
HAL Id: tel-01421865
https://inria.hal.science/tel-01421865

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models and methods for Traffic Engineering problems
with single-path routing

Martim Joyce-Moniz

To cite this version:
Martim Joyce-Moniz. Models and methods for Traffic Engineering problems with single-path routing.
Operations Research [math.OC]. Université Libre de Bruxelles (U.L.B.), Belgium, 2016. English.
�NNT : �. �tel-01421865�

https://inria.hal.science/tel-01421865
https://hal.archives-ouvertes.fr


Université Libre de Bruxelles
Faculté des Sciences

Département d’Informatique

Models and methods
for Traffic Engineering problems

with single-path routing

Martim Joyce-Moniz

Thèse présentée en vue de
l’obtention du grade académique

de Docteur en Sciences

October 2016

http://www.ulb.ac.be
http://www.ulb.ac.4be/di
http://www.ulb.ac.4be/di
mailto:martim.moniz@ulb.ac.be


ii



To my family.



iv



This thesis has been written under the supervision of Prof. Bernard Fortz and Prof.
Lúıs Gouveia. The members of the jury are:

• Prof. Bernard Fortz (Université Libre de Bruxelles, Belgium)

• Prof. Bernard Gendron (Université de Montreal, Canada)

• Prof. Lúıs Gouveia (Universidade de Lisboa, Portugal)

• Prof. Martine Labbé (Université Libre de Bruxelles, Belgium)

• Prof. Ivana Ljubic (ESSEC Business School Paris, France)

• Prof. Thomas Stützle (Université Libre de Bruxelles, Belgium)

The research of Martim Joyce-Moniz was done with the support of the COMEX
(Combinatorial Optimization: Metaheuristics & Exact Methods) project.

v

http://comex.ulb.ac.be/


vi



Acknowledgements

Over the last 4 years, I’ve often expressed how lucky I am, and how luck
was fundamental for me to arrive where I have. With this, I don’t mean to
indulge in false modesty - naturally, a mix of hard work and good decisions
played a part. Nor do I intent to conjecture about the nature, meaning or
reason for said luck. What I do wish, is to simply acknowledge the often
unsung role of good fortune, every time one’s fate does not merely depend
on will and want.

I am extremely lucky to have had a pair of supervisors, Bernard and Lúıs,
who ideally epitomized the job, by providing all the necessary support and
orientation to successfully write this thesis. Lúıs, who I was lucky to have
studied under, and learn about network optimization with. Lúıs, who recog-
nized and understood my yearn to do a Ph.D. abroad, and immediately put
me in contact with the right people. Lúıs, whose great knowledge and good
advise I could always count on, only an email or phone call away. Bernard,
who I was lucky to have take a chance on me. Bernard, who always gave me
the freedom to grow as a researcher, yet always had his door open, ready to
offer me guidance and support, when needed. Bernard, whose hours spent
with, staring at formulations in the blackboard, were among the most fasci-
nating and enriching in my lifetime. Bernard, who always went a step further
to ensure I evolved in the OR community, by allowing me to attend a great
number of conferences and PhD schools.

I am very lucky to belong to a thriving and exciting academic community,
filled with brilliant and friendly people. Of this community, I must highlight
of course, the members of my jury, Bernard G., Ivana, Martine and Thomas,
to whom I extend my deepest appreciation. Their precious time spent reading
my thesis, and their constructive and helpful comments were invaluable.

I cannot emphasize enough how lucky I am to count on their love, support
and upbringing of my parents. All that I am today, is thanks to how they
raised me. I am remarkably lucky that they have always pushed me to follow
my dreams, even if they take me to far away lands. I am also exceedingly
lucky to have a sister and brother-in-law, who I can always count on for
inspiration, guidance and friendship.

I am exceptionally lucky to have many great friends, who are always ready
to celebrate the good times, and help me go through the tough ones - in
Lisbon, Brussels, and other places around the world.



Finally, I am just-the-luckiest, to have an amazing girlfriend, Ashley, who
manages to prove to me everyday that love, care and encouragement are not
a function of physical distance.



Abstract

Traffic Engineering (TE) uses methods and models from a variety of math-
ematical fields, such as statistics and optimization, to improve the perfor-
mance of telecommunication networks. In this thesis, we study TE problems
dealing with networks that impose single-path routing. As the name infers,
in this type of routing, the traffic flow of each “commodity” cannot be split in
its path between its origin and destination. Given its cheap cost, single-path
routing is widely used in today’s data centers, where thousands of stored
servers perform computations or host Internet services. One common case of
single-path routing is the one enforced by the Spanning Tree Protocol (STP)
in switched Ethernet networks. The STP requires the network to keep its
activated links loop-free, while maintaining the other redundant links ready
for back-up, in case of link failure. The Multiple Spanning Tree Protocol
(MSTP) extends the STP by installing multiple virtual networks compliant
with the STP, over a single physical topology. Therefore, the MSTP is greatly
beneficial for network service providers, as it allows for a more efficient use
of the existing resources.

Network design problems dealing with the MSTP are generally highly com-
binatorial and very hard to solve. As such, TE literature mainly suggests
heuristic methods, which can quickly produce reasonable designs. Notwith-
standing, due to a scarce existence of lower bounds to the optimum values
of such problems, there is little knowledge about the quality of the solutions
provided by these heuristics.

In this sense, we propose mathematical programming models and methods
that can provide optimal designs for these networks, or at the very least,
obtain valid lower bounds. Taking into mind the goal of avoiding congestion
in the network, we focus on two problems that deal with the following load-
balancing objectives: the minimization of the worst-case link utilization, and
the minimization of flow costs given by piecewise linear functions that penal-
ize heavily-loaded links. The study of both these problems yielded relevant
by-products: the first is the study of a MSTP network design problem, where
we minimize the total load, and the second is the study of a fundamental
unsplittable multicommodity flow problem with piecewise linear costs.

For all the considered problems, we provide studies of complexity, extensive
polyhedral studies to compare the proposed formulations, and a wide array
of computational experiments to evaluate the performance of the proposed
models and methods.



x



Résumé

L’Ingénierie du Trafic (IT) utilise des méthodes et des modèles de plusieurs domaines
mathématiques, comme la statistique et l’optimisation, pour améliorer les performances
des réseaux de télécommunication. Dans cette thèse, nous étudions des problèmes de
l’IT qui traitent de réseaux qui imposent l’utilisation du mono-routage. Comme le nom
l’indique, dans ce type de routage, le flux de trafic de chaque demande ne peut pas
tre divisé sur son trajet entre son origine et sa destination. Vu son coût faible, le
mono-routage est largement utilisé dans les centres de données actuels, où des milliers
de serveurs effectuent des calculs ou hébergent des services Internet. Une utilisation
courante du mono-routage est l’usage du Spanning Tree Protocol (STP), basé sur les
arbres couvrants, dans les réseaux de type switched Ethernet. Le STP impose que
le réseau maintienne un ensemble de liens activés sans circuits, tandis que les autres
liaisons sont redondantes et prtes pour la sauvegarde, en cas de défaillance d’un lien.
Le Multiple Spanning Tree Protocol (MSTP) étend STP, en installant plusieurs réseaux
virtuels se conformant à STP, sur une seule topologie physique. Par conséquent, MSTP
est très bénéfique pour les fournisseurs de services réseau, car il permet une utilisation
plus efficace des ressources existantes.

Les problèmes de conception de réseau avec MSTP sont généralement très com-
binatoires et très difficiles. De ce fait, la littérature sur l’IT suggère principalement
des méthodes heuristiques, qui peuvent rapidement produire des solutions raisonnables.
Néanmoins, en raison de l’existence de rares bornes inférieures aux valeurs optimales de
ces problèmes, il y a peu de connaissances sur la qualité des solutions fournies.

En conséquence, nous proposons des modèles de programmation mathématique et des
méthodes qui peuvent fournir des plans optimaux pour ces réseaux, ou à tout le moins,
obtenir des bornes inférieures valides. Compte tenu de l’objectif d’éviter la congestion
dans le réseau, nous nous concentrons sur deux problèmes qui traitent les objectifs
d’équilibrage de charge suivants : la minimisation de l’utilisation maximale des liens
et la minimisation des coûts des flux donnés par des fonctions linéaires par morceaux
qui pénalisent les liens très chargés. L’étude de ces deux problèmes a abouti à des
résultats dérivés pertinents: le premier est l’étude d’un problème de conception de réseau
utilisant MSTP, o nous minimisons la charge totale, et le second est l’étude d’un problème
fondamental de mono-routage avec des coûts linéaires par morceaux.

Pour tous les problèmes examinés, nous fournissons des études de complexité, de
vastes études polyédriques pour comparer les formulations proposées, et un large éventail
d’expériences de calcul pour évaluer la performance des modèles et des méthodes pro-
posées.

xi



xii



Contents

Acknowledgements vii

Abstract ix

Résumé xi

List of Figures xvii

List of Tables xxi

List of Formulations xxiv

Glossary xxv

Introduction 1

1 Background and related work 5

1.1 An introduction to switching protocols . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Data Centers and switched Ethernet networks . . . . . . . . . . . . 5

1.1.2 Spanning Tree Protocol . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Multiple Spanning Tree Protocol . . . . . . . . . . . . . . . . . . . 8

1.2 Review of methods for the MSTP . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 MIPs for problems with spanning trees . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Minimum spanning tree problem . . . . . . . . . . . . . . . . . . . 12

1.4.2 Optimum communication spanning tree problem . . . . . . . . . . 18

1.5 MIPs for problems with MSTP . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Benders’ decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 MSTP: minimization of worst-case link utilization 31

2.1 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Sub-problem 1: Designing spanning trees . . . . . . . . . . . . . . 35

2.2.2 Sub-problem 2: Routing the traffic demands . . . . . . . . . . . . . 37

xiii



CONTENTS

2.2.3 Sub-problem 3: Edge utilization and capacity constraints . . . . . 39
2.2.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.5 Complete formulations . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Polyhedral comparison of formulations . . . . . . . . . . . . . . . . . . . . 41
2.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Test sets for the TE-MSTP problem . . . . . . . . . . . . . . . . . 45
2.4.2 Analysis of the results of test set Trand . . . . . . . . . . . . . . . . 46
2.4.3 Analysis of the results of test set T3tc . . . . . . . . . . . . . . . . 47

2.5 B&C algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Benders’ decomposition . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Computational experiments for the B&C algorithm . . . . . . . . . 54

2.6 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 MSTP: minimization of total load 59
3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Computational experiments for the COCMST problem . . . . . . . . . . . 60

3.2.1 Analysis of the results for ε = 0.2 . . . . . . . . . . . . . . . . . . . 61
3.2.2 Analysis of the results for ε = 0.05 . . . . . . . . . . . . . . . . . . 63
3.2.3 Analysis of the results for ε = 0.01 . . . . . . . . . . . . . . . . . . 63
3.2.4 Using the COCMST problem to find feasible solutions for the TE-

MSTP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.5 Using the COCMST problem to find lower bounds for the TE-

MSTP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Binary search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Obtaining a first upper bound . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Obtaining a first lower bound . . . . . . . . . . . . . . . . . . . . . 72
3.3.3 Obtaining a feasible solution . . . . . . . . . . . . . . . . . . . . . 73
3.3.4 Local branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.5 Parameters configuration . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Computational experiments for the BSA . . . . . . . . . . . . . . . . . . . 76
3.5 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Piecewise linear unsplittable multicommodity flow problems 81
4.1 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Basic formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.2 Ideal formulation for |K| = 1 . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Strong formulation for |K| ≥ 1 . . . . . . . . . . . . . . . . . . . . 92

4.3 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Test sets for the PUMF problem . . . . . . . . . . . . . . . . . . . 93
4.3.2 Results for test set T1 . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.3 Results for test set T2 . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 B&C algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Benders’ decomposition . . . . . . . . . . . . . . . . . . . . . . . . 101

xiv



CONTENTS

4.4.2 Computational experiments for the B&C algorithm . . . . . . . . . 104
4.5 Strengthened aggregated formulation . . . . . . . . . . . . . . . . . . . . . 104

4.5.1 Benders’ decomposition II . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2 Valid inequalities for BM1 . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Non-convex case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 MSTP: minimization of piecewise linear flow cost functions 115
5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Analysis of the results of test set Trand . . . . . . . . . . . . . . . . 120
5.2.2 Analysis of the results of test set T3tc . . . . . . . . . . . . . . . . 120

5.3 B&C algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.1 Benders’ decomposition . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.2 Computational experiments for the B&C algorithm . . . . . . . . . 125

5.4 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusion 129

References 133

Appendices 139
A Computational results for the TE-MSTP problem . . . . . . . . . . . . . . 141
B Computational results for the COCMST problem . . . . . . . . . . . . . . 147
C Computational results for the TE-MSTP decision problem . . . . . . . . . 157
D Computational results for the BSA . . . . . . . . . . . . . . . . . . . . . . 162
E Computational results for the PUMF problem . . . . . . . . . . . . . . . . 165
F Computational results for the NPUMF problem . . . . . . . . . . . . . . . 169
G Computational results for the TE-MSTP-p problem . . . . . . . . . . . . 171

xv



CONTENTS

xvi



List of Figures

1.1 Example of transparent bridging. The caption of each subfigure represents
the lookup tables of nodes 1 to 3, at each moment of the process. Notation
e.g. 1 → {−, x, z} indicates that in order to send a message to node 2
and 3, node 1 must relay it through, respectively, segments x and z. . . . 6

1.2 Example of PortCost and BridgeID assignment and resulting spanning
tree. Node 1 is chosen as the Root Bridge. Even though path {1,2,4} and
{1,3,4} have both length 8, the first is chosen because the BridgeID of
node 2 is smaller than of node 3. . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Relationship between underlying polyhedra. . . . . . . . . . . . . . . . . . 18

2.1 Graph construction for an example of a SAT instance. . . . . . . . . . . . 33

2.2 TE-MSTP, Trand: performance profile of the GapLP (%). . . . . . . . . . 49

2.3 TE-MSTP, Trand: performance profile of the MIP solving time (s). . . . . 49

2.4 TE-MSTP, Trand: performance profile of the LP solving time (s). . . . . . 49

2.5 TE-MSTP, Trand: performance profile of the B&B tree nodes. . . . . . . . 50

2.6 TE-MSTP, Trand: performance profile of Gap0 (%). . . . . . . . . . . . . . 50

2.7 TE-MSTP, T3tc: performance profile of GapLP (%). . . . . . . . . . . . . . 50

2.8 TE-MSTP, T3tc: performance profile of the MIP solving time (s). . . . . . 51

2.9 TE-MSTP, T3tc: performance profile of the LP solving time (s). . . . . . . 51

2.10 TE-MSTP, T3tc: performance profile of the B&B tree nodes. . . . . . . . . 51

3.1 COCMST(0.2ε): performance profile of the MIP solving time (s). . . . . . 62

3.2 COCMST(0.2ε): performance profile of GapLP (%). . . . . . . . . . . . . 62

3.3 COCMST(0.2ε): performance profile of the LP solving time (s). . . . . . . 62

3.4 COCMST(0.05ε): performance profile of the MIP solving time (s). . . . . 64

3.5 COCMST(0.01ε): performance profile of the MIP solving time (s). . . . . 64

3.6 COCMST(0.01ε): performance profile of GapLP (%). . . . . . . . . . . . . 64

3.7 COCMST, Trand: performance profile of Gap∗U (%). . . . . . . . . . . . . 67

3.8 COCMST, T3tc: performance profile of Gap∗U (%). . . . . . . . . . . . . . 67

3.9 COCMST, Trand: performance profile of the time (s) it takes to find a
feasible solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 COCMST, T3tc: performance profile of the time (s) it takes to find a
feasible solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xvii



LIST OF FIGURES

3.11 COCMST, Trand: performance profile of Gap1
U (%). . . . . . . . . . . . . 68

3.12 COCMST, T3tc: performance profile of Gap1
U (%). . . . . . . . . . . . . . 68

3.13 TE-MSTP decision, Trand: performance profile of the time (s) it takes to
find a feasible solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.14 TE-MSTP decision, T3tc: performance profile of the time (s) it takes to
find a feasible solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.15 TE-MSTP decision, Trand: performance profile of GapDU (%). . . . . . . . 69
3.16 TE-MSTP decision, T3tc: performance profile of GapDU (%). . . . . . . . . 70
3.17 COCMST & TE-MSTP decision, Trand: performance profile of the time

(s) it takes to prove infeasibility, for ε = −0.05. . . . . . . . . . . . . . . . 70
3.18 COCMST & TE-MSTP decision, T3tc: performance profile of the time (s)

it takes to prove infeasibility, for ε = −0.05. . . . . . . . . . . . . . . . . . 70
3.19 TE-MSTP, Trand: performance profile of the MIP solving time (s). . . . . 76
3.20 TE-MSTP, T3tc: performance profile of the MIP solving time (s). . . . . . 77

4.1 Notation for each segment of ga(la). . . . . . . . . . . . . . . . . . . . . . 82
4.2 Example of a convex piecewise linear cost function. . . . . . . . . . . . . . 82
4.3 Kleinrock function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 PUMF, T1: performance profile of GapLP (%). . . . . . . . . . . . . . . . 96
4.5 PUMF, T1: performance profile of MIP solving times (s) with y binary

(y-b) or continuous (y-c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 PUMF, T1: performance profile of MIP solving times (s). . . . . . . . . . 96
4.7 PUMF, T1: performance profile of LP solving times (s). . . . . . . . . . . 97
4.8 PUMF, T1: performance profile of the B&B tree nodes. . . . . . . . . . . 97
4.9 PUMF, T1: performance profile of the Gap0 (%). . . . . . . . . . . . . . . 97
4.10 PUMF, T2: performance profile of GapLP (%). . . . . . . . . . . . . . . . 99
4.11 PUMF, T2: performance profile of MIP solving times (s) with y binary

(y-b) or continuous (y-c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.12 PUMF, T2: performance profile of MIP solving times (s). . . . . . . . . . 99
4.13 PUMF, T2: performance profile of LP solving times (s). . . . . . . . . . . 100
4.14 PUMF, T2: performance profile of the B&B tree nodes. . . . . . . . . . . 100
4.15 PUMF, T2: performance profile of the Gap0 (%). . . . . . . . . . . . . . . 100
4.16 Two examples of non-convex piecewise linear cost functions. . . . . . . . . 109
4.17 NPUMF, Tn: performance profile of GapLP (%). . . . . . . . . . . . . . . 110
4.18 NPUMF, Tn: performance profile of MIP solving times (s). . . . . . . . . 110
4.19 NPUMF, Tn: performance profile of LP solving times (s). . . . . . . . . . 111
4.20 NPUMF, Tn: performance profile of B&B tree nodes. . . . . . . . . . . . . 111
4.21 NPUMF, Tn: performance profile of Gap0 (%). . . . . . . . . . . . . . . . 111

5.1 TE-MSTP-p, Trand: performance profile of the GapLP (%). . . . . . . . . 122
5.2 TE-MSTP-p, Trand: performance profile of the MIP solving time (s). . . . 122
5.3 TE-MSTP-p, Trand: performance profile of the LP solving time (s). . . . . 122
5.4 TE-MSTP-p, Trand: performance profile of the B&B tree nodes. . . . . . . 123
5.5 TE-MSTP-p, T3tc: performance profile of GapLP (%). . . . . . . . . . . . 123

xviii



LIST OF FIGURES

5.6 TE-MSTP-p, T3tc: performance profile of the MIP solving time (s). . . . . 123
5.7 TE-MSTP-p, T3tc: performance profile of the LP solving time (s). . . . . . 124
5.8 TE-MSTP-p, T3tc: performance profile of the B&B tree nodes. . . . . . . 124

xix



LIST OF FIGURES

xx



List of Tables

2.1 TE-MSTP: composition of each complete formulation. . . . . . . . . . . . 41
2.2 TE-MSTP: description of each class of instances. . . . . . . . . . . . . . . 46

3.1 Comparison between average Gap∗U , Gap1
U and GapDU . . . . . . . . . . . . 66

3.2 Parameters for Algorithm 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 PUMF problem: description of each class of instances. . . . . . . . . . . . 94
4.2 PUMF problem: description of each class of instances in T2. . . . . . . . . 95
4.3 Configuration implemented for instances of T1. . . . . . . . . . . . . . . . 95
4.4 Configuration implemented for instances of T2 . . . . . . . . . . . . . . . . 98
4.5 Description of each class of instances for the NPUMF. . . . . . . . . . . . 110

5.1 TE-MSTP-p problem: composition of each complete formulation. . . . . . 119

A.1 Test results for the TE-MSTP problem: T 1
rand − T 5

rand. . . . . . . . . . . . 142
A.2 Test results for the TE-MSTP problem: T 6

rand − T 10
rand. . . . . . . . . . . . 143

A.3 Test results for the TE-MSTP problem: T3tc. . . . . . . . . . . . . . . . . 144
A.4 Test results for the B&C algorithm: Trand. . . . . . . . . . . . . . . . . . . 145
A.5 Test results for the B&C algorithm: T3tc. . . . . . . . . . . . . . . . . . . 146
B.1 Test results for the COCMST(0.2ε) problem: T 1

rand − T 5
rand. . . . . . . . . 148

B.2 Test results for the COCMST(0.2ε) problem: T 6
rand − T 10

rand. . . . . . . . . 149
B.3 Test results for the COCMST(0.2ε) problem: T3tc. . . . . . . . . . . . . . 150
B.4 Test results for the COCMST(0.05ε) problem: T 1

rand − T 5
rand. . . . . . . . 151

B.5 Test results for the COCMST(0.05ε) problem: T 6
rand − T 10

rand. . . . . . . . 152
B.6 Test results for the COCMST(0.05ε) problem: T3tc. . . . . . . . . . . . . . 153
B.7 Test results for the COCMST(0.01ε) problem: T 1

rand − T 5
rand. . . . . . . . 154

B.8 Test results for the COCMST(0.01ε) problem: T 6
rand − T 10

rand. . . . . . . . 155
B.9 Test results for the COCMST(0.01ε) problem: T3tc. . . . . . . . . . . . . . 156
C.1 Test results for the TE-MSTP(Λ) decision problem: T 1

rand − T 5
rand. . . . . 158

C.2 Test results for the TE-MSTP(Λ) decision problem: T 6
rand − T 10

rand. . . . . 159
C.3 Test results for the TE-MSTP(Λ) decision problem: T3tc. . . . . . . . . . 160
C.4 Running time (s) for the TE-MSTP(−0.05ε) decision problem and the

COCMST(−0.05ε) problems. . . . . . . . . . . . . . . . . . . . . . . . . . 161
D.1 Test results for the BSA: Trand. . . . . . . . . . . . . . . . . . . . . . . . . 163

xxi



LIST OF TABLES

D.2 Test results for the BSA: T3tc. . . . . . . . . . . . . . . . . . . . . . . . . . 164
E.1 Test results for the PUMF problem: T 1

1 − T 6
1 . . . . . . . . . . . . . . . . . 166

E.2 Test results for the PUMF problem: T 7
1 − T 11

1 . . . . . . . . . . . . . . . . 167
E.3 Test results for the PUMF problem: T2. . . . . . . . . . . . . . . . . . . . 168
F.1 Test results for the NPUMF problem. . . . . . . . . . . . . . . . . . . . . 170
G.1 Test results for the TE-MSTP-p problem: T 1

rand − T 5
rand. . . . . . . . . . . 172

G.2 Test results for the TE-MSTP-p problem: T 6
rand − T 10

rand. . . . . . . . . . . 173
G.3 Test results for the TE-MSTP-p problem: T3tc. . . . . . . . . . . . . . . . 174
G.4 Test results for the B&C algorithm: Trand. . . . . . . . . . . . . . . . . . . 175
G.5 Test results for the B&C algorithm: T3tc. . . . . . . . . . . . . . . . . . . 176

xxii



List of Formulations

1.1 MST problem: packing formulation. . . . . . . . . . . . . . . . . . . . . . 13

1.2 MST problem: cutset formulation. . . . . . . . . . . . . . . . . . . . . . . 13

1.3 MST problem: multicut formulation. . . . . . . . . . . . . . . . . . . . . . 14

1.4 MST problem: single commodity flow formulation. . . . . . . . . . . . . . 14

1.5 MST problem: undirected multicommodity flow formulation. . . . . . . . 15

1.6 MST problem: directed multicommodity flow formulation. . . . . . . . . . 16

1.7 MST problem: extended multicommodity flow formulation. . . . . . . . . 17

1.8 MST problem: Kipp Martin’s formulation. . . . . . . . . . . . . . . . . . . 17

1.9 OCST problem: Rothlauf’s formulation. . . . . . . . . . . . . . . . . . . . 19

1.10 OCST problem: Contreras’ flow formulation. . . . . . . . . . . . . . . . . 20

1.11 OCST problem: Contreras’ path formulation. . . . . . . . . . . . . . . . . 21

1.12 OCST problem: Fernandez’s flow formulation. . . . . . . . . . . . . . . . . 21

1.13 MSTP: Cinkler’s formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.14 MSTP: Santos’ set of constraints. . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 TE-MSTP SP1: defining design variables w. . . . . . . . . . . . . . . . . . 36

2.2 TE-MSTP SP1: multicommodity flow formulation. . . . . . . . . . . . . . 36

2.3 TE-MSTP SP1: tightening for (2.2c). . . . . . . . . . . . . . . . . . . . . 36

2.4 TE-MSTP SP1: further tightening for special cases of (2.2c). . . . . . . . 37

2.5 TE-MSTP SP1: rooted directed formulation. . . . . . . . . . . . . . . . . 37

2.6 TE-MSTP SP2: multi-source-multi-destination routing. . . . . . . . . . . 38

2.7 TE-MSTP SP2: single-source-multi-destination routing. . . . . . . . . . . 38

2.8 TE-MSTP SP3: disaggregated case. . . . . . . . . . . . . . . . . . . . . . 39

2.9 TE-MSTP SP3: aggregated case. . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 TE-MSTP SP3: bound on edge utilization. . . . . . . . . . . . . . . . . . 39

2.11 TE-MSTP problem: objective function. . . . . . . . . . . . . . . . . . . . 40

2.12 TE-MSTP problem: linking constraints for RDM. . . . . . . . . . . . . . . 40

2.13 TE-MSTP problem: linking constraints for RDMFM. . . . . . . . . . . . 40

2.14 TE-MSTP problem: linking constraints for RDMFM. . . . . . . . . . . . 41

2.15 TE-MSTP problem: RDMFM. . . . . . . . . . . . . . . . . . . . . . . . . 53

2.16 TE-MSTP problem: RDMFMLP (z̄utij , Ū
max). . . . . . . . . . . . . . . . . 54

2.17 TE-MSTP problem: RDMFMD(z̄utij , Ū
max). . . . . . . . . . . . . . . . . . 54

2.18 TE-MSTP problem: RDMFMk
M . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 COCMST problem: RDM-t. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xxiii



LIST OF FORMULATIONS

3.2 COCMST problem: capacity constraints for the aggregated-flows case. . . 60
3.3 BSA: local branching constraint. . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 PUMF problem: Basic model 1. . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 PUMF problem: Basic model 2. . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 PUMF problem: Basic model 1 for |K| = 1. . . . . . . . . . . . . . . . . . 89
4.5 PUMF problem: Basic model 2 for |K| = 1. . . . . . . . . . . . . . . . . . 89
4.6 PUMF problem: Disaggregated Model for |K| = 1. . . . . . . . . . . . . . 90
4.7 PUMF problem: Valid inequalities I. . . . . . . . . . . . . . . . . . . . . . 90
4.8 PUMF problem: Valid inequalities II. . . . . . . . . . . . . . . . . . . . . 90
4.9 PUMF problem: Valid inequalities III. . . . . . . . . . . . . . . . . . . . . 91
4.10 PUMF problem: SDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 PUMF problem: SDM-f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.12 PUMF problem: SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.13 PUMF problem: Extension of (4.8) for the multiple commodities. . . . . . 93
4.15 PUMF problem: Benders’ slave problem, given ȳ. . . . . . . . . . . . . . . 102
4.16 PUMF problem: SMLP (x̄). . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.17 PUMF problem: SMD(ā, x̄). . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.18 PUMF problem: SMk

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.19 PUMF problem: Feasibility of the LP solution of BM1, with regards to

the valid inequalities of SM. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.20 PUMF problem: Inferring a cut to strengthen BM1. . . . . . . . . . . . . 105
4.21 PUMF problem: Valid inequality #1 for the BM1. . . . . . . . . . . . . . 106
4.22 PUMF problem: Valid inequality #2 for the BM1. . . . . . . . . . . . . . 107
4.23 PUMF problem: Valid inequality #3 for the BM1. . . . . . . . . . . . . . 107
4.24 PUMF problem: SM-n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1 TE-MSTP-p SP1: rooted directed formulation. . . . . . . . . . . . . . . . 117
5.2 TE-MSTP-p SP2: multicommodity flow formulation. . . . . . . . . . . . . 117
5.3 TE-MSTP-p problem: linking constraints between SP1 and SP2. . . . . . 117
5.4 TE-MSTP-p SP3: “basic” formulation. . . . . . . . . . . . . . . . . . . . . 117
5.5 TE-MSTP-p problem: “basic” objective function. . . . . . . . . . . . . . . 117
5.6 TE-MSTP-p SP2: disaggregated multicommodity flow formulation. . . . . 118
5.7 TE-MSTP-p problem: disaggregated linking constraints between SP1 and

SP2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.8 TE-MSTP-p SP3: multiple choice formulation. . . . . . . . . . . . . . . . 118
5.9 TE-MSTP-p problem: disaggregated linking constraints between SP1 and

SP3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.10 TE-MSTP-p problem: disaggregated objective function. . . . . . . . . . . 119
5.11 TE-MSTP-p problem: S-RDMFMLP (z̄utij , w̄

e). . . . . . . . . . . . . . . . . 126
5.12 TE-MSTP-p problem: S-RDMFMD(z̄utij , w̄

e). . . . . . . . . . . . . . . . . 126

5.13 TE-MSTP-p: S-RDMFMk
M . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xxiv



Glossary

ASM the aggregated strong model forthe PUMF problem

B-RDMFM the basic rooted directed multicommodity flow problem for the TE-MSTP-p problem

B&B Branch-and-bound

B&C Branch-and-cut

BM1 the basic model 1 for the PUMF problem

BM1-r the basic model 1 for the NCPMF problem

BM2 the basic model 2 for the PUMF problem

BSA Binary search algorithm

DM the disaggregated model for the PUMF problem

Gbps Billions of bits per second

IEEE Institute of Electrical and Electronics Engineers

LAN Local area network

LP Linear program(ming)

MAC address Media access control address

Mbps Megabits per second

MFM the multicommodity flow model for the TE-MSTP problem

MFM-avg the multicommodity flow model for the COCMST problem

MIP Mixed-integer linear program(ming)

MST problem Minimum spanning tree problem

MSTP Multiple Spanning Tree Protocol

NCPMF problem Non-convex piecewise linear multicommodity network flow problem

NPUMF problem Non-convex unsplittable multicommodity flow problem

OCST problem Optimum (optimal) communication spanning tree problem

ODIMCF problem Origin-destination integer multicommodity flow problem

PUMF problem Convex unsplittable multicommodity flow problem

QoS Quality of service

RDM the rooted directed model for the TE-MSTP problem

xxv



GLOSSARY

RDM-0 the rooted directed model for the TE-MSTP decision problem

RDM-avg the rooted directed model for the COCMST problem

RDMFM the rooted directed multicommodity flow model for the TE-MSTP problem

RDMFM-0 the rooted directed multicommodity flow model for the TE-MSTP decision problem

RDMFM-avg the rooted directed multicommodity flow model for the COCMST problem

S-RDMFM the strengthened rooted directed multicommodity flow problem for the TE-MSTP-p prob-
lem

SAT problem Boolean satisfiability problem

SEN Switched Ethernet network

SM the strong model for the PUMF problem

SM-n the strong model for the NPUMF problem

SM-r the strong model for the NCPMF problem

SP Sub-problem

STP Spanning Tree Protocol

TE Traffic engineering

TE-MSTP problem Traffic engineering for the Multiple Spanning Tree Protocol problem

TE-MSTP-p problem Traffic engineering for the Multiple Spanning Tree Protocol with piecewise-
linear costs problem

ToR Top of Rack

VLAN Virtual local area network

xxvi



Introduction

In the turn of the century, the Danish mathematician, statistician and engineer, Agner
Krarup Erlang (1878 - 1929) first invented the field of telecommunications traffic engi-
neering, teletraffic engineering or simply, traffic engineering (TE) [ML97]. Originally,
TE was essentially characterized by the application of probability theory to telephone
networks. The tools used in the discipline included stochastic processes, queueing theory
and numerical simulation, and the goal was to evaluate, operate and maintain telecom-
munications networks [I+05].

Ever since then, propelled by the Digital Revolution, the field has increased in im-
portance, as well as in breadth. Nowadays, TE also includes a wide array of optimization
methods, which aim at finding the best network configuration, in order to improve dif-
ferent traffic-oriented performance measures, such as delay, delay variation, packet loss
and throughput. The ultimate goal of these methods is to optimize the quality of service
(QoS), while considering the general cost of the network [Wir97].

TE is, thus, a key element for the design, operation and maintenance of all kinds
of telecommunications networks, such as public switched telephone networks, local area
networks (LANs), Ethernet networks, wide area networks, cellular telephone networks
and the Internet networks [Ho12].

In this thesis, we study TE problems with single-path routing. As the name indi-
cates, in single-path routing, the traffic flow of each “commodity” cannot be split among
multiple paths between its origin and destination. Even though the converse, multipath
routing, is generally perceived as resulting in better performance for different QoS mea-
sures ([GK04]), single-path routing is still widely used in our days, as it is traditionally
a cheaper option. One example of single-path routing is enforced by the Spanning Tree
Protocol (STP), common in switched Ethernet networks (SENs). The STP requires the
network’s active links to be loop-free, while keeping redundant links as back-up in case
of link failure.

SENs can also implement the Multiple Spanning Tree Protocol (MSTP). This pro-
tocol allows for the providers to partition the traffic in a SEN, and assign it to different
virtual LANs (VLANs), without infringing the topological requirements of the STP.

The MSTP is highly beneficial for the QoS of these networks, as the traffic can be
spread throughout a bigger number of the existing links. Nevertheless, it is hard to use
effectively, due to the difficulty of optimizing over multiple spanning trees, juxtaposed
in one single capacitated network. For that reason, it is not surprising that the state

1



Introduction

of the art concerning the MSTP is comprised, almost exclusively, of heuristic methods
(see Section 1.2 for a review of these methods). These methods are reported to be
able to efficiently produce good designs with respect to different performance measures.
Notwithstanding, little-to-nothing is known about the optimality or quality of these
solutions, as lower bounds to the optimum values of the respective problems are seldom
provided. Accordingly, in this thesis, we propose models and exact methods for network
design problems dealing with the MSTP that yield optimal designs or, at the very least,
produce bounds that can shed light on the quality of heuristic solutions.

In the problems considered in this thesis, the goal is to avoid congestion in the net-
work, by selecting network designs whose link utilization (ratio between the load and the
link’s capacity) is low. In Chapter 2, we study the TE for the MSTP (TE-MSTP) prob-
lem, first proposed by Ho et al. [HDBF11, Ho12]. In this problem, we aim at designing
capacitated networks implementing the MSTP, such that the resulting routing of the
traffic demands minimizes the worst-case edge utilization. We show that this problem
is NP-hard. We propose three mixed-integer linear programming (MIP) formulations
for this problem, which we compare both via polyhedral studies, and extensive com-
putational experiments. We also propose a branch-and-cut (B&C) algorithm for the
TE-MSTP problem, based on Benders’ decomposition of one of the proposed models.

In Chapter 3, we study an almost identical problem, the capacitated optimum com-
munication multiple spanning tree (COCMST) problem; the difference is the objective,
which is to minimize the sum of the loads throughout the network. Any feasible solution
for this problem is also feasible for the TE-MSTP problem with a guaranteed worst-case
edge utilization. As such, we integrate the solving of the COCMST problem in a bi-
nary search algorithm that for some instances is able to efficiently produce near-optimal
solutions.

In Chapter 4, we consider a more basic network design problem: a multicommodity
flow problem with single-path routing, and with costs on arc load given by piecewise-
linear cost functions. Despite its apparent simplicity, we show that this problem is
NP-complete, when there is more than one commodity at stake. We propose a strength-
ened MIP formulation, whose linear relaxation always gives the optimal solution of the
problem for the single commodity case. We present a wide array of computational ex-
periments, that show that this formulation also produces very tight linear programming
bounds for the multicommodity case. Since solving this formulation with the available
MIP solvers (e.g. CPLEX), can be a lengthy procedure for some more complicated in-
stances of the problem, we also propose two B&C algorithms: in the first one, we embed
a Benders’ decomposition method; in the second, we project the strong valid inequalities
of our strengthened formulation onto a more compact model. From the interpretation
of the Benders’ cuts yielded by the latter, we infer a second strengthened formulation,
with less variables than the first one.

The structure of the problem described in the above paragraph can be integrated
in more complicated network design problems, with single-path routing. Accordingly,
in Chapter 5, we study the TE-MSTP-p problem, where the goal is to design networks
implementing the MSTP, such that we minimize the total flow cost given by convex

2



piecewise-linear linear functions. To model this problem, we combine the best formula-
tions for the TE-MSTP and the PUMF problems. Through computational experiments,
we analyze how solving this problem compares to solving the TE-MSTP problem, and
how the solutions for both problems relate.

Finally, in Chapter 6, we summarize the main contributions of the work described
in this thesis, and draw conclusions.

3



Introduction

4



Chapter 1

Background and related work

We begin this chapter by motivating the problems that are studied in this thesis, and
introducing the switching protocols on switched Ethernet networks, namely the Multiple
Spanning Tree Protocol (Section 1.1). In Section 1.2, we review the state-of-the-art on
optimized implementations of the latter. The large majority of the literature hinges on
heuristic approaches. As such, in Section 1.4, we make an overview of different mathe-
matical models that have been proposed, to tackle two fundamental spanning tree op-
timization problems. Lastly, Section 1.5 focuses on the few mathematical programming
formulations that have been proposed for problems dealing with the Multiple Spanning
Tree Protocol.

1.1 An introduction to switching protocols

In this section, we introduce the basic concepts of telecommunications and traffic engi-
neering (TE), that motivate the problems studied in this thesis.

1.1.1 Data Centers and switched Ethernet networks

With the increasing demand for Internet and cloud computing services, the need for
large-scale data centers has become paramount. In 2010, [BAM10] reported that the
biggest online service providers (e.g. Google, Microsoft and Amazon) were building
cloud data centers with upwards of 10K servers; it is expected that these numbers will
quickly rise in the upcoming years. For the most part, data centers are used to either
perform computation or to host Internet services. They support simultaneously multiple
applications that run on a set of virtual machines, distributed on physical servers.

In these data centers, switched Ethernet networks (SENs) are a popular choice, as
they offer better port density at a lower price per Gbps (billions of bits per second).
Better port density translates into the capacity to carry larger amounts of traffic flow
per unit of space in the data center. SENs are very similar to the traditional shared
Ethernet networks. In fact, they are identical, with the exception that hubs are replaced
by switches. A switch, like the hub, acts as a junction box and a repeater. However,

5



1. BACKGROUND AND RELATED WORK

they differ in the way they transmit data packets (or frames) received by a port (or
segment): while the hub retransmits it to all the other segments, the switch is able to
identify the destination address of the incoming packet, and forward it only through the
segments it needs to [RVJ99]. This means that contrary to what happens in the shared
case, in SENs, hosts do not have to compete for the same bandwidth.

In order to identify which ports to forward the message through, switches store a
lookup table, where the “address” of each node in the network is associated with a
segment. In this way, when an incoming packet is received, the media access control
(MAC) address is read from the frame’s header and compared to the list of addresses in
the lookup table. To create these lookup tables, Ethernet switches use a process called
transparent bridging every time a new node is added to the network [Tys11]. Typically,
these nodes are computers, but other examples can include a printer, a digital telephone
handset, or even a switch. Figure 1.1 illustrates an example of the transparent bridging
process. The process begins when node 1 sends a frame to node 2. In Figure 1.1a, when
switch 3 receives the frame, it reads the MAC address of node 1, and saves it on its lookup
table for further use. As switch 3 does not have the information regarding the location
of node 2, it forwards the frame through every segment (Figure 1.1b). Eventually the
frame arrives at node 2, that acknowledges it, by sending it back to node 1. Now, as
the frame passes once again through switch 3, the latter can store the MAC address of
node 2 on the lookup table.

1 2

3

4 5

a b

c d

(a) 1 → {−, ?, ?}, 2 → {?,−, ?},
3 → {a, ?,−}

1 2

3

4 5

a b

c d

(b) 1 → {−, ?, ?}, 2 → {b,−, b},
3 → {a, ?,−}

1 2

3

4 5

a b

c d

(c) 1 → {−, ?, ?}, 2 → {b,−, b},
3 → {a, b,−}

1 2

3

4 5

a
b

c d

(d) 1 → {−, a, a}, 2 → {b,−, b},
3 → {a, b,−}

Figure 1.1: Example of transparent bridging. The caption of each subfigure represents the
lookup tables of nodes 1 to 3, at each moment of the process. Notation e.g. 1 → {−, x, z}
indicates that in order to send a message to node 2 and 3, node 1 must relay it through,
respectively, segments x and z.

6



1.1 An introduction to switching protocols

If there exists two or more disjoint routes between a switch and a given node, the
lookup tables will associate different ports with the destination node’s MAC address.
Therefore, when the switch receives a packet destined for that node, it forwards it
through multiple segments. However, as the switch is part of a loop, the packet will
ultimately return to it, and be treated as a new incoming frame. In this sense, loops in
the topology of SENs can result in broadcast storms, i.e. the accumulation of broadcast
and multicast traffic. This happens when the switches in the loop repeatedly rebroadcast
the data packets, flooding the network [KCR08]. Ultimately, broadcast radiation can
have a high impact on the performance of the network and should, therefore, be avoided
at all costs.

1.1.2 Spanning Tree Protocol

In SENs, it is important to keep redundant links to ensure automatic backup paths
in case of link failure. However, as seen before, it is important to avoid loops in the
network. As such, SENs only activate at a given time, a loop-free subset of the existing
links. In this sense, these networks implement the Institute of Electrical and Electronics
Engineers (IEEE) 802.1d standard [80298], also known as the Spanning Tree Protocol
(STP). As the protocol’s name indicates, the topology of a network using the 802.1d
standard must be a spanning tree.

To configure the spanning trees, each switch is assigned two types of integer values: a
BridgeID, and a PortCost for every port. The switch with the lowest BridgeID is chosen
to be the Root Bridge. Then, the active links are deduced from the PortCosts: a link
is selected, if it is part of the minimum cost path between each switch and the Root
Bridge. The cost of each path is calculated by summing the PortCosts of the forwarding
ports. If there exists two paths with the same minimum cost, between a given switch
and the Root Bridge, the BridgeID of the second switch in the path is used to break the
tie. An example for this procedure is depicted in Figure 1.2.

1

2 3

4 5

3

1

2

4

2 4

2

2

2

3

1

1

2

2

3 1

(a) Assignment of PortCosts (in gray) and
BridgeIDs (same value as node id).

1r

2 3

4 5

(b) Activated spanning tree, highlighted in
black.

Figure 1.2: Example of PortCost and BridgeID assignment and resulting spanning tree.
Node 1 is chosen as the Root Bridge. Even though path {1,2,4} and {1,3,4} have both
length 8, the first is chosen because the BridgeID of node 2 is smaller than of node 3.

7



1. BACKGROUND AND RELATED WORK

In graph theory, a spanning tree of a graph G is a connected, acyclic subgraph that
spans all the nodes of G. As a consequence, a spanning tree of G contains only n − 1
edges, where n is the number of nodes in G. Hence, one of the drawbacks of the STP is
that the network is only able to use a small portion of the existing links.

1.1.3 Multiple Spanning Tree Protocol

The IEEE 802.1q standard [80206] enables large SENs to be partitioned into multiple,
smaller virtual LANs (VLANs), simplifying the network design. This allows for the iso-
lation of different applications and/or data center customers, as two nodes belonging to
a given VLAN can only communicate between each other, through the links established
for the same VLAN.

The Multiple Spanning Tree Protocol (MSTP), standardized as 802.1s [80202], allows
for service providers to install different spanning trees (one per VLAN) over a single
physical topology. In this way, the network can make use of a larger number of links to
send traffic, while satisfying the STP.

In this thesis, we study network design problems involving the MSTP. Note that we do
not consider the assignment of the BridgeIDs and PortCosts to the switches. It is possible
to do this a posteriori, such that the spanning trees selected in the optimization are
implemented by the MSTP [dSS07]. Nonetheless, the optimization problems alone are
highly combinatorial, as the number of potential designs can be huge for large networks.
In practice, today’s implementations of the MSTP circumvent this, by computing a
small number of spanning trees, and mapping the VLAN onto them. Often, when many
VLANs are defined, a spanning tree is generated, not for each single VLAN, but for a
whole subset of them [Ho12]. In all likelihood, these implementation result in designs
that do not make the best use of the network resources. Many methods have been
proposed in the literature to improve the implementation of the MSTP, with respect to
different traffic-oriented measures. In the next section, we present an overview of such
methods.

Extensions to this protocol, better suited for traffic management, have been proposed
in the engineering literature (see e.g. [KSI04, Med08]), but these are outside the scope
of this thesis and could be a topic for further research. Nevertheless, we think the
MSTPtechnology is worth studying as it is in use in many networks today, and it raises
challenging problems for optimizers.

Other technologies like Software Defined Networks (SDNs) might be better suited
for large data centers. However, SDNs are much more complex to manage and the com-
mercially available solutions are expensive and quite limited in their traffic engineering
capabilities. On the other hand, switched Ethernet equipment is a mature technology, it
is quite inexpensive and its management requires less expertise human resources (which
also has an impact on the operational costs).

8



1.2 Review of methods for the MSTP

1.2 Review of methods for the MSTP

Ho [Ho12] wrote an extensive review on several approaches from the literature, regarding
TE problems for SENs implementing the MSTP.

In a first approach, [HZC06, LYD+03, Med06] proposed optimization techniques, that
map a set of VLANs to a given number of spanning trees. Meddeb [Med06] developed an
algorithm to generate a set of spanning trees with a small number of links in common,
and then introduced another greedy algorithm to map each VLAN to those spanning
trees, while attempting to minimize the number of used links. Lim et al. [LYD+03]
proposed a Quality of Service (QoS)-aware mechanism that maps VLANs, with the
objective of minimizing network load and delay. He et al. [HZC06] used an admission
control algorithm to assign a group of VLANs to each given spanning tree, and then
map each service to a VLAN, such that it minimizes the link load.

Sousa et al. [dSS07] and Santos et al. [SdSA+09, SdSA+10], introduced heuris-
tic schemes, that aim to balance the load in networks using the MSTP. In [SdSA+09,
SdSA+10], the heuristic procedure solves relaxed mixed-integer linear programs (MIPs),
in order to obtain feasible solutions and lower bounds. Different criteria were taken into
consideration, including service disruption and network load balancing.

Chen et al. [CJZ06] proposed an algorithm that designs a spanning tree for every
source node in the network, while trying to achieve a good trade-off between load balance
and average delay.

One last approach was suggested by Padmaraj et al. [PNM+05] and Mirjalily et
al. [MSS09]. In this approach, costs are assigned to the links in the network, and the
“cheapest” spanning trees are selected. In the first paper, the proposed heuristic updates
weights assigned to the links in the network, in order to find a set of spanning trees with
a good load balancing. In the second one, the suggested algorithm tries to find the best
set of edge-disjoint spanning trees, and the best mapping of VLANs to that set.

Ho [Ho12] argued that all these proposals were not applicable for large networks.
Hence, he proposed a local search based algorithm that aims at minimizing the worst-
case link utilization for data center networks.

In Section 1.5, we review the existing literature on the use of mixed-integer program-
ming (MIP) formulations to models problems dealing with the MSTP.

9



1. BACKGROUND AND RELATED WORK

1.3 Notation and definitions

A SEN can be represented by a graph, where the nodes typically represent computers or
switches, and the edges represent the bi-directional links connecting the latter. In this
section, we introduce some concepts of graph theory and combinatorial optimization,
that will be used throughout this thesis.

Consider an undirected graph G = (N,E), where N is the set of nodes, with size
n, and E the set of edges, with size m. Edge e = {i, j} ∈ E represents an undirected
link between the two end nodes, i ∈ N and j ∈ N . Given a set W ⊂ N , δ(W ) =
{{i, j} ∈ E : i ∈ W, j ∈ N\W} denotes the cut induced by W. The degree of a node v
is defined as the cardinality of δ(v), where δ(v) = δ({v}). Similarly, let W0,W1, ...,Wk

be a family of disjoint non-empty sets of nodes, whose union is N . A multicut is a
subset of E containing edges with an end node in one of these sets of nodes, and the
other end node in another; it is denoted by δ(W0,W1, ...,Wk). We also define the set
E(W ) = {{i, j} ∈ E : i, j ∈W} as the set of edges having both end nodes in W .

A sequence of edges, connecting a sequence of nodes is called a path. The first and
last node in the sequence are named the end nodes. A cycle is defined as a path, that
starts and ends at the same node. A graph that has a path between each pair of nodes
is a connected graph.

Consider as well the set of arcs A = {(i, j), (j, i) : {i, j} ∈ E}. The graph G′ = (N,A)
is the directed version of graph G. For such a graph, and for a given set W ⊂ N , we
can define the two following cuts: δ−(W ) = {(i, j) ∈ A : i ∈ N\W, j ∈ W} and
δ+(W ) = {(j, i) ∈ A : i ∈ N\W, j ∈ W}. The cardinality of δ−(v) and δ+(v) is
respectively named the indegree and outdegree of node v.

For simplicity, in many situations, we use the same designation for concepts defined in
the directed graph as for the equivalent concepts defined in the in undirected graph, e.g.
“paths”, “cycles”. This is not the case, however, for spanning trees and arborescences.
A spanning tree of G is a connected subgraph, that includes all the nodes in N and
contains exactly n− 1 edges. Consequently, a spanning tree is also acyclic, in the sense
that it contains no cycles. An r-arborescence is a subset of A, such that there is no arc
entering the root node r, and there is an unique path between r and every other node
in N .

In this thesis, we propose several MIP formulations. In order to keep this thesis
consistent, we try to assign the same notation to variables that have similar meanings,
for different problems and/or formulations. As such, the formulations presented in the
surveys of Sections 1.4 and 1.5 may not appear in the notation they were presented on,
in their original papers. We associate the notation:

• w with undirected design variables;

• y with directed design variables;

• zr with directed design variables for r-arborescences;

10



1.3 Notation and definitions

• x with directed flow variables, that define a path between between two nodes;

• l with variables that indicate the load on an arc/edge.

Moreover, letters of the greek alphabet will be assigned to variables of dual formu-
lations (see below). Note, however, that there may occur exceptions to this notation,
either when formulations require a lot of notation (e.g. in Section 1.5), or when referring
to problems that are not network design problems (e.g. in Section 2.1).

Let us consider a MIP formulation F , where the goal is to minimize a given objective
function. Consider the linear programming (LP) relaxation of F, where the integrality
of the variables are relaxed, and which we denote by FLP . We denote as BLP (F ) as

the bounds provided by solving FLP , and as GapLP the ratio B∗−BLP (F )
B∗ , where B∗ is

the value/cost of the best known primal solution. We also denote PF as the polyhedron
defined by the set of feasible solutions of FLP . The strength of the LP relaxation of two
different MIP formulations with the same objective function, F 1 and F 2, can then be
compared by examining their respective polyhedra, PF 1 and PF 2 . The LP relaxation of
F 1 is as strong as (stronger than) F2 if PF 1 ⊆ PF 2 (PF 1 ⊂ PF 2). They are regarded as
equivalent, if PF 1 = PF 2 .

We consider as well the concept of projection, which provides a connection between
different formulations. Given a polyhedron Q = {(u, x) ∈ Rp × Rq : Au+ Bx ≤ b}, the
projection of Q onto Rq, or onto the x-space, is defined as Projx(Q) = {x ∈ Rq : ∃u ∈
Rp : (u, x) ∈ Q}. This is useful, as it allows us to compare formulations, as seen in the
previous paragraph, but in different variable spaces.

Lastly, we recall some basic notions of duality theory. Let us redefine the LP
formulation FLP as min{z = cx : Ax ≥ b, x ≥ 0}, where z is the cost of the solu-
tion, A are the constraints’ coefficients, b the right-hand sides and c objective function
coefficients. Then, we denote as the dual of FLP to the LP formulation defined as
max{ω = πb : πA ≤ c, π ≥ 0}, where π are the dual variables. We refer to this dual
formulation as FD. Dual formulations have an important property, in that the value of
the optimal solution of FLP , is the same of the optimal solution of FD: z∗ = ω∗. This
theory will be important when we introduce the Benders’ decomposition algorithm, in
Section 1.6.

11



1. BACKGROUND AND RELATED WORK

1.4 MIPs for problems with spanning trees

Spanning tree optimization problems are numerous, and many papers have been pub-
lished to study these special structures. By allowing the connection of all nodes in a
network, while eliminating edge redundancy, spanning trees naturally arise in a large
number of applications, such as computer networking, energy distribution, facility lo-
cation, manufacturing and telecommunications. Moreover, as the spanning tree is the
simplest type of network design model, its structure appears regularly embedded in other
problems. As such, the study of these trees can prove to be valuable for other network
design problems [MW95].

Although the amount of optimization problems dealing with spanning trees is indeed
vast, their corresponding mathematical programming formulations can all be traced
back to the ones proposed for a few fundamental problems. Therefore, the way the
latter have been modeled is an essential first clue, when looking into a new spanning
tree optimization problem. In this section, we give an overview of MIP formulations
that have been proposed for two of these basic problems: the minimum spanning tree
(MST) problem, and the optimum communication spanning tree (OCST) problem.

1.4.1 Minimum spanning tree problem

In the MST problem, the objective is to find a tree that spans all the nodes of a given
graph, such that the sum of the weights/costs of the edges in the tree is minimized.
This simple problem does not impose any restrictions on the topology of the tree, nor
on the capacity of the links. This is one of the most well-known problems in combinato-
rial optimization, with studies dating back to 1926 [NMN01]. Many greedy algorithms
have been proposed, with the most famous being Kruskal’s [Kru56] and Prim’s [Pri57].
These algorithms are able to achieve the optimal tree in polynomial time. For our pur-
poses, we are exclusively interested in exploring the different mathematical programming
formulations that have been proposed for the MST problem [MW95].

Let ce be the cost of selecting edge e ∈ E for the spanning tree. We denote as we,
the set of binary variables which have value 1 if edge e ∈ E is selected as part of the
spanning tree, and 0 otherwise. In this thesis, this type of variables will also be referred
to as “design variables”.

The first MIP formulation, 1.1, is named after the “packing” constraints in (1.1b).
These constraints ensure that the set of selected edges is acyclic. Along with the car-
dinality constraint of (1.1c), they imply that the chosen edges form a spanning tree.
Note that constraints (1.1d) define the design variables w as 0-1. Consider, however,
the LP relaxation of the packing formulation where the integrality of these constraints
is relaxed, and we have we ∈ [0, 1] instead. This relaxed formulation has an important
property: it describes the spanning tree polytope, i.e. the convex hull of characteris-
tic vectors of spanning trees. Consequently, for any instance of the MST problem, the
optimal solution of the LP relaxation of the packing formulation is also integer.

Formulation 1.1 regards spanning tree as acyclic subgraphs with n− 1 edges. Alter-
natively, a spanning tree can be seen as a connected subgraph with n − 1 edges. The

12



1.4 MIPs for problems with spanning trees

min
w

∑
e∈E

cewe (1.1a)

s.t ∑
e∈E(W )

we ≤ |W | − 1, W ⊆ N : 2 ≤ |W | ≤ n− 1 (1.1b)

∑
e∈E

we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

Formulation 1.1: MST problem: packing formulation.

cutset Formulation 1.2, substitutes the “packing” constraints with constraints (1.2a),
which imply that there is at least one edge connecting the nodes of any subset of N , and
all the others.

Let Psub and Pcut be the polyhedra defined by the LP relaxations of, respectively,
the packing and the cutset formulations. Then, Psub ⊂ Pcut. This serves as a motivation
to look at what is “missing” in the cutset formulation. The multicut Formulation 1.3
extends the cutset formulation, by connecting any partition of N onto i sets, for 2 ≤
i ≤ n − 1 (1.3a). The polyhedron Pmcut defined by the LP relaxation of the multicut
formulation is such that Pmcut = Psub.

