R. Yazami, Stockage électrochimique de l'énergie dans les composés d'insertion du graphite, 1985.

Z. Ostwald and . Für-elektrotechnik-und-elektrochemie, Die Wissenschaftliche Elektrochemie der Gegenwart und die Technische der Zukunft, Z. Für Elektrotechnik Elektrochem, vol.1
DOI : 10.1515/zpch-1894-0135

J. O. Besenhard and H. P. Fritz, The Electrochemistry of Black Carbons, Angewandte Chemie International Edition in English, vol.1979, issue.78, pp.950-975, 1983.
DOI : 10.1002/anie.198309501

H. F. Hunger and G. J. Heymach, Cathodic Discharge of Graphite Intercalation Compounds in Organic Electrolytes, Journal of The Electrochemical Society, vol.120, issue.9, pp.1161-1168, 1973.
DOI : 10.1149/1.2403654

E. Theodoridou, J. O. Besenhard, and H. P. Fritz, Chemically modified carbon fibre electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.122, issue.81, pp.67-71, 1981.
DOI : 10.1016/S0022-0728(81)80141-6

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater, vol.6, pp.183-191, 2007.
DOI : 10.1142/9789814287005_0002

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., vol.130, issue.103, pp.228-240, 2009.
DOI : 10.1002/marc.200900641

K. Braeuer, High energy density battery, n.d. http:/www.google.com/patents, 2016.

M. Fukuda and T. Iijima, Lithium Polycarbon Monofluoride cylindrical type batteries, J. Power Sources, vol.175, 1975.

R. J. Lagow, R. B. Badachhape, J. L. Wood, and J. L. Margrave, Some new synthetic approaches to graphite???fluorine chemistry, J. Chem. Soc., Dalton Trans., issue.12, pp.1268-1273, 1974.
DOI : 10.1039/DT9740001268

V. N. Mitkin, N. F. Yudanov, V. V. Moukhin, and V. V. Rozhkov, New Family of Graphite Fluoroxides-Sources for the Generation of Highly Porous, Thermally Expanded Graphites for Li Cells (Review, J. New Mater. Electrochem. Syst, vol.6, pp.103-118, 2003.

T. Nakajima and H. Groult, Fluorinated Carbon Materials for Energy Conversion, 2005.
DOI : 10.1016/B978-044472002-3/50016-8

T. Nakajima and Y. Matsuo, Formation process and structure of graphite oxide, Carbon, vol.32, issue.3, pp.469-475, 1994.
DOI : 10.1016/0008-6223(94)90168-6

P. Touzain, R. Yazami, and J. Maire, Lithium-graphitic oxide cells part II: High specific surface area graphitic oxide as cathode material for lithium batteries, Journal of Power Sources, vol.14, issue.1-3, pp.99-104, 1985.
DOI : 10.1016/0378-7753(85)88018-6

M. Mermoux, R. Yazami, and P. Touzain, Lithium-graphitic oxide cells part IV: Influence of electrolyte and cathode composition, Journal of Power Sources, vol.20, issue.1-2, pp.105-110, 1987.
DOI : 10.1016/0378-7753(87)80098-8

M. Mermoux and P. Touzain, Lithium graphitic oxide cells. Part V. An all-solid-state battery using graphite oxide as active cathodic material, Journal of Power Sources, vol.26, issue.3-4, pp.529-534, 1989.
DOI : 10.1016/0378-7753(89)80174-0

A. Hamwi and I. Saleh, Graphite oxyfluoride: behaviour as electrode material in lithium batteries, Journal of Power Sources, vol.48, issue.3, pp.311-32510, 1994.
DOI : 10.1016/0378-7753(94)80028-6

A. Hamwi, I. Saleh, D. Djurado, and J. C. Cousseins, Between Graphite Fluoride and Graphite Oxide: The Graphite Oxyfluoride, Materials Science Forum, vol.91, issue.93, pp.91-93, 1992.
DOI : 10.4028/www.scientific.net/MSF.91-93.245

J. S. Dunning, W. H. Tiedemann, L. Hsueh, D. N. Bennion, and . Secondary, A Secondary, Nonaqueous Solvent Battery, Journal of The Electrochemical Society, vol.118, issue.12, pp.1886-1890, 1971.
DOI : 10.1149/1.2407861

M. S. Whittingham, Mechanism of Reduction of the Fluorographite Cathode, Journal of The Electrochemical Society, vol.122, issue.4, pp.526-527, 1975.
DOI : 10.1149/1.2134252

Y. Ahmad, K. Guérin, M. Dubois, W. Zhang, and A. Hamwi, Enhanced performances in primary lithium batteries of fluorinated carbon nanofibers through static fluorination, Electrochimica Acta, vol.114, 2013.
DOI : 10.1016/j.electacta.2013.09.140

URL : https://hal.archives-ouvertes.fr/hal-00944438

S. Kuo, C. Kuo, N. Wu, and H. Wu, Lithium storage in reduced graphene oxides, Journal of Power Sources, vol.244, 2013.
DOI : 10.1016/j.jpowsour.2013.01.186

I. , A. Saleh, and O. , fluorure et oxyfluorure de graphite : synthese-etude structurale-proprietes electrochimiques, 1992.

V. and M. Bonjean, Contribution à l'étude des composés oxygénés et fluorés du graphite et des fullerènes, 1997.

M. E. Stournara and V. B. Shenoy, Enhanced Li capacity at high lithiation potentials in graphene oxide, Journal of Power Sources, vol.196, issue.13, pp.5697-5703, 2011.
DOI : 10.1016/j.jpowsour.2011.02.024

URL : http://arxiv.org/abs/1102.1211

B. Z. Jang, C. Liu, D. Neff, Z. Yu, M. C. Wang et al., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices, Nano Letters, vol.11, issue.9, pp.3785-3791, 2011.
DOI : 10.1021/nl2018492

D. Wang, C. Sun, G. Zhou, F. Li, L. Wen et al., The examination of graphene oxide for rechargeable lithium storage as a novel cathode material, Journal of Materials Chemistry A, vol.26, issue.11, pp.3607-361210, 1039.
DOI : 10.1002/adfm.201200697

H. Kim, H. Lim, S. Kim, J. Hong, D. Seo et al., Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries, Scientific Reports, vol.80, issue.121, p.1506, 2013.
DOI : 10.1021/ja01539a017

