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Abstract

Functional and perfusion imaging modalities are closely related since they both measure, directly or indirectly,
blood ow in the brain. Functional Magnetic Resonance Imaging (fMRI) using the blood oxygen level dependent
(BOLD) contrast exploits the magnetic properties of blood (oxy- and deoxyhemoglobin) to measure local changes in
blood oxygen concentration in the brain. The neurovascular coupling allows us to infer brain function from fMRI
images. Perfusion MRI images the cerebral vascular system by directly measuring blood ow. In particular, Arterial
Spin Labeling (ASL) does not need contrast agents; it uses spins of endogenous water protons as a tracer instead.
Usually ASL is used to probe the basal perfusion at rest. However, in the recent years, it has also been used as a
functional imaging modality (as fASL) by tracking task-related perfusion changes. In contrast to the standard BOLD
fMRI, results are quantitative, making this type of data attractive for use in clinical research.

This thesis focuses on the investigation of the fASL modality and the development of new methods to analyze it.
As previously done for BOLD data, a Bayesian framework is proposed for the analysis of fASL data. It provides a way
of modeling activation values and both hemodynamic and perfusion response functions as probabilistic variables in
the so-called joint detection estimation (JDE) framework. Bayesian models use a priori knowledge in the estimation
of unknown parameters through the speci cation of probability distributions. In this work, we exploit this feature
to incorporate physiological information to make the estimation more robust. In particular, we use physiological
models based on the balloon model to derive a link between hemodynamic and perfusion responses and we turn this
link into a prior distribution to regularize the estimation of the responses. A Markov Chain Monte Carlo solution
with prior physiological knowledge has been rst proposed for the estimation of the quantities contained in the
fMRI signal. Since the computational cost of this algorithm is very high, we then reformulate the problem to use a
variational expectation maximization approach that provides a much faster algorithm with similar results. The use
of priors and constraints in this setting is also more straightforward.

These methods have been evaluated on two di erent datasets using event-related and block designs with very
simple experimental tasks. We show the performance of the methods investigated in comparison to standard
methods at the subject and group levels. Experimental results show the utility of using physiological priors for
improving the recovery of a perfusion response function. They also demonstrate that BOLD fMRI achieves better
sensitivity to detect evoked brain activity as compared to fASL although fASL gives a more localized activation,
which is in line with the existing literature. From the results, we discuss the impact of the modelling of spatial
correlation, as well as the impact of the estimation of temporal responses.

This work proposes new methodological contributions in the study of a relatively new fMRI modality that is
functional ASL, and puts it into perspective with the existing techniques. Thus, we provide new tools for the
neuroscienti c community to study and understand brain function. These tools have been implemented in python
in the PyHRF package.






Résumé

Les modalités d'imagerie fonctionnelle et de perfusion sont étroitement liées car les deux mesurent, directement
ou indirectement, le débit sanguin cérébral. D'une part, en utilisant le contraste BOLD (Blood-Oxygen-Level-
Dependent), I'imagerie fonctionnelle par résonance magnétique (IRMf) exploite les propriétés magnétiques du sang
(oxy et désoxyhémoglobine) pour y mesurer les changements locaux de concentration en oxygéne: ce couplage
neurovasculaire permet de déduire le fonctionnement du cerveau a partir des images IRMf. D'autre part, I''RM
de perfusion re éte le fonctionnement du systéme vasculaire cérébral en mesurant directement le débit sanguin
cérébral. En particulier, I''RM du marquage de l'eau artérielle (ASL) n'a pas besoin d'agents de contraste: le
traceur est remplacé par des spins de protons endogénes d'eau. Habituellement I'ASL est utilisée pour mesurer la
perfusion basale au repos. Toutefois, ces derniéres années, il a également été utilisé comme une modalité d'imagerie
fonctionnelle (comme la fASL) en mesurant les variations de perfusion cérébrale induites par la réalisation de taches
cognitives. Contrairement a I''RMf standard basée sur le contraste BOLD, les résultats sont quantitatifs, ce qui rend
ce type de données intéressantes pour son utilisation dans la recherche clinique.

Cette thése porte sur I'étude de la modalité fASL et sur le développement de nouvelles méthodes pour I'analyser.
Comme précédemment réalisé pour les données BOLD, un cadre bayésien est développé pour I'analyse des données
fASL. Il fournit un moyen de modéliser les valeurs d'activation et les fonctions de réponse hémodynamique et
de perfusion en tant que variables probabilistes dans I'approche de Détection-Estimation Conjointe. Les modéles
bayésiens utilisent une connaissance a priori pour l'estimation des paramétres inconnus a travers la spéci cation
de distributions de probabilité. Dans ce travail, nous exploitons cette fonction pour incorporer au modeéle des
informations physiologiques, a n de rendre I'estimation plus robuste. En particulier, nous utilisons des modéles
physiologiques basés sur le modéle de ballon pour obtenir un lien entre les réponses hémodynamiques et de
perfusion, puis nous utilisons ce lien dans une distribution a priori pour régulariser I'estimation des réponses.
En utilisant information physiologique a priori, une solution de type Markov Chain Monte Carlo (MCMC) a été
proposée pour l'estimation des quantités contenues dans le signal IRMf. Etant donné que le codt de calcul de cet
algorithme est trés élevé, nous reformulons le probléme pour utiliser une approche variationnelle (VEM) qui fournit
un algorithme beaucoup plus rapide avec des résultats similaires. Dans ce cadre, l'introduction d'information a priori
et de contraintes est également plus simple.

Ces méthodes ont été évaluées sur deux ensembles de données diérentes en utilisant des paradigmes
événementiels et du bloc, pour des taches cognitives trés simples. Nous montrons les bonnes performances
des méthodes proposées par rapport aux methodes standards, au niveau des sujets et du groupe. Les résultats
expérimentaux montrent que les probabilités a priori physiologiques améliorent I'estimation d'une fonction de
réponse de perfusion. Ces résultats démontrent également que le contraste BOLD a une meilleure sensibilité pour
la détection de l'activité cérébrale évoquée que fASL, bien que la fASL donne une activation plus localisée, ce qui
est conforme & la littérature existante. A partir de ces résultats, nous discutons l'impact de la modélisation de la
corrélation spatiale, ainsi que I'impact de l'estimation des réponses temporelles.

Ce travail propose de nouvelles contributions méthodologiques pour I'étude de la fASL, et les met en perspective
avec les techniques existantes. Ainsi, nous proposons de nouveaux outils pour la communauté neuroscienti que,
mis en +uvre en python dans le package PyHRF, pour étudier et comprendre le fonctionnement du cerveau.
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Il Introduction

Neuroimaging techniques allow the vivo study of brain function. In
particular, functional Magnetic Resonance Imaging (fMRI) measures the
changes induced by cerebral activity. The most widely used fMRI modality
is BOLD for blood-oxygen-level-dependent [Ogawa et al., 1990] and, as the
name indicates, it re ects the changes in oxygen concentration in the blood.
When there is brain activity, oxygen is consumed and its concentration in
the blood decreases; then there is anin ow of oxygenated blood to replenish
the tissue, increasing blood oxygen concentration. Deoxygenated blood
causes magnetic distortions that can be measured by an MRI scanner. For
this reason, it is said that BOLD is an indirect measure of cerebral activity:
it is a complex re ection of underlying physiological changes in oxygen
consumption, and cerebral blood ow and volume [Buxton et al., 2004].
BOLD is one of the most used functional imaging modalities because it
is non-invasive, non-ionizing, and it gives accessvivo to brain activity
with a relatively high spatial resolution. To detect evoked activity, it relies
on the contrast between di erent experimental conditions or between an
experimental condition and a baseline, and in subsequent statistical analysis
to assess the signi cance of this activation. BOLD does not give access
to true physiological parameters such as cerebral blood ow or cerebral
blood volume, but rather measures a mixture of these quantities that is
di cult to untangle (except in some speci ¢ experimental setup where one
can measure the cerebral metabolic rate of oxygen CMRCFor these
reasons, BOLD is a very interesting tool in neuroscience, but in general it is
not widely used for clinical applications. It cannot detect chronic changes
in the baseline states [Buxton, 2013], as it is the case for normal ageing
[Gauthier et al., 2013, Fabiani et al., 2014] and pathologies like Alzheimer's
disease [Cantin et al., 2011] or Stroke [Attyé et al., 2014, Krainik et al.,
2005]. In order to introduce functional imaging in clinical practice there
is a need for accurate estimates of physiological parameters as cerebral
blood ow (CBF) and volume (CBV), oxygen extraction fraction (OEF) or
cerebral metabolic rate of oxygen (CMRJO This can be achieved with
perfusion MRI techniques, since they image the vascular system by directly
measuring blood ow. In particular, Arterial Spin Labeling (ASL) [Williams
et al., 1992, Detre et al., 1992] does not need contrast agents: it uses spins
of endogenous water protons as a tracer instead. ASL, as opposed to BOLD,
provides a direct and more localized quantitative measurement of the CBF
in absolute values, since the link between ASL and CBF has been described
in the literature [Buxton et al., 1998b, Alsop et al., 2015]. This allows a



2 Introduction

direct comparison between subjects, experiments and pathological/non-
pathological population groups.

ASL is non-invasive, as opposed to other perfusion techniques, and
highly reproducible [Wang et al., 2011b, Grade et al., 2015]. For these
reasons, it is an emerging technique in clinical practice [Golay and
Guenther, 2012] for its use in cerebrovascular diseases (e.g. Stroke),
dementia [Wolk and Detre, 2012, Detre et al., 2012] or neuro-oncology
[Grade et al., 2015]. The fact that it is non invasive makes it especially
suitable for pediatric populations [Wang et al., 2003, Detre et al., 2012]. It
has also been used in pharmacological MRI for drug studies [Chen et al.,
2011, Detre et al., 2012]. When used in the context of functional MRI, ASL
measures baseline CBF and CBF responses to stimuli [Liu and Wong, 2005,
Mumford et al., 2006, Raoult et al., 2011].

This thesis focuses on the investigation of functional ASL (fASL)
modality and the development of new methods for its analysis. This
modality could give valuable information on brain function and so far has
not been fully exploited in clinical research. Compared to the standard
BOLD fMRI, the signal-to-noise ratio (SNR) and thus the spatio-temporal
resolution of fASL data are limited, making its analysis a substantial
challenge [Yang, 2002, Liu and Brown, 2007].

A Bayesian framework is proposed for the analysis of fASL data.
It provides a way of modelling activation levels and hemodynamic and
perfusion response functions as probabilistic variables in the so called
Joint Detection Estimation (JDE) framework [Makni et al., 2008, Vincent
et al., 2010, Chaari et al., 2013]. This way, we can account for di erences
in these quantities across the brain and obtain a quanti cation of their
uncertainty. Bayesian models usepriori knowledge to compensate for
the ill-posedness of the inverse JDE problem when it is formulated in the
maximum likelihood sense. We can therefore incorporate physiological
models such as the Balloon model to make the estimations more robust.
In this work, it has been done through the derivation of a link between
hemodynamic and perfusion responses from physiological models as the
Balloon model [Buxton et al., 1998b, Friston et al., 2000], and its use as a
prior in our Bayesian setting.

A Markov Chain Monte Carlo (MCMC) solution as in [Vincent et al.,
2013a] has been rst proposed in this thesis for the estimation of the
guantities contained in the ASL fMRI signal. The rst contribution of this
thesis is the study of the use of physiological models as prior knowledge to
facilitate the estimation of task-related perfusion and its temporal response,
which is especially di cult to recover [Vincent et al., 2013a]. However,
the computational load of this algorithm makes the estimation very time-
consuming. For this reason, in a second contribution the problem is
recast in a Variational Expectation Maximization (VEM) framework, which
provides a much faster algorithm with similar results. The use of priors and
constraints in this setting is also more straightforward.

These methods have been evaluated in two di erent datasets: AINSI,
which uses event-related design, and HEROES, which uses block design.
The acquisition of the HEROES dataset was performed in the context of
this thesis and it contains BOLD, fASL and ASL data. Both datasets rely



on very simple tasks (visual, auditory and motor) as a way to validate
the proposed methods in well known brain regions. With these datasets
we show the performance of the methods investigated in comparison to
standard methods at the subject and group levels.

This thesis proposes new methodological contributions in the study of
a relatively new fMRI modality that is functional ASL, and puts it into
perspective with the existing techniques. Thus, we provide new tools for the
neuroscienti c community to study and understand brain function. These
tools have been implemented in python in the PyHRF package, an open-

source package available on githtib : github.com/pyhrf/pyhrf

1.1 Manuscript structure

In the rst chapter, we give an insight into functional and perfusion MRI,
and what we want to measure with them. We rst introduce the way the
brain functions at a cognitive level and at a vascular level, and how this is
linked through the neurovascular coupling. We also introduce the models
that have been proposed in the literature to explain the neurovascular
coupling. We summarize the existing neuroimaging techniques, focusing
on the ones that are going to be used in the context of this thesis: BOLD
fMRI and functional ASL.

In the second chapter, the classical methods used for the analysis of
functional MRI are presented. We focus on the general linear model (GLM)
and the statistical tests performed on the results. We also introduce the
methods for HRF estimation. The same methods are used in the analysis of
ASL fMRI, by adapting them to the particularities of the ASL signal.

In the third chapter, we introduce Bayesian inference and the methods
used in the context of this thesis: Markov Chain Monte Carlo (MCMC)
and Variational Expectation Maximization (VEM). As an application of
these methods, we introduce the already existing Joint Detection Estimation
(JDE) approach for the analysis of BOLD fMRI data.

In the fourth chapter, we introduce the JDE approach for ASL data
analysis in its MCMC solution. The proposed model considers the inclusion
of a physiological prior derived from the extended Balloon model and the
hemodynamic model. Results on the AINSI dataset, with event-related
design ASL data, are presented.

In the fth chapter, a VEM solution to the JDE approach is presented
for the analysis of functional ASL. The MCMC and VEM corresponding
solutions are also compared, using the AINSI dataset.

In the sixth chapter, we present di erent versions of the Balloon and
hemodynamic models, and try to evaluate their impact as well as the
impact of the physiological parameters when injecting them in the JDE
physiological prior for the analysis of ASL data.

In the seventh chapter, the HEROES dataset, a dataset acquired in
the context of this thesis, is presented and it is analysed using the tools
developed and explained in the previous chapters. Results are compared to
the results found using classical methods.



4 Introduction

1.2 Summary of contributions

In the context of this thesis, several contributions have been made in the
analysis of BOLD and ASL fMRI data. The implementations can be found

in the PyHRF toolbok 2github.com/pyhrf/pyhrf

Hemodynamically informed parcellation of BOLD fMRI

The analysis of BOLD fMRI data with the Joint Detection Estimation (JDE)
approach needs the previous parcellation of the brain in hemodynamically
homogeneous parcels. Usually we use functional atlases or we compute
a functional parcellation of the brain from preprocessed fMRI time series
using dedicated tools [B. Thirion et al., 2006, Thirion et al., 2014].

In this work, we attempt a fast hemodynamically based parcellation
for its use prior to JDE inference. We propose a two-step approach
consisting rst of hemodynamics feature extraction, in which a general
linear model (GLM) is used to discriminate hemodynamic information,
followed by a parcellation of these features. Since there is a lack of
hemodynamic information in the non-active voxels, the idea is to enforce
grouping these uncertain voxels with neighbouring activating voxels. We
want to avoid parcels that split active from non-active voxels in two classes
because in the JDE prior model we assume both activation states in a parcel.

This contribution can be found in section 4.7.1.

BOLD VEM multiple-session extension of the JDE approach

The fast solution of the JDE approach for BOLD fMRI presented in [Chaari
et al., 2013] uses a variational expectation maximization (VEM) algorithm
and considers a single session of BOLD data. [Chaari et al., 2013] shows
the faster performance of this algorithm with respect to the Markov Chain
Monte Carlo (MCMC) approach presented in [Makni et al., 2008, Vincent
et al., 2010], with similar results. In fMRI, usually several sessions are
acquired for the same subject to be able to compare them or combine
them. In [Badillo et al., 2013b], a multiple-session extension of the JDE
approach has been proposed to analyse several sessions together. The
solution proposed uses MCMC and considers that the response levels have
a mean value per condition and a common variance between sessions.

In the context of this thesis, a VEM solution of this extension has been
implemented following the considerations made in [Badillo et al., 2013b].
Experimental results have shown that the solution of the multiple-session
VEM is not very di erent from the average of the results computed with
single session VEM. For this reason, we propose a heteroscedastic version
of the multiple-session VEM. It amounts to considering session-speci ¢
variances. The goal is to be able to weight the importance of the di erent
sessions so as to diminish the contribution of any potential noisy session to
the nal parameter estimates.

This contribution can be found in section 4.8.



Derivation of a physiological link between PRF and HRF functions

The Balloon model [Buxton et al., 1998b], extended in [Friston et al., 2000],
is a physiological model that links neuronal and vascular processes by
considering the capillary as a balloon that dilates under the e ect of blood
ow variations. [Buxton et al., 1998b] proposed an expression that links the
BOLD response to the physiological quantities in the Balloon model. By
linearizing the system of equations that this model describes, we derive a
linear operator that links perfusion and hemodynamic responses. The linear
operator that links perfusion and hemodynamic responses gives us a new
tractable tool for analyzing the ASL signal.

This contributior® can be found in section 5.2. sThis contribution was started by

J. Sloboda, as part of her master
Physiologically informed ASL MCMC solution thesis.

[Vincent et al., 2013a] proposes a JDE approach for the analysis of ASL data
using MCMC. Perfusion component results using this approach were not
completely satisfying, due to the fact that ASL is a very noisy signal and
its perfusion component is really small. In this work, we introduce the
linear operator linking hemodynamic and perfusion componentsagsiori
knowledge in the ASL JDE approach presented in [Vincent et al., 2013a].
Di erent ways of introducing this prior are investigated.

This contribution can be found in chapter 5.

Physiologically informed ASL VEM solution

The MCMC solution of JDE proposed in [Vincent et al., 2013a] is very
computationally demanding. For this reason, following the lead of [Chaari
et al., 2013] in the analysis of BOLD data, a variational expectation
maximization (VEM) solution is derived for functional ASL data. This

solution gives a similar performance with a much lower computational cost.
The use of physiological priors and the introduction of constraints in the

norm of the response have also been investigated for this solution.

This contribution can be found in chapter 6.

Physiological models comparison for the analysis of ASL fMRI data

The physiological linear operator derived from the extended Balloon model
contains a set of parameters that have to be xed. We usually x them
relying on physiological parameters described in the literature. Moreover,
di erent versions of the extended Balloon model exist. In this work, we
compare di erent physiological models and parameters to see their impact
in the JDE estimates, when using the physiological prior in the JDE MCMC
algorithm. We observe that the results are the same no matter which model
or set the parameters we use. However, the setting chosen impacts the
convergence of the solution. This allows us to conclude that the set of
physiological parameters has more impact than the model version being
used. For the data used, we conclude that the best set of parameters are
the ones proposed in [Khalidov et al., 2011]. This information is valuable
in itself and in future work we would like to be able to estimate these
physiological parameters from the data as in [Mesejo et al., 2015, 2016], and
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use them to improve the convergence of JDE.
This contribution can be found in chapter 7.

Validation of the methods developed

A data set with a mini-block experimental design was acquired and analysed
in the context of this thesis. We analyse the performance of the JDE VEM
method for BOLD and ASL, and we put it into perspective with the classical
GLM approach, at subject and group levels. In this context, we show the
impact of the spatial modelling in JDE through a Markov random eld with
respect to the spatial smoothing in GLM. We also analyse the e ect of the
modelling of temporal responses in JDE. Cerebral blood ow quanti cation
is also investigated.

This contribution can be found in chapter 8.
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I | ntroduction to perfusion and
functional imaging

The study of the human brain has been one of the challenges of
neuroscience since the 19th century, and still is. Evidence of this is the (

large number of initiatives that have been created during the last years = (\

to study brain function: Human Brain Project, the BRAIN initiative, Blue S \/?/, ‘

Brain Project... )\tk " )
The brain is the centre of the central nervous system and it centralizes e\.a{/ce[ls“ L { (/5

the control over the other organs of the body. It is composed by neurons ~\ C/ )| Ainapse

and glia (see gure 2.1), cells that provide support to the neurons. Neurons' )/ 7‘;\\ 7L

signal is transmitted by electrical impulses along their axons in the form of Demme: jw -\
electrochemical pulses called action potentials. They communicate with 4' 7\ &P~ Myelin sheath
other cells via synapses, membrane-to-membrane structures that permit 3\\ { fw{\j

to pass an electrical or chemical signal between the cells. Neuron bodies P {é

together with capillary blood vessels form gray matter tissue and neuron [
axons form white matter tissue. Gray matter is associated with processing Figure 2.1:
and cognition.

The brain uses huge amounts of energy for an organ of its size, and for
this reason the blood supply never stops. A lack of blood would lead to the
damage or death of tissue. The arterial blood arriving to the brain comes
from the two internal carotid arteries and the two vertebral arteries. They
meet in the Willis polygon (see gure 2.2), a circle that then gives rise to
other arteries that bifurcate and arrive to all regions of the brain. There
is also a venous drainage system to drain non oxygenated blood and other
damaging substances.

Neuron structure:
nucleus, dendrites, axon. They
communicate through synapse.
Glia cells provide support to
neurons.

http://www.fmcpaware.org

2.1 Neurovascular coupling

Most of the energy that the brain consumes is spent in the ring of action

potentials, that trigger neuro-transmission from one neuron to another, and

in synaptic activity. Some energy is also spent in inhibitory activity to

stabilize the neuron membrane potential [Buxton, 2013]. All this energy

comes from the transformation of adenosine triphosphate (ATP) when it Figure 2.2: The circle of Willis
loses a phosphate. ATP is generated by an oxidative metabolism of glucoseg|jows all parts of the brain to
glucose and oxygen are transformed into @&nd ATP [Buxton, 2013]. That | aceive blood even if the supply
is the reason why glucose and oxygen supply is crucial for brain function. fom one of the major arteries is
If the supply is not adequate brain tissue can die and, since the oxygen compromised.

concentration in tissue is quite low, the supply has to be continuously ——M
g PRl y www.kenhub.com
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maintained. Glucose and oxygen are delivered by blood ow, and with it
CGO;, is also diluted. Cerebral blood ow (CBF) is the volume of arterial
blood delivered to the tissue element by minute (ml/2100g/min).

The brain controls the increase in blood ow to active regions with
neurovascular coupling mechanisms, that can be di erent depending on
the amount of energy and how it is used. As opposed to what it was
thought, there is no metabolic signal that triggers blood ow depending
on blood oxygen or C@concentration [Attwell et al., 2010]. The way it is
controlled is through neurotransmitter-mediated signalling [Attwell et al.,
2010]. Neurons and astrocytes may act on arteriole smooth muscle cells
(see Fig. 2.3), releasing molecules that dilate or constrict them to increase
or decrease blood ow. Pericytes are thought to control the diameter of
capillaries [Huneau et al., 2015].

Figure 2.3: Scheme representing
neurovascular coupling.
Colored arrows represent the
relationship between dierent
activities: neurons, glia, smooth
muscle cells, pericytes, and

blood ow. Molecules that
they release to increase or
decrease blood ow: NO,

nitric oxide; PG, prostaglandin;
AA, arachidonic acid; EET,
epoxyeicosatrienoic  acids; K,
potassium. Acknowledged from
[Huneau et al., 2015].

Neurovascular coupling is an active area of study and the exact
mechanisms are still unclear. [ladecola and Nedergaard, 2007] provides
a review on neurovascular coupling. Evidence suggests [Huneau et al.,
2015] that neurovascular coupling can be modi ed in cerebrovascular and
degenerative disorders [Cantin et al., 2011], in intracranial and extracranial
vascular disorders [Hamzei et al., 2003] or after ischemic stroke [Krainik
et al., 2005].

2.1.1 Oxygen metabolism

Oxygen plays a key role in brain function since it is combined with glucose
to create ATP, which is a source of energy. For this reason, oxygen
consumption (CMR@) is used as an indicator of energy consumption and
therefore brain activity. Since oxygen is dicult to carry, it is bind to
hemoglobin and carried through the vasculary system. In blood, there is
an equilibrium between oxygen dissolved in plasma and oxygen bind to
hemoglobin. When oxygen from the plasma di uses into the tissue, this
equilibrium is broken and hemoglobin compensates by leaving oxygen into
the plasma [Buxton, 2013]. This way, oxyhemoglobin (hemoglobin carrying



oxygen) becomes deoxyhemoglobin (hemoglobin not carrying oxygen), and
the ratio of oxygenated and deoxygenated blood changes.

Since deoxyhemoglobin is paramagnetic, it alters the magnetic
susceptibility of blood. The dierence in susceptibility between
blood vessels and the surrounding tissue creates local magnetic eld
distortions [Ogawa et al., 1990].

The fraction of oxygen molecules delivered to the capillary bed is the
oxygen extraction fraction (OEF). According to [Buxton et al., 2004], it
relates to the other quantities in steady state &MVRO» OEF
rO,ss CBF, where rO,s, is the arterial oxygen concentration. With
neural activation, the increase in CBF is approximately twice the oxygen
consumption, which causes a decrease in OEF, assuming@hat, is kept
constant.

2.2 Imaging perfusion and brain function

Functions associated with the di erent areas of the brain have been studied
for a while now [Brodmann, 2007] (see gure 2.4).

Figure 2.4. Functions associated
to dierent areas of the brain:
(1) visual; (2) association; (3)
motor function as voluntary
movement; (4) Broca's area for
control of muscles of speech;
(5) auditory; (6) emotional; (7)
sensory association; (8) olfactory;
(9) sensory; (10) somatosensory
association; (11) Wernicke's area
for written and spoken language
comprehension; (12) motor
function as eye movement and
orientation; (13) higher mental
functions as planning, emotions,
judgement, creativity...; (14) motor
functions in the cerebellum as
coordination, balance, equilibrium
and posture.

Credit:  Nucleus Medical Art,

The development of neuroimaging techniques allowed the neuroscienti ¢ Inc./Getty Images. http://dana.org

community to study brain functiorin vivo, in the healthy and pathological
conditions. Since brain function is related to blood oxygen supply, the
access to blood perfusion (the arrival of blood supply to a tissue) with
neuroimaging is also an important tool for brain research. Dierent
imaging techniques have been developed following di erent principles,
and they are called functional or perfusion imaging depending on which
principle they use. Because of the relationship between function and blood
oxygen supply, perfusion and functional imaging are closely related, and
this complementarity can be used to access more accurate measurements.
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Some of the mostly used functional imaging techniques are sensitive
to indirect changes in blood oxygenation, or measure direct or indirectly
electrical activity:

" Near-infrared spectroscopy (NIRS) monitors blood hemoglobin levels
and detects changes in its concentration associated with neural activity
through the determination of optical absorption coe cients. The
absorption of light in the near-infrared region of the electromagnetic
spectrum ( 700 2500nm) re ects blood hemoglobin levels. Itis non-
invasive, non-ionizing, and the equipment is not expensive. However,
it is di cult to interpret, requires a complex calibration, and measures
signals only close to the outer layer of the cortex.

Electroencephalography (EEG) records electrical activity of the brain

with electrodes placed along the scalp. It measures voltage uctuations Figure 2.5: fNIRS and EEG can be
resulting from ionic current within the neurons of the brain. Itis usually —acquired simultaneously.
non-invasive, although invasive electrodes can be also used in speci ¢ nirx net

applications (stereotactic EEG). It has a high temporal resolution but

a poor spatial resolution (order of ms and cm). The currents near the

scalp are easier to detect. Its acquisition can be combined with fNIRS as

illustrated in gure 2.5.

Magnetoencephalography (MEG) records magnetic elds produced
by neural electrical activity using very sensitive magnetometers and
gradiometers ( gure 2.6). It has a high temporal resolution (order of ms)
and a low spatial resolution (order of cm), although better than in EEG.
EEG and MEG can be measured simultaneously.

" BOLD functional MRI (fMRI) measures blood-oxygen-level
dependent (BOLD) changes, which are indirectly related to brain activity.
It is non-invasive, it has relatively good spatial resolution (order of mm)
and it has access to all brain regions. However, the temporal resolution

is not very high (order of s) compared to EEG or MEG.

Figure 2.6:
Other imaging techniques can get quantitative results by measuring Magnetoencephalography (MEG)

physiological quantities such as brain perfusion: the arrival of blood supply acquisition
to atissue. Perfusion quanti cation has been proven to be useful for clinical
use, in the study and treatment of vascular diseases. Several perfusion
- - . . . http://i2bm.cea.fr
imaging techniques are available for the human brain, although most of

them need the use of a contrast agent and are therefore invasive.

At Neurospin, CEA
Saclay.

~ Positron emission tomography (PET) detects, using a gamma
camera (see gure 2.8), pairs of gamma rays emitted indirectly by
a tracer (a positron-emitting radionuclide) that is injected in the
subject being scanned. Tissue metabolic activity can be measured
using udeoxyglucose (FDG) as tracer. The concentration of this
tracer, and therefore the level of gamma rays, re ects brain activity
since concentration of blood also increases locally with brain activity
(gure 2.7). PET provides a quantitative measure of physiology and it
is not sensitive to small movement, but it has very low spatio-temporal
resolution (order of min-hour, and.0 mm) and it is a ionizing imaging
modality. Usually, the tracer is injected once and it lasts around one hour
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in the case of FDG before the e ect decreases. It can be also injected
continuously in a lower dose, although it is less common.

Single-photon emission computed tomography (SPECT) detects,
using a gamma camera, gamma rays emitted by a radio-tracer previously
injected in the subject. In functional brain imaging, the gamma-emitting
tracer used (99mTc-HMPAO) is absorbed by brain tissue in a manner
proportional to blood ow, and blood ow re ects brain activity. As in
PET, the radio-tracer is injected once for a functional experiment. The
resolution is similar to PET.

Computed tomography (CT) perfusion consists of the dynamic

sequential scanning of a pre-selected region of the brain during the

injection of a bolus of iodinated contrast material as it travels through Figure 2.7: Positron emission
the vasculature. tomography (PET) scan.

Dynamic susceptibility contrastimaging (DSC-MRI) consists ofthe ~ Wikipedia.org
injection of Gadolinium contrast agent and the posterior fast acquisition

of T2*-weighted magnetic resonance images, dominated by transversal

relaxation (see section 2.3). The Gadolinium reduces the T2* intensity in

tissues depending on its local concentration. It can be used to measure

cerebral blood volume and blood ow. DSC-MRI was used for the rst

functional MRI experiment ever done [Kwong et al., 1992].

Dynamic contrast-enhanced MR perfusion (DCE-MRI) consists of

the injection of Gadolinium contrast agent and the posterior acquisition

of fast T1-weighted MR images, dominated by longitudinal relaxation Figure 2.8: PET and CT scanner
(see section 2.3). It re ects tissue perfusion, vessel permeability, andthat can be found at the Service
extravascular-extracellular space (space between neuron and vessel}lospitalier Frédéric Joliot (SHFJ).

Spatial and temporal resolutions of DCE-MRI and DSC-MRI are of the http://i2bm.cea.fr

order of mm-cm, and minutes, respectively.

Arterial spin labelling (ASL) uses magnetically labelled blood as an
endogenous tracer while acquiring T2*-weighted images. Magnetically
labelled and non-labelled volumes can be subtracted to measure
perfusion. Many volumes are acquired and averaged to get a clear
measure of perfusion, that can be quantitative. Compared to other
perfusion techniques, itis non-invasive and non-ionizing. Vasoreactivity
experiments can be carried out to study CBF changes [N&th et al., 2006,
Pollock etal., 2009, Krainik etal., 2013, Villien et al., 2013]. The functional
version of ASL, functional ASL (fASL), adds the task performance while
the acquisition of images is done. Spatial and temporal resolutions are
lower than in BOLD imaging, although in the same order of magnitude.

In this work, we focus on BOLD and fASL functional MRl modalities.

2.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) uses nuclear magnetic resonance

(NMR): a proton inside a magnetic eld aligns its spin with the magnetic 1 precess: change in the orientation
eld vector and can absorb and re-emit electromagnetic radiation (a radio- of the rotational axis of a rotating
frequency or RF pulse) at the precesstnigequency. This frequency is body
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called Larmor frequency and it depends on the static magnetic eld and
the nucleus itself through the gyromagnetic ratioig  gBp, whereBy is
the magnetic eld vector (see gure 2.9) angl the gyromagnetic ratio of
the nucleus. The gyromagnetic ratio can be computedjas %, whereq
is its charge andn is its mass. The proton emits energy until it aligns again
with the magnetic eld. This process is called relaxation.

In MR, a large cylindrical magnet creates a magnetic eld around the | )

. . . ) ._with the magnetic eld vectorBy.
subject, that is placed inside (see MRI scanner in gure 2.10). Then, radio
. . They precess at a frequency that

waves are sent and their echo signals are collected and used to construct an . .
. L o depends on this magnetic eld
image. A space encoding is used to ensure that each point in space has 3\/ B
speci ¢ radio frequency at which the signal will be sent and received. o g%

The strength of the signal depends on the proton density (PD) in the
tissue, the longitudinal relaxation time T1 and the transversal relaxation
time T2. How these parameters contribute to the image intensity depend
on the pulse sequence used: it can highlight di erent tissue properties and
re ect di erent contrasts. This depends on two acquisition parameters:
repetition time (TR) and echo time (TE) of the scan.

Figure 2.9: Proton spins align

TR is the time between successive RF pulses: if short, protons from
tissues with longer T1 will not have fully relaxed before the next
measurement and the signal from this tissue will be lower. As a
consequence, tissues with shorter T1 will have a higher transverse
magnetization amplitude after the next excitation.

TE is the time at which the signal is measured: if short, the amount of

d . o . Figure 2.10: 3T MRI scanner that
ephasing that can occur in tissues where protons are constrained by be found at N ) EA

structures (white and grey matter) is reduced. If TE is long enough (but (;anl e found at Neurospin, C

not too long or signal disappears) di erences in transverse relaxation aclay.

will alter tissue contrast. This is called T2 e ect.

For getting T1-weighted images, a short TR 600 ms) and short TE (
30ms) are used. For a T2-weighted image, a long TRL600ms) and long

TE ( 90 ms) are used. The transverse magnetization contains e ects of
macroscopic di erences in the magnetic eld, and intra- and intermolecular

di erences in the magnetic eld. The second e ect corresponds to the
T2 value of the tissue, and the combination of both corresponds to the
T2* value. T2* value can capture magnetic inhomogeneities as the BOLD
e ect. Note that only speci ¢ NMR pulses allow to perform T2 imaging,
namely spin echo (SE) sequences, which are pretty slow. Faster NMR
sequences rely on the gradient echo (GE) principle and give you access
to the T2* measurements. Figure 2.11 shows how T1-weighted and T2-

weighted images look like. Figure 2.11: T1 (left) and T2-
weighted (right) images. The
2.4 Functional MRI contrast of the tissues is di erent:

in T1-weighted images fat and
In functional MR, brain images are acquired while a subject placed inside white matter is bright, and in T2-

the scanner is performing some task or is submitted to some sort of weighted images grey matter and
stimulus. One stimulus or task represent a condition in our experimental cefalospinal uid are bright.
design. They have to be carefully chosen depending on the test we want
to perform. Designs are usually based on the subtraction of di erent
conditions as a way to re ect di erences in cognitive processes. We can

casemed.case.edu
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also compare a condition with rest, although it is better to use a controlled
baseline condition. Designs can be event-related, consisting of very short
and isolated stimulus presentation; or block, consisting of the repeated
presentation of a condition during a certain amount of time (e.g30sec).
Although it is easier to interpret and control event related designs since we
can have many stimulus randomized, their statistical power for detecting
evoked brain activity is much lower than block designs. Sometimes mini-
block ( 10s) designs are used as a compromise between the two.

The term fMRI usually refers to task fMRI. However, there are other
modalities as resting state fMRI (rs-fMRI), that measures brain function at
rest and does not involve the performance of a task.

2.4.1 Blood Oxygen Level Dependent fMRI

Blood Oxygen Level Dependent (BOLD) signal [Ogawa et al., 1990]
measures the ratio between oxy and deoxy-hemoglobin. Both hemoglobin
states have di erent magnetic properties and when there is an increase of
deoxyhemoglobin in blood, as it is the case when oxygen is consumed due
to neural activity, the magnetic susceptibility of blood is altered compared
to the surrounding tissue. This creates local magnetic inhomogeneities
that decrease BOLD signal. Then an in ow of oxygenated blood, much
higher than the oxygen consumed, changes this ratio again and BOLD
signal increases (gure 2.12). The oversupply of oxygen leads to a more
oxygenated venous blood. That is why we talk about BOLD e ect as a
venous e ect.

Figure 2.12: The BOLD signal
measures the ratio between oxy-
and deoxy-hemoglobin in the
blood. This ratio changes during
brain activity.

BOLD signal changes with respect to baseline depend on simultaneous
changes in cerebral blood ow (CBF), cerebral blood volume (CBV) and
oxygen consumption@MRO>), and it is di cult to separate these e ects:
CBF increase causes a decrease of deoxyhemoglobin; oxygen consumption
increases deoxyhemoglobin; venous CBV increase causes an increase
of deoxyhemoglobin; and arterial CBV increase causes a decrease of
deoxyhemoglobin. For this reason, BOLD is an indirect e ect of neural
activity. See [Buxton, 2013, Logothetis and Wandell, 2004, Logothetis et al.,
2001] for further explanations.
The response that re ects all these simultaneous changes is called the
hemodynamic response function. Its canonical shape ( gure 2.13) peaksFigure  2.13: Hemodynamic
around 5.5 seconds after neural stimulation, followed by an undershoot response function generated
around 10 seconds after the peak, and then it goes back to baseline. Iwith the dierence of 2 Gamma
can have a small dip at the beginning of the response. It is usually functions.
characterized by a parametrized function, namely the subtraction of two
Gamma functions since [Glover, 1999], adjusted from a set of auditory and
sensorimotor activity signals.
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In order to detect BOLD signal changes, we need acquisition times
smaller than the BOLD changing rates. For that reason, high speed
acquisition sequences such as echo planar imaging (EPI) are used. EPI
sequence allows the acquisition of a slice over a period of about 60 ms (single
slice TR) with a single RF pulse, although this comes at the expense of lower
spatial resolution (e.g2 2 2 mmq®) compared to traditional and longer
sequences. A typical repetition time (TR), here between two consecutive
volumes, would be2.4 seconds for40 slices acquired in60 ms each.
Using parallel imaging, compressed sensing or simultaneous multislice
acquisition, one can decrease the TR.

