, based on a purely 0D model. In fact, several RC models in
parallel are not mathematically equivalent to a single RC model when the characteristic times,
that is, the products � = RC are not the same. Within each homogeneous region (normal
or diseased) these products are the same by construction. However between regions, this is
no longer true, that is, a diseased RC and a normal RC in parallel are no longer formally
equivalent to a global RC model. [Note that only the global compliance, and not the global
resistance, changed for the emphysematous rats compared to the healthy rats (see previous
section), resulting in di�erent relaxation times between these two states.] As a result, the
relationship between experimentally determined global R and C, and lobar or sublobar values
is no longer simple. However, the latter can be determined with a 0D model, in which each
homogeneous region (normal or diseased) is represented by a single RC model (�g. 4.4C). For
details, see [18].

Following the air�ow simulations, particle transport and deposition are simulated through-
out inspiration as in the previous section, after having checked independence to the time step
and number of particles released. The percentage of deposited particles is calculated by nor-
malizing the number of particles deposited by the number of particles inspired. The particle
delivery to each lobePDel j is calculated as a % of the total delivery (wall deposited or exited
particles). It is then normalized by the lobar volume fraction, giving V PDel j .

This study is the �rst to compare 3D numerical particle deposition simulations to ex-
perimental data in both healthy and diseased conditions. The main �ow results are that
contrarily to normal rats, there is an asynchrony between the healthy and diseased regions in
emphysema, and as a consequence air is still entering certain zones while leaving others (�g.
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Figure 4.4: 3D airway geometry [Oakes et al., 2012] used for all the simulations. Panel A:
identi�cation of the airways leading to the �ve lobes. Panels B and C: de�nition of the zones
for the emphysematous simulations. Zone 2 (diseased region) is set to be at the bottom13
of the left, cardiac and diaphragmatic lobes. Zone 1 (normal region) is de�ned as the top
2
3 of the left, cardiac and diaphragmatic lobes and the entire apical and intermediate lobes.
Panel C shows the distribution of the normal (Rnorm and Cnorm ) and diseased (Rdis and Cdis )
parameters for each zone.
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Figure 4.5: Inhaled volume over time for zones de�ned in �g. 4.4, comparing healthy and
emphysema cases. Zoom on a zone of interest (mix of zones 1 & 2) showing for each case
velocity magnitude and �ow direction.
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4.5). Besides, these healthy regions are less ventilated (lower tidal volume, lower velocities)
than in normal rats, and conversely diseased regions are more ventilated than in normal rats
and slower to empty than the healthy regions. All these facts in�uence particle deposition
and delivery. It is possible that this asynchrony becomes more signi�cant as the disease pro-
gresses, causing air to be trapped. Particles suspended in this trapped air will likely have
more time to sediment and deposit. This failure to �ush out potentially harmful particles
could contribute to accelerated disease progression.

Figure 4.6: Panels A and B: comparison ofPDel and PDep [Oakes et al., 2014] for the healthy
(uniform and parabolic seeding, panel A) and the emphysematous (panel B) rats. The particle
delivery results for the steady simulations at mean and maximum inhalation �ow rate are
shown in panel A. Panels C and D:V PDep [Oakes et al., 2014] andV PDel for the 5 lobes of
the healthy (panel C) and emphysematous (panel D) rat lungs. A value of 1 would indicate
that deposition/particle delivery is proportional to lobe volume.

While both the steady and unsteady simulations reasonably predicted the lobar distribu-
tion of particles in the healthy case (�g. 4.6), the deposition patterns in the 3D geometry is
quite di�erent between the two (�g. 4.7). This �nding indicates that if only lobar distribution
is needed, steady simulations may be appropriate for the �ow and particle properties consid-
ered in this study. However, unless the �ow delivery to each lung region is known beforehand,
emphysema ventilation can only be modeled using unsteady multidomain techniques, as the
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one employed in the current study. Besides, unlike for the healthy simulations, we are unable
to match the emphysema particle deposition experimental data (�g. 4.6). This is likely be-
cause the airways and pulmonary region downstream of the 3D geometry are lumped in the
RC models. In the healthy simulations, it is possible that deposition e�ciency downstream
of the 3D geometry is relatively similar between lobes. However, in emphysematous lungs,
where normal regions are neighboring diseased regions, the deposition e�ciency is likely not
the same between these di�erent areas of the lung. Therefore other factors should be taken
into account to understand emphysema (see section 5.3). For more detailed results on the
�ow dynamics, particle deposition results and discussion, we refer to [18].

Figure 4.7: Particle deposition locations for the unsteady healthy (panels A and B) and steady
simulations (panels C and D). For the steady simulations, blue and red particles were used
for the mean and maximum �ow rate, respectively.

4.2 Inverse problem for constant non-local targets - application
to surgical planning in single ventricle physiology

In the above section, although the 3D region �nally included a large number of branches,
the pressure drop in the 3D part was negligible compared to the coupling pressure with
downstream domains. Therefore, it was possible to derive parameters from a global 0D model
and transfer this information directly into the 81 terminal 0D models. But this strategy does
not work when the 3D part has a non-negligible resistance compared to the downstream ones,
and actually in�uences the average �ow repartition between the branches. Thus this section
presents a strategy for such cases.
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4.2.1 Parameter estimation for constant but distributed targets

Several stages of palliative surgery are required to connect the systemic and pulmonary
circulations to the single ventricular (SV) power source (see 1.2.3). Accurate modeling of
patient-speci�c physiology for clinical decision-making requires the integration of the pa-
tient's clinical data into numerical simulations [3]. CFD studies of SV conditions [13]
[Bove et al., 2003, de Zélicourt et al., 2010] have presented the crucial aspect of specifying
the relevant boundary conditions. Multidomain methods (sections 3.1, 3.2) have been favored
to take into account the e�ect of the distal pulmonary vascular trees (e.g. for SV [13, 3]
[Pennati et al., 2011, Ceballos et al., 2012] and citing references). This allows one to obtain
information about local �uid dynamics due to changes in anatomical features resulting from
surgical operations [4, Kung et al., 2013]. Besides, when the 3D-0D model is closed loop,
changes on and from the heart or other key systemic factors, can be evaluated from the
known preoperative patient state for these di�erent virtual surgeries [4, Kung et al., 2013].
Nevertheless, such multidomain models need patient-speci�c parameters to be an e�ective
tool for clinical support in surgical planning. The current work provides the parametrization
of the 0D components that are in direct contact with the multibranched 3D model, where
neither �ow nor pressure are known.