URL : http://doi.org/10.1038/srep01506

S. H. Ha, Y. S. Jeong, and Y. J. Lee, Free Standing Reduced Graphene Oxide Film Cathodes for Lithium Ion Batteries, ACS Applied Materials & Interfaces, vol.5, issue.23, pp.12295-12303, 2013.
DOI : 10.1021/am4044147

P. W. Atkins and L. Jones, Chimie: molécules, matière, métamorphoses, 1998.

X. Gao, J. Jang, and S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, The Journal of Physical Chemistry C, vol.114, issue.2, pp.832-842, 2010.
DOI : 10.1021/jp909284g

A. Hamwi and V. Marchand, Some chemical and electrochemical properties of graphite oxide, Journal of Physics and Chemistry of Solids, vol.57, issue.6-8, pp.867-87210, 1996.
DOI : 10.1016/0022-3697(96)00364-2

M. Mermoux, Contribution à l'étude de l'oxyde graphitique: application au stockage électrochimique de l'énergie, 1988.

W. Zhang, M. Dubois, K. Guérin, P. Bonnet, H. Kharbache et al., Effect of curvature on C???F bonding in fluorinated carbons: from fullerene and derivatives to graphite, Phys. Chem. Chem. Phys., vol.5, issue.5???6, pp.1388-139810, 1039.
DOI : 10.1039/B914853A

K. Takai, H. Sato, T. Enoki, N. Yoshida, F. Okino et al., -Electron Systems, Journal of the Physical Society of Japan, vol.70, issue.1, pp.175-185, 2001.
DOI : 10.1143/JPSJ.70.175

URL : https://hal.archives-ouvertes.fr/hal-00549043

P. F. Fulvio, S. S. Brown, J. Adcock, R. T. Mayes, B. Guo et al., Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery, Chemistry of Materials, vol.23, issue.20, pp.4420-442710, 1021.
DOI : 10.1021/cm2012395

P. Lam and R. Yazami, Physical characteristics and rate performance of (CFx)n (0.33<x<0.66) in lithium batteries, Journal of Power Sources, vol.153, issue.2, 2006.
DOI : 10.1016/j.jpowsour.2005.05.022

URL : https://hal.archives-ouvertes.fr/hal-00386396

Q. Zhang, S. D-'astorg, P. Xiao, X. Zhang, and L. Lu, Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries, Journal of Power Sources, vol.195, issue.9, 2010.
DOI : 10.1016/j.jpowsour.2009.10.096

D. D. Gao and Z. Zhang, Synthesis and Electrochemical Performance of Graphite Oxide as Cathode Material for Rechargeable Batteries, Materials Science Forum, vol.743, issue.744, pp.743-744, 2013.
DOI : 10.4028/www.scientific.net/MSF.743-744.8

R. Yazami, A. Hamwi, K. Guérin, Y. Ozawa, M. Dubois et al., Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries, Electrochemistry Communications, vol.9, issue.7, pp.1850-1855, 2007.
DOI : 10.1016/j.elecom.2007.04.013

M. A. Reddy, B. Breitung, and M. Fichtner, by Mechanical Milling: A Primary Lithium Battery Electrode, ACS Applied Materials & Interfaces, vol.5, issue.21, pp.11207-11211, 2013.
DOI : 10.1021/am403438m

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan et al., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films, Advanced Functional Materials, vol.57, issue.16, pp.2577-2583, 2009.
DOI : 10.1021/nl901209z

D. Linden and T. B. Reddy, Handbook of batteries, p1498, 2002.

W. Liu, H. Li, J. Xie, and Z. Fu, -Sodium Battery, ACS Applied Materials & Interfaces, vol.6, issue.4, pp.2209-2212, 2014.
DOI : 10.1021/am4051348

URL : https://hal.archives-ouvertes.fr/tel-00259428

S. Kuo, W. Liu, C. Kuo, N. Wu, and H. Wu, Lithium storage in reduced graphene oxides, Journal of Power Sources, vol.244, pp.552-556, 2013.
DOI : 10.1016/j.jpowsour.2013.01.186

S. H. Ha, Y. S. Jeong, and Y. J. Lee, Free Standing Reduced Graphene Oxide Film Cathodes for Lithium Ion Batteries, ACS Applied Materials & Interfaces, vol.5, issue.23, pp.12295-12303, 2013.
DOI : 10.1021/am4044147

Y. Zhang, L. Chen, W. Yang, J. Ou, B. Zheng et al., Hierarchical graphite oxide fabricated from graphite via electrochemical cleavage as an anode material for lithium ion batteries, RSC Advances, vol.144, issue.121, pp.12758-12764, 2013.
DOI : 10.1039/c3ra41793j

. Shmuel-de-leon-energy and L. Ltd, CFx Batteries -The Renaissance, 2011.

H. W. Fowler, F. G. Fowler, and J. A. Murray, The concise Oxford dictionary of current English, 1964.

E. H. Falcao and F. , Carbon allotropes: beyond graphite and diamond, Journal of Chemical Technology & Biotechnology, vol.104, issue.198, pp.524-531, 2007.
DOI : 10.1002/jctb.1693

E. H. Falcão, Carbonaceous materials with exotic morphologies, 2006.

A. Bianco, H. Cheng, T. Enoki, Y. Gogotsi, R. H. Hurt et al., All in the graphene family ??? A recommended nomenclature for two-dimensional carbon materials, Carbon, vol.65, pp.65-2013
DOI : 10.1016/j.carbon.2013.08.038

Z. Zhang, K. Leinenweber, M. Bauer, L. A. Garvie, P. F. Mcmillan et al., Graphitic Derivative, Journal of the American Chemical Society, vol.123, issue.32, pp.7788-7796, 2001.
DOI : 10.1021/ja0103849

B. B. Zvyagin, Polytypism of crystal structures, Comput. Math. Appl, vol.1688, pp.569-591, 1988.

T. Nakajima and N. Watanabe, Graphite fluorides and carbon-fluorine compounds, CRC, 1991.

S. Sarkar, Chemistry at the Dirac Point of Graphene, 2013.

A. Buchsteiner, A. Lerf, and J. Pieper, Water Dynamics in Graphite Oxide Investigated with Neutron Scattering, The Journal of Physical Chemistry B, vol.110, issue.45, pp.22328-22338, 2006.
DOI : 10.1021/jp0641132