2.4.2 Arterial spin labelling

Arterial Spin Labelling (ASL) [Williams et al., 1992, Detre et al., 1992] uses

magnetically labelled blood as an endogenous tracer. The magnetic labeling

consists of an inversion of the magnetization of the water spins contained Fi9uré 2.14:  ASL acquisition:
in the blood of a certain region. The labelled region varies depending on (1) Magnetic tagging of in owing
the ASL method. When magnetically labelled (or tagged) arterial blood arterial  blood, (2) Image
arrives to brain tissue, it causes magnetic disturbances that form the AsLacauisition;  (3)-(4) - Acquisition
signal. For this reason, in contrast to BOLD, one say that ASL measures®f @ control image; (5)DM is
an arterial e ect. The perfusion signal lies on the di erence between a Proportional to regional CBF.
control and a magnetically tagged imag®¢ontrol and Mag respectively, http://fmri.research.umich.edu

M for magnetization), that are acquired in a temporally interleaved manner
and form a time series. This di erencéddM) shows the movement of the
magnetically tagged molecules [Liu and Brown, 2007] (see also gure 2.14):

(@)

DM Mcontrol M tag (2.1)

The control image is subtracted to remove the contribution of the static
tissue to the tag image. The intensity of the resulting perfusion image (b)
can be then transformed into a quantitative regional cerebral blood ow
measure. This measure will be therefore comparable between subjects,
experiments and pathological/non-pathological conditions. Depending on
how the magnetic tagging is done, there are di erent ASL methods [Liu and
Brown, 2007].
(©)

Pulsed ASL (PASLEdelman et al., 1994] uses short radiofrequency pulses

to invert the spins in a certain region (see gure 2.15(a)). This method

has a high spin inversion e ciency and does not need a high RF power,

but it depends on the coverage afid] homogeneity of the RF eld.

Continuous ASL (CASL)ses long RF pulses together with a constant Figure 2.15: ASL tagging methods:
gradient eld applied to a plane of spins (see gure 2.15(b)). When (&) pulsed, (b) continuous and (c)
they are properly adjusted, they cause ow-driven adiabatic inversion Velocity-selective. In the images,
[Williams et al., 1992]: the tagging of in owing spins that move at a the blue and yellow rectangles
certain velocity. During the control image acquisition, an RF pulse is indicate the imaging and tagging
applied outside the brain to account for magnetic distortions caused by "€gions, respectively. In (b) the
the RF pulse. Distortions will be subtracted with the control image. This 9reen rectangle indicates an RF

method allows tagging closer to the acquired region, but needs high RFPulse applied during the control
power. image acquisition.
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Pseudo-continuous ASL (PCA8Earcia et al.,, 2005] is a compromise
between pulsed ASL and continuous ASL. It uses a train of rapidly
repeating low tip RF pulses and alternating sign magnetic eld gradients.

Velocity Selective ASL (VS-A3Wong et al., 2006] uses a RF and a gradient
pulse train to invert spins that ow faster than a certain velocity. The
tagging is not space-dependent (see gure 2.15(c)).

Figure 2.16: Acquisition scheme
for pulsed ASL.: tag/control pulse
creates the bolus; afl, there is a

saturation pulse and tagged spins
keep arriving to the tissue; al |,

the image is acquired; after a TR
there is a new volume acquisition.

In this work, we focus on pulsed ASL [Luh et al., 1999]. In this ASL

method, the tagging is usually done in the neck to tag the in owing blood

from the carotid arteries. There is a tag/control pulse (see gure 2.16) that

inverts the magnetization of the spins in the tagging region and then a

saturation pulse that allows to saturate to zero the tagged spins that are

still in the tagged region at timél' |,. The tagged spins are perfused to the

brain while undergoing relaxation and they arrive to the blood vessels after

a transit time Ot in Fig. 2.17). When they arrive to the tissue and they

exchange with the spins in the capillary bed, they alter the local tissue's

longitudinal magnetization [Aguirre et al., 2005] (spins shift fromgjJyqto

Tlissue and the perfusion signal increases. After the tagging stops; {

and the last tagged spins arrive to the vessdilsiff Fig. 2.17), the signal

starts dropping. The tag image is acquired next at that moménty]. See

gure 2.17. Figure 2.17: Magnetically labelled
The di erence signal between tag and control states atimage acquisition SPins are perfused to the brain

time T1, will be proportional to perfusion. The spins that were saturated Untilthey arrive to the vessels after

after T1; will not contribute to the signal: their magnetization was set to ~ a@transittimeDt, and the perfusion

zero with the saturation pulse, their relaxation will be di erentto the tagged ~ Signal starts increasing. Then the

spins and their signal will be cancelled by subtraction. tagging is stopped and the spins
Control and tag images are acquired using an EPI sequence and two TREONtinue arriving to the vessels

are required to get 1 perfusion measurement by subtraction. Typical value Until the last ones arrive at time
for TR is3 seconds. t, and the perfusion signal starts

dropping. The image is acquired at
CBF quantification Tla.

For pulsed ASL, the link between CBF and the measured di erDbg, is
described in [Alsop et al., 2015] (based on [Buxton et al., 1998a]) for QUIPS
Il PASL imaging, as:

6000 DM Tl,

CBFEmML{100g{mins ————exp
2aTI1Mo T1plood

(2.2)

whereDM  M¢onrol  Miag iS the averaged control-tag magnetization,
Mg is the relaxed magnetization; 0.9mL/g is the averaged brain/blood
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partition coe cient (T1 decay correction factor)a  0.98is the labeling

e ciency (tissue water exchange correction factorJ; pjooq  1650ms is

the longitudinal relaxation time of the blood at 3T. This model assumes that
all the tagged blood is delivered to the target tissue, that there is no out ow
of labelled blood, and that the relaxation of the labeled spins is governed by
blood T1.

This scaling of the data is very sensitive to time and space changes, and
we need to consider the time di erence between slices [N6th et al., 2006].
It is recommended to be performed before any other preprocessings of the
data. Other recommendations when dealing with this data can be found in
[Alsop et al., 2015].

The relaxed magnetizationM ) can be measured in a separate scan
with a PD-weighted image with similar readout to ASL. Dividing by this
image, we correct for signal variations caused by RF coil inhomogeneities
and di erences in transverse relaxation. When the TR is lower thas,
we multiply the PD-weighted image b${pl expp TR{Titssudqwhere
T1iissue IS assumed to be thd@; of gray matter, in order to correct for
longitudinal relaxation.

To measure voxelwisd; values, Ty mapping can be performed. The
gold standard forT; mapping is the Inversion Recovery method [Bydder
and Young, 1985]. However, other methods as the Variable Flip Angle
(VFA) method [Fram et al., 1987] have lower scan times and can be easily
introduced in an ASL sequence. VFA computes T1 value from two gradient
echo images acquired with dierent ip angles but the same TR. The
real value of these ip angles is not uniform across brain regions due to
di erences in the RF eld. To account for this, VFA requires a previous B1
correction that can be performed with the Actual Flip Angle (AFI) method
[Yarnykh, 2007]. AFI determines the ip angle distribution using two
signals with di erent TR. Other scaling factors ds can be also corrected
to account for regional di erences in tissue and blood water content.

Typical gray matter CBF values are froA® to 100mL/100g/min [Alsop
et al., 2015]. In pulsed ASL, an underestimation of gray matter CBF values
has been reported in the literature [Wang et al., 2011a, Figueiredo et al.,
2005].

2.4.3 Comparing BOLD and ASL

ASL and BOLD are related because both measure a BOLD e ect. In the
case of ASL, it is present in the non-subtracted control/tag time series. In
ASL we need to perform the tagging before the acquisition and this takes
time ( 2s). Tocompensate for this, the time spent in actually acquiring the
image is rather short ( 0.5s) and this implies a quite low spatial resolution.
We also need to take into account that the perfusion in ASL is extracted from
the subtraction of two consecutive images (tag and control), so we have
one perfusion measure every two acquired images, and there is a time shift
between these consecutive images that needs to be considered. Therefore,
the spatial and temporal resolution of BOLD is higher than in ASL [Liu and
Brown, 2007]. ASL acquisition is also noisier than BOLD acquisition, due
to the fact that the TE used for ASL is not optimal for the BOLD contrast
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[Ogawa et al., 1993]. This makes the BOLD e ect, which is present in both
modalities, easier to extract from a BOLD acquisition.

Although ASL faces many challenges, it is interesting because it gives a
guantitative measurement of absolute CBF without the need of any external
tracer. This means that the measurement is direct and closer to actual
neural activity: it measures arterial blood ow. This translates into lower
inter-subject and inter-session variability [Tjandra et al., 2005, Leontiev and
Buxton, 2007, Raoult et al., 2011, Pimentel et al., 2013], and into a more
localized detection of neuronal activity [Luh et al., 2000, Tjandra et al., 2005,
Raoult et al., 2011, Pimentel et al., 2013]. BOLD and functional ASL have
been compared in experiments involving motor tasks [Raoult et al., 2011,
Pimentel et al., 2013], visual tasks [Leontiev and Buxton, 2007], and speech
tasks [Kemeny et al., 2005].

A general comparison of BOLD and ASL can be found in [Liu and Brown,
2007, Detre and Wang, 2002].

2.4.4 ASL and BOLD simultaneous measures

Simultaneous measurements of BOLD and ASL contrasts can provide
valuable information on neural activity and neurovascular coupling. From

a series of ASL images, perfusion and BOLD signals can be obtained by
subtracting or adding the control and labeled images, respectively, in the
same time series [Yang, 2002]. BOLD sensitivity can be increased by
acquiring a second longer echo time (TE) in the ASL acquisition, with a
longer echo having a TE closer to the T2* value of the tissue (85ns).
These time series will be BOLD, but will have the resolution of ASL [Barker
et al., 2013]. [Schmithorst et al., 2014] propose a simultaneous BOLD/ASL
acquisition method with PCASL by adding one or several acquisitions of
BOLD fMRI after the acquisition of the ASL volume. It decreases the
temporal resolution of ASL: additiondl.3s per BOLD acquisition added.

2.5 Physiological models to explain brain function

The study of the processes underlying brain function is an active eld
of research. With neuroimaging techniques, we get access to the living
human brain with a relatively poor spatial and temporal resolution. These
processes are better studied in animals with more invasive techniques. To
better interpret the signals that we get in fMRI, a better understanding
of what is happening and therefore of what we are actually measuring
is important. Mathematical models have been proposed to model the
neurovascular coupling and the oxygen consumption and BOLD e ect. The
Balloon model [Buxton et al., 1998b] proposes the idea that blood vessels
work as a balloon that in ates or desin ates when cerebral blood ow
changes as a function of brain activity. Cerebral blood ow and balloon
volume changes cause changes in deoxyhemoglobin concentration in blood,
that are re ected in the BOLD signal. Although this model is not exact
and its validity has been discussed [Drew et al., 2011, Lorthois et al., 2011],
it models quite well the response shapes of biophysical parameters. An
evaluation can be found in [Blanchard et al., 2011].
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The Balloon model does not explain the neurovascular coupling: the
process from neural activity to CBF changes. Several models have been
proposed [Huneau et al., 2015] to explain the neurovascular coupling and
have been validated on BOLD data:

Friston ow model [Friston et al., 200ptoposes a neurovascular coupling
model to explain how neural activity produces variations in cerebral
blood ow. It considers that arteriolar activity is generated by neural
responses and that it auto-regulates. Together with the Balloon model,
it explains the process from neural activity to BOLD signal change. This
model is simple and re ects quite well response shapes, but it does not
perfectly explain the physiology behind the neurovascular coupling.

Buxton ow model [Buxton et al., 200¢foposes a neurovascular and
neurometabolic coupling model assuming a linear convolution of neural
activity with a ow response function: a gamma-variate function
depending on normalized amplitude, duration and order. Neural activity
is modelled linearly linking excitatory and inhibitory activity elicited
by stimulation, and nonlinearly considering the existence of a neural
baseline activity and a positive neural response. This model is consistent
with experimental results assuming nonlinear neural adaptation, but
does not create realistic perfusion response time courses.

Arteriolar compliance model [Behzadi and Liu, 200@jposes the inclusion
of a neurovascular compartment in the Balloon model that models an
arteriolar wall compliance before generating the resulting blood ow. It
relates neural activity to a vasoactive signal, and this signal to changes
in muscular compliance. This model can explain changes in HRF with
aging and changes induced with carbon dioxide.

Proximal integration model or arterial impulse model [Kim et al., 2013]
assumes that neural activity generates a ow-inducing command that
rst reaches the nearby capillaries and that propagates later to larger
vessels. Although a global model for BOLD tting has been presented
and tted BOLD signal well, no tting of ow measures has been
reported.

These and other models are compared and put into perspective in [Huneau
et al., 2015]. Some are closer to physiology than others, and some are
mainly descriptive and try to t the response shapes, as it is in the case
of Friston ow model [Friston et al., 2000]. For simplicity and because we
are interested in modelling the CBF and HRF shapes as closely as possible,
in this work we focus on this model for neurovascular coupling. We call
extended Balloon model the model that combines both Friston ow and
Balloon models to explain how neural activity is transformed in the BOLD

e ect.

2.5.1 The extended Balloon Model

The Balloon model was rst proposed in [Buxton et al., 1998b] to link
neuronal and vascular processes by considering the capillary as a balloon
that dilates under the e ect of blood ow variations. More speci cally,



19

the model describes how, after some stimulation, the local blood ow
finptg increases and leads to the subsequent augmentation of the local
capillary volumenpg This incoming blood is strongly oxygenated but
only part of the oxygen is consumed. It follows a local decrease of
the deoxyhemoglobin concentrationptq and therefore a BOLD signal
variation. The Balloon model was then extended in [Friston et al., 2000]
to include the e ect of the neuronal activityu ptqon the variation of some
auto-regulated ow inducing signay ptqso as to eventually link neuronal

to hemodynamic activity. The global physiological model corresponds then
to a non-linear system with four state variabléy ,f j,, n, xucorresponding

to normalized ow inducing signal, local blood ow, local capillary volume,
and deoxyhemoglobin concentration. Their interactions over time are
described by the following system of di erential equations:

?dfinnq

{Tda YRd

8 Y29 hupq RO fmRal

=y mrthW xpqptay (2:3)
%dBa L yg npgh

with initial conditonsy P0q  0,fj, 09 npdg xPOq 1. Figure 2.18
depicts these relationships. Lower case notation is used for normalized
functions by convention. The system depends on ve hemodynamic
parameters: ty, t¢ and ty are time constants respectively for signal
decay/elimination, auto-regulatory feedback from blood ow and mean
transit time, W re ects the ability of the vein to eject blood, anf is the
oxygen extraction fraction. Another parametdr is the neuronal e cacy
weighting term that models neuronal e cacy variability.

Once the solution of the previous system is found, [Buxton et al., 1998b]
proposed the following expression that links the BOLD respoigeq to
the physiological quantities considering intra-vascular and extra-vascular
components:

Xpq

hpg  Vorkipl  xpqq kepl npg kspl npggs  (2.4)

whereky, ko andks are scanner-dependent constants avglis the resting
blood volume fraction. According to [Buxton et al., 19981, 7Eg,
ko 2andks; 2E; 0.2ata eld strength of 1.5T and echo tim&E
40ms. However, the values df;, ko and ks have been posteriorly revised
[Obata et al., 2004] (see chapter 7). The perfusion response function (PRF),
namelygpq is the percentage perfusion signal changgtq  fi, 1,fi,
being the normalized perfusion with initial value 1.

[Friston et al., 2000] proposed this set of physiological parameters used:

Vo 002 ty 125 t; 25 tn 1 W 02 Ep 08 h 0.5
The BOLD response function (HRIr) and perfusion response function
(PRFg) generated using these parameters with the physiological model are

shown in Fig. 2.19 under the label Friston 00 (dashed line). The rest of the
curves show the e ect of changing the physiological parameters:

" his a scaling factor and causes non-linearities above a certain value.
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Figure 2.18: Extended Balloon
* ty controls the signal decay, which is more or less smooth. mode.

" t¢ is the auto-regulatory feedback and it regulates the undershoot.
" tm is the transit time and it expands or contracts the signal in time.

" W is the windkessel parameter and it models the initial dip and the
response magnitude.

" Ep is the oxygen extraction and it impacts the response scale.

Figure 2.19: Eect of the
After analysing the behaviour of the model when varying the parameters physiological ~parameters  on

values, the impact of each parameter was investigated and we concludetdhe HRF and PRF shapes. The
that the values proposed in [Friston et al., 2000] seemed reasonable. Severglarameters values proposed in

parameter settings have been proposed in the literature [Friston et al., 2000{Friston et al., 2000] are used

Khalidov et aI., 2011, Havlicek et al., 2011] except for one parameter modi ed

as indicated in the plot.
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In this chapter, we introduced functional and perfusion MRI: What
physiological processes we are actually measuring, BOLD and ASL
functional MRI modalities put into perspective with other existing
neuroimaging techniques, and mathematical models that try to explain
the physiological processes underlying brain function and BOLD and blood
ow measures. From this point, we will focus on the analysis of BOLD and

ASL data.






IEIClassical methods in fMRI data
analysis

FMRI has been used since the 90s after the ground-breaking discovery of
the BOLD contrast in [Ogawa et al., 1990]. Over the last two decades, the
methods to analyse it have evolved. The gold standard for fMRI analysis
is the General Linear Model (GLM) assuming a canonical hemodynamic
response function (HRF), and its posterior subject and group level statistical
analyses to infer brain activity.

In this chapter, we rst introduce the classical methods to analyse BOLD
fMRI: preprocessing pipeline, the general linear model, statistical inference,
and the modelling of the hemodynamic response function. Then, we
introduce the classical methods to analyse functional Arterial Spin Labeling
(fASL) data. The statistical methods used for fASL are similar to the ones
used for BOLD. The preprocessing pipeline and the design matrix change
to deal with the perfusion component of fASL.

3.1 Preprocessing BOLD fMRI data

FMRI signalis noisy and has to be preprocessed before performing statistical

analysis. There is a consensus in the community about the preprocessing

pipeline that one has to apply to BOLD fMRI data before further analysis.

A leading software package for data preprocessing is $RBtatistical thitp://www. |.ion.ucl.ac.uk/spm/
Parametric Mapping) [Penny et al., 2011]. The recommended preprocessing

steps are:

Slice timing correctiortorrects the e ect of the timing di erence between
slices during the acquisition, since they are not acquired simultaneously.
Between the rst and the last slices acquired, there is a di erence of
almost a repetition time (TR). It shifts the signal phase to temporally
align all acquired slices to a reference slice, which is usually taken to be
the one in the middle of the TR interval and this depends on the slice
acquisition order. The signal needs to be shifted accordingly when this
is done ( TR{2). See gure 3.1.

Realignmentcorrects for head motion during the acquisition. Realignment Figure 3.1: Slice timing correction:

and slice timing correction can be done simultaneously as in [Roche, signal  phase is shifted to
2011]. temporally align all acquired

) ) ) ~_ slices to a reference slice. Taken
Mean functional imageThe temporal mean of the BOLD time series is from [Sladky et al., 2011]

computed to obtain a mean functional image.
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Coregistration.We align spatially the anatomical image to the mean
functional image so they are in the same space. It also reduces the
resolution to the one of the target image.

SegmentationThe anatomical image is segmented into white matter, gray
matter and cerebrospinal uid probability maps. For each voxel, they
indicate the probability of it being part of these types of tissue. We can
compute a gray matter mask from those maps.

Normalization. A spatial transformation is done from the subject space to
a template space. This is important if we want to compare di erent
subjects in the same space (e.g. MNI template).

Spatial smoothing using a Gaussian ltekt the subject level, it reduces
the e ect of the noise and it considers a spatial correlation between
voxels. At the group level it reduces coregistration and normalization
errors. It also increases the group statistical e ect when there is a high
variability. However, the smoothing degrades the statistical speci city
since it changes the sensitivity-speci city trade-o .

Spatial smoothing can help models that otherwise do not take into account
spatial correlation of the signal. If spatial correlation is taken into account
in the signal model, then not using smoothed data is better because one
would be just losing sensitivity to e ects. Ideally, one should take into
account spatial correlation in the model. However, these methods tend to
be computationally demanding.

Undesired low frequency e ects due to scanner drifts or physiology
related artefacts are considered in the posterior analysis of the data.

3.2 Statistical analysis of BOLD fMRI

The General Linear Model (GLM) has been classically used for statistical
analysis of BOLD fMRI. It assumes that the acquired signal in a voxel is
the sum of the activity evoked by a number of independent processes. It is
based on the following hypotheses:

Linearity: the length of the response is linearly dependent on the
stimulus length.

Additivity: The e ects of the stimulus are added.
Temporal stationarity: A stimulus always induces the same response.

Spatial stationarity: the response generated by a stimulus is the same
through di erent voxels and experimental conditions. One usually
chooses a canonical hemodynamic response function (HRF), which can
e.g. be generated as the di erence of two Gamma functions [Glover,
1999].

The GLM framework models the BOLD signal with a set of functions
called regressors, and calculates their weights using linear regression. We
describe, at each voxel, the parameters associated with each regressor that
tin the least squared sense. For every voxel

yj X b] bj (31)



25

wherey; is the BOLD signalX the design matrix (containing the regressors
as columns) andbj the unknown weights of the regressors; is the noise
in voxel j, which is assumed i.i.d. Gaussian if we assume independence
or serially correlated, typically following a rst order autoregressive (AR)
model with a one-timepoint history [Woolrich et al., 2001]. Note that
longer history AR models have also been tested to t the noise component
[Harrison et al., 2003].

Each functional regressor from the matriX (see Fig. 3.2) de nes
temporal e ects that can be observed in the fMRI data: task-related
activity, nuisance events, low-frequency signals... The regressors de ning
task-related activity ( gure 3.3) are constructed as the convolution of the Figure 3.2: Design matrix of a GLM
hemodynamic response function with the stimulation signal that contains approach using canonical HRF and
the event stimulus onsets in the paradigm. The regressors de ning nuisanceits rst and second derivatives. It
events and low-frequency signals are called drift regressors. They accountis an event-related design with just
for low frequency ( 1{120 Hz) drifts that fMRI contains: scanner One experimental condition. The
drifts, cardiac/respiratory artefacts and residual movement e ects and their rst three columns represent the
interaction with the static magnetic eld [Frackowiak et al., 2004] . Drift regressors associated with can,
regressors are orthogonal and they are usually implemented as polynomialh zanandh2,,. Itis followed by ve
or cosine functions. Typical values for polynomial drifts are 5 polynomial polynomial drifts and a constant to
functions up to the 5th degree, often normalized to lie within the range of Ccapture the signal mean.
[0, 1] over the full time course. For cosine drifts, the cut-o frequency of
1{128Hz is used.

Figure 3.3: The task-related
regressor is the convolution
of the stimulation signal by a
canonical HRF: canonical HRF
experimental paradigm
stimulus-induced signal. In this
gure, the paradigm shown is
event-related, with two conditions
corresponding to visual and motor
tasks.

3.2.1 Univariate estimation

The regressor parameterﬁ are the estimated magnitude of activation
for each condition described in columns &f . They are calculated by
minimizing the squared distance between vecl()rbj and the measurement
timecoursey;. If we assume i.i.d Gaussian noisg N m,sjzl NG the
maximum likelihood estimator (MLE) djj reads:

b, X yj 3.2)

where X is the Moore-Penrose pseudoinverse. In classical statistics
the design matrixX is assumed injective (it maps one to one), making
X 'X invertible. It follows that we can writeX p XX qlXt The
distribution of b can be written as:

b, N pbj,s?X X g 'q (3.3)
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Wheres:j2 is the unknown variance of the error terrbj. The estimatort;j is
unbiased since the noidg is assumed Gaussian and with zero mean. From
the minimization of the residuals; y; X bj we can compute the noise
variance MLE:

) }r ]}2
Note here that residuals can also be writtenigs p Iy XX do;. If we
take the expectation:

(3.4)

o EI¥ o1 s
E §7 T‘ NEtrpo}plN XX g W'trpiN XX q
s? N R
i tg2
SArANG trpRAg s (35)
whereR is the rank ofX PRN R The unbiased estimator is then:
2
a2 }rj}
S N R (3.6)

3.2.2 Statistical testing

Statistical tests check the signi cance of a given contr@tbj, a linear
combination of the e ects associated with the experimental conditions.
From the last section, we can see thng)j g'b; g¢'X bj and
follows the IawgtBj N pgtbj,sjzgtpx X q 1gq A standard measure of
activation is the z-score of the normal distribution, which tells us how many

standard deviations we are from a zero mean. It reads %.
However, note that the denominator contains;, the unknown noise
variance of the voxel. This makes the pure z-score impossible to estimate.
Using the unbiased estimator of the variané&® instead, we obtain a
guantity that is t-distributed (due to the unknown variance) instead of
Gaussian, which we take into account when making inference by e.g.
calculating p-values. T-test or the F-test are common when comparing
models. These tests consist in determining what outcomes from a set of
random variable?g‘bj would lead to a rejection of the null hypothesis for

a pre-speci ed level of signi cance which is a probability threshold.

T-test

A t-test is a statistical hypothesis test in which the test statistic follows a
Student t distribution (see gure 3.4) under the null hypothesis. We want
to know how di erent the estimated parameters are to a certain value. The

null hypothesisH o can be de ned in our case, for voxg| as: Figure 3.4: T student distribution:
. n 1 2

Ho:g'b; O. (3.7) fxq Q_GiTcnl 1 X

np Gosq n

We could also test alternative hypothesis @H 1 : gtbj 0.
As g‘Bj is a linear combination of random variables following normal Gbeing the Gamma function.

laws of unknown variances, we can use a Student law with R (N scans, en.wikipedia.org
R regressors) degrees of freedom:
g'b;
Tj a ) IN R (38)

ad— S
S g'X X qlg
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We need to estimate the noise varianée as previously explained. For
every voxelj, the statistic is evaluated and we get p tjg 1.;observed
realisations of T. We compute the p-value in each voxel as

PpT i ualH og whereuy is the statistical value associated with a level of
signi cancea, usually considere@.05 At each voxel, a valug is observed
and rejects the null hypothesis if; i ua. Thep-valuesummarizes the
evidence againsHg and corresponds to the probability of observing an
extreme value greater than the observgdunderHo. If the p-valueis lower
thana, we rejectHg and the activation of the voxel is considered signi cant.

F-test

An F-test is based on Fisher statistic and it allows multiple hypothesis
testing. In our case, we can test whether a set of contrasts are all
simultaneously di erent from zero with a null hypothesis:

Ho:C'b; 0 (3.9)

C being a contrast matrix with k columns. Here we will know that one of
the contrast is signi cant, but we will not know which one.
Under the null hypothesis, the F-statistic follows a Fisher distribution

(see gure 3.5): Figure 3.5: F-distribution:

pdxeft d?

i | Rix g %

F —a— 0 sRun (10  fPednded =TT
k§; CipXtX g lC XB 2.3

B being the Beta function.
This test is useful in the case of modelling a condition with several

regressors corresponding to a basis function as it could be the HRF with
derivatives, since we can group several regressors in one test and see the
e ect of a stimulus.

en.wikipedia.org

Correction for multiple comparisons

Applying the previously explained statistical tests independently we get
brain maps (statistical parametric maps or SPM). However, with the voxel-
wise statistics we accept a certain amount of errda false positives. That

is quite high when we accumulate it through all voxels:Jfs  5000Q with

a 0.001we have 50 false positives and with  0.05we have 2500 false
positives. To correct for this e ect, we need to consider a global strategy.
Two strategies are generally used:

Family-Wise Error Rate (FWER) contféWWER is the probability of
considering active voxels that are truly inactive. We can apply di erent
corrections:

Bonferroni correctiorassumes voxels independent and corrects the level
of activation signi cance froma to a{J. This makes the correction
quite rigid, since it does not account for spatial correlation that
certainly exists in the brain, and that we also include during data
preprocessing when realigning, normalizing or smoothing.

Random eld theoryconsiders that a smooth statistical map has a lower
probability of exceeding a threshold by chance. It is based on
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the topological characterization of the statistical map using Euler's
characteristic. See [Worsley et al., 1992] for details.

Resampling methodas permutation [Holmes et al., 1996] are accurate
but computationally demanding. See [Nichols and Holmes, 2002] for
details.

A comparative review can be found in [Genovese et al., 2002].

False Discovery Rate (FDR) contf@R is the expected proportion of false

positives in voxels considered active. We can correct it by using the
Benjamini-Hocheberg procedure [Benjamini and Hochberg, 1995], that
consists of an adaptative Bonferroni correction that applies a di erent
correction depending on the signi cance of the voxel. See also [Genovese
etal., 2002].

We can also apply cluster-level correction to get rid of small and unlikely
activations. In this case, the clusters (set of active neighbouring voxels) of

small size are not considered activated. See [Frackowiak et al., 2004, Nichols

and Hayasaka, 2003, Genovese et al., 2002] for further information.

Group level statistics

Group statistics seek to nd signi cant consistent activations within a

group of S subjects with J observations per subject. To perform these

statistics, we compute the variability of a population considering xed or

random e ects (e.g. e ect maps). See gure 3.6.

Fixed e ects analysisakes into account within-subject variation. It

supposes that thesth subject mean true e ectws is xed and that
variation comes from measurement errors (within-subject errors), which
are assumed random. Thth observed e ect in subjecs ys; is assumed
to be:

Ysj Ws &
Within-subject error & is assumed Gaussian with zero mean and

variances?. We can obtain the e ect distribution by estimating the
average e ect size

1.8 .7

V’\‘, — .

popFFX Ysj

SJS 1j 1
and its variance
2 S&

S =, i .
FFX 33 Figure 3.6:

Since it does not take into account between-subject variability, xed
e ects analysis is speci ¢ to the group under study and we can not infer
anything about a wider population.

In the context of a General Linear Model, they can be computed by
concatenating the data of di erent subjects and creating a block design
matrix with the design matrices of each subject. The e ects of interest
can then be examined using an augmented contrast vector that considers
all subject contrasts [Penny et al., 2011].

Fixed and random

e ects in group studies.

slides  Group

Modeling for fMRI data by T.
Nichols



29

Random E ects analysifPenny et al., 2011] considers between-subject
variation. It considers that thesth subject true mean e ectws is
also a source of variation, but that the population meanopis xed.
Therefore, we have two sources of variability: the between-subject error
Zs, and the measurement or within-subject errey;. The observed e ect
Ys, Is then assumed to be a function of:

Ysj Ws &) Wpop Zs &

Within-subject error e is assumed Gaussian with zero mean and
variancesZ, which is assumed equal across subjects. Between-subject
error zs is assumed Gaussian too, with zero mean and variaaée
Therefore, subject e ectw/s are normally distributed around the average
population e ect wpop, With a certain variances?. Here we can
generalise the results to the population of interest.

In practice, we can do this analysis through a two-level model. Inthe rst
level, we compute subject level statistics and de ne the e ect of interest
for each subject with a contrast vector to obtain contrast e ect maps. In
this level we are considering the variation of the subject samples around
the true subject meanws  ws &, with variances2{J.

In the second level, we perform a GLM that implements a one-sample
t-test [Penny et al., 2011] with the contrast images of all subjects. We
consider the subject mean variation around the population meas:

Wpop  Zs, With variancesg. The population mean is then estimated as

]

\A_/SI
s 1

0k

VvpopRFX

with meanErwpoprexS  Wpop and variance

2 st s
Fy w

As shown in [Penny et al.,, 2011], this is equivalent to computing
Maximum Likelihood estimates.

Mixed e ects analysis combine both xed and random e ects analysis.
They account for the within-subject uncertainties, as represented in
particular by the estimated variances of the e ect estimates, in the
analysis. It therefore corrects the group statistical map for higher- order
information [Roche et al., 2007].

In neuroimaging, random e ect analysis are widely used in the group level.
For further detail, see [Penny et al., 2011].

3.3 Modelling the hemodynamic response function

The estimation of the hemodynamic response function (HRF) is interesting
from a cognitive and clinical point of view, as it changes depending on the
area of the brain, and between di erent subjects, ages and with pathology.
This could give valuable information to perform the comparison between
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populations (pathological and healthy) or to test the e ects of drugs in brain
function and vascularization. The HRF can be described by physiological
models as the Balloon model, by models not considering physiology, or
inferred from the data.

3.3.1 From physiological models

We can generate the HRF using physiological models like the Balloon
model, already introduced in the previous chapter (see gure 3.7). In this
case, we use the set of di erential equations to generate the response
function. This model uses physiological parameters that have to be
measured. Di erent sets of parameters have been proposed in the literature.
We can also generate other physiological responses like blood ow, volume
or deoxyhemoglobin concentration.
Figure 3.7: Hemodynamic

3.3.2 Using the canonical HRF response function and other

) ) . physiological responses generated
One can consider a xed HRF with a canonical shapedy generated as with the Balloon model using

the di erence of two Ga.mma functions [Glover, 1999] (see gure 3.8) and parameters proposed in [Khalidov
only modulate the amplitude: etal., 2011].

M

yj  bgithcan x™q by (3.11)
m 1
wherey; is the signal in voxelj, x™ is the regressor vector for condition
m, and bg“’j is the weight of the regressor, corresponding to the amplitude
modulation of the HRF.

Introducing function basis

We can use function basis to model HRF variations. One possibility is adding

regressors for the temporal derivative and the derivative with respect to the Figure  3.8: Hemodynamic

dispersion parameters of the canonical HRF (see gure 3.9). With them, weresponse  function  generated

model delay and dispersion of the response, respectively. with the dierence of 2 Gamma
M functions.

i bfjmhean xMa bfjphis, xMa bfiphZ., xMg by (3.12)
m 1
where bg“,j, ij and bg"j are the weights of the regressors corresponding to
the canonical HRM can, and its rst hl, and secondhZ,, derivatives. We
can generalizé can as a function basigh ¢ 1.c, wherecis every stimulus
induced component. In this casg;:

M C

yi  pgme xMqq by, (3.13)
m 1c O
This method adds some exibility to the model, but also complexity when

inferring activation detection. It requires the use of F-tests to group the

activation detected by di erent regressors. Figure  3.9: Hemodynamic
response function and its rst
Non-parametric approaches and second derivatives.

Here the HRF is entirely estimated each time. One can use Finite Impulse
Response (FIR) modelling or a regularized version of it:



31

Finite Impulse Response (FERpws to capture the HRF shape by
estimating a nite set of coe cients. The signal is modelled as:

M D

B B

Yij hiaXi"g Djo Db (3.14)
m 1d 0O
considering M conditions and with D+1 order FIR lter.h; 4 is the
HRF value with delayd in voxel j, andx{" ; is the regressor matrix for
conditionmanddelayt  d. b; yisthe e ectassociated with the constant
regressor and captures the mean signal. See gure 3.10.

Regularized Finite Impulse Respoesteds a temporal regularization on Figure 3.10: In nite impulse
the HRF shapes. In this method, the HRF estimation is a trade-o response each coe cient of the
between information contained in the data and in a prior, modelled with HRF is captured with a delayed
a Bayesian formalism. Since we know that the hemodynamic responsepulse.
function is temporally smooth, we can introduce a prior to account for
this temporal regularization (see gure 3.11):

DD,

potft

HereR is a covariance matrix that provides smoothness to the function.

Itintroduces a constraint on the second order derivative to penalise high

variations between neighbouring time points, and therefore recover a
smooth shape.Dt is the time step oth and D , the 2nd order nite

1
(3.15)

hj Np,vyRgandR

di erence matrix2. D , andR ! have a dimensionob D and read: 2The second derivative df is:
a2 ™9 oo pDtcf
D2 : : (3.16) Dh
o .. 1 2 1 pDtcf
o .. 0 1 2 withd 1:D
5 4 1 o .. .. O and if we do the square norm we
4 6 4 1 0 .. O get the covariance matriR :
1 4 6 4 1 0 2
2 t
R ! ﬁ : : (3.17) dh e Daba
0o 0 1 4 6 4 1 dt pDtef
0 0 1 4 6 4
0 0 1 4 5
Then, to compute the HRF:
1
hflRo 7 pxXMdx ™ wiR 1T X My, (3.18)
m m

See for instance [P. Ciuciu et al., 2003]

Figure 3.11: Prior distribution of
Until this point, this chapter has been dedicated to the introduction to the HRF: Gaussian distribution.
classical methods for the analysis of BOLD fMRI. From here, we dedicateThe rst and last points areD.
some pages to the existing methods for the analysis of functional ASL data.
Some of the preprocessing and methods are similar to the ones explained
for BOLD and they will not be explained again to avoid redundancy.
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3.4 Preprocessing functional ASL data

Due to the acquisition procedure and the structure of the data, ASL can

not be preprocessed as BOLD. An example of preprocessing pipeline can be

found in [Wang et al., 2008]. In the context of this thesis, thmcess-asl

toolbox® has been used for the analysis of ASL data. The pipeline reads as process-as|

follows: https://github.com/process-asl

is a python package developed
by S. Bougacha under the
supervision of P. Ciuciu at
Neurospin (CEA Saclay),

Scale factor correctiolecause of the T1 decay, signal will be lower
depending on the exact time of the slice acquisition time. Scale factor
correction allows us to have a nominal perfusion weighting. It is done
before spatial preprocessing because then voxels move. One needs t _ S
know the order of the slices, all the timings of the acquisition sequence, 21d  reproducing  the _ pipeline
and the delay of one slice acquisition. It makes the values closer to 9€veloped bY J. Warnking at the
quanti ed values. The scale factor that we apply jgh- exp 2 Grenoble Institute of Neuroscience

- - - L Lload. (GIN). The toolbox usesiipype

wherea  0.98is the labeling e ciency; T1; the time when tagging . .

stops; T, the time when the image is acquired; pigoq 1650 ms http://mpy.org/mpype/Q10.0{ to

is the longitudinal relaxation time at 3T and depends on the slice. See Cr€&t€ a preprocessing pipeline

using SPM. It contains a CBF

section 2.4.2 for more details.
quanti cation module for pre- and

Realignment.This is an important step in ASL because its analysis is based post-processing of ASL fMRI data,

on the subtraction of control/tag. We realign to the rst or to the mean following the recommendations

volumes. in [Alsop et al., 2015]. CBF
quanti cation has been done in
collaboration with J. Warnking
Coregistration.Register high resolution anatomical to low resolution mean and A. Vighaud.

ASL image.

Mean ASL imageWe do the temporal mean of the ASL time series.

SegmentationThe anatomical image is segmented into white matter, gray
matter and cerebrospinal uid images.

Normalization. We transform to a template space (normally MNI) to be able
to compare di erent subjects in the same space. It is usually better to
work at the subject space, since normalization can include errors in the
processing.

Spatial smoothing using a Gaussian ltekt a subject level, it reduces the
e ect of the noise and it considers spatial correlation between voxels. At
a group level, it minimizes coregistration and normalization errors.

As in BOLD, if spatial correlation between voxels is taken into account in
the model, we do not need to apply smoothing before. We will also deal with
low frequency drifts in the model. Note here that no slice timing correction
is performed. The tagging is the part that takes more time in ASL sequences,
and to compensate the actual acquisition time is much lower than a TR
( 0.5s). Aslice timing correction would not have a huge impact, and it
could add noise to the signal.

