L. Figures, ) montrent également que les 3 super-éléments restants donnent globalement les mêmes résultats, ce qui signifie que 40 pseudo-modes à fréquence maximale sont suffisants pour obtenir les meilleurs résultats possibles avec la méthode de Craig-Bampton dans le cas préchargé, tout comme dans le cas non préchargé. En revanche, les résultats de ces super-éléments s'écartent plus de la réponse de référence lorsque la précharge augmente : l'écart dépasse 1 dB à partir de 1300 Hz environ dans le cas non préchargé, contre 1080 Hz

. Dans-le-cas-présent, qualité des résultats" est celui à 180 pseudo-modes à fréquence nulle et 40 pseudo-modes à fréquence maximale. Les facteurs de fréquence de ses deux bases dynamiques sont proches de 0,4 et de 0,7. Ces facteurs restent en accord avec le cas non préchargé, ce qui semble indiquer que la méthode de Craig-bampton n'est pas perturbée par la précharge. Les temps de calcul de la méthode de Craig-bampton dans le cas amorti préchargé restent les mêmes que les temps de calcul du cas non préchargé (Tab. 3.6) Le facteur de gain de temps de calcul est de 50

]. E. Bibliographie1, M. C. Arruda, and . Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids, vol.41, issue.2, pp.389-412, 1993.

A. Azoug, A. Constantinescu, R. M. Pradeilles-duval, M. F. Vallat, R. Nevière et al., Effect of the sol fraction and hydrostatic deformation on the viscoelastic behavior of prestrained highly filled elastomers, Journal of Applied Polymer Science, vol.63, issue.3, pp.1772-1780, 2013.
DOI : 10.1002/app.37800

URL : https://hal.archives-ouvertes.fr/hal-00761141

A. Azoug, A. Thorin, R. Nevière, R. Pradeilles-duval, and A. Constantinescu, Influence of orthogonal prestrain on the viscoelastic behaviour of highly-filled elastomers, Polymer Testing, vol.32, issue.2, pp.375-384, 2013.
DOI : 10.1016/j.polymertesting.2012.12.005

URL : https://hal.archives-ouvertes.fr/hal-01402496

D. Backström, Vibration of sandwich beams, 2006.

R. L. Bagley and P. J. Torvik, A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity, Journal of Rheology, vol.27, issue.3, pp.201-210, 1983.
DOI : 10.1122/1.549724

E. Balmes, Model reduction for systems with frequency dependent damping properties

M. C. Bampton and R. R. Craig, Coupling of substructures for dynamic analyses., AIAA Journal, vol.6, issue.7, pp.1313-1319, 1968.
DOI : 10.2514/3.4741

R. D. Borst, M. A. Crisfield, J. J. Remmers, and C. V. Verhoosel, Nonlinear Finite Element Analysis of Solids and Structures

B. Bourgeteau, Modélisation numérique des liaisons élastiques en caoutchouc de la liaison au sol automobile déstinée à la simulation multi-corps transitoire, 2009.

M. C. Boyce and E. M. Arruda, Constitutive Models of Rubber Elasticity: A Review, Rubber Chemistry and Technology, vol.73, issue.3, pp.504-523, 2000.
DOI : 10.5254/1.3547602

M. Coja, Effective vibro-acoustical modelling of rubber isolators, 2005.

V. A. Coveney and D. E. Johnson, Rate-Dependent Modeling of a Highly Filled Vulcanizate, Rubber Chemistry and Technology, vol.73, issue.4, pp.565-577, 2000.
DOI : 10.5254/1.3547606

V. Coveny, S. Jamil, D. Johnson, and M. Keavey, Implementation in finite element analysis of a triboelastic law for dynamic behaviour of filled elastomers, 1999.

A. De-lima, A. Da-silva, D. Rade, and N. Bouhaddi, Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures, Engineering Structures, vol.32, issue.5, pp.1479-1488, 2010.
DOI : 10.1016/j.engstruct.2010.01.028

URL : https://hal.archives-ouvertes.fr/hal-01511298

J. D. Visscher, H. Sol, W. P. De-wilde, and J. Vantomme, Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method, Applied Composite Materials, vol.34, issue.7, pp.13-33
DOI : 10.1007/BF02481386

J. Deü and D. Matignon, A numerical scheme for time-domain fe analysis of viscoelastic structures with fractional derivative constitutive equations In 4th internat. conference on Computational Methods in Structural Dynamics and Earthquake Engineering -CompDyn'13 Simulation of fractionally damped mechanical systems by means of a newmark-diffusive scheme, Fractional Differentiation and Its Applications, pp.591745-1753, 2010.