T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis et al., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chemistry of Materials, vol.18, issue.11, pp.2740-2749, 2006.
DOI : 10.1021/cm060258+

T. Nakajima, M. Koh, V. Gupta, B. ?emva, and K. Lutar, Electrochemical behavior of graphite highly fluorinated by high oxidation state complex fluorides and elemental fluorine, Electrochimica Acta, vol.45, issue.10, pp.1655-1661, 2000.
DOI : 10.1016/S0013-4686(99)00389-8

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud-'homme, I. A. Aksay et al., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Letters, vol.8, issue.1, pp.36-41, 2008.
DOI : 10.1021/nl071822y

M. Bruna, B. Massessi, C. Cassiago, A. Battiato, E. Vittone et al., Synthesis and properties of monolayer graphene oxyfluoride, Journal of Materials Chemistry, vol.83, issue.2, pp.18730-18737, 2011.
DOI : 10.1039/c1jm13729h

T. Nakajima and Y. Matsuo, Formation process and structure of graphite oxide, Carbon, vol.32, issue.3, pp.469-475, 1994.
DOI : 10.1016/0008-6223(94)90168-6

L. Pu, Y. Ma, W. Zhang, H. Hu, Y. Zhou et al., Simple method for the fluorinated functionalization of graphene oxide, RSC Advances, vol.68, issue.12, pp.3881-3884, 2013.
DOI : 10.1039/c2ra20585h

C. Hontoria-lucas, A. J. López-peinado, J. De, D. López-gonzález, M. L. Rojas-cervantes et al., Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, vol.33, issue.11, pp.1585-1592, 1995.
DOI : 10.1016/0008-6223(95)00120-3

F. M. Koehler and W. J. Stark, Organic Synthesis on Graphene, Accounts of Chemical Research, vol.46, issue.10, pp.2297-2306, 2013.
DOI : 10.1021/ar300125w

J. D. Jones, C. F. Morris, G. F. Verbeck, and J. M. Perez, Oxidative pit formation in pristine, hydrogenated and dehydrogenated graphene, Applied Surface Science, vol.264, 2013.
DOI : 10.1016/j.apsusc.2012.10.161

A. Dimiev, D. V. Kosynkin, L. B. Alemany, P. Chaguine, and J. M. Tour, Pristine Graphite Oxide, Journal of the American Chemical Society, vol.134, issue.5, pp.2815-2822, 2012.
DOI : 10.1021/ja211531y

H. Jeong, Y. P. Lee, R. J. Lahaye, M. Park, K. H. An et al., Evidence of Graphitic AB Stacking Order of Graphite Oxides, Journal of the American Chemical Society, vol.130, issue.4, pp.130-1362, 2008.
DOI : 10.1021/ja076473o

H. L. Poh, F. ?an?k, A. Ambrosi, G. Zhao, Z. Sofer et al., Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties, Nanoscale, vol.37, issue.11, pp.3515-3522, 2012.
DOI : 10.1039/c2nr30490b

C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco et al., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, pp.65-156, 2013.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.14095-14107, 2000.
DOI : 10.1103/PhysRevB.61.14095

S. Mao, H. Pu, and J. Chen, Graphene oxide and its reduction: modeling and experimental progress, RSC Advances, vol.21, issue.7
DOI : 10.1039/c2ra00663d

H. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae et al., Thermal stability of graphite oxide, Thermal stability of graphite oxide, pp.255-258, 2009.
DOI : 10.1016/j.cplett.2009.01.050

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett et al., Preparation and characterization of graphene oxide paper, Nature, vol.80, issue.7152, pp.448-457, 2007.
DOI : 10.1038/nature06016

S. Park, J. An, R. D. Piner, I. Jung, D. Yang et al., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chemistry of Materials, vol.20, issue.21, pp.6592-6594, 2008.
DOI : 10.1021/cm801932u

S. Park, J. An, I. Jung, R. D. Piner, S. J. An et al., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents, Nano Letters, vol.9, issue.4, pp.1593-1597, 2009.
DOI : 10.1021/nl803798y

A. Buchsteiner, A. Lerf, and J. Pieper, Water Dynamics in Graphite Oxide Investigated with Neutron Scattering, The Journal of Physical Chemistry B, vol.110, issue.45, pp.22328-22338, 2006.
DOI : 10.1021/jp0641132

Y. Shao, J. Wang, M. Engelhard, C. Wang, and Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications, J. Mater. Chem., vol.38, issue.4, pp.743-748, 2010.
DOI : 10.1039/B917975E

V. Strong, S. Dubin, M. F. El-kady, A. Lech, Y. Wang et al., Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices, ACS Nano, vol.6, issue.2, pp.1395-1403, 2012.
DOI : 10.1021/nn204200w

C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda et al., The effect of the parent graphite on the structure of graphene oxide, Carbon, vol.50, issue.1, pp.275-282, 2012.
DOI : 10.1016/j.carbon.2011.08.045

O. Ruff and O. Bretschneider, Die Reaktionsprodukte der verschiedenen Kohlenstoffformen mit Fluor II (Kohlenstoff-monofluorid), Zeitschrift f???r anorganische und allgemeine Chemie, vol.198, issue.1, 1934.
DOI : 10.1002/zaac.19342170102

W. Rüdorff and G. Rüdorff, Zur Konstitution des Kohlenstoff-Monofluorids, Zeitschrift f??r anorganische Chemie, vol.XVIII, issue.5-6, pp.281-296, 1947.
DOI : 10.1002/zaac.19472530506

S. Cheng, K. Zou, F. Okino, H. R. Gutierrez, A. Gupta et al., Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor, Physical Review B, vol.81, issue.20, 2010.
DOI : 10.1103/PhysRevB.81.205435

R. L. Fusaro and H. E. Sliney, Graphite fluoride as a solid lubricant in a polyimide binder, 1972.

E. Disa, Synthèse de nanolubrifiants à base de carbones fluorés, phdthesis, Université Blaise Pascal - Clermont-Ferrand II, 2012.