3.5 Statistical analysis of fASL

Functional ASL can be analysed using the same tools as in BOLD, due to
the nature of the signal. It has a BOLD or hemodynamic component and a
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perfusion component. Several methods have been proposed to analyse ASL
data: [Liu and Wong, 2005] proposes a signal processing model and several
di erencing approaches to extract the perfusion component of the signal
by subtraction of control and tag images; [Woolrich and Behrens, 2006]
proposes a Bayesian approach to make statistical inferences on signi cance
of perfusion and T2* e ects. The General Linear Model has also been used in
the analysis of fASL data: [Mumford et al., 2006] proposes a GLM approach
for ASL and compares this method to di erencing approaches [Liu and
Wong, 2005]; [Hernandez-Garcia et al., 2010] makes a quantitative analysis
of ASL using GLM.

3.5.1 Dierencing approaches

Di erencing approaches consider the control-tag alternation in the time
series and preprocesses the data to get a perfusion signal by subtracting
volumes. The low temporal resolution of ASL poses a problem in this case.
The resolution is already low, and by doing the di erence we are dividing it
by two. Moreover, control and tag volumes were not acquired at the same
time, so they describe di erent states. Di erencing can be done in di erent
ways, and some approaches include interpolation in order to compensate
for the low temporal resolution issue. Some di erencing approaches can be
found in [Liu and Wong, 2005, Mumford et al., 2006]. The di erence has to
be done in both sides of the equation

Dxy; DxXb; Db (3.19)

sinpxq
X

- . L ) Figure 3.12sin
whereD 4 speci es the way this di erence is performed: g 4
Standard pairwise di erencing has size N{2 N and makes no +Pairwise di erencing matrix
interpolation. From two images we get a new one making the
subtraction. 1 1

Running subtractior® has siz;N  1q N and interpolates values. Every D1
image, except the rst one, is subtracted to the previous image.

Surround subtractiof has sizepN  2q N and interpolates using 3
images. Every data point is computed doing the subtraction of a half *Running subtraction matrix

of the previous and next images to the present image. 11 0

Sinc subtractiorhas sizeN N and uses a sinc (see gure 3.12) to 5, 1 1 .0
combine neighbouring images in a more elaborate interpolation. It is
the di erencing method that works the best.

The resulting perfusion time series can be then analysed as though they®Surround subtraction matrix
were BOLD time series. See [Mumford et al., 2006] for extended explanation.

The main advantage of these methods is that the noise becomes whiter _ 1
when the subtraction is done.

3.5.2 Non-di erencing approaches: GLM

Non di erencing approaches analyse the whole time series containing a
BOLD e ect and the perfusion signal. As in BOLD, GLM can be used
to analyse fASL [Mumford et al., 2006, Hernandez-Garcia et al., 2010],
but the design matrix has to be modied to account for the perfusion
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signal. The ASL regressors in the design matrix will be: baseline MRI,
task-related BOLD describing the BOLD e ect changes, baseline perfusion
corresponding to the control/tag di erence at rest, and task-related ASL
describing the control/tag di erence due to activation. See gure 3.13.

The signal model reads:

yf'St xAStp, b (3.20)

where yjAS'- is the acquired ASL signal*S" the design matrix,b; the
weights of the regressors that we are going to estimate, dndn error
vector.

In the task-related regressors, an HRF can be used for perfusion and
BOLD regressors. However, the canonical HRF has been calibrated in BOLD
experiments and re ects simultaneous variations of cerebral blood ow,
blood volume and changes in cerebral oxygen consumption. It is well
known that the perfusion function, re ecting just CBF variation, is a bit
di erent than the hemodynamic response: the perfusion function peaks
before and it has a smaller or non-existing undershoot. A modi ed response
peaking a4 s and without undershoot can be used to consider this in GLM.

From this point, the analysis of functional ASL data is the same as in i
BOLD. We estimate the e ect for each regressor and we perform statistical [Hernandez-Garcia et al.,
tests for a subject or a group of subjects. For more details, see [Mumford
et al., 2006, Hernandez-Garcia et al., 2010].

Figure 3.13: The regressors of the
design matrix are baseline MRI,
activation BOLD, baseline ASL and
activation ASL. Dierent colors
represent dierent experimental
conditions. Reproduced from
2010].



B Bayesian analysis of functional
MRI data

In this chapter we introduce the main Bayesian tools used in our analysis of
fMRI data. We present Markov Chain Monte Carlo (MCMC) and Variational
Expectation Maximization techniques. The use of these optimization tools
to the problems studied in this thesis is detailed in the next chapters.

4.1 Alight introduction to Bayesian theory

Bayes' theorem describes the probability of an event based on conditions
that might a ect this event. These conditions are called priors because they
area prioriinformation about the events. The probability of the event after
considering these conditions is called posterior distribution.

Bayes' theorem combines the sum and product probability rules.

Product Rule ppy,f q gwlf aepf g ppf |lyappyq
Sum Rule ppyq ppy, f adf  which becomes

pva  ppy.fq inthe discrete case.
f

where ppf gis the probability off , ppf , ygthe joint probability off andy,

and ppf |yqthe probability off conditional toy. Combining the sum and
product rules, we obtain Bayes' rule: the posterior probability distribution
pef |yqgis the likelihood ppy|f g multiplied by the prior distribution ppf g
over the evidenceopyg This theorem allows us to go from the probability

of observations given some parameters to the probability of the parameters
given the observations.

Figure 4.1: Thomas Bayes (1701-
1761), in the upper picture,
wrote what later became the

peylfappf a5 poylf gppf g Bayes' theorem as part of a
pHf |yq : ) :
PRyq ppy|f oppf cdf wider and unpublished work on
f the probability distribution of a
We have expandeg@pyginto an integral over the joint probabilityppy, f g binomial parameter. Richard Price

written as a product of conditional and prior probability. This shows that (1723-1791), in the lower picture,
ppygacts like a normalizing constant, guaranteeing that the integral over modi ed it and presented it at the

f of the right-hand side is 1. Omitting this constant, also calleddence  Royal Society in 1763, after Bayes'
we can establish a proportionality relationship: the posterior distributionis  death, and published it in 1764.

proportional to the likelihood times the prior mg and

pef lya 9 ppy|f apef g newworldencyclopedia.org
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This is an important remark, since evidence computation is usually di cult.

4.2 Bayesian inference

Bayesian inference is a statistical inference method that uses Bayes'
theorem to update the probability of a hypothesis as more information
becomes available. Since we get a distribution, we can predict values
for unseen data points and quantify uncertainty of the prediction. The
evaluation of this posterior distribution is not easy when the evidergyq

is intractable. When this happens, we can approximate the inference using
di erent approaches. Here we focus on two.

Markov Chain Monte Carlo (MCMG3 a sampling method: samples
are drawn from the posterior distribution and are then used to
compute various quantities using averaging. Sampling methods are
asymptotically exact, but computationally very expensive.

Variational Expectation Maximization (VENY an approximate inference
method: the posterior distribution is approximated with a simple,
computationally tractable expression. This method is much faster than
sampling methods. However, it is not necessarily exact asymptotically
and optimization can fall into local minima. For this reason, comparing
to sampling techniques may be useful for validation.

With these techniques, we can construct point-wise estimates either from
pef lyq in the case of using sampling, or from the optimization of the
posterior approximation derived using variational EM. We also have access
to marginal e ects of subsets of parametensf i|yq and to posterior
predictions ppylyqg where ¥ is the model output giverf the parameter
estimate derived fronpgf |[yg Note thatf here may also contain missing
hidden variables.

4.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a sampling technique based on
Monte Carlo integration using Markov Chains [Gilks et al., 1996].

Monte Carlo integration draws samples from the posterior distribution
and then approximates the posterior mean with the sample mean.
This sample mean tends to the real posterior mean when samples are
independent and the number of samples tends to in nity, by the law of
large numbers.

The generation of independent samples is not always feasible and
Markov chains can be used to deal with this. A Markov chain is a sequence
of random variableg Xg, X1, ...u that considers only the recent samples
(e.g. X; 1) to generate the current one (e.g€;) considering a transition
probability (e.g.PpX¢|X; 109). The chain gradually forgets its initial state
and the distribution of the output of the Markov chain converges to a
unique stationary distribution. If we discard the rst samples, called burn-
in period, we ensure that the initialization does not a ect the mean. The
number of samples discarded will depend on how fast the Markov chain
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samples converge to stationary-distribution-like samples (called mixing
time). Determining the burn-in period is not computationally feasible in
most situations, and visual inspection of the MCMC output is usually used
[Gilks et al., 1996].

The mean discarding the burn-in samples is called ergodic mean [Gilks
et al., 1996] and it will tend to the stationary distribution mean when the
number of samples is su ciently high. This can be checked by running the
algorithm several times and checking the similarity of the results.

We can make the Markov chain stationary distribution be our posterior
distribution by using the Metropolis-Hastings (HM) algorithm. The
MH algorithm consists in sampling a candidate point from a proposal
distribution and accepting this candidate with a certain probability. The
acceptance probability depends on the stationary distribution and the
proposal distribution. A special case of the MH algorithm is the Gibbs
sampling [Roberts, 1996], in which the acceptance rate is always 1
because the proposal distribution is the full conditional distribution of
the parameter of interesppf |yg If we have a multivariate distribution
with N components p f1,..f ng we can sample from the distribution
of a component conditioned on all other components already sampled
(sample one-at-a-time). For example, to sample compoheit iteration r
(F 9, we use the distributiorppf s|f ¥9,...,f T, £ % 19 i Mg Al
components are sampled in one iteration and the order in which this is done
usually remains unchanged, although it is not necessary [Gilks et al., 1996].
We use the components already sampled in the current iteration.

More detailed information can be found in [Robert and Casella, 2013,
Roberts, 1996, Gilks et al., 1996].

4.4 Expectation Maximization and Variational Expectation
Maximization

Expectation Maximization (EM) algorithm [Dempster et al., 1977] is an
iterative method for nding maximum likelihood estimates of parameters
g with unobserved latent variableX. EM can be viewed [Neal and Hinton,
1998] as an alternating maximization procedure of thegative variational
free energy function F . The term free energy comes from thermodynamics
and it is a negative cost function that we want to maximize. In the E-
step, the posterior of the hidden variabk is computed, and in the M-step probably due to the fact that
the parameters] of the model are updated by maximizing the free energy 5 thors use it as thdower bound
function with respect to the set of parameters. See [Bishop, 2006] for further ¢ i jikelihood.
details.

When the posterior density and therefore the E-step are intractable, we
can approximate the posterior using Variational Expectation Maximization
(VEM) [Jordan et al., 1999]. VEM nds an analytical expressfimq as
similar as possible to the posterior distributioppx|yg For VEM, the
iterative procedure reads

1Sometimes the terrmegativeis
neglected and we call free energy

E-step: p*9 argmax F pp,y, "% (4.1)
BPD
M-step: g 19 argmax F ppP%y,qq (4.2)

aPQ
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wherer is the iteration number. The free energy, for affiyP D andq, reads

» »

Fpd,y,aq Prxqlog ppy, X; qodx Ppxglog ppxadx
Ep log ppy, X;00 | pig (4.3)

whereEg log ppy, X; qq is the expected complete log-likelihood under the
surrogate distribution and ppgis the entropy of the surrogate distribution.
The free energy can be decomposed into

»

Fpd,y,qq Ppxglog

»

pp{,x;qqu

pmlg; g4aPRYY

Ppxglo
ppxqglog o
» » r)p(q
Ppxqlo X Ppxqglo
Ppxqlog ppyad pxqglog oX[Y:
log ppyd KL pd, pyyd (4.4)

where KLpp, p,yd is the Kullback Leibler (KL) divergence. The KL
divergence quanti es the dissimilarity between the approximdipxqand

the real posteriomppx|yqg It is the expectation of the logarithmic di erence
between fpxq and ppx|yq taking ppxq for the expectation. Although it

is unknown, we do know that it is non-negative. Minimizing the KL
divergence implies making the approximate posterior more similar to the
actual one, and this is equivalent to maximizing the free energy. The free
energy becomes a lower bound for the model log evidence:

KLpp, pyjyd ¥ 0 (4.5)
log ppyq  Fpd,y,qq KLpB, pyyd ¥ Fpd,y,aq (4.6)

See gure 4.2, reproduced from [Beal, 2003, Bishop, 2006].

(a) Initialization (b) Expectation step (c) Maximization step

Figure 4.2: Variational EM
When we are dealing with several missing variable§s in the E minimizes the KL distance in the

step, we can restrict the class of approximate posteriors to the mean E step and updates the model log
eld approximation: we consider the posterior§pxq that factorize into evidence and the free energy in the

independent distributionsj; px; M step with the new parameters.
~ v Figure reproduced from [Beal,
Prxq Aipxiq (4.7 2003, Bishop, 2006].

When we consider the mean eld approximation, the free energy can be
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decomposed into:

» 1
~ ~ , X
F pb. y. oq pxglog B¥ By
i | Prxiq
» » 1 pw qq
PpX; log ——=" ™ dxdx
Prx;q ; Prxiglog BpGa- Bpad X dx
] izj
» » g
Ppxa  Ppag log ppy,x;qa  log pxiq dxidx;
izj iZ]
»
Ppx;qlog Ppx;adx;
” exp Ep, log ppy, X;qq
9 D i |0 pos dX
Px;jglog Bg !
9 KL pJ, exp EpZJ log ppy, X; qq (4.8)

whereZ is the normalizing term of the distribution. This shows that we can
x all other densities ppx,;qand then approximate the posterior density of
a certain variableppx;q

6] arg max Fpd,y,qq9 exp Eﬁzj log ppy, X; qq (4.9
bj

and by using again Bayes' theorem, this is proportional to

B9 exp Ep, log ppgly, X5:0a - (4.10)

We can do this for each hidden variable. In a Bayesian setting we may have,
in addition to hidden variables, random parameters. They can be treated
as hidden variables in the E step. When we are just dealing with random
variables possibly including random parameters, then there is no need for
an M-step and this is called Variational Bayes (VB). See [Beal, 2003, Tzikas
et al., 2008] for further details. A regular M step as (4.2) appears when
parameters are unknown but considered as xed (frequentist case).

4.5 Application to BOLD fMRI: the Joint Detection
Estimation model

Bayesian models have been proposed in the analysis of BOLD fMRI in
[Woalrich et al., 2004, Penny et al., 2003, 2005, Flandin and Penny, 2007,
GOssl et al., 2001, Friston et al., 2002b,a]. As already explained in chapters
2 and 3, BOLD fMRI signal is known to have several components. The
component of interest in fMRI is the task related component and it
contains the variations that the BOLD signal su ers in response to cerebral
stimulation. These variations give rise to the hemodynamic response
function (HRF) and the amplitude of the e ect gives us a measure of local
brain activity. As we have seen in section 3.3, this response function can
be modelled. However, the estimation of this function and the detection of
activation at the same time is not straightforward.

A joint detection estimation (JDE) approach has been proposed in
[Makni et al., 2005, 2008] to be able to jointly estimate the response function
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and its amplitude. This method assumes a constant HRF over di erent areas
of the brain, and a varying amplitude in each voxel. For that purpose,
it needs an a priori de ned parcellation of the cerebral cortex in parcels
P p Pxg 1. with homogeneous hemodynamic properties. The size of
each parcePy is typically hundreds of voxels. For a certain voxeP J ,

the generative model of the signal (see also gure 4.3) is:

M
a]!“X Mh
1

yj P ‘j bj (4.11)

m

whereh p hgpt@y op is the HRF corresponding to a pardék andDt is

the HRF sampling periodX ™ p X" 45:%h 1.n,d oD IS @ binary matrix
that encodes the stimulus for each condition and has dimensiorN

pD 1g a]-m is the response amplitude at voxgfor the mth experimental
condition. To account for spatial correlation, response amplitudes are
assumed to follow spatial Gaussian mixture models [Vincent et al., 2010]
governed by hidden Markov random elds (MRE)that encode the voxel
activation states. There is a MRF per experimental conditeggh. The
activation states are considered conditional to these M&Fg™.P *; is a
term that represents the drifts of the signal due to low frequency variations
of the signal. P P RN RF is an orthogonal function baseb; P RN

is the noise vector for voxej and is assumed to follow a distribution
bj N pO,GJ lqwhereq Lj{vbj. L j is the identity matrix when i.i.d.

Gaussian noise is considered, and a rst order autoregressive model (AR)

matrix when temporal correlation is considered (see [Makni et al., 2005]
for more details). BOLD data is known to have correlated noise, although
sometimes white noise is assumed in its analysis for simplicity.

Note here that the signal model is similar to the one used in the classical
method GLM for BOLDy; X bj bj. The main di erence is thatX in
GLM contains the regressors constructed as the convolution of a canonical
HRF and a vector encoding the stimulus for a given experimental condition.
The matrixX M in JDE is speci ¢ for themth experimental condition and it
encodes a convolution. The produkt ™h is equivalent to the convolution
of the vector encoding the stimulus™ for a given experimental condition
m and the estimated HR™ h. Therefore, it is equivalent to a GLM
regressor considering an estimated HRF. The amplitusjese independent
across voxels in GLM, as opposeddgs in JDE, that consider a spatial
correlation.

Figure 4.3: Parcel model of the

BOLD signal. In each parcel,
we consider homogeneous
hemodynamic properties and

we assume a single HRi¥. The
amplitude of the HRF is modulated
voxel-wise with the response
levelsa. There are also drifts and
noise.
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4.5.1 Bayesian modelling

JDE uses Bayesian modelling for the estimation of the di erent parameters.
The joint probabilistic model can be decomposed as:

ppy.a,h,q;qq ppy |a,h,q;q9qppa|h,q;qqpp |[g;qq ppd; ag ppag

g being the parameters from the drifts and noise, and the ones introduced
with the prior distributions considered. As shown in the joint modsel,is
assumed independent gfgivena andh, a is assumed to be independent
of h conditionally toq, andh is assumed to be independent @f

Likelihood

The likelihood reads:

py |a,h;™, Gy pyjlaj h; . Gq (4.12)
iPJ
M
. . . N > My, M N 1
with  ppyjlaj,h; j,Gg N a X h P ],q (4.13)
m 1

whereG L ]-{vbj, andL j is the identity matrix when i.i.d. Gaussian noise
is considered, and a rst order AR matr#xwhen autocorrelated noise is
consideredGand” are unknown.

2 rst order AR precision matrix

1 r 0 0
Prior distributions rp 1 rj2 .. 0
We assume prior distributions for the di erent variables.
2
" The prior distribution proposed for the HRF is a Gaussian with mean 0 ! rr_j 1”
zero and covariance a matrix that introduces smoothness like magrix J
in section 3.3:pph;vhag N pO,vyRq A scale parametey,, controls
how smooth is the response.
" Gaussian Mixture models are assumed for the response amplitudes, with
assumed independence between the di erent experimental conditions.
For each experimental condition, the mixture model segregates active
from non-active voxels, activation being encoded in a di erent binary
variableq. In gure 4.4,qjm 1land qjm 0 mean that voxej is active
and not respectively, for experimental condition. The prior probability
distribution for the response amplitudes is: Figure 4.4: Prior distribution of the
M 1d 11 response amplitudes. It is a GMM
pralg; mvq N pa]m; nf", qulqum 'q with two Gaussians corresponding
m 1j 1i 0 to not activated, with meard, and

activated classes.
Parametersnandv are unknown.

Spatial correlation is directly incorporated in the probabilities of
activation through ahidden Potts eld on the binary variablesg™

(see gure 4.5). The proportions of voxels for the dierent classes
is not explicit. Independence between experimental conditions is

M
assumedppg;bg  — pm™; bMg whereb™ is the amount of spatial

m 1
regularization for conditionm. Here ppg™; b™Mqis a 2-class Potts (Ising)
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model with interaction parameteb™, that controls the amount of spatial

regularization, and no external eld.

1 .- s
Prm; bmg  Zp™g texp  Sb™ g q'q , (4.14)

jPJiPN piq

where 1pKq = 1 if K is true, 0 otherwise. Zpb™Mq is the normalizing
constant or the partition function of the Potts eldb t b™,m 1.Mu

are the unknown parameters.

Drift coe cients " are assumed to be Gaussian a priori:
'js Np,vIgg

chapters 5 and 6.

The prior parameters will be estimated inthe modglt ~,Gmv, vy, b,v-u.

The full joint model becomes:

py.a,h,q;0q ppy |a,h;, Gyppa|q; mvapph;vag ppg; boppag

The graphical hierarchical model can be found in gure 4.6.

4.5.2 Estimation of the posterior probability distribution

The posterior probability distribution of this model is intractable due to the

For the rest of the parameters, we use non-informative Je reys priors
for MCMC and conjugate priors for VEM. It will be further explained in

Figure 4.5: Prior distribution of
the binary activation states: MRF
introduces a dependency between
neighbouring voxels.

Markov Random Field introduced to consider spatial correlation. MCMC Figure 4.6: Graphical hierarchical
and VEM methods have been proposed to deal with this posterior density model.

in the estimation of the parameters in JDE.

Markov Chain Monte Carlo solution for BOLD JDE

MCMC was proposed in [Makni et al., 2008, Vincent et al., 2010]. For each

parameter, we sample from its full posterior conditional distribution:

h™9D pphly,a™ 199 % (4.15)
a”iD ppaly,h™4 g™ 1% g% (4.16)
a”9D pmly,aP% "% (4.17)
g™ 19D pply,hP9,aM, g% (4.18)

All parameters inq are sampled iteratively from their respective posterior

densities. In this formalism,; is not treated as a component gfbut either

as a random variable or integrated out before sampling. Many samples are
computed and the posterior means are found by averaging all the samples

(S) after aburn-in period ©). For example, foh

S
[PM 1

S b 1
r b

T hPa (4.19)
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Variational Expectation Maximization solution for BOLD JDE

A VEM solution was proposed in [Chaari et al., 2013] and the formulas of
the E-step for this model read:

o 1q log pph |y,a® 9.7 1%g"%G  (4.20)

~prq
P, Pha9 exp Eﬁgr 1agp

f)gqpaqg exp Eﬁﬁrqﬁgr 1q log ppa |y, hP9, g™ 19 g% (4.21)
ﬁgqmq9 exp Epgrqf)ﬁrq log ppo |y, aP% hP% g™ (4.22)
The correspondingvi-step is:

g™ 19 argmax E_yq pa.rq log ppy,a”%h"d g7 g7 . (4.23)
qPQ Pa 'P,, 'Pq
For further detail, see the multiple-session model in appendix B. Both

solutions are implemented in the python package PyHRF spyhrf.org

Outputs of JDE

Once inference performed over each parcel, we have an HRF estimated from
each parcel of the brain, a brain map with the amplitudes of these HRFs
per voxel and experimental condition, a brain image with the activation
probabilities per experimental condition, and the rest of the parameters.
Posterior probability maps can be afterwards obtained from the activation
levels after the estimation of the posterior probability functions.

4.6 Posterior probability maps

Since the output of our Bayesian model are probability distributions, we can
use this information to decide which voxels are activated.

As we saw in the previous chapter, statistical parametric maps (SPMs)
are widely used in classical methods and they are easy to deal with because
of their interpretability. However, derived p-values do not re ect the
likelihood that an e ect is present. Instead, they re ect the probability of
observing the data in the absence of any e ect [Penny and Friston, 2004]. If
su ciently small, it can be used to reject the null hypothesis that the e ect
is not present. This has several limitations according to [Penny and Friston,
2004]:

The alternate hypothesis can not be rejected: the probability that an
e ect is exactly zero is zero.

SPMs are very sensitive to over tting: given enough scans or subjects
one can always demonstrate a signi cant e ect at every voxel if su cient
degrees of freedom are used to achieve a small variance.

The need for a correction for multiple comparisons makes the inference
of a brain region dependent on the rest of the regions.

This can be avoided by using a more Bayesian approach.
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Posterior probability maps (PPM) were proposed in [Friston and Penny,
2003] to construct maps describing the probability that an activation
exceeds some speci ed threshold in every voxel, given the data:

ppo'b; i dyjqi a

where d has to be chosen carefully, aridj and g! are the e ects and

the contrasts of interest, respectively (see section 3.2.2). In dR&En be

chosen as the point where the two Gaussian densities in the GMM encoding

activation and non-activation ira intersect. Another possibility is choosing

d as the5% of the parcel signal mean or of the brain signal mean. Figure 4.7: Posterior probability
As noted in [Friston et al., 2002a, Friston and Penny, 2003], thresholdingmap.

a PPM could be seen as controlling the false discovery rate (FDR) or the

percentage of false activations allowed, since it establishes an upper bound

on the FDR [Benjamini and Hochberg, 1995]. SPM and PPM maps have been

compared for fMRI in [Friston et al., 2002a].

PPMs are implemented in the SPM softwhrand derived by using
empirical variational Bayes, a variational Expectation Maximization [Penny
et al., 2003, Penny and Friston, 2004] approach in which all priors are
estimated from the data.

“http://lwww. L.ion.ucl.ac.uk/spm/

4.7 Parcellation of the brain

The JDE approach operates on a prior partitioning of the brain into
functionally homogeneous parcels, where the hemodynamics is assumed
constant. This parcellation can be either an atlas or a previously computed
data-based parcellation of the brain. Several atlases exist that divide the
brain in anatomical or functional regions:

Automated Anatomical Labeling (AAL)t is an anatomical atlas of the
brain, containing 45 anatomical volumes of interest in each hemisphere.
It was proposed in [Tzourio-Mazoyer et al., 2002] and the regions
were drawn manually after the delineation of the sulci (cerebral cortex
grooves) from a template. In the work, an automatic labelling of
functional MRI activations was proposed. See gure 4.8.

Figure 4.8: Structural atlas AAL
(Automatic Atlas Labeling).

Harvard-Oxford:It can be found in FSL [Jenkinson et al., 2012]. Itis a
probabilistic atlas of human cortical brain areas (lateralized). It covers
48 cortical and 21 subcortical structural areas. It was derived from the
structural images of 21 healthy male and 16 healthy female subjects of
ages between 18 and 50. They were individually segmented using semi-
automated tools. Segmentations were provided by the Harvard Center
for Morphometric Analysis. See gure 4.9.

Brodmann: It contains 52 functional regions of the cerebral cortex. They Figure 4.9: Harvard-Oxford
were described by Korbinian Brodmann in 1909 by examining the functional atlas.
di erent cellular morphology and organization of humans and monkeys
brains. The english version of his book can be found in [Brodmann,
2007]. Posterior studies found a correlation with cortical function
specialization.
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Neuromorphometricdt has been created bfeuromorphometrics Irftom
a database of 114 manually labeled brains of subjects ranging in age
from 5 to 96. They have been labeled and double-checked by experts
using two protocols: general segmentation de ned by the MGH Center
for Morphometric Analysis and parcellation of the cerebral cortex into
regions de ned by gyral and sulcal landmarks (cerebral cortex ridges and
grooves, respectively). See gure 4.10.

Willard: Itis a functional atlas created from the ndings in [Richiardietal., Figure 4.10: Neuromorphometrics
2015]. It provides a parcellation in 499 regions of interest, considering functional atlas.
13 well-known functional networks. From the resting-state functional
MRI images of 14 subjects, 13 well-known functional networks were
identi ed using Independent Component Analysis (ICA). The post-
mortem cortex samples of 6 subjects from the Allen Institute for Brain
Science human (AIBS) microarray dataset were then mapped to the
functional regions. Validation was performed in 259 subjects from the
IMAGEN database [Schumann et al., 2010]. This is a good parcellation for
use in JDE because parcels are quite homogeneous and of approximately
a hundred of voxels or two, when we consider a typical fMRI voxel
resolution. See gure 4.11.

Other atlases can be found in nileatfAbraham et al., 2014]: [Varoquaux ~Fi9ure 4.11: Willard functional

et al., 2011, Power et al., 2011, Bellec et al., 2010, Craddock et al., 201%as SW'th a resolution3 3
between many. 3mnr.
A data-based parcellation could be also useful due to the variability of the ° http://nilearn.github.io
hemodynamics in di erent brains but to ensure a good JDE performance the
parcellation needs to be robust. A few attempts have been proposed to cope
with thisissue [G. Flandin et al., 2002, B. Thirion etal., 2006, T. Vincent et al.,
2008, A.-L. Fouque et al., 2009, L. Chaari et al., 2012, Badillo et al., 2013a]
but most of them are either too computationally demanding [A.-L. Fouque
etal., 2009, L. Chaari et al., 2012, Badillo et al., 2013a] or do not account for
hemodynamics variability [G. Flandin et al., 2002, B. Thirion et al., 2006, T.
Vincent et al., 2008].

4.7.1 Hemodynamically informed parcellation of cerebral
fMRI data

In [Frau-Pascual et al., 2014a], we attempt a fast hemodynamically based
parcellation for use in daily applications prior to JDE inference. We
propose a two-step approach consisting rst of hemodynamics feature
extraction, in which a general linear model (GLM) is used to discriminate
hemodynamics information, followed by a parcellation of these features.
The goal of the rst step is nding features that are able to catch most of
the hemodynamic information, without the need of perfectly estimating the
HRF function. Afterwards, an agglomerative clustering algorithm based on
Gaussian Mixtures is used to segment the features. The main contribution is
the consideration of the detection-estimation e ect within the parcellation
step: there is a lack of hemodynamics information in the non- or slightly-
activating voxels. The idea is then to enforce grouping these uncertain
voxels with neighboring activating voxels. This is done through a spatial
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constraint in the agglomerative step of the parcellation procedure. The
uncertainty in a given voxel can be quanti ed by a statistics linked to its
activation level, namely a p-value obtained in the GLM feature extraction
step. This statistics is hence injected within the agglomeration criterion.
For this reason, we call it Informed Gaussian Mixture based parcellation
(IGMM). The approach has been tested on arti cial fMRI data sets.

Generation of artificial fMRI data sets

Let us de ne the set of all parcels & t Pq,...,Pk,...,Pkuwhere Py is

the set of position indexes belonging to pardebnd J x denotes the set of
positions in parcek. For this section, we introduce the subscript to indicate
the parcel. Arti cial BOLD data sets are generated using the regional BOLD

model in (4.11). Recall that for a given voxd? J i, and a given parcek:
M

yi @™ P b, (4.24)
m 1
where a]-m is the response amplitude at voxg¢lfor a certain conditionm,
XM px" 5% 1nd op is the binary matrix encoding the stimulus
for each conditionm, h P hgotd op is the HRF corresponding to
parcelPy, Dt being the HRF sampling period®, the orthogonal function
basis multiplied by the drift’;, andb; the noise vector. Note thay;
ryjpig ...,yjqué, wheret, nTRandTR " Dt. Typical values are
Dt 0.6andTR 1.8s.
In this section, we considered arti cial data at low SNR, with one

experimental condition represented with20  20-voxel binary activation
labelsq r q;...q;s and levels of activatiom r a;...a;5 with paq; time (sec.)
1g Npl.8,0.2% We simulated a map of hemodynamics parcels, with Figure 4.12: Atrticial fMRI data
di erent HRF shaped (duration25s,TR  1s,Dt 0.5s)ineachparcel sets. Top left: hemodynamic
Py (see Fig. 4.12), by using the combination of 3 Bezier's curves, each beingarcels. Bottom left: response
controlled by 4 points, to describe the curves until the peak, from the peak |evels. Right: HRFs associated with
to the undershoot, and from the undershoot to the end, given speci ¢ peak parcels.
and undershoot widths. We considered a Discrete Cosine Transforr®for
adrift ;N p0, 111 4q and white Gaussian noise with varianmgj 15

Feature extraction

As regards hemodynamic feature extraction, several approaches are
available. Here, we only focus on GLM-based ones involving either
canonical HRF and its derivative(s) [Friston et al., 1998]. We chose
not to rely on Finite Impulse Response (FIR) models [Henson et al.,
2001] since they may be too sensitive to noise. Although more exible
regularized FIR (RFIR) approaches such as [P. Ciuciu et al., 2003] are
also theoretically able to recover any HRF shape accurately in contrast
to canonical GLM, RFIR inference is pretty di cult when the SNR is too
low since it proceeds voxelwise. Moreover, it is time consuming because it
performs unsupervised estimation (cf [A.-L. Fouque et al., 2009]). Here, we
are more interested in a quick feature extraction step that also allows us to
disentangle true active voxels from non-active ones.

As regards canonical GLMs, our feature extraction step consistsin tting
the following linear model: y; X bj bj, wherey; is the BOLD
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signal, X the GLM design matrix,b; the parameter estimates ankj
the noise at voxelj. Let us denoteb;o, b;; and b;, the parameters
associated with the regressors X , which derives from the convolution
of the experimental paradigm with the canonical HR¥F; its temporalh?®
and dispersion derivativefi2, respectively. We assume thak o rather @) Bj.l @PJx
contains information about the HRF magnitude, wherebg; and bj»
provide information about the HRF delay and dispersion respectively, and,
hence, are useful to di erentiate hemodynamic territories. Maximum
likelihood (ML) inference enables to get the parameter estimﬁ]eisn each
voxel among which we only retairf ; r Bj 1, B2, as input features to (b)B;2 @ P
the parcellation method.
To quantify the activation level, we consider the p-valye, associated
withtestingHp : bjo  O0and we use the notatioa; 1 p;o P @, lgfor
these statistics in voxgt The higher theg; value, the larger our con dence (©)a @PJxk
in the presence of evoked activity in vox@l Importantly, the statistics;
does not enter in the parcellation along with the previously de ned features
f i it is rather used as weights in the agglomeration criterion.

Informed Gaussian mixture based parcellation Figure 4.13: Hemodynamics

Agglomerative clustering algorithm¥he model based interpretation of features —extracted f
agglomerative clustering algorithms [Kamvar et al., 2002] makes B 1, Bj,s @ P J, and activation
the assumption that features have been generated by probability levelsa; @ P J.
distributions that vary across parcels. In the context of model-based
hard clustering, which aims at assigning classes to the input samples
instead of weights, the goal is to maximize the classi cation likelihood
with respect to bothQ andz given a set of featurek :

1J
LpQ;z|Fq pe 10z (4.25)

i1
whereQ t kU, 1 isthe set of parcel-speci c model parameters and
z Zi | gy denotes the set of parcel labels associated with each voxel.
If we assume that we can nd the best possible paramet@rsienoted by
Q, then the problem amounts to optimizing the label likelihood function
L:

I:plz|Fq mngpQ;z|Fq (4.26)

In an agglomerative approach, this function &pproximatelyoptimized

by successive merge operations, starting from an initial clustering guess
or singleton clusters. Hence, at each step, i.e. when merging two clusters
Px andP; of the current parcellatiore into the parcelP1 Py Y Py

of the resulting parcellatiorz}, the relative increase of the log-likelihood
has to be maximized:

LelFq

A (4.27)
Lr|Fq

logDLz,z4Fq log
Note that the optimal model parametef@ have to be obtained for each
computation of the label likelihood function. A given merging step thus
involves several likelihood maximization over paramet&)s



48

Bayesian analysis of functional MRI data

Gaussian-mixture modello account for the activation leved; associated

with each voxelj, we rely on an independent two-class Gaussian
mixture in the agglomerative step. The rationale is that featufes
are distributed di erently within a given parcel depending on the
corresponding activation levelg;. Hence, the two-class mixture is
expressed on every j in parcel k as a way to model parameter
di erences related to activation levels:

1

pA jlakg Pmo;  igfpf o iiakq
i 0
1
I'ii N ki, Siig (4.28)

i 0
The latent variableg; encodes the activation state of voxeand Ppg;
1q | 1 re ects the probability of activation. This latent variable
can be directly linked to the agtivation statisticg; obtained at the
feature extraction step:IAkyl iPIx a{ k 1 IAk,O where J g
denotes the set of voxels in parckland J their cardinality. Then,
straightforward calculations give the following ML estimators for the
parcel-level mixturg moments:

. Py, L &qf
o 9P j

: (4.29)
. PPl &q
. af.
fixy — L (4.30)
iPI &
. ipy AL aap i fxoqd ;  fikoed
§ o —h 97T j . @31
. ip3 AL aq
R . a: . ﬁ](, . ﬁ'k
Sk‘l iPIk ¢ pc b qui i 1d’ (4.32)
iPI &

where fiy; and ék,i, with it 0,1u, de ne the empirical weighted
mean and covariance of features in pardel Note that we consider
activation informed from previously estimated featura;, or non-
activation, informed frompl a;q for classes active (1) and non-
active {  0) respectively. Once the paramete@shave been estimated,
the two parcelsPyx and P; that are selected to be merged inf®

Pk Y P; are those which maximize:

logDLpz,zFq ~  log pef jlaaq log ppf j|q
iPJ
l ~ ~
log | kiN piki, Sk,d
iPIk i 0
_sl ~ A~
log  I'¢iNpH,; Stq
P3¢ i 0

B
B

1
" olog T TN piy, Siaig

iPJ 1 i 0
where the rsttwo terms correspond to the parcels being merdgegdand
P¢, and the third term to the nal parceP .

SwW IGMM
vp O
vp 1
vp 2
vV, 5

Figure 4.14: Parcellations obtained
by Spatial Ward (SW) and IGMM
methods, considering an averaged
100 iterations Monte Carlo
experiment. From left to right:
noise varianceO, 1, 2 and 5,
respectively.

Figure 4.15: Ml-based quantitative
comparison of SW and IGMM
parcellation results with the
ground truth territories for noise
variances ranging fron.0to 5.0.
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Parcels NRLs
Parcellation results on artificial data
Ground

Using the generated arti cial data, in gure 4.14 we compare the proposed  truth
Informed GMM (IGMM) method with the Ward [Ward, 1963] algorithm

with connectivity constraints, that here we name Spatial Ward (SW). A

Monte Carlo experiment is used, where the variability against several
random data sets is assessed, to quantify the results of both parcellation
methods. Fig. 4.14 shows results averaged across 100 runs and for di erent

noise variance levels. SW makes a big parcel for all the non-active MSE=0.0051
positions, while IGMM overcomes this issue and partitions the positions
independently of the activation level. IGMM
For a quantitative evaluation, mutual information (M) [Pedregosa et al.,
2011] was used to compare our parcellation results with the ground truth MSE=0.0087

Figure 4.16: JDE detection results
for SW and IGMM. From left to

right: parcellation used, averaged
estimated NRLs over 100 JDE

territories. Fig. 4.15 shows the evolution of both parcellation techniques
with respect to increasing noise variance. IGMM outperforms SW and has a
decreasing mean value unfill 0.4, whereas SW has an almost constant
meanMI  0.25 Note that both methods are sensitive to noise and have . _ _
a high variance. |teréa}t2|0ns WIth dctjatectlon MSE
Since the motivation to create this parcellation method is its posterior }atue}2: being e r éiie(djs
use in the JDE approach, we study the impact of the parcellation in JDE. Asa™®  r af“®..aj"®s and
input parcellations, we considered the hard clustering resulting from either §; a}“’e.
the SW- or IGMM-based average parcels computed over the 100 individual (a) Region 1.
results of our previous Monte Carlo experiment, i.e., the ones shown in
Fig. 4.14 fovy, 1.5
Fig. 4.16 compares the averaged detection results over 100 JDE iterations.
First, we can see a slightly lower mean detection MSE for SW-based hard
parcellation. Also, a lower activation level can be observed for voxels
considered in the wrong IGMM-based parcel. Fig. 4.17 shows the averaged (b) Region 2.
estimated HRF pro les over 100 JDE iterations whether it is based on SW
or IGMM parcellation methods, compared with the ground-truth HRFs in
Fig. 4.12. Overall, HRFs are well recovered by both SW-based or IGMM-
based JDE analyses. In region 2 (cyan), IGMM-based better ts the ground-
truth since it mixes less voxels with di erent hemodynamics than SW which
includes all non-activating voxels. In region 3 (yellow), SW seems to yield a (c) Region 3.
MC-averaged HRF estimate slightly closer to the ground-truth than IGMM
which produces a parcel that also spans region 4 (red). However, the MC
variability is higher in this region than in the others for both parcellation
methods as shown by the error bars.
Regarding to computation time, IGMM takes 130 times more than
SW, but 1800 times less than the Consensus Clustering JDE (CC-JDE) (d) Region 4.
parcellation method [Badillo et al., 2013a].

