A method of hp-adaptation for Residual Distribution schemes

Résumé : Cette thèse présente la construction d’un schéma aux Résidus Distribués p-adaptatif pour la discrétisation des équations d’Euler ainsi qu’un schéma aux Résidus Distribués hp-adaptatif pour les équations de Navier- Stokes pénalisées. On rappelle tout d’abord les équations d’Euler et de Navier-Stokes ainsi que leurs versions non dimensionnelles. Les définitions et propriétés de base des schémas aux Résidus Distribués sont ensuite présentées. On décrit alors la construction d’un schéma aux Résidus Distribués p-adaptatif pour les équations d’Euler. La construction du schéma p-adaptatif est basée sur la possibilité d’exprimer le résidu total d’un élément K de degré k (au sens où l’élément fini (K; P; Sigma ) est un élément fini de degré k) comme une somme pondérée des résidus totaux de ses sous-éléments de degré 1. La solution discrète ainsi obtenue est en général discontinue à l’interface entre un élément subdivisé et un élément non subdivisé. Ceci contredit l’hypothèse de continuité de la solution qui est utilisée pour démontrer le théorème de Lax-Wendroff discret pour les schémas aux Résidus Distribués. Cependant, on montre que cette hypothèse peut être assouplie. La conséquence pratique est que si l’on emploie des quadratures particulières dans l’implémentation numérique, on peut quand même démontrer le théorème de Lax-Wendroff discret, ce qui garantit la convergence du schéma numérique vers une solution faible des équations d’origine. Les formules qui permettent d’exprimer le résidu total comme une somme pondérée des résidus totaux des sous-éléments sont à la base de la méthode de p-adaptation présentée ici. Dans le cas quadratique, la formule est obtenue avec les classiques fonctions de base de Lagrange en dimension deux et avec des fonctions de base de Bézier en dimension trois. Ces deux formules sont ensuite généralisées à des degrés polynomiaux quelconques en dimension deux et trois avec des fonctions de base de Bézier. Dans la deuxième partie de la thèse, on présente l’application du schéma p-adaptatif aux équations pénalisées de Navier-Stokes avec adaptation de maillage anisotrope. . En pratique, on combine le schéma p-adaptatif avec la méthode IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes). La méthode IBM-LS-AUM permet d’imposer les conditions aux bords grâce à la méthode de pénalisation et l’adaptation anisotrope du maillage à la solution numérique et à la level-set augmente la précision de la solution et de la représentation de la surface. Une fois la méthode IBM-LS-AUM combinée avec le schéma p-adaptatif, il est alors possible d’utiliser des éléments d’ordre élevés en-dehors de la zone où la pénalisation est appliquée. La méthode est robuste comme le montrent les diverses expérimentations numériques à des vitesses faibles à élevées et à différents nombres de Reynolds.
Type de document :
Thèse
General Mathematics [math.GM]. Université de Bordeaux, 2016. English. 〈NNT : 2016BORD0408〉
Liste complète des métadonnées

Littérature citée [83 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/tel-01441608
Contributeur : Abes Star <>
Soumis le : vendredi 27 janvier 2017 - 09:37:17
Dernière modification le : jeudi 11 janvier 2018 - 06:21:23
Document(s) archivé(s) le : vendredi 28 avril 2017 - 16:36:23

Fichier

VIVILLE_QUENTIN_2016.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01441608, version 2

Collections

Citation

Quentin Viville. A method of hp-adaptation for Residual Distribution schemes. General Mathematics [math.GM]. Université de Bordeaux, 2016. English. 〈NNT : 2016BORD0408〉. 〈tel-01441608v2〉

Partager

Métriques

Consultations de la notice

281

Téléchargements de fichiers

124