T. Achterberg, SCIP: solving constraint integer programs, Mathematical Programming Computation, vol.29, issue.2, pp.1-41, 2009.
DOI : 10.1007/s12532-008-0001-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.7376

T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Operations Research Letters, vol.33, issue.1, pp.42-54, 2005.
DOI : 10.1016/j.orl.2004.04.002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.9887

D. L. Appelgren, A Column Generation Algorithm for a Ship Scheduling Problem, Transportation Science, vol.3, issue.1, pp.53-68, 1969.
DOI : 10.1287/trsc.3.1.53

R. E. Applegate, V. Bixby, W. Chvátal, and . Cook, Finding cuts in TSP, technical report, Operations Research Letters, pp.95-100, 1995.

C. Arbib, M. Labbé, and M. Servilio, Scheduling two chains of unit jobs on one machine: A polyhedral study, Networks, vol.48, pp.58-2103, 2011.
DOI : 10.1002/net.20452

URL : https://hal.archives-ouvertes.fr/hal-01255535

P. Avella and A. , Sassano, and I. Vasil'ev. Computational study of large-scale p-median problems, Mathematical Programming, pp.89-114, 2006.

. Vance, Branch-and-price: column generation for solving huge integer programs, Operations Research, vol.46, pp.316-329, 1998.

C. Barnhart, C. A. Hane, and P. H. Vance, Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems, Operations Research, vol.48, issue.2, pp.318-326, 2000.
DOI : 10.1287/opre.48.2.318.12378

J. E. Beasley, OR-Library, 2012.

M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere et al., Experiments in mixed-integer programming, Mathematical Programming, vol.1, pp.71-94, 1971.
DOI : 10.1007/bf01584074

V. Blanco, S. El-haj-ben-ali, and J. Puerto, Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ??? ?? norms, Computational Optimization and Applications, vol.31, issue.1, pp.563-595, 2014.
DOI : 10.1007/s10589-014-9638-z

N. Boland, P. Domínguez-marín, S. Nickel, and J. Puerto, Exact procedures for solving the discrete ordered median problem, Computers & Operations Research, vol.33, issue.11, pp.3270-3300, 2006.
DOI : 10.1016/j.cor.2005.03.025

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.17

A. Ceselli and G. Righini, A branch-and-price algorithm for the capacitatedp-median problem, Networks, vol.45, issue.3, pp.125-142, 2005.
DOI : 10.1002/net.20059

A. Ceselli, F. Liberatore, and G. Righini, A computational evaluation of a general branch-and-price framework for capacitated network location problems, Annals of Operations Research, vol.34, issue.11, pp.209-251, 2008.
DOI : 10.1007/s10479-008-0375-5

I. Contreras, J. A. Díaz, and E. Fernández, Branch and Price for Large-Scale Capacitated Hub Location Problems with Single Assignment, INFORMS Journal on Computing, vol.23, issue.1, pp.41-55, 2011.
DOI : 10.1287/ijoc.1100.0391

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.1315

G. Cornuéjols and J. M. Thizy, Some facets of the simple plant location polytope, Mathematical Programming, vol.15, issue.1, pp.50-74, 1982.
DOI : 10.1007/BF01583779

G. B. Dantzig and P. Wolfe, Decomposition Principle for Linear Programs, Operations Research, vol.8, issue.1, pp.101-111, 1960.
DOI : 10.1287/opre.8.1.101

G. B. Dantzig, A. Orden, and P. Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific Journal of Mathematics, vol.5, issue.2, pp.183-195, 1955.
DOI : 10.2140/pjm.1955.5.183

M. S. Daskin, Network and Discrete Location: Models, Algorithms, and Applications, J. Wiley & sons, 1995.
DOI : 10.1002/9781118032343

M. S. Daskin, Network and Discrete Location: Models, Algorithms, and Applications, Second Edition, J. Wiley & sons
DOI : 10.1002/9781118537015

I. R. De-farias-jr, A family of facets for the uncapacitated p-median polytope, Operations Research Letters, vol.28, issue.4, pp.161-167, 2001.
DOI : 10.1016/S0167-6377(01)00062-1

J. Desrosiers and M. Lübecke, A Primer in Column Generation, Column Generation. Kluwer, 2005.
DOI : 10.1007/0-387-25486-2_1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.9558

P. Domínguez-marín, The Discrete Ordered Median Problem: Models and Solution Methods, 2003.
DOI : 10.1007/978-1-4419-8511-8

Z. Drezner, Facility Location: A Survey of Applications and Methods, 1995.

Z. Drezner and H. Hamacher, Facility Location: A Survey of Applications and Therory, 2002.

O. Du-merle and J. P. Vial, Proximal ACCPM, acutting plane method for column generation and Lagrangean relaxation: application to the p-median problem, 2002.