J. F. Durand, Éléments de Calcul Matriciel et d'Analyse Factorielle de Données, 2002.

M. Enelund and G. A. Lesieutre, Time domain modeling of damping using anelastic displacement fields and fractional calculus, International Journal of Solids and Structures, vol.36, issue.29, pp.4447-4472, 1999.
DOI : 10.1016/S0020-7683(98)00194-2

H. Gacem, Y. Chevalier, J. Dion, M. Soula, and B. Rezgui, Nonlinear dynamic behaviour of a preloaded thin sandwich plate incorporating visco-hyperelastic layers, Journal of Sound and Vibration, vol.322, issue.4-5, pp.4-5941, 2009.
DOI : 10.1016/j.jsv.2008.11.040

C. A. Gallimore, Passive viscoelastic constrained layer damping application for a small aircraft landing gear system, 2008.

A. Galucio, J. Deü, S. Mengué, and F. Dubois, An adaptation of the Gear scheme for fractional derivatives, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476073, 2006.
DOI : 10.1016/j.cma.2005.10.013

URL : https://hal.archives-ouvertes.fr/hal-01516404

M. Garcia, Engineering rubber bushing stiffness formulas including dynamic am-plitude dependence, 2006.

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.791309-1331, 2009.
DOI : 10.1002/nme.2579

D. F. Golla and P. C. Hughes, Dynamics of Viscoelastic Structures???A Time-Domain, Finite Element Formulation, Journal of Applied Mechanics, vol.52, issue.4, pp.897-906, 1985.
DOI : 10.1115/1.3169166

F. M. Guillot and D. Trivett, Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young's moduli as a function of temperature and hydrostatic pressure, Journal of Sound and Vibration, vol.330, issue.14, pp.3334-3351, 2011.
DOI : 10.1016/j.jsv.2011.02.003

M. Géradin and D. Rixen, Mechanical Vibrations : Theory and Application to Structural Dynamics, 2015.

P. Haupt and A. Lion, On finite linear viscoelasticity of incompressible isotropic materials, Acta Mechanica, vol.16, issue.1-4, pp.87-124
DOI : 10.1007/BF01171450

P. Haupt and C. Tsakmakis, On the application of dual variables in continuum mechanics, Continuum Mechanics and Thermodynamics, vol.75, issue.3, pp.165-196, 1989.
DOI : 10.1007/BF01171378

S. Havriliak and S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer, vol.8, pp.161-210, 1967.
DOI : 10.1016/0032-3861(67)90021-3

G. A. Holzapfel and J. C. Simo, A new viscoelastic constitutive model for continuous media at finite thermomechanical changes, International Journal of Solids and Structures, vol.33, issue.20-22, pp.20-223019, 1996.
DOI : 10.1016/0020-7683(95)00263-4

D. Jalocha, A. Constantinescu, and R. Neviere, Prestrain-dependent viscosity of a highly filled elastomer: experiments and modeling, Mechanics of Time-Dependent Materials, vol.26, issue.1, pp.243-262, 2015.
DOI : 10.1007/s11043-015-9262-z

URL : https://hal.archives-ouvertes.fr/hal-01219736

D. Jalocha, A. Constantinescu, and R. Neviere, Revisiting the identification of generalized Maxwell models from experimental results, International Journal of Solids and Structures, vol.67, issue.68, pp.67-68169, 2015.
DOI : 10.1016/j.ijsolstr.2015.04.018

URL : https://hal.archives-ouvertes.fr/hal-01219740

D. Jalocha, A. Constantinescu, R. Nevière, H. Jrad, J. L. Dion et al., Prestrained biaxial {DMA} investigation of viscoelastic nonlinearities in highly filled elastomers Polymer Testing Experimental characterization , modeling and parametric identification of the non linear dynamic behavior of viscoelastic components, pp.37-44176, 2013.