Formulations 1.1, 1.2 and 1.3 are “natural” formulations, as they only use the “natu-
ral” design variables. Nevertheless, these formulations can be very large, as the number
of constraints (1.1c), (1.2a) and (1.3a) is exponential, with respect to n. This motivates
the creation of extended formulations, that ensure connectivity by modelling flows, that
need to sent between the nodes of the network. In this context, the design variables
we are redefined to indicate whether or not edge e is selected, so that it can carry any
flow. Note that, in flow models, although the edges continue to be undirected, the flow

min
w

∑
e∈E

cewe (1.1a)

s.t ∑
e∈δ(W )

we ≥ 1, W ⊆ N : 2 ≤|W |≤ n− 1 (1.2a)

∑
e∈E

we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

Formulation 1.2: MST problem: cutset formulation.

13



1. BACKGROUND AND RELATED WORK

min
w

∑
e∈E

cewe (1.1a)

s.t ∑
e∈δ(W0,W1,...,Wi)

we ≥ i, W0,W1, ...,Wi = N : 2 ≤ i ≤ n− 1 (1.3a)

∑
e∈E

we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

Formulation 1.3: MST problem: multicut formulation.

variables are typically directed, and consequently defined in G′.

There are different flow formulations for the MST problem, and one way to categorize
them is either as single commodity or as multicommodity. In the single commodity case,
one node (typically node 1) is chosen as the root, from where we must send one unit
of flow to every other node. We define variables xij , that measure the quantity of flow,
originated at the root node, traversing arc (i, j) ∈ A. The single commodity model is
formulated as seen in Formulation 1.4. Constraints (1.4a-1.4b) ensure the conservation
of flow from the root node to every other node, while (1.4c-1.4d) ensure that the flow
only travels through the selected edges.

min
w,x

∑
e∈E

cewe (1.1a)

s.t ∑
a∈δ+(1)

xa = n− 1 (1.4a)

∑
a∈δ−(i)

xa −
∑

a∈δ+(i)

xa = 1, i ∈ N : i 6= 1 (1.4b)

xij ≤ (n− 1) · we, e = {i, j} ∈ E (1.4c)

xji ≤ (n− 1) · we, e = {i, j} ∈ E (1.4d)∑
e∈E

we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

xij ≥ 0, (i, j) ∈ A (1.4e)

Formulation 1.4: MST problem: single commodity flow formulation.

This model is “compact”, in the sense that the number of constraints (in addition

14



1.4 MIPs for problems with spanning trees

to the number of variables) is polynomial, and thus, smaller than for the “natural”
formulations. Nevertheless, comparing with the packing and multicut formulations, the
single commodity model is weaker, in the sense that the polyhedron defined by its LP
relaxation (Pflo) can be quite a poor representation of the integer program. Consider
the projection of Pflo onto the w-space, defined as seen in Section 1.3. Then Pcut ⊆
Projw(Pflo).

In the multicommodity flow case, the flow variables x are disaggregated, such that
they also contain information about the destination of each flow. As such, we redefine
variables xva that measure the quantity of flow traversing arc a ∈ A, originated at the
root node and destined to node v ∈ N . The formulation seen in 1.5 is denoted as the
undirected multicommodity flow model.

min
w,x

∑
e∈E

cewe (1.1a)

s.t ∑
a∈δ+(1)

xva = 1, v ∈ N : v 6= 1 (1.5a)

∑
a∈δ−(i)

xva −
∑

a∈δ+(i)

xva = 0, v, i ∈ N : i 6= {1, v}, v 6= 1 (1.5b)

∑
a∈δ−(v)

xva = 1, v ∈ N : v 6= 1 (1.5c)

xvij ≤ we, v, i, j ∈ N : e = {i, j} ∈ E, v 6= 1 (1.5d)∑
e∈E

we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

xvij ≥ 0, v ∈ N : v 6= 1, (i, j) ∈ A (1.5e)

Formulation 1.5: MST problem: undirected multicommodity flow formulation.

Constraints (1.5a-1.5c) imply that one unit is sent from the root node to every other
node. Naturally, the flow can only be carried by the edges selected by the design variables
(1.5d). Let Pmcflo denote the polyhedron defined by the LP relaxation of Formulation
1.5, and Projw(Pmcflo) represent the projection of Pmcflo onto the w-space. Although
Projw(Pmcflo) is as strong as Projw(Pflo) (Projw(Pmcflo) ⊆ Projw(Pflo)), it is still
not equivalent to Psub and Pmcut. In order to strengthen this Formulation 1.5, it is also
possible to consider design variables that are defined in the directed network, G′. Let ya
be 1 if arc a ∈ A is selected to carry flow, and 0 otherwise. The directed multicommodity
flow model is formulated as shown in 1.6. Note that constraints (1.6c) imply that an
edge can only carry flow originated at the root, in one of the two directions.

We denote as Pdflo the polyhedron defined by the LP relaxation of Formulation 1.6,

15



1. BACKGROUND AND RELATED WORK

min
w,x,y

∑
e∈E

cewe (1.1a)

s.t ∑
a∈δ+(1)

xva = 1, v ∈ N : v 6= 1 (1.5a)

∑
a∈δ−(i)

xva −
∑

j∈δ+(i)

xva = 0, v, i ∈ N : i 6= {1, v}, v 6= 1 (1.5b)

∑
a∈δ−(v)

xva = 1, v ∈ N : v 6= 1 (1.5c)

xvij ≤ yij , v ∈ N : v 6= 1, (i, j) ∈ A (1.6a)∑
a∈A

ya = n− 1 (1.6b)

yij + yji = we, e = {i, j} ∈ E (1.6c)

ya ∈ {0, 1}, a ∈ A (1.6d)

we ∈ {0, 1}, e ∈ E (1.1d)

xvij ≥ 0, v ∈ N : v 6= 1, (i, j) ∈ A (1.5e)

Formulation 1.6: MST problem: directed multicommodity flow formulation.

and Projw(Pdflo) as the projection of Pdflo onto the w-space. Then, Projw(Pdflo) =
Psub = Pmcut.

Alternatively, it is possible to obtain yet another multicommodity flow formulation
equivalent to Formulation 1.6, without using directed design variables. Formulation 1.7
is designated as the extended multicommodity flow formulation, and the corresponding
polyhedron of feasible solutions of the LP relaxation as Pmc′flo. As mentioned above,
an edge can only carry flow originated at the root, in one of the two directions. Hence,
it is possible to replace constraints (1.5d) by the tighter constraints (1.7a).

A similar extended formulation was proposed by Kipp Martin in [Mar91]. This was,
in fact, the first polynomial-sized formulation proposed to describe the spanning tree
polytope. Consider variables zuij , that indicate the quantity of flow with origin in node
u ∈ N and destination in node j ∈ N and travelling through arc (i, j) ∈ A. The MST
problem can be formulated as seen in 1.8. Note that in his original paper, Kipp Martin
defined variables zuij in a slightly different way: they indicate instead the quantity of flow
with origin in i ∈ N and destination in u ∈ N , and traversing arc (i, j) ∈ A. We have
changed the formulation here, for the sake of the thesis’ consistency. Constraints (1.8a)
state that the flow entering node j ∈ N , cannot surpass 1, whereas constraints (1.8b)
imply that no flow can enter the origin node u. The set of constraints (1.8c) implies that
we can only have flow originated at node u travelling in one direction of any given edge
e ∈ E; and the quantity of flow is precisely the value of we.

16



1.4 MIPs for problems with spanning trees

min
w,x

∑
e∈E

cewe (1.1a)

s.t ∑
a∈δ+(1)

xva = 1, v ∈ N : v 6= 1 (1.5a)

∑
a∈δ−(i)

xva −
∑

a∈δ+(i)

xva = 0, v, i ∈ N : i 6= {1, v}, v 6= 1 (1.5b)

∑
a∈δ−(v)

xva = 1, v ∈ N : v 6= 1 (1.5c)

xvij + xv
′
ji ≤ we, v, v′, i, j ∈ N : e = {i, j} ∈ E, v 6= {1, v′} (1.7a)∑

e∈E
we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

xvij ≥ 0, v ∈ N : v 6= 1, (i, j) ∈ A (1.5e)

Formulation 1.7: MST problem: extended multicommodity flow formulation.

min
w,z

∑
e∈E

cewe (1.1a)

s.t ∑
a∈δ−(j)

zua ≤ 1, u, j ∈ N : i 6= u (1.8a)

∑
a∈δ−(u)

zua ≤ 0, u ∈ N (1.8b)

zuij + zuji = we, e = {i, j} ∈ E (1.8c)∑
e∈E

we = n− 1 (1.1c)

we ∈ {0, 1}, e ∈ E (1.1d)

zua ≥ 0, u ∈ N, a ∈ A (1.8d)

Formulation 1.8: MST problem: Kipp Martin’s formulation.

Formulation 1.8 can also be understood in a different way. Recall the notion of
arborescence, introduced in the previous section. We can perceive variables zua instead
as directed design variables, which indicate whether or not arc a ∈ A is selected for an
arborescence rooted at node u ∈ N . Thus, the constraints in Formulation 1.8 imply that

17



1. BACKGROUND AND RELATED WORK

there is an u-arborescence for every node u ∈ N , and that they all use the same edges
(1.8c). Each u-arborescence is designed by indicating that there is an arc entering every
node (1.8a), with the exception of the root u (1.8b).

Let Projw(Parb) be the projection of the polyhedron defined by the LP relaxation
of Formulation 1.8 onto the w-space. Figure 1.3 details the relationship between the
polyhedra defined by the LP relaxations of each model. All the polyhedra in the left-
most set describe the spanning tree polytope.

Psub
Pmcut

Projw(Pdflo)
Projw(Pmc′flo)
Projw(Parb)

 ⊆
{

Pcut
Projw(Pmcflo)

}
⊆ Projw(Pflo)

Figure 1.3: Relationship between underlying polyhedra.

As it was implied in the beginning of this section, the MST problem is probably the
most fundamental of all problem dealing with spanning trees. As such, the formulations
in Figure 1.3 are of great important, as they are the base for modelling the many other,
more complicated, spanning tree problems.

1.4.2 Optimum communication spanning tree problem

The optimum (optimal) communication spanning tree (OCST) problem was first intro-
duced by Hu [Hu74]. It is a particular extension of the minimum spanning tree problem,
where there is a set of communications’ traffic demands between the nodes of the net-
work, that have to be routed in a spanning tree. The main novelty of the OCST problem
is in the cost of each edge, which is linearly dependent on its load (i.e. the total traffic
flowing through it). Despite of its apparent simplicity, this is actually a very challenging
problem, belonging to the class of NP-hard problems [JLK78].

Consider the set of traffic commodities K, each k ∈ K with a given origin ok, destina-
tion dk, and traffic demand ρk. Alternatively, we designate as ρuv =

∑
k∈K:ok=u,dk=v ρk.

Without loss of generality we assume that u < v, and redefine ρuv as ρuv + ρvu.
Although the problem was originally proposed in 1974, to the best of our knowledge,

it was only recently that it was first modeled as a MIP [Rot08]. For this first formulation,
Rothlauf chose to formulate the problem with multicommodity flows (see Section 1.4.1).
As mentioned above, in the OCST problem there are multiple sources of traffic flow.
Rothlauf defines flow variables xuve , that indicate whether or not edge e ∈ E is in the
path between u ∈ N and v ∈ N , such that u < v. Note that the author chooses to define
these variables on the undirected space, which motivates a new set of variables huvi , that
indicate whether node i ∈ N is on the path between u ∈ N and v ∈ N (u < v, i 6∈ {u, v}).
Rothlauf models the OCST problem as Formulation 1.9.

Constraints (1.9b-1.9c) define the spanning tree, while (1.9f-1.9h) define the path
between each pair of nodes. Note that this is done in a different way than in Formulations

18



1.4 MIPs for problems with spanning trees

min
h,w,x

∑
u,v∈N :u<v

ρuv
∑
e∈E

cex
uv
e (1.9a)

s.t ∑
e∈δ(i)

we ≥ 1, i ∈ N (1.9b)

∑
e∈E

we = n− 1 (1.9c)∑
u,v∈N :u<v

xuve ≥ we, e ∈ E (1.9d)

∑
u,v∈N :u<v

xuve ≤Mwe, e ∈ E (1.9e)

∑
e∈δ(u)

xuve = 1, u, v ∈ N : u < v (1.9f)

∑
e∈δ(v)

xuve = 1, u, v ∈ N : u < v (1.9g)

∑
e∈δ(i)

xuve = 2huvi , i, u, v ∈ N : u < v, i 6∈ {u, v} (1.9h)

we ∈ {0, 1}, e ∈ E (1.9i)

huvi ∈ {0, 1}, i, u, v ∈ N : u < v, i 6∈ {u, v} (1.9j)

xuve ∈ {0, 1}, u, v ∈ N : u < v, e ∈ E (1.9k)

Formulation 1.9: OCST problem: Rothlauf’s formulation.

1.5 and 1.6; this is due to Rothlauf’s choice of using undirected flow variables x. In (1.9d-
1.9e) the design and flow variables are associated. In (1.9e) a big-M strategy is used,
which is typically associated with weak LP relaxations.

Later, Contreras [Con09] presented three formulations for the same problem. The
first model is also a flow Formulation (1.10). Notwithstanding, in this formulation there
are no flow variables, as defined for Formulations 1.4-1.9. While for those formulations,
flows were used exclusively to ensure the connectivity of the spanning trees, for the OCST
problem it is necessary to know the load flowing through each edge/arc. Accordingly,
Contreras defines continuous variables lua that measure the load in arc a ∈ A, and
originated in u ∈ N .

The LP relaxation of Formulation 1.10 yields poor lower bounds and, therefore, the
same author proposed two other formulations, which he designates as “path-based”. The
first of these formulation is, in fact, a multicommodity flow formulation, similar to the
one in [Rot08], but with the flow variables x being directed. The second “path-based”
Formulation 1.11 requires to generate, a priori, all the possible paths between each pair
of nodes, Puv : u, v ∈ N, u < v. Variables pquv indicate whether path q ∈ Puv is chosen

19



1. BACKGROUND AND RELATED WORK

min
l,w

∑
u∈N,a∈A

cal
u
a (1.10a)

s.t ∑
a∈δ−(i)

lua −
∑

a∈δ+(i)

luij = ρui, u, i ∈ N : u 6= i (1.10b)

luij + luji ≤
∑

v∈N :u<v

ρuv · wse, u ∈ N, e = {i, j} ∈ E (1.10c)∑
e∈E

we = n− 1 (1.9c)

we ∈ {0, 1}, e ∈ E (1.9i)

lusa ≥ 0, u ∈ N, a = (i, j) ∈ A : j 6= u (1.10d)

Formulation 1.10: OCST problem: Contreras’ flow formulation.

to connect nodes u ∈ N and v ∈ N .
The set of constraints (1.11b) implies that for each pair of nodes, only one path

can be chosen. Constraints (1.11c) state that these paths must use the edges selected
for the spanning tree. Contreras showed that the two “path-based” formulations are
equivalent. In [CFM10] tests were made using Formulation 1.10 against benchmark
instances, namely to measure the GapLP . These tests revealed that for small-sized
instances, the GapLP is close to 0%, and that for medium-sized ones, the GapLP does
not exceed 15%.

In [FLMH+13], another flow formulation is proposed. Consider the set of variables
we, l

u
a and zua , defined as before. The OCST problem can be formulated as detailed

in 1.12. This model builds on the Formulation 1.10, by adding “arborescence design”
variables z, like the ones used in Kipp Martin’s Formulation 1.8 for the MST problem.

While the two “path-based” models in [Con09] had variables with up to 4 indexes,
this model only requires 3 indexes variables. However, although no comparison is made
with the previous models, the authors seem to suggest that this Formulation 1.12 is
weaker than the aforementioned path models 1.10 and 1.11. In order to make the LP
relaxation of the model tighter, the authors propose several families of valid inequalities,
namely: vertex cutset inequalities, set cutset inequalities, min-cut values inequalities and
inequalities that ensure the minimum flows through arcs. They report that, according to
the numerical tests, the ones with a greater impact are the min-cut values inequalities.

The optimum communication spanning tree problem is an important foundation for
the problems we study, as it introduces the concept of traffic demands.

20



1.4 MIPs for problems with spanning trees

min
p,w

∑
u,v∈N :u<v

ρuv
∑
q∈Puv

∑
e∈q

cep
q
uv (1.11a)

s.t ∑
q∈Puv

pquv = 1, u, v ∈ N : u < v (1.11b)

∑
q∈Puv :e∈q

pquv ≤ we, u, v ∈ N : u < v, e ∈ E (1.11c)

pquv ∈ {0, 1}, u, v ∈ N, q ∈ Puv (1.11d)∑
e∈E

we = n− 1 (1.9c)

we ∈ {0, 1}, e ∈ E (1.9i)

(1.11e)

Formulation 1.11: OCST problem: Contreras’ path formulation.

min
l,x,w

∑
u∈N,a∈A

cal
u
a (1.10a)

s.t ∑
a∈A:a/∈δ−(u)

zua = n− 1, u ∈ N (1.12a)

lua ≤Mzua , u ∈ N, a ∈ A : a /∈ δ−(u) (1.12b)∑
j:(j,i)∈A

luji −
∑

j:(i,j)∈A,j 6=u

luij = ρui, u, i ∈ N : u 6= i (1.10b)

luij + luji ≤
∑

v∈N :u<v

ρuv · wse, u ∈ N, e = {i, j} ∈ E (1.10c)∑
e∈E

we = n− 1 (1.9c)

we ∈ {0, 1}, e ∈ E (1.9i)

lusa ≥ 0, u ∈ N, a ∈ A : j 6= u (1.10d)

zua ≥ 0, u ∈ N, a ∈ A : a /∈ δ−(u) (1.12c)

Formulation 1.12: OCST problem: Fernandez’s flow formulation.

21



1. BACKGROUND AND RELATED WORK

1.5 MIPs for problems with MSTP

As it was expressed in Section 1.2, the literature dealing with the optimization of MSTP
is extensive. Notwithstanding, due to the great complexity of computing many span-
ning trees over a single physical network, research has been mainly focused on heuristic
approaches. As far as we know, the only works that have studied problems dealing with
the MSTP, by using exact methods are the ones reviewed in this section.

In [CKM05], SENs using the MSTP are optimized with respect to QoS, while ensur-
ing network protection, in case of link failure. For the proposed problem, the authors
divide the set of nodes N , in three disjunct subsets: the access nodes, NA; the edge
nodes, NE ; and the bridge nodes, NB. Recall the set of commodities K, introduced in
the previous section, for the OCST problem. In [CKM05], each k ∈ K is assumed to
be such that ok ∈ NA and dk ∈ NE . Moreover, set K is partitioned in four subsets
(K = K1

⋃
K2
⋃
K3
⋃
K4), representing different QoS classes, with different require-

ments. The first class entails the commodities whose traffic has the highest priority; as
such, commodities in this class are assigned the highest weight in the objective function
(ck = 4, k ∈ K1). The three other classes are assigned decreasing weights: 3, 2 and 1,
respectively. Let Ce define the bandwidth capacity of each edge e ∈ E, bounding the
traffic volume in both directions. The first class is also assumed to require the lowest
bandwidth volume, and so its load can use at most 10% of the link’s capacity. The three
other classes are assigned increasing limits: 20%, 30% and 40%, respectively.

The authors also define a set of trees T , that can have up to 64 elements. Each tree
can only be assigned one edge node, that is regarded as the root, whereas the leaves
can only be access nodes. In order to ensure the protection of the network, the authors
define for each demand k ∈ K, both a working tree in Tw(k) ⊂ T and a protection tree
in Tp(k) ⊂ T . Even though Cinkler et al. consider that most of commodities need to
be protected, not all have that need. In that sense, they define a binary parameter πk,
which is 1 if and only if commodity k needs to be protected. With multiple spanning
trees, the design variables previously used, have to include one more index. Therefore,
yta indicates whether or not arc a ∈ A is used by tree t ∈ T . Cinkler et al. also define
the variables ŷka and y̌ka , that indicate whether or not demand k ∈ K uses arc a ∈ A
as, respectively, part of the working tree or the protection tree. The model is thus
formulated as shown in 1.13. In [CMK+05] a very similar model is presented, without
the concern for tree protection.

The objective is to minimize a weighted sum of the chosen resources in the network
(1.13a). Constraints (1.13b-1.13f) bound the load for each class of commodities. For
both the working and protection tree, (1.13g-1.13l) define a path between the origin
and destination of each commodity. The set of constraints (1.13m-1.13n) imply that
the working and protection trees for each commodity are edge-disjoint. The remaining
constraints (1.13o-1.13t) are responsible for defining the trees for each commodity, such
that only edge nodes may be the root, and access nodes the leaves.

The authors do not seem to be so much focused on optimizing large-sized instances,
as on exploring the impact of different protection and design strategies on the QoS of toy

22



1.5 MIPs for problems with MSTP

networks. Moreover, despite dealing with MSTP, the problems in [CKM05, CMK+05]
clearly differ from the problems considered in the context of this thesis, where our
objective is to minimize link congestion. Although they are also distinct, the problems
in [SdSA+09, SdSA+10] are closer to the one we propose to study. In both papers,
different objectives are regarded; nevertheless, the same set of constraints seen in 1.14
are enforced.

In their formulations, Santos et al. use five different sets of binary variables (z,
w, x, x̂, φ) and one continuous (µ). There are two sets of design variables: wte are
undirected variables that indicate whether edge e ∈ E is used for tree t ∈ T ; zta design
an arborescence for each t ∈ T . There are also two sets of flow variables: x̂uta define a
path between the root node r of arborescence t ∈ T , and node u ∈ N ; and xkta that define
a path between the origin and destination of commodity k ∈ K, if that commodity is
assigned to tree t ∈ T . Note that the authors do not pre-assign the commodities to the
set of trees (VLANs); this is done via variables φ. Finally, µa measure the utilization
of an edge. Observe the formulation in 1.14. Constraints (1.14a-1.14b) impose the
connectivity of the arborescences. The arcs on the arborescence defined in (1.14c-1.14e)
must coincide with the undirected trees (1.14f). Constraints (1.14h-1.14j) define a path
between the origin and destination of each commodity, in the trees they are assigned to;
naturally, each commodity must be assigned to one and only one tree (1.14g). Finally,
the edge utilization is calculated in (1.14l).

Using this set of constraints, Santos et al. consider different objectives. In [SdSA+09],
two load balancing problems are tackled. The first one is the minimization of the average
edge utilization, with a guaranteed worst-case scenario: min 1

|E|
∑

e∈E µe, subject to

(1.14a-1.14r) and {µe ≤ µmax, e ∈ E}. The second objective is to minimize the worst-
case edge utilization, with a guaranteed average value: minµmax, subject to (1.14a-
1.14r) and { 1

|E|
∑

e∈E µe ≤ µavg;µe ≤ µmax, e ∈ E}. Moreover, in both [SdSA+10] and

[SdSA+09] another problem is proposed, dealing with a lexicographical minimization of
the edge’s utilization. In this lexicographical objective, the authors begin to minimize
the worst-case edge utilization. Afterwards, that value is fixed, and the second largest
edge utilization is minimized. The procedure continues in this fashion, for all edges. In
[SdSA+10] another similar problem was proposed, that also considers the minimization
of the average utilization.

Although both [SdSA+09, SdSA+10] propose MIP formulations for their problem,
the focus of these works is clearly on heuristic procedures. In fact, Santos et al. claim, as
Cinkler et al. had before, that the computational cost of using exact methods for these
problems motivate the need for heuristic methods. In this sense, in [SdSA+09, SdSA+10],
the proposed MIPs are relaxed and embedded in an heuristic procedure. Although the
authors also suggest exact methods per se, these seem to be used only as a means of
measuring the quality of the proposed heuristics.

Recently, in [LLL15] have proposed a novel protection scheme for the MSTP, with the
purpose of quickly configuring a back-up VLAN in case of link failure. In his scheme, the
authors require that the switches adjacent to a given protected link, must be leaf nodes if
this link fails. The authors propose a MIP formulation for the problem of designing load-

23



1. BACKGROUND AND RELATED WORK

balanced and resilient SENs implementing the MSTP. In this formulation, the authors
suggest transforming the original graph onto a two-layer graph, such that the load-
balanced working trees are set on the top layer, and the back-up trees on the bottom
one. A back-up tree is selected for all failure scenarios, following the aforementioned
protection scheme. We do not present this MIP here since, contrary to what happens
in Formulations 1.13 and 1.14, the design of the spanning trees is not considered; trees
are instead, provided as input. Lee et al. suggest that their proposed MIP is to large
to solve. Therefore, they partition the problem in two phases: in the first phase, the
heuristic algorithm proposed in [dSS07] is used, to design the load-balanced working
trees; in the second phase, given the set of working trees, the original MIP can be
decomposed onto smaller ones, where the protection for each failure scenario is ensured.

This review implies that, when it comes to the use of exact methods for the optimized
implementation of the MSTP, there is still plenty of room for improvement. The objective
of this thesis, is to develop more efficient models that, by themselves or through the use
of high-end mathematical programming techniques (e.g. decomposition methods), can
overcome the demanding computational costs mentioned in the works reviewed in this
section.

24



1.5 MIPs for problems with MSTP

min
y,ŷ,y̌

∑
a∈A

[
α
∑
t∈T

yta +
1− α
Ca

∑
k∈K

ck(ŷka + y̌ka)ρk

]
(1.13a)

s.t ∑
k∈K1

(ŷkij + ŷkji + y̌kij + y̌kji) ≤ 0.1Ce, e = {i, j} ∈ E (1.13b)

∑
k∈K2

(ŷkij + ŷkji + y̌kij + y̌kji) ≤ 0.2Ce, e = {i, j} ∈ E (1.13c)

∑
k∈K3

(ŷkij + ŷkji + y̌kij + y̌kji) ≤ 0.3Ce, e = {i, j} ∈ E (1.13d)

∑
k∈K4

(ŷkij + ŷkji + y̌kij + y̌kji) ≤ 0.4Ce, e = {i, j} ∈ E (1.13e)

∑
k∈K

(ŷkij + ŷkji + y̌kij + y̌kji) ≤ Ce, e = {i, j} ∈ E (1.13f)∑
a∈δ+(ok)

ŷka −
∑

a∈δ−(ok)

ŷka = 1, k ∈ K (1.13g)

∑
a∈δ+(i)

ŷka −
∑

a∈δ−(i)

ŷka = 0, k ∈ K, i ∈ N\{ok, dk} (1.13h)

∑
a∈δ+(dk)

ŷka −
∑

a∈δ−(dk)

ŷka = −1, k ∈ K (1.13i)

∑
a∈δ+(ok)

y̌ka −
∑

a∈δ−(dk)

y̌ka = πk, k ∈ K (1.13j)

∑
a∈δ+(i)

y̌ka −
∑

a∈δ−(i)

y̌ka = 0, k ∈ K, i ∈ N\{ok, dk} (1.13k)

∑
a∈δ+(dk)

y̌ka −
∑

a∈δ−(dk)

y̌ka = −πk, k ∈ K (1.13l)

ŷkij + y̌kij ≤ 1, k ∈ K, {i, j} ∈ E (1.13m)

ŷkij + y̌kji ≤ 1, k ∈ K, {i, j} ∈ E (1.13n)

ŷka ≤ yta k ∈ K, a ∈ A, t ∈ Tw(k) (1.13o)

y̌ka ≤ yta k ∈ K, a ∈ A, t ∈ Tp(k) (1.13p)∑
a∈δ+(i)

yta = 0, i ∈ NE , t ∈ T (1.13q)

∑
a∈δ+(i)

yta ≤ 1, i ∈ N\NE , t ∈ T (1.13r)

ytji ≤
∑

a∈δ+(i)

yta, i ∈ N\NE , j ∈ δ−(i), t ∈ T (1.13s)

ytij ≤
∑

a∈δ−(i)

yta, i ∈ N\NA, j ∈ δ+(i), t ∈ T (1.13t)

yta ∈ {0, 1}, a ∈ A, t ∈ T (1.13u)

ŷka , y̌
k
a ∈ {0, 1}, a ∈ A, k ∈ K (1.13v)

Formulation 1.13: MSTP: Cinkler’s formulation.

25



1. BACKGROUND AND RELATED WORK

∑
a∈δ+(u)

x̂uta = 1, u ∈ N\{r}, t ∈ T (1.14a)

∑
a∈δ+(i)

x̂uta −
∑

a∈δ−(i)

x̂uta = 0, u, i ∈ N\{r} : u 6= i, t ∈ T (1.14b)

zta ≥ x̂uta , u ∈ N\{r}, a ∈ A, t ∈ T (1.14c)∑
a∈δ+(r))∈A

zta = 0, t ∈ T (1.14d)

∑
a∈δ+(i)

zta = 1, i ∈ N\{r}, s ∈ S (1.14e)

ztij + ztji = wt{i,j}, {i, j} ∈ E, t ∈ T (1.14f)∑
t∈T

φtk = 1, k ∈ K (1.14g)∑
a∈δ+(ok)

xkta = φtk, k ∈ K, t ∈ T (1.14h)

∑
a∈δ+(i)

xkta −
∑

a∈δ−(i)

xkta = 0, k ∈ K, i ∈ N\{ok, dk}, t ∈ T (1.14i)

∑
a∈δ−(dk)

xkta = φtk, k ∈ K, t ∈ T (1.14j)

xktij + xktji ≤ wt{i,j}, k ∈ K, {i, j} ∈ E, t ∈ T (1.14k)∑
t∈T

∑
k∈K

ρk(xktij + xktji ) = C{i,j}µ{i,j}, {i, j} ∈ E (1.14l)

zta ∈ {0, 1}, a ∈ A, t ∈ T (1.14m)

wte ∈ {0, 1}, e ∈ E, T ∈ T (1.14n)

xkta ∈ {0, 1}, a ∈ A, k ∈ K, t ∈ T (1.14o)

x̂uta ∈ {0, 1}, a ∈ A, u ∈ N\{r}, t ∈ T (1.14p)

φtk ∈ {0, 1}, k ∈ K, t ∈ T (1.14q)

fe ∈ [0, 1], e ∈ E (1.14r)

Formulation 1.14: MSTP: Santos’ set of constraints.

26



1.6 Benders’ decomposition

1.6 Benders’ decomposition

In this section, we introduce the Benders’ decomposition algorithm, first proposed in
[Ben62]. This review follows the notes on [CP08] and [Mar12]. The Benders’ decompo-
sition algorithm allows for a faster solving of some optimization problems, by exploring
special substructures in their mathematical programming formulations. Namely, at each
iteration of this algorithm, we fix certain variables with the purpose of making the re-
sulting sub-problem easier to solve. The decision of which variables to fix is, thus, key to
the efficiency of the algorithm. Unfortunately, it is also very much problem dependent.

Let us extend the definition of a LP formulation FLP , introduced at the end of section
1.3, such that it contains two types of variables, x and y: min{z = cx+ dy : Ax+By ≥
b, x, y ≥ 0}, where B and d are respectively, the constraints’ and objective function’s
coefficients for variables y. If we fix variables y to some trial values ȳ, we obtain the
following slave problem FLP (ȳ): min{z = cx + dȳ : Ax ≥ b − Bȳ, x ≥ 0}. Consider the
dual of this sub-problem, FD(ȳ): max{ω = π(b−Bȳ)+dȳ : πA ≤ c, π ≥ 0}. The optimal
value of FD(ȳ) provides a lower bound to the objective function value on FLP (ȳ). What
we would like, however, is to derive a function βȳ(y), that provides a lower bound that
is valid for any fixing of variables y, and not just the current ȳ.

If ω is finite, the dual problems gives us a bound of the form z ≥ π(b − Bȳ) + dȳ.
Moreover, note that the solution π is feasible for any fixing of y, and so, we can generalize
this bound to be z ≥ βȳ(y) = π(b−By) + dȳ. We call this bound a Benders optimality
cut.

However, the dual problem FD(ȳ) can also be unbounded, if we choose ȳ such that
FLP (ȳ) is infeasible. In that case, we can infer a Benders feasibility cut, of the form
βȳ(y) = ~π(b−By) +dȳ ≤ 0, where ~π is an extreme ray for FD(ȳ). Note that in practice,
many times the objective function in FD(ȳ) is fixed to a normalization positive value, so
that the dual sub-problem is not unbounded. This allow us to find the source of infea-
sibility, without having to find extreme rays, which is very hard from a computational
point of view [FSZ10].

Let ȳk be the trial values for variables y, fixed at the kth iteration of the Benders’
decomposition algorithm. We name as Benders’ master problem (or simply master prob-
lem) to the problem F kM , that aggregates all the cuts generated until the kth iteration:
min{z : z ≥ βȳk(y) ∨ βȳk(y) ≥ 0 ∀k, y ≥ 0}.

Algorithm 1.1 describes the general procedure for the Benders’ decomposition al-
gorithm. This procedure can be integrated in a branch-and-cut (B&C) framework, by
solving the Benders’ decomposition at each node of a branch-and-bound (B&B) algo-
rithm. Recently, this approach has been used successfully to solve efficiently hard MIP
problems (e.g. [BFGP13], [FLS15]). The efficiency of a B&C depends on many different
factors. For instance, as mentioned above, the choice of which variables to fix can have
a great impact: in some cases, the correct choice allows the slave problem to be decom-
posable in many, easier-to-solve problems; in other cases, the correct choice can lead to
a slave problem which is known, and for which there exists fast and efficient algorithms.
Another important factor is the strength of the generated cuts; e.g. if they are facet

27



1. BACKGROUND AND RELATED WORK

defining. In [FLS15], Fischetti et al. apply Benders’ decomposition to the Uncapacitated
Facility Location problem. They claim that the success of their approach is in great part
due to the implementation of a procedure that stabilizes the cut loop at the root node
of the B&C algorithm. The role of this procedure is compared to the one of the bundle
method in the usual Lagrangian dual minimization. In their work, the authors do not
exactly implement a real bundle method, but an in-out variant.

The in-out procedure is described in Algorithm 1.2. The main idea is that at each
cut loop iteration, there are two y points: ȳ, the optimal solution of the LP relaxation of
the current master problem, FMLP ; and a stabilizing point ỹ. In [FLS15], this stabilizing
point is initialized to (1, ..., 1), but alternatively it can be initialized to a integer feasible
solution, obtained by a heuristic method. At each iteration, ỹ moves halfway towards
ȳ. An intermediate point between ỹ and ȳ is fed to the dual slave problem, in order to
obtain a Benders’ cut that is added to the master. The procedure finishes either if this
intermediate point is the optimal solution to FMLP , or after 15 consecutive iterations
with no LP bound improvement.

As integrating the cut loop within CPLEX is not immediate, in practice, the pro-
cedure is implemented as a pre-processing to the B&C algorithm. Consequently, the
in-out procedure is only used for the root node. For the other nodes of the tree, a limit
of 20 consecutive cut loop iterations is set.

Algorithm 1.1: Benders’ decomposition algorithm.

1 Choose initial ȳ
2 z̄ ← −∞
3 k ← 0
4 Solve FD(ȳ)
5 while ω∗ ≥ z̄ do
6 k ← k + 1

7 yk ← ȳ
8 if ω∗ =∞ then
9 Add βȳ(y) ≤ 0 to F kM

10 if ω∗ is finite then
11 Add z ≥ βȳ(y) to F kM

12 Solve F kM
13 if F kM is infeasible then
14 Stop. FLP is infeasible

15 else
16 z̄ ← z∗

17 ȳ ← y∗

18 Solve FD(ȳ)

28



1.6 Benders’ decomposition

Algorithm 1.2: Fischetti et al. in-out cut loop stabilization algorithm.

1 λ← 0.2
2 δ ← 2ε
3 k ← 0

4 ǩ ← 0
5 z̄ ← −∞
6 Choose stabilizing point ỹ.

7 while ǩ ≤ 15 do
8 k ← k + 1

9 if ǩ = 5 then
10 λ← 1

11 if ǩ = 10 then
12 δ ← 0

13 Solve F kMLP

14 ȳ ← solution of F kMLP

15 z̄k ← optimal solution of F kMLP

16 if z̄k − z̄k−1 ≤ ε then

17 ǩ ← ǩ + 1

18 else

19 ǩ ← 0

20 ỹ ← 1
2(ȳ + ỹ)

21 y̆ ← λȳ + (1− λ)ỹ + δ(1, ..., 1)
22 Solve FD(y̆)
23 if ω∗ ≥ z̄ then
24 Add Benders’ cut(s) to F kMLP

25 else
26 Stop.

27 if k (mod 5) = 0 then
28 Remove cuts with positive slack from F kMLP

29



1. BACKGROUND AND RELATED WORK

30



Chapter 2

MSTP: minimization of
worst-case link utilization

In this chapter, we study the problem of finding optimal designs for switched Ethernet
networks implementing the MSTP, first proposed by Ho et al. [HDBF11, Ho12]. We
denote it as the TE for the MSTP (TE-MSTP) problem. Let G = (N,E) be an undi-
rected graph, as defined in the Section 1.3. Moreover, let Ce be the capacity on the load
of edge e ∈ E. This capacity is regarded as symmetric, in the sense that it limits the
traffic flowing in both directions, (i, j) and (j, i), together.

As for the OCST problem, we define the set of commodities K, each k ∈ K with a
given origin ok, destination dk, and traffic demand ρk. We also define T as the set of
VLANs in the SEN. For each VLAN t ∈ T , let ρtuv =

∑
k∈Kt:ok=u,dk=v ρk, where Kt ⊆ K

is the set of commodities assigned to VLAN t ∈ T . We assume that u < v, u, v ∈ N ,
and that ρuv stands for the sum of traffic to be sent, both from u to v and from v to u.

The TE-MSTP problem consists of finding a design for all VLANs t ∈ T , such that
we minimize the worst-case link utilization - the ratio between the link’s load and its
capacity. Furthermore, a feasible set of designs must satisfy the following properties:

• the topology of each VLAN is a spanning tree;

• all given traffic demands in a VLAN are routed;

• the total traffic flowing through a link does not exceed its given capacity.

The TE-MSTP problem is shown to be NP-hard in Section 2.1. Then, we propose
three different MIP formulations to model the TE-MSTP problem, in Section 2.2. In
Section 2.3, we compare the LP relaxations of these formulations. Computational ex-
periments are presented in Section 2.4, to further compare the proposed formulations.
In Section 2.5, we propose a B&C algorithm for the problem. Finally, in Section 2.6, we
draw some conclusions about the research described in this chapter.

31



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

2.1 Problem complexity

In this section, we show that the TE-MSTP problem is NP-hard. A similar problem,
the OCST problem was proved to be NP-hard [JLK78]. Note however that the OCST
problem does not consider flow capacities, and therefore cannot be used to show that
the TE-MSTP problem is also NP-hard.

We begin our proof by considering the corresponding decision problem, which is
defined as follows: Let G = (N,E) be an undirected graph, with capacity Ce assigned to
each edge e ∈ E; and T a set of VLANs, where in each t ∈ T , we have traffic demand ρtuv,
between nodes u ∈ N and v ∈ N . The TE-MSTP decision problem asks the question,
“Is it possible to design each VLAN as a spanning tree, such that all the traffic demands
are routed without exceeding the capacities on the link?”.

We use the boolean satisfiability (SAT) problem to demonstrate that this decision
problem is NP-complete. Then we conclude the proof by showing that if the decision
problem is NP-complete, the TE-MSTP problem is NP-hard .

Theorem 1. The TE-MSTP decision problem is NP-complete, for |T | ≥ 1.

Proof. Let (X,C) be an instance of the SAT problem. X = {x1, x2, ..., xν} is the set of
boolean variables, where each xi ∈ X can either be a positive literal (denoted by χi) or
a negative literal (denoted by χi). C = {c1, c2, ..., cµ} stands for the set of clauses, where
each clause c is a disjunction of literals. In this version of the problem, each clause can
have any given number of literals, from 1 to ν. A truth assignment {x∗1, x∗2, ..., x∗ν} is
defined as an assignment of the boolean value true or false to each variable x ∈ X. A
given clause is said to be satisfied under that truth assignment, if it contains the literal
χ and x∗ := true, or the literal χ and x∗ = false. The objective of the SAT problem is
to find out if there is a truth assignment such that all clauses in C are satisfied. Cook
and Levin proved that the SAT problem is NP-complete [Coo71, Lev73].

We show that the TE-MSTP decision problem is polynomially reducible to the SAT
problem, and therefore, it is NP-complete too. Consider an instance of the SAT problem
(X,C), as defined above. We now describe how to construct an undirected graph G =
(N,E), to model this instance.

For each variable x ∈ X we consider a triple of nodes denoted as x0, xT and xF .
The first node acts as a “representative” of the variable, whereas the two latter imply
the choice of assignment - respectively, true or false. Moreover, we consider a node for
each clause c ∈ C and a root node, denoted by r.

Let Cχi = {c ∈ C : χi appears in c} and Cχi = {c ∈ C : χi appears in c}. The set E
is comprised of the following group of edges, for each variable x ∈ X:

• {r, x0}, with capacity µ;

• {x0, xT }, with capacity |Cχ|;

• {x0, xF }, with capacity |Cχ|;

32



2.1 Problem complexity

• {xT , xF }, with capacity µ+ 1;

• {xT , c}, c ∈ Cχ, with capacity 1;

• {xF , c}, c ∈ Cχ, with capacity 1.

Finally, we assume that there exists the following set of demands: ρrc = 1, for every
clause c ∈ C; and ρxT xF = µ+ 1, for every variable x ∈ X.

It is easy to see that G can be constructed in polynomial time. Figure 2.1 depicts
what this graph looks like for a SAT instance with four variables, and the following five
clauses: (χ1 ∨ χ4), (χ1 ∨ χ2 ∨ χ3), (χ3 ∨ χ4), (χ2 ∨ χ4) and (χ3 ∨ χ4). The thicker edges
represent the following feasible solution: x1 = false, x2 = true, x3 = true, x4 = false.

r

x0
1 x0

2 x0
3 x0

4

xT1 xF1 xT2 xF2 xT3 xF3 xT4 xF4

c1 c2 c3 c4 c5

5
5 5

5

1
1

6

1 1

6

2 1

6

2 2

6

1
1

1

1

1

1
1

1

1 1

1

Figure 2.1: Graph construction for an example of a SAT instance.

We now show that there exists a feasible truth assignment for the SAT problem, if
and only if the answer for the TE-MSTP decision problem is positive for G and the
aforementioned set of demands.

Consider the feasible truth assignment {x∗1, x∗2, ..., x∗ν}. This solution can be rep-
resented by a sub-graph S∗ = (N,E∗) : E∗ ⊆ E, that routes the demands described
above, whilst not surpassing the capacities on the edges. The assignment of a given
variable x ∈ X to true or false, is expressed by selecting respectively the edge {x0, xT }
or {x0, xF }. Each clause c ∈ C has to be satisfied by, at least, one literal. This is
ensured by the existence of a path in E∗, between the corresponding node and the root,
such that the demand ρrc can be routed. The last edge on the path connects the clause
node, with the node that indicates which variable assignment ensures the clause’s sat-
isfiability. Even if the clause is satisfied by more than one literal, we only include one
of these edges in E∗; the others are redundant. Finally, {xT , xF } ∈ E∗, as the direct
edge is the only path through which we can send the corresponding demand, without

33



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

exceeding the capacity. If the case arises that the sub-graph constructed in this fashion
is not connected (e.g. if there are more variables than clauses), we include in S∗ the
edges needed to ensure connectivity; they will be necessarily of the form {r, x0}. Note
that no demands will flow through these edges, so the capacity is always satisfied.

It is easy to observe that the topology S∗ is a spanning tree, and that the demands
flowing through its edges do not surpass the capacities. Therefore S∗ is such that the
answer to the TE-MSTP decision problem is “yes”.

Consider now, a spanning tree S∗, such that it satisfies the TE-MSTP decision prob-
lem.

For each variable x ∈ X, only one edge of {x0, xT } or {x0, xF } belongs in S∗. This
owes to {xT , xF } naturally being in S∗, as it is the only one through which we can send
the demand between those two nodes, such that that capacity is met; and S∗ being a
spanning tree - if all three edges were to be in S∗, we would have a cycle.

Therefore, we can construct a truth assignment, by assigning to each variable x ∈ X
the value true if {x0, xT } ∈ S∗, the value false if {x0, xF } ∈ S∗, and an arbitrary value
if {x0, xT }, {x0, xF } 6∈ S∗.

Moreover, there is an unique path between the root node r and the clause node
c ∈ C. This path is necessarily of the form {r, x0, xT , c} or {r, x0, xF , c}. Let us consider
the absurd case where there exists a path p between r and c for which this is not
true. The first possibility is that there exists another clause node c′ ∈ C on the path
p, e.g. p = {r, x0, xT

′
, c′, xT , c}. Note however, that the demands both from r to c,

and from r to c′ (ρrc + ρrc′ = 2), flow through edge {xT ′, c′}, exceeding the capacity
(C{xT ′,c′} = 1). The same justification holds for the cases where there is more than
one clause on path p. The second possibility is that there exists an edge of the type
{xT , xF } on path p, e.g. {r, x0, xT , xF , c}. Nonetheless, the demands both from xT to
xF and r to c (ρxT xF + ρrc′ = µ+ 2), flow through edge {xT , xF } exceeding the capacity
(C{xT ,xF } = µ+ 1).

Thus, as all the clauses are satisfied, S∗ also describes a solution for the SAT problem.
Therefore, the TE-MSTP decision problem is polynomial reducible to the SAT problem.

Corollary 1. TE-MSTP problem is NP-hard, for |T | ≥ 1.

Proof. Consider the TE-MSTP(Λ) decision problem, defined as the TE-MSTP decision
problem where all the capacities are multiplied by Λ. Solving the TE-MSTP problem is
equivalent to solving a succession of TE-MSTP(Λ) decision problems, with Λ given by
a binary search algorithm. The algorithm iteratively updates either the upper bound
for the optimal solution, if the decision problem is feasible for Λ, or the lower bound,
otherwise; until the difference between the two is not larger than the desired precision.
Hence, as the TE-MSTP decision problem is NP-complete, the TE-MSTP problem is
NP-hard.

34



2.2 Problem formulation

2.2 Problem formulation

In Section 1.4, we presented a review of mathematical programming formulations for
the MST and OCST problems. Those formulations provide an important basis, that
can be extended and/or adapted in the interest of modelling other spanning tree design
problems, namely the one studied in this chapter. In this section, we propose three MIP
formulations for the TE-MSTP problem. In order to facilitate the exposition of these
formulations, we divide the TE-MSTP problem into three sub-problems, which we begin
by looking at individually. We consider the following sub-problems:

Sub-problem 1: Designing spanning trees;

Sub-problem 2: Routing the traffic demands;

Sub-problem 3: Ensuring edges’ capacities and calculating edge utilization.

In the next three sections, we propose MIP formulations for each of these sub-
problems. In Section 2.2.4 we present the objective function of this problem. Finally, in
Section 2.2.5 we describe complete formulations for the TE-MSTPP, that are obtained
by combining adequately the formulations proposed in Sections 2.2.1, 2.2.2 and 2.2.3.

2.2.1 Sub-problem 1: Designing spanning trees

There are different ways to model spanning trees as a MIPs. In this section, we present
two MIP formulations, that model the design of multiple spanning trees. These build
on Formulations 1.7 and 1.8, proposed for the MST problem and described in Section
1.4. Note that in this thesis, we do not consider single commodity flow models for the
TE-MSTP problem. As it was seen in Section 1.4, these tend to be weak formulations.
In addition, in our preliminary tests we verified that these models were not efficient in
solving instances of the TE-MSTP problem.

The set of variables that are used in the proposed formulations are defined as follows:

• xuvta = 1 if arc a ∈ A is used on the unique path from node u to node v, in VLAN
t ∈ T ; 0 otherwise;

• zuta = 1 if arc a = (i, j) ∈ A is used on the unique path from root node u to node
j, in VLAN t ∈ T ; 0 otherwise;

• wte = 1 if edge e ∈ E is used in VLAN t ∈ T ; 0 otherwise.

Note that the first two set of variables are defined in the directed graph G′, whereas
variables w are defined on the original graph. The latter are common to both formula-
tions; in constraints (2.1), we define them as binary.

The first model is a multicommodity flow formulation, that extends Formulation 1.7
in order to design multiple spanning trees. Moreover, we take into attention that we

35



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

wte ∈ {0, 1}, e ∈ E, t ∈ T (2.1)

Formulation 2.1: TE-MSTP SP1: defining design variables w.

also extend that formulation, so as to have multiple sources of commodities, in addition
to multiple destinations. The reason for this will become apparent further on.

Given the set of variables {xuvsa , wse}, any feasible solution for the problem must verify
the set of constraints in 2.2, in addition to (2.1).

∑
a∈δ+(u)

xuvta = 1, u, v ∈ N : u < v, t ∈ T (2.2a)

∑
a∈δ−(j)

xuvta −
∑

a∈δ+(j)

xuvta = 0, u, v, i ∈ N : u < v, i 6= {u, v}, t ∈ T (2.2b)

xuvtij + xuvtji ≤ wte, u, v ∈ N : u < v, e = {i, j} ∈ E, t ∈ T (2.2c)∑
e∈E

wte = n− 1, t ∈ T (2.2d)

xuvtij ∈ {0, 1}, (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.2e)

Formulation 2.2: TE-MSTP SP1: multicommodity flow formulation.

The flow conservation constraints (2.2a) and (2.2b) define for each VLAN, a path
between every pair of nodes, through which the traffic is routed. Constraints (2.2c)
guarantee that, in each VLAN, the paths only make use of the edges chosen in the
according VLAN. The set (2.2c) are edge-cardinality constraints, for each VLAN. Finally,
constraint set (2.2e) define the integrality of the x variables. Observe that we can define
instead as continuous and non-negative.

As it was seen for 1.7, constraints (2.2c) can be extended as seen in 2.3. These type
of valid inequalities were proposed in [BMW89], so as to improve previous formulations
for the fixed-charge network design problems. The first set of constraints, (2.3a), states
that when edge e = {i, j} ∈ E is used in a given VLAN, then all traffic originated in
a given node u ∈ N , will flow either from i to j, or from j to i. (2.3b) describes an
equivalent situation, for all traffic flowing to a given node v ∈ N .

xuvtij + xuv
′t

ji ≤ wte, u, v, v′ ∈ N : u < v, u < v′, e = {i, j} ∈ E, t ∈ T (2.3a)

xuvtij + xu
′vt
ji ≤ wte, u, u′, v ∈ N : u < v, u′ < v, e = {i, j} ∈ E, t ∈ T (2.3b)

Formulation 2.3: TE-MSTP SP1: tightening for (2.2c).

36



2.2 Problem formulation

Observe that in the specific cases described in 2.4, the previous valid inequalities can
instead be re-written as equalities.

xujtij + xuitji = wte, u ∈ N, e = {i, j} ∈ E : u < j, u < i, t ∈ T (2.4a)

xivtij + xjvtji = wte, v ∈ N, e = {i, j} ∈ E : i < v, j < v, t ∈ T (2.4b)

Formulation 2.4: TE-MSTP SP1: further tightening for special cases of (2.2c).

Constraints (2.4a) assert that if edge e = {i, j} is used in VLAN t ∈ T , this necessarily
means that either the traffic flowing between a given node u ∈ N and j travels from i
to j, or the traffic flowing between u and i travels in the opposite direction. Constraints
(2.4b) describes an equivalent situation, where the common node between the two traffic
demands is not the origin, but the destination. Empirical evidence has revealed that for
some instances, by using the valid inequalities in 2.3 along with the equalities in 2.4, we
are able to strengthen the bound of the LP relaxation of the previous model.

The second model can be obtained by adapting Formulation 1.8 for the multiple
spanning tree case. Given the set of variables {zusa , wse}, any feasible solution must
verify the set of constraints in 2.5, in addition to (2.1).

∑
a∈δ−(j)

zuta = 1, u, j ∈ N : u 6= j, t ∈ T (2.5a)

zutij + zutji = wte, u ∈ N, e = {i, j} ∈ E, t ∈ T (2.5b)

zutij ∈ {0, 1}, u ∈ N, (i, j) ∈ A : j 6= u, t ∈ T (2.5c)

Formulation 2.5: TE-MSTP SP1: rooted directed formulation.

In each VLAN, we design an arborescence rooted at each node u ∈ V , by defining
an unique path between the root node and every other node. As such, constraints (2.5a)
state that in each arborescence, every node, with the exception of the root, has an
indegree of 1. In constraint set (2.5b), we ensure that all arborescences, in each VLAN,
use the same edges. In (2.5c), we define variables z as binary. Once again, these variables
can be defined instead as continuous and non-negative.

2.2.2 Sub-problem 2: Routing the traffic demands

Once the design for each VLAN is established, it is possible to route the traffic flows
according to the demands. To properly model this routing, we can look at the traffic
demands in each VLAN in two distinct ways: either by considering the traffic demands
between each pair of nodes separately, or by aggregating traffic that shares a single origin
(or destination).

As seen in Section 2.2.1, the x variables describe a path between each pair of nodes.

37



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

Therefore, it is natural to associate the first above-mentioned strategy with the use of
these variables, as they allow for the immediate calculation of the load in each edge, of
VLAN t ∈ T :

∑
u,v∈N :u<v ρ

t
uv (xuvtij + xuvtji ). In this sense, to model this second sub-

problem, we need to define for every VLAN, the unique path between each pair of nodes,
in constraints 2.6

∑
a∈δ+(u)

xuvta = 1, u, v ∈ N : u < v, t ∈ T (2.2a)

∑
a∈δ−(j)

xuvta −
∑

a∈δ+(j)

xuvta = 0, u, v, i ∈ N : u < v, i 6= {u, v}, t ∈ T (2.2b)

xuvtij ∈ {0, 1}, (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.2e)

Formulation 2.6: TE-MSTP SP2: multi-source-multi-destination routing.

Observe that the constraints in 2.6 are the same as in 2.2. We repeat them here
for the sake of completeness, since they are also used to model the routing of the traffic
demands. Nevertheless, when the two sub-problems are combined, the redundancy is
naturally omitted.

For the second strategy, in order to aggregate traffic that has a common origin, the
following load variable set is defined:

• luta = traffic load originated from node u ∈ N , in arc a ∈ A, in VLAN t ∈ T .

These variables are related to the x variables, since luta =
∑

v∈N\{u,i} ρ
t
uv ·xuvta . They

must verify the sets of constraints in 2.7, so that the traffic flows are correctly distributed.
Constraint set (2.7a) defines the quantity of aggregated traffic flow leaving from each
origin, to be sent to all other nodes. Constraints (2.7b) state that the difference between
the traffic quantity originated from node u ∈ N , in VLAN t ∈ T , entering and exiting
a given node i ∈ N (different from u) must match, exactly, the traffic demand between
nodes u and i, on that same VLAN.

∑
a∈δ+(u)

luta =
∑

v∈N :v 6=u
ρtuv, u ∈ N, t ∈ T (2.7a)

∑
a∈δ−(i)

luta −
∑

a∈δ+(i)

luta = ρtui, u, i ∈ N : u 6= i, t ∈ T (2.7b)

lutij ≥ 0, u ∈ N, (i, j) ∈ A : j 6= u, t ∈ T (2.7c)

Formulation 2.7: TE-MSTP SP2: single-source-multi-destination routing.

38



2.2 Problem formulation

2.2.3 Sub-problem 3: Edge utilization and capacity constraints

The last sub-problem to consider deals, in fact, with two different components. Firstly,
it guarantees that the distribution of the traffic flows, that was made in the second
sub-problem, does not exceed the capacity of each edge. Secondly, it calculates the
utilization of each link. Nevertheless, as both these components can be dealt within the
same constraint set, we see it as one sub-problem.

In order to calculate the maximum edge utilization on the network, the following
variable is defined:

• Umax = maximum value of edge utilization.

As mentioned in the last section, the edge load (total sum of traffic travelling through
a link) can be calculated via either the x variables or l variables. Hence, there are two
distinct constraint sets which can be used, depending on which variables are used: (2.8)
or (2.9). In both cases, in the left-hand side of each constraint, the edge load is calculated.
That way, it is possible to determine, as well, each edge utilization. As this is done for
every existing edge on E, the variable Umax is attributed the value of the maximum
utilization. At the same time, (2.8) and (2.9) bound the traffic quantity flowing through
each edge to the given capacity, as Umax ∈ [0, 1] (2.10).

∑
t∈T

∑
u,v∈N :u<v

ρtuv(x
uvt
ij + xuvtji ) ≤ Ce · Umax, e = {i, j} ∈ E (2.8)

Formulation 2.8: TE-MSTP SP3: disaggregated case.

∑
t∈T

∑
u∈N

(lutij + lutji ) ≤ Ce · Umax, e = {i, j} ∈ E (2.9)

Formulation 2.9: TE-MSTP SP3: aggregated case.

0 ≤ Umax ≤ 1 (2.10)

Formulation 2.10: TE-MSTP SP3: bound on edge utilization.