A. S. Nazarov and V. G. Makotchenko, Dicarbon Monofluoride: A Solid Host for Containment of Volatiles, Inorganic Materials, vol.38, issue.3, pp.278-282, 2002.
DOI : 10.1023/A:1014783119281

C. M. Ghimbeu, K. Guerin, M. Dubois, S. Hajjar-garreau, and C. , Vix-Guterl, Insights on the reactivity of ordered porous carbons exposed to different fluorinating agents and conditions, Carbon, vol.84, 2015.

J. Parmentier, S. Schlienger, M. Dubois, E. Disa, F. Masin et al., Structural/textural properties and water reactivity of fluorinated activated carbons, Carbon, vol.50, issue.14, 2012.
DOI : 10.1016/j.carbon.2012.06.054

URL : https://hal.archives-ouvertes.fr/hal-00786005

J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke et al., Properties of Fluorinated Graphene Films, Nano Letters, vol.10, issue.8, pp.3001-300510, 1021.
DOI : 10.1021/nl101437p

H. Takenaka, M. Kawaguchi, M. Lerner, and N. Bartlett, Synthesis and characterization of graphite fluorides by electrochemical fluorination in aqueous and anhydrous hydrogen fluoride, Journal of the Chemical Society, Chemical Communications, issue.19, 1987.
DOI : 10.1039/c39870001431

T. Nakajima, M. Kawaguchi, and N. Watanabe, Ternary Intercalation Compound of Graphite with Aluminum Fluoride and Fluorine, Z. Für Naturforschung B, vol.36, pp.1419-1423, 2014.
DOI : 10.1515/znb-1981-1114

T. Nakajima, M. Kawaguchi, and N. Watanabe, Graphite intercalation compound of magnesium fluoride and fluorine, Carbon, vol.20, issue.4, pp.287-291, 1982.
DOI : 10.1016/0008-6223(82)90004-5

A. P. Kharitonov, G. V. Simbirtseva, V. M. Bouznik, M. G. Chepezubov, M. Dubois et al., Modification of ultra-high-molecular weight polyethylene by various fluorinating routes, Journal of Polymer Science Part A: Polymer Chemistry, vol.100, issue.6, pp.3559-3573, 2011.
DOI : 10.1002/pola.24793

N. Batisse, K. Guérin, M. Dubois, A. Hamwi, L. Spinelle et al., Fluorination of silicon carbide thin films using pure F2 gas or XeF2, Thin Solid Films, vol.518, issue.23, 2010.
DOI : 10.1016/j.tsf.2010.05.120

W. Zhang, P. Bonnet, M. Dubois, C. P. Ewels, K. Guérin et al., Comparative Study of SWCNT Fluorination by Atomic and Molecular Fluorine, Chemistry of Materials, vol.24, issue.10, pp.1744-175110, 1021.
DOI : 10.1021/cm203415e

URL : https://hal.archives-ouvertes.fr/hal-00711813

A. A. Goryunkov, V. Y. Markov, O. V. Boltalina, B. ?emva, A. K. Abdul-sada et al., Reaction of silver(I) and (II) fluorides with C60: thermodynamic control over fluorination level, Journal of Fluorine Chemistry, vol.112, issue.2, pp.191-196, 2001.
DOI : 10.1016/S0022-1139(01)00521-8

N. S. Chilingarov, J. V. Rau, L. N. Sidorov, L. Bencze, A. Popovic et al., Atomic fluorine in thermal reactions involving solid TbF4, Journal of Fluorine Chemistry, vol.104, issue.2, pp.291-295, 2000.
DOI : 10.1016/S0022-1139(00)00259-1

S. D. Sherpa, S. A. Paniagua, G. Levitin, S. R. Marder, M. D. Williams et al., Photoelectron spectroscopy studies of plasma-fluorinated epitaxial graphene, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.30, issue.3, 2012.
DOI : 10.1116/1.3688760

M. Chen, M. Chen, C. Qiu, C. Qiu, H. Zhou et al., Fluorination of Edges and Central Areas of Monolayer Graphene by SF<SUB>6</SUB> and CHF<SUB>3</SUB> Plasma Treatments, Journal of Nanoscience and Nanotechnology, vol.13, issue.2, pp.1331-1334, 2013.
DOI : 10.1166/jnn.2013.5996

S. D. Sherpa, G. Levitin, and D. W. Hess, Effect of the polarity of carbon-fluorine bonds on the work function of plasma-fluorinated epitaxial graphene, Applied Physics Letters, vol.101, issue.11
DOI : 10.1103/PhysRevB.85.045418

A. Felten, A. Eckmann, J. Pireaux, R. Krupke, and C. Casiraghi, Controlled modification of mono-and bilayer graphene in O 2 , H 2 and CF 4 plasmas, Nanotechnology, vol.242435355705, pp.355705-355715, 2013.

S. B. Bon, L. Valentini, R. Verdejo, J. L. Garcia-fierro, L. Peponi et al., Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine, Chemistry of Materials, vol.21, issue.14, pp.3433-343810, 1021.
DOI : 10.1021/cm901039j

A. Tressaud, E. Durand, and C. Labrugère, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, Journal of Fluorine Chemistry, vol.125, issue.11, 2004.
DOI : 10.1016/j.jfluchem.2004.09.022

URL : https://hal.archives-ouvertes.fr/hal-00156373

Z. Wang, J. Wang, Z. Li, P. Gong, X. Liu et al., Synthesis of fluorinated graphene with tunable degree of fluorination, Carbon, pp.50-5403, 2012.

Y. Kita, N. Watanabe, and Y. Fujii, Chemical composition and crystal structure of graphite fluoride, Journal of the American Chemical Society, vol.101, issue.14, pp.3832-3841, 1979.
DOI : 10.1021/ja00508a020

A. K. Tsvetnikov, N. T. Yu, L. A. Matveenko, and Y. M. Nikolenko, Peculiarities of BrF3 Intercalation into Oxidized Graphite, Intercalation Compd, 1992.