Discussion on the hemodynamically informed parcellation

A hierarchical parcellation method that takes into account the activation
Ieyels in the parce!latlon process has been.develgped, sq as tg be Co_n_SISterI]—Iigure 4.17° JDE HRE estimation
with JDE assumption that one parcel contains active and inactive positions,
and nd the underlying hemodynamic territories, independently of the
activation level. In terms of computation load, it is not a demanding
method. However, hierarchical agglomerative algorithms need the selection

averaged results over 100 JDE
iterations (errorbars for standard
deviation), for the dierent
regions, labelled in Fig. 4.12.
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in advance of the number of clusters, and this fact lead us to a de nition
problem. In the JDE framework, we want parcels big enough to be able
to estimate accurately the HRF, although if parcels are too big, we will
be losing information and averaging the hemodynamics. However, if we
can have a good estimate of hemodynamics, we are interested in having
as much as possible parcels to better recover the territories' singularities.
The computation of the number of clusters in the context of JDE with an
intrinsic parcellation computation, that has been called Joint Parcellation
Detection Estimation (JPDE) [L. Chaari et al., 2012, Chaari et al., 2016], has
been posteriorly addressed in [Albughdadi et al., 2014] and [Albughdadi
et al., 2016a] for the subject level, and in [Albughdadi et al., 2016b] for the
multiple-subject case.

We have quantitatively validated that the proposed IGMM approach
enables a better recovery than a reference spatial Ward approach. Indeed,
parcels obtained with IGMM are less inuenced by highly activated
positions and do not mix non-active positions altogether. JDE results are
quite comparable in terms of detection and HRF estimation whether the
input parcellation comes from the SW method or the proposed IGMM
approach. Still, the proposed approach yields more reliable parcellations
than SW and may be more adequate to treat real data sets.

Experiments in real data need to be done to properly validate the
parcellation method. In the context of this thesis, no further work has
been done in this topic. In the next chapters, an atlas has been used as
JDE input parcellation for the sake of simplicity. First of all, results on
simulated data show that JDE results do not vary dramatically when we
use di erent parcellations. Also, using an atlas removes a layer of variability
and complexity in the use of JDE, and the comparison across subjects and
datasets becomes more direct and easier.

This work was presented at the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) conference in 2014.

4.8 Multiple-session extension of the VEM JDE
algorithm

The previously presented approach for BOLD analysis with a JDE approach
considers a single session. Usually several sessions are recorded for one
subject in order to be able to combine or compare them. Their combination
is important to achieve a higher statistical power without making too long
sessions that would be uncomfortable for the subject being scanned. The
acquisition of several sessions can be used for validation too.

For a multiple-session approach, we need to make some other
considerations in our modely t yjs,j PJ ,sP Suwhered is the set of
voxels andS the set of sessions. In [Badillo et al., 2013b] a multiple-session
extension of the JDE framework is proposed and it is solved using MCMC. In
this extension, the response levels per condit®f are considered to have
a mean value™ that could be considered the true subject response level,
and an inter-session variation that could be considered error measurement:

am™s a™ e with € Np,valq
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Therefore, we consider session speci c response levels

|
a ams

jm 1:M,sPS,jPJ

The HRFh is considered unique through sessions to improve the estimation.
The rest of the parameters are estimated separately per session.

In the context of this thesis, the VEM solution of this extension has
been implemented to allow the fast joint analysis of multiple fMRI sessions.
The implementation in VEM simpli es considerably the modelling with
respect to the MCMC version. Experimental results showed that this
approach is not very di erent from doing the posterior average of the
independent single-session JDE results. However, analysing the data
altogether means a higher computational load and a lower potential for
parallelization. Moreover, if there is a very noisy session we might want
to discard it and it will be easier to identify a noisy session by doing the
independent single-session analysis. This concern lead us to the proposal
of an heteroscedastic multiple-session extension of the VEM JDE approach.
It consists in modelling a variable error instead of having it xed. This
amounts to considering

a™ am™ e with € Npm,vslq

The response level mean remains independent conditionally ug@n
1

@n, ppa™|q™;ni",v™q praj” | g ", v
i
The goal is to be able to weight the importance of the di erent sessions
so as to diminish the contribution of a potential noisy session to the nal
parameter estimates. Varianeg will be the responsible of this weighting
and will modulate the contribution ofri” and m; to the session-dependent
estimate of the amplitude values.
For this extension, we propose a prior density far

M 1 1 11 o
pra | g;mvq Npd"Snf mov? o veg P
m 1jPJ sPSi 0
where M and v™ are the GMM parameters. The rest of the prior
distributions are the same as in the single session model already presented.
The full joint model becomes:

pRy.a,h,q;qq pwlla,h:‘.qupaIq:qupm:vhqpm:bqpmq
pylash; T Gy

f' S
pra ™[ gm " m, V™ veq
m

pRa;; ba pph; via ppag

The complete model can be found in appendix B. Validation on simulated
and real data needs to be done to assess the model expected behaviour.
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4.9 Discussion

In this chapter, we have introduced Bayesian models and MCMC and VEM
approaches. We have also presented the application of these methods for
BOLD fMRI analysis. Two contributions have been presented:

~ An hemodynamically informed parcellation of fMRI data.
~ A heteroscedastic multiple-session extension of the VEM JDE algorithm.

In the next chapters, the methods presented are used in the analysis of
functional ASL data.

Outcome of this chapter:

A. Frau-Pascual, T. Vincent, F. Forbes, and P. Ciuciu.
Hemodynamically informed parcellation of cerebral fMRI data
In 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2079 2083. IEEE, 2014a.



s Bayesian analysis of functional
ASL data: MCMC solution

This chapter introduces a Bayesian model for the analysis of functional ASL
(fASL). It is based on the previously presented Joint Detection Estimation
(JDE) model for BOLD signal. As in the BOLD JDE, ASL JDE, rst presented
in[Vincentetal., 2013a], allows the estimation of a hemodynamésponse :Note here that hemodynamic and
function (HRF) and a perfusion response function (PRF) per parcel alongperfusion response functions are
with the activation values of each voxel. Although the ASL JDE in 5 hemodynamic responses. In
[Vincent et al., 2013a] provides a good estimate of the HRF, the PRRy,:q work, this notation is used
estimation remains much more di cult because of the noisier nature of , pa in line with the literature
the perfusion component within the ASL signal. The whole perfusion i, BoLD fMRI. However, one
component has a variation of around% [Golay et al., 2004, Liu and .54 refer to the hemodynamic
Brown, 2007] due to the fact that it is measured making the di erence response as the BOLD response to
of control and tag images. The task-related perfusion can vary up to a remove any ambiguity.
70%, which is al1.7% variation with respect to the ASL signal. In this
chapter, we propose to rely on physiological models to derive a linear
operator that can be used as a tractable functional link between perfusion
and hemodynamics components within the ASL signal and to exploit this
link as prior knowledge for the accurate and robust recovery of the PRF
shape in functional ASL data analysis. This way, we re ne the separate
estimation of the response functions performed in [Vincent et al., 2013b,a]
by taking physiological information into consideration.

We rst introduce the signal model for ASL, then the Bayesian model
along with the prior distributions on the parameters, and nally we present
the MCMC optimization strategy to estimate the unknown quantities
in JDE. The outcome of this chapter was presented in October 2014 at
the workshop in Bayesian and grAphical Models for Biomedical Imaging
(BAMBI), a satellite event of the MICCAI conference.

Outcome of this chapter:

A. Frau-Pascual, T. Vincent, J. Sloboda, P. Ciuciu, and F. Forbes.
Physiologically informed bayesian analysis of ASL fMRI ddta
Bayesian and grAphical Models for Biomedical Imaging, pages
37 48. Springer, 2014.
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5.1 The functional ASL signal model

The ASL Joint Detection Estimation (JDE) model was proposed in [Vincent
et al., 2013b,a] and it assumes, as in BOLD JDE, the brain volume to
be partitioned into a number of functionally homogeneous parcels, each
of which gathers signals which share the same response shapes. In a
given parcelP, the generative model for ASL time series considerivig
experimental conditions (see also gure 5.1) reag@sP P:

M

o7 My m m m ) S .

Yi - 1%0)(§m(§]oo (bo\(l)vo)émo%oohiakWa)nI(Bmmma)k?ha)n (5.1)
paq poq pcq pdq peq

ASL time series are measured at timggd, 1.y Where N is the number

of scanst, nTR, and TR the repetition time. The signal is decomposed
into task-related (a) hemodynamics and (b) perfusion components given by
the rst two terms respectively; (c) a perfusion baseline termw which
completes the modelling of the perfusion component; (d) a drift component
P " already considered in the BOLD JDE [Vincent et al., 2010]; and (e) a
noise term.

Figure 5.1: Forward model of JDE.

Acquiring ASL fMRI data consists in consecutively performing
alternating measurements of control and magnetically tagged images. The
hemodynamics componentis present in both images, whereas the perfusion
component comes from the subtraction of both control and tagged images.
The hemodynamics component in ASL is noisier compared to a standard
BOLD fMRI acquisition because the echo time (TE) used for ASL is not
optimal for the BOLD contrast [Ogawa et al., 1993, Tjandra et al., 2005].
The control/tag e ect is modelled with the use of matriw/ .

More speci cally, we further describe each signal part below.

(&) The hemodynamics component represents the variation of the
hemodynamics (or BOLD) signal when there is task-related activityP
RD 1 represents the unknown HRF shape with sile 1 and assumed
identical for all voxels in a parceP.; The magnitude of gctivation or
hemodynamics response levels ae a]m,j PP.m 1:M

(b) The perfusion component represents the variation of the perfusion
from the baseline when there is task-related activityP RP 1 represents
the unknown PRF shape, with siZé 1 and constagt withinP. The
perfusion response levels ate c}“,j PP,m 1:M .W modelsthe
control/tag e ect in the perfusion component, further explained below.
(a-b)Consideringdt  TRthe sampling period ofi andg, whose temporal
resolution is assumed to be the same™ t x" ' n 1 :N,d
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0 : Duis a binary matrix that encodes the lagged stimulus onsit.™

is the linear function that associatels to x™ h. The hemodynamics
(HRLs) and perfusion (PRLs) response levels (respnd c) are assumed
independent conditionally to a common binary hidden Markov random
eld g that introduces spatial correlation across neighbouring voxels, as
in [Vincent et al., 2013b,a]. This Markov random eld has been introduced
in the previous chapter for the BOLD JDE.

(c) The driftterm allows to account for a potential low frequency temporal
scanner drift and any other nuisance e ect (e.g. slow motion parameters).
Matrix P p1,...,pr of sizeN F with orthonormal columns ie.,

PP I g). We denote by i, J PJ  the set of low frequency
drifts. Each‘j is a L-dimensional vector of coe cients to be estimated
‘j p‘f,j,f 1:Fd.

(b-d) The control/tag vector w (N-dimensional) encodes the di erence in
magnetization signs between control and tagged ASL volumag.  1{2

if t is even (control volume) andr,, 1{2 otherwise (tagged volume),
andW  diagpwgis the diagonal matrix withw as diagonal entries.

(d) The perfusion baseline is encoded by at voxelj.

(e) The noise term encodes the noise in the signal. Here it is assumed
i.i.d Gaussian. A straightforward extension to AR(1) noise process can be
derived using [Vincent et al., 2010, Chaari et al., 2013].

The simultaneous estimation of the HRF and PRF response functions
is dicult in this framework because the signal is noisy and because
the alternation of control and tag images introduces variability between
consecutive time points. See the results in [Vincent et al., 2013b,a]. The
perfusion response function estimation is much more di cult because the
perfusion e ect is quite small compared to the rest of the signal and it
comes from the subtraction of control and tag images, with the increase
in temporal variability that comes with it. The use of prior knowledge on
the PRF could appropriately inform the estimation of this function. For
this reason, we derive a physiologically informed relationship between the
perfusion and hemodynamic response functions from physiological models.
We use the extended Balloon model previously introduced in chapter 2.

5.2 Physiological linear relationship between response
functions

The extended Balloon model (see chapter 2) models the variations in ow
inducing signaly, local blood ow f;,, local capillary volumen, and
deoxyhemoglobin concentratiox as a response to neuronal activity.
Recall that the interactions of these four state variables are described by
the system of di erential equations:

L G YR
i d fin
2 y g huptq mi1 [tlfq 1

y
{f inPta (5.2)
finptq BB xptopteh !

1
fintq nptgw

S
[=%
=}
=2
o
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with initial conditionsy P0g  0,fin0g npP0g xp0g 1. The system
depends on 6 physiological parameters that have already been described
in section 2.5.1. The local blood oW;,ptqis the normalized perfusion,
with initial value 1. We can then de ne the perfusion response function
(PRF), namelgptq as the task-related perfusion variation from the baseline.
Therefore, we considegptqg  fiaptq 2l1andgmg 0. We can consider it
as one of the state variabléy ,g,1 n,1 xu.

The hemodynamic response function (HRF) is givenhiggwhenuptq
is an impulse function, and [Buxton et al., 1998b] proposed a link of the
BOLD responséptqto the physiological quantities considering intra- and
extra-vascular components [Buxton et al., 1998b, Obata et al., 2004]:

h Xpq
g Vo kipl xptqq kp 1 YT kspl nptqq (5.3)

whereky, ko andks are scanner-dependent constants aviglis the resting
blood volume fraction. In the following we will drop the time indexand
use variables in their discretized vector form.

From these equations, we derive an approximate relationship between
the PRF @) and the HRFHK). We can obtain it by linearizing the system
of equations (see complete linearization in appendix C). Equation (5.3) can
rst be linearized into:

h  Vorpky kogd xq pks kpqd ngs. (5.4)

We then linearize the system (5.2) around the resting paytg,1 n, 1

Xxu t 0,0,0,0u as in [Khalidov et al., 2011]. From this linearization,
denoting byD the rst order di erential operator andl the identity matrix,
we obtain:

$
!&Dtgu y
|
- D Wi tl nu %g (55)
i . 1
% D {- t1 xu gl a’tg D & g

whereg & 1 %f’la’q . Itfollows a linear link betweerh and
g that we write asg  Wh where:

1

W ks k2p 7 (5

1
W V.1 pk; kmB pk; kog——BA

0 pKi kKb p Kk qutrzn t

| 1 I 1

with A D _ and B D

Wt

m tm

(5.7)

The entire derivation oW can be found in appendix C.

Using values of physiological constants as proposed in [Friston et al.,
2000], Fig. 5.2 shows the HRF and PRF results that we lggt, @in)
by applying the linear operator to physiologically generated PREn(sio
or HRF hphysicb: hin W lgphysio or gjn  Wh physio compared to
these physiologically generated ppysio and gpnysio functions, computed
by using the physiological model di erential equations. The error of this
linearization is !"2ve Mind g 0g7ang M Iin g gggfor a
dt 0.5 There is a time-to-peak (TTP) di erence @4 s in the case of
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the PRFs an@.5s in the case of the HRFs. Note that, although TTP values
are not exact, the linear operator maintains the shape of the functions and
satisfyingly captures the main features of the two responses. We considered
a ner temporal resolution than TR folw.
This linear operator gives us a new tractable tool for analyzing the ASL
signal. Although this link is subject to caution due to its linear nature, as it
is only valid around its development point and incurs approximation errors,
we can nevertheless consider it in a prior distribution of the perfusion
response function.
Figure 5.2: Physiological responses
generated with the physiological
model, using parameters proposed

The joint probabilistic distribution for the model in equation 5.1 can be in [Friston et al., 2000]: neural

5.3 Bayesian modelling

decomposed as follows: activity y , physiological f physio
or HRR,pysig and linearized lf iy

py,a,h,c,9,9;09 ppy|a,h,c,g,q;99ppalh,q;qqppc|g,q;qq or HRF;,) HRFs, physiological
pPh | 4; 9a PRy | 9; 49 PRO; 99 PRAg @physio O PRIphysid  and

linearized §i, or PRE;,) PRFs.

with q being the parameters that need to be estimated: perfusion, drift

and noise parameters, as well as the parameters included with the prior

distributions that are presented below. Heyeis assumed independent gf

givena, h,c,g. a andc are assumed independentlofandg, conditionally

to g. h andg are assumed independent gfbecause HRF and PRF do not

depend on the activation states of the voxels, just their amplitudes. This is

expressed by the factorization of the probabilities in the above formula.

5.3.1 Likelihood

According to this model, the likelihood reads:
1

py |a,h,c,g,a;,", (X pyjlaj.h,cj, 08, ., Ga (5.8)
iPJ
with ppyjlaj,h,c,0;8,",.Ga N y,G* (5.9)
M
and y; ~ a@X™ "WX Mg wa P’ (5.10)
m 1

5.3.2 Prior distribution of the response functions

Following [Vincent et al., 2010], the HRF and PRF shapes are assumed to
follow a prior multivariate Gaussian distribution whose covariance matrices
Sy andSg impose temporal smoothness as in section 3.3.2. They embody a
constraint on the second order derivative so as to penalise high variations
between neighbouring points and have a smooth temporal shape. As this
modelling remains non-parametric, any shape is allowed and it is worth
noting that the two HRF and PRF shapes may dier. In [Vincent et al.,
2013a], the priors used for HRF/PRF are

h N pO,viSha (5.11)
g N;i),nggq (5.12)
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DD, 1
pDtcf
See section 3.3.2 for the de nition @ »2 and the derivation ofR . Priors 2Recall that

on vy, andvg can also be introduced. In MCMC, we use non-informative

wherev, andvg are unknown variances, anfl, Sy R

Je reys priors:ppvpq Vv, 1{2, PvVgd Vg K2 1 VEM, sincer, andvg are 2
positive, suitable priors can be exponential distributions with meanisy, 1
and | g respectively as in [Chaari et al., 20131 hq | hexpp | xq D> :
andppvg;l gg | gexpp | ¢ga 0
We can also enforce a prior mean shape by using a di erent mean prior: 0

a physiological shape in HRF and PRF, or just in the PRF, or the use of
a physiological link between HRF and PRF. In the latter case, a prior on
the PRF would regularize the estimation by using the already estimated
HRF to construct a candidate for the PRF. Part of this work consisted
in investigating the use of di erent priors on the response functions,
and di erent ways to introduce them. We have focused on the derived
physiological link W between both responses (see Appendix C for its
derivation) as prior knowledge iy, to compensate for the lower SNR of
the perfusion component of the signal. Constraints on the shape of the
responses (e.g. horm constraint or positivity) have also been considered.

Stochastic W constraint

The rst prior investigated encodes a hierarchical relationship betwegn
andh. We use the equalitg ~ Wh for the prior mean ofg:

h N m,vhShq (5-13)
glh N pwh,vgSgq (5.14)

Forh, we use the covariance matr®, R.Sgycanadd smoothness if we
use the priorSqg R (regularized physiological prior) or not if we use the
identity matrix Sg | p 1 (not regularized physiological prior).

If we consider a joint prior with a single variance parameter, the relation
of h andg becomes:

h N [ID,VghShq (5.15)
glh N pWVh,vg,Seq (5.16)

A joint variance vy, amounts to settingv,,  vg, decreasing the number

of parameters to estimate or set. This can be potentially interesting when
the values have to be set because they are not well estimated. We can nd
the joint multivariate normal distribution ofph, gq from the relationship

prhopp|hgas

h 0 Sh SpW'

N v
" ws, Sy WsSWT

q o (5.17)

When we includeW, we are considering some variability around the prior
meanWh . Therefore, any approximation error coming from the derivation
of W can be compensated for. However, imposing a relationship between
andg also a ects the computation ofi. See for example in appendix D that
the expression (D.17) in the computation pfh|y, ...,qg contains a term
with g.
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Deterministic W constraint

We also investigate the simplest option: including directly the relationship
g Wh. g is directly obtained fromh. Here the same classical
regularized prior is used for the HRF. The priors read:

hs N m,VhShq (518)
g Wh (5.19)

where: S, R. We reformulate the forward model to inject the relation
(5.19)@ PJ,

M
yj WX ™ &'X™h P aw b (5.20)

m 1

Hierarchical model

Here we consider a hierarchical model in which both response functions
are conditional to a variablé;.

ht N phcan Vi, Shd (5.21)

whereSp, R andvy, contain the regularising terms to obtain a smooth
hi. ht is in some sense the true HRF, and we have access to the noisy
version of the true HRF:

hiht N pht,vyiSha (5.22)
glhy N pWhy,vgSqq (5.23)

where vy, is small (good precision oh) andvy is large (less precision on
g). WeuseS, Ip 1andSy Ip 1 because we are conditional to the
true HRF, which will be smooth.

The random variableh andg are independent but conditional th¢, so
that when you estimatéh in the MCMC algorithm the lower precision on
g should not in uenceh too much. We hope that the e ect of on hy is
lower by the fact thatvg is large because using a largg is equivalent to
saying that the observation is not as reliable as with a small

Balloon model prior

The Balloon model can be used to generatedyioon@nNddpaioonthat can
be used as prior mean in the response functions.

ph;vhad N Phpaiioon VhShA

pPd;vgd N Mpaiioon VgSgd
Usually we use the smooth prior covariancg, Sg R already
explained. This prior is not used in this chapter, but will be used in chapter 7.
5.3.3 Prior distributions for the rest of parameters

Here we present the rest of the prior distributions used for each one of the
parameters of the model.
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Response Levels

For a given experimental conditioom, the hemodynamic (HRLs) and
perfusion (PRLS) response levels are assumed to follow spatial Gaussian
mixture models with di erent means and variances but governed by
the same hidden Markov random eld encoding voxels activation states.
Indeed, the actual hemodynamics and perfusion response levels are likely
to di er as they do not re ect the same physiological measure: CBF versus
a combination of CBV, CBF and CMRowever, the activation states are
assumed to be the same for both response levels. The aim is to model a
coupling between the perfusion and hemodynamics components, allowing
the extraction of the perfusion component by taking advantage of the higher
SNR in the hemodynamics component.

Mixture models segregate active voxels from non-active ones. q]_-"ét
be the allocation variable that states whether voxés active qjm 1) or
non-active qjm 0) in response to thenth experimental condition. Spatial
correlation is directly incorporated in the probabilities of activation through
a hidden Pottseld on the allocation variablegy™. Here, the proportion of
voxels for the di erent classes is not explicit.

We assume that different types of stimulus (experimental conditions)
induce statistically independent response levels. HRLs and PRLs are a priori
spatially independent conditionally ory. Let 1pKq= 1 if K is true, O
otherwise.

M 11 .
pra| ;v N paf"; ", v
m 1jPJ iPt0,1u
™ 1J 1 I p a]m m 1pg™ g
9 Vg 2exp ——————
s 2Vi
m 1j 1iPt0,1u

where we used the notationsf” andv™ for mi" g, i’ “andv™m
ARV !, The unknown parameters are the Gaussian parameteasndv .
The same way, for the PRLs the conditional prior pdf:

M 1 1

m i
pre|g;h,r g N pd"; ™, r Mg P 1
m 1jPJ iPto,1u
1pg" i
M 1] 1 o p ij hiQ2 Pg” 19
9 pri’g zexp ————
S 2ri
m 1j 1iPto,1u
where we used the notationgy, andr™ for hy, hg', h" Yandrm

t .
rghr1" . The unknown parameters are the Gaussian parameteasdr .

Activation states (labels)

As proposed in [Vincent et al., 2010], a Potts eld is expressed to model
spatial correlation in a parcel. We assume prior independence between
experimental conditions regarding the hidden Potts elds:

M
ppa; by ppg™; b™q

m 1
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whereb is the amount of spatial regularization. Hemgq™; bMgis a 2-class
Potts model with interaction parametes™ and no external eld.

}bm ’
iPJ kPN pig

pp™;b™g  Zpo™g texp 1" ogq  (5.24)
The Potts eld is de ned on the neighborhood graph of each parcépb™q
is the normalizing constant or the partition function of the Potts eld. It
is independent of a speci ¢ value af, as it is the marginalisation over all
possible values of. b t b™ m 1:Muare unknown parameters. A

prior on b can also be added in the VEM caggb™; 1 ,q | pexpp | ,a

Perfusion Baseline

We assume a Gaussian prior for the perfusion baselmes N 0, vaq

32

! (5.25)

J
pra|vagq9vsa © exp 1 .

i
Dri Coe icients
We assume a Gaussian prior for the drift coe cientsj; s N p0,v: 1gq

H2 !
exp Vv leg T

N J
pp |v-q9v- 5
j 1

Hyper-parameters
Non-informative Je reys Priorg are adopted for the hyper parameters:

q t Vh,Vg,Va,V*,Vp, MV, hru

Thus pprna v, "% pavgd vg? povga v, 2
12 12
porg v- 1 pvag va " ppmg 1
ppvig v, 2 pphiq 1 PPriq ril{2

All the prior parameters will be estimated in the model

qta, ,Gmv,h,r,vyvg bu
Considering all these parameters, the full joint model becomes:
Py la.h.c.g;. &g

pra | g;mvqgppc|qg;h,rqppd; bg
pph; Vg PRY; Vgd ppRag

ppy.a,h,c,g.0;qq

5.3.4 Posterior distribution

The posterior distribution can be computed from the prior densities and the

likelihood of the model:
ppa,c,h,g, ,a,vp|yq9 ppy|a,h,c,g; . &

pra | g;mvqppc|qg;h,rgppd; bg
PR ; Vid PRY; Vg PRag

3Jerey's prior is a non-
informative prior distribution
de ned using Fisher information

I +pog
b

[WJesiels
c

| poq

E d?log ppX|qq
Px dqz
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Using the expressions of the likelihood and prior distributions, we get a
full posterior distribution that can be found in appendix D. The JDE ASL
hierarchical graph model can be found in gure 5.3.

5.4 Estimation of the posterior probability distribution
with MCMC

From the posterior conditional distributions of each variabteP X, with

X 't a,q,h,g,a, ,qu samples are generated using a Gibbs sampling
scheme and posterior mean (PM) estimates are computed from the samples
according to:xPV El Ko xKUAK, @ PX whereK K; Ko 1land

Ko stands for the length of the burn-in period. The posterior conditional
distributions ppxK | pX zxd 1,y qare computed at each iteratiok of the
sampling scheme, considering the rest of the variab}¥gx updated in

last iterationk 1. The samples are drawn from the conditional posterior
distributions. For the hyperparameter conditional posterior, tgbe the set

of all hyperparameters except the one in question.

Algorithm 1 Gibbs sampling for ASL JDE Figure 5.3: Hierarchical graph

1: initialize model for JDE ASL.
2: repeat
3:  Sampling from posterior conditional distributions:

"D ppa| " i,..q
"D p g i.g "D ppo”ly,...qq

h*4D pphly,...,qq g™ ppgly, ....qq
™D prajly;, ....qq 9D ppjly;, .0
™0 ppfly, ....bq V™D ppMy, ... kg
h™9D pphily. ... 9D pmily, ...k
VD ppvily, ..., b viUD ppvgly, ....big
vEUD ppraly, ...t VB pprely, ...ba

vhD ppryly, - b

4:until K Niterations
5. Compute posterior means
K1

. 1.
XPM kaq

= PX
K, &

Ko

6: RETURN posterior mean estimateg”™ @x P X

The posterior conditional distributions and the whole model can be found
in appendix D.

5.5 A 2-step MCMC inference procedure

When using the stochastic physiological prior, we are trying to in uence
the shape of the PRF using the HRF as prior information, but this also leads
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to an in uence of the PRF on the HRF (see expression (D.17) in appendix D).
As amid step in the analysis of this model, a 2-step procedure was developed
to deal with the two components, hemodynamics and perfusion, separately.
We rst identify hemodynamics properties é]m), and then use the
linear operatorW and the previously estimated hemodynamic properties
to recover the perfusion componentj( (‘:jm). This way, we avoid any
contaminating e ect ofg on the estimation ofh. Each step is based on a
Gibbs sampling procedure as in [Vincent et al., 2013b,a].

Hemodynamics estimation step M ;

Ina rststep M 1, our goal is to extract the hemodynamic components and
the drift term from the ASL data. In the JDE framework (5.1), it amounts
to initially considering the perfusion component as a generalized perfusion
term, including perfusion baseline and event-related perfusion response. By
grouping the perfusion terms involvingV , the generative model (5.1) for
ASL time series can be equivalently written, as

M M
yj  a@X™ P, w T XMy al b (5.26)
m 1 m 1

where we considera;w W a;1. Note that the hemodynamics
components HRFh and the drift term °; can be estimated rst, by
segregating them from a general perfusion term and a noise term. However,
the perfusion component is considered in the residuals, in order to properly
estimate its di erent contributions in a second stdd ».

Given the estimatediM 1, pM ! and aV 1, we then compute residuals
r M1 containing the remaining perfusion component:

M

M > M M
oy g IX MAM L PR (5.27)
m 1

Perfusion response estimation step M

From the residuals of the rst steprM1, we estimate the perfusion
component. The remaining signal is, according to (5@), 1:J,

M

y'z 7 g'wx Mg aw b M (5.28)
m 1

In this step, we introduce a prior og, to account for the already described
physiological relationshigy  Wh:

glRM1 N pwRM1,vySeq with Sq  Ip 1. (5.29)

The signi cance of the 2-step approach is to rst preprocess the data
to subtract the hemodynamics component within the ASL signal, as well
as the drift e ect, and to focus in a second step on the analysis of the
smaller perfusion e ect. In [Mumford et al., 2006], di erencing methods
were used to subtract components with no interest in the perfusion analysis
and directly analyse the perfusion e ect in the time series. In contrast to
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these methods, we expect to disentangle perfusion from hemodynamics
components by identifying all the components contained in the signal, and
to recover them more accurately.

5.6 Comparison of the models on simulated data

The generative model for ASL time series in (5.1) has been used to generate
arti cial ASL data. A low SNR has been considered, witlR 1s,
meanl|Sl  5.03s, duration25s,N  325scans and two experimental
conditions M 2) represented wittR0  20-voxel binary activation label
maps corresponding to HRL and PRL maps shown in Fig. 5.4. For both
conditions: pa]-m|qj 1g Np.2,0.33 and pcjf"|qj 1g Np0.48,0.4
Parameters were chosen to simulate a typical low SNR ASL scenario, in
which the perfusion component is much lower than the hemodynamics
component. Adrift ; N 0, 10 4gand noise varianccavbj 7 were used.
HRF and PRF shapes were simulated with the physiological model, using
the physiological parameters used in [Friston et al., 2000].

Figure 5.4: HRL and PRL ground
uth.

Non-physiological JDE MCMC Figure 5.5: Results on articial
(@) (b) (©) (d) data. Top row : non-physiological
version. Bottom  row :

physiological 2-step  version
(stochastic constraint in 2-step).
(a,d): estimated HRL and PRL
e ect size maps respectively. The
ground-truth maps for the HRL
and PRL are depicted in Fig.5.4.

D hemodyn. signal
D perfusion signal

time (s) time (s)

Physiological JDE MCMC (2-step with stochastic constraint)

(@) (b) (©) (d) ,
(b,c) HRF and PRF estimates,
H g respectively, with their ground
E truth.
2 £
time (s) time (s)

In alow SNR context, the PRF estimate retrieved by the former approach
developed in [Vincent et al., 2013b,a] is not physiologically relevant as
shown in Fig. 5.5[(c), Top]. In the case of a physiologically informed 2-
step Bayesian approach proposed here delivers a PRF estimate very close to
the simulated ground truth (see Fig. 5.5[(c), Bottom] The same holds for the
HRF, too.
In Fig. 5.6, the robustness of both approaches with respect to the noise
variance is studied, in terms of HRF and PRF recovery. The relative root-
mean-square-error (rRMSE) is computed for the PRF and HRF estimates, i.e.
rRMSE } P f Prueqn f prueqt wheref P th,gu. We observed that,
maintaining a good performance in the HRF estimation, we achieved a muchFigure 5.6: Relative RMSE for the
better recovery of the PRF for noise variances larger thgn 1, with HRF and PRF and the two JDE
respect to the non-physiological prior. Therefore, with the introduction of ~versions, wrt noise V<’J1ri<’3m<3€!/bj
the physiological link between HRF and PRF, we have improved the PRAanging from 0.5 to 30.
estimation.
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5.7 Validation of the physiologically informed MCMC
approach in real data

After testing the performance with simulated data, we test on real data from

the AINSI initiative®. Real ASL data were recorded during an experiment *http://thalie.ujf-grenoble. fr/ainsi
designed to map auditory and visual brain functions, which consisted of

N  291scans lastingTR 3s,withTE 18 ms, Fov192mm, each

yielding a 3-D volume composed 64 64 22 voxels (resolution o3

3 3.5mm?3). The tagging scheme used was PICORE Q2T, With

700ms, Tly 1700ms. The paradigm was a fast event-related design

(meanlSI  5.1s) comprising 60 auditory and visual stimuli in total. Two

regions of interest in the right temporal lobe for the auditory cortex, and

left occipital lobe for the visual cortex, were de ned manually.

Fig. 5.7(b-c) depicts the response estimates superimposed to the
canonical shape which is in accordance with the HRF estimates for both
methods. We consider here an auditory region where the canonical version
has been tted. Accordingly, the HRL maps (Fig. 5.7(a)) also look alike
for both methods. However, PRF estimates signi cantly di er and the
e ect of the physiologically-inspired regularization yields a more plausible
PRF shape for the 2-step approach compared with the non-physiological
JDE version. Results on PRL maps (Fig. 5.7(d)) conrm the improved
sensitivity of detection for the proposed approach. In the same way, in
the visual cortex, Fig. 5.7(f-g) shows the HRF and PRF estimates, giving a
more plausible PRF shape for the 2-step approach, too. For the detection
results (Fig. 5.7(h)), the 2-step approach seems also to provide a much better
sensitivity of detection.

5.8 Discussion

Starting from non-linear systems of di erential equations induced by
physiological models of the neuro-vascular coupling, we derived a tractable
linear operator linking the perfusion and hemodynamics responses. This
operator showed good approximation performance and we demonstrated its
ability to capture both realistic perfusion and hemodynamics components.

This derived linear operator was easily incorporated in a JDE framework
at no additional cost. Dierent models have been considered when
including this link: stochastic constraint, deterministic constraint and a
hierarchical formulation.

" The deterministic formulation considerg xed to Wh during Gibbs
sampling. It enables the recovery of the ground-truth HRF and PRF at
low SNR. However, this approach does not allow any exibility in the
PRF.

~ The hierarchical formulation considers a true HRF, and the HRF
h and PRFg noisy versions that are conditional to the true HRF,
with a certain precision. We enforce a high precision on the HRF to
be close to the true HRF, and a low precision on the PRF to account
for possible variability around the prior mean. This model de nition
is proper theoretically. However, the addition of other parameters to
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Auditory cortex results

(a) HRLs (b) HRF (c) PRF (d) PRLs
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g 5
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Visual cortex results

(e) HRLs (f) HRF (9) PRF (h) PRLs
time (s) time (s)
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estimate (the true HRF and its variance) adds more complexity to the
model.

Figure 5.7: Comparison of the
two JDE versions on real data in
the auditory and visual cortices.
(top row in auditory and
visual cortex results) : non-
physiological version. (bottom
row in auditory and visual
cortex results) : physiological 2-
step version (stochastic constraint
in 2-step). (a,e) and (d,h):
estimated HRL and PRL eect
size maps, respectivelyb,f) and
(c,g) HRF and PRF estimates,
respectively. The canonical HRF
is depicted as a black dashed line,
while PRF and HRF estimated
are depicted in solid red and blue
lines, respectively.

~ The stochastic constraint seemed to be the best one to be used in this

framework, allowing to couple both responses with exibility. It has
been implemented in a 1-step and in a 2-step procedure.

Results in this chapter correspond to the stochastic constraint in a 2-step
procedure, but in the next chapter results are shown for the stochastic
constraint in 1-step case. With the introduction of this prior, we achieve
signi cant improvement in PRF estimation, especially in critical low SNR
situations. In this chapter, this has been shown in both simulated and real
data.



G Bayesian analysis of functional
ASL data: VEM solution

In the previous chapter, a Bayesian model for the analysis of functional
Arterial Spin Labeling (fASL) data has been proposed based on [Vincent
etal., 2013b], using a Markov Chain Monte Carlo optimization strategy. One
of the novelties of the previous chapter, presented in [Frau-Pascual et al.,
2014a], is the introduction of prior knowledge through the relationship
between perfusion and hemodynamic responses derived from physiological
models. This relationship allows us to inform the perfusion response
function (PRF) estimation from the hemodynamic response function (HRF),
as the hemodynamic component has a higher SNR than the perfusion one
due to the acquisition procedure.

In this chapter, following the spirit of [Chaari et al., 2013], we
provide an alternative solution based on the variational expectation-
maximization (VEM) algorithm. As explained in chapter 4, this solution is
less computationally expensive than MCMC. The VEM algorithm has been
explained in detail in chapter 4. This framework is also more convenient
to deal with constraints, as normalization or positivity. In this chapter, we
focus in the use of the physiological operat@/ as a stochastic constraint.
First, we explain the VEM for JDE ASL. Then, JDE-VEM and JDE-MCMC
are compared to point out the di erences on simulated and real data. The
outcome of this chapter was presented at the International Workshop
on Pattern Recognition in Neurolmaging (PRNI) and at Medical Image
Computing and Computer-Assisted Intervention (MICCAI) conference in
2015, and can be read in [Frau-Pascual et al., 2015b,c].

Outcome of this chapter:

A. Frau-Pascual, F. Forbes, and P. Ciuciu. Variational
physiologically informed solution to hemodynamic and perfusion
response estimation from ASL fMRI datln Pattern Recognition

in Neurolmaging (PRNI), 2015 International Workshop on, pages
57 60. IEEE, 2015a.

A. Frau-Pascual, F. Forbes, and P. Ciu@amparison of stochastic
and variational solutions to ASL fMRI data analysith Medical
Image Computing and Computer-Assisted Intervention MICCAI
2015, pages 85 92. Springer, 2015b.
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6.1 Variational expectation maximization for JDE ASL

Here, a Variational Expectation-Maximization (VEM) algorithm is proposed
to deal with the intractable posterior of our modgpa, h, ¢, g, qly g when
estimating the variables and parameters of the model. VEM algorithm
approximates the posterior with a functiof, and minimizes the Kullback
Leibler divergence between the approximati@nand the actual posterior:
KLpd, ppa, h,c,g,dlyqq

The missing variables in our model are the hemodynamic response levels
a P A, the HRFh P H, the perfusion response levels P C, the
PRFg P G, and the activation stategf P Q. LetD be the set of all
probability distributionsonA H C G Q. One way of dealing with
several missing variables is to restrict the class of approximate posteriors
with the mean eld approximation: we choose our approximate posterior
distribution over a restricted class of probability distributionB,, that can
factorize as

Pra,h,c,9,qq Papaq Prnd Pepcd PgPad PaRad

where pa P Da, P P Dy, pc P D¢, Ppg P Dg and ig P Dq are sets of
probability distributions onA,H, C, G, Q respectively.