2.2.4 Objective function

The objective of the problem is to minimize the worst-case edge utilization. As it was
seen in the last section, every formulation uses variable Umax. Hence, their common

39



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

objective function is (2.11).

min Umax (2.11)

Formulation 2.11: TE-MSTP problem: objective function.

2.2.5 Complete formulations

Having modelled each one of the three sub-problems, it is now possible to go back and
look at the original problem as a whole. We do this by combining adequately the formu-
lations for the different sub-problems, which were presented in Sections 2.2.1 to 2.2.3.
The result are three complete models: the multicommodity flow formulation (MFM),
the rooted directed formulation (RDM), and the rooted directed multicommodity flow
formulation (RDMFM).

MFM formulates the first sub-problem via (2.1,2.2a-2.2b,2.2d-2.2e), along with strength-
ened constraints (2.3a-2.3b,2.4a-2.4b). To route the traffic demands, MFM also uses
(2.2a-2.2b,2.2e). Notwithstanding, as mentioned above, we do not repeat them in the
complete formulation. Finally for the third sub-problem, MFM uses (2.8,2.10).

RDM uses constraint sets (2.1,2.5a-2.5c) to define each VLAN as a spanning tree and
(2.7a-2.7c) to route the traffic demands. To link the variables involved in the formulations
of these two sub-problems, we add constraints (2.12). These constraints imply that the
traffic demands originated at node u ∈ N and VLAN t ∈ T , can only flow through arcs
selected for an arborescence rooted at node u of the same VLAN. Finally, RDM uses
(2.9,2.10) to calculate edge utilization, whilst ensuring edge capacity.

lutij ≤
∑

v∈N :u<v,u6=i
ρtuv · zutij , (i, j) ∈ A, u ∈ N\{j}, t ∈ T (2.12)

Formulation 2.12: TE-MSTP problem: linking constraints for RDM.

Finally, it is also possible to combine the formulations proposed for Sub-problem 1
and 2 in a different way: we can opt to model the spanning trees as arborescences with
(2.1,2.5a-2.5c), but use the multicommodity flows defined in (2.2a-2.2b,2.2e) to route
the traffic demands instead. The variables used for these two sub-problems are linked
via the constraints (2.13).

xuvtij ≤ zutij , (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.13)

Formulation 2.13: TE-MSTP problem: linking constraints for RDMFM.

40



2.3 Polyhedral comparison of formulations

xuvtij ≤ zvtji , (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.14)

Formulation 2.14: TE-MSTP problem: linking constraints for RDMFM.

These constraints imply that the traffic demands directed from node u ∈ N to v ∈ N
can only flow through a given arc, if that arc is selected in the arborescence rooted at node
u. Empirical evidence has revealed that the bounds of LP relaxation of this formulation
can be improved for some instances, by also adding the linking valid inequalities (2.14).
This third complete formulation is named RDMFM.

For each model, listed in the first column, Table 2.1 describes the variable set, and
enumerates which sets of constraints are used in the model to solve each sub-problem
(SP1, SP2, SP3 ), as well as sets of constraints used to link the first two sub-problems
(Link). In addition, all models use the objective function described in Section 2.2.4.

Model Variables SP1 SP2 Link SP3

MFM {Umax, xuvta , wte}

(2.1)

- (2.8,2.10)
(2.2a-2.2b,2.2d-2.2e) (2.2a-2.2b)

(2.3a-2.3b) (2.2e)
(2.4a-2.4b)

RDM {Umax, luta , zuta , wte}
(2.1)

(2.7a-2.7c) (2.12) (2.9,2.10)
(2.5a-2.5c)

RDMFM {Umax, xuvta , zuta , w
t
e}

(2.1) (2.2a-2.2b) (2.13)
(2.8,2.10)

(2.5a-2.5c) (2.2e) (2.14)

Table 2.1: TE-MSTP: composition of each complete formulation.

2.3 Polyhedral comparison of formulations

Consider the LP relaxations of the models introduced in the last section. In this section,
we compare the strength of the LP relaxed models. An introduction of some of the
concepts used in this section, can be found in Section 1.3.

Let PRD, PMF and PRDMF be the polyhedron defined by the set of feasible solutions
of the LP relaxation of RDM, MFM and RDMFM, respectively.

Theorem 2. ProjUmax,w(PMF ) ⊆ ProjUmax,w(PRD).

Proof. Theorem 2 can be proven by showing that any solution of the projection of PMF

onto the space of Umax, z, and w, can be transformed to a solution in PRD. That is to
say, any feasible solution of the LP relaxation of MFM can be converted to a solution
that verifies all the constraints of the LP relaxation of RDM. Consider a generic solution
of PMF , S̃ = {w̃te, x̃uvta , Ũmax}. Consider, as well, Ŝ = {w̃te, ẑuta , l̂uta , Ũmax} , such that:

41



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

• ẑuta := x̃ujta , u ∈ N, a = (i, j) ∈ A : j 6= u, t ∈ T

• l̂uta :=
∑

v∈V \{u,i} ρ
t
uv · x̃uvta , u ∈ N, a = (i, j) ∈ A : j 6= u, T ∈ T

The w and Umax variables, having the same meaning in both models, can be directly
converted. The values of the z variables can be deduced from the x̃ variables in PMF .
Finally, given the routing of traffic demands between each pair of nodes in a VLAN, it
is easy to compute the load in each link. Thus, in a given VLAN, the traffic quantity
originated in node u ∈ N and flowing through arc a = (i, j) ∈ A, is equal to the sum of
the fraction of traffic demands with origin in node u and destination in every other node
v ∈ N , routed through that arc. From this sum we exclude v = u and v = i, as the x
variables are not defined for these indexes. In the following paragraphs, we demonstrate
that Ŝ satisfies all the constraints in the LP relaxation of RDM.

Naturally, constraints (2.1,2.10) are satisfied by Ŝ, as they are common to both
models.

By (2.2a-2.2b), we show that (2.5a) is satisfied, for every u, j ∈ N : u 6= j, t ∈ T :∑
a∈δ−(j)

ẑuta =
∑

a∈δ−(j)

x̃ujta
(2.2a+2.2b)

= 1

Through (2.4a), it can be seen that Ŝ satisfies constraint set (2.5b), for all u ∈ N, e =
{i, j} ∈ E, t ∈ T :

ẑutij + ẑutji = x̃ujtij + x̃uitji
(2.4a)

= w̃te

Moreover, Ŝ naturally satisfies the LP relaxation of (2.5c).

By (2.2a), we show that (2.7a) are satisfied, for every u ∈ N : u, t ∈ T :

∑
a∈δ+(u)

l̂uta =
∑

a∈δ+(u)

∑
v∈N\{u,i}

ρtuv · x̃uvta

=
∑

v∈N :v 6=u
ρtuv

∑
a∈δ+(u)

x̃uvta

(2.2a)
=

∑
v∈N :v 6=u

ρtuv · 1 =
∑

v∈N :v 6=u
ρtuv

We prove that Ŝ verifies constraint set (2.7b), for all u, v, i ∈ N : u < v, i 6= {u, v}, t ∈
T , as follows:

42



2.3 Polyhedral comparison of formulations

∑
a∈δ−(i)

l̂uta −
∑

a∈δ+(i)

l̂uta

=
∑

a∈δ−(i)

∑
v∈N\{u,j}

ρtuv · x̃uvta −
∑

a∈δ+(i)

∑
v∈N\{u,i}

ρtuv · x̃uvta

=
∑

v∈N :v 6=u
ρtuv · (

∑
a∈δ−(i)

x̃uvta −
∑

a∈δ+(i)

x̃uvta )

= ρtuv · (
∑

a∈δ−(i)

x̃uita −
∑

a∈δ+(i)

x̃uita )

+
∑

v∈N\{u,i}

ρtuv · (
∑

a∈δ−(i)

x̃uvta −
∑

a∈δ+(i)

x̃uvta )

(2.3a+2.3b)
= ρtui · 1 +

∑
v∈N\{u,i}

ρtuv · 0 = ρtui

As the demands are all non-negative, it is obvious that Ŝ satisfies (2.7c).

To prove that Ŝ verifies constraints (2.12), for all a = (i, j) ∈ A, u ∈ N\{j}, t ∈ T , it
is first necessary to show that x̃uvta ≤ x̃ujta for all cases. This can be achieved by replacing
w̃t{i,j}, in the particular case of (2.3a) where v′ = i, by the value given in (2.4a). The
proof is completed as follows:

l̂uta =
∑

v∈N\{u,i}
ρtuv · x̃uvta

(2.3a+2.4a)

≤
∑

v∈N\{u,i}
ρtuv · x̃

ujt
a =

∑
v∈N\{u,i}

ρtuv · ẑuta

Finally, as S̃ satisfies (2.8), Ŝ satisfies (2.9), for all e = {i, j} ∈ E.∑
t∈T

∑
u∈N

(l̂utij + l̂utji ) =
∑
t∈T

∑
u∈N

∑
v∈N\{u,i}

ρtuv · (x̃uvtij + x̃uvtji )
(2.9)

≤ Ce · Ũmax

Theorem 3. ProjUmax,x,w(PRDMF ) ⊆ PMF .

Proof. Following the idea used to prove Theorem 2, Theorem 3 can be proved by
showing that any feasible solution of the LP relaxation of RDMFM has a correspond-
ing solution in the LP relaxation of MFM. Consider a generic solution on PRDMF ,
Š = {w̌te, x̌uvta , Ǔmax, žuta }. We now show that the solution S̃ = {w̌te, x̌uvta , Ǔmax}, belongs
to PMF .

As RDMFM uses the same variables as MFM, in addition to variable z, the transfor-
mation of Š to S̃ can be made directly. Moreover, since many constraint sets of RDMFM
are common to MFM, namely (2.1, 2.2a-2.2b, 2.2e, 2.8-2.10), we only need to show that
S̃ satisfies constraints (2.2d,2.3a-2.3b,2.4a-2.4b).

To prove that S̃ satisfies constraint set (2.2d), for all t ∈ T , we use (2.5a) and (2.5b):

43



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

∑
e∈E

w̌te
(2.5b)

=
∑

e={i,j}∈E

(žutij + žutji )

=
1

2
· (
∑

(i,j)∈A

žutij +
∑

(j,i)∈A

žutji ) =
1

2
· (
∑
j∈N

∑
a∈δ−(j)

žuta +
∑
i∈N

∑
a∈δ−(i)

žuta )

(2.5a)
=

1

2
· (

∑
j∈N :j 6=u

1 +
∑

i∈N :i 6=u
1) = n− 1

Below, we show that S̃ satisfies constraints (2.3a) for all u, v, v′ ∈ N : u < v, u <
v′, e = {i, j} ∈ E, t ∈ T , by (2.5b,2.13,2.14). The proof that S̃ verifies (2.3b) can
achieved in the same fashion.

x̌uvtij + x̌uv
′t

ji

(2.13+2.14)

≤ žutij + žutji
(2.5b)

= w̌te

Finally, in order to prove that S̃ verifies (2.4a), we begin by demonstrating that
x̌ujta = žusa for all a = (i, j) ∈ A, u ∈ N : u < j, t ∈ T . We already known that x̌ujta ≤ žusa ,
by (2.13). Hence, it is necessary to show that x̌ujta ≥ žuta :

x̌ujta
(2.2a+2.2b)

= 1−
∑

(i′,j)∈A:i′ 6=i
x̌ujti′j

(2.13)

≥ 1−
∑

(i′,j)∈A:i′ 6=i
žuti′j

(2.5a)
= žuta

Thus, the proof that S̃ verifies (2.4a), for all u ∈ N, e = {i, j} ∈ E : u < j, u < i, t ∈
T , is the following:

x̌ujtij + x̌uitji = žutij + žutji
(2.5b)

= w̌te

The proof that S̃ verifies (2.4a) can be achieved in a similar way.

As a consequence of Theorems 2 and 3, the LP relaxation of RDMFF+ is also as
strong as the LP relaxation of the RDF.

Corollary 2. ProjUmax,w(PRDMF ) ⊆ ProjUmax,w(PRD).

A natural consequence of Theorems 2 and 3 is thatBLP (RDMFM) ≥ BLP (MFM) ≥
BLP (RDM). Our computation experiments (see the next section) will reveal that for
some instances, the LP bounds obtained can actually be different, in the sense that
BLP (RDMFM) > BLP (MFM), BLP (RDMFM) > BLP (RDM) or BLP (MFM) >
BLP (RDM).

2.4 Computational experiments

In this section, we discuss the results of computational experiments, that can help to fur-
ther evaluate the quality of the proposed formulations to solve the TE-MSTP problems.
The results are presented in Appendix A. All the tests were performed on a Intel Core

44



2.4 Computational experiments

i7 CPU 960 @ 3.20GHz (x8) with 12GB of memory with 64 bits, and running Ubuntu
14.04.2 LTS (GNU/Linux 3.2.0 − 26−generic x86 64). The tests were done using the
MIP solver ILOG CPLEX 12.6, implemented in Java programming language. We allow
CPLEX to use all the threads of the machine’s processor. In Section 2.4.1 we describe
the test sets that were used for these experiments. In Section 2.4.2 and 2.4.3 we analyze
the results for the two different test sets.

2.4.1 Test sets for the TE-MSTP problem

These experiments were conducted using two distinct test sets of randomly generated
instances, which aim at emulating two different types of network topologies. Instances
in both test sets were created such that they span different values for the number of
nodes and number of VLANs.

In the first test set, Trand, the set of available edges was randomly distributed in the
network; the number of edges is calculated according to a given network density. Each
edge was given a traffic capacity value of either 50, 75 or 100 Mbps. For each VLAN,
the traffic demands (in Mbps) between nodes were generated following an adaptation of
the formula proposed in [FT04]:

ρtuv = α(OtuD
t
v +OtvD

t
u)Rtuve

−L2(u,v)
2∆ (2.15)

For each node u ∈ N and VLAN t ∈ T , two random numbers, Otu and Dt
v are

randomly generated in the interval [0, 1]. These values reflect, respectively, the attrac-
tiveness of each node as a sender and as a receiver. Another value, Rtuv, is generated in
the same interval, for each pair of nodes. α is a parameter given as input. In these tests,
the Euclidian distance (L2) was substituted by the length of the shortest path between
each pair of nodes, with respect to the number of edges. ∆ is the largest distance in the
network. The final values were rounded to the nearest integer.

The second test set, T3tc, follows the 3-Tier Cisco architecture, which is a common
network topology in private enterprise data centers [Inf07, HDBF11]. This hierarchical
architecture consists in a core, an aggregation and an edge tier. The core, at the top
of the hierarchy, provides a gateway to the data center, from the extranet, wide area
network, or Internet edge. The switches in the second tier, serve as a bridge between
the core and the nodes in the edge tier, aggregating the in and outflows. At the lowest
level, the edge tier consists of racks of servers, interconnect by a Top of Rack (ToR)
switch. We mimic this topology by generating a tripartite graph, in which around 1%
of the nodes belong to the set representing the core tier, around 15% belong to the set
representing the aggregation tier, and the remaining nodes stand for the ToR switches,
in the edge tier. For each ToR we assign between 20 and 80 servers. As each server
is only connected to the respective ToR switch, it is not necessary to represent them
in the graph. Nevertheless, they are relevant for the generation of the traffic demands.
Each ToR has 2 to 8 uplinks, depending on the size of the network. Each core node
is connected to every node in the aggregation tier. Every link has a capacity value of

45



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

10 Gbps. For each VLAN, the traffic demands between the core nodes and the servers,
or between servers, were calculated using the formula described above. All the traffic
demands directed at (originating from) servers belonging to a given rack, are considered
to have as a destination (origin) the node representing the corresponding ToR switch.

For each class of instances, T krand ∈ Trand, T k3tc ∈ T3tc , five instances were generated
and tested. Table 2.2 describes these classes of instances, in terms of number of nodes in
the network (#nodes), network density (for Trand only), and number of VLANs in the
network (#VLANs). α was given a value of 0.1 for every instance in Trand, and of 10
for every instance in T3tc, so that there was a low chance of having infeasible instances.

Class ID #nodes #VLANs density

T 1
rand 8 3 0.4
T 2
rand 8 6 0.4
T 3
rand 8 3 0.6
T 4
rand 8 2 0.8
T 5
rand 8 3 0.8
T 6
rand 10 2 0.5
T 7
rand 10 4 0.5
T 8
rand 12 2 0.3
T 9
rand 12 4 0.3
T 10
rand 12 2 0.5

T 1
3tc 12 4
T 2

3tc 12 7
T 3

3tc 15 4
T 4

3tc 15 7
T 5

3tc 20 2
T 6

3tc 20 4

Table 2.2: TE-MSTP: description of each class of instances.

2.4.2 Analysis of the results of test set Trand

In this section, we analyze the results for test set Trand, described in Tables A.1 and A.2.
For the sake of clarity these results are also represented in the performance profiles of
Figures 2.2 to 2.6. Performance profiles are graphs that depict the percentage of instances
(spanned over the y-axis) that are solved under different values of each criteria, detailed
in the x-axis.

For instance, Figure 2.2 describes the performance profile for the GapLP of the three
models. The GapLP is a measure of the quality of the lower bounds obtained by the
LP relaxation of each model; this concept was introduced back in Section 1.3. In this
performance profile we can observe what had been suggested at the end of Section 2.3: for
some instances, BLP (RDMFM) > BLP (MFM) and/or BLP (MFM) > BLP (RDM).
Notwithstanding, the difference between the average GapLP is not hugely significant:

46



2.4 Computational experiments

the average GapLP is 34.3% for RDM, 32.5% for MFM and 31.3% for RDMFM.
Moreover, an important aspect that can be observed is the high fluctuation of these

GapLP values. For example, with RDMFM, the GapLP vary between 0% and 74.5%.
Even among each class for instances, which aggregate instances with the same basic
characteristics, the GapLP can be quite distinct, with an average standard deviation of
over 11%. Another curious remark that can be made with respect to the test sets at
hand is that, even though this gap tends to increase for bigger and/or denser networks,
as expected, it tends to decrease when the number of VLANs increases.

Next, we analyze the performance of the different models, when used by CPLEX to
solve the MIPs of Trand instances. For these experiments, we set a time limit of one hour.
The results are depicted in the performance profile in Figure 2.3. The graph implies that
even though using RDM with CPLEX is faster at solving “easy” instances (in terms of
solving time), for the more “demanding” ones, using CPLEX with RDMFM proves to
be faster, being able to solve more instances (74%) in the given time limit. Moreover,
for the instances that were unsolved by both models, the average gap between the best
upper bound and lower bounds found by CPLEX at the end of the time limit (Gapend)
is slightly smaller for RDMFM (38%), than for RDM (41%). Using CPLEX with MFM
is significantly slower than with the other two formulations. These results reflect the
difficulty of solving the TE-MSTP problem, even for small instances.

The relative efficiency of the three models in solving the MIPs, is explained by their
performance in other criteria, illustrated in Figure 2.2 and Figures 2.4 to 2.6. Namely,
despite having larger LPs that take longer to solve (see Figure 2.4), the fact that the lower
bounds of RDMFM are better than the ones of RDM (as seen in Figure 2.2) explains
its superior efficiency. Moreover, the lower bounds obtained by the LP relaxation are
even slightly improved by CPLEX’s automatically-generated cuts: the average gap at
the end of the root node’s processing (Gap0) is 30.7% for RDMFM. The smaller gaps of
RDMFM also impact the size of the B&B tree, which is significantly smaller for RDMFM
than for other models (see Figure 2.5). The weak performance of MFM in solving the
MIPs is explained by: very slow-to-solve LPs (see 2.4); large B&B trees (see 2.5); and
the superior work of CPLEX’s automatically-generated cuts for RDM than for MFM -
the average Gap0 is respectively 32.7% and 32.5%.

2.4.3 Analysis of the results of test set T3tc

In this section, we analyze the results for test set T3tc, described in Table A.3. Fur-
thermore, we represent these results as performance profile graphs, in Figures 2.7 to
2.10.

In Figure 2.7, we can observe a first and important fact: for instances of test set T3tc,
all three models produce the same LP bound. Moreover, as it can be seen in Table A.3,
CPLEX’s automatic cuts do not yield any improvements for these bounds, for any of
the models. Note however, that even though there are some instances with large GapLP ,
this result is mainly explained by the large portion of instances of T3tc (80%) that have
null GapLP .

The results for the GapLP help us interpret the results in Figure 2.8, regarding

47



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

the MIP solving times. While for test set Trand, RDMFM was patently the “fastest”
model for the more “demanding” instances, due to its better lower bounds; for T3tc the
results are less clear. When implemented in CPLEX, RDM seems to be more efficient
formulation for most instances. However, RDMFM is able to solve more instance in
the time limit of one hour, which implies for the more “demanding” instances, it might
perform better. The average Gapend for instances unsolved both by RDM and RDMFM
is very similar, 16% and 15% respectively.

The results in Figures 2.9 and 2.10 might shine some light on the results discussed
above. The LPs of RDM are significantly faster to solve than the LPs from RDMFM;
however, the B&B trees yielded by RDMFM tend to be slimmer than the trees yielded
by RDM. The large B&B trees and the long LP solving times also help explain the
overall bad performance of CPLEX implementing MFM.

One final observation, is that the instances of T3tc are seemingly easier to solve than
the ones of Trand, with the average GapLP and solving times being clearly lower. This
is likely explained by the less dense structure of networks that follow the 3-Tier Cisco
architecture.

48



2.4 Computational experiments

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

10

20

30

40

50

60

70

80

90

100

GapLP (%)

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.2: TE-MSTP, Trand: performance profile of the GapLP (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.3: TE-MSTP, Trand: performance profile of the MIP solving time (s).

1 5

7
.5 1
0

1
5

2
0

3
0

4
0

5
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.4: TE-MSTP, Trand: performance profile of the LP solving time (s).

49



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

10

20

30

40

50

60

70

80

90

100

nodes

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.5: TE-MSTP, Trand: performance profile of the B&B tree nodes.

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

10

20

30

40

50

60

70

80

90

100

Gap0 (%)

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.6: TE-MSTP, Trand: performance profile of Gap0 (%).

5

1
0

1
5

2
0

2
5

3
0

3
5

10

20

30

40

50

60

70

80

90

100

GapLP (%)

%
o
f

in
st

a
n
c
e
s

RD/MF/RDMFM

Figure 2.7: TE-MSTP, T3tc: performance profile of GapLP (%).

50



2.4 Computational experiments

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.8: TE-MSTP, T3tc: performance profile of the MIP solving time (s).

1 5

7
.5 1
0

1
5

2
0

3
0

4
0

5
0

1
0
0

1
5
0

2
0
0

2
2
5

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.9: TE-MSTP, T3tc: performance profile of the LP solving time (s).

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

10

20

30

40

50

60

70

80

90

100

nodes

%
o
f

in
st

a
n
c
e
s

RDM

MFM

RDMFM

Figure 2.10: TE-MSTP, T3tc: performance profile of the B&B tree nodes.

51



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

2.5 B&C algorithm

In this section, we propose a B&C algorithm for the TE-MSTP problem. In this algo-
rithm, the cuts used at the different nodes of the B&B tree are Benders’ cuts. For that
purpose, we solve at each node a Benders’ decomposition algorithm, as described in Sec-
tion 1.6. In Section 2.5.1 we present a Benders’ decomposition of RDMFM. In Section
2.5.2 we describe the details of the implementation of the B&C algorithm, and analyze
the results of computational experiments, done in order to evaluate the efficiency of this
algorithm.

2.5.1 Benders’ decomposition

In this section, we discuss a decomposition of RDMFM based on Benders’ method. First,
for the sake of clarity, we repeat the original model in Formulation 2.15. As the results
of computational experiments, presented in the last section, imply, this model benefits
from better lower bounds when compared with the other models. However, the large
LPs can be slow to solve, especially when compared with the LPs of RDM. Naturally,
this too has an impact on the MIP solving time. It is easy to see that what makes
the LPs large, are the x variables in RDMFM, that make it such that this model has
O(n4 · |T |) variables and constraints, whereas RDM only has O(n3 · |T |).

As such, we fix variables z, w and Umax in RDMFM, and we consider the slave
problem RDMFMLP (z̄utij , Ū

max), described in Formulation 2.16. This sub-problem is,
in essence, a feasibility problem, that aims at verifying if it is possible to route each
VLAN’s demands, based on the tree design, given by z̄, and the edge capacity, implied
by Ūmax. We consider this sub-problem as a maximization problem, so as to have
RDMFMLP (z̄utij , Ū

max) in the standard form, while keeping constraints (2.16d-2.16f) in
their original format. Note that we do not explicitly enforce an upper bound on variables
x, as this is implied by constraints (2.16e-2.16f).

Let α, γ, ζ and η be dual variables associated with the constraints of RDMFMLP (z̄utij ,

Ūmax). α links to constraints (2.16b-2.16c), η to constraints (2.16d), γ to constraints
(2.16e), and ζ to (2.16f). Then, RDMFMD(z̄utij , Ū

max) is the dual of RDMFMLP (z̄utij ,

Ūmax); see Formulation 2.17. By solving this dual problem, we are able to infer Benders’
cuts βŪmax,z̄(U

max, z), that we iteratively add to the master problem RDMFMM (see
Formulation 2.18), according to the procedure described in Algorithm 1.1, back in Section
1.6. βŪmax,z̄(U

max, z) will be of the form η̄ ·Umax+
∑
t∈T

∑
u,v∈N :u<v

∑
(i,j)∈A:j 6=u,i 6=v

(
γ̄uvtij zutij +

ζ̄uvtij zvtji
)

+ ᾱ, where η̄ =
∑
e∈E

Ceη̄e, and ᾱ =
∑
t∈T

∑
u,v∈N :u<v

ᾱuvtu .

Note that if RDMFMLP is infeasible, RDMFMD is an unbounded problem. As it
was mentioned in Section 1.6, finding extreme rays can be a complicated task from a
computational point of view. As such, we fix the objective of RDMFMD to a negative
normalization point. We remark that, due to (2.5a) in RDMFMM , the network given to
RDMFMLP will always be connected. As such, the only reason why the routing problem
in RDMFMLP might be infeasible is due to the lack of edge capacity implied by Ūmax.

52



2.5 B&C algorithm

min
Umax,w,x,z

Umax (2.11)

s.t∑
a∈δ−(j)

zuta = 1, u, j ∈ N : u 6= j, t ∈ T (2.5a)

zutij + zusji = wte, u ∈ N, e = {i, j} ∈ E, t ∈ T (2.5b)∑
a∈δ+(u)

xuvta = 1, u, v ∈ N : u < v, t ∈ T (2.2a)

∑
a∈δ−(j)

xuvta −
∑

a∈δ+(j)

xuvta = 0, u, v, i ∈ N : u < v, i 6= {u, v}, t ∈ T (2.2b)

∑
t∈T

∑
u,v∈N :u<v

ρtuv(x
uvt
ij + xuvtji ) ≤ Ce · Umax, e = {i, j} ∈ E (2.8)

xuvtij ≤ zutij , (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.13)

xuvtij ≤ zvtji , (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.14)

xuvtij ∈ {0, 1}, (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= it ∈ T (2.2e)

zutij ∈ {0, 1}, u ∈ N, (i, j) ∈ A : j 6= u, t ∈ T (2.5c)

wte ∈ {0, 1}, e ∈ E, t ∈ T (2.1)

0 ≤ Umax ≤ 1 (2.10)

Formulation 2.15: TE-MSTP problem: RDMFM.

Accordingly, if we were to also remove variables Umax from the master, and leave them
to the slave problem, RDMFMLP would always be feasible, and the corresponding dual
bounded. As such, we add constraints η = 1 to the dual sub-problem; this is the term of
the dual objective function associated with variables Umax. This makes it such that the
Benders’ cut will be Umax +

∑
t∈T

∑
u,v∈N :u<v

∑
(i,j)∈A:j 6=u,i 6=v

(
γ̄uvtij zutij + ζ̄uvtij zvtji

)
≥ −ᾱ. As ᾱ

is typically negative, this normalization tends to push the value of Umax up, along the
iterations of the Benders’ algorithm.

We conclude this section with a remark about alternative reformulations of RDMFM.
Naturally, it is possible to decompose RDMFM in a different way; namely, by fixing
instead the x and Umax variables in the master problem, leaving the z and w variables
to the slave problem. This corresponds to routing the demands in the master, and
ensuring the tree topology of each VLAN in the slave problem. This has the advantage
that it would allow us to decompose the slave problem by VLAN. Nevertheless, the
order of the cardinality of integer variables would remain unchanged, with respect to
RDMFM. Preliminary tests show that this solution does not improve on the proposed
decomposition. Alternatively, a Dantzig-Wolfe reformulation [DW60] of RDMFM could
be used, and implemented in a branch-and-price algorithm [BJN+98]. Regardless, it is

53



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

easy to understand that the pricing problem would be similar to the OCST problem,
which is known to be very hard to solve (see Section 1.4.2). Indeed, in [Cre12], the
authors investigate the efficiency of using such an algorithm for the problem proposed in
[SdSA+09] (see Section 1.5 for a review of this problem), only to conclude that it does
not perform well.

max
x

0 (2.16a)

s.t∑
a∈δ+(u)

xuvta = 1, u, v ∈ N : u < v, t ∈ T (2.16b)

∑
a∈δ−(j)

xuvta −
∑

a∈δ+(j)

xuvta = 0, u, v, i ∈ N : u < v, i 6= {u, v}, t ∈ T (2.16c)

∑
t∈T

∑
u,v∈N :u<v

ρtuv(x
uvt
ij + xuvtji ) ≤ Ce · Ūmax, e = {i, j} ∈ E (2.16d)

xuvtij ≤ z̄utij , (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.16e)

xuvtij ≤ z̄vtji , (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.16f)

xuvtij ≥ 0, (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= it ∈ T (2.16g)

Formulation 2.16: TE-MSTP problem: RDMFMLP (z̄utij , Ū
max).

min
α,β,γ,ζ

∑
t∈T

∑
u,v∈N :u<v

[
αuvtu +

∑
(i,j)∈A:j 6=u,i 6=v

(
z̄utij γ

uvt
ij + z̄vtji ζ

uvt
ij

)]
+
∑
e∈E

Ce · Ūmaxηe (2.17a)

s.t

αuvti − αuvtj + γuvtij + ζuvtij + ρtuvη{i,j} ≥ 0,(i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.17b)

ηe ≥ 0, e ∈ E (2.17c)

γuvtij ≥ 0, (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.17d)

ζuvtij ≥ 0, (i, j) ∈ A, u, v ∈ N : u < v, j 6= u, i 6= v, t ∈ T (2.17e)

Formulation 2.17: TE-MSTP problem: RDMFMD(z̄utij , Ū
max).

2.5.2 Computational experiments for the B&C algorithm

In this section, we discuss the implementation Benders’ decomposition proposed in the
previous section in a B&C framework. This algorithm was implemented in Java, and
CPLEX was used to solve both the master and the slave problems. CPLEX distinguishes
two types of cuts: user cuts and lazy constraints. The first are used to cut off

54



2.5 B&C algorithm

min
Umax,w,z

Umax (2.11)

s.t∑
a∈δ−(j)

zuta = 1, u, j ∈ N : u 6= j, t ∈ T (2.5a)

zutij + zusji = wte, u ∈ N, e = {i, j} ∈ E, t ∈ T (2.5b)

β ¯Umax
k′
,z̄k′

(Umax, z) ≥ 0, k′ = 1...k (2.18a)

zutij ∈ {0, 1}, u ∈ N, (i, j) ∈ A : j 6= u, t ∈ T (2.5c)

wte ∈ {0, 1}, e ∈ E, t ∈ T (2.1)

0 ≤ Umax ≤ 1 (2.10)

Formulation 2.18: TE-MSTP problem: RDMFMk
M .

fractional solutions, by redefining the polyhedron implied by the LP relaxation of the
model. These cuts do not, however, exclude feasible integer solutions. By contrast,
lazy constraints are employed when the input integer model is incomplete and it
allows integer infeasible solutions to be considered. As such, lazy constraints are
set, such that they cut off these solutions. The search for unsatisfied user cuts is
done every time CPLEX finishes processing a B&B tree node, whereas unsatisfied lazy

constraints are added to the model whenever an integer feasible solution is found. We
implement our Benders’ decomposition method both in the user cuts callback and
in the lazy constraints callback. Notwithstanding, we limit the number of user

cuts added in each node of the tree to 20; with the exception of the root node, where
we embed in our B&C algorithm the in-out cut loop proposed in [FLS15], and presented
in Section 1.6.

Recall that the in-out cut loop procedure requires one to define a priori, a stabilizing
point. For this purpose, we implemented a greedy heuristic algorithm that quickly
generates a solution to the TE-MSTP problem, which is “fed” to the in-out cut loop
procedure. This greedy heuristic is described in Algorithm 4.1. We consider a VLAN at
a time, following an order based on the sum of all demands assigned to each VLAN. At
each iteration of the algorithm, we create a cost matrixWe, that penalizes heavily loaded
edges. We then run Prim’s algorithm with respect to this cost matrix, to calculate the
minimum cost spanning tree. Given a tree, we can assign the appropriate values for the
respective w and z. We also update the total load on each edge, accordingly. We repeat
this procedure for every VLAN. In the end, we calculate the value for the worst-case
edge utilization of the solution generated by the heuristic. Note that it is possible that
this solution is not feasible for the TE-MSTP problem as we defined it, in the sense that
Umax can be greater than 1. Nevertheless, this is not a problem, as we can simply relax
the upper bound on Umax and have an equivalent problem, for which the Algorithm 4.1
always provides a feasible solution.

55



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

Algorithm 2.1: Greedy heuristic for the TE-MSTP problem.

1 T ← {1, ..., |T |}
2 Fe ← 0, e ∈ E
3 while |T | > 0 do
4 t← arg maxt∈T

∑
k∈Kt ρk

5 T ← T \{t}
6 We ← Fe

1.1Ce−Fe , e ∈ E
7 We ←∞, e 6∈ E
8 Infer minimum cost spanning tree, with respect to W
9 Assign values for wt and zt accordingly

10 Update loads F
11 Assign value for Umax accordingly

We ran the algorithm for all instances of test sets Trand and T3tc, described in Section
2.4.1. The results are described in Tables A.4 and A.5, in Appendix A. It is clear that
our B&C algorithm performs very poorly; its solving times are far greater than the ones
of CPLEX solving the MIPs per se. We believe that there are two main reasons for the
inefficiency of this algorithm. First, the Benders’ cuts seem to be very weak, and for most
instances a lot of these cuts are necessary to improve the lower bound. This is made clear
by the values of the Gapio; the Gapio measures the relative gap between the worst-case
utilization of the best known solution (value provided by the experiments described in
the previous section), and the lower bound at the end of the root node, after the in-out
cut loop is terminated. For the majority of the instances, we are unable to increase this
lower bound at all, and its value is 0. Secondly, RDMFMD is not decomposable, and
therefore, solving it is not sufficiently fast as to make the process of generating many
cuts efficient. In our remarks in Chapter 6, we expand on this idea, and discuss on why
this is a problem common to other capacitated network flow problems.

2.6 Summary and remarks

In this chapter, we studied the TE problem for the MSTP, that was first proposed in
[HDBF11, Ho12] and that we denote as the TE-MSTP problem. We showed that this
problem is NP-hard (see Section 2.1).

We proposed three different MIP formulations: RDM, MFM and RDMFM. We
compared the strength of the LP relaxation of these models, and we showed that
BLP (RDMFM) ≥ BLP (MFM) ≥ BLP (RDM).

Moreover, we presented a comprehensive array of computational experiments that
were done, in order to further compare the proposed formulations. These experiments
seem to point out RDMFM as the most promising formulation, when used with CPLEX:
the B&B trees are typically more compact; the gaps at the root node are, in most cases,
smaller; and the more “difficult” instances are solved faster.

The results of the computational experiments also emphasize the difficulty of solving

56



2.6 Summary and remarks

the TE-MSTP optimally, even for relatively small instances. This is evidenced not only
by the lengthy computation times, but also by the often weak LP bounds. As such,
we implemented a B&C algorithm, based on a Benders’ decomposition of RDMFM.
Unfortunately, this algorithm did not prove to be efficient, being much slower than the
standard B&B algorithm of CPLEX, when applied to the MIP of RDMFM. This seems
to be a result of weak Benders’ cuts, and the fact that the dual slave problem is not
decomposable.

We hypothesize that weak lower bounds obtained by the LP relaxation of our pro-
posed models might be related to the “min-max” structure of the objective function,
as the same has been found to be true for other problems with this type of objective.
As such, in the next chapters we consider other MSTP network design problems, with
different objective functions.

57



2. MSTP: MINIMIZATION OF WORST-CASE LINK UTILIZATION

58



Chapter 3

MSTP: minimization of total load

The results analyzed in the previous section emphasize the difficulty of solving the TE-
MSTP problem optimally, even for relatively small instances. This is evidenced not only
by the lengthy computation times, but also by the often weak LP relaxations. This might
be partially explained by the structure of the problem’s objective: it is not uncommon
for a problem with a “min-max” objective function to be associated with large GapLP
values, when compared with the “min-average” or “min-sum” counterpart. An example
of this phenomenon can be observed in [GPdS11].

In this chapter, we consider a similar problem to the TE-MSTP problem, where
instead of minimizing the worst-case edge utilization, we minimize a weighted sum of all
edge loads, or total load; all other requirements are kept. This problem can be seen as an
extension of the OCST problem, reviewed in Section 1.4.1, with multiple spanning trees,
and capacities on the edge loads. In this sense, we name this problem the capacitated
optimum communication multiple spanning tree (COCMST) problem. Recall that the
OCST problem is NP-hard; thus, the COCMST problem is also NP-hard.

Let us assume that we use the same edge capacity and traffic demand values for
the COCMST problem, as we do for the TE-MSTP problem. Now, let us also define
the COCMST(Λ) problem, as the COCMST problem where all these capacities are
multiplied by Λ. We can observe that the COCMST(Λ) problem relates to the TE-
MSTP problem in an interesting way: any feasible solution to this first problem, is also
feasible for the second one, with a guaranteed worst-case objective value of Λ.

In Section 3.1, we show how we adapt the formulations proposed in the previous
chapter to solve the COCMST problem. We test the performance of this formulations
in Section 3.2. In Section 3.3, we propose a method to solve the TE-MSTP problem,
based on the sequential solving of COCMST sub-problems. In Section 3.4 we analyze
the efficiency of this method, by delving into the results of computational experiments.
Finally, in Section 3.5, we summarize the work described in this chapter, and present
some conclusions.

59



3. MSTP: MINIMIZATION OF TOTAL LOAD

3.1 Problem formulation

It is easy to adapt the formulations proposed in Section 2.2, such that they solve the
COCMST problem. We define as RDM-t, to the adaptation of RDM as defined in
Table 2.1, but with objective function (3.1a) instead of (2.11), and constraints (3.1b) in
substitution of constraints (2.9).

min
∑

t∈T,u∈N,{i,j}∈E

c{i,j}(l
us
ij + lusji ) (3.1a)

∑
t∈T

∑
u∈N

(lutij + lutji ) ≤ Λ · Ce, e = {i, j} ∈ E (3.1b)

Formulation 3.1: COCMST problem: RDM-t.

Similarly, we define MFM-t and RDMFM-t to the adaptation of MFM and RDMFM,
respectively, such that the objective function is instead (3.2a), and constraints (2.8) are
replaced by constraints (3.2b). Note that variable Umax becomes obsolete in RDM-t,
MFM-t, and RDMFM-t.

min
∑

t∈T,u∈N,{i,j}∈E

c{i,j}ρ
t
uv(x

uvt
ij + xuvtji ) (3.2a)

∑
t∈T

∑
u,v∈N :u<v

ρtuv(x
uvt
ij + xuvtji ) ≤ Λ · Ce, e = {i, j} ∈ E (3.2b)

Formulation 3.2: COCMST problem: capacity constraints for the aggregated-flows case.

3.2 Computational experiments for the COCMST prob-
lem

In order to evaluate the performance of formulations RDM-t, MFM-t and RDMFM-t
in solving the COCMST problem, we present in this section the results of computation
experiments, that were done using test sets Trand and T3tc, described in Section 2.4. We
consider traffic costs ce = 1 for every edge e ∈ E. Moreover, we define Λ = Umax∗+ε, for
ε = {−0.05, 0.01, 0.05, 0.2}. Umax∗ is the value of the best integer solution found for each
instance, with respect to the TE-MSTP problem. For ease of notation, we denote as the
COCMST(0.01ε) problem, when ε = 0.01; we use an analogous notation for other values
of ε. Our objective is to test the performance of our models in solving the COCMST
problem when capacities are tighter (ε = 0.05 and ε = 0.01) and looser (ε = 0.2), and
when the problem is infeasible (ε = −0.05). In the following sections we analyze the

60



3.2 Computational experiments for the COCMST problem

results of the computational experiments done with each of these values. Specifications
about the machine and framework used to run the experiments are described in Section
2.4.

3.2.1 Analysis of the results for ε = 0.2

In this section, we analyze the results for the computational experiments done for the
COCMST(0.2ε) problem. The complete results are detailed in Tables B.1 to B.3 of
Appendix B.

In Figure 3.1, we depict the performance profile for the solving time of the MIPs of
each model. This graph reveals that by using RDM-t, MFM-t and RDMFM-t to solve
the COCMST(0.2ε) problem, we obtain similar trends, than by using the corresponding
models to solve the TE-MSTP problem. In particular, choosing MFM-t clearly leads
to larger solving time, than by choosing RDM-t and RDMFM-t. The results for the
two latter models are mixed: Using CPLEX with RDM-t tends to be faster for “easier”
instances, whereas using it with RDMFM-t allows us to solve more instances in the one
hour time limit.

Looking at the GapLP , illustrated in the performance profile in Figure 3.2 one can
be surprised by the reasonably good performance of RDM-t, described in the previous
paragraph: the lower bounds obtained by solving the LP relaxation of RDM-t are much
lower than the ones obtained by solving the LP relaxation of RDMFM-t. Namely, the
average GapLP for RDM-t is 25.6% for instances of Trand and 10.8% for instances of
T3tc, whereas the average GapLP for RDMFM-t is just 3.6% for instances of Trand and
0.6% for instances of T3tc. The efficiency of CPLEX using RDM-t in solving the MIPs
of both test sets can, however, be party explained by the very fast solving of the LPs,
as seen in Figure 3.3. While solving all the LPs of RDM-t is done under 1 second,
solving the LPs of RDMFM-t can take up to 7 seconds for instances of Trand and 125
seconds for instances of T3tc. Moreover, the aforementioned weak LP bounds of RDM-t
are significantly improved by CPLEX’s automatically generated cuts, which narrow the
distance between the average Gap0 for RDM-t (5.6% for Trand and 1.1% for T3tc) and
for RDMFM-t (2.9% for Trand and 0.4% for T3tc).

Finally, one interesting remark is that, conversely to what happened with the TE-
MSTP problem, for the COCMST(0.2ε) problem the instances of Trand are easier to
solve than the instances of T3tc.

61



3. MSTP: MINIMIZATION OF TOTAL LOAD

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

MFM-t

RDMFM-t

Trand

T3tc

Figure 3.1: COCMST(0.2ε): performance profile of the MIP solving time (s).

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

10

20

30

40

50

60

70

80

90

100

GapLP (%)

%
o
f

in
st

a
n
c
e
s

RDM-t

MFM-t

RDMFM-t

Trand

T3tc

Figure 3.2: COCMST(0.2ε): performance profile of GapLP (%).

1 5

7
.5 1
0

1
5

2
0

3
0

4
0

5
0

1
0
0

1
2
5

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

MFM-t

RDMFM-t

Trand

T3tc

Figure 3.3: COCMST(0.2ε): performance profile of the LP solving time (s).

62



3.2 Computational experiments for the COCMST problem

3.2.2 Analysis of the results for ε = 0.05

In this section, we consider tighter capacities, by setting ε = 0.05. The results of the
computational experiments for the COCMST(0.05ε) problem can be seen in Tables B.4
to B.6, in Appendix B. They show that for for this value of ε, the relative performance
of our proposed models, in the considered criteria, is comparable to the one observed
for ε = 0.2. Ultimately, this results in a similar relative efficiency in solving MIPs of the
instances in Trand and T3tc, as it can be observed in Figure 3.4: CPLEX with MFM-t is
very slow to solve the MIPs, CPLEX with RDM-t performs well for “easy” instances, but
in the end “loses” to CPLEX with RDMFM-t, when it comes to solving more “difficult”
instances.

However, the relative efficiency of RDMFM-t in solving instances of the COCMST
(0.05ε) problem, when compared to RDM-t, is even more significant that when ε = 0.2:
While for ε = 0.2, CPLEX with RDMFM-t solves only 2% (6%) more instances of Trand
(T3tc) than CPLEX with RDM-t; for ε = 0.05 CPLEX with RDMFM-t solves more 16%
(10%) instances of Trand (T3tc). It is interesting to see that this happens despite CPLEX
with RDM-t still being significantly faster than CPLEX with RDMFM-t in solving LPs,
and despite the distance between the lower bounds obtained at the end of root node
for both models being narrower for the COCMST(0.05ε) problem, than it was for the
COCMST(0.01ε) problem.

3.2.3 Analysis of the results for ε = 0.01

In this section, we analyse the results of computational experiments done for the COCMST
(0.01ε) problem, presented in Tables B.7 to B.9 of Appendix B. In this case, the capac-
ities are very tight; in all likelihood, in order to be able to route all the demands, it
is necessary to use the optimal designs with respect to the corresponding TE-MSTP
problem.

Figure 3.5 depicts the performance profile of the MIP solving time for every model.
Again, RDMFM-t is able to solve more instances of both test sets in the time limit. For
instances of Trand, the difference between the performance of RDMFM-t and RDM-t
continues to broaden, with the first model solving more 18% instances than the latter.
Notwithstanding, for T3tc we observe the converse, in the sense that the efficiency of
RDM-t is relatively similar to the one of RDMFM-t.

Another important remark is that the COCMST(0.01ε) problem seems to be easier
to solve than the TE-MSTP problem for instances of Trand, but harder for instances
of T3tc. For the COCMST(0.01ε) problem, RDMFM-t is able to solve 88% of the in-
stances of Trand, whereas for the TE-MSTP problem, the corresponding model is only
able to solve 74%. Regardless, for instances of T3tc RDMFM-t only solves 80%, falling
short of the mark of 87% TE-MSTP instances solved by RDMFM. The GapLP in the
COCMST(0.01ε) problem, whose performance profile can be seen in Figure 3.6, are how-
ever, smaller for both test sets. While for the TE-MSTP problem, RDMFM has GapLP
up to 71% (35%) for instances of Trand (T3tc), the largest gap observed for RDMFM-t
and the COCMST(0.01ε) problem is of 34% (8%).

63



3. MSTP: MINIMIZATION OF TOTAL LOAD

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

MFM-t

RDMFM-t

Trand

T3tc

Figure 3.4: COCMST(0.05ε): performance profile of the MIP solving time (s).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

MFM-t

RDMFM-t

Trand

T3tc

Figure 3.5: COCMST(0.01ε): performance profile of the MIP solving time (s).

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

10

20

30

40

50

60

70

80

90

100

GapLP (%)

%
o
f

in
st

a
n
c
e
s

RDM-t

MFM-t

RDMFM-t

Trand

T3tc

Figure 3.6: COCMST(0.01ε): performance profile of GapLP (%).

64



3.2 Computational experiments for the COCMST problem

3.2.4 Using the COCMST problem to find feasible solutions for the
TE-MSTP problem

As it was mentioned at the beginning of this chapter, any feasible solution for the
COCMST(Λ) problem is also feasible for the TE-MSTP problem. Moreover, we know
that this solution will have a worst-case edge utilization not larger than Λ. In this
section, we continue to interpret the results of computational experiments done for the
COCMST(Λ) problem (Λ = Umax∗ + {0.01, 0.05, 0.2}), and presented in Appendix B.
Nevertheless, we now analyze how the solutions obtained for the COCMST problem
evaluate in the objective of TE-MSTP problem. In this analysis, we omit the results
of MFM-t, as they are clearly worse than the ones obtained for RDM-t and RDMFM-
t. Let Ŝ be the optimal solution for the COCMST problem, and ˆUmax its de facto
worst-case utilization; ˆUmax can be calculated, for example, by looking at the minimum

slack of constraints (3.1b) and (3.2b). We define Gap∗U =
ˆUmax−Umax∗

ˆUmax
, and we represent

the performance profiles of this measure in Figures 3.7 and 3.8. To keep the comparison
consistent, we only consider instances that were solved using both RDM-t and RDMFM-
t. The results for both models are very similar (for Trand), if not the same (T3tc), which
is unsurprising, as it is unlikely that there are many alternative optimal solutions for
the COCMST problems. Note that some Gap∗U are negative. This happens in some
instances whose corresponding TE-MSTP problem had not been solved to optimality;
via the COCMST problem, we were able to find better solutions than the ones obtained
by solving the TE-MSTP problem. In same cases, by solving the COCMST problem we
found solutions that were almost 15% better than the best had obtained, when solving
the TE-MSTP problem.

Note, however, that we do not need to solve the COCMST(Λ) problem to optimality
to get a solution which is feasible for the TE-MSTP problem and that has a guaranteed
worst-case edge utilization of Λ. In our experiments, we also tested setting CPLEX’s
settings such that it stops the solving procedure after finding a first feasible solution.
Figures 3.9 and 3.10 depict the performance profiles for the time it takes CPLEX to find
a first feasible solution of instances of Trand and T3tc, respectively. The results are rather
mixed, but they seem to indicate that RDMFM is faster in finding feasible solutions in
more “difficult” instances.

Next, we compare the “quality” of these solutions, with respect to its worst-case edge
utilization. We define Gap1

U , analogously to Gap∗U (see above), but considering the first
feasible solution obtained by CPLEX. The results are depicted in Figures 3.11 and 3.12.
Once again, the performance of both models is very close.

It is noteworthy, however, that the average worst-case edge utilization of these first-
found feasible solutions is not much higher than the one observed for the optimal so-
lutions. Moreover, as seen in Table 3.1, as the capacities tighten, the average Gap1

U is
actually smaller than the average Gap∗U .

Lastly, let us recall the TE-MSTP(Λ) decision problem, introduced in Section 2.1.
Note that solving this decision problem for a given Λ, is very similar to finding a feasible
solution for the COCMST(Λ) problem. In fact, the only difference is that in the latter
we have an objective function. As such, we also define model RDM-0 where constraints

65



3. MSTP: MINIMIZATION OF TOTAL LOAD

Trand T3tc

ε = 0.2 ε = 0.05 ε = 0.01 ε = 0.2 ε = 0.05 ε = 0.01

RDM RDMFM RDM RDMFM RDM RDMFM RDM RDMFM RDM RDMFM RDM RDMFM

Gap∗U 11.2 11.4 1.5 1.4 -0.4 -0.4 12.1 12.0 2.7 2.7 0.3 0.3

Gap1U 13.6 12.8 1.4 1.7 -0.5 -0.6 12.0 12.7 2.8 2.5 0.2 0.2

GapDU 15.7 16.1 2.0 2.1 0.0 0.0 14.0 14.6 3.1 2.6 0.1 0.0

Table 3.1: Comparison between average Gap∗U , Gap1
U and GapDU .

(2.9) are replaced by (3.1b) and model RDMFM-0 where constraints (2.8) are replaced
by (3.2b). Furthermore, for implementation purposes, we use a “faux” objective function
in RDM-0 and RDMFM-0, where we minimize some constant (e.g. min 0).

In Figures 3.13 and 3.14 we show the performance profiles for the solving time of
instances of Trand and T3tc, respectively. While there is no clear faster model for instances
of Trand, for instances of T3tc, RDM-0 seems to be more efficient in finding feasible
solutions. The tests also seem to show that solving the COCMST(Λ) problem and the
TE-MSTP(Λ) decision problem takes more or less the same time, with a slight advantage
for the latter. We also analyze the quality of the solutions obtained, with respect to their
worst-case edge utilization. We define GapDU , analogously to Gap∗U (see above), but
considering the solutions obtained for this decision problem. The performance profiles
in Figures 3.15 and 3.16 show that the values of GapDU obtained for instances of both
test sets, are similar when we solve RDM-0 and RDMFM-0. Regardless, the average
quality of these solutions seems to be not as good as the ones obtained when solving the
COCMST problem - with the exception for instances of T3tc and when ε = 0.01; this can
be observed in Table 3.1.

66



3.2 Computational experiments for the COCMST problem

-1
5

-1
2
.5

-1
0

-7
.5 -5

-2
.5 0

2
.5 5

7
.5 1
0

1
2
.5 1
5

1
7
.5 2
0

10

20

30

40

50

60

70

80

90

100

Gap∗U (%)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.7: COCMST, Trand: performance profile of Gap∗U (%).

0

2
.5 5

7
.5 1
0

1
2
.5 1
5

1
7
.5 2
0

10

20

30

40

50

60

70

80

90

100

Gap∗U (%)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.8: COCMST, T3tc: performance profile of Gap∗U (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.9: COCMST, Trand: performance profile of the time (s) it takes to find a feasible
solution.

67



3. MSTP: MINIMIZATION OF TOTAL LOAD

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.10: COCMST, T3tc: performance profile of the time (s) it takes to find a feasible
solution.

-1
5

-1
2
.5

-1
0

-7
.5 -5

-2
.5 0

2
.5 5

7
.5 1
0

1
2
.5 1
5

1
7
.5 2
0

10

20

30

40

50

60

70

80

90

100

Gap1U (%)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.11: COCMST, Trand: performance profile of Gap1
U (%).

0

2
.5 5

7
.5 1
0

1
2
.5 1
5

1
7
.5 2
0

2
2
.5

10

20

30

40

50

60

70

80

90

100

Gap1U (%)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.12: COCMST, T3tc: performance profile of Gap1
U (%).

68



3.2 Computational experiments for the COCMST problem

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-0

RDMFM-0

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.13: TE-MSTP decision, Trand: performance profile of the time (s) it takes to find
a feasible solution.

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-0

RDMFM-0

ε = 0.2

ε = 0.05

ε = 0.01

Figure 3.14: TE-MSTP decision, T3tc: performance profile of the time (s) it takes to find
a feasible solution.

0

2
.5 5

7
.5 1
0

1
2
.5 1
5

1
7
.5 2
0

10

20

30

40

50

60

70

80

90

100

GapU (%)

%
o
f

in
st

a
n
c
e
s

RDM-0

RDMFM-0

Λ = 1.2

Λ = 1.05

Λ = 1.01

Figure 3.15: TE-MSTP decision, Trand: performance profile of GapDU (%).

69



3. MSTP: MINIMIZATION OF TOTAL LOAD

0

2
.5 5

7
.5 1
0

1
2
.5 1
5

1
7
.5 2
0

2
2
.5

10

20

30

40

50

60

70

80

90

100

GapU (%)

%
o
f

in
st

a
n
c
e
s

RDM-0

RDMFM-0

Λ = 1.2

Λ = 1.05

Λ = 1.01

Figure 3.16: TE-MSTP decision, T3tc: performance profile of GapDU (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

RDM-0

RDMFM-0

Figure 3.17: COCMST & TE-MSTP decision, Trand: performance profile of the time (s)
it takes to prove infeasibility, for ε = −0.05.

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDM-t

RDMFM-t

RDM-0

RDMFM-0

Figure 3.18: COCMST & TE-MSTP decision, T3tc: performance profile of the time (s) it
takes to prove infeasibility, for ε = −0.05.

70



3.3 Binary search algorithm

3.2.5 Using the COCMST problem to find lower bounds for the TE-
MSTP problem

Lastly, we wish to analyze the efficiency of using our models (RDM-t and RDMFM-
t for the COCMST problem, and RDM-0 and RDMFM-0 for the TE-MSTP decision
problem), to show that an instance cannot have a worst-case edge utilization smaller
than a given Λ. This is useful, as if this is the case, Λ is a lower bound to the optimal
value of the TE-MSTP problem. In Table C.4, in Appendix C, we present the time
it takes for CPLEX implementing our models to prove infeasibility of both COCMST
problem and TE-MSTP decision problem, in the case where ε = −0.05.

We depict the results for Trand and T3tc, respectively in Figures 3.17 and 3.18. For
both test sets, the results when solving the COCMST problem and the TE-MSTP de-
cision problem are similar, with the latter being slightly more efficient. For Trand, the
RDMFMs seem to be the better choice of model, whereas for T3tc we observe the con-
verse. Finally, it is interesting to observe that when using the RDMs to attempt to solve
instances of T3tc, CPLEX is either able to prove infeasibility immediately, or not do it
at all.