O. Jankovský, P. ?imek, D. Sedmidubský, S. Mat?jková, Z. Janou?ek et al., Water-soluble highly fluorinated graphite oxide, RSC Adv., vol.6, issue.3, pp.1378-1387, 2013.
DOI : 10.1039/C3RA45183F

P. Gong, Z. Wang, Z. Li, Y. Mi, J. Sun et al., Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and reduction route, RSC Advances, vol.32, issue.18, pp.6327-6330, 2013.
DOI : 10.1039/c3ra22029j

S. Yan, J. Zhao, Y. Yuan, S. Liu, Z. Huang et al., Preparation and liquid-phase exfoliation of graphite fluoroxide towards graphene fluoroxide, RSC Advances, vol.150, issue.93, pp.21869-21876, 2013.
DOI : 10.1039/c3ra43578d

T. Nakajima, A. Mabuchi, and R. Hagiwara, A new structure model of graphite oxide, Carbon, vol.26, issue.3, pp.357-361, 1988.
DOI : 10.1016/0008-6223(88)90227-8

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., vol.130, issue.103, pp.228-240, 2009.
DOI : 10.1002/marc.200900641

P. Touzain, R. Yazami, and J. Maire, Lithium-graphitic oxide cells part II: High specific surface area graphitic oxide as cathode material for lithium batteries, Journal of Power Sources, vol.14, issue.1-3, pp.99-104, 1985.
DOI : 10.1016/0378-7753(85)88018-6

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan et al., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films, Advanced Functional Materials, vol.57, issue.16, pp.2577-2583, 2009.
DOI : 10.1021/nl901209z

H. He, J. Klinowski, M. Forster, and A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters, vol.287, issue.1-2, pp.53-56, 1998.
DOI : 10.1016/S0009-2614(98)00144-4

P. Ehrburger and J. B. Donnet, Etude de l'oxydation des carbones en oxyde graphitique, Carbon, vol.11, issue.4, pp.11-309, 1973.
DOI : 10.1016/0008-6223(73)90071-7

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun et al., Improved Synthesis of Graphene Oxide, ACS Nano, vol.4, issue.8, pp.4806-4814, 2010.
DOI : 10.1021/nn1006368

H. Jeong, Y. P. Lee, R. J. Lahaye, M. Park, K. H. An et al., Evidence of Graphitic AB Stacking Order of Graphite Oxides, Journal of the American Chemical Society, vol.130, issue.4, pp.130-1362, 2008.
DOI : 10.1021/ja076473o

T. N. Blanton and D. Majumdar, Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, Powder Diffraction, vol.28, issue.02, pp.68-71, 2013.
DOI : 10.1017/S0885715612000292

T. Nakajima, A. Mabuchi, and R. Hagiwara, A new structure model of graphite oxide, Carbon, vol.26, issue.3, pp.357-361, 1988.
DOI : 10.1016/0008-6223(88)90227-8

T. Nakajima and Y. Matsuo, Formation process and structure of graphite oxide, Carbon, vol.32, issue.3, pp.469-475, 1994.
DOI : 10.1016/0008-6223(94)90168-6

A. Buchsteiner, A. Lerf, and J. Pieper, Water Dynamics in Graphite Oxide Investigated with Neutron Scattering, The Journal of Physical Chemistry B, vol.110, issue.45, pp.22328-22338, 2006.
DOI : 10.1021/jp0641132

F. Perrozzi, S. Prezioso, and L. Ottaviano, Graphene oxide: from fundamentals to applications, Journal of Physics: Condensed Matter, vol.27, issue.1, 13002.
DOI : 10.1088/0953-8984/27/1/013002

X. Díez-betriu, S. Álvarez-garcía, C. Botas, P. Álvarez, J. Sánchez-marcos et al., Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films, Journal of Materials Chemistry C, vol.3, issue.41, pp.6905-691210, 1039.
DOI : 10.1039/c3tc31124d

R. Beams, L. G. Cançado, and L. Novotny, Raman characterization of defects and dopants in graphene, Journal of Physics: Condensed Matter, vol.27, issue.8, p.83002, 2015.
DOI : 10.1088/0953-8984/27/8/083002

S. Mao, H. Pu, and J. Chen, Graphene oxide and its reduction: modeling and experimental progress, RSC Advances, vol.21, issue.7
DOI : 10.1039/c2ra00663d

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett et al., Preparation and characterization of graphene oxide paper, Nature, vol.80, issue.7152, pp.448-457, 2007.
DOI : 10.1038/nature06016

S. Park, J. An, R. D. Piner, I. Jung, D. Yang et al., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chemistry of Materials, vol.20, issue.21, pp.6592-6594, 2008.
DOI : 10.1021/cm801932u

S. Park, J. An, I. Jung, R. D. Piner, S. J. An et al., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents, Nano Letters, vol.9, issue.4, pp.1593-1597, 2009.
DOI : 10.1021/nl803798y

H. Kim, H. Lim, S. Kim, J. Hong, D. Seo et al., Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries, Scientific Reports, vol.80, issue.121, p.1506, 2013.
DOI : 10.1021/ja01539a017

URL : http://doi.org/10.1038/srep01506

H. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae et al., Thermal stability of graphite oxide, Thermal stability of graphite oxide, pp.255-258, 2009.
DOI : 10.1016/j.cplett.2009.01.050

X. Gao, J. Jang, and S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, The Journal of Physical Chemistry C, vol.114, issue.2, pp.832-842, 2010.
DOI : 10.1021/jp909284g

T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis et al., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chemistry of Materials, vol.18, issue.11, pp.2740-2749, 2006.
DOI : 10.1021/cm060258+

F. Beguin and E. Frackowiak, Carbons for Electrochemical Energy Storage and Conversion Systems, p.532, 2009.
DOI : 10.1201/9781420055405

C. Hontoria-lucas, A. J. López-peinado, J. De, D. López-gonzález, M. L. Rojas-cervantes et al., Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, vol.33, issue.11, pp.1585-1592, 1995.
DOI : 10.1016/0008-6223(95)00120-3

C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda et al., The effect of the parent graphite on the structure of graphene oxide, Carbon, vol.50, issue.1, pp.275-282, 2012.
DOI : 10.1016/j.carbon.2011.08.045

S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal et al., Room-temperature metastability of multilayer graphene oxide films, Nature Materials, vol.90, issue.6, pp.544-549, 2012.
DOI : 10.1038/nmat3316

URL : https://hal.archives-ouvertes.fr/hal-00911814

A. Hunt, D. A. Dikin, E. Z. Kurmaev, T. D. Boyko, P. Bazylewski et al., Epoxide Speciation and Functional Group Distribution in Graphene Oxide Paper-Like Materials, Advanced Functional Materials, vol.66, issue.18, pp.3950-3957, 2012.
DOI : 10.1002/adfm.201200529