As we have seen in previous chapters, EM can be viewed [Neal and
Hinton, 1998] as an alternating maximization procedure of the free energy
function F. Foranyp PD,

Fpd.aqg Eplogppy.a,h,c,0,0;q99 IrPs (6.1)

where Irps Ep log ppa,h,c,g,qq is the entropy of B, and Ep
denotes the expectation with respect fo The rst term thus becomes a
type of reconstruction measure: It quanti es to what extent probable events
for p are also probable fop. The second term quanti es the uncertainty in
p. Denoting current parameter values lgf*9, the alternating procedure, as
in section 4.4, proceeds as follows:

E-step: g9 argmax F pp,q"% (6.2)
pPD
M-step: g™ 19 argmax Fpp™9 qq (6.3)
aPQ

When applying the mean eld approximation, the E-step can be further
decomposed into ve stages updating the di erent variables in turn. At

iteration prg, with current estimates denoted b ', " 9 p% ', 5 ¢,

o ' andg™d, the updating formulae are of the form:

E-A-step:

. ~ . 1g < 1q < 1G9 & 1

pe? argmaxF paph pE TPy Tpg 4o (6.4)
PaPD A

E-C-step:

. Q< 10 x 19 xpr 1

pe? argmaxF pROpPE e py PR %o (6.5)
pcPDc

E-Q-step:

. <0 < 10 £0Q < 10 «

B argmaxF pRAPE R py 9 P g (6.6)

ﬁqPDQ
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E-H-step:

~ ~ ~ o~ ~ 19 ~

ph argmaxF pRpn e Py o Py gl (6.7)
prPDH

E-G-step:

Py’ argmaxF PRI L Py Py ;o (6.8)
pgPDg

Hereafter, for the ease of presentation, tipegand pr  1q superscripts
are omitted. From the Kullback-Leibler divergence properties (see the
derivation in section 4.4), we can derive as in Eq. (4.8) the solutions of
Eq. (6.6) for each step as:

E-A! Papag9 exp Ep, pypcsq 109 PR[Y, N, C,9,0;09 (6.9)
E-C: pcpeg9 exp  Egysypapq 109 PRC|Y,a,h,g,0;q9 (6.10)
E-Q: Pgpag9 exp Eg, 5.5.n. 109 Py, a,h,c,g;qq (6.11)
E-H: Pnhpha® exp Eggpascs, 109 PR|Y. N, ¢, 9,0;0q (6.12)
E-G: pgpga9 exp  Ep,papepq 109 PRC|Y.a,h,0.0;qq (6.13)

Note that the dependence between random variables, as in MCMC, is
translated into dependence between statistical moments in VEM. This
can be seen in the formulas derived in the appendices D and E: for the
computation ofp, for example, the MCMC expression (D.16) becomes in
VEM (E.17), and (D.17) in MCMC becomes (E.18) in VEM.

The correspondingv-step, where parameters are estimated, is given by:

M: q argmax Eg,p, log ppy |a,h,c,g;a, ,vpq

aPQ
Ep, log pph;vhg  Eg, log ppg;vgq
Epapq 109 PPa|q;mvq
Epepq 109 PRC|g;h,r g
Ep, log ppa;bg  log ppag (6.14)
where q a,‘,vb,mv,h,r,vh,vg,b(. Hyperparameters were

considered for the parametesg,, vq andb, and therefore we include them

in the M-step computation. Given the separability of the prior probability
density functions, the M-step can be divided into separate M-steps, as
in [Chaari et al., 2013]. The stopping criterion of the algorithm will be
based on the convergence of the free energy:

Fpp.aq Ep logpry |a,h,c,9,9;09 ppa | d; Gad PRc | g; deq
pRd; bappo; | popph; Vidppvh; | hd PR | h; vgappvg; | g
I'pBag 1 PPnG 1 PBeq 1 PBgq | PBga (6.15)
Algorithm 2 shows the alternation between E and M steps. Details of

the model and the approximate posterior distributions can be found in
appendix E. Free energy computation can be found in appendix F.
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Algorithm 2 VEM algorithm for JDE in a given parcel.

1: initialize

2: repeat

3: Expectation step: Compute probability distributions
PaPajq N pajia,Saq
Pepoja N pojimig, Sqa

Pqma™d PP
iPJ

phohg N pfip, Spg
pghaq lerﬁg’égq

4:  Maximization step: Compute parameters

q t mv,hr,vhvgb,ja,vyu

a

Compute free energy F pd,qq
- until free energyDF pp,qq 10 ° or n_iterationg 100
7 RETURN eStimatesﬁ hs éh, rﬁ g ég, rﬁ as éa, rﬁ Cs éc, f)qjm, q

(]

It is worth mentioning that, in this approach, the hemodynamic and
perfusion response levels and c, and the activation stateg are hidden
variables because their dimensionality increases with the dimensionality of
the data. The HRI and PRFgy are actually random parameters because
they do not change dimensionality with the data. However, since they have
priors and we estimate a posterior density, they are in the E step as it is the
case for parameters in Variational Bayes EM (VBEM). Although we consider
the rest of the parameters in the M step, some of them have priors too, as
it is the case of the spatial regularization parameteor the HRF variance
Vh, When we use hyperpriors. These parameters could actually be in the E
step because we compute a posterior density, but we then keep the MAP
estimate. For this reason, we have these parameters in the M step.

6.1.1 Normalization constraint

One of the issues of JDE is that the model is bilinear. We estimate the HRF
h and the amplitudes, but they are being multiplied, so there is a scaling
indetermination. If we do not take care of it, numerical issues can emerge
when computing the parameters. For this reason, we usually x the
norm of the HRF tal, and this way we get all the information of the scale
in the response levela. The normalization oh is not easy to deal with in
MCMC since we need to use truncated Gaussidns N, ; ;40,V,Spq
andgs Ny gs M,vgSgd The implementation is not straightforward.

In VEM, the inclusion of normalization or positivity constraints becomes
easier. We can consider normalization constraints in the priorstoandg
so that our solution has unit ,-norm. For example, to constraim:

pphg 9 Np,v,Rq ifh PS?RP 1qg (6.16)
0 otherwise (6.17)
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where S’pRP 1qis the L, unit ball of RP 1. This induces a quadratic
constraint. Note that the normalizing constant is not necessarily easy to
compute but we won't need it. The same can be donedoiVe could also
impose positivity very easilyg ¥ 0.

For this, we modify the sought variational approximation tp
Pa di Pc dy Py Where the probabilities orh and g are replaced by
Dirac distributions. This reduces the search to pointwise estimétesdg.
The E-H and E-G steps in Egs. (6.7)-(6.8) then yield maximization problems
which are easily constrained to account for normalization:

E-H: h  argmax Ep,p.p, log pth |y, a,c,§,q;qq (6.18)
hsthth 1

E-G:§ argmax Ep,p.p, 09 Py |y,a,h,c,q;00 (6.19)
gstglg 1

Considering a normalizedh and g amounts to minimizing a quadratic
function under a quadratic constraint, namehh}, 1 and}g}, 1
respectively. The other E-steps can be derived from standard expressions
replacing expectations ovér andg by h and§, e.g.:

E-A: Papag9exp Ep.p, log ppaly.h,c,d,q;q9 (6.20)
E-C: fepca9 exp Eggp, log prely, a,h,§,q;qq (6.21)
E-Q: Pgruq9 exp Ep,p, log pily.a,h,c,§;aq | (6.22)

The correspondindv-step is given by:

M: g argmax Eg,, log pw|a,ﬁ,c,g;a,‘,qu
aPQ
log pph;vhg  log ppd; vgq
Epapy 109 ppa|q;mvq

Epepq 109 ppc|g;h,rq

Ep, log ppy;bg  log ppag

where q a,” ,Vp,mv,h,r, vp,vg, b(. For the constrained case, VEM
becomes algorithm 3.

Algorithm 3 VEM algorithm for JDE in a given parcel, using constraints
in the norm of the response functions.

1: initialize
2: repeat
3:  Expectation step: Compute probability distributions and point wise
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estimates of response functions

PaPajq N pajig,Saq (6.23)

Popoia Ny, Sqa (6.24)

Pgmpa™a Pempojd (6.25)
iPJ

h arghmin logNpii,, S, | ah'h (6.26)

g argénin logN pfig,Sqq 1 29'g (6.27)

4: Maximization step: Compute parameters

q t mv,hr,vhvgb,ja,vyu

a

Compute free energy F p,qq
- until free energyDF pp,qq 10 °or n_iterations 100
7: RETURN estimatesh, §, i a, Sa, M ¢, Sc, Py, 0

[o2]

In the free energy computation, we need to introduce Lagrange multipliers
| ¢ and |  of the minimization under a quadratic constraint for the
computation ofh and§. If we constrain both response functions:

Fpd.ad Ep.pe log ppy [a,h,c,9,0;09  log pph;vipg
log ppg [ h;vgq  Eg,p, l0g ppa|d;mvq
Epepq l0g prc|a;h,rq  Ep, log ppg;bg  ppb;l g
PVh;l nd PPvgil g0 1 pPag | pPcd | PBgq
laplh} 19 | plgl 1q (6.28)

The transformationg  Wh does not give an, norm 1g whenh has
"5 norm 1. For this reason, if we constraitfit andg at the same time, we
need to do it through the relationshig % Otherwise, we can just
apply the normalization tdn, andg will be scaled accordingly due t&/. For
further details of the model and the approximate posterior distributions see

appendix E, and for details about free energy computation see appendix F.

6.2 Comparison of stochastic and variational solutions

In this chapter and the previous one, we have presented the MCMC and
VEM solutions to the ASL JDE approach. In theory, MCMC solution gives
asymptotically the correct estimation, whereas VEM solution can fall into
local minima and calls for attention to the parameter initialization.

The implementation of these two solutions can be found in PyHiRR
this section, we assess the performance of both solutions by comparing
them, as already done for BOLD in [Chaari et al., 2013]. Note that we
consider the MCMC version with a stochastity constraint computed in
one step, and the VEM with, norm 1 constraint.

Di erent data sets have been analysed to compare the performance of
the VEM and MCMC approaches: rst, arti cial data synthesized with the
generative model (5.1); and second, real data acquired on several subjects
from the AINSI initiative?.

thttps://github.com/pyhrf/pyhrf

zhttp://thalie.ujf-grenoble.fr/ainsi
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6.2.1 Artificial data

To assess the correct estimation of the parameters in JDE ASL, we simulate
some arti cial data in order to have a ground truth with which to compare
our results. We try to emulate real ASL data by using low temporal
resolution (highTR) and a very low SNR. We use the experimental design
of the real data that we are going to analyse next: the AINSI dataset.

N  292arti cial ASL images (i.e. 146 control/tag pairs) were simulated
using a realistic low SNR according to the observation model in Eqg. (5.1).
Di erent levels of SNR were used, in order to show the performance of the
method depending on the noise level. To emulate the slow sampling rate of
ASL images, Eq. (5.1) was synthesizebtat 0.5s and then down-sampled
to a certain repetition time (TR), which means that the temporal resolution
of rows (TR) and columnsDt) of X M is di erent. Here, we used a fast
event-related paradigm comprising two conditionM(  2), with mean
ISI 5s. ATR 3sisconsidered as a realistic ASL experiment, compared
tothe TR 1 s that could be used for a realistic experiment when using
BOLD signal.

In the experimentsh andg are generated as depicted in Fig.6.1(a)-(b) by
dashed lines.P is a polynomial basis of ordeF 4. Drift coe cients
and noise realizations were drawn according t N 0,101 g and
bj NO,2IyNq respectively. HRLs were sampled frqm%“|qu“ 1q
N 2.2, 0.3) (for active voxels) and frorrpa]m|qjm Og N m,0.3(for
non-active voxels). PRLs were generated with a lower contrast than HRLs:
przjm|qun 1g N p1.6,0.31andpcjm|q}“ Og N p,0.33 PRLs and HRLs
were chosen so as to make this synthetic setting realistic: PRLs lower than
HRLs, and active/non-active voxels distribution means close. Activation
states (assignment variabled were set by a hand-drawn map.

@) - (b) Figure 6.1: Articial data with 2
El =) noise settings: (a, b) SNR 3 dB,
(=] %]
'g < (c, d) SNR 0.5 dB. Ground-
SNR 3dB 2 @ truth response curves (black
g ‘g_ dashed lines) and estimated
a hemodynamic (a, ¢) and perfusion
time (s) time (s) (b, d) response functions with
© = (@) MCMC andVEM.
< c
c R
=) @
2 s
SNR 0.5dB 9 B
o £
o @
[a) o
a)
time (s) time (s)

Fig. 6.1(a-d) shows the HRF and PRF estimates obtained for two di erent
noise levels. Both response functions were similarly well recovered with
MCMC and VEM at 3dB SNR with a degradation at lower SNR (i.e. 0.5 dB).
In the latter case, MCMC recovers the time-to-peak slightly better. The
labels (active/non-active) in Fig. 6.2 are well recovered with both MCMC
and VEM at the higher SNR. In the high-noise regime both solutions fail to
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recover the ground-truth label maps. VEM labels maps are nuonetrasted

than with MCMC which is likely to better estimate variability. Fig. 6.3 shows
the root mean squared errors (RMSE) for a range of SNR levels. Response
functions are well recovered with small RMSE in all cases (Fig. 6.3(a))
but with better estimations with MCMC. In contrast, response levels are
better recovered with VEM (Fig. 6.3(b)). This is consistent with previous
comparisons between VEM and MCMC on BOLD signals [Chaari et al.,

2013].
Figure 6.2: Results on arti cial data
Ground MCMC VEM MCMC VEM for labelsq. The probability to be

for 2 experimental conditions,

A namely auditory (A) and visual (V)
stimuli. The ground truth as well
as the MCMC and VEM activation
probability estimates are shown in
two di erent SNR scenarios.

Figure 6.3: RMSE comparison
(@) (b) between MCMC and VEM
approaches. (@) Response
functions HRF and PRF. (b) Mean
over conditions of the RMSE of
the response levels HRL and PRL.

SNR (dB) SNR (dB)

6.2.2 Realdata

The real ASL data used in this section is the AINSI initiative dataset, already
used in section 5.7. Recall that the experiment was designed to map auditory
and visual brain functions with a fast event-related paradigm comprising
60 auditory and visual stimuli in total, randomly distributed according to

a mean inter-stimulus interval 06.1s. It consists oN 291 scans with

TR 3s, TE 18ms, FoV192 mm, with spatial resolution3 3 7
mm3. The tagging scheme used was PICORE Q2T, ith, Tloq

p700, 170@ms.

In Fig. 6.4, the MCMC and VEM results are shown in the left and right
visual and auditory cortices. The HRL maps in Fig. 6.4 are very similar
for the two approaches and for auditory (A) and visual (V) conditions in
contrast to the larger variability reported in the PRL maps owing to the
lower e ect size. Interestingly, the PRL maps yielded by the two algorithms
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Figure 6.4: Results on real fASL
data for a single subject of
the AINSI database for both
conditions:  (a) Auditory and

(b) Visual. The rst line contains

the results for the approach

MCMC, and the second line for
the VEM approach. For each one,
HRL are on the left and PRL on the
right, with its respective scales.

Figure 6.5: Results on real fASL
data for a single subject of
the AINSI database for both
conditions:  (a) Auditory and
(b) Visual.  The brain image
shows the region of interest (ROI)
where the response functions are
estimated. As indicated in the
legend, the curves represent the
PRF and HRF for the MCMC
approach and the PRF and

for the VEM approach.
As a reference, we depicted the
canonical HRF with a black dashed
line.
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are consistent for the V condition in contrast to what we observed for the
A condition.

The regions of interest (ROI) in Fig. 6.5 correspond to the parcels with
stronger mean HRL and PRL values for each condition respectively. The
HRF and PRF estimates in these ROIs have plausible shapes and both
approaches recover similar pro les. For both conditions, the PRF peaks
before the HRF, as enforced by the physiological prior.

Regarding computational times, a substantial decrease was observed for
VEM as compared to the MCMC solution, which is consistent with previous
reports [Chaari et al., 2013]. In arti cial data, a parcel containing 400 voxels
takes approximately 270 s in MCMC, when 1500 iterations are done, and
approximately 22 s in VEM, when 15 iterations are done. In real data, a
parcel of 214 voxels takes 300 s in MCMC when 3000 iterations are done
and 50 s in VEM when 30 iterations are done. The ratios are 12 and 6,
respectively. However, some parts of the MCMC implementation have been
optimized in C code. Time spent loading data is included in these timings.

6.3 Discussion

In this chapter a variational Expectation-Maximization algorithm has
been proposed to address the issue of jointly detecting activity and
estimating hemodynamic and perfusion responses from functional ASL
data. Compared to MCMC, VEM delivers estimations in analytic form for
each latent variable. Although the VEM setting remains an approximation,
it facilitates the inclusion of additional information such as constraints.
In particular, we considered a physiologically informed link between
normalized hemodynamic and perfusion responses so as to compensate the
low signal-to-noise ratio of the perfusion component. We can also easily
introduce constraints in the norm of the responses or positivity. This is not
the case for MCMC. Results in this chapter demonstrate a good performance
of VEM when compared to MCMC at a signi cantly lower computation
time. This suggests VEM as a fast and valid alternative for functional ASL
data analysis.



(P hysiological models and physiological
parameters

In the previous chapters, physiological models have been useal @sori
knowledge in the estimation of the parameters of the Joint Detection
Estimation model. In chapter 5, we have derived a physiological link
from the so called extended Balloon model, previously introduced in
chapter 2. This link has been plugged into the JDE framework to inform and
strengthen the estimation of the parameters of the perfusion component, in
chapter 5 for the MCMC approach and in chapter 6 for the VEM approach.
The physiological parameters being used for the link operatdwere found

in the literature: see e.g. [Khalidov et al., 2011, Friston et al., 2000], which
we explored in chapters 5 and 6. Di erent settings have also been proposed
in the literature for the coupling between blood ow and hemodynamic
response, and a comparison can be found in [Stephan et al., 2007].

In this chapter, we present the di erent settings of the extended Balloon
and hemodynamic models, we check theirimpact when being used in JDE as
part of the physiological link, and we compare the convergence of the JDE
algorithm when using them. The method used in this chapter is the MCMC
solution with the physiological link injected as a stochastic constraint prior.
The conclusions of this chapter were presented in the IEEE International
Symposium on Biomedical Imaging (ISBI) conference in 2015 [Frau-Pascual
etal., 2015a].

Outcome of this chapter:

A. Frau-Pascual, F. Forbes, and P. CiuciBhysiological models
comparison for the analysis of ASL fMRI datan Biomedical
Imaging (ISBI), 2015 IEEE 12th International Symposium on, pages
1348 1351. IEEE, 2015.
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7.1 Physiological models for fMRI

As introduced in the previous chapters, in the past decade physiological
models have been described to explain the changes caused by neural
activity. In [Buxton et al., 1998b, Friston et al., 2000, Buxton et al., 2004]
di erent models have been introduced: neural coupling, which maps
neural activity to ensuing cerebral blood ow (CBF); thgalloon model
which relates CBF to volume and deoxyhemoglobin changes, and the
hemodynamic model, also referred to as BM (for BOLD model) in [Stephan
et al., 2007], which relates these parameters to the blood-oxygen-level-
dependent (BOLD) e ect. These models thus provide a description of
the physiological process underlying hemodynamic activity, from neural
activation to the hemodynamics or BOLD e ect measurement. In this work,
we call the extended Balloon model to the combination of the Balloon and
hemodynamic models. Di erent parameter settings have been proposed in
the Balloon model formulation and several versions of the hemodynamic
model have been presented in [Stephan et al.,, 2007]. The dierent
behaviours induced by the various parameter sets provide exibility to
model physiological responses but also introduce more complexity.

We have previously explained that Arterial Spin Labelling (ASL) signal
embodies a hemodynamic or BOLD component and a perfusion component.
Recall that the ASL signal is a time series of successive altec@itrol/tag
images, with inverted magnetization in thieag image. A hemodynamic
or BOLD e ect can be found in botltontrol/tagimages, while a perfusion
e ect can be captured from theontrol-tagdi erence. Their typical shapes
are respectively described by the hemodynamic response function (HRF),
and the perfusion response function (PRF). As we have seen in chapter 5,
these two response functions can be estimated using the probabilistic joint
detection-estimation (JDE) formalism [Vincent et al., 2013a,b], although
the PRF estimation remains di cult because of the noisier nature of the
perfusion component within the ASL signal [Golay et al., 2004]. For
this reason, in chapter 5 we used a physiological link between PRF
and HRF shapes as a prior knowledge in the JDE framework [Vincent
et al., 2013a,b]. However, the physiological parameters we chose and the
hemodynamic model we used were not completely in accordance with
the analysis performed in [Stephan et al., 2007], where the performance
of the di erent models was compared. In this chapter we replicate the
analysis of [Stephan et al., 2007] but for ASL data and to identify which
model outperforms the other for informing the link between perfusion and
hemodynamics (PRF/HRF link) in the JDE analysis of ASL data. Results on
real data could give us a hint on the best set of parameters to use in the
Balloon and hemodynamic models.

7.2 A physiological link between perfusion and
hemodynamics

An approximate relationship between the perfusion and hemodynamic
response functions has been derived from physiological models in chapter 5.
In this section, we recall the work presented in chapter 5, in which the
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extended Balloon model and the hemodynamic model were used to describe
a link between perfusion and hemodynamic response functions. Following
the same reasoning as in [Stephan et al., 2007], we further analyse the
di erent models to recover a more accurate perfusion/hemodynamics link,
with the correct set of parameters.

The extended Balloon model (see chapter 2) describes the changes in
blood ow fj,, blood volumen and oxygen concentratiorx when a
hemodynamic responde is ensuing neural activation. Recall:

vodf,

E dtp:q yFIq

& ¥R hupg Y9 Lodal

vod 1p 1 {f inpta 1 (71)
P fmptq% xptonptew

o d 1

%A L fiptg nptow

where h is the neuronal e cacy weighting term; ty, t¢ and ty, are
time constants respectively for signal decay/elimination, auto-regulatory
feedback from blood ow and mean transit time& re ects the ability of a
vein to eject bloodEg is the oxygen extraction fraction. See chapter 2 for
more details.

Next, ahemodynamic modédinks these variables to the BOLD e ect.
Taken together, these equations allow the precise modeling of the coupling
between the cerebral blood ow and hemodynamic response. However,
several competing versions of the hemodynamic model and dierent
physiological parameters values have been described in the literature.

7.3 The variants of the hemodynamic model

[Buxton et al., 2004] proposed the following expression to link the

hemodynamic response (HRfptgto physiological quantities considering To clarify, the hemodynamic
the intra-vascular and extra-vascular components [Buxton et al., 1998b,response corresponds to  the

Obata et al., 2004]: impulse response, namely the

Xptq HRF, only when a single stimulus

hpg Vo kil xptag ke 1 nAq kapl  nptaq (7.2) or neural event is considered as
input.

whereky, ko andks are scanner-dependent constants aviglis the resting
blood volume fraction. This equation can be linearized (see the details in
appendix C) into:

hptg  Vorpks  keqd  xptaq pks  keqd  nptags (7.3)

As synthesized in [Stephan et al., 2007], where the hemodynamic model
is referred to as BM, di erent expressions were proposed kgrk, andks:
the classical ones (classical BM) in [Buxton et al., 2004], and their revised
(revised BM) version in [Obata et al., 2004]. Hereafter, we will use the
same notation as Stephan et al [Stephan et al., 2007]: CBM and RBM stand
for models using theclassicaland revisedexpressions, respectively, and
subscripts "L" and "N" for the nonlinear (Eq. (7.2)) and linear (Eqg. (7.3))
expressions:
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CBM RBM

ki p1l Vo.30oETE ki  4.31pETE (7.4)
ko 2Eg ko ergETE (7.5)
ks 1 e ks 1 e (7.6)

whereJgis the frequency o set at the outer surface of the magnetized vessel
for fully deoxygenated bloodr, the slope of the relation between intra-
vascular relaxation rate and oxygen saturation, aamthe ratio of intra- and
extravascular signal.

In the end, we have di erent combinations: classical linear BEEM ),
revised linear BM RBM_), classical nonlinear BMGBMy) and revised
nonlinear BM RBMpy). Dierent values have been proposed [Friston
et al., 2000], [Khalidov et al., 2011] (see Tab. 7.1) for the physiological and
BM parameters, and we consider some of them in this work. According
to [Behzadi and Liu, 2005], we also considered at &I: 100 ! and
Jo 80.6s 1. For thee parameter, the values given by [Stephan et al.,
2007] have been use@:4, 1 and1.43

h |ty |ty | tm | W | BEp | Vo Table 7.1: Physiological and BM
[Friston etal., 2000] 0.5 | 1.25| 25 1 0.2 0.8 | 0.02 parameters used in [Friston et al.,
[Khalidov et al., 2011] 0.54| 1.54| 2.46| 0.98| 0.33| 0.34| 0.01 2000] and [Khalidov et al., 2011].

Other parameters were tested in the context of this thesis, but we do not use
them because they were either too similar to the ones we use here and the
impact can be quanti ed with the present ones, or they gave non plausible
shapes for human fMRI data.

7.3.1 Physiological linear relationship between response
functions

Akin to [Frau-Pascual et al., 2014b] and here explained in chapter 5,
starting from the system of di erential equations, we derive an approximate
relationship between the PRF (named and the HRF (named). Both

PRF and HRF are percent signal changes. By linearising the system of
di erential equations around the resting point as explained in chapter 5, and
considering the hemodynamic model equations (linear (7.3)/nonlinear (7.2)
forms), we nd alinear relationship betweeh andg,g  Wh which reads:

WV, 'psa keB pks kA (7.7)
when Eq. (7.3) holds and

1
W Vol kB kB Agp Agl kA (7.8)

with
’2 A L p !
m Wm
B L 1 W | L
% B D & ol WD g

when Eq. (7.2) holds instead. Hege & 1 %@ .
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Hence, we have di erenW matrices depending on the Balloon model
parameters (see Tab. 7.1), the classical or revised expressidn, oy and
ks (see Eqs. (7.4)-(7.6)), directly impactedebyarameter, and the model
(Egs. (7.7)-(7.8)). Changiy might therefore a ect the PRF and HRF
estimation results from ASL data. Identifying the best combination of these
ingredients is the issue we address here.

7.4 Perfusion/hemodynamics link analysis on simulated
data

The matrix W varies depending on the model under consideration: GBM

RBM_, CBMy and RBM, with di erent possible values fote, and on which

set of parameters we use (see [Friston et al., 2000] or [Khalidov et al., 2011]).

Here, we simulate a PRF by applyiggy  Wmhcan to the canonical HRF @)
shape (i can) using di erent Wy, (m coding the model that we use) to nd
out which factors have a stronger impact oW. We choose as canonical
HRF the one presented in [Glover, 1999], and we use it as a reference for
the PRF.

Fig. 7.1(a) illustrates the cases for which we observed the largest
di erence between the simulated PRF shapes when apphgpg Wmh
when W, is de ned either by (7.7) or (7.8) using the parameters proposed Time (s)
in [Khalidov et al., 2011]. We also found variability between the generated (b)
PRFs associated with di ererd values. Fig. 7.1(b) shows this fact for the
CBM_ model.

One interesting question to answer is whether there is a signi cant
impact of the di erent hemodynamic models and of the di erent sets of
parameters in the generation of the PRF ustng Wh. To draw signi cant
conclusions about the statistical signi cance of the measured di erences
between PRF and canonical HRF, for eacralue we performed a 2 way- Time (s)

ANOVA including the model typeCBM_, RBM_, CBMy and RBMy) Figure 7.1: PRFs resulting from
and the setting of parameters (see Tab. 7.1) as the two factors of interest. WQth can When using modelm,
entered the squared di erences between the canonical HRF and the di erent ¢ parameters in [Khalidov et al.,
PRFs as observations in our analysis. Eor 0.4 only, we identied a 2011] (), and for the BM, model
signi cant di erence between the sets of parameters, but none between (b).

classical and revised or linear and nonlinear BM models at a 0.01 level of

signi cance (F-testF 38.98 p-val 10 4). This resultis also con rmed

by the discrepancy depicted in Fig. 7.1(b) between the blue curve and the

other traces. To sum up, the setting of physiological parameters and

can impact the quality of the link between perfusion and hemodynamic

response functions, whereas choosing a particular BM model has a limited

in uence.

In what follows, we address the same concern on real ASL data acquired
along an fMRI experiment.

| change

ignal

Percent s

Percent signal change

7.5 Impact of the physiological parameters in the HRF
and PRF shapes

Every parameter has a biological interpretation, and therefore have to be
kept within a range of biological validity. A variation in the physiological
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parameters creates di erent HRF and PRF shapes. As we have already seen
in chapter 2 and we can see in gure 7.2, each parameter a ects di erently
to the shapes:

" h: Neuronal ecacy models BOLD response amplitude without
changing the shape. There is a point of amplitude saturation ( cannot
be higher). Typical values at@.54 0.633owing to mean standard
deviation.

ty: Signal decay or elimination. If it decreases it removes the nal
undershoot and if it increases oscillations appear after the undershoot.
Typical values ard.65 0.862

t¢: Auto-regulation feedback from blood ow. This represents the
time that takes the blood ow to decrease after the peak (post-stimulus
undershoot). Increasing it makes BOLD smoother and softens the
undershoot. Typical values a®@41 0.654

tm: Transit time. If it increases it slows down BOLD signal dynamics,
which dilates the HRF. Typical values ade98 1.015

W: The Windkessel parameter in uences the amplitude of the response.
It represents the degree of nonlinearity of the system. Typical values are
0.33 0.596

Figure 7.2: Eect of the
physiological parameters on
the BRF and PRF shapes. The
parameters values proposed in
Vo: Resting venous cerebral blood volume fraction. Typical values are [Friston et al., 2000] are used
0.02 0.152 except for one parameter whose
identity and value is modi ed as
indicated in the plot.

Ep: Oxygen extraction changes the BOLD response: dip and amplitude.
Typical values ar®.34 0.659 although it remains positive. Therefore,
values have to be kept fror@i to 1.

The typical range values are proposed in [Mesejo et al., 2016].

7.6 Impact of the extended Balloon model se ings on
real data

Here, we performed ASL JDE analyses on ASL fMRI data, considering the
di erent models and parameter settings fo/ explored in section 7.3. The
analysis was performed on 8 individuals, although the results are shown for
1 subject only. The same conclusions hold for the other subjects.

The ASL data used has already been described in chapters 5 and 6. Recall
that the experiment (fast event-related paradigm with mekl  5.15)
was designed to map primary auditory and visual cortices (auditory and
visual stimuli), with 291 scans, repetition tim&@R 3 s, echo timeTE
18 ms, FoV192mm, dimension®4 64 22voxels (resolution o8 3
3.5mm3). The tagging scheme used was PICORE Q2T, With 700ms,
Tl 1700 ms. Two regions of interest in the right temporal and left
occipital lobes were de ned manually as parcels of interest to study the
evoked response in the auditory and visual cortices, respectively.

Fig. 7.3 shows the perfusion and hemodynamic response functions
estimated using di erentW matrices forppg | hqin the ASL JDE inference,
after 3000 MCMC iterations. Here, the two parameter sets in [Friston et al.,
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Figure 7.3: PRF (left) and
HRF (right) estimates for model
RBMy with parameters in
[Friston et al., 2000] (FOO label)
and [Khalidov et al., 2011] (K11
label), considering dierent e
values, estimated in auditorya)
and visual(b) cortices.

Figure 7.4: Auditory cortex
PRLs for model RBMy with

parameters: [Friston et al,
2000] (top), [Khalidov et al.,
2011] (bottom), considering (left

toright) 0.4, 1and1.43

2000, Khalidov et al., 2011] were tested andwas computed using the
abovementioned models arelvalues. Fig. 7.3 also depicts the canonical
HRF (dashed line), which is in accordance with the HRF estimates for both
methods. We observed very similar shapes, as well as similar perfusion
response levels in Fig. 7.4 for auditory cortex usiR@ My . A variation in

PRF could impact the PRLs retrieved.

Fig. 7.5 shows the convergence of the relative reconstruction error
over MCMC iterations for the di erent parameter settings. The relative
reconstruction error measures how good is the tting with respect to the
signal measuredgec }ymeas;m%m&z The lower the reconstruction
error the better the tting. Hemm(;?:f;ﬁamic models (BM) are not all shown as
they have similar convergence speed. Interestingly, we observed a stronger
variability between the two parameter sets as compared to changingethe
value. Important results are the lower relative reconstruction error of the
parameters proposed in [Khalidov et al., 2011] from the rst iteration, and
the better performance in both sets of parameters, [Khalidov et al., 2011]
and [Friston et al., 2000], fa¢  1.43 For this reason we can consider the
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combination g 1.43and parameters as in [Khalidov et al., 2011]] as the
one performing best and o ering promising perspectives. However, after
3000 iterations, the algorithm converges to good parameter estimates in all
cases.

7.7 Discussion

A physiological link has been described, combining the Balloon and
hemodynamic models, to achieve a better estimation of parameters in an
ASL JDE framework. Di erent versions of the hemodynamic model have
been described in the literature, and di erent parameter settings for the

Physiological models and physiological parameters

Figure 7.5: Convergence of the
averaged relative reconstruction
error over 10 runs for the
auditory cortex and model
RBMy. Standard deviations are
shown with shaded colors. F0O
and K11 labels correspond to
parameters proposed in [Friston
et al., 2000] and [Khalidov et al.,
2011], respectively.

Balloon model have also been proposed. In this paper, we considered them

all together to assess their impact in the context of ASL data analysis.
On simulated data the selection of physiological parameters used in the
Balloon model as well as the setting efwere more critical than that of the
hemodynamic modelitself. On real ASL data we con rmed this nding with

a faster convergence in the joint estimation of perfusion and hemodynamic
components of the signal in the auditory and visual regions.

7.8 Perspectives

This work is an attempt to assess the impact of changing models and
parameters in the estimation of JDE quantities. One interesting observation
is that although the results of JDE are not very dierent for di erent

parameter settings, the convergence is much faster if the correct model is
used. If we assume that the good model and parameters t better the JDE

estimation and a faster convergence is achieved, then this can be interpreted

as though these parameters are the most convenient for this speci ¢ data.
For this reason, we consider as a possible future work the inclusion of a step
to estimate the physiological parameters inside the JDE framework. With a
good estimation of the physiological parameters, we make also the JDE run
faster and be more accurate.

7.8.1 Estimation of the physiological parameters from the
HRF and PRF

The estimation of the physiological parameters in the Balloon model from

BOLD fMRI has already been studied in [Mesejo et al., 2015, 2016]. The

extended Balloon model used in [Mesejo et al., 2016] includes two non-
linear equations to explain excitatory and inhibitory neuronal activity,
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besides the previously presented equations, that add other parameters
to the model. In total,15 physiological parameters are estimated and,
since identi ability issues can arise when estimating them, statistical prior
knowledge about the parameters is used in the estimation to constrain the
possible set of solutions. For this, the target function to minimize when
estimating the parameters is derived with Bayesian modelling and includes
a priori knowledge. Within this framework local optima are also avoided.
The approach proposed in [Mesejo et al., 2016] to minimize this function
is based on metaheuristics (MH): an Evolutionary Computation global
search method called Di erential Evolution (DE). In [Mesejo et al., 2016],
this method provides stable and realistic estimates of the physiological
parameters in rat fMRI data, compared to the factestandard Expectation
Maximization Gauss-Newton (EM/GN) approach, that is implemented in

SPM.

zhttp://www. l.ion.ucl.ac.uk/spm/

7.8.2 Adaptative prior for JDE ASL

In previous chapters, we have introduced the Gaussian priors usedfor
and g, considering a certain mean and introducing smoothness with the
covariance matrix. The mean can be the HRF and PRF generated with the
Balloon model:

h N thalloon Shq (7-9)
g N Mpaiioon Sgd (7.10)

The physiological parameters can be either extracted from the literature as
in previous chapters or estimated as in [Mesejo et al., 2016].

We propose to estimate the physiological parameters of the Balloon
model from the shapes of the HRF and PRF estimated using JDE. Then, this
model with these physiological parameters can be used as prior information
in JDE for its estimation, since the estimated set of physiological parameters
will give physiologically plausible HRF/PRF shapes, and will therefore
denoise the JDE result. However, this circularity could drive our
estimation to unphysiological shapes, or make it more computationally
expensive with no improvement in the estimation. For this reason,
the estimation of the physiological parameters would be done when the
algorithm is already close to convergence, as a re nement step. This way,
the estimated parameters would give us the closest physiologically plausible
response shape to the estimated one. This amountsto projecting the result
onto the physiologically plausible space of HRF/PRFs, discarding noise and
artefact e ects that give non physiologically plausible response shapes. The
prior can adapt during some iterations of the JDE algorithm to let the rest
of the parameters converge.

In any case, estimating the physiological parameters is interesting in
itself, since it describes the physiological changes undergone during brain
activity in a given subject and region.
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This chapter opens a line of research for the analysis of physiological
parameters and its use in the estimation of response functions from fMRI
data in the context of the Joint Detection Estimation framework, since it
was shown that it a ects the convergence of the algorithm.



B Methodology comparison in the

analysis of HEROES dataset

In this chapter, we analyse a dataset with both BOLD and ASL fMRI data.
We use the proposed JDE method presented in chapter 6, and compare it to
a classical general linear model (GLM). First, we present the dataset and the
fMRI setting, then the results with both methods for BOLD and functional
ASL (fASL). We also present the measured basal cerebral blood ow (CBF)
maps, for subject and group levels, and compare it to the perfusion baseline
estimated from the functional data.

8.1 Data: design and acquisition

The HEROES dataset has been acquired at NeurdspiEA Saclay, in the thttp://www-centre-
context of the HEROES initiatife It contains anatomical T1-weighted saclay.cea.fr/fr/NeuroSpin
images, blood-oxygen-level-dependent (BOLD) data, basal Arterial Spin2HEROES stands for
Labeling (ASL), functional ASL data, and other images acquired for the HEmodynamics-infoRmed  atlas
guanti cation of cerebral blood ow (CBF). The dataset contains data of 13 of brain functional and vascular
subjectsy men andé women, of age bgtweeEOandZQ. They all a.ref .r|ght- territoriES from multimodal MR
handed and they were asked not to drink co ee before the acquisition. Two

, ; i ) L ) images . Based on the information
subjects were discarded for this analysis because of acquisition di erences. . L
obtained from the combination

of dierent MR modalities for
a group of healthy subjects, the
After a localizer scani(3 s) [Pinel et al., 2007], several types of data were goal was to build an atlas of
acquired during one acquisition: functional and vascular territories
with homogeneous hemodynamic
properties to address clinical
questions.