3.3 Binary search algorithm

In this section, we propose a binary search algorithm (BSA), that solves the TE-MSTP
problem. In this method, we solve a succession of “easier” sub-problems, that allow
the BSA to converge to a near-optimal solution of the TE-MSTP problem. These sub-
problems must either find feasible solutions, whose edge loads do not exceed the value
given by the BSA, or prove that no such solution exists. As it was seen in the previous
sections, the COCMST problem and the TE-MSTP decision problem fit the profile of
these sub-problems. In Algorithm 3.1, we describe the general framework of the BSA.
This framework contains a number of different parameters and/or choices, that will be
discussed later on.

In this algorithm, we start by obtaining an upper bound UB (Line 1), and a lower
bound LB (Line 2) to Umax∗, the optimal value for the TE-MSTP problem. Next, while
the distance between these bounds is greater than precision ε (Line 3), we iteratively try
to find feasible solutions (Lines 5-6), such that the edge utilization does not exceed value
Ufix; value that is set such that it is equidistant from UB and LB (Line 4). If such
a solution exists, we update the upper bound UB. Note that the de facto worst-case
utilization for that solution can be smaller than Ufix (Line 8). If the sub-problem is
infeasible, we update the lower bound LB to Ufix (Line 10). The optimal value Umax∗

will be on the interval of UB and LB (Line 11).

In the next sections, we analyze different possibilities for components and parameters
of Algorithm 3.1.

71



3. MSTP: MINIMIZATION OF TOTAL LOAD

Algorithm 3.1: Binary search algorithm.

1 UB ← Get Upper Bound
2 LB ← Get Lower Bound
3 while UB − LB > ε do

4 Ufix ← LB + UB−LB
2

5 m← Create Program(Ufix)
6 Solve(m)
7 if Feasible solution is found then
8 UB ← Calculate Max Utilization(m)

9 else
10 LB ← Ufix

11 Umax∗ ∈ [LB,UB]

3.3.1 Obtaining a first upper bound

The way the TE-MSTP problem is defined, one obvious upper bound for Umax∗ is 1. So,
one possibility is to replace Line 1 in Algorithm 3.1 for Lines 1 to 7 in Algorithm 3.2.
We begin by finding a feasible solution with worst-case edge utilization 1 (Lines 1-3). If
a feasible solution is found, we set as UB the de facto worst-case edge utilization of that
solution. If no solution is found, the TE-MSTP problem is infeasible.

Algorithm 3.2: Get simple upper bound.

1 Ufix ← 1

2 m← Create Program(Ufix)
3 Solve(m)
4 if Feasible solution is found then
5 UB ← Calculate Max Utilization(m)

6 else
7 Stop

An alternative way to obtain an upper bound is to use an heuristic method that
quickly finds a good feasible solution. Namely, the heuristic method proposed by Ho
(see Section 1.2) could be implemented, and we expect that this would speed-up the
BSA. Nevertheless, note that the heuristic method could also be used to warm-start
CPLEX, while solving the models in Section 2.2. So, in view of keeping the performance
analysis of the BSA consistent, we do not consider this approach in this thesis.

3.3.2 Obtaining a first lower bound

To obtain a first lower bound, we solve the LP relaxation of the models proposed in
Section 2.2 for the TE-MSTP problem. In our experiments, we only tested using RDM

72



3.3 Binary search algorithm

- the model whose LP relaxation is generally the quickest to solve - and RDMFM - the
model that tends to produce better lower bounds (see Section 2.4).

3.3.3 Obtaining a feasible solution

In Lines 5 - 6 of Algorithm 3.1, and Lines 2 - 3 of Algorithm 3.2, we attempt to find
a feasible solution to the TE-MSTP problem, such that edge utilization is at most
a given value, Ufix. As aforementioned, one way of achieving such a solution is by
solving the COCMST(Λ) problem, for Λ = Ufix. In our computational experiments,
we implemented on CPLEX models RDM-t and RDMFM-t (see Section 3.1) for this
purpose.

We draw the reader’s attention to the flow costs c, in objective functions 3.1a and
3.1a. If we set ce = 1, e ∈ E, sending flow through every edge will have the same cost.
Alternatively, we can manipulate these costs at every iteration of the BSA, such that
we increase the odds of the optimization favoring solutions with low worst-case edge
utilization. As such, we define cke , e ∈ E, as the cost of sending flow through edge e, at
iteration k of the BSA. We set c0

e = 1, e ∈ E; for subsequent iterations k > 0 and edge

e ∈ E: c̄ke := Le(S)
Γ·UB−(Le(S)) and cke := ∆c̄ke +(1−∆)ck−1

e . Le(S) is the load on edge e ∈ E,
at the last-found feasible solution S, for the TE-MSTP problem. Γ is a parameter that
controls the penalization of the heavily loaded edges. ∆ is a parameter that stabilizes
the update of the objective function. Naturally, if ∆ = 0, the costs are kept identical
throughout the BSA.

In an attempt to obtain a better first feasible solution, we can also try to force traffic
to flow through edges with higher capacity, by setting for every e ∈ E, c0

e = Γ·Cmax−Ce
Ce

;
where Cmax := maxe∈E Ce.

As it was scrutinized in Section 3.2.4, any solution of the COCMST problem is
feasible for the TE-MSTP problem. This implies that at each iteration of the BSA we
do not need to solve the COCMST to optimality. Instead, we can stop the CPLEX’s
optimization as soon as it finds a feasible solution; unless there is no feasible solution,
and in that case the procedure needs to run until CPLEX concludes that the sub-
problem is infeasible. As aforementioned, this is similar to solving the TE-MSTP(Λ)
decision problem, with Λ = Ufix. For our experiments, we implemented in the BSA
both RDM/RDMFM-t for the COCMST problem, and RDM/RDMFM-0 for the TE-
MSTP decision problem, described in the previous section.

Lastly, consider the case discussed in the paragraph above, where we stop the op-
timization when the first feasible solution is found. In the first iterations of the BSA,
the corresponding sub-problems are more likely to be feasible. So, it makes sense to
focus CPLEX’s optimization procedure in the search for feasible solutions. Later, as
the bounds start to enclose the optimum value Umax∗, we start to observe the con-
verse - the sub-problems are more likely to be infeasible. As such, we should ensure
that CPLEX’s emphasis is on moving the best bound value. We can control this via
CPLEX’s MIP emphasis switch. Accordingly, we define a parameter Ωemph, that con-
trols the moment where we turn MIP emphasis switch from finding Feasible solu-

73



3. MSTP: MINIMIZATION OF TOTAL LOAD

tions, to proving Optimality (or infeasibility). Assume that ε = 0.01 (Line 3 of Al-
gorithm 3.1), and Ωemph = 10. Then, we turn the MIP emphasis switch as soon
UB − LB ≤ ε · Ωemph = 0.1. Moreover, we define Ωemph = ∞ (−∞) if we keep the
MIP emphasis switch at the Feasible (Optimality) option, throughout the entire
procedure, and Ωemph = 0 if we keep it at the Balanced option.

Likewise, it might be interesting to use different sub-problems, in different moments
of the BSA. Namely, searching for feasible solutions, by solving the COCMST problem,
might speed up the process of decreasing the upper bound, as solutions with heavily
loaded edges are penalized; however, it might be faster for CPLEX to prove infeasi-
bility, when the model has a “faux” objective function like min 0. Analogously, we
define parameter Ωmodel that controls the moment in the BSA where we stop solving
the COCMST problem, and start solving the TE-MSTP decision problem instead. We
set Ωmod = ∞ (−∞), if we only solve the COCMST (the TE-MSTP decision) problem
throughout the whole procedure.

3.3.4 Local branching

The framework of the BSA lends itself to the use of local branching, proposed by Fischetti
and Lodi in [FL03]. This heuristic procedure limits the space of solutions, where the
MIP solver (in our case, CPLEX) can perform its search, in an attempt to speed-up
the global optimization process. We implement an “adaptive” local branching heuristic
at each non-first iteration of the binary search. Let S be a feasible solution for the
TE-MSTP problem found at iteration k; UB is its worst-case edge utilization value.
Naturally, this solution is not feasible for the sub-problem at iteration k′ > k of the
BSA, where every edge utilization must be lower than UB. However, instead of starting
the optimization at iteration k′ from “zero”, we can first try to find solutions in the
neighborhood of S.

Let Et(S) the set of edges selected for VLAN t ∈ T , i.e. Et(S) = {e ∈ E : wte =
1, t ∈ T}. Then, we first try to find a feasible solution whose selected edges in VLAN
t ∈ T , differ from Et(S) in at most Π edges. In this sense, we add the constraint (3.3)
to RDM-t, RDMFM-t, RDM-0 and RDMFM-0.

∑
e∈Et(S)

wte ≥ n− 1−Π, t ∈ T (3.3)

Formulation 3.3: BSA: local branching constraint.

If no solution is found for Π, we increase it until we either find a feasible solution, or
Π > m−(n−1), where m is the cardinality of E. For this purpose, we define parameters
Π0 and Πr. The initial value for Π is given by dΠ0ne; Π then increases dΠrne at every
iteration of the local branching procedure. Note that the value of these parameters must
be such that Π0 + Πr ≤ 1.

74



3.3 Binary search algorithm

3.3.5 Parameters configuration

Table 3.2 details all the parameters for Algorithm 3.1, described in the previous sections.
The first column identifies the parameter, the second column refers to the section where
further explanations about the parameter are provided, and the last one indicates the
potential values/options for that parameter.

1st LB model refers to the model whose LP relaxation is used to obtain the first
lower bound. MIP model indicates which model is chosen to obtain feasible designs at
the different iterations of the BSA. MIP stopping criteria indicates whether we should
solve each sub-problem to optimality or stop upon finding the first feasible solution,
when the aforementioned choice of sub-problem is the COCMST problem. Parameters
Ωemph, Ωmod, Γ, c0

e and ∆ are explained in Section 3.3.3. The two latter parameters are
only relevant if the choice of sub-problem is the COCMST problem. The same applies
to the choice of weights of the objective function in the first iteration, c0

e: we can either
have the same weight for every edge, or have different weights, depending on the capacity
of the edge. Finally, the role of parameters Π0 and Πr is explained in Section 3.3.4.

Parameter Sec. Values Best

1st LB model 3.3.2 {RDM, RDMFM} RDMFM
MIP model 3.3.3 {RDM(-t/-0), RDMFM(-t/-0)} RDM(-t/-0)

MIP stopping criteria 3.3.3 {1st feas., Opt. sol.} 1st feas.
Ωemph 3.3.3 {−∞, 0, 2, 5, 10, 50,∞} 10
Ωmod 3.3.3 {−∞, 2, 5, 10, 50,∞} 10

Γ 3.3.3 {1.01, 1.1, 2} 2
c0
e 3.3.3 {c0

e = 1, c0
e = . . .Γ . . .} c0

e = . . .Γ . . .
∆ 3.3.3 {0, 0.2, 0.4, 0.6, 0.8, 1} 0.2
Π0 3.3.4 {0.1, 0.3, 0.5, 0.7, 0.9, 1} 0.1
Πr 3.3.4 {0.1, 0.3, 0.5, 0.7, 0.9} 0.9

Table 3.2: Parameters for Algorithm 3.1.

Naturally, the process of configuring the BSA can be very tedious and long if done
manually. As such we used the sequential model-based algorithm configuration (SMAC)
tool [HHLB11] to optimize the parameters in Table 3.2, in order to reduce the com-
putational time needed by the BSA to achieve near-optimal solutions, with precision
ε = 0.01.

We randomly selected 30% of the instances of Trand and T3tc as training instances.
We set a time limit of one week, over which SMAC tested 107 different parameter
configurations. The best configuration found by the tool is described in the last column
of Table 3.2. In it, we choose RDMFM for obtaining the first lower bound. This is as
expected, since this model obtains the best LP bounds (see the experiments analyzed
in Section 2.4). Nevertheless, in order to obtain feasible designs in each iteration of the
BSA the chosen model is RDM. Also, note that we do not solve these MIP to optimality,
but rather stop upon finding a first feasible solution. The values for Ωemph and Ωmod,

75



3. MSTP: MINIMIZATION OF TOTAL LOAD

reflect that it is convenient to switch both the CPLEX MIP emphasis switch from
Feasible to Optimality, and the problem to be solved from the COCMST problem to
the TE-MSTP decision problem, as soon as UB −LB ≤ 0.1. The values for parameters
Γ, c0

e and ∆ hint that it is best to iteratively adapt the weights in the objective function
of the COCMST problem; regardless it is equally important to keep these weights stable
throughout the BSA . Finally, the values for the Π parameters imply that local branching
is beneficial for the efficiency of the BSA, but only as a two-iteration process: in a first
phase, we look for designs very similar to the design found in the previous iteration, and
then, if no solution is found during the first phase, we search for designs in the entire
solution space.

3.4 Computational experiments for the BSA

In this section, we analyze the efficiency of the BSA in solving instances of the TE-
MSTP problem. We tested the BSA using the parameter configuration described in the
previous section, and a stopping precision ε = 0.01. We compare the performance of the
BSA with the one of CPLEX running our most promising model, RDMFM. To make the
experiments consistent, we also relax the precision of the stopping criteria of CPLEX to
0.01. The results are reported in Tables D.1 and D.2 of Appendix D.

Figures 3.19 and 3.20 depict the performance profiles for the solving times, for test
sets Trand and T3tc respectively. They show that even though the BSA is not particularly
faster than CPLEX running RDMDM for instances of Trand, there is some improvement
for instances of T3tc. More importantly, we can observe a promising result: for instances
that neither the BSA nor CPLEX with RDMFM are able to solve in the time limit, the
distance between the corresponding upper and lower bounds tends to be quite narrower
for the BSA: 13% versus 41% for Trand, and 1% versus 15% for T3tc. This result hints
that the BSA can be more effective than simply have CPLEX running RDMFM, when
it comes to optimizing larger and more difficult instances than the ones in Trand and
T3tc. In this case, the BSA can be an interesting method to explore, as it seems to be
quicker in obtaining reasonable solutions with provable bounds.

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

BSA

RDMFM

Figure 3.19: TE-MSTP, Trand: performance profile of the MIP solving time (s).

76



3.5 Summary and remarks

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

BSA

RDMFM

Figure 3.20: TE-MSTP, T3tc: performance profile of the MIP solving time (s).

3.5 Summary and remarks

In this chapter, we studied another network optimization problem for the MSTP. This
problem, the COCMST problem is in all identical to the TE-MSTP problem, considered
in the previous chapter, with the exception of the objective: in the COCMST problem
our goal is to minimize the cost of the total load. In order to solve this problem, we
adapted the models that have been proposed for the TE-MSTP problem, resulting in
RDM-t, MFM-t and RDMFM-t. We tested the performance of these models in solving
the COCMST problem for different values of edge capacity. We observed that RDM-t
and RDMFM-t are the formulations that perform better. Moreover, this problem tends
to be easier to solve than the TE-MSTP problem - particularly, when the capacity is
not too “tight”.

The COCMST problem relates to the TE-MSTP problem in the sense that any
feasible solution to the former, is also feasible to the latter, with a guaranteed worst-
case edge utilization. In this sense, we propose a procedure that obtains near-optimal
solutions to the TE-MSTP problem, by iteratively looking for solutions (or proving
infeasibility) for the COCMST problem, with edge capacity values given by a BSA.
Our tests imply that this method performs well with respect to test set T3tc, finding
near-optimal solutions faster than CPLEX implementing RDMFM. Furthermore, for
the more “difficult” instances (i.e. instances that were not solved by neither method),
the BSA tends to achieve a narrower gap between its final upper and lower bound than
CPLEX running RDMFM does. This hints that for larger instances, the BSA can be
a more efficient method to solve the TE-MSTP problem. In conclusion, the BSA can
be a particularly useful method, if the goal of the network provider is not necessarily to
obtain the solution with the lowest worst-case link utilization, but one that approaches
this solution with a guaranteed distance.

Finally, we remark that the efficiency of the BSA can be further improved, by using
heuristics to quickly obtain a good feasible solution and promptly lower the UB. We did
not explore this option here, as the same can be applied to CPLEX and RDMFM.

77



3. MSTP: MINIMIZATION OF TOTAL LOAD

78



3.5 Summary and remarks

79



3. MSTP: MINIMIZATION OF TOTAL LOAD

80



Chapter 4

Piecewise linear unsplittable
multicommodity flow problems

In this chapter, we study unsplittable multicommodity flow problems with piecewise
linear cost functions. We focus on the case where these functions are convex. However,
later, we also discuss the situation when the cost functions are non-convex. We begin
by defining the convex unsplittable multicommodity flow (PUMF) problem. Let G′ =
(N,A) be a directed graph, with a set of nodes N , and a set of arcs A. Consider as well a
set of commodities K, where each commodity k ∈ K has a given origin ok, a destination
dk, and a demand ρk to be routed from ok to dk.

Each arc a ∈ A has an associated cost function ga(la) of the load flowing through the
arc la. This cost function is continuous, convex and piecewise linear, with the segments
being represented by the finite set Sa = {1, 2, ..., |Sa|}. Each segment s ∈ Sa has a lower
and upper bound on the flow, represented by the breakpoints bs−1

a and bsa. If finite,

the breakpoint of the last segment of each arc a ∈ A , b
|Sa|
a , can be interpreted as the

capacity of the arc. However, the case where b
|Sa|
a = ∞ also holds. A segment is also

characterized by a slope csa and an intercept fsa . Figure 4.1 illustrates this notation.
Since in the PUMF problem, the cost functions are convex, these values must be such
that c1

a ≥ 0, csa > cs−1
a and f sa ≤ 0, f sa < fs−1

a . Moreover, as we consider the cost function
to be continuous, we assume that bsac

s
a + f sa = bscs+1

a + fs+1
a . We also assume that for

every arc a ∈ A, ga(0) = 0, and consequently, f1
a = 0. The PUMF problem is to find a

single path for each commodity, such that the sum of the costs associated to the load of
the arcs is minimized.

In the PUMF problem, the routing costs, given by the piecewise linear functions, play
a double role: they confine the load within the arcs’ capacities, and at the same time,
they help to avoid unnecessary detours in the network - since the function is additive,
solutions with short paths will be favored. An example of such a cost function was
proposed by Fortz and Thorup [FT00, FT04] and is illustrated in Figure 4.2.

In this function, the cost of sending flow is cheap for arcs with low utilization. How-
ever, the price quickly rises when the utilization approaches the arc’s capacity. Even
though it is possible for the utilization to go above 100%, this is so heavily penalized in

81



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

bs−1
a

bsa

fsa

csa

la

g a
(l
a
)

Figure 4.1: Notation for each segment of ga(la).

the cost, that such a solution will likely be avoided.

Objective functions like this have been widely used in problems related with TE in
Internet networks. One of the most important and well known of such objectives is the
Kleinrock delay function [GK77]:

F =
∑
a∈A

la
Ca − la

, (4.1)

where Ca is the capacity of link a ∈ A. This function is illustrated in Figure 4.3. The
Kleinrock function helps avoid congestion by penalizing heavily loaded links. Observe
that this objective function is convex, and so it can be optimized using convex program-

0.2 0.4 0.6 0.8 1 1.2

5

10

15

la/Ca

g a
(l
a
/C

a
)

Figure 4.2: Example of a convex piecewise linear cost function.

82



ming methods [LOP07]. Nevertheless, due to the discrete nature of the PUMF problem,
it is convenient to approximate the Kleinrock function with a convex piecewise linear
function ([FT00, FT04, PM04]), leading to a MIP problem, that can be solved with the
powerful MIP solvers available today (e.g. CPLEX). Balon et al. [BSL06] and Gourdin
[GK06] discuss various TE objective functions. These authors evaluate how well different
objective functions meet TE requirements, and conclude that piecewise linear objectives
provide a good trade-off between different measures of quality of service.

Ca

5

10

15

la

Φ

Figure 4.3: Kleinrock function.

Recently, such an objective function was also used by Papadimitriou and Fortz
[PF14b, PF14a] in the context of a complex multi-period design and routing problem.
Lower bounds resulting from the LP relaxation of the problem are very weak, and part
of this weakness is due to the piecewise linear objective function combined with single
path routing. Stronger models provided in this thesis could be embedded in the models
of [PF14b, PF14a] to improve the lower bounds and make the problems more tractable.

The literature is rich in multicommodity flow problems, but the following two can
be identified as being more closely related to the PUMF problem: the origin-destination
integer multicommodity flow (ODIMCF) problem, and the non-convex piecewise linear
multicommodity network flow (NCPMF) problem. The ODIMCF problem was first
introduced by Barnhart et al. [BHV00] and has also been referred to as the unsplittable
multicommodity flow problem in [AdC03]. This problem shares with the PUMF problem
the “unsplitability” of the flows. Nonetheless, it differs in the two following ways: the flow
costs are directly proportional to the load on the arcs; and there are explicit capacity
constraints on the amount of flow traversing an arc; in the PUMF problem this is
somewhat enforced by the piecewise linear cost functions (as explained above).

83



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

The NCPMF problem, like the PUMF problem, also imposes costs on the flow via
piecewise linear functions. However, unlike the cost functions in the PUMF problem,
the piecewise linear functions in the NCPMF problem are non-convex. Later we will
consider a version of the PUMF problem where the cost functions are also non-convex.
Finally, a second major difference between the two problems is that the flows in the
NCPMF are splittable. Croxton et al. [CGM03] review three formulations that had been
previously used in the literature for generic problems with non-convex piecewise linear
costs. These three formulations use integer variables to model the costs, and are shown
to be equivalent, with respect to their LP relaxation. In [CGM07], the same authors
choose one of these formulations, the multiple choice model [BG89], and strengthen it,
so as to solve the NCPMF problem. Due to the common properties of the two problems,
these works provide an important basis for our work.

In Section 4.1, we discuss the complexity of the PUMF problem. In Section 4.2,
we propose MIP formulations that model the problem. In Section 4.3, we present the
results of computational experiments, that help us compare the performance of these
formulations in solving instances of the PUMF problem. In Section 4.4 we discuss a B&C
algorithm for the PUMF problem. In Section 4.5.2, we propose a new MIP formulation
for the model, which is inferred from the interpretation of cuts generated by the Benders’
decomposition method of the models proposed in Section 4.5.1. In Section 4.6 we study
a variant of the PUMF problem, where the cost functions are non-convex. Finally, in
Section 4.7 we discuss conclusions about the research described in this chapter.

4.1 Problem complexity

In this section, we analyse the complexity of the PUMF problem.

Theorem 4. For |K| = 1, the PUMF problem is polynomially solvable.

Proof. Let us consider an instance of the PUMF problem given by a graph G = (N,A)
and a single commodity with origin o ∈ N , destination d ∈ N and demand ρ. To each
arc a ∈ A we associate a length Wa, that represents the potential cost of having the
commodity flow through it, i.e. Wa = f s̄aa + cs̄aa ρ, with s̄a defined such that s̄a = {s :

bs−1
a ≤ ρ ≤ bsa}; or Wa = ∞ if ρ > b

|Sa|
a . Solving the single-commodity PUMF problem

on G is equivalent to identifying the shortest path between o and d in G with respect to
lengths Wa.

Let g∗ be the optimum value of the single-commodity PUMF problem in G, and p∗

the length of the shortest path defined above. We can build a solution to the PUMF
problem by sending the flow through the arcs belonging to the shortest path. This
solution is, naturally, feasible and with cost p∗. Thus, g∗ ≤ p∗. However, we also know
that, given demand ρ, we cannot have the commodity flowing through arc a ∈ A with a
cost inferior to Wa, as previously defined. Since p∗ is the shortest path between o and
d, we have that g∗ ≥ p∗, and therefore, g∗ = p∗.

84



4.2 Problem formulation

Theorem 4 and its proof will be revisited later on, to show Theorem 8.

Theorem 5. For |K| > 1, the PUMF problem is NP-complete.

Proof. This can be shown by reducing the bin-packing problem to the PUMF problem;
a similar proof is found in [Kle96]. To illustrate this, consider an instance of the bin-
packing decision problem, with |A| bins with capacity b̄, and |K| objects with size ρk ∈ N.
Consider as well a directed graph G = (N,A) with only two nodes, o and d, and |A|
parallel arcs connecting them. The load cost of every arc a ∈ A is given by the same
piecewise linear function g, that has only two segments, separated by the breakpoint
b1 = b̄. The slope on the second segment is very steep, in such a way that ga(b̄ + 1) >∑

a′∈A ga′(b̄), a ∈ A. Finally, let K be a set of commodities, each k ∈ K with a given
demand ρk, origin in o and destination in d. The problem of determining if it is possible
to fit the |K| objects in the |A| bins, is equivalent to determining if all the commodities
in K are routable in G, with a cost not bigger than

∑
a∈A ga(b̄). As the bin-packing

problem is NP-complete [Kar72], so is the PUMF problem.

4.2 Problem formulation

Consider the notation for the PUMF problem introduced in the beginning of this chapter.
In addition, let λki be such that λkok = 1, λkdk = −1, and λki = 0 for every i 6= {ok, dk}.
In this section, we propose MIP formulations for the PUMF problem. In Section 4.2.1,
we describe two basic models, based on models proposed in the literature for other
problems dealing with piecewise linear costs (see the beginning of the chapter for a
detailed review). In Section 4.2.2, we focus on the single-commodity case of the PUMF
problem, and propose a strengthened formulation, whose LP relaxations always yield
integer solutions. Finally, in Section 4.2.3, we extend the strengthened formulation for
the multicommodity case.

4.2.1 Basic formulations

We define binary variables xka, with xka = 1 if arc a ∈ A is on the unique path chosen
to route commodity k ∈ K, and xka = 0 otherwise; and ysa, with ysa = 1, if arc a ∈ A
contains a non-zero flow on segment s ∈ Sa, and ysa = 0 otherwise. For the sake of
simplicity, if arc a contains a non-zero flow on segment s ∈ Sa, we say that arc a is on
segment s ∈ Sa. We also define continuous variables lsa, that indicate the load going
through arc a ∈ A on segment s ∈ Sa. The PUMF problem can be formulated with the
MIP in Formulation 4.2, which we refer to as the Basic Model 1 (BM1)

The typical multicommodity flow balance constraints (4.2b) define the path between
the origin and destination node of each commodity. Then, constraint sets (4.2c-4.2e)
identify the segment each arc is on. Naturally, only a single segment may be selected per
arc (4.2c). The choice of segment is implied by the load flowing through the respective
arc. This load is given by constraints (4.2d) and its value is assigned to one of the
variables l. To ensure that only the appropriate load variable is non-zero, in (4.2e) we

85



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

min
∑
a∈A

∑
s∈Sa

(f say
s
a + csal

s
a) (4.2a)

s.t.
∑

a∈δ+(i)

xka −
∑

a∈δ−(i)

xka = λki , i ∈ N, k ∈ K (4.2b)

∑
s∈Sa

ysa ≤ 1, a ∈ A (4.2c)

∑
s∈Sa

lsa =
∑
k∈K

ρkxka, a ∈ A (4.2d)

bs−1
a ysa ≤ lsa ≤ bsaysa, a ∈ A, s ∈ Sa (4.2e)

xka ∈ {0, 1}, a ∈ A, k ∈ K (4.2f)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa (4.2g)

lsa ≥ 0, a ∈ A, s ∈ Sa (4.2h)

Formulation 4.2: PUMF problem: Basic model 1.

either bound lsa by the breakpoints of the corresponding segment, if ysa = 1; or we force
it to zero, if ysa = 0.

Variables x and y are considered as binary (4.2f-4.2g), whilst variables l are con-
sidered as continuous (4.2h). Note that if the cost function for every arc is convex, it
is not necessary to define explicitly y as binary; instead they can simply be defined as
continuous and non-negative. The impact on the effectiveness of the model of defining
variables y as binary or continuous is discussed in Section 4.3.

Theorem 6. If cost functions ga are convex for all a ∈ A, then the optimal solution of
the LP relaxation of BM1 has binary y-variables.

Proof. Consider a solution of BM1, Ŝ, with cost ĝ, and fractional y-variables. Without
loss of generality, we assume that this only occurs for one arc - arc a. Then, ∃s ∈ S :
ŷsa ∈]0, 1[. We show that there exists a feasible solution for BM1 S̃, with x̃ka = x̂ka, a ∈
A, k ∈ K, binary y-variables, and cost g̃ : g̃ ≤ ĝ.

Let us first assume the case where
∑

s∈Sa ŷ
s
a < 1. As f1

a = 0, it is possible to increase
the value of ŷ1

a without increasing ĝ. Since b0a = 0, this new solution would satisfy (4.2e).
As such, let us re-define ŷ1

a := 1−
∑

s∈Sa\{1} ŷ
s
a instead. Then,

∑
s∈Sa ŷ

s
a = 1.

Now, let us consider the case where
∑

s∈Sa ŷ
s
a = 1. Then, we show that solution

S̃, with ỹs̄a = 1 and l̃s̄a =
∑

s∈Sa l̂
s
a where s̄ = {s : bs−1

a ≤
∑

s∈Sa l̂
s
a ≤ bsa}, is not more

expensive than Ŝ.

First, let us define l̆sa = l̂sa
ŷsa

if ŷsa > 0 and 0 otherwise. Values l̆ are feasible for BM1,
as for every s ∈ Sa such that ŷsa > 0:

bs−1
a ŷsa ≤ l̂sa ≤ bsaŷsa ⇔ bs−1

a ≤ l̂sa
ŷsa
≤ bsa ⇔ bs−1

a ≤ l̆sa ≤ bsa.
Then, we have that:

86



4.2 Problem formulation

g̃ = f s̄a ỹ
s̄
a + cs̄a l̃

s̄
a = f s̄a

∑
s∈Sa ŷ

s
a + cs̄a

∑
s∈Sa l̂

s
a = f s̄a

∑
s∈Sa ŷ

s
a + cs̄a

∑
s∈Sa ŷ

s
a l̆
s
a.

Note that this implies that solution S̃ is a convex combination of feasible solutions
with load l̆sa. As the cost functions are convex, we know that:

g̃ = f s̄a
∑

s∈Sa ŷ
s
a + cs̄a

∑
s∈Sa ŷ

s
a l̆
s
a ≤

∑
s∈Sa ŷ

s
a(f

s
a + csa l̆

s
a) =

∑
s∈Sa(f sa ŷ

s
a + csaŷ

s
a l̆
s
a) =∑

s∈Sa(f sa ŷ
s
a + csa l̂

s
a) = ĝ.

BM1 is a multiple choice model, following the terminology in [BG89]; a single segment
is chosen per arc, which allows for the direct pricing of the flow, based on the selected
segment’s intercept and slope. An alternative way of modelling costs, imposed by a
piecewise linear functions is suggested in [FT00]. The authors define variables that
stand for the routing cost of each arc, to which they impose lower bounds representing
the segments of the cost function. Let ga be the routing cost for arc a ∈ A. We denote
the MIP in Formulation 4.3 as the Basic Model 2 (BM2).

min
∑
a∈A

ga (4.3a)

s.t.
∑

a∈δ+(i)

xka −
∑

a∈δ−(i)

xka = λki , i ∈ N, k ∈ K (4.3b)

la =
∑
k∈K

ρkxka, a ∈ A (4.3c)

ga ≥ fsa + csala, a ∈ A, s ∈ Sa (4.3d)

xka ∈ {0, 1}, a ∈ A, k ∈ K (4.3e)

la ≥ 0, a ∈ A, s ∈ Sa (4.3f)

ga ≥ 0, a ∈ A (4.3g)

Formulation 4.3: PUMF problem: Basic model 2.

Constraints (4.3c) determine the flow traversing each arc, based on the routing de-
fined in (4.3b). In (4.3d), for each segment s ∈ Sa, a lower bound is set for the routing
cost ga of arc a ∈ A. Note that for a given value of la, only a single constraint is tight
- the one corresponding to the segment arc a is on. Finally, our objective (4.3a) is to
minimize the sum of the routing costs for every arc.

Consider the LP relaxations of BM1 and BM2, where we relax the integrality con-
straints for variables x and y (when applicable). We denote as gB1(S) (gB2(S)), the cost
of a feasible solution S of the LP relaxation of BM1 (BM2), and as gB1

∗ (gB2
∗) the cost

of the optimal solution to these relaxations.

Theorem 7. gB1
∗ = gB2

∗.

Proof. We begin by showing that gB2
∗ ≤ gB1

∗. Let PB1 and PB2 be the polyhedra
defined by the set of feasible solutions of the LP relaxation of BM1 and BM2, respectively.

87



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

Consider the optimal solution of BM1, S̃∗ = {x̃ka, l̃sa, ỹsa}. We construct a solution Ŝ =
{x̃ka, l̂a, ĝa} by taking:

• l̂a :=
∑

s∈Sa l̃
s
a, a ∈ A;

• ĝa := maxs∈Sa(fsa + csa l̃
s
a), a ∈ A.

It is to see that Ŝ ∈ PB2. Let us consider the cost of this solution, gB2(Ŝ). We have
that gB2(Ŝ) =

∑
a∈A ĝa =

∑
a∈A maxs∈Sa(fsa + csa l̃

s
a). Note that fsa ≤ 0, a ∈ A, and that

ỹsa ≥ 0, a ∈ A, s ∈ Sa. Then,
∑

a∈A maxs∈Sa(fsa + csa l̃
s
a) ≤

∑
a∈A maxs∈Sa(fsa ỹ

s
a + csa l̃

s
a).

As it has been shown in Theorem 6, variables ỹ are binary, even if their integrality is
not explicitly enforced. As such, and following constraints (4.2c,4.2e), we know that
fsa ỹ

s
a + csa l̃

s
a will only be non-zero for a single s ∈ Sa. Thus, we can conclude that

gB2(Ŝ) ≤
∑

a∈A maxs∈Sa(fsa ỹ
s
a + csa l̃

s
a) ≤

∑
a∈A

∑
s∈Sa(f sa ỹ

s
a + csa l̃

s
a) = gB1

∗, and conse-
quently gB2

∗ ≤ gB1
∗.

For the converse, consider the optimal solution of BM2, Ŝ∗ = {x̂ka, l̂a, ĝa}. Let us
define S̃ = {x̂ka, l̃sa, ỹsa} by taking:

• l̃sa := l̂a if bs−1
a ≤ l̂a ≤ bsa; 0 otherwise, a ∈ A.

• ỹsa := 1 if bs−1
a ≤ l̂a ≤ bsa; 0 otherwise, a ∈ A.

Naturally, S̃ is a feasible solution in PB1. The cost of solution S̃ is gB1(S̃) =∑
a∈A

∑
s ∈ Sa(fsa ỹsa + csa l̃

s
a). As discussed above, for each a ∈ A, fsa ỹ

s
a + csa l̃

s
a is

non-zero only for a single s ∈ Sa. As such, gB1(S̃) =
∑

a∈A
∑

s∈Sa(fsa ỹ
s
a + csa l̃

s
a) ≤∑

a∈A maxs∈Sa f
s
a + csa l̂a ≤

∑
a∈A ĝa = gB2

∗. Therefore, we also have that gB1
∗ ≤ gB2

∗,
and thus, gB1

∗ = gB2
∗.

4.2.2 Ideal formulation for |K| = 1

Let us consider the single-commodity case of the PUMF problem. We simplify the
notation previously used, namely for parameters o, d, ρ, λ, and variables xa. For the
sake of completeness, we repeat BM1 and BM2 for this situation (Formulations 4.4 and
4.5).

The LP relaxation of these basic models can provide very weak lower bounds, even
for toy instances. As an example to show how weak these bounds are, consider a graph
with only two nodes, o and d, connected by three parallel arcs. Assume that the single
commodity with origin o, destination d, has demand ρ = 3. Finally, assume that the
cost function on all three arcs is the same, and is characterized by only two segments,
such that the breakpoints are b0 = 0, b1 = 1 and b2 = 3; the slopes are c1 = 1 and
c2 = 10; and the intercepts f1 = 0 and f2 = −9. It is easy to see that there are three
solutions to the PUMF problem on this graph, all with the same cost of 21: sending the
flow through each one of the three available arcs. However, in the LP relaxation of basic
models BM1 and BM2, the flow can be equally split among the three arcs, each on the

88



4.2 Problem formulation

min
∑
a∈A

∑
s∈Sa

(f say
s
a + csal

s
a) (4.2a)

s.t.
∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa = λi, i ∈ N (4.4a)

∑
s∈Sa

ysa ≤ 1, a ∈ A (4.2c)

∑
s∈Sa

lsa = ρxa, a ∈ A (4.4b)

bs−1
a ysa ≤ lsa ≤ bsaysa, a ∈ A, s ∈ Sa (4.2e)

xa ∈ {0, 1}, a ∈ A (4.4c)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa (4.2g)

lsa ≥ 0, a ∈ A, s ∈ Sa (4.2h)

Formulation 4.4: PUMF problem: Basic model 1 for |K| = 1.

min
∑
a∈A

ga (4.3a)

s.t.
∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa = λi, i ∈ N (4.5a)

la = ρxa, a ∈ A (4.5b)

ga ≥ fsa + csala, a ∈ A, s ∈ Sa (4.3d)

xa ∈ {0, 1}, a ∈ A (4.5c)

la ≥ 0, a ∈ A, s ∈ Sa (4.3f)

ga ≥ 0, a ∈ A (4.3g)

Formulation 4.5: PUMF problem: Basic model 2 for |K| = 1.

first segment. This results in a LP relaxation optimum value of only 3. By manipulating
the structure of the cost functions, this gap can be virtually any value.

Recall Theorem 4, where it is stated that the PUMF problem is polynomially solvable,
when considering only one commodity. However, the LP relaxation of the basic models
is not integer in this case, as shown in the example above. As such, we want to develop
a MIP model, whose LP relaxation always gives the optimal solution for the PUMF
problem with |K| = 1. To this end, we use variable disaggregation, a common technique
to strengthen the LP relaxation of MIPs. Thus, consider the binary variables xsa, with
xsa = 1 if arc a ∈ A is on segment s ∈ Sa and on the unique path chosen to route the
commodity, and xsa = 0 otherwise. We denote as the Disaggregated Model (DM) to

89



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

Formulation 4.6.

min
∑
a∈A

∑
s∈Sa

(fsay
s
a + csaρx

s
a) (4.6a)

s.t.
∑

a∈δ+(i)

∑
s∈Sa

xsa −
∑

a∈δ−(i)

∑
s∈Sa

xsa = λi, i ∈ N (4.6b)

∑
s∈Sa

ysa ≤ 1, a ∈ A (4.6c)

bs−1
a ysa ≤ ρxsa ≤ bsaysa, a ∈ A, s ∈ Sa (4.6d)

xsa ∈ {0, 1}, a ∈ A, s ∈ Sa (4.6e)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa (4.6f)

Formulation 4.6: PUMF problem: Disaggregated Model for |K| = 1.

In this new model the l-variables are no longer necessary as for every a ∈ A, s ∈ Sa,
lsa = ρxsa, leading to the new objective function (4.6a) and variable bound constraints
(4.6d). Constraints (4.6b) define, for each commodity, a path between the origin and
destination, now with the disaggregated x-variables. As for BM1, if the cost functions
are convex, we can instead define the y-variables as continuous and non-negative.

It is easy to see that DM, as it has been defined so far, is equivalent to the basic
models. However, we can use the disaggregated variables to create new inequalities that
considerably strengthen the LP relaxation.

First, note that an arc being traversed by a given commodity cannot be on a segment
whose upper breakpoint is smaller than the demand flow. Therefore, we can fix the x-
variables as follows:

xsa = 0, a ∈ A, s ∈ Sa : bsa < ρ (4.7)

Formulation 4.7: PUMF problem: Valid inequalities I.

Furthermore, when combined with inequalities (4.6d), this variable fixing has a strong
impact on the values of the y-variables.

A well-known class of valid inequalities, common with this variable disaggregation,
are the following:

xsa ≤ ysa, a ∈ A, s ∈ Sa (4.8)

Formulation 4.8: PUMF problem: Valid inequalities II.

90



4.2 Problem formulation

These valid inequalities are an obvious choice in cases where the intercepts fsa are
non-negative (e.g. [CGM07]), as they lift the y-variables. This is not the case for PUMF.
A related class of valid inequalities, but now making use of the fact that the intercepts
fsa are negative, is obtained by tightening coefficients in the first inequality in (4.4b):

bs−1
a ysa ≤ min(ρ, bs−1

a )xsa, a ∈ A, s ∈ Sa (4.9)

Formulation 4.9: PUMF problem: Valid inequalities III.

We refer to this strengthening of DM as the Strong Model (SM). We conclude this
section by showing that the SM is an ideal formulation for the single-commodity case of
the PUMF problem.

Theorem 8. When |K| = 1, the optimal solution of the linear relaxation of SM is
integer and solves PUMF.

Proof. First, let us recall what was shown in Theorem 4: solving the PUMF problem for
|K| = 1 in G = (N,A) is equivalent to solving a shortest path problem between o and
d where the length associated with each arc in a ∈ A is Wa = f s̄aa + cs̄aa ρ, with s̄a such
that s̄a = {s : bs−1

a ≤ ρ ≤ bsa}. Let pi be the length the shortest path from o to i. We
can dynamically compute the shortest distance between the origin and every node by
defining po := 0, and pi := min{pj +Wa : a = (i, j) ∈ δ+(i)}. Let us consider a primal
solution of the single-commodity PUMF problem with cost g∗ = pd.

Next consider the dual (SDM) of the linear relaxation of SM, presented in Formula-
tion 4.10. We show that there is a solution of SDM that also has cost g∗.

Dual variables α, β, γ, ζ and η correspond, respectively to constraints (4.6b), (4.6c),
to the left-most constraints in (4.6d), to constraints (4.9), and to the relaxation of (4.6e),
xsa ≤ 1. In turn, dual constraints (4.10b) are linked to the xsa-variables when s = s̄a,
constraints (4.10c) to the xsa-variables when s > s̄a, and (4.10d) to the y-variables. Let
us fix the dual variables as follows:

• βa = 0, a ∈ A;

• ζsa = 0, a ∈ A, s ∈ Sa;

• ηsa = 0, a ∈ A, s ∈ Sa;

• γsa = − fsa
bs−1
a

, if s ≤ s̄a; −fsa
ρ if s > s̄a, a ∈ A.

Constraints (4.10d) are satisfied, both when s ≤ s̄a (obvious), and when s > s̄a, as

for those cases bs−1
a
ρ ≥ 1. The remainder of our dual formulation with fixed variables

(SDM-f) is as seen in Formulation 4.11.
Note that f s̄aa +cs̄aa ρ ≤ fsa +csaρ, a ∈ A, s ∈ Sa : s > s̄a. SDM-f is thus the dual of the

LP formulation that describes the shortest path problem, as detailed above. It is well-
known [Wol98] that these dual and primal formulations have dual gap zero. Therefore,
there is a solution in SDM with cost g∗.

91



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

max αo − αd −
∑
a∈A

βa −
∑
a∈A

∑
s∈Sa:bsa≥d

ηsa (4.10a)

αi − αj + bs̄a−1
a γ s̄aa − ρζ s̄aa − ηs̄aa ≤ cs̄aa ρ, a = (i, j) ∈ A (4.10b)

αi − αj + ργsa − ρζsa − ηsa ≤ csaρ, a = (i, j) ∈ A, s ∈ Sa : s > s̄a (4.10c)

− βa − bs−1
a γsa + bsaζ

s
a ≤ fsa , a ∈ A, s ∈ Sa (4.10d)

βa ≥ 0, a ∈ A (4.10e)

γsa, ζ
s
a, η

s
a ≥ 0, a ∈ A, s ∈ Sa (4.10f)

Formulation 4.10: PUMF problem: SDM.

max αo − αd (4.11a)

αi − αj ≤ fsa + csaρ, a = (i, j) ∈ A, s ∈ Sa : s ≥ s̄a (4.11b)

Formulation 4.11: PUMF problem: SDM-f.

4.2.3 Strong formulation for |K| ≥ 1

Consider the binary variables xksa , with xksa = 1 if arc a ∈ A is on segment s ∈ Sa and on
the unique path chosen to route commodity k ∈ K, and xksa = 0 otherwise. Note that
x1s
a = xsa, defined in the previous section. We redefine the SM for the multicommodity

case in Formulation 4.13.
Note that due to (4.12c), the extension of valid inequalities (4.8), (4.13) can still be

useful in cutting-off LP solutions; those that for a given arc a have xksa +xk
′s′
a > 1, k′ 6= k,

s′ 6= s. Nevertheless, we do not include (4.13) in SM, as empirical results show that they
seldom improve the bounds of the LP relaxation, and often cause out-of-memory issues
for large instances.

92



4.3 Computational experiments

min
∑
a∈A

∑
s∈Sa

(
fsay

s
a + csa

∑
k∈K

ρkxksa

)
(4.12a)

s.t.
∑

a∈δ+(i)

∑
s∈Sa

xksa −
∑

a∈δ−(i)

∑
s∈Sa

xksa = λki , i ∈ N, k ∈ K (4.12b)

∑
s∈Sa

ysa ≤ 1, a ∈ A (4.12c)

bs−1
a ysa ≤

∑
k∈K

min(ρk, bs−1
a )xksa , a ∈ A, s ∈ Sa (4.12d)

bsay
s
a ≥

∑
k∈K

ρkxksa , a ∈ A, s ∈ Sa (4.12e)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa : bsa ≥ ρk (4.12f)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa (4.12g)

Formulation 4.12: PUMF problem: SM.

xksa ≤ ysa, k ∈ K, a ∈ A, s ∈ Sa (4.13)

Formulation 4.13: PUMF problem: Extension of (4.8) for the multiple commodities.

4.3 Computational experiments

In this section, we analyze the results of computational experiments that were conducted
in order to compare the performance of CPLEX using BM1, BM2 and SM for solving
instances of the PUMF problem. The results are described in Appendix E. All the tests
were performed on a Intel Core i7 CPU 960 @ 3.20GHz (x8) with 12GB of memory
with 64 bits, and running Ubuntu 14.04.2 LTS (GNU/Linux 3.2.0−26−generic x86 64).
The tests were done using the MIP solver ILOG CPLEX 12.6, implemented in Java
programming language. We only allow CPLEX to use one thread of the machine’s
processor. In Section 4.3.1 we describe the test sets that were used for these experiments.
In Section 4.3.2 and 4.3.3 we analyze the results for the two different test sets.

4.3.1 Test sets for the PUMF problem

These experiments were done using two test sets, T1 and T2, that follow the motivation
of the problem.

In test set T1, we created 55 instances and grouped them into 11 classes, according
to number of nodes, arcs and commodities. Table 4.1 describes each class of instances.
In each of these instances, the distribution of the arcs on the graph is random. Each
arc was assigned a capacity of 50, 75 or 100. The traffic demand between the origin and

93



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

Class ID |V | |A| |K|
1 40 936 70
2 40 1092 70
3 40 1092 100
4 60 2478 200
5 60 2832 150
6 60 2832 200
7 80 316 250
8 80 1896 200
9 80 1896 250
10 80 3160 200
11 80 1896 350

Table 4.1: PUMF problem: description of each class of instances.

destination node of each commodity was calculated using the same formula as for test
sets Trand and T3tc, used in the computational experiments described in Section 2.4.1:

ρk = αOokDdkR(ok,dk)e
−L2(ok,dk)

2∆ (4.14)

The parameter α was set to 0.6, for all the experiments; we found that this value
lead to instances where the majority of the arcs used in the optimal solution were not
overloaded. The Euclidian distance (L2) was substituted by the length of the shortest
path between each pair of nodes, with respect to the number of links. ∆ is the largest
distance in the network. The final values were rounded to the nearest integer.

The routing cost on every arc is given by the function shown in Figure 4.2, and
described in [FT00]. This function has 6 segments, separated by the following break-
points: {0, 1

3Ca,
2
3Ca,

9
10Ca, Ca,

11
10Ca,∞}, where Ca is the capacity of the respective arc.

The slopes of each of these 6 segments are respectively 1, 3, 10, 70, 500 and 5000.
Note that the intercepts of each segment can be easily calculated in the sense that
fsa = bsa(c

s−1
a − csa) + fs−1

a , a ∈ A, s ∈ Sa.
In test set T2, we adapted instances of SNDlib [OPTW07] to better fit the PUMF

problem. Table 4.2 details the characteristics of these instances. For each of these
SNDlib instances, we created four adapted instances for the PUMF problem. For the
first instance, we chose as the flow capacity on each arc, either the pre-installed capacity,
or, in the cases where the latter was null, the capacity of the first module. So, for
example, the capacity assigned to arc (1,6) in instance atlanta was 11000, whereas
the capacity assigned to arc (1,2) in instance newyork was 1000. For the three other
adapted instances, we increased or decreased the aforementioned capacities, maintaining
the original proportions between the arcs, such that the average arc’s utilization was
slightly above the breakpoints in the cost function in Figure 4.2: 38%, 71% and 105%.
There are 24 instances in total in T2.

94



4.3 Computational experiments

Instance ID |V | |A| |K|
atlanta–D-B-M-N-C-A-N-N 15 44 210
france–D-B-L-N-C-A-N-N 25 90 300

newyork–D-B-E-N-C-A-N-N 16 98 240
pdh–D-B-E-N-C-A-N-N 11 68 24
sun–D-D-M-N-C-A-N-N 27 102 67
ta1–D-B-E-N-C-A-N-N 24 110 396

Table 4.2: PUMF problem: description of each class of instances in T2.

4.3.2 Results for test set T1

In this section, we analyze the results of the computational experiments done over in-
stances of test set T1; these results are detailed in Tables E.1 and E.2, in Appendix
E. Figure 4.4 illustrates the performance profile for the GapLP of the three modes, for
instances of T1. We can observe what had been stated in Theorem 7: the basic models
produce the same lower bound. More importantly, we can see how strong the SM really
is. The high percentage (93%) of instances that have GapLP = 0 with the SM, clearly
contrasts with the results for the basic models.

Next, we analyze the performance of the different models, when used by CPLEX
to solve the MIPs of T1 instances. In preliminary experiments we solved the LPs of
the instances of T1, using different optimizers methods offered by CPLEX. We verified
that using the Barrier method for solving the LPs of the basic models, allows for a large
speed-up, when compared with the optimizer provided by CPLEX’s automatic selection.
As for SM, CPLEX’s default selection seems to provide the best results. We also tested
the impact in the solving time of the MIPs, of defining variables y in BM1 and SM,
as binary or continuous. The results of these experiments are depicted in Figure 4.5.
We can observe that defining variables y as continuous is highly advantageous, for both
BM1 and SM, allowing CPLEX to solve more instances in the time limit of 1 hour.
Furthermore, defining y as binary, in the case of SM, led to memory issues. To have
a better understanding of this behaviour, further computational experiments involving
test set T1 were carried out on CPLEX using the configurations detailed in Table 4.3.

Model LP optimizer y-variables

SM Default Continuous
BM1 Barrier Continuous
BM2 Barrier

Table 4.3: Configuration implemented for instances of T1.

We are now in a better condition for comparing the MIP solving time, for the three
different formulations. Figure 4.6 illustrates these results. They reveal that SM clearly
out-performs BM1 and BM2 when solved with CPLEX. Even though, by using BM1,
we are able to solve 95% of the instances in the time limit, by using SM we solved every

95



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

5

1
0

1
5

2
0

10

20

30

40

50

60

70

80

90

100

gap (%)

%
o
f

in
st

a
n
c
e
s

BM1 & 2

SM

Figure 4.4: PUMF, T1: performance profile of GapLP (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1 y-c

BM1 y-b

SM y-c

SM y-b

Figure 4.5: PUMF, T1: performance profile of MIP solving times (s) with y binary (y-b)
or continuous (y-c).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1

BM2

SM

Figure 4.6: PUMF, T1: performance profile of MIP solving times (s).

96



4.3 Computational experiments

1 5

1
0

5
0

1
0
0

2
0
0

4
0
0

6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1

BM2

SM

Figure 4.7: PUMF, T1: performance profile of LP solving times (s).

5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

1
5
0
0

10

20

30

40

50

60

70

80

90

100

number of nodes

%
o
f

in
st

a
n
c
e
s

so
lv

e
d

BM1

BM2

SM

Figure 4.8: PUMF, T1: performance profile of the B&B tree nodes.

1 2 4 6 8

1
0

10

20

30

40

50

60

70

80

90

100

gap (%)

%
o
f

in
st

a
n
c
e
s

BM1

BM2

SM

Figure 4.9: PUMF, T1: performance profile of the Gap0 (%).

97



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

instance, in only under 150 seconds. Finally, we can also observe that BM2 is slower
than the other models, only solving 87% of the instances within the time limit.

It is easy to understand that the efficiency of SM is closely linked to its stronger lower
bounds. Another argument is the fast solving time of the LPs, observable in Figure 4.7.
The strength of SM also accounts for the fact that all instances are solved in the root
node of the B&B tree (see Figure 4.8).

For the basic models, it is interesting to note that despite having the same LP bounds
(see Theorem 7 and Figure 4.4), comparable LP solving times (see Figure 4.7) and very
similarly sized B&B trees (see Figure 4.8), the solving time of the MIPs are distinct.
This might be explained by better lower bounds at the end of the root node, as a result of
CPLEX’s automatically-generated cuts. The latter can be observed in the performance
profile of the Gap0, depicted in Figure 4.9.

4.3.3 Results for test set T2

In this subsection, we analyze the results of the computational experiments done on
instances of test set T2, described in Table E.3 of Appendix E. Figure 4.10 shows the
performance profile for the GapLP . Once again, SM is able to produce much better lower
bounds than both basic models. However, the gaps are slightly higher than they were
for instances of T1. Only 54% of the instances have GapLP 0, and the values go as high
as 3%.

Next, we analyze the performance of CPLEX in solving T2 instances’ MIPs, under
our three models. Once again, we analyzed which LP optimizer was better suited for
each model. Contrary to what was the case for instances of T1, for solving the LPs
of T2 instances, CPLEX’s default LP optimizer is the fastest for all models. We also
analyzed the impact of defining y-variables as continuous or binary. The results can be
observed in Figure 4.11. They are quite different than for instances of T1: for instances
of T2, it seems to be more convenient to define variables y as binary. This is especially
observable for SM. We believe that this disparity is a result of the different structures of
the networks, in test sets T1 and T2, and how they impact the performance of CPLEX’s
pre-processing. For most instances of T1, CPLEX is able to reduce the MIP further, when
the y-variables are defined as continuous; whereas for instances of T2, the tendency seems
to be the opposite. On further computational experiments, we implement the models
on CPLEX following the configurations in Table 4.4.

Model LP optimizer y-variables

SM Default Binary
BM1 Default Binary
BM2 Default

Table 4.4: Configuration implemented for instances of T2

We can now compare the solving time of the MIPs of the three formulations. The
performance profiles illustrated in Figure 4.12 show that for solving instances of T2, BM2

98



4.3 Computational experiments

1
0

2
0

3
0

5
0

7
5

1
0
0

10

20

30

40

50

60

70

80

90

100

gap (%)

%
o
f

in
st

a
n
c
e
s

BM1 & BM2

SM

Figure 4.10: PUMF, T2: performance profile of GapLP (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1 y-c

BM1 y-b

SM y-c

SM y-b

Figure 4.11: PUMF, T2: performance profile of MIP solving times (s) with y binary (y-b)
or continuous (y-c).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1

BM2

SM

Figure 4.12: PUMF, T2: performance profile of MIP solving times (s).

99



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

0
.0

5 1 2 5

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d

BM1

BM2

SM

Figure 4.13: PUMF, T2: performance profile of LP solving times (s).

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

2
0
0
0
0
0

10

20

30

40

50

60

70

80

90

100

number of nodes

%
o
f

in
st

a
n
c
e
s

so
lv

e
d

BM1

BM2

SM

Figure 4.14: PUMF, T2: performance profile of the B&B tree nodes.

1
0

2
0

3
0

5
0

7
5

1
0
0

10

20

30

40

50

60

70

80

90

100

gap (%)

%
o
f

in
st

a
n
c
e
s

BM1

BM2

SM

Figure 4.15: PUMF, T2: performance profile of the Gap0 (%).

100



4.4 B&C algorithm

is the most efficient model. With it, CPLEX can solve 92% of the instances in the 1 hour
time limit. Moreover, it reveals that SM does not perform as well as it did for instances
of T1. When using SM, CPLEX only solves 71% of the instances within the time limit
and, in general, the solving times are comparable to those obtained with BM1. However,
it should be noted that the average gap between the best upper and lower bound found
at the end of the run, was only 1.3% for instances that were unsolved using SM.

The below-par performance of SM with respect to the solving time of the MIPs,
especially considering the strength revealed in Figure 4.10, can be explained by the
following two factors: i) the LPs of SM are very slow to be solved (see Figure 4.13), and
ii) the difference between the lower bounds for the basic and strong models at the end
of the root node is not as pronounced as in the case of the lower bounds provided by
the LP relaxations (see Figure 4.15). The latter implies that CPLEX is able to produce
good cuts for the basic models. The faster MIP solving times for BM2, when compared
with BM1, are probably explained by the smaller B&B trees (see Figure 4.14), as BM1
out-performs BM2 in both the LPs solving time (see Figure 4.13) and gap at the end of
the root node (see Figure 4.15).