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher et al., Scalable enhancement of graphene oxide properties by thermally driven phase transformation, Nature Chemistry, vol.111, issue.2, pp.151-158, 2014.
DOI : 10.1103/PhysRevLett.77.3865

P. Sun, Y. Wang, H. Liu, K. Wang, D. Wu et al., Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved?, PLoS ONE, vol.1, issue.11
DOI : 10.1371/journal.pone.0111908.s001

L. R. Radovic, A. B. Silva-tapia, and F. Vallejos-burgos, Oxygen migration on the graphene surface. 1. Origin of epoxide groups, Carbon, vol.49, issue.13, pp.4218-4225, 2011.
DOI : 10.1016/j.carbon.2011.05.059

L. R. Radovic, A. Suarez, F. Vallejos-burgos, and J. O. Sofo, Oxygen migration on the graphene surface. 2. Thermochemistry of basal-plane diffusion (hopping), Carbon, pp.49-4226, 2011.

T. Nakajima and Y. Matsuo, Formation process and structure of graphite oxide, Carbon, vol.32, issue.3, pp.469-475, 1994.
DOI : 10.1016/0008-6223(94)90168-6

L. Pu, Y. Ma, W. Zhang, H. Hu, Y. Zhou et al., Simple method for the fluorinated functionalization of graphene oxide, RSC Advances, vol.68, issue.12, pp.3881-3884, 2013.
DOI : 10.1039/c2ra20585h

D. W. Ovenall and J. J. Chang, Carbon-13 NMR of fluorinated compounds using wide-band fluorine decoupling, Journal of Magnetic Resonance (1969), vol.25, issue.2, pp.361-372, 1969.
DOI : 10.1016/0022-2364(77)90031-2

Z. Liu and J. D. Goddard, = 6???8), The Journal of Physical Chemistry A, vol.113, issue.50, pp.13921-13931, 2009.
DOI : 10.1021/jp9078037

W. Zhang, K. Guérin, M. Dubois, Z. E. Fawal, D. A. Ivanov et al., Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part I: Structural properties, Carbon, vol.46, issue.7, pp.1010-1016, 2008.
DOI : 10.1016/j.carbon.2008.02.029

Y. Ahmad, K. Guérin, M. Dubois, W. Zhang, and A. Hamwi, Enhanced performances in primary lithium batteries of fluorinated carbon nanofibers through static fluorination, Electrochimica Acta, vol.114, 2013.
DOI : 10.1016/j.electacta.2013.09.140

URL : https://hal.archives-ouvertes.fr/hal-00944438

W. Zhang, Nouvelles stratégies de synthèse des nanocarbones fluorés, Clermont-Ferrand 2, 2009.

N. Watanabe, S. Koyama, and H. Imoto, Thermal decomposition of graphite fluoride. I. Decomposition products of graphite fluoride,(CF) n in a vacuum, Bull. Chem. Soc. Jpn, pp.53-2731, 1980.

K. P. Huang, P. Lin, and H. C. Shih, Structures and properties of fluorinated amorphous carbon films, Journal of Applied Physics, vol.31, issue.1, pp.354-360, 2004.
DOI : 10.1063/1.116022

T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis et al., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chemistry of Materials, vol.18, issue.11, pp.2740-2749, 2006.
DOI : 10.1021/cm060258+

T. Nakajima and N. Watanabe, Graphite fluorides and carbon-fluorine compounds, CRC, 1991.

R. J. Lagow, R. B. Badachhape, J. L. Wood, and J. L. Margrave, Some new synthetic approaches to graphite???fluorine chemistry, J. Chem. Soc., Dalton Trans., issue.12, pp.1268-1273, 1974.
DOI : 10.1039/DT9740001268

I. , A. Saleh, and O. , fluorure et oxyfluorure de graphite : synthese-etude structurale-proprietes electrochimiques, 1992.

S. Yan, J. Zhao, Y. Yuan, S. Liu, Z. Huang et al., Preparation and liquid-phase exfoliation of graphite fluoroxide towards graphene fluoroxide, RSC Advances, vol.150, issue.93, pp.21869-21876, 2013.
DOI : 10.1039/c3ra43578d

X. Díez-betriu, S. Álvarez-garcía, C. Botas, P. Álvarez, J. Sánchez-marcos et al., Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films, Journal of Materials Chemistry C, vol.3, issue.41, pp.6905-691210, 1039.
DOI : 10.1039/c3tc31124d

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., vol.130, issue.103, pp.228-240, 2009.
DOI : 10.1002/marc.200900641

A. Lerf, H. He, T. Riedl, M. Forster, and J. Klinowski, International Symposium on the Reactivity of Solids13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives, Solid State Ion, pp.857-862, 1997.

W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat et al., Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide, Science, vol.114, issue.4, pp.321-1815, 2008.
DOI : 10.1017/S1431927602020226

H. He, J. Klinowski, M. Forster, and A. Lerf, A new structural model for graphite oxide, Chemical Physics Letters, vol.287, issue.1-2, pp.53-56, 1998.
DOI : 10.1016/S0009-2614(98)00144-4

H. He, T. Riedl, A. Lerf, and J. Klinowski, Solid-State NMR Studies of the Structure of Graphite Oxide, The Journal of Physical Chemistry, vol.100, issue.51, pp.10-1021, 1996.
DOI : 10.1021/jp961563t

M. Mermoux, Y. Chabre, and A. Rousseau, FTIR and 13C NMR study of graphite oxide, Carbon, vol.29, issue.3, pp.469-474, 1991.
DOI : 10.1016/0008-6223(91)90216-6

K. Takai, H. Sato, T. Enoki, N. Yoshida, F. Okino et al., -Electron Systems, Journal of the Physical Society of Japan, vol.70, issue.1, pp.175-185, 2001.
DOI : 10.1143/JPSJ.70.175

URL : https://hal.archives-ouvertes.fr/hal-00549043

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, and Y. Ito, On the so-called " semi-ionic " C?F bond character in fluorine?GIC, Carbon, p.42, 2004.