O. Du-merle, D. Villenueve, J. Desrosiers, and P. Hansen, Stabilized column generation, Discrete Mathematics, vol.194, issue.1-3, pp.229-237, 1999.
DOI : 10.1016/S0012-365X(98)00213-1

G. Farkas, A Fourier-féle mechanikai elv alkalmazásai, Mathematikaí es Természettudományí Erstesitö, issue.12, pp.457-472, 1894.

T. A. Feo and M. G. Resende, A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters, vol.8, issue.2, pp.67-71, 1989.
DOI : 10.1016/0167-6377(89)90002-3

T. A. Feo and M. G. Resende, Greedy Randomized Adaptive Search Procedures, Journal of Global Optimization, vol.68, issue.2, pp.109-133, 1995.
DOI : 10.1007/BF01096763

E. Fernández, J. Puerto, and A. M. Rodríguez-chía, On discrete optimization with ordering, Annals of Operations Research, vol.17, issue.3, pp.83-96, 2013.
DOI : 10.1007/s10479-011-1044-7

T. L. Ford and D. R. Fulkerson, A Suggested Computation for Maximal Multi-Commodity Network Flows, Management Science, vol.5, issue.1, pp.97-101, 1958.
DOI : 10.1287/mnsc.5.1.97

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

P. C. Gilmore and R. E. Gomory, A Linear Programming Approach to the Cutting-Stock Problem, Operations Research, vol.9, issue.6, pp.849-859, 1961.
DOI : 10.1287/opre.9.6.849

P. C. Gilmore and R. E. Gomory, A Linear Programming Approach to the Cutting Stock Problem???Part II, Operations Research, vol.11, issue.6, pp.863-888, 1963.
DOI : 10.1287/opre.11.6.863

M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization. Algorithms and combinatorics, 1988.

M. Guignard, Fractional vertices, cuts and facets of the simple plant location problem, Mathematical Programming Study, issue.12, pp.152-160, 1980.
DOI : 10.1007/BFb0120893

S. Hakimi, Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph, Operations Research, vol.12, issue.3, pp.450-459, 1964.
DOI : 10.1287/opre.12.3.450

S. Hakimi, Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems, Operations Research, vol.13, issue.3, pp.462-475, 1965.
DOI : 10.1287/opre.13.3.462

E. L. Johnson, Modeling and Strong Linear Programs for Mixed Integer Programming, Algorithms and Model Formulations in Mathematical Programming, pp.1-43, 1989.
DOI : 10.1007/978-3-642-83724-1_1

J. Kalcsics, S. Nickel, J. Puerto, and A. Tamir, Algorithmic results for ordered median problems, Operations Research Letters, vol.30, issue.3, pp.149-158, 2002.
DOI : 10.1016/S0167-6377(02)00121-9

J. Kalcsics, S. Nickel, J. Puerto, and A. M. Rodríguez-chía, Distribution systems design with role dependent objectives, European Journal of Operational Research, vol.202, issue.2, pp.491-501, 2010.
DOI : 10.1016/j.ejor.2009.06.001

N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, vol.244, issue.S, pp.373-395, 1984.
DOI : 10.1007/BF02579150

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.1990

L. G. Khachiyan, Polynomial algorithms in linear programming, USSR Computational Mathematics and Mathematical Physics, vol.20, issue.1, pp.191-194, 1979.
DOI : 10.1016/0041-5553(80)90061-0

L. G. Khachiyan, Polynomial algorithms in linear programming, Zhurnal Vychisditel'noi Matematiki i Matematicheskoi Fiziki, pp.51-68, 1980.
DOI : 10.1016/0041-5553(80)90061-0

A. Klose and S. Görtz, A branch-and-price algorithm for the capacitated facility location problem, European Journal of Operational Research, vol.179, issue.3, pp.1109-1125, 2007.
DOI : 10.1016/j.ejor.2005.03.078

M. Labbé, D. Ponce, and J. Puerto, A comparative study of formulations and solution methods for the discrete ordered p-median problem, Computers & Operations Research, vol.78, 2016.
DOI : 10.1016/j.cor.2016.06.004