4.4 B&C algorithm

The computational experiments analyzed in the previous section revealed that despite
typically yielding very tight LP bounds, the SM can struggle to solve some instances to
optimality, due to the large size of its LPs. In this section, we propose a B&C algorithm,
which we hope will be able to benefit from SM’s strength, while solving a more compact
model. For that purpose, we propose a Benders’ decompositions, in Sections 4.4.1,
which we integrate in the proposed B&C algorithm. An introduction to the Benders’
decomposition method can be found back in Section 1.6. In Section 4.4.2, we comment
on the efficiency of this algorithm.

4.4.1 Benders’ decomposition

The computational experiments with instances of test set T2, analyzed in the previous
section, showed that, for some instances, the LPs of SM can be lengthy to solve, especially
when compared with the LPs of BM1. As the number of constraints does not increase
with this strengthening of BM1, it is safe to assume that this is due to the disaggregation
of variables x. As such, we could be tempted to project out these variables, while
keeping the y-variables in the master problem. Let us consider a solution ȳ, that satisfies
constraints (4.12c). The Benders’ slave problem would then be the one in Formulation
4.15. However, it is is easy to understand that due to the relaxation in constraints
(4.15e), a feasible solution to the problem in 4.15 can have multipath routing.

In this sense, we propose an alternative Benders’ decomposition of SM. Let x̄ be
a feasible routing of the commodities (i.e. satisfying (4.12b,4.12f)). The correspond-
ing Benders’ slave problem SMLP (x̄) is seen in Formulation 4.16. Note that we can
decompose this sub-problem by arc: SMLP (ā, x̄). Formulation 4.17 describes the dual

101



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

of SMLP (ā, x̄), SMD(ā, x̄), where α, γ and ζ variables are associated respectively with
constraints (4.16b), (4.16c) and (4.16d), and constraints (4.17b) are linked to the y-
variables.

The problem described in Formulation 4.17, can be both bounded or unbounded,
depending on whether or not the sub-problem in Formulation 4.16 is feasible. As men-
tioned in Section 1.6, it can be very computationally hard to find extreme rays, in the
case of an unbounded SMD. As such, we set an upper bound on the objective function
(4.17a) to a normalization positive value (e.g. 1), ensuring that the dual slave problem
is always bounded. Note that if slave problem SMLP is instead feasible, its optimal
solution will be necessarily non-positive, as the y variables are non-negative (4.17e), and
by definition, the intercepts f are non-positive. As such, the bound set on the objective
function remains valid; it simply becomes irrelevant. From this problem we can infer
the Benders’ cut βā,x̄(x) = −ᾱ −

∑
s∈Sā

∑
k∈K [min(ρk, bs−1

ā )γ̄s − ρkζ̄s] · xksā , that we
iteratively add to the master problem SMM (see Formulation 4.18), following the proce-
dure described in Algorithm 1.1, in Section 1.6. Note that for implementation purposes
we set a lower bound of each variable Ψa in (4.18f), as otherwise the master would be
unbounded in the first iterations of the Benders’ algorithm.

min
∑
a∈A

∑
s∈Sa

(csa
∑
k∈K

ρkxksa ) (4.15a)

s.t.
∑

a∈δ+(i)

∑
s∈Sa

xksa −
∑

a∈δ−(i)

∑
s∈Sa

xksa = λki , i ∈ N, k ∈ K (4.15b)

−
∑
k∈K

min(ρk, bs−1
a )xksa ≥ −bs−1

a ȳsa, a ∈ A, s ∈ Sa (4.15c)

bsaȳ
s
a ≥

∑
k∈K

ρkxksa , a ∈ A, s ∈ Sa (4.15d)

xksa ∈ [0, 1], a ∈ A, k ∈ K, s ∈ Sa : bsa ≥ ρk (4.15e)

Formulation 4.15: PUMF problem: Benders’ slave problem, given ȳ.

102



4.4 B&C algorithm

min
∑
a∈A

∑
s∈Sa

fsay
s
a (4.16a)

s.t. −
∑
s∈Sa

ysa ≥ −1, a ∈ A (4.16b)

− bs−1
a ysa ≥ −

∑
k∈K

min(ρk, bs−1
a )x̄ksa , a ∈ A, s ∈ Sa (4.16c)

bsay
s
a ≥

∑
k∈K

ρkx̄ksa , a ∈ A, s ∈ Sa (4.16d)

ysa ≥ 0, a ∈ A, s ∈ Sa (4.16e)

Formulation 4.16: PUMF problem: SMLP (x̄).

max − α−
∑
s∈Sā

∑
k∈K

x̄ksā [min(ρk, bs−1
ā )γs − ρkζs] (4.17a)

s.t. − α− bs−1
ā γs + bsāζ

s ≤ fsā , s ∈ Sā (4.17b)

α ≥ 0, (4.17c)

βs ≥ 0, s ∈ Sā (4.17d)

γs ≥ 0, s ∈ Sā (4.17e)

Formulation 4.17: PUMF problem: SMD(ā, x̄).

min
∑
a∈A

∑
s∈Sa

(
Ψa + csa

∑
k∈K

ρkxksa

)
(4.18a)

s.t.
∑

a∈δ+(i)

∑
s∈Sa

xksa −
∑

a∈δ−(i)

∑
s∈Sa

xksa = λki , i ∈ N, k ∈ K (4.18b)

Ψa ≥ βa,x̄k′ (x), a ∈ A, k′ = 1...k (4.18c)

βa,x̄k′ (x) ≤ 0, a ∈ A, k′ = 1...k (4.18d)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa : bsa ≥ ρk (4.18e)

Ψa ≥ f |Sa|a , a ∈ A (4.18f)

Formulation 4.18: PUMF problem: SMk
M .

103



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

4.4.2 Computational experiments for the B&C algorithm

The implementation of this B&C algorithm follows the implementation of the B&C
algorithm proposed for the TE-MSTP problem, and described back in Section 2.5.2.
As in that case, we also use in this B&C algorithm the in-out cut loop proposed in
[FLS15], and presented in Section 1.6. This procedure requires one to provide a feasible
solution, to serve as a stabilizing point. In Algorithm 4.1 we propose a greedy heuristic
procedure, that quickly provides a feasible solution to the PUMF problem. In it, we
consider a commodity at a time, by order of their demand. For each commodity, we
can calculate the cost of sending it through every arc, by looking at the routing of the
flow of the commodities that have already been considered. Thus, given that cost, we
calculate the shortest path between the origin and destination of said commodity using
Dijkstra’s algorithm, and assign the corresponding values for the x variables.

We tested the efficiency of this algorithm in solving instances of test sets T1 and
T2. The results revealed that this B&C algorithm is not a valid alternative to solving
the PUMF problem. For 33 instances of T1 and 10 of T2 the memory required by
the algorithm exceeded the available memory of the machine (see specifications in the
beginning of Section 4.3). For the other instances, the algorithm often exceeded the
time limit of one hour, and was always greater than the MIP time for solving the SM
by itself.

Algorithm 4.1: Greedy heuristic for the PUMF problem.

1 K ← {1, ..., |K|}
2 Fa ← 0, a ∈ A
3 while |K| > 0 do
4 k ← arg maxk∈K ρk
5 K ← K\{k}
6 s̄a ← s ∈ Sa : bs−1

a ≤ Fa + ρk ≤ bsa
7 Wa ← f s̄aa + cs̄aa (Fa + ρk), a ∈ A
8 Wa ←∞, a 6∈ A
9 Infer shortest path between ok and dk, with respect to W

10 Assign values for xk accordingly
11 Update loads F

4.5 Strengthened aggregated formulation

In this section, we present a new MIP formulation for the PUMF problem. This formu-
lation is a strengthening of BM1, presented in Section 4.2.1. It is obtained by adding a
set of valid inequalities that are inferred by generalizing Benders’ cuts obtained after a
Benders’ decomposition, which is proposed in Section 4.5.1 (this decomposition is differ-
ent than the one described in the previous section). The model is presented in Section
4.5.2.

104



4.5 Strengthened aggregated formulation

4.5.1 Benders’ decomposition II

In this section, we propose an alternative Benders’ decomposition for the PUMF problem,
where we project the strong valid inequalities of this formulation onto the space of
variables of BM1. As such, let S̄ = {xka, l

s
a, y

s
a} be a solution to the LP relaxation of

BM1. If we define x̌ksa = x̄kay
s
a, then Š = {x̌ksa , ysa} is a projection of S̄ to the space of

variables in SM. The results of the computational experiments analyzed in Section 4.3,
imply that for most instances, S̄ does not satisfy all the valid inequalities proposed for
SM. Formulation 4.19 models a feasibility problem that checks whether or not solution
S̄ is feasible for SM. Note that we can decompose this problem by arc. If S̄ is such that
this (sub-)problem is infeasible, we want to infer an inequality that we can add to BM1
and accordingly cuts-off that point.

max 0 (4.19a)

s.t. ∑
s∈Sa

xksa = xka, a ∈ A, k ∈ K (4.19b)

−
∑
k∈K

min(ρk, bs−1
a )xksa ≤ −bs−1

a ȳsa, a ∈ A, s ∈ Sa (4.19c)∑
k∈K

ρkxksa = l
s
a, a ∈ A, s ∈ Sa (4.19d)

xksa ≥ 0, a ∈ A, k ∈ K, s ∈ Sa : bsa ≥ ρk (4.19e)

Formulation 4.19: PUMF problem: Feasibility of the LP solution of BM1, with regards
to the valid inequalities of SM.

min
∑
k∈K

x̌kaα
k −

∑
s∈Sa

bs−1
a ysaγ

s +
∑
s∈Sa

l
s
aζ
s (4.20a)

αk −min(ρk, bs−1
a )γs + ρkζs ≥ 0, k ∈ K, s ∈ Sa : bsa ≥ ρk (4.20b)

γs ≥ 0, s ∈ Sa (4.20c)

Formulation 4.20: PUMF problem: Inferring a cut to strengthen BM1.

We can separate these cuts by solving the dual of Formulation 4.19, Formulation
4.20 for every arc a ∈ A. Variables α correspond to constraints (4.19b), γ to (4.19c)
and ζ to (4.19d), whereas dual constraints (4.20b) are linked to the disaggregated x
variables. If the optimum value of Formulation 4.20 is 0 for a given S̄ and arc a ∈ A,
then S̄ satisfies all the constraints in Formulation 4.19 for that same arc. Conversely, if
the problem is unbounded, then by the duality relationship, the problem in Formulation

105



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

4.19 is infeasible. As such, we derive a Benders’ cut,
∑

k∈K ~αkxka −
∑

s∈Sa b
s−1
a ~γsysa +∑

s∈Sa
~ζslsa ≥ 0, where ~α, are ~γ and ~ζ, are the extreme rays. As mentioned in Section 1.6,

it can be very computationally hard to find extreme rays. As such, we fix the objective
function in Formulation 4.20 to a normalization negative value (e.g. -1), and “transform”
the dual problem into a bounded one. In the first Benders’ decomposition, proposed in
Section 4.4.1, we use a similar strategy for bounding the dual slave problem. However,
as it is known that the choice of normalization can greatly impact the performance of the
Benders’ decomposition (see [FSZ10]), in the future it would be interesting to explore
other strategies.

4.5.2 Valid inequalities for BM1

Note that a Benders’ decomposition method based on the decomposition proposed in
the previous section, can be used integrated in a B&C algorithm, in the same way
as proposed in Section 4.4. Yet, the results of preliminary tests made with such an
implementation were not very promising. These tests allowed us, however, to identify
classes of strong valid inequalities for BM1. In this section, we present these inequalities.

The first valid inequality (4.21) states that if commodity k ∈ K is sent through arc
a ∈ A, then the load on that arc has to be at least ρk, and that arc a must be in a
segment s ∈ Sa such that bsa ≥ ρk.

xka ≤
1

ρk

∑
s∈Sa:bsa≥ρk

lsa, a ∈ A, k ∈ K (4.21)

Formulation 4.21: PUMF problem: Valid inequality #1 for the BM1.

We now give some intuition on the impact of these inequalities. Let us consider,
for every a ∈ A, k ∈ K inequalities xka ≤ 1

ρk

∑
s∈Sa l

s
a; they are a result of weakening

equalities (4.2d) in BM1, in order to consider only a single term on the left-hand side.
Evidently, this inequality is redundant in BM1. Observe that valid inequalities (4.21) are
a lifted version of these “weakened” inequalities. This type of transformation, where an
equality is weakened by removing terms from one side, thus allowing for the exclusion of
some cases on the other side, has been used in models for other network flow problems,
usually leading to new formulations with strengthened LP bounds. Let us also assume
that for a given LP solution, arc a is only used by one commodity, k; then, only a
single variable x will be non-zero on the right-hand side of (4.2d). In that case, the
corresponding “weakened” inequality is tight, in the sense that is satisfied as an equality.
However, in such a case it is easy to understand the effect of valid inequality (4.21).
Whereas with the “weakened” inequality the sum of all the l variables should be equal
to ρkxka, with (4.21) this value has to be attributed to the sum of a more restricted set of
l variables - the ones for which the upper bound of the associated segment is not lower
than the ρk. In conclusion, the value of the LP bound cannot be worse - and in some

106



4.5 Strengthened aggregated formulation

cases, it will hopefully improve.
For the second set of valid inequalities (4.22), we need to make the assumption that

if an arc a ∈ A has no load, then ysa = 0, s ∈ Sa. Note that in BM1 and SM this is not
imposed, and as f1

a = 0, a ∈ A, it would be possible to have a solution with xka = 0, k ∈ K
and y1

a = 1, with the same cost as one with xka = 0, k ∈ K and ysa = 0, s ∈ Sa. This
distinction has no implication in the outcome of the problem, nor the performance of the
models. In that sense, inequalities (4.22) imply that for an arc to have non-zero load,
and thus be in one of the segments in Sa, that arc must be on the routing path of at
least one commodity.

∑
s∈Sa

ysa ≤
∑
k∈K

xka, a ∈ A (4.22)

Formulation 4.22: PUMF problem: Valid inequality #2 for the BM1.

The structure of valid inequalities (4.22) is similar to the one of
∑

s∈Sa b
s−1
a ysa ≤∑

k∈K ρ
kxka, a ∈ A, obtained by summing up the left-hand inequalities (4.2e) for all

s ∈ Sa, and replacing
∑

s∈Sa l
s
a for

∑
k∈K ρ

kxka, following equalities (4.2d). Consider,
once again, an LP solution where only one commodity k is routed through arc a. The

aforementioned aggregated inequality will only force xka to be bs̄−1
a

ρk
, where s̄ : ys̄a = 1.

When this ratio is less than 1, it is easy to see that (4.22) dominates the former inequality.
In fact, in that particular case, inequality (4.22) has a similar effect to the one enforced
by the aggregation of valid inequalities (4.12d) in SM, over all s ∈ Sa.

Finally, for the last set of valid inequalities, (4.23), let us define s̄ka = {s : bs−1
a ≤

ρk ≤ bsa}, and Ξka = ρk

b
s̄ka−1
a

− 1. We now show that inequalities (4.23) are valid for the

PUMF problem.

ρkys̄
k
a
a + Ξka

∑
s∈Sa:s<s̄ka

lsa ≤ ls̄
k
a
a + Ξka

∑
k′∈K:k′ 6=k

ρk
′
xk
′
a , a ∈ A, k ∈ K (4.23)

Formulation 4.23: PUMF problem: Valid inequality #3 for the BM1.

Proof. We need to consider four cases: i) arc a ∈ A is on the path used to route
commodity k ∈ K, and arc a is on segment s̄ka; ii) arc a ∈ A is on the path used to route
commodity k ∈ K, but arc a is not on segment s̄ka; iii) arc a ∈ A is not on the path used
to route commodity k ∈ K, and arc a is on segment s̄ka; iv) arc a ∈ A is not on the path
used to route commodity k ∈ K, and arc a is not on segment s̄ka.

• Case i): We have that y
s̄ka
a = 1, and thus ysa = 0, s ∈ Sa : s < s̄ka, and consequently

lsa = 0, s ∈ Sa : s < s̄ka. The load on that arc l
s̄ka
a , must be at least ρk;

107



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

• Case ii): If arc a is on the path used to route commodity k ∈ K, but arc a is not
on segment s̄ka, then arc a must be on a segment s ∈ Sa : s > s̄ka. This implies that
the left-hand side of (4.23) is null. As Ξka ≥ 0, a ∈ A, k ∈ K, (4.23) is valid for this
case;

• Case iii): We can re-write the right-hand side of (4.23) as l
s̄ka
a + ( ρk

b
s̄ka−1
a

−1)l
s̄ka
a . This

can be reduced to ρk

b
s̄ka−1
a

l
s̄ka
a . From (4.2e) we know that l

s̄ka
a

b
s̄ka−1
a

≥ 1; so ρk

b
s̄ka−1
a

l
s̄ka
a ≥

ρky
s̄ka
a ;

• Case iv): Cuts (4.23) are re-written as
∑

s∈Sa:s<s̄ka
lsa ≤

∑
k′∈K:k′ 6=k ρ

k′xk
′
a , which is

clearly valid.

We denote as the strengthened aggregated model (SAM), the combination of BM1
and valid inequalities (4.21-4.23). For this model we also redefine Sa, a ∈ A as the set
of segments s ∈ Sa, whose flow upper bound bsa is not smaller than the lowest demand.

At the time the author has concluded writing this thesis, only a few preliminary
experiments had been done to properly test the performance of SAM. These tests were
conducted using test set T2, as previous results revealed that SM did not perform as
well for these particular instances (see Section 4.3). The results of these preliminary
tests seem to imply that SAM is not more efficient than SM. Note that there are |A||K|
many constraints of type (4.21) and (4.23). Despite being polynomially many, this still
translates in a sizable increase when comparing to BM1, especially for instances like
the ones in T2 where there are a lot of commodities. Therefore, it makes sense to
generate these constraints on the fly as cutting planes, rather than considering them all
a priori. As such, it is possible that the performance of SAM can improve, following the
implementation of a better, faster, cut separation procedure.

An important result to take from the preliminary tests regards the strength of SAM.
For every instance of both T1 and T2, the lower bounds provided by the LP relaxations
of SAM and SM were the same. An interesting question that remains open is whether
or not these two models are in fact equivalent.

4.6 Non-convex case

In the previous sections, we have considered the case where the piecewise linear function
was convex. However, we can also define a unsplittable multicommodity flow problem
with non-convex piecewise linear cost functions (NPUMF). This problem is a direct
extension to the NCPMF problem (discussed in [CGM03], [CGM07] and [GG14]), with
the added constraint of having single-path routing for each commodity. In order to
characterize the non-convex piecewise linear cost functions, we resort to the notation
described in the beginning of this chapter, and illustrated in Figure 4.1. However, some

108



4.6 Non-convex case

new assumptions about these functions are made: the slopes csa are non-negative as
well, but no monotonicity is imposed and the intercepts fsa are not necessarily non-
positive. The functions are not necessarily continuous, but we assume them to be lower
semi-continuous (i.e., ga(la) ≤ lim inf l′a→la ga(l

′
a), for any sequence l′a that approaches

la). Figure 4.16 illustrates two examples of non-convex piecewise linear functions: one
concave (black) and another non-concave (gray).

0.2 0.4 0.6 0.8 1

5

10

15

la/Ca

g a
(l
a
/
C
a
)

Figure 4.16: Two examples of non-convex piecewise linear cost functions.

In this section, we analyze the performance of our proposed models for instances
of the NPUMF problem. First, observe that while BM2 cannot be used to model the
NPUMF problem, both BM1 and DM are valid formulations for the problem. SM is also
a valid formulation for the NPUMF problem; however, as discussed in Section 4.2, for
cases where fsa ≥ 0, a better strengthening can be obtained from valid inequalities (4.13),
rather than from inequalities (4.12d). As such, for clarity, we include SM readapted for
this case, Formulation 4.24; we name it as the Strong Model for the Non-Convex Case
(SM-n).

Note that since for the NPUMF problem the cost functions are non-convex, the
y-variables in BM1 and SM-n need to be considered as binary.

In our analysis, we also explore the impact of imposing unsplittable flows (NPUMF
problem), versus allowing each commodity to be sent through multiple paths (NCPMF
problem). In this sense, we need to adapt our models to solve the NCPMF problem.
To this purpose, we define the Relaxed Basic Model 1 (BM1-r), where the integrality
of variables x (4.2f) is relaxed. We can also consider the same relaxation in constraint
(4.24e) of SM-n; we name this formulation as the Relaxed Strong Model (SM-r). Observe
that if the flows can be split, we cannot apply valid inequalities (4.24g), and as such,
we exclude them from SM-r. Both BM1-r and SM-r have been proposed in [CGM07] to
model the NCPMF problem.

In our computational experiments we tested these models, using instances that had
been previously developed for the NCPMF problem [GG14]. For test set Tn, we selected
40 instances, that describe 10 different networks, whose characteristics are detailed in

109



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

Network ID |V | |A| |K|
1 20 100 50
2 20 100 50
3 25 100 100
4 25 150 100
5 25 150 100
6 40 300 100
7 40 300 400
8 40 400 400
9 50 400 400
10 50 600 400

Table 4.5: Description of each class of instances for the NPUMF.

1 5

1
0

2
0

3
0

4
0

5
0

10

20

30

40

50

60

70

80

90

100

gap (%)

%
o
f

in
st

a
n
c
e
s

BM1

SM-n

BM1-r

SM-r

Figure 4.17: NPUMF, Tn: performance profile of GapLP (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1

SM-n

Figure 4.18: NPUMF, Tn: performance profile of MIP solving times (s).

110



4.6 Non-convex case

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

so
lv

e
d BM1

SM-n

Figure 4.19: NPUMF, Tn: performance profile of LP solving times (s).

1
0

1
0
0

1
0
0
0

1
0
0
0
0

10

20

30

40

50

60

70

80

90

100

number of nodes

%
o
f

in
st

a
n
c
e
s

so
lv

e
d

BM1

SM-n

Figure 4.20: NPUMF, Tn: performance profile of B&B tree nodes.

0
.5 1 5

10

20

30

40

50

60

70

80

90

100

gap (%)

%
o
f

in
st

a
n
c
e
s

BM1

SM-n

Figure 4.21: NPUMF, Tn: performance profile of Gap0 (%).

111



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

min
∑
a∈A

∑
s∈Sa

(
fsay

s
a + csa

∑
k∈K

ρkxksa

)
(4.24a)

s.t.
∑
a∈A

∑
s∈Sa

xksa −
∑
a∈A

∑
s∈Sa

xksa = λki , i ∈ V, k ∈ K, (4.24b)

∑
s∈Sa

ysa ≤ 1, a ∈ A, (4.24c)

bs−1
a ysa ≤

∑
k∈K

ρkxksa ≤ bsaysa, a ∈ A, s ∈ Sa, (4.24d)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa, (4.24e)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa, (4.24f)

xksa = 0, a ∈ A, k ∈ K, s ∈ Sa : bsa < ρk, (4.24g)

xksa ≤ ysa, k ∈ K, a ∈ A, s ∈ Sa. (4.24h)

Formulation 4.24: PUMF problem: SM-n.

Table 4.5. Despite having the same number of nodes, arcs and commodities, network

1 (network 4) has tighter arc capacities b
|Sa|
a , than network 2 (network 5). For each

network, there are 4 different instances based on the characteristics of the non-convex
piecewise linear cost functions. There are 2 instances with concave functions, and 2
instances with non-concave functions. For each type of cost functions, there is an instance
with up to 4 segments, and another with up to 8 segments. Every segment has non-
negative intercept f , even when the cost functions are non-concave. Finally, note that in
the original instances, each commodity had one source and multiple targets. To adapt
the instances to the NPUMF problem, we separated each commodity to many, such
that each has a single origin and a single destination. The results of our computational
experiments for the NPUMF problem are detailed in Table F.1, in Appendix F.

In Figure 4.17, we present the performance profile of the GapLP , for the NPUMF and
the NCPMF problems. For this graph, we only considered the 34 instances, for which
we were able to obtain an upper bound for both the NPUMF and NCPMF problems,
and lower bounds for all four formulations (BM1, SM-n, BM1-r and SM-r) in the time
limit of 1 hour. As before, it reveals that SM-n produces much better lower bounds than
BM1. It also shows that, as expected, the gaps for the unsplittable flows case are higher
than for the splittable flows one. However, it is noteworthy that the maximum observed
gaps for SM-n and SM-r are similar. Moreover, one should take into account that it is
easier for CPLEX to find good (or optimal) solutions for the NCPMF problem, than
for the NPUMF problem. As such, it is likely that in many cases, the quality of upper
bounds used to calculate the GapLP of SM-n are not very good, and the values for the
GapLP are, ultimately, greatly overestimated.

Next, we analyze the behaviour of CPLEX for instances of test set Tn, while using

112



4.7 Summary and remarks

BM1 and SM-n. As it was done for previous experiments, we tested which CPLEX’s
LP optimizer method was faster to solve the instances of Tn. These preliminary exper-
iments showed that while for BM1, CPLEX’s default choice works best, for SM-n the
Barrier method generally improves the LP solving time. In Figure 4.18, we depict the
performance profile of the solving time of the MIPs of Tn. Similarly to what happens
for instances of T2 (see Subsection 4.3.3), BM1 is faster in solving instances of Tn than
SM-n. However, in this case, the number of instances solved in the time limit is very
low (30%). This is probably explained by the long solving times of the LPs of SM-n
(see Figure 4.19). While all the LPs of BM1 are solved in under 50 seconds, not all the
LPs of SM-n were solved in the time limit of 1 hour. Moreover, in Figure 4.21 we can
observe that for BM1, CPLEX is able to automatically generate strong cuts, that highly
improve the lower bounds at the root nodes, approaching them to the ones of SM-n.
Figure 4.20 seems to indicate that the B&B trees for SM-n are smaller than for BM1.
Notwithstanding, in our performance profiles of the B&B trees nodes (Figures 4.8, 4.14
and 4.20), we only consider instances that were solved in the time limit by all models,
in order to keep the results consistent. Seeing that only 9 out of the 40 instances of test
set Tn are in this condition, the results depicted in Figure 4.20 might not be significant.

4.7 Summary and remarks

In this chapter, we presented a special case of the multicommodity flow problem, for
which the flow of each commodity is unsplittable, and the routing costs on the arcs are
given by piecewise linear functions. We focus on the case where the cost functions are
convex - the PUMF problem. We show that the PUMF problem is NP-hard for the gen-
eral case, but polynomial when there is only a single commodity. We begin by proposing
two basic MIP formulations for this problem, BM1 and BM2. By disaggregating the
flow variables in BM1, we are able to develop valid inequalities that we include in a new
MIP formulation: SM. We show that the solution of the LP relaxation of SM is always
integer, in the single-commodity case.

We present results of extensive computational experiments, done over instances of
two different test sets: in T1 we randomly generate our own instances, while in T2 we
adapt instances of the SNDlib. These experiments reveal that the LP relaxation of SM
is able to provide very good lower bounds, far better than the ones provided by the LP
relaxation of the basic models. In fact, for 93% of the instances in T1 and for 58% of
the instances of T2, the LP gap of SM is null. In [LMPM14], it was shown that for large
topologies, splittable multicommodity flow problems with piecewise linear costs (as well
as for others types of objective) essentially become unsplittable flow problems, since at
optimality each demand tends to use a single path, despite the existence of multiple
paths. These results might explain the very good bounds that we were able to obtain for
large networks, as it implies that the optimal solutions of the LP relation of the PUMF
problem are integer.

Despite being the fastest model to solve instances of T1, SM did not perform as well
for instances of T2 as BM1 and BM2. This is explained by the large LPs, that can take

113



4. PIECEWISE LINEAR UNSPLITTABLE MULTICOMMODITY
FLOW PROBLEMS

a long time for CPLEX to solve. As such, we propose two Benders’ decompositions of
SM, in an attempt to profit from the models strength, while reducing the size of the
LPs. The first Benders’ decomposition is integrated in a B&C algorithm; our computa-
tional experiments show however, that this method is not efficient in solving the PUMF
problem. In the second Benders’ decomposition, we project the strong valid inequalities
of SM onto BM1. Through the intrepretation of the resulting Benders’ cuts, we were
able to identify a well-defined set of valid inequalities for the latter. We denote as SAM,
the combination of BM1 and these strong valid inequalities. Preliminary tests seem to
imply that the bounds obtained by the LP relaxation of SAM are the same as the ones
obtained by the LP relaxation of SM. In the future, we would like to investigate whether
the models are provably equivalent. Despite having less variables than SM, preliminary
tests did not yield better MIP solving times for SAM when compared to the other mod-
els. This might be explained by the large number of additional constraints. Nonetheless,
it is possible that a better and faster cut separation procedure, might result in an overall
more efficient B&C algorithm.

We also consider the case where the cost functions are non-convex. This problem,
denoted NPUMF, is an extension of the NCPMF problem, where the flows can be split
and sent through multiple paths [CGM03], [CGM07] and [GG14]. We adapt our SM
to better adapt to characteristics of the NPUMF problem, and we name it SM-n. We
test the performance of BM1 and SM-n in solving instances proposed in [GG14]. Our
results reveal that, despite the added difficult of the NPUMF problem, in relation to the
NCPMF problem, the LP gaps are only slightly worse. This might be explained by valid
inequalities (4.24g) that are not valid for the NCPMF problem.

Both the PUMF and the NPUMF problems are generic problems, that might not be
applicable to real life problems by itself. However, they have fundamental characteristics
that can be identified in other more complex problems, in e.g. telecommunications and
transportation. As such, the study described in this chapter is essential, in order to
have a better understanding of how to model piecewise linear functions, in the context
of single-path routing. In the next chapter, we make use of convex piecewise linear flow
cost functions, in an optimization problem where the objective is to avoid that the edges
of a network implementing the MSTP are heavily loaded.

114



Chapter 5

MSTP: minimization of piecewise
linear flow cost functions

In Chapter 2, we described the TE-MSTP problem, whose aim is to find designs for
networks implementing the MSTP, with low link utilization. In this sense, we considered
the objective of this optimization problem to be the minimization of the worst-case link
utilization. In Chapter 3, we presented the COCMST problem, whose objective is also
to obtain optimal network designs for the MSTP, but with a different objective: the
minimization of the total load. The results of computational experiments revealed some
tendency for this problem to be easier than the TE-MSTP problem. Regardless, it is easy
to understand that the best designs for the COCMST problem can differ significantly
from the best designs of the TE-MSTP problem. Whereas for the TE-MSTP problem,
the tendency is for the VLANs and their respective flows to be spread among all the
links in the network; in the COCMST problem the tendency is to assign shorter paths
for the “heavier” demands, and leave the longer paths to the “smaller” ones.

In this chapter, we consider a novel network design problem for the MSTP, that
combines characteristics of the TE-MSTP problem and the PUMF problem, studied in
the previous chapter. As such, let us consider an undirected graph G = (N,E), with
edge capacities Ce; a set of VLANs T ; a set of commodities Kt for every t ∈ T , where
for each k ∈ Kt has origin origin ok ∈ N , destination dk ∈ N , and demand ρk; and a
piecewise linear convex load cost function ge for each edge e ∈ E, where each segment

s ∈ Se = {1, 2, ..., |Se|}, is defined by two breakpoints bs−1
e and bse (b

|Se|
e = Ce), a slope

cse and an intercept fse . We denote as the TE for MSTP problem with piecewise linear
costs (TE-MSTP-p) to the problem of finding a design for all VLANs t ∈ T , such that:

• the topology of each VLAN is a spanning tree;

• all given traffic demands in a VLAN are routed;

• the sum of the cost given by the piecewise linear load cost function of each edge,
is minimized.

115



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

We believe that this problem might be a valid alternative to the TE-MSTP problem,
in the sense that it also favours solutions with low link utilization. However, we can
expect some difference between the solutions of both problems. While for the TE-MSTP
problem the sole focus is in the minimization of the “most used” link utilization, for the
TE-MSTP-p problem the objective is to have an overall low link utilization.

It is easy to see that this problem too is NP-hard (reduction from the OCST prob-
lem). In Section 5.1 we present two MIP formulations, based on models proposed in the
previous chapters for the TE-MSTP and PUMF problems. In Section 5.2, computational
experiments are analyzed, in order to compare the performance of both formulations,
and in order to compare the designs obtained by the TE-MSTP and the TE-MSTP-p
problems. In Section 5.3, we propose a B&C algorithm for this problem. Finally, in
Section 5.4 we draw conclusions.

5.1 Problem formulation

In this section, we propose two MIP formulations for the TE-MSTP-p problem. These
models are combinations of the models that we proposed for the TE-MSTP problem
(see Section 2.2) and PUMF problem (see Section 4.2). Note that many combinations
are possible. However we focus on two models that we believe have more potential to
perform well.

Let us consider the three main components of the TE-MSTP-p problem:

Sub-problem 1: Designing spanning trees;

Sub-problem 2: Routing the traffic demands;

Sub-problem 3: Pricing the edge loads.

Sub-problem 1 and 2 are common to the TE-MSTP problem, and were studied back
in Section 2.2. One proposal included adapting Kipp Martin’s formulation for the MST
problem to design multiple spanning trees, while using multicommodity flow variables
to route the traffic demands. This combination resulted in the RDMFM, and both
the polyhedral studies in Section 2.3 and the analysis of computational experiments in
Section 2.4 implied that it is the most promising. For the sake of completeness, we
repeat these models in Formulation 5.1 and 5.2. In order to link these two models, we
use the linking constraints in Formulation 5.3.

In order to solve the third sub-problem, we look into the models proposed in the
previous chapter, for the PUMF problem (see Section 4.2). Let us recall BM2, that
proved to be efficient in solving instances of test set T2 (see Section 4.3.3). Sub-problem
3 can be modeled, adapting BM2 to the multiple VLANs case, as seen in Formulation
5.4. We combine these models into a single one that solves the TE-MSTP-p, the Basic
RDMFM (B-RDMFM); the objective function in this model is (5.5).

We have also proposed a strengthened formulation for the PUMF problem, that
obtained very tight LP bounds in the computational experiments (see Section 4.3). In

116



5.1 Problem formulation

∑
a∈δ−(j)

zuta = 1, u, j ∈ N : u 6= j, t ∈ T (5.1a)

zutij + zutji = wte, u ∈ N, e = {i, j} ∈ E, t ∈ T (5.1b)

zutij ∈ {0, 1}, u ∈ N, (i, j) ∈ A : j 6= u, t ∈ T (5.1c)

wte ∈ {0, 1}, e ∈ E, t ∈ T (5.1d)

Formulation 5.1: TE-MSTP-p SP1: rooted directed formulation.

∑
a∈δ+(i)

xtka −
∑

a∈δ−(i)

xtka = λki , i ∈ N, t ∈ T, k ∈ Kt (5.2a)

xtka ∈ {0, 1}, a ∈ A, t ∈ T, k ∈ Kt (5.2b)

Formulation 5.2: TE-MSTP-p SP2: multicommodity flow formulation.

xtkij ≤ zutij , (i, j) ∈ A, u ∈ N, t ∈ T, k ∈ Kt : ok = u (5.3a)

xtkij ≤ zvtji , (i, j) ∈ A, v ∈ N, t ∈ T, k ∈ Kt : dk = v (5.3b)

Formulation 5.3: TE-MSTP-p problem: linking constraints between SP1 and SP2.

ge ≥ f se + cse
∑
t∈T

∑
k∈Kt

ρk(xtkij + xtkji ), e = {i, j} ∈ E, s ∈ Se (5.4a)

ge ≥ 0, e ∈ E (5.4b)

Formulation 5.4: TE-MSTP-p SP3: “basic” formulation.

min
∑
e∈E

ge (5.5)

Formulation 5.5: TE-MSTP-p problem: “basic” objective function.

this formulation we disaggregate the x variables, such that it also contains the s index.
We can substitute xtka , a ∈ A, t ∈ T, k ∈ Kt in Formulations 5.2 and 5.3 by

∑
s∈Sa x

tks
a ,

where Sa = Se if e = {i, j} ∈ E and a = (i, j) or a = (j, i); this is shown in Formulations
5.6 and 5.7, respectively. Finally, Sub-problem 3 is modelled as seen in Formulation 5.8,
by adapting the strong valid inequalities of SM to multiple VLANs. We can also consider

117



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

the set of valid inequalities (5.9), that link Sub-problems 1 and 3, by connecting the w
and the y variables; empirical evidence reveals that they tend to improve the bound given
by the LP relaxation. We combine these models to solve the TE-MSTP-p problem; the
resulting formulation is denominated as Strengthened RDMFM (S-RDMFM). Table 5.1
summarizes the composition of both B-RDMFM and S-RDMFM.

∑
a∈δ+(i)

∑
s∈Sa

xtksa −
∑

a∈δ−(i)

∑
s∈Sa

xtksa = λki , i ∈ N, t ∈ T, k ∈ Kt (5.6a)

xtksa ∈ {0, 1}, a ∈ A, s ∈ Sa, t ∈ T, k ∈ Kt (5.6b)

Formulation 5.6: TE-MSTP-p SP2: disaggregated multicommodity flow formulation.

∑
s∈Sa

xtksa ≤ zutij , (i, j) ∈ A, u ∈ N, t ∈ T, k ∈ Kt : ok = u (5.7a)

∑
s∈Sa

xtksa ≤ zvtji , (i, j) ∈ A, v ∈ N, t ∈ T, k ∈ Kt : dk = v (5.7b)

Formulation 5.7: TE-MSTP-p problem: disaggregated linking constraints between SP1
and SP2.

∑
s∈Se

yse ≤ 1, e ∈ E (5.8a)

bs−1
e yse ≤

∑
t∈T

∑
k∈Kt

min(ρk, bs−1
e )(xtksij + xtksji ), e = {i, j} ∈ E, s ∈ Se (5.8b)

bsey
s
e ≥

∑
t∈T

∑
k∈Kt

ρk(xtksij + xtksji ), e = {i, j} ∈ E, s ∈ Se (5.8c)

xtksa ∈ {0, 1}, a ∈ A, t ∈ T, k ∈ Kt, s ∈ Sa : bsa ≥ ρk (5.8d)

yse ∈ {0, 1}, e ∈ E, s ∈ Se (5.8e)

Formulation 5.8: TE-MSTP-p SP3: multiple choice formulation.

118



5.2 Computational experiments

∑
t∈T

wte ≥
∑
s∈Se

yse, e ∈ E (5.9)

Formulation 5.9: TE-MSTP-p problem: disaggregated linking constraints between SP1
and SP3.

min
∑

e={i,j}∈E

∑
s∈Se

(
f se y

s
e + cse

∑
k∈K

ρk(xksij + xksji )

)
(5.10)

Formulation 5.10: TE-MSTP-p problem: disaggregated objective function.

Model Variables Obj SP1 SP2 Link1,2 SP3 Link1,3

B-RDMF {zuta , wte, xtka , ge} (5.5) (5.1a-5.1c) (5.2a-5.2b) (5.3a-5.3b) (5.4a-5.4b) -

S-RDMF {zuta , wte, xtksa , yse} (5.10) (5.1a-5.1c) (5.6a-5.6b) (5.7a-5.7b) (5.8a-5.8e) (5.9)

Table 5.1: TE-MSTP-p problem: composition of each complete formulation.

Let us consider the LP relaxation of B-RDMFM and S-RDMFM, and let g∗B and g∗S
be respectively the cost of the optimal solutions of those relaxations. It is obvious from
the studies in the previous chapter that g∗S ≥ g∗B.

5.2 Computational experiments

In this section, we discuss the results of the computational experiments described in
Tables G.1 to G.3, in Appendix G. These tests were made in order to evaluate the
performance of B-RDMFM and S-RDMFM in solving the TE-MSTP-p problem. All
the tests were performed on a Intel Core i7 CPU 960 @ 3.20GHz (x8) with 12GB of
memory with 64 bits, and running Ubuntu 14.04.2 LTS (GNU/Linux 3.2.0−26−generic
x86 64). The tests were done using the MIP solver ILOG CPLEX 12.6, implemented in
Java programming language. We only allow CPLEX to use one thread of the machine’s
processor.

For these tests, we adapted instances of test sets Trand and T3tc; more information
regarding these instances can be found in Section 2.4.1. For every instance in these test
sets, we assigned to each edge a convex piecewise linear cost function. These functions
have 7 segments, with breakpoints {0, 1

10Ce,
3
10Ce,

1
2Ce,

7
10Ce, Ce,∞}, where Ce is the

capacity of the respective edge. The slopes for each segment are respectively 1, 3, 10,
70, 500, 5000.

119



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

5.2.1 Analysis of the results of test set Trand

In this section, we analyze the results of our models to solve instances of Trand, described
in Tables G.1 and G.2, in Appendix G. Figure 5.1 depicts the performance profile of the
GapLP . In it, we can observe that the lower bounds obtained by the LP relaxation
of S-RDMFM are better than the ones obtained by the LP relaxation of B-RDMFM.
Also, note that CPLEX is unable to improve this lower bound in the root node, via its
automatically generated cuts. Nevertheless, this is not sufficient to make the stronger
model more efficient. The MIP solving time performance profile in Figure 5.2 clearly
identifies B-RDMFM as the faster model, when implemented in CPLEX: while with
S-RDMFM we are only able to solve 62% of the instances in the time limit of one hour,
with the former we are able to solve 76%. This is probably explained by the solving times
of the LP, which are shorter for B-RDMFM (see Figure 5.3). Regarding the number of
B&B nodes, whose performance profile can be seen in Figure 5.4, no model seems to
clearly out-perform the other.

In the performance profiles of Figures 5.1 to 5.3, we also include the results for the
RDMFM, the most efficient model for the TE-MSTP problem (see Section 2.4 for a
complete analysis of the results). Note, that these results might differ from the ones
presented in Section 2.4, as we re-ran the tests, only allowing CPLEX to use one thread
of the machine’s processor. Figure 5.2 shows that for “harder” instances, the MIP of
RDMFM are faster to solve than the MIP inferred by the models for the TE-MSTP-
p. This is clearly a result of the greater efficient in solving RDMFM’s LPs, as the LP
gaps actually tend to be larger for this model than for B-RDMFM and S-RDMFM.
In Tables G.1 and G.2 we also compare the worst-case edge utilization observed in
the optimal solutions of the TE-MSTP-p problem, with the minimal worst-case edge
utilization calculated via solving the TE-MSTP problem. We see that the results are
rather mixed, with the average relative difference being of 12%.

5.2.2 Analysis of the results of test set T3tc

In this section, we analyze the results of our models to solve instances of T3tc. Figure 5.5
depicts the performance profile of the GapLP . It shows that for most instances, the LP
bounds obtained by the relaxation of B-RDMFM are the same as the ones obtained for
S-RDMFM. As such, and given that i) the LPs of B-RDMFM are faster to solve than
the ones of S-RDMFM (see Figure 5.7) and ii) the B&B trees of B-RDMFM are smaller
than the ones of S-RDMFM (see Figure 5.8), it is natural that B-RDMFM is the most
efficient model in obtaining optimal solutions to the TE-MSTP-p problem, as can be
observed in Figure 5.6.

When comparing the results of the TE-MSTP-p problem and the TE-MSTP problem,
we observe that the efficiency of solving the LPs of B-RDMFM, for instances of T3tc, is
comparable to the one of solving the LPs of RDMFM (see Figure 5.7). However, the
MIPs of RDMFM are much faster to solve than the ones of B-RDMFM (see Figure 5.6).
Regarding the GapLP , we can observe that even though there are many more instances
that have gap 0 with RDMFM than with B-RDMFM and S-RDMFM, the worst observed

120



5.2 Computational experiments

GapLP is larger for the former.
Finally, in Table G.3, we present the relative difference between the worst-case edge

utilization of the optimal solutions of the TE-MSTP-p problem, and the minimal one,
calculated by solving the TE-MSTP problem. The average relative difference is of 9%,
slightly lower than for instances of Trand.

121



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

10

20

30

40

50

60

70

80

90

100

GapLP (%)

%
o
f

in
st

a
n
c
e
s

RDMFM

B-RDMFM

S-RDMFM

Figure 5.1: TE-MSTP-p, Trand: performance profile of the GapLP (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDMFM

B-RDMFM

S-RDMFM

Figure 5.2: TE-MSTP-p, Trand: performance profile of the MIP solving time (s).

1 5

7
.5 1
0

1
5

2
0

3
0

4
0

5
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDMFM

B-RDMFM

S-RDMFM

Figure 5.3: TE-MSTP-p, Trand: performance profile of the LP solving time (s).

122



5.2 Computational experiments

1
0

1
0
0

1
0
0
0

1
0
0
0
0

10

20

30

40

50

60

70

80

90

100

nodes

%
o
f

in
st

a
n
c
e
s

B-RDMFM

B-RDMFM

Figure 5.4: TE-MSTP-p, Trand: performance profile of the B&B tree nodes.

5

1
0

1
5

2
0

2
5

3
0

3
5

10

20

30

40

50

60

70

80

90

100

GapLP (%)

%
o
f

in
st

a
n
c
e
s

RDMFM

B-RDMFM

S-RDMFM

Figure 5.5: TE-MSTP-p, T3tc: performance profile of GapLP (%).

1 5

1
0

5
0

1
0
0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
6
0
0

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDMFM

B-RDMFM

S-RDMFM

Figure 5.6: TE-MSTP-p, T3tc: performance profile of the MIP solving time (s).

123



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

1 5

7
.5 1
0

1
5

2
0

3
0

4
0

5
0

1
0
0

1
5
0

2
0
0

2
2
5

10

20

30

40

50

60

70

80

90

100

time (s)

%
o
f

in
st

a
n
c
e
s

RDMFM

B-RDMFM

S-RDMFM

Figure 5.7: TE-MSTP-p, T3tc: performance profile of the LP solving time (s).

1
0

1
0
0

1
0
0
0

1
0
0
0
0

10

20

30

40

50

60

70

80

90

100

nodes

%
o
f

in
st

a
n
c
e
s

RDMFM

RDMFM

RDMFM

Figure 5.8: TE-MSTP-p, T3tc: performance profile of the B&B tree nodes.

124



5.3 B&C algorithm

5.3 B&C algorithm

In this section, we propose a B&C algorithm for the TE-MSTP-p problem. In this
algorithm, we make use of a Benders’ decomposition of our strongest formulation, S-
RDMFM. In Section 5.3.1, we describe the proposed Benders’ decomposition. In Section
5.3.2, we analyze the performance of the B&C algorithm in solving instances of the TE-
MSTP-p problem.

5.3.1 Benders’ decomposition

Let us consider z̄ and w̄, a feasible assignment of variables z and w, such that they
design a spanning tree for each VLAN. We define the slave problem of S-RDMFM
in Formulation 5.11, S-RDMFMLP , that routes the demands in each VLAN on the
aforementioned trees, and calculates the cost of the corresponding solution. Formulation
5.12 represents the dual model of S-RDMFMLP : variables α, γ, ζ, η, θ, ξ and σ are linked
to constraints (5.11b), (5.11c), (5.11d), (5.11e), (5.11f), (5.11g), (5.11h), respectively;
whereas dual constraints (5.12b) and (5.12c) correspond to variables x and y respectively.

Solving S-RDMFMD for different fixings of z and w, yields a Benders’ cut βz̄,w̄(w, z),
that we iteratively add to the master problem S-RDMFMM , following the Benders’
method described in Algorithm 1.1, in Section 1.6. Let us define ᾱ =

∑
t∈T
∑

k∈Kt αtkok−
αtkdk and η̄ =

∑
e∈E ηe. βz̄,w̄(w, z) will be of the form −

∑
t∈T [

∑
k∈Kt

∑
(i,j)∈A(γ̄ktij z

okt
ij +

ζ̄ktij z
dkt
ji )−

∑
e∈E σ̄ew

t
e] + ᾱ− η̄.

5.3.2 Computational experiments for the B&C algorithm

We implemented the Benders’ decomposition described in the previous section on a B&C
framework, in the same way as it was done for the TE-MSTP and PUMF problems (see
Sections 2.5.2 and 4.4.2 respectively). In order to generate a feasible solution that serves
as a stabilizing point in the in-out cut loop, we use Algorithm 4.1, described in Section
2.5.2.

We tested this algorithm with instances of test sets Trand and T3tc; the results are
described in Tables G.4 and G.5 in Appendix G. These results clearly indicate that
the proposed algorithm is not an efficient alternative to simply solving the models in
CPLEX. As it was the case for the B&C algorithm proposed for the TE-MSTP problem,
the Benders’ cuts seem to be weak which means that often we are unable to increase
this lower bound at all, in the one hour time limit. And also likewise the slave problem
for the TE-MSTP, the slave problem defined by Formulation 5.12 is not decomposable,
which means that solving each cut is not sufficiently quick to make up for it.

125



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

min
∑

e={i,j}∈E

∑
s∈Se

(fse y
s
e + cse

∑
k∈K

ρk(xksij + xksji )) (5.11a)

∑
a∈δ+(i)

∑
s∈Sa

xtksa −
∑

a∈δ−(i)

∑
s∈Sa

xtksa = λki , i ∈ N, t ∈ T, k ∈ Kt (5.11b)

−
∑
s∈Sa

xtksa ≥ −z̄utij , (i, j) ∈ A, u ∈ N, t ∈ T, k ∈ Kt : ok = u (5.11c)

−
∑
s∈Sa

xtksa ≥ −z̄vtji , (i, j) ∈ A, v ∈ N, t ∈ T, k ∈ Kt : dk = v (5.11d)

−
∑
s∈Se

yse ≥ −1, e ∈ E (5.11e)

−bs−1
e yse +

∑
t∈T

∑
k∈Kt

min(ρk, bs−1
e )(xtksij + xtksji ) ≥ 0, e ∈ E, s ∈ Se (5.11f)

bsey
s
e −

∑
t∈T

∑
k∈Kt

ρk(xtksij + xtksji ) ≥ 0, e ∈ E, s ∈ Se (5.11g)

−
∑
s∈Se

yse ≥ −
∑
t∈T

w̄te, e ∈ E (5.11h)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa : bsa ≥ ρk (5.11i)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa (5.11j)

Formulation 5.11: TE-MSTP-p problem: S-RDMFMLP (z̄utij , w̄
e).

min
∑
t∈T

∑
k∈Kt

[αtkok − α
tk
dk
−
∑

(i,j)∈A

(z̄oktij γ
kt
ij + z̄dktji ζ

kt
ij )]−

∑
e∈E

[ηe −
∑
t∈T

w̄teσe] (5.12a)

αtki − αtkj − γkta − ζkta + min{ρk, bs−1
e }θs{i,j} − ρ

kξse ≤ cs{i,j}ρ
k,

a = (i, j) ∈ A, s ∈ Sa, t ∈ T, k ∈ Kt : bsa ≥ ρk (5.12b)

− ηe − bs−1
e θse + bseξ

s
e − θe ≤ fse , e ∈ E, s ∈ Se (5.12c)

γkta , ζ
kt
a ≥ 0, a ∈ A, t ∈ T, k ∈ Kt (5.12d)

ηe, σe ≥ 0, e ∈ E (5.12e)

θse, ξ
s
e ≥ 0, e ∈ E, s ∈ Se (5.12f)

Formulation 5.12: TE-MSTP-p problem: S-RDMFMD(z̄utij , w̄
e).

126



5.4 Summary and remarks

min Ψ (5.13a)∑
a∈δ−(j)

zuta = 1, u, j ∈ N : u 6= j, t ∈ T (5.13b)

zutij + zutji = wte, u ∈ N, e = {i, j} ∈ E, t ∈ T (5.13c)

Ψ ≥ βz̄k′ ,w̄k′ (w, z), k′ = 1...k (5.13d)

zutij ∈ {0, 1}, u ∈ N, (i, j) ∈ A : j 6= u, t ∈ T (5.13e)

wte ∈ {0, 1}, e ∈ E, t ∈ T (5.13f)

Ψ ≥ 0 (5.13g)

Formulation 5.13: TE-MSTP-p: S-RDMFMk
M .

5.4 Summary and remarks

In this chapter, we considered another optimization problem, dealing with the design of
networks implementing the MSTP, the TE-MSTP-p problem. In this problem, we make
use of convex piecewise linear flow cost functions, in order to penalize heavily loaded
edges. We were interested in investigating i) how similar are the optimal designs for
this problem when compared to the ones obtained for the TE-MSTP problem, and ii)
whether, given the good results obtained for the PUMF problem, this problem was easier
to solve than the TE-MSTP problem.

To model the TE-MSTP-p problem, we proposed two MIP formulations, B-RDMFM
and S-RDMFM, which are based on the combination of the most promising models
previously proposed for the TE-MSTP and the PUMF problems. We tested the perfor-
mance of these models, by adapting the instances of test sets Trand and T3tc, presented in
Section 2.4.1. Even though these models obtain lower values for GapLP , than RDMFM
obtained for the TE-MSTP problem, the TE-MSTP-p problem appears to take longer to
be solved. This is probably explained by the large LPs of B-RDMFM and S-RMDFM.
It is also interesting to note that the optimal solutions for the TE-MSTP-p somewhat
differ from the ones obtained for the TE-MSTP problem: the average gap between the
worst-case edge utilization observed in the solutions of the former, and the minimal one,
calculated by solving the TE-MSTP problem is of 12% for instances of Trand and of
9% for instances of T3tc. One question that remains open, and it would interesting to
investigate, is how the average edge utilization of the solutions of both problems relate.

In an attempt to counterweight the effect of the large LPs, we propose a B&C algo-
rithm based on the Benders’ decomposition of S-RDMFM. Unfortunately, this algorithm
did not prove to be efficient, in solving the TE-MSTP-p problem.

The aforementioned results seem to imply that the bottleneck verified by solving
network optimization problems dealing with multiple spanning trees is not in the type
of objective function, but rather on the juxtaposition of these topologies and their share
of common physical resources.

127



5. MSTP: MINIMIZATION OF PIECEWISE LINEAR FLOW COST
FUNCTIONS

128



Chapter 6

Conclusion

In this thesis, we studied different network optimization problems, with single-path
routing. In this type of routing, the entire flow associated with a given commodity must
be relayed throughout the network over an unique path; i.e., the flow cannot be ”split” at
any node. This type of routing is a common choice, as it tends to be a “cheaper” option
than the alternative - multipath routing. Namely, online service providers enforce this
type of routing in their large networks, by resorting to network management standards
such as the MSTP [80206]. This protocol allows for the installation of many virtual
networks over a single physical network. At the same time, the MSTP defines the
topology of each VLAN as a spanning tree, therefore ensuring the compliance of the
STP. Further information on these switching protocols can be found in the first sections
of Chapter 1.

In this sense, we targeted our attention to optimization problems, whose aim is to
find the best design for networks satisfying the MSTP, according to different performance
metrics. These problems are highly combinatorial and often very hard to solve. This
helps explain why the large majority of the contributions to the MSTP-related literature
are on heuristic methods, that try to quickly create good solutions to the corresponding
optimization problems. Regardless of the efficiency of these heuristics, network service
providers can benefit from exact methods, which are able to provide provably optimal
solutions, or at the very least yield lower bounds to the optimal values, that give some
insight on the quality of the solutions given by the existing heuristics. The main con-
tribution of our work is to fill this gap in the literature, by proposing mathematical
programming formulations and exact methods for TE problems dealing with single-path
routing, namely the one enforced by the MSTP.

In Chapter 2, we considered one first such problem, the TE-MSTP problem. In this
problem, we must design networks implementing the MSTP, and route the different traf-
fic demands, such that the worst-case edge utilization is minimized. We proposed three
different MIP formulations, based on different strategies to model spanning trees and
flow routing. A polyhedral study, complemented by an extensive array of computational
experiments, have lead us to conclude that RDMFM is the most promising formulation.
The LP relaxation of RDMFM yields the best lower bounds; and when implemented in

129



6. CONCLUSION

CPLEX, RDMFM tends to be the fastest model to solve our instances to optimality.
The results of the computational experiments also emphasize the difficulty of solving the
TE-MSTP problem to optimality, even for relatively small instances. This is not entirely
unexpected, as the problem belongs to the NP-hard complexity class of problems. The
aforementioned difficulty is evidenced empirically not only by the lengthy computation
times, but also by the often weak LP relaxations.

This lead us to develop two alternative methods to solve the TE-MSTP problem.
The first was a B&C algorithm, based on the Benders’ decomposition of RDMFM.
Unfortunately, this method proved to be more inefficient than simply solving RDMFM
with CPLEX - further on, we discuss potential reasons as for why. The second proposed
method is a binary search algorithm, that iteratively solves “easier” sub-problems, in
order to converge to a near-optimal solution for the TE-MSTP problem. This method
engendered a comprehensive study of said sub-problems, the COCMST problem, in
Chapter 3. This algorithm takes advantage of the fact that any feasible solution for
the COCMST problem, is also feasible for the TE-MSTP problem, with a guaranteed
worst-case edge utilization. Our computational experiments show that this method
can be particularly useful to network service providers who seek, not necessarily the
optimal solution, but one whose quality is provably “good”. One interesting future
research direction would be to improve on this method, namely by integrating it with
fast heuristics that can quickly lower the upper bounds.