3Magnetization prepared rapid

gradient-echo
BOLD data was acquired with a gradient echo EPI acquisition sequence.

The images contaifi65scans with TR 2.5s, TE 30ms and resolution
3 3 3mmd. This results ind2 slices that were acquired interleaved.
The eld of view used is FoV 192mm and phase FoV 100%

Functional ASL data was acquired using pulsed ASL and a Q2TIPS
PICORE scheme [Luh et al., 1999] as in gure 8.1. Two in-plane
presaturation pulses before the inversion pulse improve the cancellation
of signal from static tissues between tag and control states. The gradient
in gray is alternately applied to tag and control states. Periodic saturation

8.1.1 Image acquisition

Anatomical T1-weighted image acquired with a MP-RAG&Equisition
sequence, with resolutiod 1 1 mm? comprising 160 sagittal slices.
TR 2.3s, TE=2.98ms, eld of view FoV 256mm and phase FoV
93.8%
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pulses are applied fromrl'l, to Tl to improve saturation of the
remaining tagged blood in the region being tagged [Luh et al., 1999].
EPI acquisition is used to acquire the images at tifnle. The time series
contain165scans acquired with TRZ5s and TEZ1ms. The rst scan

in the time series corresponds to @ image. It has a spatial resolution
of3 3 7.5mm?, the slice thickness being larger than that of BOLD
images. Each volume contal slices acquired sequentially (down-up).
Slices have actually & mm width and there is a.5mm space between
slices. The eld of view used is FoV 192mm and phase FoV 100%
The output of the scanner contains three images: raw ASL, perfusion
weighted image, and relative CBF.

Figure 8.1: Functional ASL
acquisition scheme used in the
HEROES dataset. Acknowledged
from [Luh et al., 1999].

Perfusion baseline ASL containk51 scans with TR 2.5 s and
resolution3 3 7.5 mm? as in fASL. The rst scan in the time
series corresponds to all g image. The output of the scanner contains
three images: basal raw ASL, basal perfusion weighted image, and basal
relative CBF.

B1 Mapping image. The resolution & 4 4 mm? with 36 slices,
and two images are acquired for magnitude and phase, respectively.
This image determines the ip angle distribution to be used in the T1
mapping. The eld of view used is FoV 256 mm and phase FoV
100% TR 14msand 4 TE are use®.061ms,3.061ms,4.5ms,7 ms.
Images were acquired sequentially (down-up).

T1 PSSFRwith angles20 and5 . They have resolutiol 1 1 mm? +partially Spoiled Steady State Free
which results in 144 slices acquired interleaved. Other parameters usedp acession

are TR 14ms, TE 3.06ms, FoV 256 mm. These images are

acquired to be used for the T1 mapping.

The total acquisition time isl h 10 min. The functional BOLD and ASL

sessions were collected with two di erent versions (conditions ordering

changed randomly between the two) of the same experimental paradigm.

8.1.2 Data preprocessing and postprocessing

BOLD and ASL fMRI data have been preprocessed following the steps in
section 3.4 using the python toolbgrocess-asl It has been developped by s https://github.com/process-as|
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S. Bougacha under the supervision of P. Ciuciu, and reproduces the pipeline
developped by J. Warnking at the Grenoble Institute of Neuroscience (GIN).
The toolbox usesipypé to create a preprocessing pipeline using SPM
A CBF quanti cation module has been added to this toolbox for pre- - . .

. i ) . ’Statistical Parametric mapping

and post-processing of ASL fMRI data, following the recommendations in :
o www. L.ion.ucl.ac.uk/spm/

[Alsop et al., 2015]. CBF quanti cation has been coded by S. Bougacha
under the supervision of P. Ciuciu, and in collaboration with A. Vignaud
at Neurospin (CEA Saclay) and J. Warnking at GIN.

¢http://nipy.org/nipype/0.10.0/

8.1.3 Experimental design

We chose an experimental paradigm with a block design to increase the
statistical power of the e ects, since the ASL signal strength is quite low
(around1% perfusion baseline variation) [Golay et al., 2004]. However, we
used mini-blocks to be able to study response dynamics. WithZ2Tis,
each session take$00 s and hasl6 blocks with 4 blocks per condition.
Each block last45s and it is followed byl0s of rest so the signal has time

to go back to baseline, completirngp s cycles. The paradigm consists of
visual, motor and auditory tasks. When a block starts, a blinking checker-
board is shown, and therefore the visual task is performed (see gure 8.2).
After a certain delay of2.5s or 5 s a blinking half-circle blue or red is
displayed in the left or right hemi eld respectively and at the same time
beep sounds are delivered at the same pace/frequency as the one of the
ashing half-circle in the ipsilateral ear (see gure 8.2). This delay allows to
avoid habituation to the stimuli. The subject is instructed to push a button
at the frequency of the beep. This auditory/motor mini-block lasi® s,

so if the delay i2.5s (as in the rst block of gure 8.2) we have als®.5s

at the end of only visual task. Otherwise, we ha$es at the beginning of
the block of only visual task and then the three tasks simultaneous until the
end of the block (as in the second block of gure 8.2).

Figure 8.2: After a certain delay;

a half-circle is shown blinking and
at the same time a beep sounds.
For the left condition, the half-
circle is blue in the left side, and
the beep sounds in the left ear. For
the right condition, the half-circle
is red in the right side, and the
beep sounds in the right ear. The
subjects start pushing the button at
the frequency of the beep while
the half-circle is shown.
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8.2 BOLD data analysis

BOLD fMRI data is used as the reference functional MRI technique here. The
design matrix has been constructed by considering 3 conditions: left motor-
auditory condition, right motor-auditory condition and visual condition.
Each block lastd5s, and it is followed byl Os of rest. We havéd blocks per
condition, which makes 16 blocks in total. In gure 8.3 polynomial drifts
were used.

Figure 8.3: Design matrix used
in the General Linear Model.
The 3 task related regressors, 5
polynomial drifts and a constant
regressor to capture the mean.

In this section, BOLD data has been analysed using a general linear
model (GLM$, the joint detection-estimation (JDE) framework using the sNote here that GLM can be
canonical HRF, and the JDE framework estimating an HRF per parcel.given some exibility by adding
For GLM, we need data that has been previously smoothed in order to regressors for capturing delay and
account for spatial correlation and reduce noise. For the HEROES datasetdispersion, but that for simplicity
with resolution 3 3 3 mm®, we have applied a smoothing of kernel we have compared to the simplest
width 5 mm full width at half maximum (FWHM). For JDE, we do not \arsion of it. The addition of
need smoothed data because the spatial correlation is modelled with a,qge regressors would need the
Markov Random Field (MRF), as explained in chapter 5. We use the Willard,,qe of F-tests instead of t-tests in
parcellation (see section 4.7). By using the JDE with xed canonical HRF,ihq statistical analysis.
we show an intermediate step between GLM and JDE. We can therefore see
the impact of the estimation of the HRF by comparing JDE estimating the
HRF and with xed HRF shape. We also see the impact of the parcel based
approach with the MRF modelling using non-smoothed data, by comparing
GLM and JDE with xed canonical HRF. The impact of the smoothing is
discussed in subsection 8.3.3.

We have analysetithe 2 sessions of all 13 subjects and in the following sThis analysis was done in a joint
we show subject level results for a session of one subject, and group,qrk with Thomas Perret.
level results for all 13 subjects and both sessions. The subject illustrated
in the subject-level results has been chosen to be representative of the
group. It has a high correlation score of subject-to-group activation maps
compared to the rest of the subjects in BOLD and ASL results, for all the
methods presented (see gures 8.10 and 8.18). The correlation score is better
explained in section 8.2.2.

For the evaluation of activation detection, contrast maps are shown. In
the case of GLM, we show contragfbj z-score maps and the impact of a
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correction for multiple comparisons in these tests. We also sholeg, 5o-

valgg in order to focus on the order of magnitude of the p-value. For JDE, as
explained in chapter 4, we cannot use the same maps. We show the contrast
e ect mapsgtaj and the posterior probability maps (PPM) per experimental
condition, that can be computed as

ppa” i dlyjqi a (8.1)

Note that we have two thresholds to set. We seétto get a posterior
probability distribution, anda is the threshold that we set to see a certain
level of signicance, as we do for the p-values. See section 4.6 for
more details on PPMs. In BOLD JDE, we chose a threskdidr each
experimental conditiorm as the intersection of the two Gaussian densities
of the Gaussian Mixture Model (GMM) that represent active and non-active

voxels: od manF od nﬁ‘CF
VG

m
Vi

vi
log um (8.2)
0

m" and v{" being the parameters of the GMM ila]-m corresponding to
active { 0) and non-activei( 1) voxels for experimental conditiom.
Figure 8.4 shows the Gaussian densities of JDE together with the histogram
of the amplitude levelsa corresponding to a parcel. We use logarithmic
scale: log,gol ppmg

In order to be able to see the di erences between methods, we have Figure 8.4: Histogram of response
chosen representative slices for each region of interest. We show an axiall®Vels corresponding to the voxels
slice containing the occipital visual cortex for the activation related to the N one parcel (around 200 voxels)
visual task and a coronal slice for the activation related to the motor task. " 9reen, and overlapping the
A part of the auditory cortex can also be seen in this coronal view. See for Gaussian densities corresponding
example gure 8.5. to active and non-active voxels.

Results on HRF estimation are also illustrated for some of the parcels The threshold d chosen is the
of interest. HRFs are expected to be similar between di erent sessionsintersection  between  these
of the same subject. Note that HRFs are usually well estimated in the densities for each experimental
parcels where some activation is found, but not in the others. The time condition.
step used in the HRFs is equal to the TR because our paradigm has a
block design and the beginning of the blocks is not jittered (cycles task-rest
are 25 s long). Therefore, the HRF points being measured are always the
same: multiples of the TR. This implies a better measure of the estimated
points, but a low con dence outside these measurement points. For this
reason, the temporal resolution chosen for the estimated HRF is low. Note
that we could use a higher temporal resolution because the prior on the
HRF enforces a smooth interpolation. This is particularly useful when the
measurements are jittered and we have some knowledge about the temporal
points between TR points (e.g. fast event related designs). In our case,
a higher resolution would just increase the degrees of freedom and the
computational load of the estimation.

8.2.1 Single subject

The subject chosen is representative of the group under study, as we show
in the next section (see gure 8.10). Results for GLM in gure 8.5 show
big activated clusters in the visual, motor and auditory cortices with a high
signi cance, as expected.
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Figures 8.6 and 8.7 show contrast e ect maps for the three contrasts
described before and the PPM maps of the three experimental conditions.
For the PPM maps, we use as threshold the intersection of the two Gaussian
densities of the GMM that are imposed in the response levels and that
correspond to active and non-active classes in JDE. Activations for JDE
are much less spread than in GLM, probably because we are using non-
smooth data. Note here that there is not much visual di erence between

JDE estimating the HRF or using the canonical HRF.

visual

BOLD data subject-level results using GLM
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Figure 8.5: Subject level z-maps
of BOLD data computed using
GLM. From top to bottom: z-maps,
z-maps corrected for multiple
comparisons using a FDR of
0.05 and log,gmovalq of the
FDR-corrected z-maps. They are
thresholded to show values from
10 ° to 10 9. Note that the
FDR-corrected z-maps and the
p-value maps are one-sided.

Figure 8.6: Subject level maps
of BOLD data computed using
JDE, using the canonical HRF.
First row are the contrast e ect
maps gtaj. Second row are the
posterior probability (PPM) maps
of each experimental condition
m in logarithmic scale using as
d threshold the intersection of
the two Gaussian densities of the
GMM imposed in the response
levels (active/non-active). They
are thresholded to show values
from 10 °to 10 10

For the case of JDE estimating the HRF, we can also check the shapes of
the estimated responses. Figure 8.8 shows the HRFs estimated in 8 parcels
containing regions expected to elicit evoked activity in the auditory, visual
and motor cortices of both hemispheres. As we can see, we get similar
shapes for both sessions in most regions, con rming that the estimation
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Subject level maps
of BOLD data computed using

JDE and estimating the HRF in

contrast e ects

First row are the
contrast e ect mapsgtaj. Second
row are the posterior probability
(PPM) maps of each experimental
condition

each parcel.

BOLD data subject-level results using JDE estimating HRF Figure 8.7:
visual motor auditory R-L motor auditory L-R
visual motor auditory right ~ motor auditory left scale using asd threshold the

log,opl ppmg

was consistent. The HRFs of the right auditory cortex and the left motor
cortex di er slightly between sessions. In the PPM maps, these regions are
less active than the rest. Left and right regions have similar HRFs too, and
visual regions are all very similar. It is worth noting that auditory cortex
HRFs peak slightly before 5 s, visual cortex HRFs slightly after 5 s and motor
cortex HRFs peak at 5 s.

8.2.2 Group level statistics

Group level statistics were performed on the BOLD data of 13 subjects,
considering 2 sessions per subject. Figure 8.9 shows the comparison of
group level z-maps using GLM, JDE with the canonical HRF, and JDE
estimating the HRF. The group level contrast is done considering random
e ects analysis (see section 3.2.2). A one-sample t-test is conducted on the
contrast e ect maps computed ags‘bj on GLM, andg‘aj on JDE, and the
z-maps were corrected for multiple comparisons using the FDR criterion
with a threshold0.05 The clusters of size lower thab0 voxels were also
thresholded. We observe large active regions. In the case of the visual
contrast we observe that visual occipital cortex, superior colliculus (SC)
and lateral geniculate nucleus (LGN) are active. For the motor and auditory
contrast, we nd activations in the motor and auditory cortices, as expected.
Note that when using JDE we have a higher sensitivity to activations,
which is consistent with the literature [Handwerker et al., 2004]. We might
think that this is due to the spatial smoothing on GLM. However, the
same analysis has been performed without spatial smoothing and z-maps
had lower or similar values than when smoothing (see subsection 8.3.3),
although this is probably due to a worse correspondence across subjects.
The same analysis was done using JDE on smoothed data and the results had
the same z-score levels as when using non-smoothed data, with smoother
activation patterns (see also subsection 8.3.3). In the subject level analysis,
the same results were reported too with less noisier maps and more de ned
clusters. However, the HRF estimation was slightly worse. When we
estimate the HRF in JDE, we observe bigger active regions around the LGN

intersection of the two Gaussian
densities of the GMM imposed in
the response levels (active/non-
active). They are thresholded to
show values froml0 ®to 10 10,
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(a) auditory cortex

(b) visual cortex

(c) motor cortex

Figure 8.8: Subject level HRFs for
one subject. We show 8 regions
considering motor, auditory and
visual cortex regions, on the left
and right side. Four visual cortex
regions are considered, including
primary visual and high level
visual regions. Two dierent
sessions were analysed and plotted
together in blue and green. HRFs
are very similar in both sessions
for a single region, con rming
that the estimation is consistent.
Left and right regions have similar
HRFs too.
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and SCin gure 8.9.

Comparison of group-level results in BOLD data Figure 8.9: Comparison of
group level z-maps of BOLD
data computed using dierent

methods. From top to bottom:
GLM, JDE with the canonical
HRF, and JDE estimating the
HRF. Columns correspond to the
contrasts shown: visual, motor-
auditory right minus left, and

motor-auditory left minus right.

Note that FDR-corrected maps are
one-sided.

visual motor auditory R-L motor auditory L-R

JDE, can. HRF GLM

DE

These maps represent the group e ect for each contrast. We can check
the correlation of these maps with the subject level maps to be able to
detect outlierd®. Figure 8.10 shows the mean cross-correlation matrix wThere exist statistical approaches
across subjects on the left. We compute, for each subject, the crossy, mitigate the e ect of outliers
correlation matrix of the subject activation maps and the group activation
maps, considering the di erent contrasts. Then we average all subject
matrices to get the mean cross-correlation matrix across subjects ( gure
8.10 left). Note here that the correlation was computed between subject-
level z-maps of the contrasj‘bj and group-level z-maps computed from
gtbj for GLM, and subject-level contrast e ect magéaj and group-level z-
maps computed frong'a; for JDE. That is the reason why the scores are not
comparable between GLM and JDE, but they are across subjects when using
the same method. We just want to see a coherence in the group results for
each method, and detect potential outliers: subjects or sessions that di er
very much from the rest of the group. We also check that the correlation
between contrasts ( gure 8.10 left) is 0 when conditions are supposed to
elicit activity in di erent regions, and equally correlated when we do left-
right and right-left contrasts.

We can de ne a similarity score per subjeidtas the correlation between 1 This analysis was rst performed
subject and leave-one-out group maps, averaged across contrasts. It i, the context of the INRIA Parietal
computed as the mean of the diagonal entries in the cross-correlation retreat, in a joint work with E.
matrix. For the correlation, the subject level being compared is not used pohmatob and B. Thirion, for the
to compute the group map. Figure 8.10 on the right shows the similarity analysis of OpenfMRI datasets.
scores per subject and session. There is one subject session that is a bit
di erent from the rest. The subject level results of this subject session were
checked and it shows activations in the expected regions.

Figure 8.11 shows the estimated HRFs for the 8 same regions that we
considered in the subject level analysis: auditory cortex left and right, visual

such as Wilcoxon signed-rank test
with non-parametric estimation of
the distribution underHg.
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cortex left and right for primary and high level visual, and motor cortex left
and right. Left and right mean estimated HRFs for the auditory and motor
cortex are quite similar. In the auditory cortex, the HRF peaks around 6 s
and it has a deeper undershoot. In the motor cortex, the HRFs peak at5 s
and the undershoot is not very deep. The HRFs of the visual cortex peak
around 6 s with a wide peak, and pronounced previous dip and posterior
undershoot. Note that there is negative bump around sec@2d5 that
could be considered an artifact, but that it is consistent across subjects and
similar visual regions. This could be due to the spectral characteristics of
the paradigm: we might not be sampling some frequencies and that could
a ect the HRF results of the regions that are activated during a certain
experimental condition, as it could be the visual.
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(a) GLM

(b) JDE with canonical HRF

(c) JDE estimating HRF

Figure 8.10: Similarity between subject and group maps. On the left side, we have the mean cross-correlation
between the subject level maps and the group level maps. For each subject and session, we can de ne a score
as the subject/leave-one-out-group map correlation, averaged across contrasts. On the right side of the gure, we
depict the scores of each subject and session. The black dashed line shows the median of the scores of all subjects
and sessions. Note that the subject that we used in the subject level analysis (SB150062) has a high score, so it is
representative of the group in that sense.
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(a) auditory cortex

(b) visual cortex

(c) motor cortex

Figure 8.11: HRF estimated by JDE
from BOLD data for some parcels
of the auditory, visual and motor
cortex regions, that we expect to
be activated. The blue line is the
mean over subjects and sessions
and the blue shadow surrounding
it the standard deviation over
subjects and sessions. A dashed
black line draws the canonical HRF
sampled at the same rate as the
estimated one.
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8.3 Functional ASL data analysis

After the analysis of BOLD data, we now move to functional ASL data
analysis. The design matrix has been constructed by considering the same
conditions as in BOLD. For these conditions, we have hemodynamic and
perfusion regressors. The perfusion regressor considers the control tag
alternation. See gure 8.12.

Figure 8.12: Design matrix used
in the General Linear Model.

The 3 task related hemodynamic
regressors, 3 task related perfusion
regressors, a control tag regressor
to capture the perfusion baseline,
7 polynomial drifts and a constant

regressor to capture the mean.

As in the case of BOLD data, ASL data is analysed with GLM, JDE using
the canonical HRF and a PRF derived from the canonical HRF using the
physiological linkW, and JDE estimating both HRF and PRF, and injecting
W as prior knowledge on the PRF (see chapters 5 and 6). In this analysis we
used the VEM solution usingV as a stochastic constraint prior. For ASL,
we obtain maps corresponding to the hemodynamic component and maps
corresponding to the perfusion component. We also analyse the baseline
perfusion.

8.3.1 Single subject

Subject-level results for ASL data are illustrated on the same subject as the
one used for BOLD imaging data.

Figure 8.13 shows the subject level z-maps of ASL data computed using
GLM (on g‘bj contrast maps). Signi cant activation is observed in the
expected regions in the hemodynamic component in gure 8.13(a), and the
signi cance does not change when we correct for multiple comparisons.
The FDR corrected z-maps look cleaner though. Perfusion maps are
generally visibly noisier than hemodynamic maps. In the perfusion
component in gure 8.13(b), activations are not very signi cant before
correction and they disappear after the correction for multiple comparisons.
This is the reason why it is not displayed in the gure. This happens with
all the sessions and subjects except for 5 out of 26 sessions, in which we can
see some small active clusters. This might be due to the lower magnitude of
this component, or to the smoothing of the e ect during the preprocessings.
One would need more data either on the subject level or on the group level
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z-maps

loggmovakq

corr. z-maps

log,gpvalq

z-maps

loggovakq

visual

visual
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ASL data subject-level results using GLM

(a) Hemodynamic component

motor auditory R-L

(b) Perfusion component

motor auditory R-L

motor auditory L-R

motor auditory L-R

Figure 8.13: Subject level z-maps
of ASL data computed using
GLM for the (a) hemodynamic
component and the (b) perfusion
component, both from the
ASL signal. Columns indicate
di erent contrasts: visual, motor
and auditory R-L, and motor
and auditory L-R. For a given
component, the rst row contains
the z-maps, the second row
the negative log p-values of
those z-maps, the third row
depicts the z-maps for both
components corrected for multiple
comparisons using FDR to 0.05,
and the fourth row the negative
log p-values of the corrected
z-maps. The p-value maps before
correction are referred to as pvial
We observe that there is signi cant
activation in the expected regions
in the hemodynamic component
and that the signicance does
not change when we correct for
multiple comparisons.  In the
perfusion component, activations
are not very signi cant before
correction and they disappear
after the correction for multiple
comparisons.  For this reason,
these maps are not shown.
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to gain in statistical power. Note that the scale of the negative log p-values
shown has been modi ed for the perfusion component to show p-values
from0.1to 10 °.

ASL data subject-level results using JDE with xed responses

(a) Hemodynamic component
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When analysing the data with JDE, as before, we use e ect contrast

Figure 8.14: Subject level maps
of ASL data computed using
JDE with xed HRF and PRF
shapes for the (a) hemodynamic
component and the (b) perfusion
component, both from the ASL
signal. Columns correspond
to contrasts or experimental
conditions. For each component,
rst and second rows display
eect maps and PPM maps
log,gpl ppmg using a certain
threshold. We observe task-
related activations in the occipital
cortex for the visual contrast, in
the motor cortex for the motor
auditory condition, and some also

in the auditory cortex. In the
visual contrast, we have some
unexpected activations in the

frontal lobe in the hemodynamic
component that disappear almost
completely in the perfusion
component. PPM maps show
that activity in visual, motor and
auditive cortices is signi cant.

maps and PPM. For this analysis, non-smoothed data and an MRF model

for spatial regularization were used. The threshaldchosen to create the

PPMs is the same one as in BOLD for the hemodynamic component. For

the perfusion component, we used tf8%6 of the parcel perfusion baseline

mean. Figure 8.14 shows results for JDE using the canonical HRF and the

PRF computed from the canonical HRF and the physiological ¢ink Wh

as response functions for the hemodynamic and perfusion components.

Figure 8.14(a) illustrates the e ect contrast magéaj and the PPMs of

the hemodynamic component. Activations are much less de ned than in
BOLD data, but it is visible that the main detected regions correspond to

those also detected by the BOLD analysis. We get activations in the occipital

cortex for the visual contrast, and in the motor cortex for the motor auditory
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condition. We also observe some activity in the right auditive cortex. In the

visual contrast, we have some unexpected activations in the frontal lobe
in the hemodynamic component that disappear almost completely in the
perfusion component (see gure 8.14(b)). PPM maps show that activity in
visual, motor and auditive cortices is signi cant. The respective perfusion

maps in gure 8.14(b) display noisier e ect contrast maps for the perfusion

componentg‘cj as compared to the hemodynamic one. However, the PPM
maps show that activations are signi cant in the expected regions too.

Results are noisier than in BOLD, even for the hemodynamic component,
as expected.

ASL data subject-level results using JDE estimating responses

(a) Hemodynamic component
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Figure 8.15: Subject level maps
of ASL data computed using
JDE and estimating an HRF per
region for the (a) hemodynamic
component and the (b) perfusion
component, both from the ASL
signal. Columns correspond
to contrasts or experimental
conditions. For each component,
rst and second rows display
eect maps and PPM maps
log,gal ppma using a certain
threshold. Similarly to JDE with
xed canonical HRF and to GLM,
we get activations in the visual
and motor cortices. However,
results are quite noisy, as in the
case of JDE with canonical HRF.

Compared to JDE with xed HRF and PRF, estimating HRF and PRF

responses within the JDE framework yields to similar results. Figure 8.15

shows the e ect contrast maps and PPMs for hemodynargf‘(aj (see
gure 8.15(a)) and perfusiog‘cj (see gure 8.15(b)) components for JDE

estimating the responses. The biggest di erence between the maps of both

hemodynamic and perfusion components is the removal of some parasite
activations in the frontal lobe. PPM results on JDE estimating or using a



(a) auditory cortex

(b) visual cortex

(c) motor cortex
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Figure 8.16: Subject level HRFs
computed from a subject in 8
regions that we expect to be
activated from the auditory, visual
and motor cortices. Here HRFs
from di erent sessions are in blue
and green as in BOLD results,
and we di erentiate HRF and PRF
with dashed or continuous lines,
respectively. The estimated HRF
and PRF are quite similar in a
single region. Auditory cortex
HRFs are not well estimated.
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xed HRF/PRF give similar signi cance patterns.

In gure 8.16, itis worth noting that the di erence between PRF and HRF
is very small and therefore the estimation of the two response functions
might not be necessary for this data. This might not be the case in an
event related design experiment. Second, the HRF responses peak before
the canonical in the motor cortex, and close to the canonical HRF peak (a
bit before) in the visual cortex. This is consistent with BOLD results shown
in gure 8.16. PRF responses peak slightly before in most of the cases. The
responses were not well estimated in auditory regions, especially in the
right auditory cortex. In this dataset, a weak e ect has been reported in
the auditory cortices. This could be due to the fact that the experiment
is optimized to get motor and visual responses. The auditory stimulus is
monotone and it acts as a cue to trigger motor action, complementary to
the visual indicator. Subjects may have paid less attention to these stimuli.

8.3.2 Group level statistics

From the subject level e ect maps that we get from GLM;), JDE with
xed response shapes and JDE estimating responags(), we performed

a group level analysis as we did for BOLD data. FDR-correction for multiple
comparisons with a threshold dd.05was applied.

Figure 8.17 shows a comparison across methods of the group level maps
for hemodynamic (a) and perfusion (b) components. We observe that JDE
results give a more sharper map than GLM results. This also amounts to a
gainin speci city: active regions are less spread in JDE with respectto GLM.
The GLM visual contrast z-maps contain unexpected activations in the
temporal cortex. However, GLM captures auditory cortex too (with a low
z-score) in the hemodynamic component, whereas in JDE most activations
in auditory cortex are lost when we do the right-left contrast. We might
think that this is due to the smoothing in GLM helping to compensate
inter-subject variability, but JDE results on smoothed data do not capture
activation on the left side either. The estimation of the HRF in JDE does
not make much di erence for the hemodynamic component. The perfusion
component contrast z-maps show much more localized activations no
matter which method is used. In these cases, no auditory cortex activations
are observed. For the case of the visual perfusion contrast z-map, JDE
nds much smaller activated regions. JDE results might be showing a
more localized activated region, that is spread by the smoothing in GLM,
although it could be also an e ect of inter-subject variability. JDE results
on smoothed data con rm the detection of bigger clusters than when using
non-smoothed data. In this sense, the use of smoothing does not seem to
be very appropriate, since one of the interests of fASL is the observation of
more localized activations [Luh et al., 2000, Tjandra et al., 2005].

The estimation of the perfusion response function seems to increase the
activated region in the visual contrast, but it decreases the activated motor
cortex region in the motor auditory contrast. Usually the responses are
more easily estimated in the visual cortex than in other regions because of
the strength of the signal in those regions. That might be the reason why
we get larger active clusters when we estimate the responses in the visual
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Comparison of group-level results in ASL data

(a) Hemodynamic component

motor auditory R-L

(b) Perfusion component

motor auditory R-L

motor auditory L-R

motor auditory L-R

Figure 8.17: Comparison of group
level maps of ASL data computed
using GLM, JDE with xed
HRF/PRF, and JDE estimating
the HRF and PRF. Columns
correspond to di erent contrasts.
Rows correspond to (a) the
hemodynamic component of ASL
and (b) the perfusion component
of ASL. Note that active regions
are bigger in GLM: this is a direct
consequence of the smoothing
applied to the used data. In JDE,
the activated region is sharper and
more localized. In ASL, in contrast
to BOLD, estimating HRF and PRF
amounts to losing sensitivity to
activation. A possible explanation
is that the noise level of the data
and the block design nature of the
experiment make this estimation
di cult.
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(a) GLM

(b) JDE with canonical HRF

(c) JDE estimating HRF/PRF

Figure 8.18: Similarity between subject and group maps in ASL. On the left side, we have the mean cross-correlation
between the subject level maps and the group level maps. Note a non-zero correlation between hemodynamic
and perfusion maps of the same contrast, and also between baseline perfusion and perfusion visual contrast. On
the right side, we have the mean correlation between subject and leave-one-out group level maps per subject and
session. The black dashed line shows the median of the correlations of all subjects. Note that the subject that we
used in the subject level analysis (SB150062) has a high score, so it is representative.
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cortex than in other regions.

(a) auditory cortex

(b) visual cortex

(c) motor cortex

Figure 8.18 shows the similarity check of the subject level maps with

Figure 8.19: HRF (in blue) and
PRF (in red) estimated by JDE
from ASL data for some parcels
of the auditory, visual and motor
cortex regions, that we expect
to be activated. The blue and
red lines are the mean HRF
and mean PRF over subjects
and sessions and the blue and red
shadows surrounding them are the
standard deviation over subjects
and sessions. A dashed black line
draws the canonical HRF.

respect to the leave-one-out group level maps. Recall that these graphs
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were computed between subject level z-maps and leave-one-out group
level z-maps for GLM, and subject level e ect maps and leave-one-out
group level z-maps for JDE. The di erent nature of subject level maps and

group level maps leads to a lower correlation in JDE. One can observe that
there are no outliers. However, there is a larger variability across subjects

when we estimate the responses. This is also re ected in the activation

maps, which show more restricted active regions. Note that, as one can
expect, there is a non zero correlation between hemodynamic and perfusion
components, when we compare a certain contrast in gure 8.18 on the left.

We also observe a non-zero correlation between baseline perfusion and
visual perfusion.

The HRF and PRF estimated responses for the 8 regions already shown
for other analyses are depicted in gure 8.19. The mean PRF peaks slightly
before than the mean HRF in all cases. Consistently with the BOLD data
results, the motor cortex HRF responses peak before than the canonical
and have a wider peak. The visual cortex HRF responses peak around the
canonical or a bit later, as in BOLD. The auditory cortex responses peak
around 5 s and there is a higher peak di erence between PRF and HRF. It
is worth mentioning that left and right regions have similar shapes, and
that all visual regions have similar results. As reported in single-subject
results, responses for the right auditory cortex have shapes that we would
not consider physiologically plausible.

8.3.3 The impact of the smoothing

In the previous sections, a comparison of JDE with non-smooth data and
GLM with smooth data has been done. The reason why is that the
smoothing is intrinsic in the JDE model through a Markov Random Field
on a hidden variableg. However, this comparison might be not fair to
one of the methods, if the amount of smoothing in both methods is not
the same. For this reason, in this section we compare both methods on
smooth and non-smooth data. Figure 8.20 shows, for both components, the
e ect of the smoothing for the methods GLM and JDE with xed responses.
In the hemodynamic component, we observe more spread active regions
when using smooth data for both methods. Using smooth and non-smooth
data, activity is more signi cant when using JDE. Note also more parasite
activations in GLM results. In the perfusion component, we also observe
more signi cant activity when using JDE in both cases (on smooth and non-
smooth data). Moreover, when using GLM we lose most activations. As in
the hemodynamic component, activation patterns are more spread when
using smooth data.

With this comparison, we want to show how the smoothing in GLM
is justi ed. In JDE, the use of both smooth and non-smooth data deliver
signi cant activation patterns. The choice of using non-smooth data in
this case is to keep the higher localization of the perfusion component,
which is interesting. Moreover, the intrinsic smoothing in JDE seems to
be comparable to the previous smoothing in GLM. Future works could be
dedicated to study this smoothing e ect in more detail.
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Comparison of group-level results on smooth and non-smooth in ASL data Figure 8.20: Comparison of group
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(a) Hemodynamic component

motor auditory R-L

(b) Perfusion component

motor auditory R-L

motor auditory L-R
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level maps of ASL data computed
using GLM and JDE with xed

HRF/PRF, on previously smooth
and on non-smooth data. The
comparison is done for the (a)
hemodynamic and (b) perfusion
components of ASL. Rows in each
component correspond to GLM on
non-smooth data, GLM on smooth
data, JDE with xed HRF/PRF on
non-smooth data, and JDE with
xed HRF/PRF on smooth data.
Columns correspond to di erent

contrasts: visual, motor auditory
right-left, and motor auditory

left-right. Note that active regions
are bigger when using smoothing,
but that activation is more

signi cant in both cases when

using JDE with xed HRF/PRF.
In the perfusion component,
using non-smooth data on GLM
most of the signi cant activaty

disappears. When using JDE with
xed responses, we have higher
signi cant activity when using

smooth and non-smooth data, but
the activity is more localized when
using non-smooth data.
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8.4 Baseline perfusion in basal and functional ASL

The most important part of the ASL signal, and the one that provides
a guantitative measure of cerebral blood ow is the perfusion baseline
componenDM  Mconirol  Mtag. From the baseline perfusion, we obtain
the cerebral blood ow (CBF) maps with the expression (2.2) in section 2.4.2.
Recall that CBF quanti cation is done with this expression [Alsop et al.,

2015]:
. 600d DM Ty
CBFmML{100g{mins —— 8.3
{10001 2aT1:Mo < T piood (8:3)
6000 DM
TOX’ (8.4)
1 T,
where X ——ex 8.5
2aTl, T1plood 8:5)

Here DM Mecontrol  Mtag is the averaged control-tag magnetization;
My is the relaxed magnetization; 0.9mL/g is the averaged brain/blood
partition coe cient; a  0.98is the labeling e ciency; Ty pjopoq  1650ms

is the longitudinal relaxation time at 3T. See section 2.4.2 for further details.
Time di erence between slices [N6th et al., 2006] needs to be considered
and it is done before any other preprocessing. The division by the relaxed
magnetizationM g corrects for signal variations during the acquisition. For
low TRs, a correction byl{pl expp TR{T1ssudgneeds to be applied,
T11issue DeINg the assumed; of gray matter. Figure 8.21 shows the basal
CBF map and the functional session CBF map for one subject session.

Basal CBF map for one subject Figure 8.21: Basal CBF and CBF of
a functional ASL session.

CBF map for subject functional session

In the analysis of HEROES functional ASL data, scale correction during
the pre-processing step corrects for the time di erence between the slice
acquisition: x T‘lﬂl exp T]lelliod . The output of our analyses
corresponds to the di erencé®M multiplied by this scale factox. Figure
8.22 shows the perfusion maps estimated with GLM, JDE with xed
HRF/PRF responses, and JDE estimating HRF/PRF. We observe already that
they are quite di erent between GLM and JDE, because of the smoothing of
the data. GLM perfusion map has me&rf9and standard deviatior3.84
JDE perfusion map has medns8and standard deviatiod.96when using
canonical HRF, and meah56and standard deviatioB.15when estimating
the HRF. For GLM the mean but mainly the standard deviation are low
because of the smoothing e ect. Note that the standard deviation is a bit
larger when we estimate the HRF in JDE, as we observed in the activation
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GLM Figure 8.22: Perfusion baseline
of a subject for GLM, JDE
with canonical HRF, and JDE
estimating the HRF. Note in
JDE some regions with 0 value

JDE with the canonical HRF that come from numerical issues
during the computation.

JDE estimating the HRF

Mo map Figure 8.23: My magnetization
map for the functional ASL session
of a subject.

maps in gure 8.18.

After the analysis, we can apply the remaining correction to get CBF
maps from the perfusion%xDM. To get proper results, this has to be
done before applying a spatial normalization. We need ¥g map, that is
depicted in gure 8.23.

8.4.1 Group analysis of cerebral blood flow

In this section, we compare the CBF maps from 13 subjects and the mean

and standard deviation of the CBF maps across subjects. In gure 8.24, we

observe the gray matter CBF values for all subjects in subject space (before

normalization). [Alsop et al., 2015] states that, as a general rule, gray matter

CBF values fromd0 100mL/100g/min can be normal. All subjects have

mean values fron80to 60 mL/100g/min. Some are below the threshold of

what [Alsop et al., 2015] considers normal values.
Figure 8.25 shows the cerebral blood ow (CBF) for the basal CBF

acquisition (see gure 8.25(a)), and the CBF extracted from the functional Figure 8.24: Boxplot showing

ASL sessions (see gure 8.25(b)). We show the mean and the standarqhe basal gray matter CBF for

deviation over subjects and session, in MNI space. all subjects, considering data in
The subject CBF map mean and standard deviation across subject§ubject space.

is 38.97 and 24.0 respectively for the basal CBF, anmtB.68 and 22.72

respectively for the functional ASL sessions, when we just consider the gray

matter regions and after normalization. It is worth mentioning that a higher

mean but a lower standard deviation are found in the functional ASL session

CBF. Note that the region with higher standard deviation lies in the occipital

region: higher values are observed in the occipital lobe in the rstslice. This
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is due partly to the fact that it is close to the limit of the acquired volume,
and some subjects have this region cut. One subject has been discarded
to do the mean for this reason. Note that this is also consistent with the
non-zero correlation between visual and baseline perfusion in gure 8.18.

(a) Basal CBF group map
Mean across subjects

Standard deviation across subjects

(b) Functional session CBF group map
Mean across subjects

Standard deviation across subjects

Figure 8.25: Cerebral blood ow mean and standard deviation of a group of 13 subjects. (a) Basal CBF, acquired
at rest. (b) Baseline CBF extracted from functional ASL session (2 fASL sessions/subject). On the right side, the
correlation of the subject-level and group-level CBF maps.

8.5 Discussion of the results

In this chapter, we have analysed a dataset with BOLD fMRI, ASL fMRI, and
basal ASL data corresponding to 13 subjects. The experimental paradigm
used for fMRI is a mini-block design and consists of visual, auditory and
motor tasks. We have analysed them both with GLM, JDE with xed
responses and JDE estimating HRF and PRF responses. All three methods
give results which illustrate activity in expected regions. CBF maps give
reasonable values at the subject and group levels, according to the literature
[Pimentel et al., 2013, Raoult et al., 2011]. Note here that JDE has just been
compared to the simplest GLM, but that some exibility can be given to
GLM, for example through the addition of other regressors to capture delay
and dispersion.