H. Jrad, F. Renaud, J. Dion, I. Tawfiq, and M. Haddar, EXPERIMENTAL CHARACTERIZATION, MODELING AND PARAMETRIC IDENTIFICATION OF THE HYSTERETIC FRICTION BEHAVIOR OF VISCOELASTIC JOINTS, International Journal of Applied Mechanics, vol.16, issue.02, 2013.
DOI : 10.1016/j.polymertesting.2010.07.007

URL : https://hal.archives-ouvertes.fr/hal-01369209

M. Kaliske and G. Heinrich, An Extended Tube-Model for Rubber Elasticity: Statistical-Mechanical Theory and Finite Element Implementation, Rubber Chemistry and Technology, vol.72, issue.4, pp.602-632, 1999.
DOI : 10.5254/1.3538822

M. Kaliske and H. Rothert, Formulation and implementation of three-dimensional viscoelasticity at small and finite strains, Computational Mechanics, vol.19, issue.3, pp.228-239
DOI : 10.1007/s004660050171

S. Kawabata, M. Matsuda, K. Tei, and H. Kawai, Experimental survey of the strain energy density function of isoprene rubber vulcanizate, Macromolecules, vol.14, issue.1, pp.154-162, 1981.
DOI : 10.1021/ma50002a032

S. Lejeunes, T. N. Van, A. Boukamel, and D. Eyheramendy, Linearized behavior of a dissipative rubber with large static preloads, Computers & Structures, vol.96, issue.97, pp.96-9746, 2012.
DOI : 10.1016/j.compstruc.2012.01.006

URL : https://hal.archives-ouvertes.fr/hal-00676317

A. Lion, Thixotropic behaviour of rubber under dynamic loading histories: Experiments and theory, Journal of the Mechanics and Physics of Solids, vol.46, issue.5, pp.895-930, 1998.
DOI : 10.1016/S0022-5096(97)00097-5

A. Lion, J. Retka, and M. Rendek, On the calculation of predeformation-dependent dynamic modulus tensors in finite nonlinear viscoelasticity, Mechanics Research Communications, vol.36, issue.6, pp.653-658, 2009.
DOI : 10.1016/j.mechrescom.2009.02.005

G. Marckmann and E. Verron, Comparison of Hyperelastic Models for Rubber-Like Materials, Rubber Chemistry and Technology, vol.79, issue.5, pp.835-858, 2006.
DOI : 10.5254/1.3547969

URL : https://hal.archives-ouvertes.fr/hal-01004680

C. Miehe, S. Göktepe, and F. Lulei, A micro-macro approach to rubber-like materials?Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, vol.52, issue.11, pp.2617-2660, 2004.
DOI : 10.1016/j.jmps.2004.03.011

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.92, issue.9, pp.582-592, 1940.
DOI : 10.1021/ie50271a013

K. N. Morman and J. C. , Finite element analysis of sinusoidal small-amplitude vibrations in deformed viscoelastic solids. Part I: Theoretical development, International Journal for Numerical Methods in Engineering, vol.35, issue.7, pp.1079-1103, 1983.
DOI : 10.1002/nme.1620190712

J. Ni, Préparation des échantillons pour les mesures DMA en cisaillement, 2011.

A. Oberlé, Modélisation STS (standard triboelastic solid) pour les articulations élastiques de trains roulants et implémentation sous adams, SIA Congrès Dynamique véhicule et confort suspension, 2003.

R. W. Ogden, Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.326, issue.1567, pp.565-584, 1567.
DOI : 10.1098/rspa.1972.0026

J. K. Ok, W. S. Yoo, and J. H. Sohn, New nonlinear bushing model for general excitations using Bouc-Wen hysteretic model, International Journal of Automotive Technology, vol.36, issue.4, pp.183-190, 2008.
DOI : 10.1007/s12239-008-0023-8

S. Park, Analytical modeling of viscoelastic dampers for structural and vibration control, International Journal of Solids and Structures, vol.38, issue.44-45, pp.44-458065, 2001.
DOI : 10.1016/S0020-7683(01)00026-9

T. Pritz, Dynamic Young's modulus and loss factor of floor covering materials, Applied Acoustics, vol.49, issue.2, pp.179-190, 1996.
DOI : 10.1016/0003-682X(96)00021-7