The difficulty mentioned above also lead us to look at another similar optimization
problem, whose optimal designs may be akin to the ones of the TE-MSTP problem. This
problem, the TE-MSTP-p problem, makes use of convex S-RDMFM functions to avoid
heavy congested edges. In order to have a more complete understanding of how to model
this type of cost functions, in Chapter 4, we first studied a more generic multicommodity
flow problem, with single-path routing and S-RDMFM flow cost functions. We proposed,
among other MIP formulations, a strengthened formulation, SM, whose linear relaxation
always gives the optimal solution in the single commodity case of the PUMF problem.
Furthermore, our computational experiments showed that SM also produces very tight
LP bounds for the multi-commodity case.

Nonetheless, SM makes use of a larger number of variables than our other weaker
models; as such, for some hard instances, the LPs of SM might be quite slower to solve,
which also translates in larger MIP solving times. Therefore, as we had done before for
the TE-MSTP problem, we resorted to a Benders’ decomposition method in an attempt
to reduce to LP solving time of SM, and thus have a more efficient method to solve the
PUMF problem. However, once again, the corresponding B&C algorithm was shown not
to be an efficient alternative method. The inefficiency of this method, in addition to the
inefficiency of similar methods proposed for the TE-MSTP and TE-MSTP-p problems,
begets a larger discussion regarding the use of Benders’ decomposition methods in B&C
frameworks.

As it had been suggested in Section 1.6, when we first introduced the Benders’
decomposition method, the efficiency of the latter is very much problem dependent.
Namely, an essential factor to make a Benders’ decomposition work for a given problem,

130



is the ability of one to profit from the structure of the slave problem. Take, for instance,
the uncapacitated facility problem, whose Benders’ decomposition of the standard MIP
model is a quintessential example of this [CP08][Mar12]. The standard formulation
defines two binary variables: one that indicates whether or not a given facility should
be open, and another one that assigns each costumer to a facility. Note that once
we fix the set of facilities to be opened, the costumer allocation sub-problem becomes
simple: we supply a costumer’s full demand from the facility which provides it at a
cheaper cost. Kipp Martin then shows how to translate this allocation to the solution of
the corresponding dual slave problem, which finally yields the Benders’ optimality cut.
Furthermore, note that the allocation of a costumer is independent from the allocation
of other costumers. Therefore, another important characteristic that is explored in this
example is the decomposability of the slave problem. In general, this can result in
significant speed-ups to the overall Benders’ decomposition method solving time.

A key feature of this problem, that yields such a convenient structure, is the fact that
it is uncapacitated. Conversely, the problems considered in this thesis, all have, in one
sense or another, capacities on the traffic flows traversing the edges/arcs. This means
that whenever we fix the design variables of these problems, the resulting sub-problems
are still hard capacitated routing problems, that cannot be decomposed. Moreover, they
are often infeasible problems, whose corresponding dual slave solution is not easy to infer,
as in the case of the uncapacitated facility problem. These reasons can help explain the
poor performance of the B&C algorithms proposed in this thesis, even when combined
with state-of-the-art techniques such as the cut loop stabilization.

Alternatively, we can fix the routing of the commodities in the Benders’ master
problem. As discussed at the end of Section 2.5.1, and in Section 4.4.1, this can even
translate in decomposable slave problems. However, in this situation, the number of
integer variables in the master problems would not be significantly smaller than in the
original models, as for all of them, the flow variables are always in larger quantity than
any other type of variable.

The aforementioned issues point to the need of more suitable decomposition methods
and/or techniques for capacitated network design problems. In Section 4.5.2, we discuss
a situation where a “clever” implementation of the Benders’ decomposition method
allowed us to infer another strong model for the PUMF problem. To this effect, we use
Benders’ decomposition to project the strong valid inequalities of SM onto the space of
variables of BM1. By observing the resulting Benders’ cuts, we were able to identify
classes of strong valid inequalities for BM1, that highly improve its LP bounds; we
name SAM to the formulation resulting from the combination of both. Preliminary
tests showed that for every instance in the proposed test sets, SAM obtains the same
LP bound as SM. However they also reveal that, despite having less variables, SAM is
slower to solve than SM; this is explained by the large quantity of valid inequalities.
In the future, we would like to further study this model, and try to prove whether or
not SAM and SM are equivalent formulations. Moreover, we would like to explore the
use of row generation methods, that could profit from the strong valid inequalities of
SAM, without the drawback of the large LPs. Namely, a valid option could be a Benders

131



6. CONCLUSION

decomposition of SAM, where only the aggregated x-variables are kept in the master.
Another interesting future research direction, would be to integrate SM and SAM in

models used to solve other more complex multicommodity flow problems with single-path
routing and piecewise linear costs. In Chapter 5, we combine the most promising for-
mulations for the TE-MSTP and for the PUMF problems, to model the aforementioned
TE-MSTP-p problem. However, other problems, such as the ones in [PF14b, PF14a],
could benefit from doing the same.

Our computational experiments with instances of the TE-MSTP-p problem show
that we are not able to capitalize on the good results of the PUMF problem - solving
the TE-MSTP-p problems tends to be even harder than solving the TE-MSTP problem.
The reasons for this differ for the two used test sets: for one test set, the better GapLP
values obtained for the TE-MSTP-p problem are not sufficiently good to counter-weight
the impact of the large LP solving time; for the other, the GapLP values are generally
better for the TE-MSTP problem. This implies that the bottleneck for optimization
problems for networks with the MSTP is not so much in the type of objective function,
but rather on the design of juxtaposed multiple spanning trees, that share edge capacities
or routing costs.

This important observation should been seen as a starting point for related future
research: in order to be able to optimally solve problems dealing with the MSTP more
efficiently, it is vital to develop models or methods that somehow circumvent this. In the
meantime, we believe that the models and methods proposed in this thesis can provide
a long-missing benchmark for evaluating the quality of other state-of-the-art heuristic
methods.

132



References

[80298] IEEE Standard for Information Technology- Telecommunications and Information
Exchange Between Systems- Local and Metropolitan Area Networks- Common
Specifications Part 3: Media Access Control (MAC) Bridges. ANSI/IEEE Std
802.1D, 1998 Edition, pages i–355, 1998.

[80202] IEEE Standards for Local and Metropolitan Area Networks— Virtual Bridged Local
Area Networks— Amendment 3: Multiple Spanning Trees. IEEE Std 802.1s-2002
(Amendment to IEEE Std 802.1Q, 1998 Edition), pages 0 1–211, 2002.

[80206] IEEE Standard for Local and Metropolitan Area Networks Virtual Bridged Local
Area Networks. IEEE Std 802.1Q-2005 (Incorporates IEEE Std 802.1Q1998, IEEE
Std 802.1u-2001, IEEE Std 802.1v-2001, and IEEE Std 802.1s-2002), pages 0 1–
285, 2006.

[AdC03] Filipe Alvelos and JM Valério de Carvalho. Comparing branch-and-price algorithms
for the unsplittable multicommodity flow problem. In International Network Opti-
mization Conference, pages 7–12, 2003.

[BAM10] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic charac-
teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280. ACM, 2010.

[Ben62] Jacques F Benders. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische mathematik, 4(1):238–252, 1962.

[BFGP13] Quentin Botton, Bernard Fortz, Luis Gouveia, and Michael Poss. Benders decom-
position for the hop-constrained survivable network design problem. INFORMS
journal on computing, 25(1):13–26, 2013.

[BG89] Anantharam Balakrishnan and Stephen C Graves. A composite algorithm for a
concave-cost network flow problem. Networks, 19(2):175–202, 1989.

[BHV00] Cynthia Barnhart, Christopher A Hane, and Pamela H Vance. Using branch-and-
price-and-cut to solve origin-destination integer multicommodity flow problems. Op-
erations Research, 48(2):318–326, 2000.

[BJN+98] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh,
and Pamela H Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations research, 46(3):316–329, 1998.

133



REFERENCES

[BMW89] Anantaram Balakrishnan, Thomas L Magnanti, and Richard T Wong. A dual-
ascent procedure for large-scale uncapacitated network design. Operations Research,
37(5):716–740, 1989.

[BSL06] S. Balon, F. Skivée, and G. Leduc. How well do traffic engineering objective func-
tions meet TE requirements? In Proceedings of IFIP Networking 2006, Coimbra,
volume 3976. Springer LNCS, May 2006.

[CFM10] Ivan Contreras, Elena Fernández, and Alfredo Maŕın. Lagrangean bounds for the
optimum communication spanning tree problem. Top, 18(1):140–157, 2010.

[CGM03] Keely L Croxton, Bernard Gendron, and Thomas L Magnanti. A comparison of
mixed-integer programming models for nonconvex piecewise linear cost minimiza-
tion problems. Management Science, 49(9):1268–1273, 2003.

[CGM07] Keely L Croxton, Bernard Gendron, and Thomas L Magnanti. Variable disaggre-
gation in network flow problems with piecewise linear costs. Operations research,
55(1):146–157, 2007.

[CJZ06] Wentao Chen, Depeng Jin, and Lieguang Zeng. Design of Multiple Spanning Trees
for Traffic Engineering in Metro Ethernet. In 2006 International Conference on
Communication Technology, pages 1–4. IEEE, 2006.

[CKM05] Tibor Cinkler, András Kern, and István Moldován. Optimized QoS protection
of Ethernet trees. In Design of Reliable Communication Networks, 2005.(DRCN
2005). Proceedings. 5th International Workshop on, pages 8–pp. IEEE, 2005.

[CMK+05] Tibor Cinkler, István Moldován, András Kern, Csaba Lukovszki, and Gyula Sallai.
Optimizing QoS aware Ethernet spanning trees. MSAN 2005, 1:30–34, 2005.

[Con09] Ivan Contreras. Network hub location: models, algorithms, and related problems.
PhD thesis, Universitat Politècnica de Catalunya, 2009.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158. ACM,
1971.

[CP08] Uffe Gram Christensen and Anders Bjerg Pedersen. Lecture note on benders de-
composition, 2008.

[Cre12] Ruth Cremer. Column generation for load balancing in multiple spanning tree
routing. Master’s thesis, RWTH Aachen, 2012.

[dSS07] A. de Sousa and G. Soares. Improving Load Balance and Minimizing Service Dis-
ruption on Ethernet Networks with IEEE 802.1S MSTP. In Workshop on IP QoS
and Traffic Control, pages 25–35, 2007.

[DW60] George B Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

[FL03] Matteo Fischetti and Andrea Lodi. Local branching. Mathematical programming,
98(1-3):23–47, 2003.

134



REFERENCES

[FLMH+13] Elena Fernández, Carlos Luna-Mota, Achim Hildenbrandt, Gerhard Reinelt, and
Stefan Wiesberg. A flow formulation for the optimum communication spanning
tree. Electronic Notes in Discrete Mathematics, 41:85–92, 2013.

[FLS15] Matteo Fischetti, Ivana Ljubic, and Markus Sinnl. Redesigning benders decompo-
sition for large scale facility location. 2015.

[FSZ10] Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. A note on the selection
of benders cuts. Mathematical Programming, 124(1-2):175–182, 2010.

[FT00] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing ospf
weights. In INFOCOM 2000. Nineteenth annual joint conference of the IEEE com-
puter and communications societies. Proceedings. IEEE, volume 2, pages 519–528.
IEEE, 2000.

[FT04] Bernard Fortz and Mikkel Thorup. Increasing internet capacity using local search.
Computational Optimization and Applications, 29(1):13–48, 2004.

[GG14] Bernard Gendron and Luis Gouveia. Reformulations by Discretization for Piecewise
Linear Integer Multicommodity Network Flow Problems. 2014.

[GK77] M. Gerla and L. Kleinrock. Communication nets: stochastic message flow and delay.
25(1):48–60, 1977.

[GK04] Yashar Ganjali and Ali Keshavarzian. Load balancing in ad hoc networks: single-
path routing vs. multi-path routing. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, volume 2, pages
1120–1125. IEEE, 2004.

[GK06] E. Gourdin and O. Klopfenstein. Comparison of different qos-oriented objectives
for multicommodity flow routing optimization. In Proceedings of the International
Conference on Telecommunications (ICT 2006), 2006.

[GPdS11] Lúıs Gouveia, Pedro Patŕıcio, and Amaro de Sousa. Models for optimal survivable
routing with a minimum number of hops: comparing disaggregated with aggregated
models. International Transactions in Operational Research, 18(3):335–358, 2011.

[HDBF11] Trong-Viet Ho, Yves Deville, Olivier Bonaventure, and Pierre Francois. Traffic
engineering for multiple spanning tree protocol in large data centers. In 23rd Inter-
national Teletraffic Congress (ITC), pages 23–30. IEEE, 2011.

[HHLB11] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Proc. of LION-5, page 507523, 2011.

[Ho12] T-V. Ho. Traffic engineering techniques for data center networks. PhD thesis, Ecole
polytechnique de Louvain, Université catholique de Louvain, 2012.

[Hu74] Te C Hu. Optimum communication spanning trees. SIAM Journal on Computing,
3(3):188–195, 1974.

[HZC06] X. He, M. Zhu, and Q. Chu. Traffic Engineering for Metro Ethernet Based on
Multiple Spanning Trees. In International Conference on Networking, International
Conference on Systems and International Conference on Mobile Communications
and Learning Technologies (ICNICONSMCL’06), pages 97–97. IEEE, 2006.

135



REFERENCES

[I+05] Villy B Iversen et al. Teletraffic engineering handbook. ITU-D SG, 2:16, 2005.

[Inf07] Cisco Data Center Infrastructure. 2.5 design guide, cisco systems. Inc, San Jose,
CA, 2007.

[JLK78] David S Johnson, Jan Karel Lenstra, and AHG Kan. The complexity of the network
design problem. Networks, 8(4):279–285, 1978.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[KCR08] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in Seattle: a
scalable Ethernet architecture for large enterprises. In ACM SIGCOMM Computer
Communication Review, volume 38, pages 3–14. ACM, 2008.

[Kle96] Jon M Kleinberg. Single-source unsplittable flow. In Foundations of Computer
Science, 1996. Proceedings., 37th Annual Symposium on, pages 68–77. IEEE, 1996.

[Kru56] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,
1956.

[KSI04] Aleksandar Kolarov, Bhaskar Sengupta, and Atsushi Iwata. Design of multiple
reverse spanning trees in next generation of ethernet-vpns. In Global Telecommu-
nications Conference, 2004. GLOBECOM’04. IEEE, volume 3, pages 1390–1395.
IEEE, 2004.

[Lev73] Leonid A Levin. Universal sequential search problems. Problemy Peredachi Infor-
matsii, 9(3):115–116, 1973.

[LLL15] Steven SW Lee, Kuang-Yi Li, and Chieh-Ching Lin. Modeling and algorithm for
multiple spanning tree provisioning in resilient and load balanced ethernet networks.
Mathematical Problems in Engineering, 2015, 2015.

[LMPM14] Xuan Liu, Sudhir Mohanraj, Micha l Pióro, and Deep Medhi. Multipath routing
from a traffic engineering perspective: How beneficial is it? In Network Protocols
(ICNP), 2014 IEEE 22nd International Conference on, pages 143–154. IEEE, 2014.

[LOP07] Claude Lemaréchal, Adam Ouorou, and Georgios Petrou. A bundle-type algorithm
for routing intelecommunication data networks. Computational Optimization and
Applications, 44(3):385–409, 2007.

[LYD+03] Yujin Lim, Heeyeol Yu, Shirshanka Das, Scott Seongwook Lee, and Mario Gerla.
QoS-aware multiple spanning tree mechanism over a bridged LAN environment.
In GLOBECOM ’03. IEEE Global Telecommunications Conference (IEEE Cat.
No.03CH37489), volume 6, pages 3068–3072. IEEE, 2003.

[Mar91] R. K. Martin. Using separation algorithms to generate mixed integer model refor-
mulations. Operations Research Letters, 10(3):119–128, 1991.

[Mar12] Richard Kipp Martin. Large scale linear and integer optimization: a unified ap-
proach. Springer Science & Business Media, 2012.

[Med06] A. Meddeb. Multiple Spanning Tree Generation and Mapping Algorithms for Car-
rier Class Ethernets. In IEEE Globecom 2006, pages 1–5. IEEE, 2006.

136



REFERENCES

[Med08] Aref Meddeb. Smart spanning tree bridging for carrier ethernets. In Global Telecom-
munications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE,
2008.

[ML97] Herman Michiel and Koen Laevens. Teletraffic engineering in a broad-band era.
Proceedings of the IEEE, 85(12):2007–2033, 1997.

[MSS09] G. Mirjalily, F. A. Sigari, and R. Saadat. Best Multiple Spanning Tree in Metro
Ethernet Networks. In 2009 Second International Conference on Computer and
Electrical Engineering, pages 117–121. IEEE, 2009.

[MW95] Thomas L Magnanti and Laurence A Wolsey. Optimal trees. Handbooks in opera-
tions research and management science, 7:503–615, 1995.

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Boruvka on mini-
mum spanning tree problem translation of both the 1926 papers, comments, history.
Discrete Mathematics, 233(1):3–36, 2001.

[OPTW07] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable
Network Design Library. In Proceedings of the 3rd International Network Opti-
mization Conference (INOC 2007), Spa, Belgium, April 2007. http://sndlib.zib.de,
extended version accepted in Networks, 2009.

[PF14a] D. Papadimitriou and B. Fortz. Methods for time-dependent combined network
design and routing optimization. In IEEE Global Communications Conference,
GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, pages 1303–1309,
2014.

[PF14b] D. Papadimitriou and B. Fortz. Time-dependent combined network design and
routing optimization. In IEEE International Conference on Communications, ICC
2014, Sydney, Australia, June 10-14, 2014, pages 1124–1130, 2014.

[PM04] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communication
and Computer Networks. Morgan Kaufman, 2004.

[PNM+05] M. Padmaraj, S. Nair, M. Marchetti, G. Chiruvolu, M. Ali, and A. Ge. Metro
Ethernet traffic engineering based on optimal multiple spanning trees˜. In Second
IFIP International Conference on Wireless and Optical Communications Networks,
2005. WOCN 2005., pages 568–572. IEEE, 2005.

[Pri57] Robert Clay Prim. Shortest connection networks and some generalizations. Bell
system technical journal, 36(6):1389–1401, 1957.

[Rot08] Franz Rothlauf. Design and Applications of Metaheuristics. PhD thesis, Universität
Mannheim, Habilitationsschrift, 2008.

[RVJ99] S Rüping, E Vonnahme, and J Jasperneite. Analysis of switched Ethernet networks
with different topologies used in automation systems. In Fieldbus Technology, pages
351–358. Springer, 1999.

[SdSA+09] D. Santos, A. de Sousa, F. Alvelos, M. Dzida, M. Pióro, and M. Zagozdzon. Traffic
Engineering of Multiple Spanning Tree Routing Networks : the Load Balancing
Case. In Next Generation Internet Networks, 2009. NGI ’09, pages 1–8, 2009.

137



REFERENCES

[SdSA+10] D. Santos, A. de Sousa, F. Alvelos, M. Dzida, and M. Pióro. Optimization of
link load balancing in multiple spanning tree routing networks. Telecommunication
Systems, 48(1-2):109–124, 2010.

[Tys11] Jeff Tyson. How LAN switches work. URL: http://www.howstuffworks.com/lan-
switch.htm, 2011.

[Wir97] Patricia E Wirth. The role of teletraffic modeling in the new communications
paradigms. Communications Magazine, IEEE, 35(8):86–92, 1997.

[Wol98] Laurence A Wolsey. Integer programming, volume 42. Wiley New York, 1998.

138



Appendices

139





A Computational results for the TE-MSTP problem

A Computational results for the TE-MSTP problem

Key:

• ins. : instance reference;

• LP-time (s) : time it takes to solve the LP relaxation;

• MIP-time (s) : time it takes to solve the (mixed-)integer program;

• B&C-time (s): time it takes to solve the B&C algorithm;

• IO-time (s): time it takes the in-out cut loop stabilization to be processed;

• B∗ : best upper bound found by any of the models;

• B : best upper bound found by each model;

• BLP : lower bound obtained by solving the LP relaxation;

• B0 : lower bound obtained after the root node of the B&B tree has been processed;

• Bend : lower bound obtained after optimization is finished or interrupted;

• Bio : lower bound obtained at the end of the in-out cut loop stabilization;

• GapLP (%) : gap between B∗ and BLP ;

• Gap0(%) : gap between B∗ and B0;

• Gapend(%) : gap between B and Bend;

• Gapio(%) : gap between B∗ and Bio.

• B&B Tree Nodes : number of nodes in the B&B enumeration tree;

• # User cuts: number of Benders’ cuts generated as user cuts (see Section 2.5.2 for
more details);

• # Lazy cons.: number of Benders’ cuts generated as user cuts (see Section 2.5.2
for more details).

141



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
r 0.24 0.1 0.3 0.3 0 1 0 0.24 0.24 0.24 4.2 4.2 4.2 4.2 0.0 4.2 0.0 0.0 0.0 1E+02 6E+01 0E+00

T1−2
r 0.24 0.1 0.5 0.3 2 15 2 0.24 0.24 0.24 12.5 12.5 12.5 12.5 12.5 12.5 0.0 0.0 0.0 4E+02 4E+03 3E+01

T1−3
r 0.16 0.3 1.9 0.5 1225 - 74 0.16 0.21 0.16 54.8 44.7 41.8 44.3 44.7 41.7 0.0 51.1 0.0 2E+04 4E+04 1E+02

T1−4
r 0.45 0.1 0.2 0.2 0 1 1 0.45 0.45 0.45 17.1 17.0 17.0 17.1 17.1 11.6 0.0 0.0 0.0 7E+01 2E+02 4E+01

T1−5
r 0.20 0.1 0.6 0.4 0 1 1 0.20 0.20 0.20 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0.0 8E+01 3E+02 8E+00

T2−1
r 0.47 0.2 0.6 0.6 139 579 96 0.47 0.47 0.47 24.6 10.8 8.5 10.8 9.4 8.4 0.0 0.0 0.0 9E+03 3E+04 3E+03

T2−2
r 0.65 0.1 1.0 0.5 2 186 21 0.65 0.65 0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+02 2E+04 6E+02

T2−3
r 0.34 0.3 2.8 0.9 - - - 0.34 0.48 0.34 12.4 12.4 12.4 12.4 12.4 12.4 11.8 38.0 11.8 3E+04 2E+04 9E+03

T2−4
r 0.63 0.1 0.6 0.4 8 21 2 0.63 0.63 0.63 4.3 4.3 4.3 4.3 4.3 3.6 0.0 0.0 0.0 3E+03 7E+03 6E+02

T2−5
r 0.88 0.1 1.3 0.5 0 1 1 0.88 0.88 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 2E+01 0E+00

T3−1
r 0.19 0.2 1.5 1.0 30 1001 12 0.19 0.19 0.19 10.0 10.0 10.0 6.1 7.1 10.0 0.0 0.0 0.0 1E+03 4E+04 1E+02

T3−2
r 0.32 0.1 0.4 0.4 2 - 2 0.32 0.32 0.32 3.1 3.1 3.1 3.1 3.1 3.1 0.0 3.1 0.0 2E+02 7E+05 7E+00

T3−3
r 0.26 0.2 1.1 0.8 34 640 28 0.26 0.26 0.26 23.1 23.1 23.1 23.1 23.1 23.1 0.0 0.0 0.0 1E+03 2E+04 9E+01

T3−4
r 0.18 0.3 1.2 1.6 252 1712 27 0.18 0.18 0.18 29.6 29.6 29.3 29.6 29.6 29.2 0.0 0.0 0.0 1E+04 8E+04 1E+02

T3−5
r 0.21 0.2 1.1 1.4 37 951 113 0.21 0.21 0.21 35.1 34.6 32.5 35.1 35.1 32.3 0.0 0.0 0.0 1E+03 5E+04 4E+02

T4−1
r 0.16 0.2 1.3 0.4 51 - 112 0.16 0.18 0.16 57.1 54.5 52.8 57.1 56.2 52.7 0.0 40.8 0.0 3E+03 9E+04 4E+02

T4−2
r 0.25 0.2 1.5 0.4 59 2069 38 0.25 0.25 0.25 61.4 59.2 57.2 61.4 59.4 56.7 0.0 0.0 0.0 4E+03 5E+04 1E+02

T4−3
r 0.22 0.1 1.3 0.4 1422 - 37 0.22 0.22 0.22 53.5 53.5 53.5 53.5 53.5 53.5 0.0 21.2 0.0 1E+05 2E+05 3E+02

T4−4
r 0.24 0.1 1.4 0.4 90 2286 15 0.24 0.24 0.24 66.7 64.7 62.9 66.7 65.0 62.8 0.0 0.0 0.0 4E+03 6E+04 1E+01

T4−5
r 0.10 0.2 1.1 0.4 13 - 23 0.10 0.10 0.10 62.4 61.4 58.9 60.0 58.9 46.7 0.0 42.7 0.0 1E+03 8E+04 2E+01

T5−1
r 0.26 0.2 1.5 0.6 3299 - 954 0.26 0.32 0.26 53.1 43.3 40.7 42.8 43.1 40.6 0.0 48.0 0.0 1E+05 3E+04 4E+03

T5−2
r 0.18 0.3 1.4 0.5 470 1225 53 0.18 0.18 0.18 33.3 33.3 33.3 33.3 33.3 33.3 0.0 0.0 0.0 2E+04 3E+04 1E+02

T5−3
r 0.13 0.2 1.5 0.6 1023 - 52 0.13 0.16 0.13 48.2 48.2 46.5 48.2 48.2 46.4 0.0 38.5 0.0 3E+04 4E+04 7E+01

T5−4
r 0.15 0.3 1.2 0.5 230 - 93 0.15 0.20 0.15 35.0 35.0 35.0 35.0 35.0 35.0 0.0 52.3 0.0 5E+03 3E+04 2E+02

T5−5
r 0.18 0.3 1.7 0.5 1913 - 1816 0.18 0.21 0.18 48.7 38.6 34.4 38.5 38.3 34.2 0.0 43.5 0.0 3E+04 6E+04 5E+03

Table A.1: Test results for the TE-MSTP problem: T 1
rand − T 5

rand.

142



A
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
T

E
-M

S
T

P
p

ro
b

le
m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T6−1
r 0.25 0.3 2.3 2.3 189 - 586 0.25 0.25 0.25 52.6 52.6 52.6 52.6 52.6 52.6 0.0 36.8 0.0 5E+03 4E+04 9E+02

T6−2
r 0.36 0.2 1.9 2.5 149 - 306 0.36 0.39 0.36 36.1 36.1 36.1 36.1 36.1 36.1 0.0 41.0 0.0 5E+03 3E+04 5E+02

T6−3
r 0.45 0.2 1.9 2.5 114 3513 164 0.45 0.45 0.45 45.6 45.6 45.6 45.6 45.6 42.5 0.0 0.0 0.0 7E+03 5E+04 7E+01

T6−4
r 0.23 0.2 2.9 4.8 - - 380 0.23 0.24 0.23 62.0 58.5 57.2 62.0 62.0 56.5 20.6 57.9 0.0 2E+05 4E+04 1E+03

T6−5
r 0.30 0.3 2.5 4.6 124 - 301 0.30 0.32 0.30 62.4 60.4 59.1 59.6 62.4 59.1 0.0 59.1 0.0 4E+03 4E+04 3E+02

T7−1
r 0.54 0.3 3.9 1.4 - - 159 0.54 0.54 0.54 15.6 15.6 15.6 15.6 14.8 15.6 4.9 14.8 0.0 3E+05 1E+05 2E+02

T7−2
r 0.48 0.3 6.8 2.0 - - - 0.50 0.60 0.48 36.7 32.8 30.2 32.7 33.5 30.1 32.6 45.9 27.9 1E+04 2E+04 2E+03

T7−3
r 0.33 0.3 7.0 1.7 - - - 0.33 0.36 0.34 41.6 35.5 32.1 35.8 36.2 32.0 33.3 39.9 32.0 2E+04 2E+04 2E+03

T7−4
r 0.40 0.3 7.4 2.0 - - - 0.40 0.49 0.40 42.0 35.2 31.5 42.0 35.5 31.5 40.3 46.6 28.7 3E+04 2E+04 2E+03

T7−5
r 0.52 0.3 12.3 1.7 - - - 0.52 0.64 0.56 28.8 28.0 22.9 28.8 28.8 22.9 21.7 42.2 24.5 3E+04 1E+04 3E+03

T8−1
r 0.56 0.2 1.9 2.5 116 - 65 0.56 0.60 0.56 38.1 38.1 32.8 38.1 38.1 32.8 0.0 19.7 0.0 5E+03 6E+04 9E+01

T8−2
r 0.56 0.2 1.9 2.6 107 647 93 0.56 0.56 0.56 25.0 25.0 25.0 25.0 25.0 25.0 0.0 0.0 0.0 2E+03 5E+03 1E+02

T8−3
r 0.31 0.4 25.9 4.7 - - - 0.31 0.66 0.37 74.2 72.1 70.8 74.2 73.2 70.8 70.5 87.0 66.4 3E+04 7E+03 5E+02

T8−4
r 0.52 0.2 1.5 1.2 2 8 9 0.52 0.52 0.52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1E+02 1E+02 2E+01

T8−5
r 0.54 0.4 15.8 2.6 - - - 0.54 0.60 0.61 70.9 70.7 67.8 68.4 70.9 66.2 66.1 73.8 51.6 1E+04 8E+03 6E+02

T9−1
r 0.85 0.2 4.6 2.2 - - 1039 0.87 0.93 0.85 0.6 0.6 0.6 0.6 0.6 0.6 2.2 9.1 0.0 6E+04 2E+04 4E+03

T9−2
r 0.89 0.3 4.6 2.2 - - 286 0.89 0.98 0.89 5.3 5.3 4.5 5.3 5.3 3.2 3.7 13.7 0.0 5E+04 3E+04 6E+02

T9−3
r 0.75 0.3 3.3 2.5 499 - 788 0.75 0.79 0.75 11.6 10.5 7.5 9.6 11.2 7.2 0.0 16.0 0.0 3E+03 4E+04 2E+03

T9−4
r 0.73 0.3 4.1 2.0 - - - 0.77 0.83 0.73 10.0 10.0 10.0 10.0 10.0 10.0 15.0 20.5 6.8 4E+04 1E+04 3E+03

T9−5
r 0.76 0.2 3.8 2.3 582 - 61 0.76 0.76 0.76 7.9 6.9 5.7 6.7 7.9 4.4 0.0 7.9 0.0 3E+04 5E+04 4E+02

T10−1
r 0.32 0.3 11.7 13.2 - - - 0.32 0.40 0.40 51.8 51.8 51.8 51.8 51.8 51.8 44.3 61.4 46.7 4E+04 1E+04 4E+02

T10−2
r 0.26 0.5 12.1 47.2 - - - 0.26 0.46 0.28 61.5 61.5 61.5 61.5 61.5 61.5 60.4 78.3 42.9 4E+04 7E+03 9E+02

T10−3
r 0.56 0.2 9.2 5.2 - - - 0.56 0.69 0.57 38.1 38.1 38.1 38.1 38.1 38.1 38.1 50.0 39.5 3E+04 3E+04 1E+03

T10−4
r 0.29 0.8 17.7 19.4 - - - 0.29 0.59 0.36 67.0 61.9 59.2 62.6 62.6 59.1 26.4 80.5 62.0 2E+04 1E+04 5E+02

T10−5
r 0.47 0.5 13.5 23.0 - - - 0.47 0.76 0.49 74.5 68.8 66.7 69.1 69.3 66.7 67.0 79.9 56.3 9E+03 6E+03 9E+02

Table A.2: Test results for the TE-MSTP problem: T 6
rand − T 10

rand.

143



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
3tc 0.16 0.2 0.6 0.3 0 0 0 0.16 0.16 0.16 3.2 3.2 3.2 3.2 3.2 3.2 0.0 0.0 0.0 5E+01 4E+01 5E+01

T1−2
3tc 0.21 0.2 0.8 2.2 0 1 1 0.21 0.21 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 1E+01 0E+00

T1−3
3tc 0.18 0.2 0.8 2.3 1 2 1 0.18 0.18 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+01 4E+01 3E+00

T1−4
3tc 0.20 0.2 1.1 2.0 1 1 1 0.20 0.20 0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+02 0E+00 1E+01

T1−5
3tc 0.14 0.2 0.9 2.1 1 7 2 0.14 0.14 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3E+01 5E+02 1E+01

T2−1
3tc 0.16 0.2 3.8 2.7 1 14 4 0.16 0.16 0.16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 4E+02 8E+01

T2−2
3tc 0.35 0.2 1.2 0.5 0 1 1 0.35 0.35 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00

T2−3
3tc 0.31 0.2 1.0 0.7 0 0 1 0.31 0.31 0.31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00

T2−4
3tc 0.35 0.2 2.5 1.9 0 2 1 0.35 0.35 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 1E+01 0E+00

T2−5
3tc 0.19 0.2 2.0 1.1 1 5 2 0.19 0.19 0.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7E+01 7E+01 2E+02

T3−1
3tc 0.24 0.3 12.1 20.5 1 130 25 0.24 0.24 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 4E+03 0E+00

T3−2
3tc 0.20 0.3 8.7 38.4 5 15 15 0.20 0.20 0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1E+02 3E+02 2E+01

T3−3
3tc 0.22 0.3 16.4 18.7 3 82 62 0.22 0.22 0.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8E+01 1E+03 3E+01

T3−4
3tc 0.12 0.3 13.0 16.5 - - - 0.12 0.13 0.12 5.4 5.4 5.4 5.4 5.4 5.4 5.4 12.4 5.4 5E+04 3E+04 2E+04

T3−5
3tc 0.22 0.2 5.8 12.7 5 21 11 0.22 0.22 0.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+02 4E+02 9E+01

T4−1
3tc 0.35 0.6 21.5 13.0 3 116 136 0.35 0.35 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+01 1E+03 5E+01

T4−2
3tc 0.24 0.5 32.0 11.2 7 289 126 0.24 0.24 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1E+02 4E+03 2E+02

T4−3
3tc 0.45 0.4 6.4 6.0 1 6 4 0.45 0.45 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00

T4−4
3tc 0.54 0.3 5.1 3.1 1 5 5 0.54 0.54 0.54 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 1E+02 5E+01

T4−5
3tc 0.31 0.3 11.3 30.6 9 3406 6 0.31 0.31 0.31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+02 8E+04 0E+00

T5−1
3tc 0.17 0.3 45.7 42.3 795 83 88 0.17 0.17 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2E+04 7E+02 4E+01

T5−2
3tc 0.14 0.4 97.3 69.3 - - - 0.15 - 0.14 31.2 31.2 31.2 31.2 31.2 31.2 35.2 - 31.2 1E+04 9E+03 3E+03

T5−3
3tc 0.18 0.3 87.6 69.5 110 - 312 0.18 0.23 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.6 0.0 3E+03 6E+04 2E+01

T5−4
3tc 0.21 0.3 50.6 60.3 - - - 0.21 0.24 0.21 14.5 14.5 14.5 14.5 14.5 14.5 7.4 27.7 16.6 5E+04 2E+04 2E+04

T5−5
3tc 0.30 0.3 45.9 75.1 384 - 1586 0.30 0.32 0.30 34.9 34.9 34.9 34.9 34.9 34.9 0.0 40.5 0.0 4E+03 1E+04 1E+03

T6−1
3tc 0.25 0.9 187.3 29.0 - - - 0.28 0.33 0.25 8.3 8.3 8.3 8.3 8.3 8.3 16.4 30.7 8.3 3E+04 1E+04 3E+03

T6−2
3tc 0.60 0.6 173.1 133.9 3 230 288 0.60 0.60 0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 1E+03 1E+01

T6−3
3tc 0.38 0.7 138.4 108.2 6 1483 310 0.38 0.38 0.38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3E+01 1E+04 1E+01

T6−4
3tc 0.41 0.6 97.1 127.8 6 - 153 0.41 0.45 0.41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 5E+01 2E+04 2E+01

T6−5
3tc 0.28 0.7 217.9 105.6 - - 1227 0.28 0.34 0.28 0.0 0.0 0.0 0.0 0.0 0.0 1.9 17.3 0.0 1E+04 7E+03 2E+02

Table A.3: Test results for the TE-MSTP problem: T3tc.

144



A Computational results for the TE-MSTP problem

ins. B&C-time IO-time B Gapio(%) B&C Tree Nodes # User cuts # Lazy const.

T1−1
r 80 1 0.24 8 2 1208 23

T1−2
r - 16 0.24 19 0 7361 171

T1−3
r - 2 0.24 100 0 4223 411

T1−4
r 6 1 0.45 17 72 202 7

T1−5
r 2 1 0.20 5 10 31 12

T2−1
r - 178 0.57 16 0 4972 465

T2−2
r 74 29 0.65 0 0 449 213

T2−3
r - 3 0.46 100 0 3417 399

T2−4
r - 2 0.63 4 0 6281 276

T2−5
r 2 1 0.88 0 0 12 6

T3−1
r - 1 0.31 100 1 12105 14

T3−2
r 1383 2 0.32 7 12 3867 48

T3−3
r - 1 0.49 100 1 9809 13

T3−4
r - 1 0.23 100 0 4677 279

T3−5
r - 1 0.30 100 0 4403 342

T4−1
r - 1 0.20 100 0 4726 351

T4−2
r - 1 0.44 100 1 8706 25

T4−3
r - 1 0.22 100 0 4581 349

T4−4
r - 1 0.32 100 0 4383 320

T4−5
r - 1 0.10 100 0 5054 131

T5−1
r - 2 0.40 100 0 3980 518

T5−2
r - 1 0.27 100 0 4198 438

T5−3
r - 1 0.18 100 0 4336 331

T5−4
r - 1 0.19 100 1 5609 85

T5−5
r - 2 0.35 100 1 7087 19

T6−1
r - 2 0.29 100 0 3925 452

T6−2
r - 2 0.40 100 0 3651 366

T6−3
r - 1 0.45 100 0 4191 100

T6−4
r - 1 0.24 100 0 4218 378

T6−5
r - 1 0.35 100 0 4249 448

T7−1
r - 4 0.54 100 0 2780 135

T7−2
r - 3 0.93 100 1 5464 27

T7−3
r - 4 0.57 100 1 8113 14

T7−4
r - 3 0.60 100 0 3224 461

T7−5
r - 4 0.84 100 0 3164 437

T8−1
r - 2 0.72 100 0 3686 212

T8−2
r - 2 0.61 100 0 3666 265

T8−3
r - 5 0.39 100 1 2976 48

T8−4
r - 5 0.52 5 0 5728 148

T8−5
r - 5 0.65 100 0 2759 569

T9−1
r - 716 1.10 21 0 3022 345

T9−2
r - 5 1.31 100 0 2196 197

T9−3
r - 235 0.83 23 0 3532 341

T9−4
r - 5 1.00 100 0 2846 287

T9−5
r - 4 0.86 100 0 2699 150

T10−1
r - 4 0.36 100 0 3216 553

T10−2
r - 4 0.35 100 0 3342 517

T10−3
r - 4 0.68 100 0 2954 445

T10−4
r - 4 0.50 100 1 8752 77

T10−5
r - 4 0.55 100 0 3114 518

Table A.4: Test results for the B&C algorithm: Trand.

145



ins. B&C-time IO-time B Gapio(%) B&C Tree Nodes # User cuts # Lazy const.

T1−1
3tc 6 1 0.16 3 40 3 5

T1−2
3tc 1 1 0.21 0 0 0 1

T1−3
3tc 4 2 0.18 0 0 5 3

T1−4
3tc 8 2 0.20 0 6 19 21

T1−5
3tc 20 5 0.14 0 28 90 19

T2−1
3tc - 248 0.17 24 0 3699 249

T2−2
3tc 2 2 0.35 0 0 0 1

T2−3
3tc 10 6 0.31 0 10 4 14

T2−4
3tc 4 2 0.35 0 0 2 1

T2−5
3tc 57 10 0.19 0 16 169 46

T3−1
3tc 18 9 0.24 0 0 9 9

T3−2
3tc 465 9 0.20 100 0 631 63

T3−3
3tc - 9 0.22 100 0 3354 580

T3−4
3tc - 8 0.15 100 0 2092 169

T3−5
3tc 98 16 0.22 0 0 203 94

T4−1
3tc - 41 0.36 53 0 1946 122

T4−2
3tc - 23 0.25 100 0 1971 73

T4−3
3tc 15 11 0.45 0 0 0 1

T4−4
3tc 66 20 0.54 0 17 29 15

T4−5
3tc 71 26 0.31 0 0 42 21

T5−1
3tc 148 14 0.17 100 3 164 65

T5−2
3tc - 17 0.20 100 0 2000 154

T5−3
3tc 802 17 0.18 100 0 699 143

T5−4
3tc - 14 0.24 100 0 2573 381

T5−5
3tc - 12 0.32 100 0 2304 191

T6−1
3tc - 43 0.32 100 0 1258 61

T6−2
3tc 61 41 0.60 0 0 1 7

T6−3
3tc 87 42 0.38 0 0 12 13

T6−4
3tc - 37 0.63 100 16 1767 8

T6−5
3tc - 49 0.41 100 0 921 75

Table A.5: Test results for the B&C algorithm: T3tc.

146



B Computational results for the COCMST problem

B Computational results for the COCMST problem

Key:

• ins. : instance reference;

• LP-time (s) : time it takes to solve the LP relaxation;

• MIP-time (s) : time it takes to solve the (mixed-)integer program;

• Feas.-time (s) : time it takes to find a first feasible solution;

• B∗ : best upper bound found by any of the models;

• B : best upper bound found by each model;

• BLP : lower bound obtained by solving the LP relaxation;

• B0 : lower bound obtained after the root node of the B&B tree has been processed;

• U∗ : worst-case edge utilization obtained by solving the COCMST problem to
optimality;

• U1 : worst-case edge utilization corresponding to the first feasible solution found
for the COCMST problem;

• GapLP (%) : gap between B∗ and BLP ;

• Gap0(%) : gap between B∗ and B0;

• Gap∗U (%) : gap between B∗ and U∗;

• Gap1
U (%) : gap between B∗ and U1;

• B&B Tree Nodes : number of nodes in the B&B enumeration tree.

147



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
r 130 0.1 0.2 0.2 0 2 0 130 130 130 16.7 4.5 3.7 1.7 2.6 0.0 7E+00 2E+01 0E+00 14.3 14.3 14.3 0 0 0 14.3 14.3 5.3

T1−2
r 140 0.1 0.2 0.2 1 1 1 140 140 140 11.5 1.8 1.7 2.4 0.6 0.6 2E+01 5E+00 0E+00 14.3 14.3 14.3 0 1 0 14.3 14.3 14.3

T1−3
r 155 0.1 0.5 0.6 147 697 43 155 155 155 32.9 13.2 11.5 11.8 11.6 10.8 8E+03 1E+04 2E+02 14.3 14.3 14.3 16 402 27 15.8 14.3 15.8

T1−4
r 182 0.1 0.2 0.2 0 1 0 182 182 182 15.6 3.4 3.4 3.4 0.9 1.4 4E+01 0E+00 0E+00 12.8 12.8 12.8 0 0 0 5.6 5.6 16.0

T1−5
r 84 0.1 0.2 0.2 0 0 0 84 84 84 14.3 0.8 0.8 0.8 0.0 0.0 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 0 0 16.7 16.7 16.7

T2−1
r 364 0.1 0.4 0.5 3 13 2 364 364 364 22.4 2.3 0.7 1.8 1.0 0.2 3E+02 2E+02 0E+00 16.7 16.7 16.7 0 11 0 16.7 14.6 13.6

T2−2
r 368 0.1 0.3 0.3 3 9 5 368 368 368 19.5 3.7 0.7 3.2 1.4 0.5 6E+02 2E+02 4E+01 14.0 14.0 14.0 0 2 0 15.5 16.2 14.0

T2−3
r 384 0.2 1.0 1.1 1136 188 14 384 384 384 29.7 3.3 0.7 3.7 1.9 0.5 2E+04 2E+03 1E+01 15.0 15.0 15.0 272 125 6 15.0 15.0 15.0

T2−4
r 393 0.1 0.4 0.3 1 1 1 393 393 393 15.9 1.6 0.4 0.7 0.4 0.0 1E+02 0E+00 0E+00 16.1 16.1 16.1 0 1 1 16.1 16.1 9.6

T2−5
r 352 0.1 0.3 0.3 1 1 1 352 352 352 15.8 1.4 0.0 1.0 0.4 0.0 3E+01 0E+00 0E+00 0.0 0.0 0.0 0 1 0 15.4 0.0 12.0

T3−1
r 172 0.1 0.4 0.5 9 29 8 172 172 172 24.4 5.8 4.8 6.5 4.9 4.2 1E+03 1E+03 6E+01 0.0 12.5 0.0 0 23 2 15.2 6.7 15.2

T3−2
r 175 0.1 0.3 0.4 2 2 1 175 175 175 22.9 2.1 1.2 2.7 1.3 0.9 1E+02 0E+00 0E+00 0.0 0.0 11.1 0 1 0 8.6 4.0 11.1

T3−3
r 221 0.1 0.4 0.5 21 58 17 221 221 221 28.5 9.4 6.2 9.0 6.6 5.8 2E+03 2E+03 1E+02 7.1 15.2 13.3 5 26 2 16.1 16.1 16.1

T3−4
r 153 0.1 0.3 0.5 25 24 21 153 153 153 24.2 6.3 5.9 6.9 5.3 4.0 5E+03 7E+02 2E+02 15.6 15.6 10.0 8 18 3 15.6 15.6 14.3

T3−5
r 184 0.1 0.3 0.3 5 15 15 184 184 184 23.9 5.9 5.7 6.0 5.2 4.1 9E+02 6E+02 9E+01 11.1 11.1 11.1 0 2 2 11.1 14.7 11.1

T4−1
r 115 0.1 0.3 0.6 54 70 28 115 115 115 34.8 10.6 5.1 9.8 7.9 4.1 6E+03 3E+03 4E+02 11.1 11.1 11.1 1 33 4 14.3 14.3 14.3

T4−2
r 177 0.1 0.3 0.4 20 41 9 177 177 177 38.4 11.6 9.5 11.9 10.8 7.9 1E+03 2E+03 7E+01 15.6 15.6 15.6 1 25 1 9.5 15.6 15.6

T4−3
r 110 0.1 0.3 0.3 1 1 1 110 110 110 23.6 0.6 0.0 0.0 0.6 0.0 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 0 1 15.4 0.0 0.0

T4−4
r 143 0.1 0.3 0.4 16 65 18 143 143 143 40.6 18.0 17.8 18.2 17.2 16.2 2E+03 4E+03 1E+02 0.0 0.0 7.7 5 31 1 14.3 0.0 14.3

T4−5
r 60 0.1 0.3 0.3 3 22 9 60 60 60 28.3 10.9 10.0 10.0 9.4 5.8 7E+02 9E+02 5E+01 0.0 0.0 0.0 0 19 0 16.7 0.0 16.7

T5−1
r 231 0.1 0.4 0.6 6 19 1 231 231 231 29.4 1.6 0.3 1.6 0.9 0.0 2E+02 3E+02 0E+00 13.3 13.3 13.3 4 19 1 13.3 13.3 13.3

T5−2
r 157 0.1 0.6 0.5 11 25 18 157 157 157 31.2 5.7 3.7 5.7 4.4 2.3 5E+02 4E+02 1E+02 0.0 0.0 0.0 0 21 3 15.6 15.6 10.0

T5−3
r 124 0.1 0.5 0.5 71 653 38 124 124 124 33.9 16.8 15.6 16.0 16.0 13.9 7E+03 1E+04 2E+02 13.3 13.3 13.3 19 497 22 13.3 13.3 13.3

T5−4
r 121 0.1 0.5 0.5 7 7 4 121 121 121 27.3 4.5 3.2 3.1 2.8 1.6 3E+02 3E+01 0E+00 15.4 15.4 15.4 6 7 2 15.4 15.4 15.4

T5−5
r 205 0.1 0.4 0.6 184 313 71 205 205 205 32.2 6.7 4.3 6.1 5.2 3.7 1E+04 8E+03 7E+02 15.6 15.6 15.6 41 188 12 15.6 15.6 14.3

Table B.1: Test results for the COCMST(0.2ε) problem: T 1
rand − T 5

rand.

148



B
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
C

O
C

M
S

T
p

ro
b

le
m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T6−1
r 192 0.2 0.7 1.0 75 620 55 192 192 192 29.2 10.5 4.6 8.1 6.4 4.4 5E+03 1E+04 4E+02 13.6 13.6 13.6 1 288 0 9.5 9.5 12.6

T6−2
r 266 0.2 0.9 0.9 21 265 52 266 266 266 28.9 10.9 9.1 11.7 9.7 6.8 2E+03 3E+03 2E+02 5.3 7.7 7.7 1 73 4 15.6 7.7 5.3

T6−3
r 222 0.1 0.8 0.8 10 99 26 222 222 222 27.0 7.9 6.1 7.5 7.2 5.2 9E+02 1E+03 3E+01 16.0 16.0 16.0 0 73 0 5.6 16.0 5.6

T6−4
r 124 0.1 0.6 0.8 2 13 6 124 124 124 21.6 3.6 1.2 3.1 1.4 0.0 5E+01 7E+01 0E+00 12.8 12.8 12.8 0 3 0 12.8 0.0 15.0

T6−5
r 164 0.1 0.7 0.8 2 10 2 164 164 164 21.3 1.2 1.1 1.6 0.5 0.0 3E+01 1E+01 0E+00 16.7 16.7 16.7 0 10 0 13.5 16.7 16.7

T7−1
r 389 0.2 1.6 2.1 268 130 21 389 389 389 26.2 4.2 0.8 3.8 1.9 0.6 1E+04 7E+02 6E+01 12.9 12.9 8.0 0 20 0 15.6 13.8 12.0

T7−2
r 528 0.2 1.7 1.8 310 27 21 528 528 528 24.1 2.1 0.4 2.7 0.8 0.3 9E+03 8E+01 2E+01 11.1 11.1 11.1 42 17 7 15.8 11.1 11.1

T7−3
r 399 0.2 1.4 1.9 915 2478 45 399 399 399 26.6 4.2 0.7 4.2 2.1 0.6 3E+04 2E+04 1E+02 10.8 10.8 10.8 14 973 9 13.2 15.4 14.7

T7−4
r 419 0.2 1.5 2.0 572 - 372 419 425 419 27.7 4.8 1.6 5.0 2.7 1.5 1E+04 2E+04 7E+02 16.7 16.7 16.7 4 33 211 16.7 16.7 16.7

T7−5
r 584 0.2 1.8 1.8 - - - 667 - 584 32.7 9.9 5.4 9.0 7.9 5.2 3E+04 1E+04 6E+03 16.1 - 13.3 2703 - 517 16.1 - 13.3

T8−1
r 458 0.1 0.6 1.3 65 714 45 458 458 458 28.0 10.1 3.6 8.7 6.1 3.2 4E+03 1E+04 3E+02 15.2 15.2 15.2 10 16 7 8.7 9.7 12.5

T8−2
r 444 0.1 0.7 1.1 38 355 57 444 444 444 22.5 6.8 4.7 6.3 5.1 4.4 2E+03 3E+03 1E+02 16.0 16.0 16.0 9 83 44 16.0 16.0 16.0

T8−3
r 225 0.2 3.9 3.2 7 8 4 225 225 225 27.6 0.1 0.0 0.9 0.1 0.0 1E+02 0E+00 0E+00 7.0 8.8 3.1 2 8 5 13.9 8.8 3.1

T8−4
r 305 0.1 0.6 1.3 2 30 10 305 305 305 22.3 6.7 5.3 6.0 5.6 3.9 1E+02 2E+02 2E+01 0.0 0.0 0.0 0 8 0 7.1 3.7 7.1

T8−5
r 385 0.2 3.7 3.6 2004 630 121 385 385 385 29.6 5.1 0.4 5.5 3.6 0.3 4E+04 3E+03 9E+01 13.8 13.8 13.8 5 102 0 13.8 3.6 15.6

T9−1
r 946 0.2 1.7 3.1 536 - 117 946 - 946 24.3 6.4 2.1 5.8 4.4 1.7 1E+04 1E+04 2E+02 16.3 - 16.3 23 - 58 14.7 - 16.3

T9−2
r 776 0.2 1.7 2.5 653 501 142 776 776 776 22.0 3.5 1.3 4.0 2.2 1.2 2E+04 3E+03 3E+02 15.2 15.2 15.2 3 26 50 15.7 13.0 15.2

T9−3
r 652 0.2 1.0 1.7 5 115 51 652 652 652 12.9 0.8 0.5 0.6 0.6 0.3 2E+02 5E+02 5E+01 16.1 16.1 15.2 1 10 8 16.1 9.7 15.2

T9−4
r 814 0.2 1.8 2.8 3137 - 882 814 816 814 22.5 7.2 2.1 7.0 4.6 1.7 9E+04 1E+04 3E+03 15.1 15.1 15.1 34 503 56 11.7 14.1 11.0

T9−5
r 607 0.2 1.2 2.1 12 69 7 607 607 607 16.8 1.4 0.5 0.8 0.5 0.3 6E+02 2E+02 0E+00 16.2 16.2 16.2 0 62 5 11.6 5.0 9.5

T10−1
r 286 0.2 2.9 4.9 175 2403 46 286 286 286 30.1 5.2 1.4 5.7 3.3 1.3 5E+03 3E+03 3E+01 13.5 13.5 13.5 4 682 17 14.3 8.6 13.5

T10−2
r 226 0.2 3.0 3.1 468 1160 192 226 226 226 27.0 6.0 2.2 6.0 4.6 1.8 1E+04 3E+03 1E+02 11.4 11.4 10.3 6 217 16 16.1 13.3 15.2

T10−3
r 472 0.2 2.6 2.9 1454 - 648 472 - 472 29.0 8.2 2.3 6.7 6.4 2.2 4E+04 1E+04 1E+03 10.6 - 10.6 0 - 17 12.5 - 16.0

T10−4
r 287 0.2 2.6 3.0 - - 388 287 323 287 32.1 7.7 2.6 8.8 5.0 2.4 5E+04 6E+03 4E+02 9.4 14.7 9.4 1150 2155 366 9.4 14.7 9.4

T10−5
r 376 0.2 2.8 6.4 450 2086 602 376 376 376 27.9 7.4 5.1 7.3 6.7 5.1 1E+04 1E+04 1E+03 16.1 16.1 16.1 22 188 201 9.6 11.9 16.1

Table B.2: Test results for the COCMST(0.2ε) problem: T 6
rand − T 10

rand.