Results on BOLD and ASL fMRI data show signi cant activation, at
the subject and group levels, in motor, visual and auditory cortices.
Auditory regions do not show task-speci ¢ CBF variations in the perfusion
component of fASL. In the hemodynamic component of the group level
GLM results, we nd some activation in the auditory cortex, although it
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is much lower than in other involved regions. The lower activity in the
auditory cortex, also seen in BOLD data, might be due to the fact that
the experiment has been optimized for visual and motor tasks, and the
auditory task is just a complementary task acts as a cue to trigger motor
action, complementary to the visual indicator. Subject level GLM results
do not show signi cant activation in the perfusion component after FDR-
correction for multiple comparisons. However, when we use JDE, PPM
maps show signi cant activation. To compare GLM and JDE results, we
comparedil p-valuegiof GLM with PPM maps of JDE. These maps would
be equivalent if non-informative priors were used in JDE. However, this is
not the case and therefore they do not represent exactly the same quantity
but they can be roughly compared.

When comparing the methods used for the analysis, the main di erence
is that GLM needs smoothed data and JDE does not (although smoothed data
can also be used). As we have seen, a multivariate method as JDE is more
sensitive to voxel activity when we compare it to a univariate method as
GLM in most of the cases. However, the use of smoothed datain GLM allows
to decrease spatial inter-subject variability and noise e ects. Especially in
the analysis of fASL, using smoothed data can cause a loss of speci city and
localization of activations. Moreover, the smoothing incurs a loss of detail in
regional changes of perfusion baseline, and therefore of regional CBF, when
estimating it. This makes the correspondence between fASL and basal CBF
measured at rest more di cult, and it decreases the e ects that make the
fASL signal interesting: it incurs a loss in localization and it introduces an
error in the quanti cation of task-related CBF variation.

When we compare results of BOLD and ASL fMRI, that we have
summarized in gure 8.26, it is worth noting that BOLD data shows more
active regions than the hemodynamic component of the fASL acquisition.
This is coherent with the existing literature [Pimentel et al., 2013] and it is
due to the fact that the TE used in the ASL protocol (TE11 ms) is not
optimal for the BOLD contrast, which is maximized for TE 30 ms at 3T
[Ogawa et al., 1993, Tjandra et al., 2005]. The perfusion component in fASL
also yields more localized activations than BOLD, as already reported in
the literature for the motor cortex [Pimentel et al., 2013, Raoult et al., 2011].
This happens when using both methods in the analysis: GLM and JDE with
xed HRF/PRF responses. It is worth noting that in JDE we obtain more
localized and stronger e ects than when using GLM, in general.

As regards HRF estimation, we observe that for the case of BOLD data
activation results improve when estimating the HRF, consistently with the
literature [Handwerker et al., 2004]. However, in ASL data we detect less
activity when estimating the HRF and PRF. This might be due to the fact
that the signal is noisy and this block design setting does not make the
response estimation an easy task. In an event-related design setting, in
which estimation of the responses is usually easier and in which statistical
power is lower, the estimation of HRF and PRF responses could be key in
the detection of task-related activity.

In this chapter, we analysed BOLD and ASL fMRI data with di erent
methods and observed dierent activation patterns depending on the
analysis made. Further works should assess the impact of the spatial
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BOLD

ASL perfusion ASL hemodyn.

BOLD

ASL perfusion ASL hemodyn.

visual

visual
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(a) GLM

motor auditory R-L

motor auditory L-R

(b) JDE with xed HRF and PRF responses

motor auditory R-L

motor auditory L-R

Figure 8.26: Comparison of
group level maps of BOLD,
and the hemodynamic and
perfusion components of ASL
data computed using (a) GLM
and (b) JDE with xed responses.
Columns correspond to di erent
contrasts. In this summary gure,
we observe the more localized
activation of the perfusion ASL
component with respect to the
hemodynamic ASL component
and to BOLD in both methods. In
general, JDE nds more localized
activated regions than GLM.
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modelling and of the use of multivariate models instead of univariate
models. Results in this chapter lead to the conclusion that a multivariate
approach without the need for data smoothing could be best suited for the
analysis of fASL, due to the nature of this data.






B Conclusion

Throughout this thesis we aim at improving the understanding of BOLD
and ASL fMRI signals, and at providing methods for the neuroscienti c
community to study brain function and the neurovascular coupling.

In order to better understand BOLD fMRI data, we relied on Bayesian
models in form of the joint detection estimation (JDE) approach and its
temporal modelling of hemodynamics. We showed that the modelling
of the existing spatial correlation in the BOLD signal through a Markov
random eld yields an improvement of the sensitivity to detect regional
activation with respect to the classical general linear model. The modelling
of temporal hemodynamics in this context yields an even higher sensitivity
for detecting evoked activity in BOLD, which is intuitive: we are capturing
the spatial variability of the hemodynamic response function, making it
possible to calibrate activation estimation to the exact moment where the
e ect occurs. Moreover, the estimation of the so-called hemodynamic
response function is interesting in itself since it re ects di erences between
regions and subjects. In the context of this thesis, a multi-session model
allowing the weighting of the sessions according to the noise level was
proposed to increase the statistical power of the model.

In order to better understand ASL fMRI data and considering the
similarities between BOLD and ASL signals, we relied again on Bayesian
models to estimate the parameters of interest. We showed that ASL data
is noisier and more di cult to model than BOLD. The perfusion measure
that provides this data is the main reason for using ASL in functional
MRI. Perfusion gives a more localized measure, it can be quantitative,
and it is directly related to brain activity. However, this component of
the signal is very small and its estimation relies on the subtraction of
two images acquired at di erent moments (control and tag). A joint
detection estimation approach had already been proposed to temporally
model perfusion and hemodynamic responses, relying on Markov Chain
Monte Carlo (MCMC) optimization strategy for the parameter estimation.
In the context of this thesis, we focused on an improved modelling of the
perfusion response function, the estimation of which has been shown to be
di cult [Vincent et al., 2013a].

To this aim we investigated physiological models and derived a linear
operator from the extended Balloon model that relates perfusion and
hemodynamic responses. In the JDE Bayesian setting, we injected this
relationship asa priori information to inform the perfusion response from
the hemodynamic response function.
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We also proposed a faster optimization strategy for the parameter
estimation in functional ASL JDE analysis: a variational expectation
maximization solution. VEM has been shown to give similar results to
MCMC with much lower computational times. VEM and MCMC solutions
were developed in python in the package PyHRF

We investigated the variants of the Balloon model and the parameters
involved, and their impact when used as prior knowledge in the context of
JDE. It has been shown that, although the estimation when using MCMC
converges using di erent sets of parameters, the convergence is faster
depending on the parameters used. For this reason an assumption was
made: the parameters that make the convergence faster are the closest
to the real ones. This is interesting in itself: estimating the physiological
parameters is a eld of research. We observed that the set of physiological
parameters used has more impact than the variants of the Balloon and
hemodynamic models.

Finally, we validated the performance of these methods on a dataset
acquired at CEA/Neurospin during this thesis. Classical methods were
compared to JDE VEM solution with BOLD and fASL data, and subject and
group level results were put into perspective. It was shown that JDE can
provide a better sensitivity to activation and a more localized activation
detection. We observed that the estimation of temporal responses does
improve detection results in BOLD but not in fASL in this setting. However,
the estimation of hemodynamics and perfusion responses can be interesting
independently of the activation detection. The quanti cation of the cerebral
blood ow was also performed on this data set. With JDE and GLM, we
extracted the perfusion baseline of the functional ASL signal. Because of
the smoothing in GLM, the estimated perfusion baseline is smoothed and it
has a lower correspondence with the basal CBF measured at rest. Although
JDE provides some advantages with respect to GLM, it also introduces
variability with the introduction of prior knowledge and the impact of this
variability in group level studies might be di cult to quantify. Moreover,
the computational cost of GLM is much lower than JDE and this might be
important depending on the application. It is worth noting that most of the
computational load in JDE comes from the estimation of the responses, and
that if this is not done the computational load reduces considerably. In the
end, one should choose the method of interest depending on the application.

tpyhrf.org

9.1 Perspectives

This thesis treats several aspects of fMRI data analysis and more speci cally
functional ASL data analysis. The study of fASL signal through the
development of data analysis methods and evaluation of real data has given
rise to other questions that could be addressed in future work.

9.1.1 Short term perspectives
Improve the estimation of the perfusion response

Results on the HEROES dataset showed the performance of JDE in a block
experimental design setting. The estimation of the perfusion response
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function is very challenging and a block experimental design is not
optimized for the temporal modelling of response shapes. However, a block
experimental design increases the statistical power of the activation maps.
Further analyses on fast event-related designs need to be performed. In
any case, the estimation of a temporal perfusion response is interesting
independently of the activation detection.

Physiological priors in Bayesian modelling

The estimation of the physiological parameters is interesting in itself. In
this thesis, it has been shown that the physiological parameters have
an impact on the convergence of the JDE algorithm. For this reason,
if we could know which is the correct set of physiological parameters
when running JDE, we would speed up convergence and attain a higher
level of accuracy. This can be done with optimization techniques such
as di erential evolution, already used in [Mesejo et al., 2015, 2016] to
estimate physiological parameters from BOLD time series. Following their
lead, the estimation of physiological parameters could be done from the
response shapes estimated from JDE. Using the correct set of physiological
parameters, we could re ne the estimation of the temporal responses in JDE
by injecting the correct parameters in the physiological prior and adding
a physiological parameter estimation step in the VEM algorithm. This
way, the physiological prior becomes an adaptive physiological prior that
updates along with the VEM convergence.

We showed that physiological priors can improve the temporal
modelling of task-related responses when used in a Bayesian setting.
This opens a door for the use of other physiological priors in a Bayesian
modelling.

Introduction of basal perfusion as a priori knowledge in JDE

The main motivation for functional ASL data analysis is the possibility of
guantifying the results and having actual units of blood ow. As we saw in
the HEROES dataset, we can measure basal ASL by scanning the subject at
rest, and functional ASL in an experimental setting. From both of them we
can measure cerebral blood ow (CBF), although a higher con dence can
be put in the basal CBF. The baseline perfusion is also estimated in JDE, and
it would be interesting to inject the basal perfusion as prior knowledge into
the Bayesian model. This can be easily done by injecting basal perfusion
as the prior mean of the modelled baseline in the JDE approach, that we
setto 0:a) N papasa)j; VaG Whereap,sy; would be the basal perfusion
measured at rest in voxgl Recall that we showed that the perfusion maps
from basal CBF measured at rest and during a functional experiment are
reasonably similar.

9.1.2 Long term perspectives
Combination of BOLD and ASL analysis

The combination of BOLD and ASL is probably the best approach if we
want to take advantage of both signals. Combining BOLD and ASL, one
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could access other physiological parameters such as cerebral metabolic rate
of oxygen (CMRO2).

In the context of JDE, this could be done with a hierarchical model similar
to the one presented in chapter 5, in which a true HRF is assumed, and
the HRF to estimate is considered the noisy HRF. The PRF is coupled to
the true HRF through the HRF/PRF linkV. When we consider BOLD
and ASL signals, this is actually true: the true HRF or the best estimate
would be the one estimated from BOLD signal, and the noisy HRF would
be the one estimated from the hemodynamic component of the ASL signal.
The estimation of the HRF and PRF responses has been shown to be the
most di cult part in the analysis of fASL (see chapter 8). In BOLD, on the
contrary, we observed an improvement in activation detection with respect
to using xed responses. For this reason, using the HRF estimates of the
BOLD signal in the ASL signal analysis seems a reasonable perspective. We
could also consider the correct set of physiological parameters when using
the HRF/PRF link in ASL, if we estimate them.

Another possibility is using the activation state maps containedifrom
the BOLD signal in the analysis of the hemodynamic component of the
ASL signal. The activation state maps of the perfusion component could be
therefore independent to the other component. In this work we showed that
the activation maps are di erent for both components even if using the same
activation state maps. However, given the low magnitude of the perfusion
component, we might want to keep the coupling through the activation
statesq.

The ASL signal is very noisy, and driving the estimation of some of its
components with appropriate prior knowledge has led to a more robust
estimation of the rest of the quantities. The JDE Bayesian setting gives the
possibility to do this exibly.

Application to clinical research

Functional ASL has already been used in clinical applications for diseases
such as schizophrenia [Kindler et al., 2013], multiple sclerosis [D'haeseleer
etal., 2013] and Alzheimer's [Bron et al., 2014]. Its use can also be extended
to drug studies [Wang et al., 2011a, Nordin et al., 2013] and population
studies in general.

The absolute measure of cerebral blood ow and the fact that it is
highly reproducible allow us to directly compare fASL results between
subjects and in longitudinal studies. The analysis of functional ASL in a
clinical context is interesting to detect functional anomalies or to follow-
up a progressive cerebral recovery or degeneration. Since ASL is especially
useful for neurovascular diseases, the estimation of a perfusion response
function as in JDE becomes interesting: it provides additional temporally
resolved information on the di erences between pathological and non-
pathological cases. Moreover, the fact that JDE provides localized measures
due to the modelling of spatial correlation makes JDE appropriate for
precise activation detection.

An interesting application could be vasoreactivity studies [Krainik et al.,
2013] with BOLD and ASL, which could lead to disentangle the purely
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vascular component of the BOLD response. The link between the kinetics
measured with vasoreactivity BOLD and ASL, and with activation BOLD
can reveal a purely vaso-motor component of vascular alteration observed
in several pathologies. JDE has already been used for the analysis of
vasoreactivity ASL in [Vincent et al., 2013b], demonstrating its potential
for this particular application.

9.2 Concluding remarks

This thesis has been centered around the development of tools for the
neuroscienti c community to analyse functional ASL data. We proposed
a framework to analyse this data in which the introduction of prior
knowledge as physiological information becomes possible. More reliable
information coming from other modalities can be easily introduced, too, in
the form of prior. With the analysis of real data, we assessed the strong and
weak points of the developed JDE method with respect to classical methods.
Although the estimation of hemodynamic and perfusion responses can be
di cult in JDE and does not seem to improve the detection of activation,
the estimation in itself can be of interest. When xing the responses in JDE,
results improve in sensitivity and speci city when focusing on activation
detection.

It is important to retain that the use of functional ASL data is
envisaged for clinical research settings, in which having a quantitative and
reproducible measure is important and even necessary for longitudinal
studies. The use of precise tools in this setting becomes a necessity.
However, stability and user-friendliness of these tools is crucial if we want
the clinical research community to use them and bene t from them. For this
reason, considerable e ort is currently being put into making the PyHRF
software ready for use in a clinical context in a collaboration between Inria,
CEA/Neurospin, the&renoble Institute of Neuroscie(@&\), and theCentre
Hospitalier Universitair@€CHU) Grenoble Alpes.

From a clinical research point of view, the investigation of methods
that can deliver quanti ed perfusion and functionally relevant variations
is very interesting. Clinical studies using BOLD and ASL data could bring
some light into the understanding of neurovascular and neurodegenerative
diseases through longitudinal studies.






B Notation

A.1 Basics
n:1..N Scan indexes
j:r1.d Voxel indexes

m:1.M Experimental condition indexes
y; PR N Data fMRI time series acquired in voxgl
xm N p D 1gbinary onsets matrix for conditionm

A.2 Forward model (bLTI)

by PRN Gaussian noise vector in voxgl
d:0..D HRF coe cient indexes
hPRP 1 HRF to be estimated
m HRL for voxelj and conditionm
gPRP 1 PRF to be estimated
cjm PRL for voxelj and conditionm
P r pi,...,prs Low frequency orthogonal matrix of sizBl F
i PR F Nuisance parameter vector for voxgl
q Scalar modeling perfusion baseline at voxel
w PRN encodes the di erence in magnetization signs between control and tag

W diagw) diagonal matrix withw as diagonal components
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Notation

A.3 Probabilistic model

o} Set of all hyperparameters

Vi, Noise variance for voxe

n' Mean value of HRLs for non-active voxels in conditiom
m" Mean value of HRLs for active voxels in condition

hy' Mean value of PRLs for non-active voxels in condition
h" Mean value of PRLs for active voxels in condition

vg'  Variance of HRLs for non-active voxels in condition
vy’ Variance of HRLs for active voxels in condition

rg' Variance of PRLs for non-active voxels in conditiom
ri*  Variance of PRLs for active voxels in conditiom

q Vector of allocation variables coding for voxel states

i class index in the Gaussian mixture model (GMM)

Va  Variance of the perfusion baseline

v-  variance of the drifts

v  Vvariance of hemodynamic response functibn

I hyperparameter orvy,

vg Vvariance of perfusion response functian

I g hyperparameter orvg

b™ interaction parameter of the 2-class Potts model for experimental condition
| » hyperparameter orb™

A.4 Physiological model

fpg
hpt

Eo:

upt
ypq
fin ptq
foutptq
VRtg
Xptq

S

cerebral blood ow (CBF)

BOLD signal

Oxygen extraction fraction at baseline

neural activity (de ned such that u(t) = 1 in response to stimulus)
ow inducing signal

normalized in ow to the balloon (CBF)

normalized out ow to the balloon (CBF)

normalized cerebral blood volume (CBV)

normalized deoxyhemoglobin (deoxyHb) content

neural e cacy

time constant for signal decay/elimination

time constant for auto-regulatory feedback from blood ow
mean transit time (average time for blood to traverse venous compartment)
steady state ow parameter (Windkessel)



G} VVariational approximation for the JDE framework:
BOLD multiple-session

The full joint model, consideringy t Gmv, vy, b, "y, reads:

py.a,h,q;qq ppy |a,h; , Gyppa|q; mvqpph;vag ppd; bg ppag

1 1

1
pyilash; "5, Ga  ppa™ |t v ppojiba pph;vid ppag
m

B.1 Likelihood

M
@PJ,@PS y7 ~ a™Xx™h P} b}, (B.1)

m 1

whereX ™S is the linear function that associatdsto x™S h and will be di erent across session®, S will be also
di erentin each sess;ionbjS are independent and normally distril|3utetn?S N p0,pGq 1q whereq L j{v . Here
| ]

we conside|r White Gaussian noise, kg | . We denote by ) Jsj PJ ,sPS the setof low frequency drifts

and byG . @,j PJ ,sPS the set of all precision matrices. It comes that:

1 1
ppy [a,h;", &g ppyPlas.h;"f, Gy (B.2)
PSjPJ
M
with  ppy7lafh;"$,Gg N a™X ™h PP pEq (B.3)
m 1

B.2 Variational EM

The expectation and maximization steps read as in the single-session model:

E-H: P} %pha9 exp B tagr 19 log pph | y,a” 9.g™ %qq (B.4)
E-A: fa a9 exp Ejrgr 1 log pmly,h"%q” %67 % (B.5)
E-Q: P Pag9 exp  Egpaga log pply,a”® h™ s o % (8.6)
and the corresponding M-step:
M: o 9 argmax Epamegea l0g ppy,a”hhqq” 9 qq . (B.7)
aPQ & th T

These steps are now given in more details in the next subsections for the multi-session case. For simpli cation, the
prgandpr  1gsuperscripts are omitted.
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B.2.1 E-Hstep

paohg N pfip, Spg where (B.8)
~ 1 R . . o ~ ~ m,s mls
Sht Mgnsfl e Ve mie X MSGEX ™ (B.9)
h' sPsjPImm? % 39
_ M
mp  Sh fﬁa]m:spx ™dGy; P g (B.10)
SPSjPImM 1

If we consider the constraint in the norm df:

h  argmax Ep, logpmh|y,a;aqq ,
hsthTh 1

Solving it amounts to minimizing a quadratic function ih under a quadratic constraint, namely™h 1. The

function to be minimized is
Mg Sy Mg 1hTh

B.2.2 E-Astep

1 1
papaq N mis, Ss ,with: (B.11)
LS
1 1
S¢  Ep, X5dGX s D (B.12)
i 0
= S S s s's ’1 S S ; qum
M g S%s Ep, p)(hqlqsg/j P>5q Dijpm  mq where D7 diag, i ve (B.13)
i 0 i

Ep, PX goqux o isamatrixof dimensiorM M whereX & r X LSh|X 23h|..|X ™Shsand each elemenim, mig
is written:

1 . le o ~ 1
Ep, X ™hdGX ™sh  diipX MSAGX ™Sy, tr SppX M GX ™S (B.14)

Ep, PX ﬁd@w? ps fq is a vector of dimensiorM 1 where each elemergm, 1qis written:
Ep, X ™hdGpyf P fa  miX "dGry; P (B.15)

In the end, we return the level mean over sessiai\J@, with a; t EJ!“,m 1.Muandm & t m e m
1.M,s 1.Su

(B.16)

If we consider the constraint in the norm of hX 8 r X Lsh|X 25h|..|X ™Shs and the computation of the
distribution is directly:

1 1
papaq N rﬁa]_s,éa],s , with: (B.17)
s
1 1
éa]_s XEdGXE D (B.18)
i 0
B ’1
Me Se MidGp] Pfa ~ Dijm mgq (B.19)

i 0
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Note here that whervs is high, DF; will be low andpm  mgwill have less weight ini % Therefore, the sessions
with a low variancevs will dominate the sum.

B.2.3 E-Q step
We assume
Pgmp™q Pempafd (B.20)
iPJ
PyrPa"d9 exp Ep, o p ., 109 PRG" ] g a7y a0, g
Zj

9exp Ep, * log ppa™®|q".qa  Ep,, log ppof”| i b™q (B.21)
s G|

1) ComputationEpa]mys log ppa]mys| qJT“,qq :

log ppa™*| ", qq p1 qg"glogN pa™nf myvg vsq qlogNpa™sef m v veq  (B.22)

consideringEs n ra° sy ms.mls M ms.mis, WE g€t
S B
E I m,s m l m | N 1 Va]mvsa]m*S
pgns 109 PP Ig%ad p1 q'q logNpfigns;ng'  m,vg' Vg 2 v
. 1 Vepeans
g" log N pmgm smt o m, v v STy (B.23)
1 S

2) Computation ofE log ppg” |qrn b™Mq : Considering thea priori distribution of variableq
Py o |

log ppof” | cff;b™g  b™ T 1pg"  6f'q Cag (B.24)
kPN piq

where N pgis the neighborhood of and whereC3,qjm is a constant irqjm.

Epg 109 PR"IGGib™g  Cign ™ T Ep 1 gl (B.25)
“ kPN piq
with C3 q] qu;? C3,qjm ,andquZj 1qu-’“ aq qumqumq Finally, we get
m mq’ 1\76]m,sa]m,s
Pgrrga9exp pl g'q  log N pitgnsinf’ my Vg vsd 5o
s 0 s
m* 1\76‘]!“5""]'"]'S m m
o] log N prim st om, v v STy b plse e (B.26)
s 1 s kPN piq
B.2.4 M-step

As for the E-step above, the superscriptyis omitted in the following developments about the M-step (E.12).

B argmaxEgp,gp,p, log Py, a,h,q;qq
aPQ

argprgax Epapnpy 109 PR [a,h;", G0 Ep,p, log ppa|g;mvq
q

Ep, log ppa;bg  log ppb; | ba  Ep, log pph;vig  log ppvy; | hg

Given the separability of the priors pdfs, it follows that the M-step also divides into separate M-steps:
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M-pmvgstep

Updating parametersnandyv is straightforward since closed-form expressions are available:

pnpg argmaxEg,ps, log ppa|g;mvq
mv

In the E-Q step we already computéth, log ppa |g; mvg from which it comes:

>M B B ,S l Va]m,sa]m,s
Epopa 109 PR GimV PgrAa log N pmgns; mom vt ovsg SR
m 1jPJ it 0,u s 1 i s

This latter expression is similar to the one to be maximized in a standard Gaussian mixture when replacing the
observed data by therms's. Not surprisingly, we get:

3

) ~pq m,s ’ ~pq m,s ~ms m,s

iy PRAmy oy PqrRa P prft mad  Tgneyn

mf"  mg 0 and pf" vgg T
Pgm P9 PgnPa
jpy jpy
M-vy, step
. (
vy, argmax fpvhq arg max, Ep, log pph |vhg  log ppvp |1 v, 0 (B.27)
Vh

where thea priori ppvp |1 v, q | v, €xpp | v, Vhgallows the better estimation ofy, [Chaari et al., 2013].

1. If we use an hyperprior

D 1
Ep, log pph [vhg  Cy, 7log Vh

Bfpvi,q D 1 iR My

I 0
B\/h 2Vh 2Vf2‘| Vh
andtR M, trpfigmiR g
b ~
pl Dgq pD 1 8y, MR i, tr SR 1
A vy (B.28)
4| Vh
If we do consider the constraint in the norm df:
b
p. Dg @ 1¢ 8, hht R 1
A vy (B.29)
2. If we do not use an hyperprior:
mirR M, tr SR 1!
~ h h h
B.30
A vy D1 (B.30)
If we consider the constraint in the norm di when we do not use an hyperprior:
B tr hht R 1
A vy, ——e——— (B.31)
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M-b step

The maximization over each™ corresponds to the M-step obtained for a standard Hidden MRF model:

B" argmax Ep , log ppa™; b™Mg
bm

argmax Ep rlog ppg™ | b™gs  log ppo™ |1 bq
bm
! )
argmax logZpo™g b™ qum rUpg™gs | Cpm arg max fpb™q
bm [
The maximization off po™gneeds the computation of its derivative with respectid':

dfpb™Mq dlog Zpb™Mq

m
dbm db™m Epm UGS b
where
Zpb™g  exppo™Upg™aq
qm
. 1.
qum Ummq Eﬁqm 1mjm qE]q é pqmm]m qE]q

ik i kPNpig

1. s

3 PG F0OPGrF0d P plapgriplag
. . /| 3 J k
] kPNpiq
dlog Zpp™q

dbm Epgn Upd™d

wherepgm  ppg™; b™Mgthe prior MRF de ned in section 2.6.
It can be solved using a mean eld like approximation as done in [Celeux et al., 2003]:

dfpb™q

9o EpvrrUpm™as qumrUmmqs I b

o
ro 1
exppb™ kprjquLn qm}“q
o

+
wherepMFpg™g  —; pMFpgMqwith pMFpg™;bMg - oI
) ) iPt0,1u €XPPO™ N pig Pgn P
It follows that b™ must satisfy the following equation:

peeriapgria pYFpa  ibTapMpal ib™g 1y O
j kPNpgit 0

M-p , &gstep

P, & argmaxEg, log ppy |a,h; , & .
e

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

This maximization problem factorizes over voxel and session so that for ¢&h andsP S, we compute:

S . N
ij,vgjq arg max Ef’ajs log pry?|as,h; . G
g

M-vy, Considering the independence betweeﬁjs| ajs, h; j,vgj U 1.3 We can write:

7S S S .YS ,S
Vi, argmaprajs log p yj|aj,h, i Vi,
Vi
b.

]

(B.39)
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o

From the de nition of likelihood we can compute, considerir}(j yjS a]T"’Sx msp ps f
m

2

N
S S ~S ,,S s
Eph,pa]_s logp yilaj.h,"} vy s — log v

And we have:

1
N

% rﬁta]-SEph X RdLX | Mg 1t Sep X EdLSX |

~ t ~ ~ N
2fi By, X pdLiy; P=fa py; PT{dLipyf Pid
If we constraint the norm oh:
. 1 - =
vgj N malsp(Fdefxﬁmals tr Sa]_steqLjsXE

~ S S S SN S, S SN S S S SN S

2MiepX 2dLy; P py; PTidLipyf P ia

M-

For the same reason (independence betvayej?ﬂ ajs, h,” JS vgj U 1.J) we can compute:

<S N

j argmax Epajsyph log ppy}| @5, h, f,vﬁjq
Consideringy® y? a]!“'sx m.Sh

m

J

Cs pySdGY;® py;dGP ™} p fdP *dGy? p " jdP dGP '}

J

t
og pyflash, Svia Cs yf T @™X™h PSS G yf T a™xMh PSS
m

S S S ,,S
Epajs,ph log pylafh, "7, vgd

J

Ct Epep, WGV 29 [diPGE, ., V7 P fdiP GRS
By deriving the previous equation with respect {q we get:

B S ~
BP? 2P dGEp e, V) 2P %GR VectO

A7 ppPdGP g P Sntpajs,ph y§
pp P SQIG]SP sq 1FP sqt yjs B rﬁa]m,sx mSiH h

m

If we constraint the norm oh:

fi c;_s ppPsCfG]sP sq 1nDsCprajs yjs

pp Psqtqsp Sq lFP sCf yjs ) ma]m.sx mShH

m

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)



el Linearization of Physiological Model

From the physiological model introduced in the main text that we call extended Balloon model, we get a set of
di erential equations. We want to linearize this non-linear system with four state variabissf ;,,, v, qu:

y fin 1
¥ au T

. {fin Cl1
(@ & B g o
%\p = fin v
Consideringtxl,xz,x3$x4u ty,fin 1,1 v,1 qu, we have:

: X1 Xz

i>91 au T, :

&% X1

8 & e 19 pl xagh (C2)

i 1

H xp 1 1

b & ope 1P p1oxod xagw

To solve non-linear systems, we can analyze the dynamic system to check if there are steady-states: time derivatives
to 0, or our resting state. The linearization goes: we choose a relevant point to make our linear approximation
around it, like the resting pointy ,f;, 1,1 v,1 qu t X1,X2,X3,Xau t 0,0,0,0u, and then we calculate

the Jacobian matrix at that point:

B9, BS B BY 1 1 0 0
Bx; Bxp Bxg Bxy ty ty
Bg, BY, B By 1 0 0 0
J BX 1 BX » BX 3 BX 4 (C3)
B B9  BO  BE 0 - —L 0
Bx; Bxp Bxz Bxa tm TmW
B9, BY B B 0 1 7 Pl Eodinpl Eq 1w 1
Bx 1 BX o Bx 3 BX 4 tm =) Wt m tm
All of them are quite straight-forward. In the case %?—‘2‘
B9, 1 1 1 1
— —— 1pl Eyg2? X 1 Eoqz *1In Eog——
BX, tmEo p q p q pl q pl qp(z 17
if we consider the steady-state point, 0,
1, P Eoghnpl Eg C.4)
tm Eo
After linearization (taylor seriesfp0q  fpxq, X2, X3, X40  ...), we have:
$
' X X
R
&
X
R (€5)
% X2 W
%)94 ﬁ 1 B quIEr;pl Eod LWys x4
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Consideringg ﬁ 1 %rlpl&)q , we can diagonalize the system by consideribgthe di erentiation

operator and the identity matrix. If we just consider the relationship witk »:

$
i&quthu X1
. D WIITn txsu ﬁXZ (C.6)
! . 1
% D - txau ol ¥ D g X2
Now, we introduce the BOLD respons$gtq which is the HRF wheuptq  dptg
h  Vopapl qq kepl qv 'q kspl vdq
Vopkixs kz 1 p1 xu0d x3q ' ksxsq
Vopkixs kopxs  x3gd x3q ' ksxsg (C.7)
The Jacobian is:
I B Vorks  kod Vopki  kog (C8)
And the system of equations:
X3
h Vo k3 kg [k koq X2 (C.9)
Therefore, after linearization we have
h  Vopiky koxg p ks kooksq (C.10)
We want to nd the relation betweerh andx, fi, 1, asx, represents the in ow of blood in the ballon.
I 1 W | Lk ke | 1
h V keq D — I D D C.11
o Pk kg - g Wiz W - W X2 (C.11)
Therelationh W x,thenis:
1 1 W | Tk ke | !
wl ooy koq D | D D 12
o Pk kg - g Wiz W - - (C.12)
if we consider:
; 1
1 |
&A i D @
. | 1 1w | 1
%B D & gl =¥ D g
W Vo lpks kB phks keoAq t (C.13)

The condition number ofVis conddWq ¥ P’VV\;% 2.58

If we consider the non-linear equation of the hemodynamic or BOLD model:

1
W Vol kB kB Agp Agl kA (C.14)



) Markov Chain Monte Carlo solution for ASL JDE

Here we develop the inference using the following priors forandg:

h N p,vhShq (D.1)
and glh N pwh,vgSgq (D.2)
D.1 Likelihood
M
Let rj ; g'wX Mg a™ ™ P’y aw bjs Np,vping
m 1
1J J 1
The likelihood readsppy | a,c,h,g, ", a,vpq9 vij{2 exp ’ 7rjtp/bjl,\|q 1rj (D.3)
i1 i1

where Jis the number of voxels, anlj; is the noise. We consider white noise.
D.2 Joint posterior density

D 1

J
b1 1 1 2 2 142" 2
prR,c,h,9.0.qlyqov, 2 vg 2 [Spl 2[Sg 2P Tty A2 M2 p N el

1
j 1

h's,'h . WhdSglm wha T ingli?oaf P
. exp I
2vh 2vyg i1 2vbj 2V, 2v:
1 1 m ! h."”'q2
: ; 12 12 rh e gty
' ot daela Pl e o 2
m oo I i
1 1 2
. Zpb™g texp b™ " 1" gfiq Mg U2y mg U2 1P ba brag
it mo i

(D.4)

D.3 Gibbs sampling

To sample the posterior of interest, each variabdeP X,pX t a,c,h,g,a, ,quqis sampled using a hybrid
Metropolis-Gibbs sampling scheme and posterior mean estimates are computed after a burn in period.
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D.3.1 Partial residual quantities

The following quantities will be used afterwards:

Yi Yj P‘j Qjw (D.5)
sM :M >M 1 1

v Y "WX Mg yojzm Y "WXx Mg a™X ™h (D.6)
m m ml m
M M M "

yi oy & ™ yi" oy @™ T d"wx Mg (D.7)
m m ml m

D.3.2 BRL and PRL conditional posterior
pmly,c,q,h,g,a,‘,qq pmj|yjicj!qj1hvglaj!‘jqu (D8)

From the joint posterior, we can derive

# 2 m an2+
. 1 " . P8 .

pPa; ). .05, h.g.a),"j, a9 exp 3 VJb % oM whereq" i (D.9)
i m i

Let r; 2 }Djzm a"x ™h 2 y)jzm 2 28X mth]Djzm p &' X ™h 2
Mot o o P L ot e
and — - B B

m 1 Vi Vi ml m Viml
Thus 3
P p" 2 2aX "hgy™ ' X" P o, fq
pPR; |yj. .dq9 exp,, 5 Ve v v v LT -

The expression is factorized over voxels, but still not over conditions. By considea{%gonditioned to knowing
a]-ml M we can ignore the cases when conditiont m and factorize this expression as:

$ L
& My My AT 2™ m mp 2 m i
gty ggeexp. L 2APCAY e Xttt nf'e
PPey 1 4 Yir - Aa2 €XPo, 5 Vi, Vi v -
1 ]
$ 1
U S A M S A
o 2 Vi, Vi, vi" viho-
$ 1
& 2 Mis T onZM .
dexp, * prg S Lo M e hay
Poy 2 M Vi, vi" % vi" Vi, -
. X Mh 2 N Vi V"
Let §,° e N h —
Vb Vi X mh v vy
. X Thag™ L X Thaly TV nfyy
Let rﬁa Sa ﬂ S . Sa ) ! nTn J

m
\& Vbj

We can identify this expression to a posterior Gaussian density:

T ynZMy,m
emy; V; Vi, "

my 1 m
p/i,jq Viji

m
Vbj Vi

1
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Similarly,
ﬁ 2 @ -
. 1, yi . p" h"@¢ - '
pcly.a,a.h,g,a," qa9exp, 3 VJb - S whereq” i (D.11)
j /| m |
1T ZM . m m m
em Yy r" vph Vp I
Mig" i,..q N ]! L rm o with e WX Mgandr™m —— ' (D12
pmj |qJ q p.mq 1Vbjrim 1) m g 1] elmTE%rim Vbj ( )
D.3.3 Labels conditional posterior
1 1
pe|y.a,c,h,g,a,7,q9 9 T igqfg Mg M2
m J i
NG A ,
.. exp - 2 J 2riml exp bm' | 1pg" qj”fq (D.13)

it

The conditional posterior of|™ is identi ed to an asymmetric Ising eld. Considering\ piqthe neighbors ofj:

1 m m m
. . logpy™r ™ ! ¢ " h"
oy, ..qq9exp b™ T 1" g | 1" iq —oi i i ::’n L
) ) 2 2V 2rm
kPNpiq i 0 ! [
(D.14)
D.3.4 BRF conditional posterior
h's,'h pg WhdSg'mg Whg .7 |Irj|?
. h g J
ph|y,a,c,q,9,a, ,qq9 exp v, Vg A (D.15)
Let ||rjlI? Iy Sihll py Sjhdpp Sjha pSjhdpsihg pSihdy  ppSiha || will%,
whereS; M, a"xX ™. Then
9 exp 1 his,'h  ph'W'Sg'wh p WhdSg'g g'Sg'wh g's,'gq
2 Vh Vg
J ph'sisich p Sihdy  piesiha |l will*g
i1 Vb
J J
t g 1 te 1 10 t 1 t te 1, 14 ° ot 1
9 exp > h* v, S, WSy "Wy, ijquvbj h 2h" WSy7vy-g Sj]Z)ijj
i1 j1
1 ~ 1 J
9exp — h'Sp"h  2h' Wisgtvglg Sjt}ojvbjl
i1
Thus pphly, ...,qqcan be identi ed to a posterior Gaussian densify: prfi 1,, 51, where
3 1
S 1 1 1 1 > t 1
Sh v 'St Wis, twg mS]Sjv, (D.16)
i1
) J
Mn  Sh W'Sglvglg s}pjvbjl (D.17)

j 1
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D.3.5 PRF conditional posterior

pg WhdSg'pg Whg .7 ir|I?

h,a,” 9 D.18
pRgly.a,c,q.h,a,",qq9 exp g Lo (D.18)
Letllrjli> 1ly; Sjgll py; Sjodpy; Sjga pSjgdpsSjga pSjody; yirSjga Il yjll%
M
wheres; m 1G WX
o 1 WS tWwh p WhdS,'g g'S,'pwhg g'S,tgq
exp  —- Ve
. p'es{Sjay p Sjady;  yipSjaa Il yill’g
i1 Vi
1 J J
t 1l 1 ° t 1 t 1, 1 : laty
9 exp - g Vg Sy rSijqvbj g g Sgvg Wh vbj Sjyj
i1 i1
1 J ! . J
& 1, 1 : laty & & 11 , let—
9 exp - 9 Sy Sg'vg'Wh v, S}yj Sg7 9 Sy Sglvg'whn Vi, S}V
i1 i1
Thus pply, ...,qgcan be identi ed to a posterior Gaussian densify: pfi g, égq where
3 1
~ . 1
Sq Vg Syt ijtS]-qvbj (D.19)
i1
J
~ 5 l J—
Mg S Sglvgtwh vy SHI (D.20)
i1
D.3.6 Perfusion Baseline conditional posterior
cog aIrl1?
praly,a,c,q,h,g,,qq9 exp FTETA (D.21)
i1 i

Let|[rjli> Il za awl||®> pza awdma awq a'N 2aw'za || ZZ|

wherez, y;j n'\f 1 c}“WX Mg a]!“x Mh P’ is constant due to the given information.

ajzp/bj Nvaq aw'zava || z||va

L3 a2 &N 2aw'za || zall2 Y
9 exp L J 9

2Va 2vy,

exp—1
i1 i i1 2

VaVbJ

Vp.  Nva

2 i
Lets, Viva

1J t 1J 1J
1 a2w'z 1 wiz a;
9 exp —s,%p@’ - %529 9 exp —s,%my 8s2¢ 9 exp pjizmiqz
i1 2 : Vb i1 2 b i1 253

W'Zava
VW Nva*

Letting my th;asg Thusppaly, ...,qqcan be identi ed to a posterior Gaussian density:
]

wlzava VaVp,

a9N ,
! Vh, Nva'vy Nva

(D.22)
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D.3.7 Dri Coe icients conditional posterior

\ H il el
PP ly.a,c.g,h,g.a,qq9 exp — = N (D.23)
i1 by
Let|Irjli> 1l z2, P> pz, P jdm, P’jq pP jdpP jq pP jdz, ZIJ.FP‘jq | Z?jll
wherez:, Mo ¢g'WX Mg a"™ Mh  aw is constant due to the given information.
13
9 ep pleve Pthbjlq‘j pP‘jq‘z\jvbjl zPJ_;P‘J-qvbjl
i1
LetS. ! pv.?t vbjlq SinceP is an orthonormal basi® tP 1.
1J 1
9 exp —p; SPlzov. ds. p; SPlzv g
i1 2 | J bJ J ] bJ
i
Letm p S-P tz\jvbj lor Thuspp |y, ...,qgcan be identi ed to a posterior Gaussian density:
ON SPizov et vyt ! (D.24)

Vectors”; are independent. As long as there is posterior independence, ie the expression is a product over sub-
variables. The sub-variables can be sampled in parallel.