G. Laporte, S. Nickel, and F. Saldanha, Location Science, 2002.
DOI : 10.1007/978-3-319-13111-5

R. Larson and A. Odoni, Urban Operations Research, 1981.

L. A. Lorena and E. L. Senne, A column generation approach to capacitated p-median problems, Computers & Operations Research, vol.31, issue.6, pp.863-876, 2004.
DOI : 10.1016/S0305-0548(03)00039-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.8683

A. Marín, S. Nickel, J. Puerto, and S. Velten, A flexible model and efficient solution strategies for discrete location problems, Discrete Applied Mathematics, vol.157, issue.5, pp.1128-1145, 2009.
DOI : 10.1016/j.dam.2008.03.013

A. Marín, S. Nickel, and S. Velten, An extended covering model for flexible discrete and equity location problems, Mathematical Methods of Operations Research, vol.18, issue.(10, pp.125-163, 2010.
DOI : 10.1007/s00186-009-0288-3

P. Mirchandani and R. Francis, Discrete Location Theory, J. Wiley & sons, 1990.

G. L. Nemhauser, Column generation for linear and integer programming, Documenta Mathematica-Extra, vol.ISMP, pp.65-73, 2012.

G. L. Nemhauser and L. E. Trotter, Vertex packings: Structural properties and algorithms, Mathematical Programming, pp.232-248, 1975.
DOI : 10.1007/BF01580444

S. Nickel, Discrete Ordered Weber Problems, Operations Research Proceedings, pp.71-76, 2000.
DOI : 10.1007/978-3-642-56656-1_12

S. Nickel and J. Puerto, Location Theory: A Unified Approach, 2005.

S. Nickel, J. Puerto, and A. M. Rodríguez-chía, MCDM Location Problems, Multiple Criteria Decision Analysis: State of the Art Surveys, pp.761-787, 2005.
DOI : 10.1007/0-387-23081-5_19

S. Nickel, J. Puerto, and A. M. Rodríguez-chía, Location Science, chapter Location problems with multiple criteria, pp.205-247, 2015.
DOI : 10.1007/978-3-319-13111-5_9

W. Ogryczack and A. Tamir, Minimizing the sum of the k largest functions in linear time, Information Processing Letters, vol.85, issue.3, pp.117-122, 2003.
DOI : 10.1016/S0020-0190(02)00370-8

A. Pessoa, E. Uchoa, M. P. Aragão, and R. Rodrigues, Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems, Mathematical Programming Computation, vol.4, issue.2, pp.259-290, 2010.
DOI : 10.1007/s12532-010-0019-z

J. Puerto, Lecturas en teoría de localización, 1996.

J. Puerto, A New Formulation of the Capacitated Discrete Ordered Median Problems with {0, 1}-Assignment, Operations Research Proceedings, pp.165-170, 2007.
DOI : 10.1007/978-3-540-77903-2_26

J. Puerto, A. B. Ramos, and A. M. Rodríguez-chía, Single-allocation ordered median hub location problems, Computers & Operations Research, vol.38, issue.2
DOI : 10.1016/j.cor.2010.07.018

J. Puerto, D. Pérez-brito, and C. G. García-gonzález, A modified variable neighborhood search for the discrete ordered median problem, European Journal of Operational Research, vol.234, issue.1, pp.61-76, 2014.
DOI : 10.1016/j.ejor.2013.09.029

J. Reese, Solution methods for thep-median problem: An annotated bibliography, Networks, vol.21, issue.3, pp.125-142, 2006.
DOI : 10.1002/net.20128

D. M. Ryan and A. Foster, An integer programming approach to scheduling, Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling, pp.269-280, 1981.

A. Schrijver, Theory of Linear and Integer Programming, 1986.

E. L. Senne and L. A. Lorena, Stabilizing column generation using Lagrangean/surrogate relaxation: an application to p-median location problems, Proceedings of the EURO2001 Conference, 2001.

E. L. Senne, L. A. Lorena, and M. A. Pereira, A branch-and-price approach to p-median location problems, Computers & Operations Research, vol.32, issue.6, pp.1655-1664, 2005.
DOI : 10.1016/j.cor.2003.11.024

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.3510

P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser, Solving binary cutting stock problems by column generation and branch-and-bound, Computational Optimization and Applications, vol.44, issue.2, pp.111-130, 1994.
DOI : 10.1007/BF01300970

I. Vasilyev, X. Klimentova, and M. Boccia, Polyhedral study of simple plant location problem with order, Operations Research Letters, vol.41, issue.2, pp.153-158, 2013.
DOI : 10.1016/j.orl.2012.12.006

L. A. Wolsey, Integer programming, J. Wiley & sons, 1998.