149



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
3tc 14454 0.1 0.4 0.2 0 0 0 14454 14454 14454 1.3 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 9.1 9.1 9.1 0 0 0 12.1 3.8 9.0

T1−2
3tc 17270 0.2 0.6 0.4 0 4 1 17270 17270 17270 6.6 4.6 3.8 4.1 3.8 0.7 8E+00 2E+01 0E+00 0.8 0.8 0.8 0 1 0 0.3 -0.8 0.3

T1−3
3tc 14906 0.2 0.5 0.5 0 2 1 14906 14906 14906 7.3 0.2 0.2 0.1 0.1 0.1 0E+00 0E+00 0E+00 13.6 13.6 13.6 0 1 0 13.6 10.6 13.0

T1−4
3tc 19228 0.1 0.5 0.5 0 2 1 19228 19228 19228 12.2 0.2 0.1 0.0 0.1 0.1 0E+00 0E+00 0E+00 16.2 16.2 16.2 0 1 0 2.0 16.2 14.8

T1−5
3tc 15730 0.1 0.6 0.5 1 2 1 15730 15730 15730 14.4 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 4.2 4.2 4.2 0 1 0 13.1 12.2 14.4

T2−1
3tc 19432 0.2 1.3 1.2 24 51 2 19432 19432 19432 8.7 0.8 0.4 0.9 0.5 0.0 3E+03 4E+02 0E+00 16.4 16.4 16.4 0 7 2 13.3 7.0 15.0

T2−2
3tc 24572 0.2 0.6 0.4 0 1 1 24572 24572 24572 2.7 0.0 0.0 1.1 0.0 0.0 0E+00 0E+00 0E+00 -0.2 -0.2 -0.2 0 1 0 -0.2 -0.2 -0.2

T2−3
3tc 30284 0.2 0.8 0.5 0 1 1 30284 30284 30284 4.3 0.0 0.0 1.8 0.0 0.0 0E+00 0E+00 0E+00 8.3 8.3 8.3 0 1 0 14.4 8.3 7.6

T2−4
3tc 29476 0.2 0.7 0.5 0 2 1 29476 29476 29476 11.2 0.0 0.0 1.0 0.0 0.0 0E+00 0E+00 0E+00 -0.4 -0.4 -0.4 0 2 1 8.6 -0.4 16.2

T2−5
3tc 22962 0.2 0.9 0.7 1 5 1 22962 22962 22962 12.2 0.2 0.1 0.1 0.0 0.0 4E+01 0E+00 0E+00 16.0 16.0 16.0 0 4 1 11.2 13.7 9.2

T3−1
3tc 28350 0.2 4.5 13.0 5 203 9 28350 28350 28350 14.3 0.1 0.1 0.1 0.1 0.1 9E+01 2E+02 0E+00 15.0 15.0 15.0 0 168 1 15.5 16.5 17.6

T3−2
3tc 26718 0.2 2.3 3.6 29 246 63 26718 26718 26718 12.0 0.7 0.4 1.3 0.5 0.4 2E+03 6E+02 2E+02 13.9 13.9 13.9 0 62 6 14.6 9.9 12.6

T3−3
3tc 29282 0.2 4.4 5.2 84 1029 49 29282 29282 29282 15.3 1.1 0.4 1.5 0.6 0.3 2E+03 2E+03 2E+01 8.4 8.4 8.4 0 563 19 14.9 12.6 8.4

T3−4
3tc 18748 0.2 2.9 6.8 - - 1859 18748 18916 18748 14.7 5.4 2.7 5.1 3.9 2.6 1E+05 1E+04 1E+04 14.5 14.7 14.5 3 653 152 16.9 17.1 17.4

T3−5
3tc 28908 0.2 1.3 1.9 6 62 10 28908 28908 28908 7.8 1.2 0.6 0.8 0.8 0.4 4E+02 1E+02 2E+01 17.3 17.3 17.3 0 11 1 17.1 17.3 17.3

T4−1
3tc 46862 0.3 3.7 13.4 1018 1951 560 46862 46862 46862 15.1 0.7 0.3 0.5 0.5 0.3 2E+04 3E+03 4E+02 12.4 12.4 12.4 0 724 15 6.0 11.1 14.0

T4−2
3tc 35502 0.3 3.2 11.3 - - 2224 35502 35740 35502 11.8 2.5 0.8 2.2 1.6 0.7 9E+04 5E+03 5E+03 17.1 16.0 17.1 0 1154 14 17.1 18.4 15.2

T4−3
3tc 38904 0.3 2.1 1.8 1 6 4 38904 38904 38904 4.9 0.0 0.0 0.2 0.0 0.0 0E+00 0E+00 0E+00 14.5 14.5 14.5 0 6 1 12.6 14.5 16.0

T4−4
3tc 63120 0.2 2.0 2.0 4 28 8 63120 63120 63120 4.2 0.4 0.3 0.4 0.3 0.2 1E+02 4E+01 2E+01 16.4 16.4 16.4 0 9 1 16.9 16.2 10.8

T4−5
3tc 39758 0.2 5.4 4.7 90 2630 41 39758 39758 39758 7.7 1.9 0.6 1.7 1.1 0.5 5E+03 8E+03 2E+02 16.9 16.9 16.9 0 219 5 14.9 15.3 16.7

T5−1
3tc 21530 0.2 2.7 14.5 5 213 13 21530 21530 21530 5.8 0.8 0.2 0.7 0.7 0.1 4E+01 5E+01 0E+00 11.0 11.0 11.0 0 140 1 14.9 11.0 11.8

T5−2
3tc 19774 0.3 4.8 32.1 16 - 117 19774 20430 19774 14.7 0.6 0.6 0.6 0.5 0.4 2E+02 2E+02 3E+01 17.9 18.1 17.9 0 3028 17 14.0 20.5 20.4

T5−3
3tc 24894 0.3 5.9 63.0 58 - 280 24894 - 24894 19.3 0.3 0.2 0.4 0.3 0.2 6E+02 3E+02 3E+01 14.9 - 14.9 0 - 34 16.1 - 15.8

T5−4
3tc 30022 0.2 6.1 17.7 118 - 1295 30022 30130 30022 16.9 3.0 3.0 3.0 3.0 2.9 5E+03 9E+02 9E+02 9.5 5.3 9.5 2 2861 22 10.8 13.3 3.0

T5−5
3tc 40398 0.2 3.6 25.2 344 2429 466 40398 40398 40398 18.5 2.3 2.0 3.1 2.2 1.9 8E+03 1E+03 4E+02 8.4 8.4 8.4 0 592 11 14.3 13.9 15.1

T6−1
3tc - 0.3 41.1 31.0 - - - 48930 - 49538 - - - - - - 3E+04 5E+02 3E+03 16.7 - 17.0 472 - 390 17.2 - 17.0

T6−2
3tc 65180 0.4 38.3 114.4 9 108 36 65180 65180 65180 13.7 0.1 0.0 0.0 0.1 0.0 3E+00 0E+00 0E+00 16.2 16.2 16.2 0 93 2 3.4 16.2 15.1

T6−3
3tc 50674 0.4 43.8 98.6 110 669 132 50674 50674 50674 14.4 0.3 0.3 0.3 0.3 0.2 1E+03 2E+01 1E+01 4.8 4.8 4.8 0 105 2 2.3 4.8 8.0

T6−4
3tc 68456 0.3 5.5 73.0 471 - 204 68456 68570 68456 11.6 0.9 0.3 0.8 0.8 0.3 4E+03 2E+03 1E+02 16.5 16.5 16.5 9 520 27 15.3 16.8 15.7

T6−5
3tc - 0.3 35.1 79.8 - - - 59306 - 57366 - - - - - - 2E+04 1E+02 6E+02 15.6 - 13.5 905 - 2621 15.6 - 14.1

Table B.3: Test results for the COCMST(0.2ε) problem: T3tc.

150



B
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
C

O
C

M
S

T
p

ro
b

le
m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
r 131 0.1 0.2 0.2 1 2 0 131 131 131 17.4 3.9 2.8 1.0 1.5 1.2 0E+00 4E+00 0E+00 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0

T1−2
r 157 0.1 0.3 0.2 1 5 1 157 157 157 21.1 11.6 11.0 11.9 9.6 3.8 2E+02 2E+02 0E+00 0.0 4.0 0.0 0 4 1 0.0 4.0 0.0

T1−3
r 207 0.1 0.8 0.5 1202 - 66 207 - 207 49.8 34.8 33.5 33.7 33.5 33.0 4E+04 4E+04 2E+02 0.0 - 0.0 1203 - 45 0.0 - 0.0

T1−4
r 198 0.1 0.2 0.2 1 1 0 198 198 198 20.9 10.2 10.1 9.7 7.1 4.1 2E+02 7E+01 0E+00 0.0 1.4 0.0 0 0 0 0.0 1.4 1.4

T1−5
r 84 0.1 0.2 0.2 0 0 0 84 84 84 13.7 0.2 0.2 0.2 0.0 0.0 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 0 0 0.0 0.0 0.0

T2−1
r 371 0.1 0.6 0.5 6 15 4 371 371 371 23.9 3.9 1.7 3.8 1.9 1.3 6E+02 3E+02 9E+00 2.8 2.8 2.8 3 8 1 2.8 2.8 2.8

T2−2
r 374 0.1 0.4 0.4 6 11 15 374 374 374 20.8 4.8 1.4 3.7 2.1 1.2 1E+03 2E+02 7E+01 3.9 3.9 3.9 1 8 2 3.9 3.9 3.9

T2−3
r 437 0.2 1.2 1.2 - - - - - 437 38.2 14.3 12.0 15.0 12.8 11.5 3E+04 1E+04 9E+03 - - 0.0 - - 1762 - - 0.0

T2−4
r 403 0.1 0.4 0.4 2 4 2 403 403 403 17.3 3.1 1.6 1.5 1.4 1.2 6E+02 2E+02 2E+02 4.1 4.1 4.1 1 4 1 2.1 4.1 2.1

T2−5
r 352 0.1 0.3 0.3 1 1 1 352 352 352 15.8 1.4 0.0 1.2 0.4 0.0 6E+01 0E+00 0E+00 0.0 0.0 0.0 0 1 0 4.3 0.0 4.3

T3−1
r 172 0.1 0.4 0.6 6 21 7 172 172 172 24.4 5.2 3.7 5.8 3.2 2.4 5E+02 5E+02 3E+01 0.0 0.0 0.0 0 16 2 0.0 1.8 1.8

T3−2
r 175 0.1 0.4 0.4 2 1 1 175 175 175 22.9 1.6 0.5 1.8 0.2 0.0 1E+02 0E+00 0E+00 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0

T3−3
r 229 0.1 0.4 0.6 32 150 13 229 229 229 31.0 12.4 9.4 11.6 10.2 5.1 2E+03 3E+03 6E+01 2.5 2.5 2.5 16 149 11 3.7 2.5 2.5

T3−4
r 168 0.1 0.4 0.5 80 361 20 168 168 168 31.0 13.5 12.8 14.1 12.3 10.9 1E+04 1E+04 1E+02 0.0 0.0 0.0 24 244 16 0.0 0.0 0.0

T3−5
r 190 0.1 0.3 0.5 9 88 20 190 190 190 26.3 8.6 8.0 8.2 8.1 6.6 8E+02 3E+03 1E+02 3.0 3.0 3.0 0 80 15 3.0 3.0 3.0

T4−1
r 126 0.1 0.4 0.5 84 354 19 126 126 126 40.5 18.4 13.1 17.2 16.1 12.6 5E+03 1E+04 9E+01 0.0 0.0 0.0 54 298 14 0.0 0.0 0.0

T4−2
r 183 0.1 0.3 0.5 34 224 16 183 183 183 40.4 14.5 12.2 14.2 13.2 8.0 1E+03 6E+03 8E+01 2.6 2.6 2.6 20 219 15 2.6 2.6 2.6

T4−3
r 110 0.1 0.3 0.3 0 1 1 110 110 110 23.6 0.5 0.0 0.0 0.3 0.0 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 1 1 2.9 0.0 0.0

T4−4
r 143 0.1 0.3 0.4 21 108 13 143 143 143 40.6 17.7 17.3 18.1 17.3 14.4 2E+03 4E+03 1E+02 0.0 0.0 0.0 1 100 2 0.0 0.0 0.0

T4−5
r 60 0.1 0.4 0.3 2 17 1 60 60 60 28.3 10.7 9.6 9.0 9.2 0.0 2E+02 2E+02 0E+00 0.0 0.0 0.0 0 17 1 0.0 0.0 0.0

T5−1
r 293 0.1 0.6 0.6 - - - - - 293 44.4 22.4 21.2 22.3 21.7 20.9 8E+04 5E+04 3E+04 - - 2.5 - - 2343 - - 2.5

T5−2
r 157 0.1 0.6 0.6 55 51 17 157 157 157 31.2 5.5 2.9 5.7 4.2 2.4 2E+03 5E+02 4E+01 0.0 0.0 0.0 50 51 17 0.0 0.0 0.0

T5−3
r 133 0.1 0.6 0.5 258 - 24 133 - 133 38.3 22.3 21.1 21.5 20.2 16.0 1E+04 5E+04 7E+01 2.5 - 2.5 255 - 16 2.5 - 2.5

T5−4
r 126 0.1 0.6 0.5 40 157 34 126 126 126 30.2 8.0 6.8 6.6 6.6 3.7 2E+03 3E+03 3E+02 0.0 0.0 0.0 26 151 4 0.0 0.0 2.2

T5−5
r 217 0.1 0.4 0.6 - - 228 217 217 217 35.9 11.8 9.2 11.3 10.1 7.6 8E+04 1E+05 2E+03 0.0 0.0 0.0 2741 711 62 0.0 0.0 0.0

Table B.4: Test results for the COCMST(0.05ε) problem: T 1
rand − T 5

rand.

151



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T6−1
r 207 0.1 0.8 0.9 208 - 151 207 - 207 34.3 17.0 11.3 15.0 13.3 10.9 1E+04 6E+04 8E+02 0.0 - 0.0 89 - 7 0.0 - 2.6

T6−2
r 266 0.1 0.7 0.8 19 373 23 266 266 266 28.9 10.7 8.7 11.2 9.2 5.3 1E+03 4E+03 4E+01 3.6 0.0 0.0 1 172 4 2.7 0.0 2.7

T6−3
r 228 0.1 0.8 1.2 12 95 25 228 228 228 28.9 10.2 7.7 9.4 9.4 6.6 7E+02 8E+02 8E+01 2.9 2.9 2.9 0 1 5 2.9 2.9 2.9

T6−4
r 126 0.1 1.0 1.1 6 18 6 126 126 126 22.8 5.0 2.4 4.6 3.2 1.5 7E+02 2E+02 0E+00 0.0 0.0 0.0 0 4 2 0.0 0.0 0.0

T6−5
r 183 0.1 1.0 1.1 39 342 146 183 183 183 29.5 10.8 10.5 11.4 10.1 9.5 4E+03 3E+03 7E+02 2.2 2.2 2.2 1 2599 81 2.2 2.2 2.2

T7−1
r 391 0.2 1.6 2.0 267 915 19 391 391 391 26.6 4.7 1.0 4.2 2.7 0.8 9E+03 6E+03 2E+01 3.6 3.6 3.6 3 474 0 0.0 3.6 3.6

T7−2
r 547 0.2 1.7 2.1 - - 1555 547 - 547 26.7 5.5 3.5 6.1 4.1 3.4 5E+04 1E+04 6E+03 4.0 - 4.0 1244 - 182 4.0 - 4.0

T7−3
r 409 0.2 1.4 1.9 - - - 434 - 409 28.4 6.6 3.1 6.4 4.4 2.8 5E+04 1E+04 9E+03 2.9 - 2.9 3486 - 365 2.9 - 1.0

T7−4
r 435 0.2 1.5 2.3 - - 1029 - 437 435 30.3 8.3 4.4 8.3 6.0 4.3 4E+04 9E+03 2E+03 - 4.8 4.8 - 4 472 - 25.9 4.8

T7−5
r 603 0.2 1.6 2.0 - - - - - 603 34.8 12.5 7.4 11.6 9.8 7.2 2E+04 7E+03 5E+03 - - 3.7 - - 2257 - - 3.7

T8−1
r 490 0.1 0.6 1.3 166 1647 230 490 490 490 32.7 16.0 9.2 14.4 12.1 8.9 8E+03 7E+03 1E+03 2.3 2.3 2.3 25 1229 135 0.0 0.0 0.0

T8−2
r 470 0.1 0.6 1.5 45 844 41 470 470 470 26.8 11.9 9.9 11.4 10.9 9.5 1E+03 4E+03 5E+01 0.0 0.0 0.0 39 815 36 0.0 3.4 0.0

T8−3
r 225 0.2 4.5 3.2 11 12 4 225 225 225 27.6 0.0 0.0 0.9 0.0 0.0 7E+01 0E+00 0E+00 3.1 3.1 3.1 9 12 4 3.1 3.1 3.1

T8−4
r 305 0.1 0.7 1.4 2 23 10 305 305 305 21.0 5.0 3.0 3.4 3.2 2.1 6E+01 4E+01 1E+01 0.0 0.0 0.0 0 10 0 0.0 3.7 0.0

T8−5
r 386 0.2 3.7 3.5 3515 1434 56 386 386 386 29.8 5.3 0.7 5.7 3.7 0.6 8E+04 4E+03 2E+01 3.6 3.6 3.6 5 623 18 -8.0 3.6 3.6

T9−1
r 1006 0.2 2.4 3.1 - - 1796 - - 1006 28.2 10.8 6.1 10.0 8.2 5.9 3E+04 7E+03 5E+03 - - 3.0 - - 381 - - 4.5

T9−2
r 791 0.2 2.3 3.0 490 1304 413 791 791 791 23.5 5.0 2.4 5.6 3.2 2.1 1E+04 4E+03 9E+02 2.9 2.9 2.9 57 587 199 2.9 2.9 2.9

T9−3
r 683 0.2 1.4 2.9 144 3065 127 683 683 683 16.8 4.6 3.3 4.3 3.9 2.9 6E+03 1E+04 2E+02 3.4 3.4 3.4 67 368 91 4.3 0.0 3.4

T9−4
r 821 0.2 2.1 2.9 - - 755 821 - 821 23.1 7.5 2.0 7.4 4.7 1.6 6E+04 7E+03 2E+03 3.9 - 3.9 422 - 564 3.9 - 3.9

T9−5
r 613 0.2 1.3 2.4 17 162 48 613 613 613 17.6 2.0 1.3 1.6 1.2 1.0 8E+02 7E+02 5E+01 3.8 3.8 3.8 2 69 21 3.8 3.8 3.8

T10−1
r 292 0.2 3.0 3.3 3186 - 151 292 - 292 31.5 7.1 3.2 7.8 5.6 3.0 7E+04 6E+03 1E+02 3.0 - 0.0 348 - 79 3.0 - 0.0

T10−2
r 233 0.2 3.0 3.2 - - 431 233 233 233 29.2 8.8 4.8 8.7 7.5 4.7 7E+04 8E+03 7E+02 3.7 3.7 3.7 512 719 190 3.7 3.7 3.7

T10−3
r 481 0.2 2.5 2.8 - - 648 481 - 481 30.4 9.9 4.1 8.5 8.1 4.0 6E+04 1E+04 1E+03 0.0 - 0.0 6 - 209 4.5 - 0.0

T10−4
r 295 0.2 2.6 2.8 - - 1941 - - 295 33.9 10.2 5.2 11.5 8.1 5.0 3E+04 3E+03 2E+03 - - 3.3 - - 665 - - 3.3

T10−5
r 393 0.2 3.3 7.4 2714 - 626 393 397 393 31.0 11.3 8.7 11.3 10.6 8.5 5E+04 1E+04 1E+03 -2.2 4.1 -2.2 41 2567 163 -2.2 4.1 2.1

Table B.5: Test results for the COCMST(0.05ε) problem: T 6
rand − T 10

rand.

152



B
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
C

O
C

M
S

T
p

ro
b

le
m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
3tc 15164 0.1 0.4 0.2 0 1 0 15164 15164 15164 5.9 3.2 3.2 2.5 2.2 2.3 3E+01 3E+01 2E+01 -0.3 -0.3 -0.3 0 0 0 2.4 1.2 1.2

T1−2
3tc 17270 0.1 0.5 0.4 0 3 1 17270 17270 17270 6.6 2.3 0.8 1.1 0.8 0.3 0E+00 2E+01 0E+00 0.8 0.8 0.8 0 1 0 0.3 2.8 0.3

T1−3
3tc 14946 0.2 0.6 0.5 0 1 1 14946 14946 14946 7.5 0.0 0.0 0.3 0.0 0.0 0E+00 0E+00 0E+00 4.6 4.6 4.6 0 1 0 4.6 4.6 4.6

T1−4
3tc 19470 0.1 0.6 0.6 2 11 2 19470 19470 19470 13.3 1.0 0.5 0.6 0.5 0.3 2E+02 1E+02 8E+01 2.0 2.0 2.0 0 1 0 2.0 0.2 2.0

T1−5
3tc 15730 0.1 0.6 0.5 0 2 1 15730 15730 15730 14.4 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 4.2 4.2 4.2 0 1 0 5.5 5.9 5.9

T2−1
3tc 20178 0.2 1.9 1.8 64 371 22 20178 20178 20178 12.1 2.2 1.3 1.9 1.3 1.2 6E+03 8E+03 2E+03 4.8 4.8 4.8 1 37 7 4.7 4.6 0.8

T2−2
3tc 24572 0.2 0.6 0.4 0 1 1 24572 24572 24572 2.7 0.0 0.0 1.1 0.0 0.0 0E+00 0E+00 0E+00 -0.2 -0.2 -0.2 0 1 0 -0.2 -0.2 -0.2

T2−3
3tc 30290 0.2 0.7 0.4 0 1 1 30290 30290 30290 4.4 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 4.3 4.3 4.3 0 2 0 1.8 4.3 3.9

T2−4
3tc 29476 0.2 0.7 0.5 0 2 1 29476 29476 29476 11.2 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 -0.4 -0.4 -0.4 0 2 0 -0.4 -0.4 2.3

T2−5
3tc 23030 0.2 0.8 0.7 2 12 2 23030 23030 23030 12.4 0.4 0.2 0.2 0.2 0.1 9E+01 1E+02 3E+00 0.9 0.9 0.9 0 3 1 3.7 3.8 2.8

T3−1
3tc 28578 0.2 4.5 14.8 51 624 308 28578 28578 28578 15.0 0.7 0.6 0.7 0.6 0.5 2E+03 1E+03 2E+02 2.0 2.0 2.0 0 30 1 1.8 2.0 1.6

T3−2
3tc 26842 0.2 3.7 5.6 108 339 69 26842 26842 26842 12.4 1.0 0.3 1.7 0.8 0.2 4E+03 8E+02 2E+02 3.1 3.1 3.1 2 87 6 -1.1 0.5 2.6

T3−3
3tc 29444 0.2 4.4 5.1 197 2207 220 29444 29444 29444 15.8 1.5 0.6 1.8 0.8 0.5 5E+03 3E+03 2E+02 0.6 0.6 0.6 0 1217 9 -2.0 -2.0 0.9

T3−4
3tc 19238 0.2 5.7 7.9 - - 3021 19450 - 19238 16.8 6.5 2.9 6.0 5.0 2.5 7E+04 6E+03 1E+04 4.2 - 3.8 745 - 298 3.8 - 6.1

T3−5
3tc 30366 0.2 1.8 2.8 37 1003 41 30366 30366 30366 12.2 5.5 3.2 4.5 3.9 3.1 2E+03 5E+03 6E+02 6.1 6.1 6.1 1 140 12 5.8 5.3 5.2

T4−1
3tc 47126 0.3 6.3 11.6 785 - 540 47126 47474 47126 15.6 1.2 0.4 0.9 0.7 0.4 1E+04 2E+03 3E+02 -0.1 -0.8 -0.1 0 961 14 3.7 -0.8 2.2

T4−2
3tc 35822 0.3 6.4 11.4 - - 2258 36408 36032 35822 12.6 3.1 0.8 2.7 2.3 0.7 8E+04 4E+03 5E+03 6.7 6.7 6.7 3 3510 439 6.4 6.2

T4−3
3tc 38928 0.3 2.6 2.8 1 7 5 38928 38928 38928 4.9 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 2.7 2.7 2.7 0 7 1 2.8 2.7 -0.4

T4−4
3tc 64492 0.2 3.6 3.1 104 142 41 64492 64492 64492 6.3 1.3 0.6 1.8 0.6 0.5 2E+04 3E+03 1E+03 5.2 5.2 5.2 0 5 1 4.5 5.2 4.8

T4−5
3tc 41616 0.2 8.7 4.9 - - 715 41616 42092 41616 11.8 4.0 2.0 3.6 2.4 2.0 1E+05 1E+04 1E+04 4.7 4.9 4.7 3 154 8 4.1 3.2 3.6

T5−1
3tc 21566 0.2 3.2 22.3 7 714 27 21566 21566 21566 6.0 0.8 0.2 0.7 0.6 0.1 4E+02 1E+02 0E+00 0.8 0.8 0.8 1 608 24 3.9 0.8 3.9

T5−2
3tc 19950 0.2 4.4 25.1 144 - 1145 19950 - 19950 15.4 1.4 1.4 1.4 1.2 1.3 3E+03 2E+02 4E+02 6.3 - 6.3 1 - 361 6.3 - 4.5

T5−3
3tc 25582 0.2 8.2 24.1 - - - 25582 - 25588 21.5 3.0 2.9 3.1 2.9 2.9 3E+04 2E+02 1E+03 0.9 - -0.7 7 - 39 0.9 - -0.7

T5−4
3tc 30288 0.2 14.0 17.3 371 - 2277 30288 31232 30288 17.6 3.7 3.7 3.7 3.7 3.5 1E+04 2E+03 2E+03 1.7 1.7 1.7 103 1802 256 1.7 1.7 2.2

T5−5
3tc 40764 0.2 3.7 24.8 304 - 599 40764 40764 40764 19.2 3.2 2.8 4.0 3.1 2.7 5E+03 2E+03 5E+02 2.4 2.4 2.4 22 1054 205 2.0 2.4 2.4

T6−1
3tc - 0.4 85.8 25.4 - - - - - - - - - - - - 2E+04 2E+02 6E+02 - - - - - - - - -

T6−2
3tc 65570 0.4 37.7 105.0 107 3212 115 65570 65570 65570 14.2 0.4 0.3 0.3 0.4 0.3 7E+02 3E+02 1E+01 2.5 2.5 2.5 0 2757 2 3.4 2.5 0.2

T6−3
3tc 51404 0.4 86.7 91.9 898 - - 51404 - 51404 15.6 1.4 1.3 1.4 1.4 1.3 6E+03 4E+02 3E+02 0.9 - 0.9 0 - 2 2.3 - 2.0

T6−4
3tc 69166 0.4 7.3 78.5 - - 2857 69166 70950 69166 12.5 1.9 1.1 1.8 1.7 1.1 2E+04 1E+03 2E+03 4.9 0.1 4.9 12 1662 128 4.9 0.1 0.1

T6−5
3tc - 0.4 39.9 65.1 - - - - - - - - - - - - 1E+04 5E+01 4E+02 - - - - - - - - -

Table B.6: Test results for the COCMST(0.05ε) problem: T3tc.

153



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
r 131 0.1 0.2 0.2 0 2 0 131 131 131 17.4 3.5 2.0 0.8 1.4 1.2 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0

T1−2
r 157 0.1 0.2 0.2 1 6 3 157 157 157 21.1 11.1 10.3 11.3 8.8 7.1 3E+02 2E+02 5E+01 0.0 0.0 0.0 1 5 1 0.0 0.0 0.0

T1−3
r 207 0.1 0.7 0.5 1933 - 66 207 - 207 49.8 34.7 33.4 33.7 33.5 33.0 5E+04 4E+04 2E+02 0.0 - 0.0 1935 - 45 0.0 - 0.0

T1−4
r 198 0.1 0.2 0.2 0 1 1 198 198 198 20.5 9.9 9.8 9.6 4.9 2.7 5E+01 4E+01 5E+00 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0

T1−5
r 84 0.1 0.2 0.2 0 0 0 84 84 84 13.2 0.0 0.0 0.3 0.0 0.0 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 0 0 0.0 0.0 0.0

T2−1
r 384 0.1 0.5 0.5 31 79 31 384 384 384 26.5 7.0 4.8 6.6 5.1 4.5 3E+03 2E+03 6E+02 0.7 0.7 0.7 4 46 10 0.0 0.0 0.0

T2−2
r 375 0.1 0.4 0.4 9 10 8 375 375 375 21.0 4.8 1.4 3.7 2.1 1.0 2E+03 1E+02 1E+02 0.0 0.0 0.0 3 8 1 0.0 0.0 0.0

T2−3
r 442 0.2 1.2 1.2 - - - - - 442 38.9 15.1 12.7 15.8 14.1 12.5 3E+04 1E+04 8E+03 - - 0.0 - - 360 - - 0.0

T2−4
r 406 0.1 0.4 0.4 4 5 2 406 406 406 17.6 3.5 1.8 1.8 1.5 1.2 8E+02 3E+02 6E+01 0.0 0.0 0.0 3 5 2 0.0 0.0 0.0

T2−5
r 352 0.1 0.3 0.3 1 1 1 352 352 352 15.8 1.4 0.0 1.2 0.1 0.0 5E+01 0E+00 0E+00 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0

T3−1
r 172 0.1 0.4 0.6 6 9 4 172 172 172 24.4 4.9 3.3 5.0 3.3 2.2 4E+02 1E+02 5E+00 0.0 0.0 0.0 2 3 2 0.0 0.0 0.0

T3−2
r 175 0.1 0.3 0.4 2 1 1 175 175 175 22.9 1.4 0.3 1.7 0.2 0.0 9E+01 0E+00 0E+00 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0

T3−3
r 250 0.1 0.4 0.6 25 289 16 250 250 250 36.8 19.7 17.0 19.1 17.6 12.9 1E+03 6E+03 7E+01 0.0 0.0 0.0 24 287 14 0.0 0.0 0.0

T3−4
r 168 0.1 0.4 0.5 66 145 24 168 168 168 31.0 13.1 12.4 13.8 11.9 11.0 5E+03 5E+03 2E+02 0.0 0.0 0.0 28 69 12 0.0 0.0 0.0

T3−5
r 192 0.1 0.3 0.5 50 201 22 192 192 192 27.1 9.5 8.8 9.2 9.1 7.1 4E+03 8E+03 1E+02 0.0 0.0 0.0 49 199 20 0.0 0.0 0.0

T4−1
r 126 0.1 0.4 0.5 338 356 19 126 126 126 40.5 18.4 13.0 17.2 16.1 12.6 3E+04 1E+04 9E+01 0.0 0.0 0.0 223 297 14 0.0 0.0 0.0

T4−2
r 185 0.1 0.3 0.5 34 130 10 185 185 185 41.1 15.4 13.1 15.0 14.1 7.0 1E+03 7E+03 6E+01 0.0 0.0 0.0 5 63 7 0.0 0.0 0.0

T4−3
r 110 0.1 0.3 0.3 0 1 1 110 110 110 23.6 0.4 0.0 0.0 0.3 0.0 0E+00 0E+00 0E+00 0.0 0.0 0.0 0 1 1 0.0 0.0 0.0

T4−4
r 143 0.1 0.3 0.4 17 66 17 143 143 143 40.6 17.7 17.2 18.0 17.2 14.4 2E+03 3E+03 1E+02 0.0 0.0 0.0 3 40 1 0.0 0.0 0.0

T4−5
r 60 0.1 0.3 0.3 2 17 1 60 60 60 28.3 10.6 9.5 8.6 9.2 0.0 2E+02 2E+02 0E+00 0.0 0.0 0.0 0 17 1 0.0 0.0 0.0

T5−1
r 305 0.2 0.6 0.6 - - - - - 305 46.6 25.5 24.1 25.3 24.6 23.6 8E+04 4E+04 3E+04 - - 0.0 - - 1805 - - 0.0

T5−2
r 157 0.1 0.6 0.6 44 28 13 157 157 157 31.2 5.5 2.6 5.7 3.7 2.2 2E+03 3E+02 3E+01 0.0 0.0 0.0 37 26 11 0.0 0.0 0.0

T5−3
r 135 0.1 0.7 0.5 139 3155 30 135 135 135 39.3 23.4 22.2 22.6 21.4 14.5 7E+03 5E+04 9E+01 0.0 0.0 0.0 136 3088 22 0.0 0.0 0.0

T5−4
r 126 0.1 0.7 0.6 31 53 35 126 126 126 30.2 7.9 6.6 6.2 6.3 3.7 2E+03 1E+03 7E+01 0.0 0.0 0.0 17 32 34 0.0 0.0 0.0

T5−5
r 217 0.1 0.6 0.6 - - 163 225 - 217 35.9 11.8 9.1 11.2 10.1 7.6 7E+04 5E+04 8E+02 0.0 - 0.0 2628 - 92 0.0 - 0.0

Table B.7: Test results for the COCMST(0.01ε) problem: T 1
rand − T 5

rand.

154



B
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
C

O
C

M
S

T
p

ro
b

le
m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T6−1
r 207 0.1 0.6 0.9 202 1430 798 207 207 207 34.3 17.0 11.3 14.8 13.0 10.7 1E+04 1E+04 8E+03 0.0 0.0 0.0 19 688 7 0.0 0.0 0.0

T6−2
r 266 0.1 0.8 0.8 17 347 23 266 266 266 28.9 10.7 8.5 11.3 9.2 5.0 9E+02 2E+03 4E+01 0.0 0.0 0.0 6 159 15 0.0 0.0 0.0

T6−3
r 237 0.1 0.9 1.1 17 254 26 237 237 237 31.6 13.6 10.9 12.9 12.4 8.9 7E+02 3E+03 7E+01 0.0 0.0 0.0 1 71 5 0.0 0.0 0.0

T6−4
r 126 0.1 1.0 1.0 3 18 17 126 126 126 22.8 4.8 2.1 4.4 3.2 1.2 3E+02 2E+02 4E+01 0.0 0.0 0.0 0 4 2 0.0 0.0 0.0

T6−5
r 191 0.1 1.0 1.1 92 1307 194 191 191 191 32.5 14.4 14.0 15.0 14.0 13.0 6E+03 1E+04 5E+02 0.0 0.0 0.0 82 1298 171 0.0 0.0 0.0

T7−1
r 398 0.2 1.6 2.0 - - 178 398 398 398 27.9 6.4 2.6 6.0 4.2 2.4 1E+05 3E+04 3E+02 0.0 0.0 0.0 3 882 131 0.0 0.0 0.0

T7−2
r 559 0.2 1.9 2.1 - - 1634 562 - 559 28.3 7.5 5.4 8.0 6.3 5.1 3E+04 1E+04 4E+03 0.0 - 0.0 2008 - 580 0.0 - 0.0

T7−3
r 409 0.2 1.5 1.8 - - 872 - - 409 28.4 6.5 3.1 6.5 5.2 2.8 5E+04 1E+04 2E+03 - - 0.0 - - 307 - - 0.0

T7−4
r 438 0.2 1.4 2.3 - - 3322 - - 438 30.8 9.0 4.8 8.8 6.5 4.7 3E+04 8E+03 8E+03 - - 0.0 - - 527 - - 0.0

T7−5
r 655 0.2 1.6 2.1 - - - - - 655 39.9 19.4 14.4 18.5 17.0 14.2 2E+04 7E+03 5E+03 - - 0.0 - - 832 - - 0.0

T8−1
r 493 0.1 0.6 1.4 75 972 76 493 493 493 33.1 16.5 9.5 15.0 13.5 9.2 2E+03 5E+03 3E+02 0.0 0.0 0.0 46 432 20 0.0 0.0 0.0

T8−2
r 470 0.1 0.6 1.6 25 668 45 470 470 470 26.8 11.9 9.8 11.2 10.2 9.5 7E+02 2E+03 5E+01 0.0 0.0 0.0 24 614 44 0.0 0.0 0.0

T8−3
r 241 0.2 4.2 3.8 1731 - 800 241 - 241 32.4 6.7 6.6 7.3 6.6 6.4 4E+04 2E+03 5E+02 -14.8 - -14.8 166 - 11 -14.8 - -14.8

T8−4
r 305 0.1 0.8 1.4 2 14 4 305 305 305 20.7 4.1 2.3 2.7 2.1 1.1 9E+01 1E+01 0E+00 0.0 0.0 0.0 0 6 0 0.0 0.0 0.0

T8−5
r 400 0.2 3.7 3.7 - - 1644 400 411 400 32.2 8.7 4.2 9.0 6.9 4.0 6E+04 1E+04 1E+03 0.0 -17.4 0.0 6 687 786 -1.9 -17.4 -6.6

T9−1
r 1017 0.2 3.0 3.5 - - - - - 1017 28.8 10.9 6.5 10.1 7.6 6.2 4E+04 7E+03 5E+03 - - 0.8 - - 1995 - - 0.8

T9−2
r 834 0.2 3.3 3.2 2733 - 1829 834 - 834 27.4 9.3 6.8 9.3 7.5 6.6 4E+04 6E+03 3E+03 0.0 - 0.0 473 - 333 0.0 - 0.7

T9−3
r 686 0.2 1.8 2.8 181 2246 558 686 686 686 17.2 4.6 2.9 4.2 3.6 2.4 4E+03 7E+03 7E+02 0.0 0.0 0.0 170 1928 559 0.0 0.0 0.0

T9−4
r 838 0.2 2.4 2.9 - - - - - 838 24.7 9.2 3.7 9.0 6.2 3.3 4E+04 5E+03 7E+03 - - -1.4 - - 1056 - - -1.4

T9−5
r 621 0.2 1.3 2.6 49 515 178 621 621 621 18.7 3.2 2.5 2.8 2.5 2.3 2E+03 3E+03 4E+02 0.0 0.0 0.0 28 166 50 0.0 0.0 0.0

T10−1
r 292 0.2 2.3 5.1 532 - 198 292 - 292 31.5 7.1 3.1 7.7 4.6 2.9 2E+04 6E+03 2E+02 0.0 - 0.0 13 - 98 0.0 - 0.0

T10−2
r - 0.2 2.7 2.9 - - - - - - - - - - - - 6E+04 6E+03 4E+03 - - - - - - - - -

T10−3
r 481 0.2 2.5 3.1 - - 1338 506 - 481 30.4 9.9 4.1 8.3 8.1 4.1 4E+04 1E+04 3E+03 0.0 - 0.0 1258 - 415 -2.4 - 0.0

T10−4
r 303 0.2 2.6 2.9 - - 1740 310 - 303 35.6 12.6 7.7 13.7 10.2 6.8 3E+04 4E+03 1E+03 0.0 - 0.0 1812 - 1222 0.0 - 0.0

T10−5
r 393 0.2 2.9 4.6 - - 1270 393 - 393 31.0 11.2 8.5 11.3 10.4 8.2 7E+04 8E+03 1E+03 -2.2 - -2.2 158 - 1117 0.0 - -3.7

Table B.8: Test results for the COCMST(0.01ε) problem: T 6
rand − T 10

rand.

155



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) B&B Tree Nodes Gap∗U (%) Feas.-time (s) Gap1U (%)

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

R
D

M
F

T1−1
3tc 15446 0.1 0.4 0.2 0 1 0.321 15446 15446 15446 7.7 2.5 2.4 2.4 1.8 1.7 4E+01 3E+01 3E+01 -1.5 -1.5 -1.5 0 1 0 -1.5 -1.5 -1.8

T1−2
3tc 17334 0.1 0.6 0.4 0 2 0.839 17334 17334 17334 6.9 2.0 0.3 0.7 0.1 0.2 0E+00 0E+00 0E+00 -0.8 -0.8 -0.8 0 1 0 -0.4 -0.8 -0.8

T1−3
3tc 15220 0.1 0.6 0.6 1 19 2.698 15220 15220 15220 9.2 1.6 1.5 1.6 1.5 1.1 4E+01 1E+02 9E+00 0.4 0.4 0.4 0 2 0 0.4 0.4 0.4

T1−4
3tc 19538 0.1 0.6 0.6 2 15 1.524 19538 19538 19538 13.6 1.2 0.6 0.7 0.6 0.4 1E+02 2E+02 1E+01 0.8 0.8 0.8 0 2 0 0.2 0.4 0.2

T1−5
3tc 15782 0.1 0.6 0.7 1 22 2.129 15782 15782 15782 14.7 0.3 0.3 0.3 0.3 0.1 2E+01 2E+01 0E+00 1.3 1.3 1.3 0 11 2 1.3 1.3 1.3

T2−1
3tc 20358 0.2 2.0 1.7 95 210 10.645 20358 20358 20358 12.9 2.1 1.2 1.8 1.3 1.1 7E+03 4E+03 5E+02 0.2 0.2 0.2 5 85 3 -0.2 -0.2 0.4

T2−2
3tc 24572 0.2 0.7 0.4 0 1 0.572 24572 24572 24572 2.7 0.0 0.0 1.1 0.0 0.0 0E+00 0E+00 0E+00 -0.2 -0.2 -0.2 0 1 0 -0.2 -0.2 -0.2

T2−3
3tc 30356 0.2 0.9 0.5 0 2 0.711 30356 30356 30356 4.6 0.2 0.2 0.2 0.0 0.0 0E+00 0E+00 0E+00 -0.1 -0.1 -0.1 0 1 0 0.1 0.4 -0.1

T2−4
3tc 29476 0.2 0.7 0.6 1 2 1.421 29476 29476 29476 11.2 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0E+00 -0.4 -0.4 -0.4 0 3 1 -0.4 -0.4 -0.4

T2−5
3tc 23048 0.2 0.9 0.9 3 16 1.695 23048 23048 23048 12.5 0.4 0.2 0.2 0.2 0.1 2E+02 2E+02 4E+01 -0.4 -0.4 -0.4 1 10 1 -0.4 0.2 -0.4

T3−1
3tc 28578 0.2 4.7 18.1 68 380 86.501 28578 28578 28578 15.0 0.7 0.5 0.6 0.5 0.4 2E+03 5E+02 3E+01 2.0 2.0 2.0 0 34 1 1.6 2.0 1.6

T3−2
3tc 26982 0.2 4.1 6.5 151 1264 110.536 26982 26982 26982 12.8 1.4 0.7 2.1 1.2 0.6 6E+03 4E+03 5E+02 -1.1 -1.1 -1.1 2 194 7 -1.1 -0.8 -0.8

T3−3
3tc 29542 0.2 4.0 5.5 1168 - 193.564 29542 29542 29542 16.1 1.8 0.8 2.0 1.0 0.8 2E+04 4E+03 1E+02 -1.7 -2.0 -1.7 0 1406 16 -2.0 -1.7 -1.7

T3−4
3tc 20520 0.2 5.8 5.0 - - - - - 20520 22.0 11.8 8.4 11.3 9.9 7.9 6E+04 5E+03 1E+04 - - 1.7 - - 2966 - - 1.7

T3−5
3tc 31162 0.2 1.9 2.7 54 1727 47.324 31162 31162 31162 14.5 7.7 5.0 6.6 5.6 4.9 3E+03 9E+03 7E+02 1.6 1.6 1.6 4 625 5 1.6 2.1 1.6

T4−1
3tc 47126 0.3 5.5 12.1 570 3127 72.231 47126 47126 47126 15.6 1.2 0.2 0.9 0.4 0.1 7E+03 2E+03 1E+01 -0.1 -0.1 -0.1 0 296 15 -0.8 -0.8 -0.8

T4−2
3tc 36070 0.3 7.6 12.1 3600 - - 36490 38662 36070 13.2 3.6 1.2 3.2 2.7 1.0 7E+04 3E+03 9E+03 1.9 2.2 1.9 107 2683 221 1.9 2.3 1.9

T4−3
3tc 38962 0.3 2.4 3.8 1 13 6.494 38962 38962 38962 5.0 0.1 0.1 0.0 0.0 0.0 0E+00 0E+00 0E+00 -0.4 -0.4 -0.4 0 11 1 0.4 -0.4 -0.4

T4−4
3tc 64912 0.2 3.7 2.8 203 158 37.598 64912 64912 64912 6.9 1.5 0.7 2.2 0.7 0.6 3E+04 2E+03 1E+03 1.5 1.5 1.5 1 11 2 0.6 0.6 1.5

T4−5
3tc 41956 0.2 8.9 5.5 - - 970.385 41956 42388 41956 12.6 3.9 2.0 3.8 2.4 1.9 9E+04 9E+03 1E+04 1.1 1.0 1.1 29 392 43 1.2 0.4 1.0

T5−1
3tc 21590 0.2 3.5 14.5 14 1916 89.054 21590 21590 21590 6.1 0.8 0.3 0.7 0.7 0.1 3E+02 1E+03 6E+01 -0.1 -0.1 -0.1 1 324 14 -0.1 -0.1 -0.1

T5−2
3tc 19950 0.3 4.6 23.4 147 - 2789.044 19950 - 19950 15.4 1.3 1.3 1.3 1.3 1.1 2E+03 2E+02 7E+02 6.3 - 6.3 3 - 1328 6.3 - 6.3

T5−3
3tc 25586 0.2 5.4 34.8 - - - 25586 - 25588 21.5 3.0 2.9 3.1 2.9 2.9 4E+04 2E+02 1E+03 -0.7 - -0.7 7 - 47 -0.7 - -0.7

T5−4
3tc 31266 0.2 16.9 17.1 2268 - - 31266 - 31326 20.2 6.6 6.6 6.6 6.6 6.4 7E+04 1E+03 2E+03 -2.0 - -2.0 68 - 1551 -1.0 - -2.0

T5−5
3tc 41242 0.2 4.6 22.1 1321 - 1282.397 41242 - 41242 20.1 4.3 4.0 5.1 4.2 4.0 2E+04 1E+03 2E+03 0.0 - 0.0 172 - 113 -1.1 - -1.1

T6−1
3tc - 0.3 94.5 24.7 - - - - - - - - - - - - 2E+04 1E+02 1E+03 - - - - - - - - -

T6−2
3tc 65578 0.4 37.6 105.8 145 - 156.778 65578 - 65578 14.2 0.4 0.2 0.2 0.3 0.2 1E+03 7E+01 2E+01 -0.3 - -0.3 0 - 2 -0.3 - 0.2

T6−3
3tc 51504 0.4 91.0 92.4 1744 - 3182.067 51504 - 51504 15.8 1.4 1.3 1.5 1.4 1.1 1E+04 2E+02 3E+02 -0.6 - -0.6 0 - 43 -1.0 - -1.0

T6−4
3tc 69238 0.3 7.2 150.4 - - 3297.404 69280 71412 69238 12.6 2.0 1.1 1.9 1.9 1.1 2E+04 1E+03 3E+03 0.1 0.1 0.1 97 3133 44 0.3 0.1 0.1

T6−5
3tc - 0.4 43.9 75.9 - - - - - - - - - - - - 1E+04 2E+01 5E+02 - - - - - - - - -

Table B.9: Test results for the COCMST(0.01ε) problem: T3tc.

156



C Computational results for the TE-MSTP decision problem

C Computational results for the TE-MSTP decision prob-
lem

Key:

• ins. : instance reference;

• Feas.-time (s) : time it takes to find a first feasible solution;

• U : worst-case edge utilization corresponding to the solution found for the TE-
MSTP decision problem;

• GapDU (%) : gap between B∗ and U ;

• B&B Tree Nodes : number of nodes in the B&B enumeration tree.

157



ins.

Feas.-time (s) B&B Tree Nodes GapDU

ε = 0.2 ε = 0.05 ε = 0.01 ε = 0.2 ε = 0.05 ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.01

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

T1−1
r 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 16.7 5.6 0.0 0.0 0.0 0.0

T1−2
r 0 1 1 1 1 1 0E+00 0E+00 2E+02 0E+00 9E+01 0E+00 16.7 16.7 0.0 0.0 0.0 0.0

T1−3
r 6 87 117 126 346 126 3E+02 3E+02 3E+03 1E+02 6E+03 1E+02 16.7 16.7 0.0 0.0 0.0 0.0

T1−4
r 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 5.9 19.1 1.5 1.5 0.0 0.0

T1−5
r 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 20.0 20.0 0.0 0.0 0.0 0.0

T2−1
r 1 1 49 8 76 23 0E+00 0E+00 2E+03 1E+02 3E+03 4E+02 20.0 17.9 2.9 2.9 0.0 0.0

T2−2
r 0 1 2 1 47 12 0E+00 0E+00 2E+02 0E+00 4E+03 2E+02 18.4 18.4 4.1 4.1 0.0 0.0

T2−3
r 86 56 - 99 - 239 7E+02 5E+01 2E+04 3E+02 2E+04 3E+02 17.6 17.6 - 2.9 - 0.0

T2−4
r 0 0 3 2 2 2 0E+00 0E+00 8E+02 1E+02 3E+02 6E+01 17.0 10.6 4.3 4.3 0.0 0.0

T2−5
r 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 18.2 13.6 4.5 4.5 0.0 0.0

T3−1
r 3 4 1 1 11 11 1E+02 0E+00 0E+00 0E+00 3E+02 1E+02 7.1 14.3 0.0 1.8 0.0 0.0

T3−2
r 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 9.4 12.5 0.0 0.0 0.0 0.0

T3−3
r 3 2 6 11 29 10 5E+01 0E+00 2E+02 7E+01 1E+03 3E+01 17.9 19.2 3.8 3.8 0.0 0.0

T3−4
r 1 13 39 11 6 14 0E+00 4E+01 2E+03 3E+01 4E+02 5E+01 16.7 16.7 0.0 3.7 0.0 0.0

T3−5
r 0 12 65 13 132 15 0E+00 4E+01 3E+03 5E+01 6E+03 5E+01 12.5 17.2 3.1 3.1 0.0 0.0

T4−1
r 0 2 14 15 2 15 0E+00 0E+00 9E+02 4E+01 5E+01 4E+01 16.7 18.8 0.0 0.0 0.0 0.0

T4−2
r 9 7 20 9 33 7 6E+02 4E+01 8E+02 4E+01 1E+03 1E+01 18.4 18.4 2.6 0.0 0.0 0.0

T4−3
r 0 1 0 1 0 2 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 18.2 9.1 3.0 0.0 0.0 0.0

T4−4
r 0 2 3 2 14 1 0E+00 0E+00 2E+02 0E+00 8E+02 0E+00 16.7 8.3 0.0 0.0 0.0 0.0

T4−5
r 0 0 6 1 1 1 0E+00 0E+00 5E+02 0E+00 0E+00 0E+00 20.0 20.0 0.0 0.0 0.0 0.0

T5−1
r 7 28 - 101 1050 1161 3E+02 4E+01 7E+04 4E+02 4E+04 4E+03 15.4 17.9 - 2.6 - 0.0

T5−2
r 0 23 86 67 25 29 0E+00 3E+01 3E+03 8E+01 1E+03 3E+01 18.5 18.5 3.7 3.7 0.0 0.0

T5−3
r 8 28 366 36 190 17 3E+02 3E+01 1E+04 7E+01 5E+03 5E+01 7.7 15.4 0.0 2.6 0.0 0.0

T5−4
r 19 19 9 104 148 5 1E+03 3E+01 3E+02 1E+02 4E+03 0E+00 15.9 15.9 2.3 0.0 0.0 0.0

T5−5
r 17 80 271 184 - 57 8E+02 3E+02 7E+03 7E+02 6E+04 8E+01 18.5 18.5 3.7 3.7 - 0.0

Table C.1: Test results for the TE-MSTP(Λ) decision problem: T 1
rand − T 5

rand.

158



C
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
T

E
-M

S
T

P
d

e
c
isio

n
p

ro
b

le
m

ins.

Feas.-time (s) B&B Tree Nodes GapDU

ε = 0.2 ε = 0.05 ε = 0.01 ε = 0.2 ε = 0.05 ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.01

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

T6−1
r 0 6 20 139 3 35 0E+00 0E+00 1E+03 3E+02 8E+01 5E+01 15.8 15.8 0.0 0.0 0.0 0.0

T6−2
r 1 4 34 30 5 5 0E+00 0E+00 2E+03 1E+02 2E+02 0E+00 13.9 18.5 3.7 3.7 0.0 0.0

T6−3
r 0 0 1 5 1 9 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 5.9 5.9 2.9 2.9 0.0 0.0

T6−4
r 0 6 0 6 0 8 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 14.7 14.7 0.0 0.0 0.0 0.0

T6−5
r 0 0 14 53 216 121 0E+00 0E+00 6E+02 1E+02 9E+03 4E+02 15.6 20.0 2.2 2.2 0.0 0.0

T7−1
r 0 0 2 0 16 172 0E+00 0E+00 0E+00 0E+00 2E+02 3E+02 18.5 13.6 3.7 3.7 0.0 0.0

T7−2
r - 109 67 149 - 3475 2E+04 1E+02 5E+02 2E+02 2E+04 9E+03 - 16.7 4.2 4.2 - 0.0

T7−3
r 35 199 474 207 - 331 6E+02 3E+02 4E+03 2E+02 3E+04 2E+02 18.2 18.2 3.0 3.0 - 0.0

T7−4
r 222 174 - 156 - 3109 3E+03 3E+02 3E+04 8E+01 3E+04 8E+03 20.0 17.5 - 0.0 - 0.0

T7−5
r 1126 211 - - - - 8E+03 4E+02 1E+04 2E+03 1E+04 2E+03 15.4 19.2 - - - -

T8−1
r 4 6 121 32 35 78 2E+02 0E+00 3E+03 2E+01 7E+02 7E+01 14.3 14.3 0.0 2.4 0.0 0.0

T8−2
r 1 32 8 136 48 52 0E+00 7E+01 2E+02 2E+02 1E+03 4E+01 17.9 19.0 3.6 2.4 0.0 0.0

T8−3
r 5 24 - 954 - 2854 0E+00 0E+00 2E+04 8E+02 5E+04 1E+03 16.1 16.1 - 3.2 - -1.1

T8−4
r 0 0 0 0 0 4 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 7.7 7.7 0.0 0.0 0.0 0.0

T8−5
r 4 0 6 617 - 908 0E+00 0E+00 0E+00 7E+01 2E+04 5E+02 16.0 18.5 0.0 3.7 - 0.0

T9−1
r 15 103 760 318 228 300 2E+02 6E+01 7E+03 1E+03 2E+03 6E+02 19.5 17.2 4.7 4.3 0.8 0.0

T9−2
r 31 107 444 166 13 310 6E+02 6E+01 4E+03 3E+02 8E+01 5E+02 13.1 16.4 4.5 3.0 0.0 0.7

T9−3
r 8 38 61 91 290 406 1E+02 2E+01 2E+03 2E+02 2E+03 1E+03 16.1 14.3 3.6 3.1 0.0 0.0

T9−4
r 3 61 397 164 329 835 0E+00 7E+01 4E+03 6E+02 3E+03 3E+03 17.8 19.2 4.1 4.1 0.0 0.0

T9−5
r 0 29 12 41 12 24 0E+00 2E+01 2E+02 3E+01 2E+02 6E+01 13.2 19.3 2.6 0.0 0.0 0.0

T10−1
r 3 20 - - 992 - 0E+00 0E+00 3E+04 1E+03 8E+03 6E+02 18.8 9.4 - - - -

T10−2
r 19 21 127 2177 - - 3E+02 0E+00 3E+03 4E+02 2E+04 1E+03 12.8 17.9 2.6 3.8 - -

T10−3
r 0 216 1084 362 797 - 0E+00 7E+01 2E+04 2E+02 1E+04 2E+03 14.3 19.0 3.6 1.8 0.0 -

T10−4
r 487 765 1105 - 1993 - 5E+03 7E+02 6E+03 6E+02 3E+04 6E+02 19.5 19.5 3.4 - 0.0 -

T10−5
r 3 21 - 464 10 1337 0E+00 0E+00 5E+04 3E+02 7E+01 1E+03 19.1 19.1 - 4.3 - -0.7

Table C.2: Test results for the TE-MSTP(Λ) decision problem: T 6
rand − T 10

rand.

159



ins.

Feas.-time (s) Nodes GapDU

ε = 0.2 ε = 0.05 ε = 0.01 ε = 0.2 ε = 0.05 ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.01

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

R
D

R
D

M
F

T1−1
3tc 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 13.8 9.9 2.5 1.3 -1.4 -1.8

T1−2
3tc 0 0 0 0 0 0 0E+00 0E+00 0E+00 1E+00 0E+00 0E+00 0.3 0.3 0.3 0.3 -0.4 -0.8

T1−3
3tc 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 15.7 14.9 4.8 4.8 0.4 0.4

T1−4
3tc 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 2.0 17.4 2.0 2.0 0.2 0.2

T1−5
3tc 0 0 0 0 0 1 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 15.1 16.8 5.9 6.2 1.4 1.4

T2−1
3tc 0 2 1 4 4 1 0E+00 0E+00 0E+00 5E+01 3E+02 0E+00 15.4 17.7 1.3 2.4 0.7 0.4

T2−2
3tc 0 0 0 0 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2

T2−3
3tc 0 0 0 0 0 1 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 16.8 8.3 1.8 4.1 0.1 0.7

T2−4
3tc 0 0 0 1 0 0 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 9.4 19.4 -0.4 2.4 -0.4 -0.4

T2−5
3tc 0 1 0 1 1 1 0E+00 0E+00 0E+00 0E+00 1E+02 0E+00 12.6 10.1 4.2 2.9 0.4 -0.4

T3−1
3tc 0 1 0 1 0 1 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 18.3 21.4 1.8 1.7 1.7 1.7

T3−2
3tc 0 10 0 32 1 14 0E+00 0E+00 0E+00 4E+01 0E+00 0E+00 17.1 11.7 1.6 0.3 -1.1 -0.2

T3−3
3tc 0 25 0 21 0 115 0E+00 0E+00 0E+00 0E+00 0E+00 1E+01 17.5 17.4 -2.0 1.6 -2.0 -2.0

T3−4
3tc 9 61 2990 2155 37 251 2E+02 2E+01 3E+04 1E+04 5E+02 2E+03 16.0 20.2 5.3 6.2 1.1 1.4

T3−5
3tc 0 3 1 6 1 3 0E+00 0E+00 0E+00 2E+01 0E+00 0E+00 20.7 20.8 6.3 5.4 1.6 1.6

T4−1
3tc 0 45 0 342 0 475 0E+00 0E+00 0E+00 2E+01 0E+00 3E+01 6.4 17.9 3.8 2.0 -0.8 -0.8

T4−2
3tc 0 33 4 231 4 34 0E+00 0E+00 0E+00 3E+01 0E+00 0E+00 20.7 21.0 7.2 7.1 2.5 2.1

T4−3
3tc 0 1 0 1 0 1 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 14.4 19.0 2.9 -0.4 0.4 -0.4

T4−4
3tc 0 3 0 3 1 3 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 20.3 7.8 4.7 5.2 0.6 1.6

T4−5
3tc 0 5 1 12 2 8 0E+00 0E+00 0E+00 6E+01 0E+00 0E+00 17.5 16.3 5.0 0.3 0.3 1.1

T5−1
3tc 0 1 2 9 7 42 0E+00 0E+00 0E+00 0E+00 8E+01 0E+00 17.5 13.4 -0.4 1.9 -0.4 -0.1

T5−2
3tc 0 12 147 - - - 0E+00 0E+00 1E+03 6E+03 2E+04 9E+02 16.2 8.6 9.9 - - -

T5−3
3tc 0 82 217 1014 672 1931 0E+00 0E+00 1E+03 6E+02 7E+03 2E+03 19.2 19.2 4.3 4.3 -0.7 -0.7

T5−4
3tc 2 14 210 264 - 905 0E+00 0E+00 2E+03 9E+01 2E+04 2E+03 16.3 11.2 1.4 -2.0 - -2.0

T5−5
3tc 0 113 564 178 38 216 0E+00 5E+01 3E+03 2E+02 2E+02 3E+02 16.6 18.7 3.2 3.9 -0.4 -0.6

T6−1
3tc 246 371 433 - - 3585 2E+03 6E+01 1E+03 4E+03 8E+03 2E+03 18.5 19.9 3.9 - - 2.2

T6−2
3tc 0 2 0 2 0 2 0E+00 0E+00 0E+00 0E+00 0E+00 0E+00 3.5 17.7 3.5 0.3 -0.3 0.3

T6−3
3tc 0 3 0 2 0 893 0E+00 0E+00 0E+00 0E+00 0E+00 1E+01 2.3 8.7 2.3 2.1 -1.0 -0.9

T6−4
3tc 5 423 6 512 4 874 0E+00 4E+01 0E+00 2E+01 0E+00 9E+02 20.1 13.5 4.5 3.4 1.1 0.1

T6−5
3tc 74 1366 1063 - - - 5E+02 6E+01 4E+03 2E+03 6E+03 3E+03 18.6 19.1 3.8 - - -

Table C.3: Test results for the TE-MSTP(Λ) decision problem: T3tc.