D.3.8 Hyperparameter conditional posterior

Let§ be the set of all hyperparameters except the one in question.
Mixture model parameters for the BOLD component  da P My, Vimd

1J m

. _ MM me

ppn,mlyla!CYQ!h!grav yaqg 1mjm Ilep L
i1 2Vim

(D.25)

Let J denote a set of vowels belonging to class i, ddd denote the number of voxels belonging to class i.

N 1 My 2Mad” 1IN, 2dmn e 8

9 1pg"  igexp 9 exp
i1 ! 2 Vim Vim 2 Vim Vim
3 jpg &" .
Lets,,2 ﬂ My s3 — 11 15 a"
Vim Vim iP3

Thus, the posterior conditional afy ,, can be identi ed to:

5 Vi
PPM mly, --.,6@ON ", o (D.26)
g
1J m
. . " M
Pvimly.a,c.a.h,g.a 6oy« 1l iy o exp pa’T
j 1 . Im
m
o M
g\P1 3l 192 gy, JPJpZ] M
' Vim

Thus, the posterior conditional of; ,, can be identi ed to an inverse Gamma functidi :

1.1
PV mly. ...6a91G Mlz S M (D.27)

iP3
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Mixture model parameters for the perfusion component  dc P hjm, r'imd

Following the same steps outlined in fap,

1J pdf’ hi,mq2
phimly.a,c,q,h,g,a,",609 1pg"  igexp — (D.28)
j 1 I,m
L) mm hi qu
primly.a.c.a.h.g.a° boor, o 1l g e —o—— (D.29)
j 1 Im
Thus, the posterior conditional df; ,, andr; i, can be identi ed to:
, Vi
pphi mly, ... 69N ", ﬁ (D.30)
iPJ
1. 1
PR i mlY,....6a91G le : épcjm i mf (D.31)
iPJ
HRF and PRF variance v, and vg
. pD 10f2 htSh 'h
ppvnly,a,c,q,h,g,a,",badv, P o (D.32)
tS 1
ppvgly,a,c,a.h,g,a, ,bgavd © “Pexp % (D.33)
g
Thus, the posterior conditional of, andvg can be identi ed to:
D 11
pOVhlY, ... 6A91G T,Ehtshlh (D.34)
D 11
pRvgly. - ba91G ==, 59'Sq™g (D.35)
Perfusion baseline variance vy
1J a2
prvaly.a.c.a.h.g.a baovd T 1 exp (D.36)
i1 a
Thus, the posterior conditional of- can be identi ed to:
Jo11)0
pvaly, .. BQ9IG  —=,5 " & (D.37)
i1
Dri coeicientvariance  v-
1J ~n2
ppv |y,a,c,q,h,g,a, ", haovP 77 1 exp % (D.38)

Thus, the posterior conditional of- can be identi ed to:

1.7
pprly,..BA9IG  ——,5 " | ilI? (D.39)
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Noise variance vy,

J
lIrjlI?

1
povply.a,c,a.h, g8 b6a9 v N MPexp (D.40)
. 1 2Vb].

j 1

Thus, the posterior conditional ofbj can be identi ed to:

N 11
PRy 1Y, - BA9IG ==, J]Irj|I? (D-41)
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As introduced in the document, the variational approximation through mean eld assumes independence of the
probability distributions. The E-step is instead solved over a restricted class of probability distributions that factorize
asfpa,h,c,g9,09 Papad P g pepcg PgPad Pgpaa The E-step becomes an approximate E-step that can be further
decomposed into ve stages. At iteratiomg

E-A: Papac9 exp Egpr sage sagr mgr 1a log praly,h¥ 19, 1a g 19 g 19 g9 (E.1)
E-C: pepeg9 exp E,ag'qf,gf tgpr g 1o log ppc|y,aPd, hP 14 g 19 g 19 gag (E.2)
E-Q: ph %paq9 exp Eﬁﬁ'qpé’rqﬁﬁr tngr 19 log ppg |y, a9 h™ 19 cPa g 19 grdg (E.3)
E-H: Bnphg9 exp E oo 1 log pph | y,afd,c”9, g" 19 g7 % g7 % (E.4)
E-G: Pgpgq9 exp Eﬁgqurqﬁﬁrq log ppg | y, a9, hPa cPa g% g9 (E.5)

The correspondindvi-step reads:

M: g™ 19 argmax E g o prazoaza 10g ppy,aPd hd cmd gPd g9 ; qq (E.6)
9PQ Pa "Pc "Pg Py, "Pg

If constraints on the norm of the response functiohsandg are imposed, then:

E-A: Papag9exp Egn 1app 10 log pmy AP 1.c7 19,67 1.q7 1979 (E.7)
c q
E-C: pepog9 exp Epazr 19 log ppc|y,aPdh% 19,67 1, q7 19,79 (E.8)
a Pq
E-Q: P a9 exp Epq o log ppo|y,a”d AP 19,cM4 P 1 g7 (E9)
E-H: h argmax E_pq prq log pph | y,aP%,c™9, g7 19, q7% g™ (E.10)
hsthth 1 Pa Pe
E-G:§ argmax E_mq pq l0g ppg | y,a”d hPa cPd g a g7 (E.11)
t Pa "Pc
gstglg 1
The correspondindv-step reads:
M: g 19 argmax E_pyq pq.mq 109 ppy,a®d hPa cPd g9 g a: qq (E.12)
qPQ Pa "Pc "Pq
These steps are now given in more details in the next subsections. For simpli cationytiendpr  1gsuperscripts
are omitted.
E.1 E-Hstep

Constant terms inx will be namedCy or C; x, Co x, etcwhen many constants in a formula. Ten]vh?w mjm 1gwill
be qum plgfor simplicity. By convention, vectors are column, and their transposk is
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Here we denote by 5 and éa,- the mean and covariance matrix @, and write rﬁa]_m for the mt" component of

~ ~ ~ - ~ 1 ~ ~
vectormi 4 (ma]m Ef)a]_ a]m )andva]majml for the pm, m'gelement of matrixSa (Va]ma]ml Eﬁa]_ a]ma]m ma]mma]ml).

™M ™M -
We also denotes; a].mX ™ ands; c'j“WX ™. To simplify, we consideP *; P *; wa; where, for
m 1 m 1

. < ~ T . . ~
jPJ,’; &, andsimilarly’ r a,’s'.

preha9 exp Ep popop,flog Py, a,c,g;q0s
9 exp Epp.p,r109 PRy |a,h,c,g;qgs log pph;vhq log ppg|Wh:vgq (E.13)

1) Computinglog ppy | a,h,c,g; a9
Consideringy; y; Sjh Sjg P jand that we consider the terms depending bnwe write:

1.
log ppy [a,h,c.g:00 Cin 5 ¥]GY;

iPJ

1. —

Con 5 Nh'S|GSih 2n'S;Gpy; Sjg Pjq (E.14)
iPJ
where G %Lj, Cip Nllog2p  JlogL ;| NPJIogvtJj and Cyp, Cih %Pryj Sig
j jPJ

P jdGpy; Sjg P'ja

2) Computinglog pph | vhg
Based ora prioriHRFJog pph [vhg  Cap, ﬁhtsh th, with C, D-liog2p 25liogvy 3log|Shl.
3) Computinglog p g|Wh; vy :
Based ona priori PRF,log p g|Wh;vg Can ngp\th‘Sg wh in\th‘Sg 19, with Cyp
D.liog2p Byllogvg 2log Syl nggtsg 1g.

It follows that:

prah g9 exp Lot Sh’ Lsg w E,, SI!GS; h
h X 2 Pa j j
2 Vh Vg iPJ
t \N[Sg 't g B t .
2h Vv Epapcpg SJG]WJ Sjg P Jq
9 iPJ
5 t 5 5 1 1
where, Ep, S;GS; Ep o a]ma]m pX mthJX m
jPJ jPImmt 9
s 5 1
MM 1 Vot pquIG]Xm
jPIm,mt 3 59
M
Epapob, 5GP Sig P ja fgnpX "dGpy; M WX Mg P g (E.15)
jPJ jPIm 1 m

So in the end we have:

pnohg N pfi, Shg where (E.16)
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. Iowts,'w
gt Sh 9 fgn ot Voot X MGGX ™ (E.17)
Vh Vg jPIm,ml 3 79
3 . Wsgtig . M " . . —
My Sh — fignpX dGp; WX Mg P g (E.18)
9 jPIm 1 m

If we consider the constraint in the norm di:

h argmax Eg . logpph|y,a,c,g;qq
h sthth 1

Solving it amounts to minimizing a quadratic function in under a quadratic constraint, namely™h 1. The
function to be minimized is

ph Mg Sy Mg 1hTh

E.2 E-Gstep

As in the previous step, we denote bTij and éc,- the mean and covariance matrix qifcj and write rﬁC}n for the mt"

componentof vectorg (Men — Ep, ¢ ) andV 1 for the pm, m'gelement of matrixS, (V mant  Epe cngn
I ‘ O G i Ve I
m¢m¢u
PgRga9d exp Ep p pep,flog P |y, a,c,hiqgs
9 exp Epaphpcrlog py |a,h,c,g;qgs Ephrlog ppa|Wh; vgas (E.19)
wherea does not depend og.
1) Computinglog ppy |a,h,c,g;qq
We consider the terms depending @) we write:
. 1. t
logppyla,h.c.g;00 Cig 5 ¥;GY;
jPJ
1. —
Cog 5 9'S;GSju  20'S{Gpy; Sih P q (E.20)
jPJ
whereG L Cg Nlog2p JloglL;] N logsjandCog Cipn % p; Sih P dGp;
i jPJ iPJ

th P‘jq.

2) Computinglog p g|Wh;vyg :
Based ora priori PRFJog p g|Wh;vg  Cagq nggtsg 19 WIQZQth wh, with Cy 4 D Lliog2p

B LlogvgpWhdS,*Wh 3 log |Sql.
It follows that:

! t t Sglwmh s t 5
E 9 Tg Epc SjG]Si 9 29 Vg Epaphpc jPJquwj th P i

=
n
(=]

PgPIq9 exp
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s o
where, Epc Sj GS;
iPJ PImmt G

Mantfons Tongra VX mfgwx ™

g™ pvx "dgwx ™

Epape ~ SIGHY; Sh P MV X "dGpy; gnX My P g
iPJ jPIm 1 m

So in the end we have:

pgrog N pfi g, Sgq where

S' = T g T PVX MdGWX ™
1

If we consider the constraint in the norm df:
§ argmax Ep,, logpph|y,a,chiqq ,
gstglg 1

Solving it amounts to minimizing a quadratic function ig under a quadratic constraint, namely’g
function to be minimized is

o med S,y Mga 1g7g

E.3 E-Astep
Here, we focus on Eq. (E.7) where the independende afhdq anda K h|q leads to:

Papaq9 exppEg, 5.p.5, 109 PRaLIY, h,c,§,0;90 q
9 exprEg 5.n.p, 109 PRY |a,h,c,9,0;q9 log ppa|d;qaq
9 exppEg, 5,p. 109 PRY |a,h,c,g;a,", Gy Eg, log ppa|g;mvqq

1) ComputingEy, 5 . rog ppy |a,h,c,g,q;qas
The same way, the log-likelihood reads:

B

log ppy |a,h,c,9,9;09  Cya ¥iGY;
jPJ

C2,a

NI NI

ty t ty t 5~
ajXpGXna; 2a;XpGpyj Sjg P g
iPJ

whereCy, Cppwere already denedanC;; Cpn % v Sig p_‘_thqwj Sig P_\_jq
iPJ
aj r a]-l,...,a].'\"§ andXp r Xth|X?2h|.]X Mhs

We can now do the mean of the previous term (equation (E.28)) with respec to other variables:

(E.21)

(E.22)

(E.23)

(E.24)

1. The

(E.25)
(E.26)
(E.27)

(E.28)

1, __
Epyp 1109 PRy [a,h,,0,0:908  Coa 3 ajEp, X GXn aj 2ajEp 5 XRGHY; Sjg P g

jPJ

(E.29)
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Ep, X ;]G]X h is amatrix of dimensiorM M where each elemenim, m'gis written:
1 1 - 1. ~ 1
Ep, X ThdGX ™h  E, h'X™dGX™h  miX "dGX My, tr Sppx MdgXx ™ (E.30)
Ephﬁgpc X tt]q;:yj Sig P_‘_jq is a vector of dimensioM 1 where each elememm, 1qis written:

—— t —
Epigpe X "dGry; Sjg PYja Eppp h'X "dGry; Sjg Plyq
M
X "dGpy; figmW X ™fg Piq (E.31)
m 1
2) Computing qu rlog ppa | q; mvags wheremv are the GMM parameters of the hemodynamic component of
the signal. We can write;

logprla;mvg ~ ~ pl q"glogpN mf,vgagq g log pN pnf?, viqq

m o j
m m
1. " nfd "o
Csa > pL QPq FB]T an FB]T (E.32)
m j 0 1
e m 21 m 21
whereCz 5 . pl g glog oy U IogTvT
Ep, 09 ppa | q;mvas
1. . " P " e
Cia 5 Epn PL g9 ——5— B " ———
a2 i P ) v Pgm v
m m
1. . "ongd mone
Csl‘,a > 1 qumplq pa]T qumplq pa]T (E.33)
m 0 1
i
whereC3, Epy, rCsas
In matrix form, we note:a; r a]-l,...,a]!\"§,qj r qjl,...,qj'\"s‘,m r m,...mMs fori P t0, uand
0 ' 1 qulplq 1 qul\/l plq L _ qulplq quM plq '
Daj diag v " 'Da,j diag IR . The equation (E.49) becomes:
1
. 2 1. i
Ep,flog pa|g;mvas  C3, 5 e mdDymr; mq
jio
) 1 1 1
Ca Caa 5 a Dy aj 2a] DM (E.34)
j i 0 i 0

o

o1
5 ) _
whereC3 , is the matrix form ofC} ,, C4a 3 N 0njD'ajm.
By replacing equations (E.29) and (E.34) in equation (E.27) we get:

1. o = 1 -
Parg9exp 5y MadSy Ty Maq
]
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Then
l ~
j
1 1
. t 1
Sg  Ep, XpGXn D} (E.36)
i 0
Ma Sa Eppp, XnGPj Sjg Pjq D,;m (E.37)

i 0

If we consider the constraint in the norm df andg:
1

papaq N rig,Ss , with: (E.38)
j
1 1
S X;GXj Dhj (E.39)
i 0
~ —_— ,1 .
My Sa XEGRE; EnrSjgs Pljg ~ Dym (E.40)

i 0

with X i r X th|X 2A[..|]X Mhs

E.4 E-Cstep

Here, we focus on Eq. (E.7) where the independenag aidq andc K g|q leads to:

Pcpca9 exppEs, pypapy 109 PRClY,h,a,§,9;09 9 (E.41)
9 exppEg, pyape 109 PRY |@,h,c,g,q;99 log ppc|g;qqq (E.42)
9 exppEs, s,p. 109 PV a,h,c,0;8,7, &9 Ep, log prefgih,raq (E43)

1) ComputingEy, , . rl0g pry |a,h,c,g,q;qas
The same way, the log-likelihood reads:

" YiGy;
iPJ

log ppy |a,h,c,9,0;99 Cic

Cac CX gW 'GWX gcj  2¢[X gW 'Gpy; Sth P g (E.44)

NI~ NI

iPJ
whereCy. Cjqwere alreadydenedanC,c Cic 5 B Sih P jdGpy; Sih P g
iPJ

c r cjl,...,cj""é andX g r X 1g|X 2g|..|X Mgs

We can now do the mean of the previous term (equation (E.44)) with respect to other variables:

T
-

. 1. tyt t typ
Epgparlogpw|a,h,c,g,q,qqs Coc > chnggW GWX g ¢ chEphpgangW Gy Sjh
jPJ
(E.45)

Ep, XgW 'GWX g is a matrix of dimensiotM M where each elemerm, mlgis written:

Ep, O'PWX MGWX Mg mipVX "dGWX Mg tr Sgpvx Mdgwx ™ (E.46)
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Eppgpa X WGP Sjh P_‘_jq is a vector of dimensiotM 1 where each elemergm, 1gis written:

Ephpgpa pv X mgth]WJ' Sih P\jq Ephpgpa gtp\NX mQtG]ij th P‘jq
M —
MyWX "dGpy; fgnX My P g (E.47)
m 1

2) Computing qu rlog ppc | g; h,r gs whereh,r are the GMM parameters of the perfusion component of the
signal. We can write:

log prc|a;hrg ~ ° pl gMglog pN phd',rg'gg o log pN ph{’, r'qq

mj
1. . P hg'e " hie
Cac > pL qunq JT Qjm JT (E.48)
m 0 1
° e m 21 m 21
whereCs¢ . Pl g glog 27T o Iogﬁm
qu rlog ppc|g; h,rgs
1. . P hg'd? " hP'eP
1 = m ] m I
C3,C 2 m qujm pl q] q rOm qujm qj rT
1. . " hg'd " h'e?
G 1 pppld  ——m—  PgAld — (E.49)
2 . I r I r
m j 0 1
whereC3,  Ep, rCcs
In matrix form, we note:c; r cjl,...,cj'v'§,qj r qjl,...,qj""é,hi r h,...hMd fori P t0, uand
1 paplg 1 pmPplq Pg1PLg Pgm PLq
DY, diag L — ,DL. diag —4—,...,—5— . The equation (E.49) becomes:
) Vo "o CJ ra ry
1. .t .
Epflogprlaihras C3o 57 my hdDgpe hig
jio
1 1 1
CSc Cac 5 o Dy ¢ 2o ° Dyh (E.50)
j i 0 i 0
2 ; 1 17T
whereC3 . is the matrix form ofC3, C4¢ 3 . 0hi Dc,jhi'
By replacing equations (E.45) and (E.50) in equation (E.43) we get:
1. ~ = 1 ~
perca®exp 5 poj ModSq R Mgq
i
Then
l ~
Percq N rig,Sq , with: (E.51)
i
1 1
Sq  Ep, XgW'GWX g =~ D (E.52)
i 0
Mo  S¢ Epapwpy XoW 'GP} EprSihs P g Dg;jh (E.53)



148 Variational EM solution for JIDE ASL

If we consider the constraint in the norm ag:

1

pcicq N nﬁcj,SCj , with:
j
1 1
typt N
XGW'GWX g D
i 0

Se

i

1

rﬁcj écj XéWtGJQ/J th P\Jq DIthI
i 0

with X g 1 X 1g|X 2g]..|X Mgs

E.5 E-Qstep

We assume

PomP™d Pempofa
iPJ

PenPof"a9 exp Epa,pqg,pqzm log ppq” | o}, &m, Y@, 0, €, 9, aq
9 exp Epajm log ppa” | 4", qq
Epcjm log ppec” | g, aq
Engy 109 PP} | 65; 0™

1) ComputationEpa]_m log ppa™ [ ", aq :

log pre” [ ", qa p1 qalog N pa™;nf,vg'a " log N pa™; nf’, vi'q

Considerin E~mr-mmls V. nml Mgmm 1, we get
PTG S Vapgrt - Mahignt, WE T
| m m m | N o . m 1\73]ma]m
Epaﬁ_m og ppa" a9 p 1 gf'q log N pign;nf, vg'q >Tym
0
q" log N pfgm; m", vi'q }vajma]m
] R RV

2) ComputationEy ,, log ppc g™, qq :
]

log ppc [qf",aq p1 qalogN pc™;hg',rd'a g log N pc™; hi', rT'q

. . . ml ~ ~ ~
C0n5|der|nngC}nrcjmcj s vC}anml mclmmclml,we get

1 Ve

Epen logppg I aa p 1 qf'g logN piien;hg,rg'a S —m-
J 0

1 cm
m e~ .M .M J
g" logNphemihi,riq 3 rT

(E.54)

(E.55)

(E.56)

(E.57)

(E.58)

(E.59)

(E.60)

(E.61)

(E.62)
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3) Computation Oprqm log pmjm | qgj‘; b™Mq : Considering thea priori distribution of variableq
Zj

log ppa” | o;b™a b™ T 1pg  oflg Cygr (E.63)
kPN piq

where Npgis the neighborhood of and whereC3’qjm is a constant irqjm.

. 1 s
Epp 100 PRO" [0 Cggn DT Epn 1pg qld

% kPN piq
(E.64)
; 1
with Cs,qjm quij Caqn ,andEpqgnj g™ oga  pgrpoa
Finally, we get
. . o 1A
perpoa9exp pl qq log N piigm;nfl,vgla 5 —
] g 2 vg
i 1 Varam
q" logN pign;nf',vi'g 5 f],r:]
. 1\7cmcm
Pl q'q logNphem;hdirga >—4
[ 2 1y
m o omomo L0
0j |09ch;”§h1,r1q 57 m
1

kPNpigq

E.6 M-step
As for the E-step above, the superscriptjis omitted in the following developments about the M-step (E.12).

g argprgax Ep.papgpepq 109 PRY.2.h,C,9,0;0q

argprgax Ephpapgpc log ppy |a,h,c,g;a,”, & Ephpapq log ppa|g; mvq Ep, log pph; Vg
q

Epep 100 PRCIGiN T Q. Ep, log PRIVgq  E, log prm; b

log ppb; | pba log ppvg;l g0 log ppvi; | K

Given the separability of the priors pdfs, it follows that the M-step also divides into separate M-steps:

E.6.1 M{ymvqstep

Updating parametermandyv is straightforward since closed-form expressions are available. It is actually similar to
updating parameters of a standard Gaussian mixture:

pmpq arg max Eg,p, log ppa|gq;mvq
mv

In the E-Q step we already computed:

. ’M > > m H o m 1\73]!“3]!“
Ep. l0g ppa|d;mvq 1pg" ig log N piigninf’, vl 5 —
m 1jPJ it 0,du i
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from which it comes:

M

Epopa logpRRIGMVG  © © " Bgrpg log N pign; nf",viq
m 1jPJ it 0,u

} \73]_ma]_m
2 v

This latter expression is similar to the one to be maximized in a standard Gaussian mixture when replacing the
observed data by thé]a]m's. Not surprisingly, we get:

- °oapq o .
g PgPAME oy PP P 'E  Tenn

o

and p"

 Phmriq ~ Phorig
Py Py
E.6.2 Mqh,rqstep

Updating parameterf andr goes as fomandv:
rh, pq arghmax Epapq 109 ppa|q;h,rq
T

In the E-Q step we already computed:

Mo . 1 Vemem
Ep. log prc|g;h.rg 1pg" g log N pien; ™, 1" 5 —
m 1jRPJ it 0,1u i

from which it comes:

Mo 1 Taap
Epqpe 10g prela;h,rg PgrAd log N phen h™, 1" 5 —
m 1jPJ it 0,u !
Finally, we get:
B ign Byrid Phen PP Vnam
m Py m P30 ' P
y xrq and P e
[Omy o o P Aq
Py Py
E.6.3 M-, step
! )
Vh argmax fpyug argmay, Ep log pph[vhg log ppvp |l ha (E.66)
Vh

where thea priori ppvy || hd | hexpp | nvhgallows the better estimation of, [Chaari et al., 2013].
1. If we use an hyperprior
Ep, logpth [vhg Gy,

= 1% 1
pr/hq D 1 mthSh my tr ShSh
Bvy 2vh 2v2

whereE, h's 'th s 'y, tr §yS, ' andms, ', trpfpdls, g

C
p. Dg pD 1 8 rfiiS, iy tr SpS,t

A E.67
A vy a (E.67)
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If we do consider the constraint in the norm df when we use a hyperprior:
c
p. Dg pD 1¢ 8 pr hhAt st

Aov, - (E.68)

2. If we do not use an hyperprior:

Aoy (E.69)

(E.70)

E.6.4 M-qstep

The same way:

Vg argmax fpvgq arg max;, Ephpg log ppy | vgq log ppvgl! ¢a (E.72)
Vg

where thea priori ppvg |l gg | gexpp | gvggallows the better estimation ofg [Chaari et al., 2013].
1. If we use an hyperprior

1
Epupy P9 WhdS,*pg  Whq
2vg

D 1
Ephpg log ppg |vgq  Cy, TIog Vg

Bipiga D 1 Epp, @ WhdSg'm Whg
Bvg 2vg 2v3 9

Here:
1
Epypy PO WhdSy'pg  Whq
Epp, 'S0 20'Sg'Wh p WhdSg 'pwhq
t 1 t 1 1
Ep, 9'Sg'0 2B, o' Sg'WE, h E, pWhdSy'pwhg
MiSytg tr SgSyt  2MifSy Wi} p Wiy dSytwiii,  tr Spwisgtw

prig WiihdSytphy Wiipg tr SgSgt  tr Siwisgtw
sinceEy, 9'Sqtg  MiSytig tr S¢Syt andmSy'mg  trpfigmi Sy ta

C
pl Dg pD 1¢ 8 g phig WihdSylpiig Wifipg tr SgSyt  Spwisg'w
4l

A Vg

(E.72)

If we do consider the constraint in the norm df:

c

pl Dg pD 1 8¢ pig WhdSy'piig Whg tr S¢St
A Vg (E.73)
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If we do consider the constraint in the norm &f andg:
c
. Dg p> 1 8l g pj WhdSg'e§ Whq

i Vg W g (E.74)

2. If we do not use an hyperprior:

pilg WiihdSytpfhg Wiiipg tr S8, Spwisytw

i vg D 1 (E.75)
If we consider the constraint in the norm df:
) piig WhdSg'pfiy Whg tr SgSgt
i vg D 1 (E.76)
If we do consider the constraint in the norm d&f andg:
B pj Whdsy'p Whg
i vg 51 (E.77)
E.6.5 M-b step
The maximization over each™ corresponds to the M-step obtained for a standard Hidden MRF model:
B" argmax Ep n, log ppa™; b™Mg
bm
argmax Ep_, rlog ppg™ | b™gs log ppb™ |1 bq
bm
! )
argmax logZpo™g b™ qumrqumqs lp  Cpm
bl”n
argmax fpb™q
bm
The maximization off po™gneeds the computation of its derivative with respectid':
dfppb™g  dlog Zpb™q m
4bm T qumrUm gs |y (E.78)
where
R 1. . 1. . .
Epgn U™ Ep 10" &fa 5 prpd”  Gfg S pPERiapgrriaq (E.79)
i K i kPNpig j kPNpigit 0,u
zpMg " exppp™UpMaq (E-80)
qm 0
UpgMgexppb™Upg™
dlog Zpb™ 1 dlogzpo™q g °pq eI EpnrUpg™gs (E.82)
dbm Zpo™q  db™ exppo™Upg™qq pn P00 '
qm

If we use the mean eld like approximation as in [Celeux et al., 2003], we can approxilﬁgqi;ﬁru pgMgsby
EpurrU pgMgsand the equation becomes:

dfpb™q

e EpvrrUp™as qumrqumqs I b (E.82)
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0
pro1q
exppb™  yenpig pan qumq
o

+
SincepM Mg~ ; pM pg"gand pMFpgM; b

1Pt0,1u €XPPO™  ioNpig Dan
m RV T
EovrrUpgas 5 P Pap Pq
j kPNpig O
It follows that b™ must satisfy the following equation:

1> 5 . . . .

> penapiaa pMPpg"  ibTqpYFpof! b 1y O
j kPNpigit O,
E.6.6 My ,h Gaqgstep

This maximization problem factorizes over voxel so that for eaddJ , we compute:

& g

M-Vb.
1
Considering the independence betweeyy | a;,h, ¢, g;a;," j»Vg U 1.0 We can write:
Vi, argVEnaX Ephpa]- PaPe logp yjlaj h,cj 99, iV,
i

From the de nition of likelihood we can compute, we know th& %Lj, whereL; 1,
j

il VA
Ephpgpajpcj ij iYi

g We can compute:

< N
]

™ Y __
beingy; v; a]mxmh cijX Mg P
m m
Computing V}Ljyj:
7t P dlLove P d1 _
ijjyj PYj P jdLJWj P i pxhajcﬂ-]xhaj
pWX gidL ;WX g¢; 2XnajdLipy; P g
2PV X gcidLjpy; Pja 2pXhaydL WX gc;
so therefore we can write:
a2
Epupa pope, 109 P Yilaj.h.cj.g.a, 5]

N ot t ~
Cry 7109V, MaBp, XpLjXn Ma

QS t =t t t &
trpsajEph XnLiXh g mchpg XgW'LiWX g Mg

QS t t ~ t t 5~
trpSCjEpg XgW'LiWX g q ZmajEph Xn Lipy; P g

=t t t 5. =t t t =
ZijEnggWijj P iq 2ijEnggW LiEp, X My
py; PidLjpy; Pjqu

1
v v

N
— log vy,
Cvy 5 l0gVy 2,

(E.83)

(E.84)

(E.85)

(E.86)

(E.87)
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with
=t t & QS t =t t t ~
trpSqEp, X gW 'L WX g @ 2MgE, Xy Ly Pjg 2MigEy, Xg W'Ljpy; Pjq
5t t oyt ~ 5 5
2 Epy X g W'LiEy Xn g py; P ydljpy; Pyq (E.88)
whereEp, X isamatrixwith columnsX i p|..|X 'V'rﬁh,E'Dg X g isamatrix with columnsX i g|.. X Mg,
andE, X {L;Xp andEp, X gW L ;WX ¢ are computed in steps E-A and E-C.
BE logp vyilaj,h,ci,g,a, i,V :
Ph Pz PP 19 i v 1V .1 L. Vi
s’ N | \Tb-vj 0fi vy N (E.89)
j i
If we constraint the norm oh andg:
sty t = &yt =ty tapgt ~
Vi manﬁLjXﬁmajtrpSanﬁLjXﬁq ijXgW LjWX g
& ty\wt =t oyt 5. =ty tyast 5~
trpSCngW LiWX g9 ZmaiXﬁLjp/]- P iq ZijXgW Liy; P jq
2L X gW 'L X g py; P idLjpy; P g (E.90)
M-",a _
Parameters , a are the drift weights™ ; and perfusion baseling; for j P J . Denote’ | aj, | T and similarly
r a,"s'. Denote also by the matrix P added with a rst column equal taw.
arg Lnax Ephpapgpc Iog pw |a1 h1C191 aa ) 1Vqu (Egl)
For the same reason (independence betwegr a;j, h,cj,g,3;, |, Vi, Ui 1:3) we can compute:
Y arg max Ephpa]-pgpcj log ppy; |aj,h,cj,g,aj,‘j,vqu (E.92)
i
log pryjlaj.h.cj,9.8j, j,vpq
_ vt .
C yj Xnhaj WXge; Py Gy Xpaj WXge P
_ S5t 5. t 5~
C\j jP G]P j Zyj G]P j (E93)
wherey; y; Xpa; WX 4G .
RN S Je A5t~ 5
Epnpe pop, 109 PYjl125,0,Cj.0ia), ", v A C 2 PIGEy . pyp. Vi (PGP
By deriving the previous equation with respect t?; we get:
Bpqg = = e
B 2P 'GEp,p,pp. ¥j  2P'GP7j  VectO (E.94)
i} pP'GPq 'P'GE yi
J PhPaPgpc )
p P_IG]P_q lP_tG] Yi Ep, Xh rﬁa]m W Ep, Xg rﬁcjm (E.95)

If we constraint the norm oh andg:
= < Stepn 1pt
n j pP G]Pq P G]Epapc yJ
Step A 1Pt i S -
PP'GPQ PG y; Xgmg WX g (E.96)
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The free energy functional
F pd, qq Es log pry.a.h,c,9,9;a9 | phq

where ppa,h,c,0,qq9  Papaddyph ofcpcafgmabgpag and Eg . denotes the expectation with respect o and

I pdg Ep log ppa, h,c,g,qq is the entropy ofp.

Ep log ppy |a,h,c,9,0;09 ppa | d; dad PrC | d; dcd ppd; bappo; | g
PR Vhapvi; | nd ppg | hsvgappvg; L g0 1 pPad 1 pBna | PP | pBgd | pPga

Epapnicpg 109 PR [@,h,c,0,0;09  Eg, log pph;vaa  Eg s, 109 ppg|h;vgq
Epapq 100 PPA|0;dad  Epep, l0g ppc|g;dca Ep, log ppg; bg
ppb; 1 pd  PPVh;l hd PPVg;l g0 I PPad | pPrd | PR | pBga | pBog

F pd, qq

If we constraint the norm oh andg:

Epapc 100 Py |@,h,c,9,0;q99  log pph;vhg  log ppg | h;vgg
Epapy 109 PP10;0ad  Eppe l0g pre|g;qcq  Ep, log ppa; ba
pEo; 1 b pvhil hd PPVgl g 1 pPad I PP | pBgd | i} 19 | oplg 1q

F pd, qq

For the computation of each term above:

F.1 Likelihood term

NJ J s s
Eapin pepof rlog ppy | a,h,c,9,q;qqs —-log2p Slog|Lj| N logvp, 5— 'V,
2 2 iPJ b2 iPJ

=t t 2 & t &t t P
Vi maj_Eph XpLijXph Mg trpSgE, X LiXh q 2ma1_Eph Xn Liyj P g
~t typas t & & typas t =t t t —
Mg Ep, X gW 'LjWX g g trpSqEp, XgW 'ILjWX g q 2MicEy Xg W'Ljpy; P g
~ t t ~ 5~ .
2mngpg XgWILE, Xp ffig py; P dLipy; P qg

If we constraint the norm oh andg:

LiX Mg trpSaXfiLiXpa 2MEXELjpy; P g

2 = & Sty typgt 5.
MeX GW L WX gl trpSgX gW 'L WX gq 2 X gW 'L jpyj P jq

2 X gW 'L X gfig py; P idLjpy; Piq (F.1)



156

F.2 Response function terms

JDE Free energy for ASL, usii@onstraint

1 1 1 1 . - ~
Ep, 109 pph;vhg 5 log2p log v 5 log[Shl - ppf hdS,tiing tr SpS,t
1 1 1
Epnpy 109 PRI | h;vga 5 log 2p log vg > log |Sg|
1 N . N . .
ngpm g WiiihdSylpfig Wiipag tr SgS,t Spwis, 'w

where the covariance matriceS, andSq areR if we want to impose smoothness @if we do not.
If we use the constraint on the norm df to be 1:

1 1 1 1 - -
Ep, log pph;vhg log 2p log vy > log [Sh 2Thp'd" ds,'hq
1 D 1 1
Epnpy 109 ppg [ h;vga > log 2p 5 log vg > log |S¢|
i v Ly & & 1
2—Vgppm g WhdS,'pfig Whaq tr SgS,

If we also use the constraint on the norm gfto be 1, then:

1
2

Epnp, 109 PPO [ h;vgq log 2p

If hyperprior on vy, andvg is used:

log ppvh; | ha
log ppvg; | g0

otherwiselog ppvp; | hg Oandlog ppvg; | 4q
F.3 Response level terms

$
&
%

m j

Epap, 109 PPa.| 0, dads

$

&
Epep, 1109 prc | d, acgs %
m |

F.4 Labelsterm

Ep, rlog ppa | bgs

1 ~ .
—p§ Whds,'pj

D 1 1
— s log|S
5 log vg 2Iog| gl g

logd ha | hvi

logd ¢gq | gvg

0.

1 prigm Wg‘qz S mm
1 p mpl log a— L 3
Pgriid 109 2p vy vy
1 phg ' Snm
Pmplg log a—— 3 3
Al log & o ]
1 Iﬁ‘cm h81q2 écm'm
1 pgrplg  log &a—o ' ‘
! 2pr 2ry

pﬁc}“ hi" o écjm’m

m -
2r7

~ 1
Pgrplq log orm

! )
log Zpb™g  b™Epy, rUm™as



157

U™ =~ 1" ofq S i d oy’
ik i KPNPig

1
1. s 1 s T
Epgn UpI"as 5 Epgnpyp g gla 5 PemAdgr P
i kPNpiq i kPNpjgi O

The mean eld approximation consists in xing aleatory neighbourg" to xed quantities ¢, allowing the
approximation ofUpg™qto UMFpgMqg

1. . 3
V" m" S po"d G
i kPNpig

We computeZpb™qusing mean eld approximation:

zppo™q  zM po™gexp b™Epwe Upg™g UMFgMq

exp b™  Pgnpoq

ME m. €xp b"UMFpgmg * KPN; ' pMF ym
p ZMFFbmq . o o . ] m] q
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iPt0,1u KPN;
since
11
zMFpo™q exp b™ " Grq
jio KPN;
Knowing pMF, we can compute
1 1
EpverUm™as 3 pMFpiapy' pig
j kPNpig O
1
EgurrUM" mMas Bpriap" i
i kPNpig 0
And so when we put it all together
11 3 o pMF g
Zpo™g exp b™ ° pgrq exp b™ P R~ PyrAq

jio KPNpiq j kPNpigi 0
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Therefore, we nally have

$
5 & l )1 5
Ep, r'og ppa | bas % log exp b™ PgnAq
m jio kPN piq
1 MF
S P Ag
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j kPNpjgi 0
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F.5 Entropy term
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IlEVEM solution for JDE ASL using Balloon model
prior

The priors used foh andg are

h N Mpaioon VhSha
g N Ppaiioon VgSga

beingS, R andSyg R.
G.1 Changes in the model with respect to the W prior in appendix E

E-H step:
pnphg N pfiy, Shg where

. S !
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