In cases of pure zero-dimensional models, a number of methods for parameter iden-
ti�cation were applied to minimal models of the adult systemic arterial circulation
[Stergiopulos et al., 1999, Segers et al., 2008], and submodelling or sensitivity analysis were
suggested to reduce the identi�cation complexity in closed-loop models of the whole cardiovas-
cular system [Pope et al., 2009, Hann et al., 2010, Sughimoto et al., 2013, Liang et al., 2014].
However, these methods cannot be applied easily to 3D-0D modeling because of very high
computational costs. Considering multidomain models, a possible approach consists of man-
ually tuning lumped parameters [Pennati et al., 2011]; however, this simple method requires
intuition regarding hemodynamics, and has been found to be infeasible if the 3D geometry has
multiple branches. Automatic parameter estimation methods have thus been developed (see
1D and 3D references in section 4.3). These di�erent methods, although e�ective, are demand-
ing in terms of numerical implementation or numerical costs. They have the advantage, how-
ever, of matching time-varying measurements. We note here the work of [D'Elia et al., 2012],
in which a variational control approach is successfully tested for the linearized steady Navier-
Stokes equations to control the input traction to match velocity information given in di�erent
slices of a vessel. This approach is also computationally heavy. Our �rst aim here, is to
provide an automatic parameter estimation for multi-branched geometries, whose complexity
is coherent with the type of available data. As described in the next section, clinical measure-
ments are limited in single ventricle patients (only a few months or years old) immediately
prior to surgery. Namely, classical identi�cation of the out�ow impedances (compliances and
resistances) for each vascular branch cannot be achieved since complete arterial pressure and
�ow tracings are usually lacking, and sometimes only the average values are available.

We have �rst developed an alternative approach [23, 43] consisting of two steps: i) total
downstream resistances are identi�ed for each pulmonary outlet; ii) each resistance is split
and compliance is derived, using a morphometric approach and according to literature scaling
rules (e.g. relative role of arterial and venous vascular beds). In [23] a simple method has
been introduced to iteratively tune total outlet resistances of the 3D model and match clinical
inlet average pressure, inlet average �ow and outlets' �ow repartition. In this following work,
we extend the method for more general pressure clinical data localization, as clinical data are
rarely available at the speci�c 3D boundaries. We can recast these di�erent situations as an
inverse problem for which given a set of measurements to match (target values vectorV T )
�nd the vector R of resistances(Ri );i =1 :::N for the 3D-0D coupled Navier-Stokes equations. N
is the number of outlets. In other words, we are looking for the �xed-pointR of the following
problem:
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R = g � f (R ) such that L (f (R )) = V T (4.5)

Let us now de�ne these di�erent components in their biomedical context and the associated
�xed-point algorithm. We concentrate on the pre-stage 2 case [19] to avoid complex termi-
nology, but pre-stage 3 work of [23] can be describe in the same framework.

Figure 4.8: multidomain set-up, with the 3D domain, its inlet face on which the in�ow Qin is
prescribed, and the distal pulmonary circulation for each outlet that all merge in the single
atrium de�ned by its pressure Pat . Clinically measured quantities are marked with a star. At
each outlet (dashed rectangle), the pulmonary arteries, capillaries and veins are represented
either by a single total resistance for tuning, or by a more complete 5-parameter reduced
model for virtual surgery [43, 44].

We refer to [19] for the description of the six patients pathology (labeled A�F), medical
imaged-based geometry reconstruction and measurements protocols of the hemodynamics
data from cardiac magnetic resonance imaging (usually abbreviated as CMR) and cardiac
catheterization. The in�ow to the model Qin is measured and directly applied as a boundary
condition to the Navier-Stokes equations (see section 2.1.1).Pat , the measured single atrium
pressure is the end pressure of the multidomain model. The main challenge of this study is
to determine out�ow boundary conditions for each patient-speci�c model that are consistent
with the clinically measured data, which themselves are nonlocal measurements of the 3D
model (see �g. 4.8): 1) time-average �ow distribution (�ow split) between left and right
sides de�ned as fs= QR

QL + QR
with evident notations, and 2) time-average pulmonary artery

(PA) pressure denoted byPT , which is the target pressure to match, and whose location and
de�nition vary for each patient. Besides for validation purposes, pressure di�erences between
left and right sides when measured were considered negligible (0-1mmHg) for patient A, B,
D, F whereas for patient E it was 3mmHg. For patient C, the measurement was done on the
left, and the pressure di�erence was assumed negligible (this case will be discussed later). All
theses values are reported in Table 4.1. For each case, one can thus de�neV T as the target
values (PT ;fs).
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But the inverse problem is certainly ill-posed to �nd a unique vector of outlet resistances
R given that there are typically 6-20 outlets. Thus the inverse problem is completed by
assumptions on the �ow repartition between the branches: the mean �ow rate (QT

i ), that is
the target to reach through an outlet i , is assumed to be proportional to the surface area of
this outlet ( Si ): QT

i / Si . A power law could also be used if relevant [23]. A target average
value for the �ow rate at outlet i is thus a function of the inlet �ow rate (Q in ) coming from
clinical measurements:

QT
i = Qin

�
� i r fs + (1 � � i r )(1 � fs)

�
SiP

j
Sj � ij

(4.6)

where � i r is the kronecker symbol equal to 1 if outleti is on the right side and 0 if not, and
� ij is the kronecker symbol equal to 1 if outletj is on the same side as outleti and 0 if not.
V T is thus (PT ,(QT

i ) i =1 :::N ).
The algorithm is then run as follows (see [19] for information on adaptive meshing, numer-

ical discretization and solvers of the multidomain simulations, numerical parameters, etc.):

1. A �rst value of Ri at each outlet is estimated to initialize the algorithm, usually by
neglecting 3D pressure losses.

2. This sets the 0D values for a 3D-0D coupled Navier-Stokes simulation that is run with
su�cient time steps in order to reach stable state results [typically a few 100 time steps
for steady simulations and four cardiac cycles for pulsatile simulations. Note here, that
even in case of steady inlet �ow (so called "steady simulations"), the resulting 3D �ow is
unsteady due to its complex interaction with the patient-speci�c geometry. Therefore,
we use a transient formulation even for steady boundary conditions.] By post-processing
the results over the last stable period, time-averaged (and mean in space) pressure (P3D

i )
and �ow rate ( Q3D

i ) are computed at each outlet, leading to the N-value vectorsP3D

and Q3D . The function f in eqn. 4.5 has thus been de�ned:f : RN 7! RN � RN such
that (P3D ; Q3D) = f (R ).

3. L
�
P3D ; Q3D

�
= V T in eqn. 4.5 is now de�ned as the linear operator identity for the

�ows and the following operator for the pressures: the controlled pressure (P3D
c ) that

varies according to the measurement location and clinician input is then calculated.
Note that the exact pressure measurement location is unknown, hence this controlled
pressure cannot be related to the output pressure at a speci�c location in the 3D domain.
Rather, if catheterization was performed on the left pulmonary side,P3D

c is the average
pressure over all the outlets of the left side (P3D

i , i 2 [0; N l ] for N l the number of
left pulmonary outlets). Sometimes, there were several measurements done on one or
both sides;P3D

c is then de�ned together with clinical experts as being the maximum or
minimum value over all the corresponding branches of numberN , e.g.

P3D
c = min

i
P3D

i ; i 2 [0; N ] (4.7)

These di�erent options de�ne the measurement for tuningand control method reported
in Table 4.1.