160



C Computational results for the TE-MSTP decision problem

ins.
TE-MSTP dec. prob. COCMST prob.

ins.
TE-MSTP dec. prob. COCMST prob.

RDM RDMFM RDM RDMFM RDM RDMFM RDM RDMFM

T1−1
r 0 0 0 0 T1−1

3tc 0 0 0 0

T1−2
r 2 1 1 1 T1−2

3tc 0 0 0 1

T1−3
r 440 42 62 26 T1−3

3tc 0 1 0 1

T1−4
r 0 0 0 0 T1−4

3tc 0 1 0 1

T1−5
r 0 0 0 0 T1−5

3tc 0 1 0 1

T2−1
r 31 7 9 8 T2−1

3tc 0 1 0 1

T2−2
r 0 1 0 1 T2−2

3tc 0 0 0 0

T2−3
r - - - - T2−3

3tc 0 0 0 0

T2−4
r 0 1 0 1 T2−4

3tc 0 1 0 1

T2−5
r 0 1 0 1 T2−5

3tc 0 1 0 1

T3−1
r 0 0 0 0 T3−1

3tc 0 4 0 7

T3−2
r 0 1 0 1 T3−2

3tc 0 4 0 4

T3−3
r 166 11 12 12 T3−3

3tc 0 7 0 7

T3−4
r 114 9 105 15 T3−4

3tc - - - -

T3−5
r 121 45 25 29 T3−5

3tc 0 2 0 2

T4−1
r 36 36 144 19 T4−1

3tc 0 10 0 10

T4−2
r 81 17 38 17 T4−2

3tc 0 10 0 7

T4−3
r 196 93 314 100 T4−3

3tc 0 4 0 6

T4−4
r 23 8 12 9 T4−4

3tc 0 1 0 1

T4−5
r 6 0 5 0 T4−5

3tc 0 3 0 4

T5−1
r - 633 3321 1048 T5−1

3tc 0 8 0 9

T5−2
r 63 46 1095 25 T5−2

3tc - - - -

T5−3
r 374 33 99 22 T5−3

3tc 0 17 0 16

T5−4
r 100 157 88 26 T5−4

3tc - - - -

T5−5
r 2927 507 - 150 T5−5

3tc 576 1209 - 1491

T6−1
r 229 416 115 1312 T6−1

3tc - - - -

T6−2
r 279 125 129 41 T6−2

3tc 0 16 0 34

T6−3
r 43 118 17 67 T6−3

3tc 0 15 0 19

T6−4
r 47 213 1105 224 T6−4

3tc 0 11 0 13

T6−5
r 319 701 440 576 T6−5

3tc 0 27 0 31

T7−1
r 1042 3108 1767 2880

T7−2
r - - - -

T7−3
r - - - -

T7−4
r - - - -

T7−5
r - - - -

T8−1
r 76 108 450 113

T8−2
r 51 42 17 43

T8−3
r - - - -

T8−4
r 0 2 0 2

T8−5
r - - - -

T9−1
r 0 10 0 8

T9−2
r 65 627 13 15

T9−3
r 95 163 337 53

T9−4
r - 1058 - -

T9−5
r 8 77 26 36

T10−1
r - - - -

T10−2
r - - - -

T10−3
r - - - -

T10−4
r - - - -

T10−5
r - - - -

Table C.4: Running time (s) for the TE-MSTP(−0.05ε) decision problem and the
COCMST(−0.05ε) problems.

161



D Computational results for the BSA

Key:

• ins. : instance reference;

• MIP-time (s) : time it takes to solve the (mixed-)integer program;

• iter. : number of iterations of BSA;

• B : best upper bound found by RDMFM;

• Bend : lower bound obtained after optimization is finished or interrupted;

• Bio : lower bound obtained at the end of the in-out cut loop stabilization;

• UB : upper bound at the end of BSA;

• LB : lower bound at the end of BSA.

162



D Computational results for the BSA

ins.
RDMFM BSA

MIP-time (s) B − Bend time (s) UB − LB iter.

T1−1
r 1 0.00 1 0.01 3

T1−2
r 3 0.00 1 0.01 4

T1−3
r 93 0.00 106 0.01 5

T1−4
r 1 0.00 1 0.01 5

T1−5
r 0 0.00 1 0.01 3

T2−1
r 76 0.00 30 0.01 6

T2−2
r 3 0.00 2 0.00 5

T2−3
r - 0.03 - 0.04 5

T2−4
r 2 0.01 6 0.01 5

T2−5
r 1 0.00 1 0.00 1

T3−1
r 14 0.00 3 0.01 5

T3−2
r 2 0.00 1 0.01 5

T3−3
r 30 0.00 66 0.01 7

T3−4
r 36 0.00 15 0.01 5

T3−5
r 44 0.00 67 0.01 6

T4−1
r 86 0.00 226 0.01 4

T4−2
r 39 0.00 68 0.01 5

T4−3
r 291 0.00 80 0.01 4

T4−4
r 20 0.00 29 0.01 6

T4−5
r 16 0.00 16 0.01 4

T5−1
r - 0.09 - 0.01 6

T5−2
r 58 0.00 229 0.01 5

T5−3
r 69 0.00 134 0.01 5

T5−4
r 126 0.00 73 0.01 5

T5−5
r 434 0.00 1591 0.01 5

T6−1
r 130 0.00 92 0.01 6

T6−2
r 240 0.00 360 0.01 5

T6−3
r 106 0.00 133 0.01 6

T6−4
r 939 0.00 582 0.01 5

T6−5
r 295 0.00 130 0.01 5

T7−1
r 133 0.00 - 0.01 5

T7−2
r - 0.13 - 0.14 3

T7−3
r - 0.09 - 0.16 3

T7−4
r - 0.11 - 0.14 3

T7−5
r - 0.16 - 0.14 3

T8−1
r 58 0.00 41 0.00 6

T8−2
r 140 0.00 67 0.01 6

T8−3
r - 0.29 - 0.19 2

T8−4
r 7 0.00 1 0.00 3

T8−5
r - 0.35 - 0.29 2

T9−1
r 94 0.01 251 0.01 2

T9−2
r 574 0.01 1019 0.01 4

T9−3
r 188 0.01 142 0.00 5

T9−4
r 935 0.00 - 0.01 5

T9−5
r 82 0.01 169 0.00 5

T10−1
r - 0.11 3395 0.01 5

T10−2
r - 0.12 - 0.09 4

T10−3
r - 0.20 - 0.29 2

T10−4
r - 0.21 - 0.01 7

T10−5
r - 0.33 - 0.08 4

Table D.1: Test results for the BSA: Trand.

163



ins.
RDMFM BSA

MIP-time (s) B − Bend time (s) UB − LB iter.

T1−1
3tc 0 0.00 1 0.00 2

T1−2
3tc 1 0.00 2 0.00 1

T1−3
3tc 1 0.00 2 0.01 1

T1−4
3tc 1 0.00 2 0.00 1

T1−5
3tc 2 0.00 2 0.00 3

T2−1
3tc 3 0.00 4 0.01 3

T2−2
3tc 1 0.00 0 0.00 0

T2−3
3tc 1 0.00 1 0.01 2

T2−4
3tc 1 0.00 2 0.00 1

T2−5
3tc 1 0.00 2 0.01 2

T3−1
3tc 41 0.00 18 0.00 3

T3−2
3tc 49 0.00 13 0.01 4

T3−3
3tc 49 0.00 17 0.00 4

T3−4
3tc - 0.01 - 0.01 5

T3−5
3tc 10 0.00 9 0.00 4

T4−1
3tc 140 0.00 17 0.00 4

T4−2
3tc 72 0.00 19 0.00 3

T4−3
3tc 4 0.00 9 0.00 3

T4−4
3tc 3 0.00 6 0.00 4

T4−5
3tc 14 0.00 18 0.00 4

T5−1
3tc 166 0.00 31 0.00 3

T5−2
3tc - 0.04 - 0.01 5

T5−3
3tc 408 0.00 75 0.00 4

T5−4
3tc - 0.05 2320 0.01 5

T5−5
3tc 2521 0.00 451 0.01 6

T6−1
3tc - 0.01 - 0.01 5

T6−2
3tc 265 0.00 110 0.00 2

T6−3
3tc 292 0.00 92 0.00 3

T6−4
3tc 196 0.00 116 0.01 4

T6−5
3tc 1846 0.00 233 0.01 5

Table D.2: Test results for the BSA: T3tc.

164



E Computational results for the PUMF problem

E Computational results for the PUMF problem

Key:

• ins. : instance reference;

• LP-time (s) : time it takes to solve the LP relaxation;

• MIP-time (s) : time it takes to solve the (mixed-)integer program;

• B∗ : best upper bound found by any of the models;

• B : best upper bound found by each model;

• BLP : lower bound obtained by solving the LP relaxation;

• B0 : lower bound obtained after the root node of the B&B tree has been processed;

• Bend : lower bound obtained after optimization is finished or interrupted;

• GapLP (%) : gap between B∗ and BLP ;

• Gap0(%) : gap between B∗ and B0;

• Gapend(%) : gap between B and Bend;

• B&B Tree Nodes : number of nodes in the B&B enumeration tree,

165



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

T1−1
1 523 17 13.8 0.8 18 13.8 4 523 523 523 5.1 5.1 0.0 4.5 5.1 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T1−2
1 532 15 10.7 0.8 15 10.7 4 532 532 532 2.6 2.6 0.0 2.6 2.6 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T1−3
1 564 17.2 13.4 1.1 19 13.4 4 564 564 564 5.9 5.9 0.0 4.3 5.9 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T1−4
1 707 16.3 13.2 0.8 18 13.2 4 707 707 707 6.0 6.0 0.0 4.2 6.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T1−5
1 472 15.7 12.6 0.8 17 12.6 4 472 472 472 6.6 6.6 0.0 3.1 6.6 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T2−1
1 609 21.7 15.2 1.1 22 15.2 5 609 609 609 3.7 3.7 0.0 3.3 3.7 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T2−2
1 702 20.1 15.2 1 26 15.2 5 702 702 702 10.8 10.8 0.0 4.9 4.9 0.0 0.0 0.0 0.0 3E+01 2E+01 0.0E+00

T2−3
1 645 20.9 17.3 1 23 17.3 5 645 645 645 9.2 9.2 0.0 8.9 9.2 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T2−4
1 546 21.7 17.5 1 23 17.5 5 546 546 546 5.4 5.4 0.0 4.3 5.4 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T2−5
1 486 20.3 15.4 1 22 15.4 5 486 486 486 2.3 2.3 0.0 2.3 2.3 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T3−1
1 723 32.6 29.4 1.4 37 29.4 7 723 723 723 3.1 3.1 0.0 2.0 3.1 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T3−2
1 647 26.6 23.2 1.4 30 23.2 7 647 647 647 4.1 4.1 0.0 3.2 4.1 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T3−3
1 799 28.6 20.4 1.3 40 20.4 7 799 799 799 12.9 12.9 0.0 6.4 6.4 0.0 0.0 0.0 0.0 5E+01 4E+01 0.0E+00

T3−4
1 658 25.7 18.6 1.4 29 18.6 7 658 658 658 1.8 1.8 0.0 1.1 1.8 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T3−5
1 800 35 29.9 1.3 38 29.9 7 800 800 800 2.7 2.7 0.0 1.5 2.7 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T4−1
1 2415 10.2 11.8 0.9 13 11.8 7 2415 2415 2415 2.3 2.3 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T4−2
1 2271 11.1 12.4 0.9 13 12.4 7 2271 2271 2271 0.5 0.5 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T4−3
1 2716 10 10.7 0.9 21 10.7 12 2716 2716 2716 17.4 17.4 1.5 9.6 5.5 1.2 0.0 0.0 0.0 1E+01 2E+01 0.0E+00

T4−4
1 2078 10.3 10.2 0.9 13 10.2 7 2078 2078 2078 3.8 3.8 0.0 0.7 0.6 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T4−5
1 2407 9.9 13.4 0.9 13 13.4 7 2407 2407 2407 2.2 2.2 0.0 1.3 2.2 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T5−1
1 2067 259.8 280.5 6.8 576 280.5 89 2067 2067 2067 12.9 12.9 0.0 3.6 3.6 0.0 0.0 0.0 0.0 2E+02 4E+02 0.0E+00

T5−2
1 1870 347.6 301.4 6.6 417 301.4 93 1870 1870 1870 6.0 6.0 0.0 2.5 6.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T5−3
1 1811 249.1 259.9 6.6 479 259.9 89 1811 1811 1811 4.8 4.8 0.0 0.8 0.8 0.0 0.0 0.0 0.0 4E+01 5E+01 0.0E+00

T5−4
1 1728 269.2 212.5 6.5 375 212.5 93 1728 1728 1728 3.5 3.5 0.0 1.1 3.5 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T5−5
1 1753 270.9 222.2 6.9 383 222.2 94 1753 1753 1753 7.6 7.6 0.0 1.3 1.3 0.0 0.0 0.0 0.0 6E+01 6E+01 0.0E+00

T6−1
1 1354 337.8 353.5 6.1 2278 353.5 78 1354 1362 1354 9.2 9.2 0.0 2.4 2.4 0.0 0.0 ? 0.0 2E+03 6E+02 0.0E+00

T6−2
1 1303 407.8 416.2 6.3 - 416.2 70 1303 1303 1303 12.7 12.7 0.0 6.2 6.2 0.0 ? ? 0.0 1E+03 8E+01 0.0E+00

T6−3
1 1264 355.9 399.9 5.9 535 399.9 70 1264 1281 1264 7.9 7.9 0.0 4.6 4.6 0.0 0.0 ? 0.0 8E+01 2E+01 0.0E+00

T6−4
1 856 319.5 360.5 6.2 399 360.5 72 856 856 856 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T6−5
1 1585 326.4 332.7 5.9 819 332.7 70 1585 1585 1585 15.4 15.4 0.0 7.4 7.4 0.0 0.0 ? 0.0 2E+03 2E+01 0.0E+00

Table E.1: Test results for the PUMF problem: T 1
1 − T 6

1 .

166



E
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
P

U
M

F
p

ro
b

le
m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

T7−1
1 1340 417.2 396.5 8.3 652 396.5 109 1340 1340 1340 5.7 5.7 0.0 2.6 2.6 0.0 0.0 0.0 0.0 8E+01 8E+01 0.0E+00

T7−2
1 1563 327.8 422 8.2 881 422 113 1563 1563 1563 5.1 5.1 0.0 0.7 0.7 0.0 0.0 0.0 0.0 6E+01 5E+01 0.0E+00

T7−3
1 1597 324 236.6 8.3 - 236.6 112 1597 1614 1597 8.9 8.9 0.0 1.5 1.5 0.0 0.0 ? 0.0 2E+03 4E+02 0.0E+00

T7−4
1 1445 353 326.2 8.1 438 326.2 110 1445 1445 1445 6.1 6.1 0.0 1.0 6.1 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T7−5
1 1533 364.8 271.6 7.3 532 271.6 117 1533 1533 1533 5.7 5.7 0.0 0.7 0.7 0.0 0.0 0.0 0.0 7E+01 7E+01 0.0E+00

T8−1
1 2029 197.5 223.6 4.7 333 223.6 74 2029 2029 2029 7.6 7.6 0.1 2.1 2.1 0.1 0.0 0.0 0.0 4E+01 6E+01 0.0E+00

T8−2
1 1646 207 194.6 4.8 279 194.6 67 1646 1646 1646 5.7 5.7 0.0 0.9 5.7 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T8−3
1 1896 207 180.2 4.8 465 180.2 70 1896 1896 1896 8.2 8.2 0.1 1.3 1.3 0.1 0.0 0.0 0.0 9E+01 5E+01 0.0E+00

T8−4
1 1754 201.3 208.8 4.9 1012 208.8 67 1754 1754 1754 14.6 14.6 0.0 8.6 5.9 0.0 0.0 0.0 0.0 1E+03 8E+02 0.0E+00

T8−5
1 1650 214.1 193.8 4.8 375 193.8 66 1650 1650 1650 6.4 6.4 0.0 0.8 0.8 0.0 0.0 0.0 0.0 2E+01 1E+01 0.0E+00

T9−1
1 2285 273.4 274.4 6 533 274.4 90 2285 2285 2285 9.4 9.4 0.0 1.2 2.0 0.0 0.0 0.0 0.0 5E+01 8E+01 0.0E+00

T9−2
1 2335 284.8 274.5 6 2319 274.5 95 2335 2335 2335 18.5 18.5 0.0 7.4 8.4 0.0 0.0 ? 0.0 6E+02 5E+02 0.0E+00

T9−3
1 2065 293 274.3 5.9 462 274.3 86 2065 2065 2065 5.8 5.8 0.0 1.1 1.1 0.0 0.0 0.0 0.0 4E+01 4E+01 0.0E+00

T9−4
1 2105 282.2 284 6.2 547 284 86 2105 2105 2105 4.0 4.0 0.0 1.6 4.0 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T9−5
1 1710 264.8 257.9 6 509 257.9 92 1710 1710 1710 10.3 10.3 0.0 2.5 1.9 0.0 0.0 0.0 0.0 6E+01 7E+01 0.0E+00

T10−1
1 2045 487.7 549.9 8.6 809 549.9 128 2045 2045 2045 8.0 8.0 0.0 1.2 1.2 0.0 0.0 0.0 0.0 1E+02 1E+02 0.0E+00

T10−2
1 1829 489 587 8.8 999 587 118 1829 1829 1829 5.9 5.9 0.0 1.3 5.9 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T10−3
1 1926 484.7 511.7 9.1 - 511.7 128 1926 1963 1926 12.9 12.9 0.2 4.5 4.5 0.2 ? ? 0.0 1E+03 0E+00 0.0E+00

T10−4
1 1365 489.2 394.8 8.8 665 394.8 121 1365 1365 1365 4.8 4.8 0.0 2.5 4.8 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T10−5
1 1579 466.2 528.5 9.1 749 528.5 120 1579 1579 1579 4.6 4.6 0.0 1.4 4.6 0.0 0.0 0.0 0.0 0E+00 0E+00 0.0E+00

T11−1
1 3331 473.8 435.3 9.5 770 435.3 99 3331 3331 3331 7.4 7.4 0.0 0.5 0.6 0.0 0.0 0.0 0.0 9E+00 3E+01 0.0E+00

T11−2
1 3521 422 447.2 9 3037 447.2 89 3521 3521 3521 8.8 8.8 0.0 3.7 3.7 0.0 0.0 0.0 0.0 7E+02 4E+02 0.0E+00

T11−3
1 2955 411.9 344 8.7 647 344 88 2955 2955 2955 6.6 6.6 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1E+01 1E+01 0.0E+00

T11−4
1 2251 451.2 455.7 8.6 1002 455.7 87 2251 2251 2251 6.9 6.9 0.0 2.6 2.1 0.0 0.0 0.0 0.0 3E+02 3E+02 0.0E+00

T11−5
1 2701 440.9 432.3 9.1 714 432.3 97 2701 2701 2701 6.6 6.6 0.0 0.8 1.5 0.0 0.0 0.0 0.0 5E+01 5E+01 0.0E+00

Table E.2: Test results for the PUMF problem: T 7
1 − T 11

1 .

167



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

B
M

1

B
M

2

S
M

atlanta 4.29E+08 0.2 0.1 0.6 0 0 3 4.29E+08 4.29E+08 4.29E+08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0E+00 0.0E+00 0E+00

atlanta-0.38 3.19E+05 0.1 0.1 0.3 4 2 17 3.19E+05 3.19E+05 3.19E+05 0.3 0.3 0.3 0.0 0.2 0.3 0.0 0.0 0.0 1.9E+02 7.3E+02 7E+02

atlanta-0.71 6.69E+05 0.1 0.1 0.6 4 1 58 6.69E+05 6.69E+05 6.69E+05 0.5 0.5 0.5 0.2 0.2 0.5 0.0 0.0 0.0 5.1E+02 2.2E+02 1E+03

atlanta-1.05 2.44E+07 0.2 0.1 0.9 15 6 92 2.44E+07 2.44E+07 2.44E+07 0.9 0.9 0.9 0.3 0.6 0.6 0.0 0.0 0.0 1.8E+04 5.2E+02 2E+03

france 2.72E+08 0.7 1.1 3.3 719 418 2141 2.72E+08 2.72E+08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9E+05 1.3E+05 2E+04

france-0.38 4.59E+05 0.5 0.4 1.5 - 1403 - 4.59E+05 4.59E+05 4.59E+05 0.1 0.1 0.1 0.1 0.1 0.1 ? 0.0 0.0 1.4E+06 3.1E+05 1E+05

france-0.71 5.11E+07 0.7 0.6 4.2 - - - 5.11E+07 5.11E+07 5.19E+07 0.1 0.1 0.1 0.1 0.1 0.1 ? ? 1.5 5.5E+05 5.4E+05 2E+04

france-1.05 2.36E+08 0.7 0.5 3.3 - 1213 - 2.36E+08 2.36E+08 2.36E+08 0.0 0.0 0.0 0.0 0.0 0.0 ? 0.0 0.1 1.2E+06 3.2E+05 5E+04

newyork 2.85E+03 0.2 0.5 0.2 1 1 4 2.85E+03 2.85E+03 2.85E+03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0E+00 0.0E+00 0E+00

newyork-0.38 4.22E+03 0.4 1.0 2.0 - 97 312 4.22E+03 4.22E+03 4.22E+03 3.6 3.6 2.9 0.7 3.0 2.3 ? 0.0 0.0 1.5E+05 3.9E+03 2E+03

newyork-0.71 3.69E+04 0.8 1.1 3.7 - - - 3.69E+04 3.69E+04 2.89E+06 6.1 6.1 1.3 4.4 5.4 1.0 ? ? 2.2 2.0E+05 1.2E+05 7E+03

newyork-1.05 1.92E+06 1.2 1.4 4.0 - 3534 - 1.92E+06 1.92E+06 1.97E+06 5.8 5.8 0.1 5.4 0.2 0.1 ? 0.0 3.0 2.2E+05 1.2E+05 9E+03

pdh 1.92E+07 0.1 0.0 0.0 0 2 0 1.92E+07 1.92E+07 1.92E+07 7.6 7.6 0.0 1.5 2.8 0.0 0.0 0.0 0.0 2.2E+02 5.6E+01 0E+00

pdh-0.38 7.42E+03 0.1 0.0 0.1 0 0 0 7.42E+03 7.42E+03 7.42E+03 19.2 19.2 0.0 3.1 4.0 0.0 0.0 0.0 0.0 7.0E+00 0.0E+00 0E+00

pdh-0.71 8.47E+05 0.0 0.0 0.0 5 3 0 8.47E+05 8.47E+05 8.47E+05 98.9 98.9 0.0 0.6 1.2 0.0 0.0 0.0 0.0 1.9E+03 1.6E+03 0E+00

pdh-1.05 3.87E+06 0.1 0.0 0.0 40 7 0 3.87E+06 3.87E+06 3.87E+06 99.5 99.5 0.0 9.5 11.6 0.0 0.0 0.0 0.0 5.0E+02 1.1E+03 0E+00

sun 4.49E+04 0.4 0.3 0.5 977 67 1190 4.49E+04 4.49E+04 4.49E+04 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 7.7E+04 6.7E+03 1E+04

sun-0.38 3.37E+03 0.3 0.3 0.4 12 16 53 3.38E+03 3.38E+03 3.38E+03 1.4 1.4 1.4 0.4 0.8 0.9 0.0 0.0 0.0 1.7E+03 8.0E+02 1E+03

sun-0.71 4.32E+05 0.3 0.4 0.8 291 17 738 4.32E+05 4.32E+05 4.32E+05 0.4 0.4 0.4 0.1 0.1 0.3 0.0 0.0 0.0 5.4E+05 1.2E+03 9E+03

sun-1.05 1.51E+06 0.5 0.4 0.5 - 47 315 1.51E+06 1.51E+06 1.51E+06 1.8 1.8 1.8 0.9 1.6 1.7 ? 0.0 0.0 1.4E+06 8.6E+03 4E+03

ta1 1.66E+07 0.9 0.9 0.8 31 26 208 1.66E+07 1.66E+07 1.66E+07 3.1 3.1 0.0 0.6 2.1 0.0 0.0 0.0 0.0 1.3E+03 1.2E+03 1E+04

ta1-0.38 5.22E+08 1.0 1.1 2.0 593 218 761 5.22E+08 5.22E+08 5.22E+08 95.1 95.1 0.1 88.1 95.0 0.1 0.0 0.0 0.0 7.6E+03 2.0E+03 5E+03

ta1-0.71 6.02E+09 1.3 1.4 3.7 - 40 - 6.02E+09 6.73E+09 6.02E+09 46.6 46.6 1.2 36.1 46.6 1.1 ? 0.0 1.2 7.8E+04 8.1E+02 5E+03

ta1-1.05 1.57E+10 1.2 1.7 3.0 421 591 - 1.57E+10 1.57E+10 1.59E+10 6.0 6.0 0.0 0.6 6.0 0.0 0.0 0.0 1.0 1.0E+04 9.3E+03 1E+04

Table E.3: Test results for the PUMF problem: T2.

168



F Computational results for the NPUMF problem

F Computational results for the NPUMF problem

Key:

• ins. : instance reference;

• LP-time (s) : time it takes to solve the LP relaxation;

• MIP-time (s) : time it takes to solve the (mixed-)integer program;

• B∗ : best upper bound found by any of the models;

• B : best upper bound found by each model;

• BLP : lower bound obtained by solving the LP relaxation;

• B0 : lower bound obtained after the root node of the B&B tree has been processed;

• Bend : lower bound obtained after optimization is finished or interrupted;

• GapLP (%) : gap between B∗ and BLP ;

• Gap0(%) : gap between B∗ and B0;

• Gapend(%) : gap between B and Bend;

• B&B Tree Nodes : number of nodes in the B&B enumeration tree,

169



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes

B
M

1

S
M

-n

B
M

1

S
M

-n

B
M

1

S
M

-n

B
M

1

S
M

-n

B
M

1
-r

S
M

-r

B
M

1

S
M

-n

B
M

1

S
M

-n

B
M

1

S
M

-n

1− c4 10207 0.1 1.8 14 32 10207 10207 25.1 3.7 7646.260605 2 1.1 0.8 0.0 0.0 1E+03 4E+02

1− c8 9597 0.1 2.9 41 75 9597 9597 30.1 3.5 6705.183813 2 1.2 1.3 0.0 0.0 2E+03 6E+02

1− 6 c 4 10177 0.1 1.7 3 10 10177 10177 21.5 3.8 7984.529557 1 0.7 0.7 0.0 0.0 1E+02 3E+01

1− 6 c 8 10079 0.1 2.2 4 17 10079 10079 19.8 4.1 8083.445501 2 1.1 0.8 0.0 0.0 1E+02 8E+01

2− c4 12883 0.1 1.7 47 83 12883 12883 27.7 8.2 9313.575426 3 1.3 1.0 0.0 0.0 2E+03 6E+02

2− c8 12470 0.1 2.6 595 - 12470 12498 34.2 9.3 8211.444385 4 2.8 2.5 0.0 ?? 2E+04 9E+03

2− 6 c 4 13641 0.1 1.8 33 127 13641 13641 22.3 8.6 10598.81988 3 2.2 1.8 0.0 0.0 1E+03 7E+02

2− 6 c 8 14255 0.1 2.2 84 431 14255 14255 22.0 11.1 11125.52301 4 2.9 3.6 0.0 0.0 4E+03 2E+03

3− c4 20328 0.3 5.3 - - 20328 20371 27.2 4.8 14807.3984 2 3.1 2.5 ?? ?? 4E+04 9E+03

3− c8 19591 0.3 28.5 - - 19591 19864 31.8 5.3 13354.08852 2 3.7 3.1 ?? ?? 4E+04 8E+02

3− 6 c 4 21104 0.4 4.6 969 - 21104 21137 21.1 4.3 16653.3312 2 2.1 1.9 0.0 ?? 1E+04 2E+03

3− 6 c 8 20572 0.4 12.5 - - 20572 20675 19.3 5.2 16597.06817 2 3.0 2.6 ?? ?? 4E+04 1E+03

4− c4 21355 0.6 8.4 503 1566 21355 21355 24.4 4.9 16138.54498 2 1.6 1.1 0.0 0.0 8E+03 5E+03

4− c8 20566 0.5 29.6 - - 20566 20850 30.8 4.5 14230.18649 2 2.5 1.8 ?? ?? 2E+04 1E+03

4− 6 c 4 21415 0.5 6.9 276 2546 21415 21415 19.8 4.3 17177.88578 2 1.3 1.3 0.0 0.0 6E+03 3E+03

4− 6 c 8 21418 0.5 15.3 404 - 21418 21504 20.4 4.1 17046.06578 2 1.4 1.3 0.0 ?? 8E+03 1E+03

5− c4 16915 0.6 5.4 - - 17005 16915 25.7 5.9 12567.39921 3 2.8 2.4 ?? ?? 3E+04 1E+04

5− c8 16392 0.6 27.4 - - 16392 16638 30.7 6.5 11359.71712 3 4.1 3.5 ?? ?? 3E+04 1E+03

5− 6 c 4 16963 0.6 6.7 - - 16963 16967 21.5 6.1 13322.88494 3 2.8 2.6 ?? ?? 4E+04 7E+03

5− 6 c 8 16728 0.6 13.7 - - 16728 16803 20.6 5.6 13283.35776 3 2.7 2.7 ?? ?? 4E+04 1E+03

6− c4 16861 2.9 56.1 - - 16861 17252 31.3 4.0 11589.92552 3 2.9 2.8 ?? ?? 9E+03 5E+02

6− c8 16623 2.8 134.1 - - 16623 17783 36.3 4.9 10591.75126 4 4.3 4.1 ?? ?? 7E+03 2E+02

6− 6 c 4 16624 3.8 31.5 - - 16624 16852 28.4 3.3 11900.04989 2 2.3 2.2 ?? ?? 2E+04 9E+02

6− 6 c 8 16791 2.9 65.3 - - 16791 16835 27.6 3.5 12161.67142 2 2.3 2.3 ?? ?? 2E+04 5E+02

7− c4 33419 6.5 149.8 - - 33419 - 23.5 2.6 25555.81873 1 2.6 2.4 ?? ?? 2E+03 5E+01

7− c8 34614 7.0 662.7 - - 34614 - 33.5 9.0 23020.37038 9 9.4 - ?? ?? 7E+02 0E+00

7− 6 c 4 33878 8.3 173.5 - - 33878 - 20.4 3.0 26966.92622 2 2.9 2.0 ?? ?? 3E+03 3E+01

7− 6 c 8 34201 7.0 345.7 - - 34201 - 19.8 2.3 27421.72417 2 2.3 - ?? ?? 3E+03 0E+00

8− c4 31156 6.9 344.9 - - 31156 - 29.7 4.9 21895.99737 5 4.9 4.9 ?? ?? 2E+03 0E+00

8− c8 30695 7.8 1187.0 - - 30695 - 33.8 6.7 20307.89458 7 6.8 - ?? ?? 1E+03 0E+00

8− 6 c 4 30910 7.1 219.9 - - 30910 - 27.2 4.3 22497.90858 4 4.2 4.0 ?? ?? 2E+03 3E+01

8− 6 c 8 31187 6.9 568.0 - - 31187 - 27.7 5.4 22536.0502 3 5.4 - ?? ?? 2E+03 0E+00

9− c4 - 24.6 299.8 - - - - - - 26197.44823 10 - - ?? ?? 1E+03 0E+00

9− c8 - 24.4 1267.5 - - - - - - 24158.29878 - - - ?? ?? 8E+01 0E+00

9− 6 c 4 37863 28.0 266.3 - - 37863 - 26.3 5.8 27906.12901 5 5.7 - ?? ?? 6E+02 0E+00

9− 6 c 8 - 18.4 604.4 - - - - - - 27387.97002 7 - - ?? ?? 2E+03 0E+00

10− c4 27568 38.7 752.9 - - 27568 - - 15.0 15675.77476 15 15.1 - ?? ?? 5E+02 0E+00

10− c8 33371 41.0 - - - 33371 - 55.8 - 14746.14173 - 31.1 - ?? ?? 0E+00 0E+00

10− 6 c 4 26793 38.9 330.6 - - 26793 - 40.2 12.3 16029.92789 9 12.2 - ?? ?? 5E+02 0E+00

10− 6 c 8 26540 41.0 665.3 - - 26540 - 39.9 12.2 15942.07923 12 12.1 - ?? ?? 5E+02 0E+00

Table F.1: Test results for the NPUMF problem.

170



G Computational results for the TE-MSTP-p problem

G Computational results for the TE-MSTP-p problem

Key:

• ins. : instance reference;

• LP-time (s) : time it takes to solve the LP relaxation;

• MIP-time (s) : time it takes to solve the (mixed-)integer program;

• B&C-time (s): time it takes to solve the B&C algorithm;

• IO-time (s): time it takes the in-out cut loop stabilization to be processed;

• B∗ : best upper bound found by any of the models;

• B : best upper bound found by each model;

• BLP : lower bound obtained by solving the LP relaxation;

• B0 : lower bound obtained after the root node of the B&B tree has been processed;

• Bend : lower bound obtained after optimization is finished or interrupted;

• Bio : lower bound obtained at the end of the in-out cut loop stabilization;

• U∗ : worst-case edge utilization obtained by solving the TE-MSTP-p problem to
optimality;

• GapLP (%) : gap between B∗ and BLP ;

• Gap0(%) : gap between B∗ and B0;

• Gapend(%) : gap between B and Bend;

• Gapio(%) : gap between B∗ and Bio.

• Gap∗U (%) : gap between B∗ and U∗;

• B&B Tree Nodes : number of nodes in the B&B enumeration tree;

• # User cuts: number of Benders’ cuts generated as user cuts (see Section 2.5.2 for
more details);

• # Lazy cons.: number of Benders’ cuts generated as user cuts (see Section 2.5.2
for more details);

171



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes Gap∗U (%)

B S B S B S B S B S B S B S B S

T1−1
r 238 0.0 0.1 0 1 238 238 7.8 7.6 7.8 7.6 0.0 0.0 4E+01 5E+01 25 14

T1−2
r 271 0.1 0.1 1 1 271 271 6.2 5.3 6.2 5.3 0.0 0.0 4E+01 9E+01 25 25

T1−3
r 193 0.5 2.6 81 142 193 193 24.4 19.9 24.4 19.9 0.0 0.0 7E+02 2E+03 33 33

T1−4
r 641 0.1 0.2 0 1 641 641 17.6 17.6 17.6 17.6 0.0 0.0 5E+01 2E+02 1 1

T1−5
r 116 0.0 0.1 0 0 116 116 2.5 2.5 2.5 2.5 0.0 0.0 1E+01 2E+01 23 23

T2−1
r 1687 0.3 0.6 2 79 1688 1687 3.5 3.5 3.5 3.5 0.0 0.0 6E+01 2E+03 8 8

T2−2
r 3922 0.3 0.6 2 6 3922 3922 6.6 6.6 6.6 6.6 0.0 0.0 6E+01 2E+02 7 7

T2−3
r 959 2.9 2.9 - - 959 - 13.2 13.2 13.2 13.2 3.6 - 2E+04 1E+04 6 -

T2−4
r 4775 0.2 0.5 3 57 4775 4775 5.4 5.4 5.4 5.4 0.0 0.0 2E+02 2E+03 8 10

T2−5
r 8111 0.3 0.6 1 16 8111 8111 0.8 0.8 0.8 0.8 0.0 0.0 2E+01 3E+02 0 0

T3−1
r 276 0.3 1.0 16 43 276 276 16.5 13.5 16.5 13.5 0.0 0.0 5E+02 1E+03 13 13

T3−2
r 302 0.5 0.9 11 30 302 302 7.6 6.8 7.6 6.8 0.0 0.0 2E+02 6E+02 0 0

T3−3
r 434 0.5 0.5 35 226 434 434 13.4 12.3 13.4 12.3 0.0 0.0 8E+02 5E+03 28 28

T3−4
r 240 0.3 1.1 13 23 240 240 14.0 11.4 14.0 11.4 0.0 0.0 4E+02 7E+02 22 22

T3−5
r 305 0.3 0.5 5 8 305 305 7.5 6.4 7.5 6.4 0.0 0.0 1E+02 2E+02 24 24

T4−1
r 159 0.3 1.5 228 45 159 159 29.9 14.9 29.9 14.9 0.0 0.0 7E+03 1E+03 27 27

T4−2
r 325 0.6 0.9 150 99 325 325 42.3 13.2 42.3 13.2 0.0 0.0 2E+03 1E+03 30 30

T4−3
r 162 0.3 1.6 61 12 162 162 27.5 7.3 27.5 7.3 0.0 0.0 1E+03 2E+02 0 0

T4−4
r 219 0.3 1.3 64 19 219 219 41.5 17.6 41.5 17.6 0.0 0.0 1E+03 3E+02 25 25

T4−5
r 60 0.1 0.3 0 1 60 60 9.4 9.4 9.4 9.4 0.0 0.0 1E+01 2E+01 0 0

T5−1
r 436 0.9 2.0 140 23 436 436 11.9 5.7 11.9 5.7 0.0 0.0 1E+03 7E+01 13 13

T5−2
r 240 0.5 1.1 625 609 240 240 29.8 23.9 29.8 23.9 0.0 0.0 1E+04 8E+03 5 5

T5−3
r 123 0.3 0.5 8 21 123 123 13.0 12.1 13.0 12.1 0.0 0.0 1E+02 4E+02 35 35

T5−4
r 149 0.5 0.6 55 153 149 149 17.7 16.0 17.7 16.0 0.0 0.0 1E+03 2E+03 44 44

T5−5
r 313 1.2 1.8 403 229 313 313 18.8 13.3 18.8 13.3 0.0 0.0 3E+03 2E+03 31 31

Table G.1: Test results for the TE-MSTP-p problem: T 1
rand − T 5

rand.

172



G
C

o
m

p
u

ta
tio

n
a
l

re
su

lts
fo

r
th

e
T

E
-M

S
T

P
-p

p
ro

b
le

m

ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes Gap∗U (%)

B S B S B S B S B S B S B S B S

T6−1
r 333 1.1 3.6 1117 242 333 333 33.3 16.6 33.3 16.6 0.0 0.0 1E+04 2E+03 21 21

T6−2
r 644 1.3 2.1 568 774 644 644 37.4 24.5 37.4 24.5 0.0 0.0 4E+03 7E+03 21 21

T6−3
r 598 1.1 3.2 352 - 598 605 41.8 30.2 41.8 30.2 0.0 8.1 4E+03 3E+04 6 6

T6−4
r 193 0.7 1.9 177 112 193 193 29.9 19.1 29.9 19.1 0.0 0.0 3E+03 2E+03 13 13

T6−5
r 353 0.9 2.4 239 794 353 353 37.6 24.5 37.6 24.5 0.0 0.0 3E+03 8E+03 17 17

T7−1
r 1206 3.7 6.5 1394 - 1206 - 19.8 19.8 19.8 19.8 0.0 - 6E+03 9E+03 0 -

T7−2
r 2006 6.0 9.9 - - 2006 - 19.0 19.0 19.0 19.0 10.2 - 8E+03 5E+03 4 -

T7−3
r 879 4.3 6.4 2324 - 879 1059 7.3 7.2 7.3 7.2 0.0 20.2 8E+03 9E+03 -3 34

T7−4
r 1201 4.4 8.4 - - 1201 1763 19.4 19.1 19.4 19.1 5.3 41.3 9E+03 7E+03 3 26

T7−5
r 3140 7.0 11.7 - - 3140 - 36.7 36.7 36.7 36.7 27.9 - 6E+03 5E+03 26 -

T8−1
r 2715 2.1 3.7 291 - 2715 74472 46.2 42.7 46.2 42.7 0.0 96.5 2E+03 2E+04 18 47

T8−2
r 2188 1.6 3.0 150 2763 2188 2188 38.3 34.6 38.3 34.6 0.0 0.0 8E+02 1E+04 0 0

T8−3
r 569 8.9 31.5 - - 569 588 56.8 32.0 56.8 32.0 49.6 29.9 4E+03 4E+03 18 18

T8−4
r 1155 0.7 2.1 24 57 1155 1155 12.7 11.4 12.7 11.4 0.0 0.0 4E+02 6E+02 0 0

T8−5
r 1065 22.0 27.1 - - 1155 1065 45.3 17.9 45.3 17.9 41.4 8.9 3E+03 2E+03 -31 -31

T9−1
r 44840 6.9 14.7 3398 - 44840 - 24.2 24.2 24.2 24.2 0.0 - 1E+04 6E+03 15 -

T9−2
r 34225 5.4 11.0 2793 - 34225 360487 15.7 15.7 15.7 15.7 0.0 91.6 1E+04 5E+03 3 40

T9−3
r 14782 3.7 8.6 392 - 14782 129567 32.2 32.0 32.2 32.0 0.0 90.7 1E+03 8E+03 8 40

T9−4
r 14348 6.0 10.4 - - 14348 69999 33.5 33.5 33.5 33.5 18.2 85.0 9E+03 5E+03 4 32

T9−5
r 9522 3.6 8.7 590 - 9522 18224 22.1 22.1 22.1 22.1 0.0 51.6 3E+03 1E+04 0 16

T10−1
r 600 6.8 13.8 - - 600 - 38.9 16.6 38.9 16.6 25.5 - 5E+03 3E+03 0 -

T10−2
r 392 6.2 17.2 - 1892 436 392 40.1 13.9 40.1 13.9 30.0 0.0 6E+03 5E+03 22 10

T10−3
r 2977 9.4 15.1 - - 2977 - 68.2 55.5 68.2 55.5 65.0 - 4E+03 2E+03 0 -

T10−4
r 663 8.4 19.3 - - 663 682 46.7 26.0 46.7 26.0 35.5 19.6 5E+03 5E+03 9 17

T10−5
r 1410 11.6 10.2 - - 1410 - 56.9 43.7 56.9 43.7 48.9 - 3E+03 2E+03 -1 -

Table G.2: Test results for the TE-MSTP-p problem: T 6
rand − T 10

rand.

173



ins. B∗

LP-time (s) MIP-time (s) B GapLP (%) Gap0 (%) Gapend (%) B&B Tree Nodes Gap∗U (%)

B S B S B S B S B S B S B S B S

T1−1
3tc 21176 0.1 0.2 0 1 21176 21176 0.0 0.0 0.0 0.0 0.0 0.0 0E+00 3E+00 11 11

T1−2
3tc 28644 0.6 1 4 15 28644 28644 1.9 1.9 1.9 1.9 0.0 0.0 1E+02 3E+02 25 25

T1−3
3tc 19742 0.9 1.5 90 244 19742 19742 6.5 6.5 6.5 6.5 0.0 0.0 1E+03 2E+03 0 0

T1−4
3tc 29950 0.7 1.2 13 121 29950 29950 2.5 2.5 2.5 2.5 0.0 0.0 3E+02 2E+03 0 0

T1−5
3tc 18710 0.7 1.5 270 2340 18710 18710 5.4 5.4 5.4 5.4 0.0 0.0 2E+03 2E+04 0 0

T2−1
3tc 31586 2.2 2.8 55 286 31586 31586 1.2 1.2 1.2 1.2 0.0 0.0 7E+02 3E+03 23 23

T2−2
3tc 52956 0.3 0.9 1 4 52956 52956 0.0 0.0 0.0 0.0 0.0 0.0 8E+00 3E+01 0 0

T2−3
3tc 66190 0.4 0.9 4 19 66190 66190 0.7 0.7 0.7 0.7 0.0 0.0 1E+02 4E+02 0 0

T2−4
3tc 63167 1.2 2.4 257 1996 63167 63167 1.3 1.3 1.3 1.3 0.0 0.0 4E+03 2E+04 0 0

T2−5
3tc 40886 0.7 3.2 2 17 40886 40886 0.2 0.2 0.2 0.2 0.0 0.0 1E+01 1E+02 27 27

T3−1
3tc 45356 23.9 95.3 - - 45356 54030 12.5 12.5 12.5 12.5 10.3 30.0 2E+03 2E+03 0 14

T3−2
3tc 43016 6.4 12.6 1753 - 43016 47182 2.8 2.8 2.8 2.8 0.0 10.0 6E+03 1E+04 13 31

T3−3
3tc 48736 15.2 54.7 - - 48736 54084 8.6 8.6 8.6 8.6 6.2 20.0 4E+03 4E+03 10 0

T3−4
3tc 22454 8.1 19.5 - - 22454 23448 7.9 7.9 7.9 7.9 4.1 10.0 8E+03 7E+03 22 25

T3−5
3tc 52912 2 5.8 23 157 52912 52912 0.8 0.8 0.8 0.8 0.0 0.0 2E+02 1E+03 24 24

T4−1
3tc 98343 41.1 479.1 1869 - 98343 106878 0.8 0.8 0.8 0.8 0.0 10.0 1E+03 2E+03 0 0

T4−2
3tc 64990 20.2 70.4 - - 64990 68310 1.9 1.9 1.9 1.9 0.8 10.0 4E+03 3E+03 18 13

T4−3
3tc 101085 22.4 31.2 2290 - 101085 104398 0.6 0.6 0.6 0.6 0.0 0.0 3E+03 4E+03 0 0

T4−4
3tc 333944 3.3 15 622 - 333944 337424 1.7 1.7 1.7 1.7 0.0 0.0 5E+03 1E+04 0 0

T4−5
3tc 92233 6.6 20.5 - - 92233 93467 2.3 2.3 2.3 2.3 0.4 0.0 9E+03 6E+03 0 0

T5−1
3tc 28604 41.2 192.8 2663 - 28604 - 5.4 5.4 5.4 5.4 0.0 - 1E+03 9E+02 30 -

T5−2
3tc 22854 53.6 1042.8 - - 22854 24736 12.0 12.0 12.0 12.0 9.3 20.0 7E+02 4E+02 8 24

T5−3
3tc 34338 60.7 487.5 - - 34338 34746 19.2 19.1 19.2 19.1 18.3 20.0 8E+02 4E+02 0 0

T5−4
3tc 47400 50 232.2 - - 47728 47400 24.1 23.8 24.1 23.8 23.0 20.0 1E+03 6E+02 19 17

T5−5
3tc 78105 24.2 131.2 - - 78105 85514 22.8 18.7 22.8 18.7 17.8 20.0 2E+03 1E+03 10 28

T6−1
3tc 96713 141.1 501 - - 96713 129759 8.5 8.4 8.5 8.4 7.7 30.0 4E+02 2E+02 20 50

T6−2
3tc 276324 309.7 1315.7 - - 276324 - 18.0 17.9 18.0 17.9 17.8 - 1E+02 4E+01 0 -

T6−3
3tc 113150 264.3 817.8 - - 113150 - 13.9 13.8 13.9 13.8 13.5 - 2E+02 7E+01 0 -

T6−4
3tc 175966 161.3 759.5 - - 175966 296190 8.1 8.1 8.1 8.1 7.6 50.0 5E+02 3E+02 0 28

T6−5
3tc 125015 191.7 626.4 - - 125015 - 14.9 14.9 14.9 14.9 14.6 - 2E+02 1E+02 21 -

Table G.3: Test results for the TE-MSTP-p problem: T3tc.

174



G Computational results for the TE-MSTP-p problem

ins. B&C-time IO-time UB Gapio B&C Tree Nodes # User cuts # Lazy const.

T1−1
r 6 2 238 8 3E+01 160 3

T1−2
r 26 1 271 100 8E+01 664 28

T1−3
r - 5 271 100 1E+03 23065 103

T1−4
r 41 1 641 100 2E+02 1124 26

T1−5
r 9 3 116 3 3E+01 462 2

T2−1
r - 4 2958 100 5E+03 81047 457

T2−2
r - 4 4425 100 5E+03 83655 385

T2−3
r - 22 2779 100 1E+03 29034 69

T2−4
r - 3 5437 100 5E+03 83484 363

T2−5
r - 4 9183 100 4E+03 81780 398

T3−1
r - 5 282 100 4E+02 7941 38

T3−2
r - 1338 302 12 3E+02 5621 28

T3−3
r - 6 490 100 3E+03 47764 151

T3−4
r - 816 240 16 5E+02 7817 16

T3−5
r - 4 327 100 5E+02 9452 41

T4−1
r - 4 159 100 3E+02 6270 28

T4−2
r - 7 371 100 4E+02 6937 29

T4−3
r ?? ?? ?? ?? ?? ?? ??

T4−4
r - 3 234 100 4E+02 6650 32

T4−5
r - 2 61 100 6E+02 10390 28

T5−1
r - 7 585 100 3E+02 5066 23

T5−2
r - 10 313 100 2E+02 4892 28

T5−3
r - 4 144 100 3E+02 5967 28

T5−4
r - 6 190 100 2E+02 4249 28

T5−5
r - 15 369 100 2E+02 4486 18

T6−1
r - 9 333 100 2E+02 4564 31

T6−2
r - 14 706 100 3E+02 4798 28

T6−3
r - 8 808 100 4E+02 7025 45

T6−4
r - 5 205 100 3E+02 6403 28

T6−5
r - 10 427 100 3E+02 6103 32

T7−1
r - 19 1558 100 2E+02 3878 33

T7−2
r - 48 9863 100 1E+03 17334 125

T7−3
r - 23 1567 100 2E+02 4107 37

T7−4
r - 25 5125 100 2E+03 28559 130

T7−5
r - 28 15881 100 1E+03 22963 139

T8−1
r - 11 4166 100 5E+02 7988 25

T8−2
r - 12 4824 100 4E+03 44997 561

T8−3
r - 95 1925 100 1E+02 2190 19

T8−4
r 2408 8 1155 100 7E+02 8282 30

T8−5
r - 91 4115 100 2E+02 2807 23

T9−1
r - 41 262215 100 1E+03 19736 187

T9−2
r - 67 141607 100 1E+02 2837 45

T9−3
r - 37 16569 100 2E+02 3072 30

T9−4
r - 60 32066 100 2E+02 3318 38

T9−5
r - 24 10922 100 2E+02 3865 42

T10−1
r - 60 836 100 1E+03 16648 222

T10−2
r - 131 573 100 1E+02 2259 19

T10−3
r - 48 11115 100 1E+03 15410 166

T10−4
r - 86 936 100 2E+02 3024 17

T10−5
r - 74 2527 100 2E+02 3008 20

Table G.4: Test results for the B&C algorithm: Trand.

175



ins. B&C-time IO-time UB Gapio B&C Tree Nodes # User cuts # Lazy const.

T1−1
3tc 3 3 21176 0 0E+00 0 1

T1−2
3tc 178 22 28604 2 1E+02 926 10

T1−3
3tc - 84 19742 7 7E+02 9214 22

T1−4
3tc 317 23 29950 3 2E+02 1586 5

T1−5
3tc - 81 18716 5 6E+02 8654 15

T2−1
3tc - 79 31586 1 6E+02 5502 3

T2−2
3tc 24 16 52956 0 9E+00 14 3

T2−3
3tc 121 21 66190 1 5E+01 175 2

T2−4
3tc - 119 63167 1 8E+02 14058 17

T2−5
3tc 131 73 40886 0 2E+01 220 2

T3−1
3tc - - - - - - -

T3−2
3tc - 821 44506 8 2E+02 3297 32

T3−3
3tc - - - - - -

T3−4
3tc - 1568 24216 19 6E+01 1192 22

T3−5
3tc 1151 232 52912 1 2E+02 1559 17

T4−1
3tc - 1580 139968 100 6E+00 131 9

T4−2
3tc - - - - - - -

T4−3
3tc - 2332 110785 12 2E+01 387 3

T4−4
3tc - 151 394783 100 3E+02 5008 56

T4−5
3tc - 1012 94771 6 5E+01 1079 11

T5−1
3tc - - - - - - -

T5−2
3tc - - - - - - -

T5−3
3tc - 1549 45104 100 3E+00 73 13

T5−4
3tc - - - - - - -

T5−5
3tc - - - - - - -

T6−1
3tc - - - - - - -

T6−2
3tc - - - - - - -

T6−3
3tc - - - - - - -

T6−4
3tc - 1398 309579 100 6E+00 133 19

T6−5
3tc - - - - - - -

Table G.5: Test results for the B&C algorithm: T3tc.

176


	Acknowledgements
	Acknowledgements

	Abstract
	Abstract

	Résumé
	Résumé

	Contents
	List of Figures
	List of Tables
	List of Formulations
	Glossary
	Introduction
	Background and related work
	An introduction to switching protocols
	Data Centers and switched Ethernet networks
	Spanning Tree Protocol
	Multiple Spanning Tree Protocol

	Review of methods for the MSTP
	Notation and definitions
	MIPs for problems with spanning trees
	Minimum spanning tree problem
	Optimum communication spanning tree problem

	MIPs for problems with MSTP
	Benders' decomposition

	MSTP: minimization of worst-case link utilization
	Problem complexity
	Problem formulation
	Sub-problem 1: Designing spanning trees
	Sub-problem 2: Routing the traffic demands
	Sub-problem 3: Edge utilization and capacity constraints
	Objective function
	Complete formulations

	Polyhedral comparison of formulations
	Computational experiments
	Test sets for the TE-MSTP problem
	Analysis of the results of test set Trand
	Analysis of the results of test set T3tc

	B&C algorithm
	Benders' decomposition
	Computational experiments for the B&C algorithm

	Summary and remarks

	MSTP: minimization of total load
	Problem formulation
	Computational experiments for the COCMST problem
	Analysis of the results for =0.2
	Analysis of the results for = 0.05
	Analysis of the results for = 0.01
	Using the COCMST problem to find feasible solutions for the TE-MSTP problem
	Using the COCMST problem to find lower bounds for the TE-MSTP problem

	Binary search algorithm
	Obtaining a first upper bound
	Obtaining a first lower bound
	Obtaining a feasible solution
	Local branching
	Parameters configuration

	Computational experiments for the BSA
	Summary and remarks

	Piecewise linear unsplittable multicommodity flow problems
	Problem complexity
	Problem formulation
	Basic formulations
	Ideal formulation for |K| = 1
	Strong formulation for |K| 1

	Computational experiments
	Test sets for the PUMF problem
	Results for test set T1
	Results for test set T2

	B&C algorithm
	Benders' decomposition
	Computational experiments for the B&C algorithm

	Strengthened aggregated formulation
	Benders' decomposition II
	Valid inequalities for BM1

	Non-convex case
	Summary and remarks

	MSTP: minimization of piecewise linear flow cost functions
	Problem formulation
	Computational experiments
	Analysis of the results of test set Trand
	Analysis of the results of test set T3tc

	B&C algorithm
	Benders' decomposition
	Computational experiments for the B&C algorithm

	Summary and remarks

	Conclusion
	References
	Appendices
	Computational results for the TE-MSTP problem
	Computational results for the COCMST problem
	Computational results for the TE-MSTP decision problem
	Computational results for the BSA
	Computational results for the PUMF problem
	Computational results for the NPUMF problem
	Computational results for the TE-MSTP-p problem