Y. Kita, N. Watanabe, and Y. Fujii, Chemical composition and crystal structure of graphite fluoride, Journal of the American Chemical Society, vol.101, issue.14, pp.3832-3841, 1979.
DOI : 10.1021/ja00508a020

Y. Sato, S. Shiraishi, Z. Mazej, R. Hagiwara, and Y. Ito, Direct conversion mechanism of fluorine???GIC into poly(carbon monofluoride), (CF)n, Carbon, vol.41, issue.10, pp.41-1971, 2003.
DOI : 10.1016/S0008-6223(03)00186-6

M. Dubois, K. Guérin, J. P. Pinheiro, Z. Fawal, F. Masin et al., NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere, Carbon, p.42, 1931.

E. Disa, Synthèse de nanolubrifiants à base de carbones fluorés, phdthesis, Université Blaise Pascal - Clermont-Ferrand II, 2012.

Y. Ahmad, E. Disa, K. Guérin, M. Dubois, E. Petit et al., Structure control at the nanoscale in fluorinated graphitized carbon blacks through the fluorination route, Journal of Fluorine Chemistry, vol.168, pp.163-172, 2014.
DOI : 10.1016/j.jfluchem.2014.09.021

URL : https://hal.archives-ouvertes.fr/hal-01085995

Y. Ahmad, E. Disa, M. Dubois, K. Guérin, V. Dubois et al., The synthesis of multilayer graphene materials by the fluorination of carbon nanodiscs/nanocones, Carbon, vol.50, issue.10, pp.3897-3908, 2012.
DOI : 10.1016/j.carbon.2012.04.034

URL : https://hal.archives-ouvertes.fr/hal-00785916

W. Zhang, P. Bonnet, M. Dubois, C. P. Ewels, K. Guérin et al., Comparative Study of SWCNT Fluorination by Atomic and Molecular Fluorine, Chemistry of Materials, vol.24, issue.10, pp.1744-175110, 1021.
DOI : 10.1021/cm203415e

URL : https://hal.archives-ouvertes.fr/hal-00711813

P. Touzain, R. Yazami, and J. Maire, Lithium-graphitic oxide cells part II: High specific surface area graphitic oxide as cathode material for lithium batteries, Journal of Power Sources, vol.14, issue.1-3, pp.99-104, 1985.
DOI : 10.1016/0378-7753(85)88018-6

I. , A. Saleh, and O. , fluorure et oxyfluorure de graphite : synthese-etude structurale-proprietes electrochimiques, 1992.

B. Z. Jang, C. Liu, D. Neff, Z. Yu, M. C. Wang et al., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices, Nano Letters, vol.11, issue.9, pp.3785-3791, 2011.
DOI : 10.1021/nl2018492

D. Wang, C. Sun, G. Zhou, F. Li, L. Wen et al., The examination of graphene oxide for rechargeable lithium storage as a novel cathode material, Journal of Materials Chemistry A, vol.26, issue.11, pp.3607-361210, 1039.
DOI : 10.1002/adfm.201200697

H. Kim, H. Lim, S. Kim, J. Hong, D. Seo et al., Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries, Scientific Reports, vol.80, issue.121, p.1506, 2013.
DOI : 10.1021/ja01539a017

URL : http://doi.org/10.1038/srep01506

G. Girishkumar, B. Mccloskey, A. C. Luntz, S. Swanson, W. Wilcke et al., Lithium???Air Battery: Promise and Challenges, Promise and Challenges, pp.2193-2203, 2010.
DOI : 10.1021/jz1005384

K. M. Abraham and Z. Jiang, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, vol.143, issue.1, 1996.
DOI : 10.1149/1.1836378

J. Read, Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery, Journal of The Electrochemical Society, vol.153, issue.1, pp.96-100, 2006.
DOI : 10.1149/1.2131827

T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, and P. G. Bruce, Rechargeable Li2O2 Electrode for Lithium Batteries., ChemInform, vol.128, issue.18, pp.1390-1393, 2006.
DOI : 10.1002/chin.200618011

J. Lu, Y. Jung-lee, X. Luo, K. C. Lau, M. Asadi et al., A lithium???oxygen battery based on lithium superoxide, Nature, vol.91, issue.7586, pp.529-377, 1038.
DOI : 10.1038/nature16484

R. Cao, E. D. Walter, W. Xu, E. N. Nasybulin, P. Bhattacharya et al., The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries, ChemSusChem, vol.4, issue.9, pp.2436-2440, 2014.
DOI : 10.1002/cssc.201402315

K. U. Schwenke, S. Meini, X. Wu, H. A. Gasteiger, and M. Piana, Stability of superoxide radicals in glyme solvents for non-aqueous Li???O2 battery electrolytes, Physical Chemistry Chemical Physics, vol.150, issue.28, pp.15-11830, 2013.
DOI : 10.1039/C3CP51112J

L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger et al., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li???O2 batteries, Nature Chemistry, vol.4, issue.12, pp.1091-1099, 2014.
DOI : 10.1021/jz401926f

R. Black, S. H. Oh, J. Lee, T. Yim, B. Adams et al., /LiOH Crystallization, Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization, pp.2902-290510, 1021.
DOI : 10.1021/ja2111543

S. S. Zhang, D. Foster, and J. Read, Discharge characteristic of a non-aqueous electrolyte Li/O2 battery, Journal of Power Sources, vol.195, issue.4, 2010.
DOI : 10.1016/j.jpowsour.2009.08.088

S. S. Zhang, D. Foster, and J. Read, Discharge characteristic of a non-aqueous electrolyte Li/O2 battery, Journal of Power Sources, vol.195, issue.4, 2010.
DOI : 10.1016/j.jpowsour.2009.08.088

C. O. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, and M. A. Hendrickson, Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium???Air Battery, The Journal of Physical Chemistry C, vol.114, issue.19, pp.9178-9186, 2010.
DOI : 10.1021/jp102019y

S. S. Sekhon, N. Arora, and H. P. Singh, Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes, Solid State Ion, pp.301-307, 2003.

D. G. David and G. Kwabi, Electrochemical studies of lithium-oxygen reactions for lithium-air battery applications, Thesis, Massachusetts Institute of Technology, 2013.