4. The results are then compared to the target pressure and �ow values, i.e. the residual
L

�
P3D ; Q3D

�
� V T is computed with the following norm:

"P =
jPT � P3D

c j
PT

"Q =

 
1
N

NX

i =1

�
Q3D

i � QT
i

QT
i

�
1
N

NX

i =1

Q3D
i � QT

i

QT
i

� 2
! 1

2

(4.8)
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5. If convergence is reached within a certain tolerance the process stops. Otherwise before
continuing with step 2., outlet resistancesR are updated with the following function
g : RN � RN 7! RN which componentsRi = gi (P3D ; Q3D) are de�ned as:

Ri =
PT � (P3D

c � P3D
i )

QT
i

(4.9)

In the case of a �ow time-tracing being used as in�ow, pulsatile tuning simulations are
performed, which better capture nonlinear e�ects across the 3D domain; total resistances
(Ri ) are also applied as boundary conditions, while pulsatile �ow is imposed at the inlet.
The controlled variables (P3D

c , Q3D
i ) are then the time-averaged values over the last cardiac

cycle. The framework presented above is the same for steady and pulsatile simulations. The
steady tuning simulations are performed for all six patients, whereas the pulsatile ones only
for patients A and E.

Patient A B C D E F
Age (months) 6 4 5 5 3 4

BSA (m2) 0.34 0.28 0.34 0.30 0.26 0.27
In�ow (cm 3/s) 7.5 12 20 9.7 12 16.6

Remax 2300 1750 2900 2500 3000 4150
fs 0.64 0.46 0.55 0.46 0.67 0.52

PA pressure (mmHg) 12.8 12.7 13.5 12 17 11
� PL/R (mmHg) negl. negl. negl.? negl. 3 negl.

Meas. loc. for tuning both LPA LPA both RPA both
Control method average average average average min max

fs3D 0.64 (0.64) 0.46 0.55 0.46 0.66 (0.67) 0.52
P3D

c (mmHg) 12.3 (12.4) 12.7 13.4 12.0 17.0 (17.0) 11.0
� P3D

L/R (mmHg) 0.4 (0.4) 0.7 0.5 6.0 3.0 (3.0) 0.2

Table 4.1: Clinical measurements, numerical method and results. For each patient, clini-
cal data (age, BSA, average pulmonary in�ow, deduced Reynolds numberRemax , �ow split
fs, target pulmonary artery pressure value, negligible or not left/right pulmonary pressure
di�erence), tuning set-up (left or right pulmonary side, and control method to de�ne P3D

c ),
and numerical results in red (obtained �ow split fs3D , controlled pressureP3D

c and pressure
di�erence between left and right sides� P3D

L/R ). Numbers are for the steady tuning and in
parenthesis for the pulsatile tuning.

4.2.2 Results

Table 4.1 reports the tuning results. Steady tuning was run for every patient: the results (fs3D

and P3D
c ) are very close to the targeted clinical data. However, if we focus on the not targeted

quantity ( � PL/R ), the model predictions are satisfactory only in �ve cases. Indeed, according
to clinical observations, the pressure di�erence between right and left lungs is signi�cant only
for patient E, whereas the calculated� P3D

L/R is signi�cant for both patients E and D. This
issue is considered in detail in the next section. Fig. 4.9 illustrates the convergence of the
tuning algorithm for pressure and �ow: both errors are under 2% for all patients, except for
patient F where � Q is 5%. Pulsatile tuning was also performed for patients A and E and
led to results (reported in parenthesis in table 4.1) all very close to both steady tuning and
targeted clinical values. As a consequence, the next paragraphs only report the 3D results of
the steady tuning.
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Figure 4.9: Convergence of the tuning algorithm shown for pressure (� P ) and �ow ( � Q) for
patients A-F.

Historically, very little CFD work has been performed at pre-stage 2 and pre-stage 3
surgeries (for more precise information, see [23] for pre-stage 3 surgeries, and [19] for pre-
stage 2 surgeries). To the best of our knowledge, no prior computational study exists on
patient-speci�c pulmonary hemodynamics in the presence of a systemic-to-pulmonary shunt
and appropriate boundary conditions. The second aim of such study is hence to provide a �rst
characterization of blood �ow behavior in the distal anastomosis of the systemic-to-pulmonary
shunt, and the connected pulmonary arteries over several bifurcations, in a number of di�erent
single ventricle patients scheduled for stage 2 surgery [19] - and similarly in [23] for stage 3
surgery.

Figure 4.10: Pressure maps for patients A-F. Maximum pressure is equal to25 mmHg on the
color scale, even if the real maximal pressure is larger.1 mmHg = 133:3 Pa.

In �g. 4.10 the pressure map for each patient is presented at the end of the tuning. We
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observe a high peak of pressure on the wall. The maximum pressure for patients A, B, C,
D, E and F are respectively 52, 26, 25, 45, 62 and 74 mmHg. The patients A, B and F
have homogeneous pressure in both pulmonary arteries respectively, approximately12, 13
and 11 mmHg. Moreover, patients D and E have a left pulmonary artery (LPA) stenosis
which involves a signi�cant pressure loss of approximately6 and 3 mmHg respectively, while
homogeneous pressure is found in the right pulmonary artery (RPA). A last remark concerns
patient C who has a kink in the RPA close to the shunt. The kink does not generate a
signi�cant pressure loss and pressure is homogeneous in both PAs, around13:5 mmHg.

Figure 4.11: Streamlines of patients A-F colored by velocity magnitude.

In �g. 4.11 blood �ow patterns for each patient are presented at the end of the tuning. A
very complex �ow can be observed in the 3D geometrical domain, especially close to the shunt
where blood �ow is the highest. Highest velocity is obtained in the center of the shunt and is
respectively equal to470, 250, 265, 319, 377and 570cm/s. For patients A, B, and F the blood
is swirling in the pulmonary arteries close to the shunt and goes towards the outlets smoothly
with less complexity. This mixing �ow behavior extends into the main pulmonary artery
stump for patients B, C, and D where the stump from the ligated vessel is prominent. For
patient E, swirling re�ects the tortuous geometry on the left side, where there is a constriction
anastomosis near the main pulmonary artery stump, followed by an LPA stenosis. The results
of this study highlight the high complexity of the blood �ow patterns in pulmonary arteries
in single ventricle patients approaching stage 2 surgery with a systemic-to-pulmonary artery
shunt in situ. The variability of the pulmonary �ow rate � between 7:5 and 20 cm3/s � leads
to very high Reynolds numbers, between1750 and 4150 when computed at the shunt inlet
with the maximum velocity.

Wall shear stress surface maps are discussed in detail in [19]. To summarize, for all
patients the maximal wall shear stress is reached either in the shunt, or where there is a peak
of pressure, stenosis or ligation, except for one patient where the opposite happens.
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4.2.3 Discussion

This proposed methodology to tune reduced model parameters, adopted as outlet bound-
ary conditions of patient-speci�c 3D pulmonary arterial models, accurately replicates clinical
measurements (table 4.1), within acceptable clinical measurement tolerance limits. As the
pressure di�erence between the left and right side was not used for parameter tuning, the fact
that this measurement is well-matched by the simulations constitutes a preliminary validation
of the results.

At the 3D outlets, it would not be relevant to apply pressure boundary conditions for
the following reasons: 1) the measured �ow distribution between the two di�erent lungs
cannot be easily matched, and 2) the pressure measurements were not performed at these
locations in the pulmonary arteries. Sometimes, applying the same pressure at all outlets
can even lead to unphysiological reverse average �ow in some of the branches. Applying
time-varying �ow boundary conditions would also be di�cult because the �ow distribution
between the di�erent outlets is not necessarily constant, and would not guarantee coherence
with the pressure measurements. Moreover, prescribing pressure or �ow reduces the predictive
potential such as in virtual surgery planning [3]. This is why we coupled 3D Navier-Stokes
equations to reduced models.