T. Pritz, Measurement methods of complex Poisson's ratio of viscoelastic materials, Applied Acoustics, vol.60, issue.3, pp.279-292, 2000.
DOI : 10.1016/S0003-682X(99)00049-3

S. Reese and S. Govindjee, A theory of finite viscoelasticity and numerical aspects, International Journal of Solids and Structures, vol.35, issue.26-27, pp.26-273455, 1998.
DOI : 10.1016/S0020-7683(97)00217-5

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering, 2006.
DOI : 10.1119/1.19216

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.835, pp.241379-397, 1948.
DOI : 10.1098/rsta.1948.0024

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. V. The Problem of Flexure, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.195, issue.1043, pp.195463-473, 1043.
DOI : 10.1098/rspa.1949.0004

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. VI. Further Results in the Theory of Torsion, Shear and Flexure, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.242, issue.845, pp.173-195, 1949.
DOI : 10.1098/rsta.1949.0009

L. Rouleau, Modélisation vibro-acoustique de structures sandwich munies de matériaux visco-élastiques, 2013.

L. Rouleau, J. Deü, and A. Legay, Review of reduction methods based on modal projection for highly damped structures, Proceedings of the 11th World Congress on Computational Mechanics, WCCM XI, the 5th European Conference on Computational Mechanics, ECCM V and the 6th European Conference on Computational Fluid Dynamics, ECFD VI, 2014.

S. Rubin, Improved Component-Mode Representation for Structural Dynamic Analysis, AIAA Journal, vol.13, issue.8, pp.995-1006, 1975.
DOI : 10.2514/3.60497

P. Saad, Non Linear Behavior of Rubber Bush, Modeling and Identification, 2003.

J. Salençon, Viscoélasticité pour le Calcul des structures. Les presses des Ponts et Chaussées, 2009.

M. Schetzen, The Volterra and Wiener theories of nonlinear systems, 1980.

D. J. Seibert and N. Schöche, Direct Comparison of Some Recent Rubber Elasticity Models, Rubber Chemistry and Technology, vol.73, issue.2, pp.366-384, 2000.
DOI : 10.5254/1.3547597

J. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects, Computer Methods in Applied Mechanics and Engineering, vol.60, issue.2, pp.153-173, 1987.
DOI : 10.1016/0045-7825(87)90107-1

J. C. Simo and R. L. Taylor, Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms, Computer Methods in Applied Mechanics and Engineering, vol.85, issue.3, pp.273-310, 1991.
DOI : 10.1016/0045-7825(91)90100-K

M. Sjöberg, Rubber Isolators - Measurements and Modelling using Fractional Derivatives and Friction, SAE Technical Paper Series, 2000.
DOI : 10.4271/2000-01-3518

P. Steinmann, M. Hossain, and G. Possart, Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar???s data, Archive of Applied Mechanics, vol.12, issue.9, pp.1183-1217, 2012.
DOI : 10.1007/s00419-012-0610-z

T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, vol.15, issue.1, pp.15116-132, 1985.
DOI : 10.1109/TSMC.1985.6313399

L. R. Treloar, Stress-strain data for vulcanised rubber under various types of deformation, Transactions of the Faraday Society, vol.40, pp.59-70, 1944.
DOI : 10.1039/tf9444000059

D. Turner, Plastics and Rubber Processing and Applications, 1988.

J. Wojtowicki, L. Jaouen, and R. Panneton, New approach for the measurement of damping properties of materials using the Oberst beam, Review of Scientific Instruments, vol.2, issue.8, pp.2569-25741217, 2004.
DOI : 10.1006/jsvi.1999.2495

O. H. Yeoh, Some Forms of the Strain Energy Function for Rubber, Rubber Chemistry and Technology, vol.66, issue.5, pp.754-771, 1993.
DOI : 10.5254/1.3538343

W. S. Yoo, W. K. Baek, and J. H. Sohn, A practical model for bushing components for vehicle dynamic analysis, International Journal of Vehicle Design, vol.36, issue.4, pp.345-364, 2004.
DOI : 10.1504/IJVD.2004.005810

O. C. Zienkiewicz and R. L. Taylor, The finite element method, Solids Mechanics. Butterworth-Heinemann, vol.2, 2000.