The tuning methodology introduced in this work consists of coupling Navier-Stokes equa-
tions to reduced models (here resistances) at the outlets and running steady or pulsatile
simulations. The a priori interest in running a pulsatile simulation is the integration of all
non linearities due to the 3D geometrical model, and to obtain a more accurate set of reduced
model parameters. However, to achieve periodic stability, pulsatile simulations need to be run
over 4 cardiac cycles (around 2000 time steps) and the iterative process converges within 5
iterations, thus around 10000 time steps. In comparison, 100 time steps for a steady stimula-
tion were enough and the iterative process converges in 5 iterations (tolerance of 0.05), thus
around 500 time steps were necessary in total. Furthermore, pulsatile tuning for patients A
and E was performed, and both matched targeted clinical values were very close to the steady
tuning results. Moreover, the reduced model parameters were very close to those obtained
by steady tuning. Indeed, for patients A and E the di�erence between steady and pulsatile
tuning are respectively 6.37% and 7.82% in resistances, computed by the formula (4.8).

See [19] for more discussion on the choices of in�ow velocity pro�le and rigid wall assump-
tion, number of included branches and sources of uncertainties (see also section 5.4).

4.2.4 Application to surgical planning in single ventricle physiology

The third aim of this work is to provide some concrete examples of how patient-speci�c
integration of clinical data and computational modeling can provide interesting insights to
clinicians.

The importance of the severe PA stenosis causing a pressure drop, and the swirling be-
havior of the blood �ow was also shown. This complexity is induced by the high Reynolds
number in the shunt. For these stenosis cases and patient C with its PA kinks, computa-
tional �uid dynamics complements information from clinical measurements. One potential
clinical application for this technique is to aid clinicians' understanding of the signi�cance of
anatomical abnormalities in these complex patients. For example, patient C appears to have
a signi�cant geometric 'kink' or restriction in their RPA, just distal to the shunt. Only a
distal LPA pressure measurement was obtained clinically, so the hemodynamic e�ect of this
lesion was unknown. However, simulation results clearly indicate that the pressure di�erence
between the shunt anastomosis and the PAs are equal on the left and right sides. This was of
interest to the clinicians, as the consensus was that judging by the anatomy alone, they would
expect a pressure loss across the RPA. Indeed, at stage 2 surgery, patients A, C, D, and E all
underwent patch augmentation of their central PAs or proximal LPAs judged on the appear-
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ance of the geometry alone. This work suggests that in some cases the clinician's perception
of what constitutes a geometric abnormality may actually not result in a hemodynamically
signi�cant pressure di�erence, as in case C. Although, the tortuous course of the PA appears
to constitute a stenosis, it is partly an illusion due to the distal PA having a relatively large
cross-sectional area.

For patient D, the �rst attempt was to match the measured �ow split of 0:46 and a
pressure on both LPA and RPA sides equal to12 mmHg. Unfortunately, setting target �ow
split as 0:46 induced a pressure di�erence between the left and right sides of approximately
6 mmHg, which was not acceptable from a clinical point of view. Discussions with clinicians
led us to disregard the clinically measured �ow split. By imposing the same average pressure
on both sides, a �ow split of 0:54 (more �ow to the right side) was then found, which was
clinically acceptable. The di�erences in �ow split would correspond to an error of 0.78 ml/s
(i.e. 8 %) in estimating �ow with CMR. This example highlights the impact of uncertainty
of measurements on the numerical simulations. It could be interesting to investigate more
precisely the e�ect of uncertainties of pressure and �ow split measurements on the pressure
loss through the stenosis (see section 5.4). This patient-speci�c example was thus challenging
and required a close collaboration with clinicians. On the other hand, performing simulations
underlined the potential for incoherence of the original clinical measurements ; and joint
assessment with clinical experts elucidated which data was more reliable to utilize.

Figure 4.12: Velocity vectors (colored by their magnitudes) from
the 3D simulation shown at the locations where the CMR �ow
measurements were performed.

A last comment re-
garding uncertainties of
clinical measurements: in
�g. 4.12 simulated veloc-
ity vectors for patient D
are shown at the same lo-
cations as �ow measure-
ments were performed in
CMR. We highlight the
complexity of the blood
�ow patterns at these lo-
cations, which might ex-
plain the di�culty obtain-
ing accurate clinical time-
varying velocity measure-
ments by CMR at these
locations. The PAs
are relatively small, and
are receiving �ow from
the aorta, or one of its
branches, at high pressure. CMR �ow measurements are typically less reliable in areas of
complex �ow because unpredictable phase shifts occur. This often leads to signal loss (void-
ing) and inaccurate �ow measurements [Oshinski et al., 1995]. Typically, the PA �ow mea-
surements in this location would be underestimated in pre-stage 2 patients. The pulmonary
veins may represent a more stable location to measure the pulmonary �ow split, however,
the physiology of these patients sometimes leads to the pulmonary veins receiving additional
blood �ow external to the pulmonary arteries. It is only through the iterative process of
comparing simulation results to clinical measurements that suitable strategies for managing
measurement uncertainty are reached.

Finally, the work above enabled surgery planning based on preoperative patient-speci�c
data. A work�ow of virtual surgery planning for two Hemi-Fontan patients is presented in
[Kung et al., 2013]. Two standard ways of performing stage 2 surgery (Glenn vs Hemi-Fontan)
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are studied in [4]. [40] proposes a way to integrate data from di�erent time-points and [40, 43]
study the inclusion of collateral �ows. Stage 3 surgical planning has been investigated in [3]
to successfully predict venous central pressure (linked to the head) on one patient, in [5] to
study di�erent surgical variations, and in particular a novel 'Y' shape, and in [6] to optimize
the arti�cial surgical graft. Respiration, exercise and close-loop modeling impacts have been
studied in [24, 36].

4.3 Data assimilation for time-varying observations - applica-
tions to congenital heart diseases

In the previous section, a strategy was proposed to tune reduced parameters of coupled 3D-0D
systems where the resistance in the 3D part is non-negligible compared to the global one. It
was designed to satisfy non-local target measurements (e.g. max over a region) but, as other
variational approaches, it cannot easily match time-varying measurements. In this section,
we thus develop an approach to take into account the richness of such measurements.

4.3.1 Data assimilation for time-varying observations

For a patient-speci�c multidomain or purely 0D �ow analysis, reduced models need cus-
tomization for each patient individually. While it is natural that their parameters be es-
timated via some patient-speci�c clinical measurements such that the discrepancy between
model output and the measurements is minimized, the inverse problem is challenging, par-
ticularly when the number of parameters to be estimated is high. The problem is further
exacerbated by uncertainty in the clinical measurements. As mentioned before, a manual
tuning of the parameters could be performed, but it is a long process requiring much biome-
chanical and physiological expertise (see for example, [24]). Automatic approaches, on the
other hand, are mostly con�ned to either models with a low number of estimated parameters
[Hann et al., 2010] or open-loop circulatory models with simpli�ed boundary conditions [19]
[Spilker and Taylor, 2010]. Furthermore, such methods typically make inherent hypotheses
about the ratios of di�erent parameters [Spilker and Taylor, 2010] or consider only the ma-
jor model parameters [Sughimoto et al., 2013] to reduce the total number of free parameters.
Besides, in certain applications, pressure and �ow information are available at di�erent loca-
tions, but contrarily to the section above, their time variations are acquired with su�cient
precision to be trustable. Hence this section aims at presenting a strategy to take advantage
of this richness of the data that we have developed over the last years [17, 20, 45, 26].

Data assimilation is a process by which real measurements (partial observations of the
system state) and `a �rst guess' (prior knowledge) of the initial state are integrated into a
computational model to reduce its uncertainty in representing the real system. In the context
of blood �ow, it has mainly been used for parameter estimation by treating the parameters as
state variables; thus requiring prior knowledge of the parameters as well. Basically it entails
to minimize a cost function which is composed of a sum over time of the discrepancy between
the observations and the corresponding functions of the state variables in a certain norm,
and of the norm of the uncertainties in the initial state and parameters. Depending on the
norms, one chooses to put more trust (weight) on the data or on thea priori knowledge. The
problem is then solved either byvariational methods or by sequential approaches.

Variational approaches have most commonly been used for estimating blood
�ow 0D parameters, including transformation to a linear least-square problem
in 0D [Hann et al., 2004], Nelder-Mead simplex method in 0D [Segers et al., 2008,
Sughimoto et al., 2013], quasi-Newton method in 3D [Spilker and Taylor, 2010], adjoint-based
method in 3D [Ismail et al., 2013b]. Other iterative approaches include �xed-point/control-
system based methods in 0D [Hann et al., 2010, Hann et al., 2011, Revie et al., 2013], in
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1D [Xiao et al., 2014] and 3D [23, 19]. All these methods usually employ targets of the
mean/extrema values or scalar shape descriptors of the clinical measurements and are suc-
cessful only when a few parameters are to be estimated. An alternate approach for parameter
estimation that has gained a lot of attention in recent years is the sequential Kalman �ltering-
type method that takes advantage of time-varying measurement curves. These methods have
been applied in hemodynamics primarily to estimate tissue/wall material properties in 1D
or in 3D [Bertoglio et al., 2012, Moireau et al., 2013, Bertoglio et al., 2014, Lombardi, 2014].
Hemodynamics parameters such as Windkessel parameters have only been estimated in 1D
[DeVault et al., 2008, Lombardi, 2014]. Note that in [Bertoglio et al., 2012], a proximal resis-
tance is estimated in a 3D FSI aneurysm based on synthetic wall displacements, which has
led us to try this approach but based rather on pressure and �ow information.

The general �ltering method is now brie�y described. Consider a dynamical system
described by state variablesx 2 Rd, x = [ x1; x2; : : : ; xd]T and parameterised by� 2 Rp,
� = [ � 1; � 2; : : : ; � p]T , with following dynamics

xn+1 = F (xn ; � ); (4.10)

where xn and xn+1 refer to the state at times tn and tn+1 . Eqn. (4.10) can, for example, be
considered as a discretised form of the ODE system_x = F (x; � ). Consider that at time tn ,
measurements of vectory 2 Rm , y = [ y1; y2; : : : ; ym ]T are available and related to the state
through the observation operatorH and measurement noise� as follows

yn = H (xn ) + � n : (4.11)

In the above, the noise at all measurement times is assumed to be independent and distributed
according to a multivariate Gaussian distribution with zero mean and covariance� n . The
goal of all �ltering methods is to provide estimates of xn recursively at each measurement
time tn through the measurementsyn . This is achieved through two steps of propagation and
correction. The general steps of a �lter are as follows.

1. An estimate of state is assumed available at timetn with mean x̂n and covariancePn

2. The forward propagation step involves propagation of the mean and covariance fromtn

to tn+1 through the forward model of eqn. (4.10)

3. In the correction step, these means and covariances are corrected through the measure-
ment of yn+ 1

4. They yield an estimate of meanx̂n+1 and covariancePn+1 at tn+1

Thus, starting from an initial estimate of the state with mean x0 and covarianceP0,
an estimate of the state is available at all times through the �lter. Parameter estimation
is performed by considering an augmented state containing the parameterszn = [ xn ; � n ]T

and adding trivial dynamics _� = 0 , i.e. � n+1 = � n , for the parameters in eqn. (4.10).
The �lter is run on the augmented state z, and the � component of �ltered z at the last
measurement time is taken as the �nal parameter vector estimate [20]. The estimate of
the parameters depends on three factors: a) the manner in which the parameters a�ect the
measured quantities,i.e. the operatorsF and H in eqns. (4.10) and (4.11); b) the uncertainty
associated with prior knowledge about the parameters and the state,i.e. x0 and P0; and c)
the uncertainty associated with the clinical measurements,i.e. yn and � n . As a general rule
for parameter estimation, the prior variances inP0 are set to relatively higher values compared
to the variances in � n to imply that initial guess of z0 = [ x0; � 0]T has less con�dence when
compared to the measurements [20].

While the steps of forward propagation and correction are common to all sequential �l-
ters, the Unscented Kalman Filter (UKF) employs a set of deterministically chosen particles
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(usually 2d + 1 ) to be propagated through eqns. (4.10) and (4.11) for the implementation of
the two steps. This means that computationally, only 2d + 1 simulations of the dynamical
system be performed (as opposed to a signi�cantly larger number when considering variational
approaches such as minimization of loss function through gradient-descent based approaches).
For the choice of unscented Kalman �lter (UKF) for data assimilation, its appropriateness
for parameter estimation in non-linear systems, and application to hemodynamics, [20] is
referred.

The details of the UKF method and discussion with respect to parameter estimation in
hemodynamics systems can be found in [20]. This includes how to enforce equality constraints,
when there is a strong knowledge about certain relationships between the parameters to be
estimated. A pseudo-observation method is favored here since in such a case the model
dynamics need not be rewritten and constraints are added as �ctitious observations (see for
example [Tahk and Speyer, 1990]). The constraint equations are appended to the observation
model and the observation variance for the constraints are controlled to specify how strongly
the constraints are enforced. For the example of the Windkessel model (see section 2.1.3), an
added observation of R̀p + Rd � Rt ' (linking proximal and distal resistances to a known total
resistanceRt ) can be represented by a zero-mean random variable,r cons, with variance � 2

cons
[De Geeter et al., 1997].

Such a method has been successfully applied to two idealized cases [20] and a patient-
speci�c case of aortic coarctation ([20], section 4.3.3). The e�ect of various features of the
UKF parameter-estimation method, such as the relative error between the initial state and
the observations and the observation frequency, on parameter estimates has been discussed
in [20]. The UKF has been implemented with the Verdandi library for data assimilation
[Chapelle et al., 2013].

4.3.2 Sensitivity analysis and model complement

Sensitivity based analysis is needed to assess potential identi�ability problems: the question
whether the parameter estimation procedure with the available clinical/experimental data is
likely to succeed; are the parameter estimates highly correlated; which sets of parameters
should be combined together or �xed to improve identi�ability, etc. A demonstration of the
traditional sensitivity function [Bai et al., 2007] and the generalized sensitivity function (GSF,
e.g. [Thomaseth and Cobelli, 1999, Bai et al., 2007]) is shown on various examples in [20].
The relative magnitudes of the traditional sensitivity functions between parameters represent
the e�ect of changes in model parameters on model outputs in di�erent intervals of time.
GSFs characterize the sensitivity of parameter estimates with respect to data measurements.
In particular:

� Sharp increase in GSFs implies high concentration of parameter information in the
corresponding time-interval.

� Monotonically non-decreasing GSFs imply that the parameters are uncorrelated.

� GSFs exhibiting large oscillations imply large correlations between the parameters and
hence potential identi�ability problems.

Such an analysis on various cases, and in particular on an aortic model lead us to select set
of measurements when identi�ability problems can be avoided (see �g. 4.13). We observed
that in general pressure at one location (usually inlet) in the system and �ow-rates at all
outlets are su�cient to identify the Windkessel parameters. This observation justi�es that
when only mean �ow splits among di�erent branches are known, an assumption to estimate
�ow-rate curves is required to complement the model and avoid identi�ability problems. In
practice, this means that one constructs a �ow time-curve observation to which relatively low
con�dence is given, but one can add with a high con�dence the mean value constraint.
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(a) observation set = [pi ; p12; p1 to p9] (b) observation set = [pi , q1 to q9]

(c) observation set = [p0,
q1; q2; q3; q4; q5; q8; q9]

(d) observation set = [p0,
q1; q2; q3; q4; q5; q7; q9; q15]

Figure 4.13: Top: 3D and 0D representations of the abdominal aorta, boxes in solid line
represent known parameters and boxes in dashed lines represent parameters to be estimated.
Bottom: GSF for several sets of observations.
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4.3.3 Loosely coupled 3D-0D strategy for coarctation pressure gradient
estimation

In this work a novel methodology for tuning the Windkessel (or other lumped model) parame-
ters is proposed. This strategy employs the UKF approach (section 4.3.1) on a reduced order
model (0D) whose accuracy is improved iteratively. It has all the advantages of a sequential
estimation approach, and in addition involves a fast-to-compute model that can be run over
enough cycles to match the given targets while being enriched by a few 3D simulations. The
0D model also provides a surrogate to quickly test and justify several modeling assumptions
and their potential e�ect on the behavior of the 3D model. Fig. 4.14 provides the main steps
of this algorithm.

Step 1
Construct 0D abstraction of
the 3D geometry and model

Step 2
Assess sensitivity; reparameter-

ize and include modeling assump-
tions; modify the models if necessary

Step 3
Initialise 0D abstraction parameters

based on average geometrical dimensions

Step 4
Perform UKF on 0D model: obtain Wind-

kessel parameters for the 3D simulation

Step 5 Run the 3D simulation

Step 6 Regression: Update 0D Model from 3D results

Step 7
If no change in the 0D model, or con-

vergence with respect to measured
data, then stop, else go to step 4

Figure 4.14: Algorithm for multidomain 3D simulations using sequential parameter estimation
in a 0D model.

In this section a case of patient speci�c aortic coarctation is considered. This case was
presented as part of the CFD challenge organized in STACOM 2013 [Camara et al., 2014].
For patients with aortic coarctation the pressure drop across the coarctation is the critical pa-
rameter to be assessed, especially under exercise conditions when the �ow-rate is high. While
invasive assessment of pressure drop across the coarctation is relatively easy during rest con-
ditions, the same task becomes di�cult in exercise conditions as the physiological conditions
are hard to replicate in a clinical environment. Consequently, sometimes a `pharmacological
stress-test' is preferred [Camara et al., 2014]. The goal in this case is to assess whether CFD
and appropriate application of boundary conditions can both reproduce the available clini-
cal measurements and subsequently predict the pressure drop across the coarctation in two
physiological states of rest and stress.

Besides the geometrical surface information, pressure curves in the ascending aorta and
�ow curves in both the ascending and the descending aorta were provided. These are shown in
�g. 4.15 for the physiological state of rest. The mean �ow rates in the supra-aortic branches
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Figure 4.15: 3D model and corresponding 0D representation (in black), and observations.
Windkessel boundary elements are represented in orange. Variables in red indicate �ows and
variables in blue indicate pressures. In the 0D model: IN represents the innominate artery;
LC the left carotid artery; LS the left subclavian artery; AA the ascending aorta; DA the
descending aorta; CoA the aortic coarctation.

were also provided. Given these measurements the aim of this study is to demonstrate that the
algorithm above can be used to tune the Windkessel boundary parameters so that the CFD
results closely match the clinically measured data, and hence predict the pressure drop across
the coarctation. The pressure in the descending aorta was measured but not disclosed before
the end of the CFD challenge. The overall 3D blood �ow parameters and numerical methods
are presented in [17], our article in the CFD challenge. For the set up of the parameter
estimation aspects, including di�erent Dirichlet and Windkessel boundary conditions in the
descending aorta, and detailed discussion on the results we refer to [20]. It is demonstrated
there that the data measurement asynchrony can be accounted for to achieve physiologically
realistic results. For the rest case three iterations and for the stress case seven iterations
between the 0D and 3D simulations (�g. 4.14) are required for convergence. Since the
UKF run times are negligible compared to a 3D simulation, in e�ect the cost of tuning the
parameters and obtaining the �nal results are equivalent to three and seven 3D simulation
runs for the rest and stress case, respectively. The proposed framework applied to this case
results in a close match, less than 3% and 9% for the physiological states of rest and stress,
respectively, between the measured data and the CFD results. The developed multi scale
iterative algorithm is tested for prediction of the pressure-drop across the coarctation. It is
observed that the numerical model closely predicts the mean pressure-drop and the peak-
to-peak pressure-drop across the coarctation (table 4.2). Furthermore, it is shown that a
Windkessel boundary condition is signi�cantly less constraining than a Dirichlet boundary
condition for the outlets and leads to physiologically realistic results. A discussion on the
interpretation of the CFD results in relation to the clinically relevant quantities and the choice
of modelling assumptions is also presented. Lastly, although resulting from �ow modeling
assumption, the Windkessel parameters obtained for rest and stress are consistent with the
literature. Knowledge on how these parameters change with stress could thus be learned by
such an approach.
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Table 4.2: Prediction results for the patient-speci�c case of aortic coarctation

Quantity REST STRESS
CFD Experimental CFD Experimental

� Pmean (mmHg) 2.0 1.2 12.6 14.5

Pprox
max � Pdist

max (mmHg) 6.4 6.4 35.5 44.7

(Pprox � Pdist )max (mmHg) 11.8 9.1 41.34 72.8

4.3.4 Perspectives

Note that apart from the mean-value estimates of the parameters, the UKF procedure also
provides variances of estimated parameters, and as such uncertainty quanti�cation based on
the con�dence in the measurements.

Of particular interest in this work is the estimation of a time-shift between the �ow and
pressure measurements. Since the �ow and pressure measurements were not taken simultane-
ously in the patient, as typically is the case, the estimate of time-shift aligns the measurement
curves as if they were synchronized. The problem of asynchronous measurements can lead
to di�culties in both estimation of parameters and validation of numerical models. In this
regard the results of the proposed method to estimate such uncertainty in the measurements
are encouraging.

In conclusion, our approach has been to perform the parameter estimation on a 0D model,
weakly coupled to the 3D domain of interest: the parameters of the 0D model that represent
the domain of interest are iteratively inferred from 3D-0D simulations. We show here that
this can be a successful strategy. In single-ventricle disease applications (see sections 1.2.3, 4.2
for background), the need to automatically parameterize closed-loop model of the circulation
has triggered to test UKF on these large 0D models. Patient-speci�c parameter estimation is
achieved in a heart model for this physiology [45]. Heart chambers are described in this work
by a single-�bre mechanics model and valve function is modelled with smooth opening and
closure. Patient-speci�c clinical measurements are used as boundary conditions in the model,
as target curves for parameter estimation or for validation. UKF is employed for parameter
estimation to closely reproduce the measurements and obtain physiologically realistic results.
Then this work has been extended to closed-loop 0D model of the entire circulation (�g. 2.5),
successfully estimating around 35 parameters for single ventricle stage 1 patients with and
without atrio-ventricular valve regurgitation [26] (see �g. 4.16 for an example of parameter
convergence and measurements matching). Methodological aspects such as nonlinear obser-
vation manager, strategy to enforce state variables amplitude, management of measurements
taken at di�erent heart rates are discussed in [46].
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Figure 4.16: Parameter evolution with UKF (top) over 50 cardiac cycles; volumes are in
ml, areas (A) in cm2, linear resistances (R) in mmHg.s/ml, quadratic resistances (K ) in
mmHg.s2/ml 2, compliances (C) in ml/mmHg, inductances (L ) in mmHg.s2/ml, and time in
s. Forward model with the estimated parameters and measurements over two cardiac cycles
(bottom).
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In the previous chapters, we have shown how bioclinical questions generate interesting
modeling and numerical challenges and how we have addressed these questions coherently with
the available data. Simulation results with these models contribute to solve the bioclinical
questions, provide a new view on them, and guide new therapeutic strategies. This biomedical-
mathematics interaction is however still in its infancy, in the sense that several obstacles
remain to gain maturity. The acquisition of clinical data, its integration into a mathematical
model and the model itself, however, all have inherent limitations and uncertainties which
may a�ect simulation results and clinical decision making. In this chapter, we give a few
directions to push the state of the art beyond these barriers. But there are, of course, many
other challenges to face - such as reduction of computational cost for the direct or the inverse
problem [Lassila et al., 2013, Bertagna and Veneziani, 2014, Sankaran et al., 2015] [47, 48].
There is an in�nity of bioclinical applications for which no mathematical or numerical model
exist and which would bene�t from it. We have thus selected some that are promising based
on our experience and new collaborations.

5.1 Towards a better understanding of non-invasive imaging
data: parameter estimation of which model?

Medical non-invasive functional imaging is a very active medical image research �eld
[Essig et al., 2013]. Unconventional MRI or CT image acquisition techniques have been the
matter of intense research. However they have not yet reached clinical routine in a large part
because the interpretation of the images is subject of debate. The image intensity at each
pixel, varying in time, e.g. in dynamic contrast enhanced (DCE) perfusion imaging: DCE-
MRI, DCE-CT or DCE-ultrasound, or with excitation mode, e.g. in di�usion weighted imag-
ing (DWI)-MRI, is interpreted based on so called compartment or pharmacokinetics models
that were constructed to represent as simply as possible the underlying structure and func-
tion of the imaged tissue. Inherent model hypotheses are often forgotten by users or their
validity is not easy to assess in practice. Hence, we propose to assess such data interpretation
procedure by comparison either with invasive imaging tissue analysis (e.g. postdoc of Yi Yin
coadvised with Dirk Drasdo (INRIA) in collaboration mainly with medical doctors Oliver
Sedlaczek and Arne Warth, and biologist Kai Breuhahn (U. Heidelberg Clinics) in BMBF
project Lungsys) and/or with modeling. Let us now give an example of the latter.

DCE perfusion imaging has shown great potential to non-invasively assess cancer devel-
opment and its treatment, even short term [Palmowski et al., 2008, O'Connor et al., 2011,
Lassau et al., 2011]. In these imaging modalities, a contrast agent is injected in the blood
stream, which when it spreads in the vasculature, and for non extravascular agents also
permeates outside of it in-between tissue cells, gives rise to a signal representative of its
overall concentration in the tissue. Di�erent pharmacokinetics models (ODEs) are used,
without consensus, to estimate parameters that are directly or indirectly linked to tumor
cell density, vascular density, and perfusion parameters from DCE perfusion imaging. The
interpretation of the indirectly related parameters changes with the regime of the true tissue
parameters [Essig et al., 2013]. There is thus a need to provide a benchmark to evaluate and
compare these di�erent pharmacokinetics models. To this aim in-silico vasculatures can be
constructed to solve the direct problem of contrast agent perfusion (intra-vascular transport,
intra-extravascular exchange and di�usion within the interstitial space), with spatio-temporal
coupled multiphase PDEs. Di�erent pharmacokinetic models can then be evaluated from in-
silico contrast-agent perfusion data. All these steps present interesting modeling or numerical
challenges. The �rst results show that various tumor vascularizations (architecture and func-
tion) can explain diverse spatio-temporal contrast imaging dynamics characteristic of in-vivo
tumor morphotypes (�g. 5.1 from Nick Jagiella's thesis [49], collaboration mainly with Dirk
Drasdo (INRIA) and Oliver Sedlaczek (U. Heidelberg Clinics) in BMBF project Lungsys).
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Figure 5.1: Reference case (middle row). Tumor rim either represented by an increase in
microvascular density (top row) or in vessel `leakiness' (bottom row). Columns represent
numerical intensity results for di�erent times after contrast agent injection.

Besides, inverse problems on common pharmacokinetics models indicate that taking into ac-
count space to estimate perfusion parameters may be key. Much more work on constructing
robust parameter estimation procedures is thus warranted.

5.2 Modeling a new area: surgical planning in liver

Another research direction is introducing hemodynamics modeling in surgical planning of
liver. With liver surgeons (Eric Vibert, surgeon at Paul Brousse Hospital and students Petru
Bucur and Mohamed Bekheit) and other colleagues in ANR-tecsaniFLOW (companies FLU-
OPTICS and MID, and at INRIA, Chloé Audebert coadvised with Jean-Frédéric Gerbeau,
Noémie Boissier coadvised with Dirk Drasdo), we are studying through a combination of pig
experiments and blood circulation reduced models (see section 2.1.3) the unknown interplay
between liver size, liver function and hemodynamics, to better avoid liver failure after large
hepatectomies. This raises interesting modeling questions on liver circulation, the interac-
tion with the rest of the circulation, vessel adaptation, blood loss and infusion; use of the
model to understand the diversity of the data, to predict hemodynamics post-surgery with
and without �ow-controling devices, etc. Numerical challenges include the sharp change of
hemodynamics, the possible collapse of some vessels (�uid-solid interaction) depending on the
surgical suture, model parametrization and interactions between these macroscale models and
microscale lobule models.

5.3 Hybrid modeling for lung disease understanding
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Figure 5.2: 3D-1D respiratory and particle coupling il-
lustration between the 3D image-based airways and 1D
trumpet models (panel A). Panel B shows the �ow rate
of each lobe at the coupling interface [15].

Besides the two new research direc-
tions above, it is natural to keep
improving current models. For ex-
ample, as shown in section 4.1,
the respiratory and particle deposi-
tion model is not able to accurately
reproduce experimental deposition
results for emphysema. Therefore
other factors should be taken into
account to understand this disease
such as enhanced deposition in the
normal acinus regions compared to
the diseased regions, smaller airway
diameters in diseased regions com-
pared to normal regions, airway col-
lapse in diseased regions, and par-
ticle transport through expiration.
They all may impact deposition ef-
�ciency downstream of the 3D ge-
ometry considered in that study.

In a new collaboration, we are
studying the e�ects of emphysema
particular air dynamics on particle
transport in acini models [50]. In
addition, with Céline Grandmont
(INRIA), Jessica Oakes and Shawn
Shadden (U. of California, Berkeley), we are expanding the model by coupling the exist-
ing 3D main airways to the 1D air�ow and particle transport trumpet model for the distal
airways and alveoli [Taulbee and Yu, 1975, Martin and Maury, 2013]. Its name comes from
the representation of the distal geometry as a single pipe of increasing area. This enables
simulation of expiration for the particle model and a better di�erentiation of lobar morphom-
etry [Oakes et al., 2012]. These developments present interesting modeling (for particle loss
modeling and overall parametrization) and numerical coupling issues (�g. 5.2). Improving
ventilation reduced model in health and chronic obstructive disease is also important for
therapeutics treatments (anrt thesis of Nicolas Pozin with AIR LIQUIDE SANTE INTER-
NATIONAL, coadvised with Céline Grandmont).

5.4 Validation and uncertainty quanti�cation

Other remaining challenges are validation and uncertainty quanti�cation. Validation of codes
with in-vitro data [Ku et al., 2005, Passerini et al., 2013] is a �rst important step. But val-
idation of in-vivo conditions is another challenge [Ku et al., 2002]. In every applied project,
we have tried to validate the simulation results [3, 18, 19], but often rather qualitatively
[13, 26]. This is because either the animal experiments had been carried out before we were
contacted for the modeling work, or the clinically indicated patient measurements are taken
only preoperatively or not immediately postoperatively.

Since model parametrization is based on data (section 4), sensitivity of the results to
these hemodynamics or respiratory input data is an important validation step. However
little work has been done in this area, apart from in�ow studies (on pulsatility or velocity
pro�les - e.g. [14]). In [Pennati et al., 2011] the location of the pressure measurement and the
downstream capacitances is varied when constructing the two pulmonary boundary conditions
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Figure 5.3: For the �ve patients, streamline representation of the �ow at peak deceleration
zoomed at the anastomosis and the full Glenn models used for simulations. Flow splits to the
right lung are from left to right [0.6 0.5 0.6 0.8 0.7]. Lower right: example of Fontan virtual
Y-design with particles assessing hepatic factors distribution to the left and right lungs.

of a patient-speci�c Glenn case, without much in�uence on the resulting resistance of the
pulmonary arteries and pulmonary �ow waveforms, respectively. In [23], the sensitivity of
patient-speci�c simulations to hemodynamics input data is systematically investigated: with
only small variations of input parameters, some output indicators (such as power loss or wall
shear stress) vary non-negligibly. Power e�ciency is found to be an indicator more sensitive
than power loss to pressure uncertainties. However, power loss is less sensitive to the power
law relating cross-sectional area of a branch and its mean �ow rate than to �ow split variation
between right and left lungs. To lower output uncertainties, more precision in the �ow split
acquisition would thus be expected to be more important than to further re�ne the repartition
of �ow in the smaller branches. The study suggests that� 10% �ow split imprecision seems
reasonable in terms of patient comparison but that the patient-speci�c �ow split should be
used (�g. 5.3). This sensitivity to the �ow split is thus investigated when comparing the
di�erent virtual surgical designs of these patients, with the 'Y' shape often less sensitive
to this parameter [5]. Sensitivities of the results to rest versus exercise conditions, or with
respiration e�ects are other examples of robustness tests [14, 24, 5, 36, 48].

To go further in sensitivity analysis to input data, in [51] we propose a methodology for
full propagation of uncertainty from clinical data to model results that, unlike deterministic
simulation, enables estimation of the con�dence associated with model predictions. We illus-
trate this problem in patient D of section 4.2, for which coherence of simulations and clinical
data indicated that the �ow split to the right lung was highly uncertain. We want assess here
how such uncertainty translates into surgical planning of removing the stenosis or not. First,
probability density functions (PDFs) of right pulmonary artery �ow split ratio and average
pulmonary pressure are determined from clinical measurements, complemented by literature
data. Starting from a 0D model semi-empirical approximation, Bayesian parameter estima-
tion is used to �nd the distributions of boundary conditions that produce the expected PA
�ow split and average pressure PDFs as pre-operative model results. Second, uncertainties
in the boundary conditions are propagated to simulation predictions. Sparse grid stochas-
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Figure 5.4: Average (left) and standard deviation (right) local pressure resulting from propaga-
tion of preoperative hemodynamics measured data uncertainty. 4 cases: preoperative model,
simpli�ed postoperative model, postoperative models with and without stenosis. Contours
are limited to 16.0 and 2.0mmHg for maximum average (AV) pressure and standard deviation
(SD), respectively.

tic collocation is employed to statistically characterize model predictions of post-operative
hemodynamics in models with and without PA stenosis. The results quantify the statistical
variability in virtual surgery predictions, allowing for placement of con�dence intervals on
simulation outputs (�g. 5.4).

This improved perspective on cardiovascular simulation results is achieved however at the
expense of an increase in the overall computational cost. Yet, to the best of our knowledge,
this study is the �rst to quantify the uncertainty in virtual surgery predictions directly from
estimates of uncertainty in patient-speci�c clinical data and proposes a new paradigm of
presenting cardiovascular simulation results that we hope will challenge the common practice
of providing only deterministic results.

5.5 Conclusion

The outlook points above follow a research direction in line with my core research as well
as novel research areas, with practical medical interest, and where there is much to explore
from modeling and numerical standpoints. My PhD set the path for an important part of
my research since then. Coupling of 3D Navier-Stokes equations with more extended re-
duced models of the circulation improved patient-speci�c surgical planning and device design
capabilities for several congenital heart diseases. Understanding and treating numerical in-
stabilities have also been key in this process. Highly motivated by application to medicine,
I have developed strategies to parametrize models, depending on the pressure and �ow data
that were acquired for a given patient diagnosis. All these aspects were instrumental to ex-
tend my research to respiration. But in both blood and respiratory diseases, although the
�uid mechanics understanding of these di�erent conditions has improved, real contributions
for patient care are still scarce. Therefore, in the next years, I hope I will bring my stone
towards this goal.
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