W. Kwak, D. Hirshberg, D. Sharon, H. J. Shin, M. Afri et al., Understanding the behavior of Li???oxygen cells containing LiI, J. Mater. Chem. A, vol.114, issue.16, pp.8855-886410, 1039.
DOI : 10.1039/C5TA01399B

T. K. Zakharchenko, A. Y. Kozmenkova, D. M. Itkis, and E. A. Goodilin, cells, Beilstein Journal of Nanotechnology, vol.4, pp.758-762, 2013.
DOI : 10.3762/bjnano.4.86

M. Marinaro, S. K. Eswara-moorthy, J. Bernhard, L. Jörissen, M. Wohlfahrt-mehrens et al., batteries, Beilstein Journal of Nanotechnology, vol.4, pp.665-670, 2013.
DOI : 10.3762/bjnano.4.74

V. Aravindan, J. Gnanaraj, S. Madhavi, and H. Liu, Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries, Chemistry - A European Journal, vol.180, issue.98, pp.14326-14346, 2011.
DOI : 10.1002/chem.201101486

R. Younesi, G. M. Veith, P. Johansson, K. Edström, and T. Vegge, , and Li???S, Energy Environ. Sci., vol.224, issue.82, pp.1905-1922, 2015.
DOI : 10.1039/C5EE01215E

B. D. Mccloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan et al., Batteries, The Journal of Physical Chemistry Letters, vol.3, issue.8, pp.997-1001, 2012.
DOI : 10.1021/jz300243r

T. Liu, M. Leskes, W. Yu, A. J. Moore, L. Zhou et al., Cycling Li-O2 batteries via LiOH formation and decomposition, Science, vol.117, issue.32, pp.530-533, 2015.
DOI : 10.1149/1.3507922

URL : https://www.repository.cam.ac.uk/bitstream/1810/253469/1/Liu-et-al%202015%20Science.pdf

R. Black, S. H. Oh, J. Lee, T. Yim, B. Adams et al., /LiOH Crystallization, Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization, pp.2902-290510, 1021.
DOI : 10.1021/ja2111543

R. Younesi, M. Hahlin, F. Björefors, P. Johansson, and K. Edström, ): A Model Study, Chemistry of Materials, vol.25, issue.1, pp.77-84, 2013.
DOI : 10.1021/cm303226g

M. Leskes, A. J. Moore, G. R. Goward, and C. P. Grey, Monitoring the Electrochemical Processes in the Lithium???Air Battery by Solid State NMR Spectroscopy, The Journal of Physical Chemistry C, vol.117, issue.51, pp.26929-26939, 2013.
DOI : 10.1021/jp410429k

L. A. Huff, J. L. Rapp, L. Zhu, and A. A. Gewirth, Identifying lithium???air battery discharge products through 6Li solid-state MAS and 1H???13C solution NMR spectroscopy, Journal of Power Sources, vol.235, pp.87-94, 2013.
DOI : 10.1016/j.jpowsour.2013.01.158

B. D. Mccloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. Luntz, Solvents??? Critical Role in Nonaqueous Lithium???Oxygen Battery Electrochemistry, The Journal of Physical Chemistry Letters, vol.2, issue.10, pp.1161-1166, 2011.
DOI : 10.1021/jz200352v

Y. Lu, H. A. Gasteiger, and Y. Shao-horn, Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries, Journal of the American Chemical Society, vol.133, issue.47, pp.19048-19051, 2011.
DOI : 10.1021/ja208608s

K. U. Schwenke, S. Meini, X. Wu, H. A. Gasteiger, and M. Piana, Stability of superoxide radicals in glyme solvents for non-aqueous Li???O2 battery electrolytes, Physical Chemistry Chemical Physics, vol.150, issue.28, pp.11830-11839, 2013.
DOI : 10.1039/C3CP51112J

F. Barroso-bujans, S. Cerveny, A. Alegría, and J. Colmenero, Sorption and desorption behavior of water and organic solvents from graphite oxide, Carbon, vol.48, issue.11, 2010.
DOI : 10.1016/j.carbon.2010.05.023

Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner et al., Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets, ACS Nano, vol.4, issue.2, pp.1227-1233, 2010.
DOI : 10.1021/nn901689k

Y. Ahmad, K. Guérin, M. Dubois, W. Zhang, and A. Hamwi, Enhanced performances in primary lithium batteries of fluorinated carbon nanofibers through static fluorination, Electrochimica Acta, vol.114, 2013.
DOI : 10.1016/j.electacta.2013.09.140

URL : https://hal.archives-ouvertes.fr/hal-00944438

M. Leskes, N. E. Drewett, L. J. Hardwick, P. G. Bruce, G. R. Goward et al., Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy, Angewandte Chemie, vol.117, issue.34, pp.8688-8691, 2012.
DOI : 10.1002/ange.201202183

J. Lu, Y. Jung-lee, X. Luo, K. C. Lau, M. Asadi et al., A lithium???oxygen battery based on lithium superoxide, Nature, vol.91, issue.7586, pp.529-377, 1038.
DOI : 10.1038/nature16484

F. S. Gittleson, K. P. Yao, D. G. Kwabi, S. Y. Sayed, W. Ryu et al., Raman Spectroscopy in Lithium-Oxygen Battery Systems, ChemElectroChem, vol.3, issue.10, pp.1446-1457, 2015.
DOI : 10.1002/celc.201500218

P. K. Muhuri, B. Das, and D. K. Hazra, Ionic Association of Some Lithium Salts in 1,2-Dimethoxyethane. A Raman Spectroscopic and Conductivity Study, The Journal of Physical Chemistry B, vol.101, issue.17, pp.3329-3332, 1997.
DOI : 10.1021/jp963747d

T. T. Basiev, V. V. Voronov, V. A. Konyushkin, S. V. Kuznetsov, S. V. Lavrishchev et al., Optical lithium fluoride ceramics, Doklady Physics, vol.52, issue.12, pp.677-68010, 1134.
DOI : 10.1134/S1028335807120099

Y. N. Zhuravlev and O. S. Obolonskaya, Structure, mechanical stability, and chemical bond in alkali metal oxides, Journal of Structural Chemistry, vol.79, issue.15, pp.1005-1013, 2011.
DOI : 10.1007/s10947-010-0157-1

S. L. Mair, The electron distribution of the hydroxide ion in lithium hydroxide, Acta Crystallographica Section A, vol.34, issue.4, pp.542-547, 1978.
DOI : 10.1107/S0567739478001151

J. M. Kiat, G. Boemare, B. Rieu, and D. Aymes, Structural evolution of LiOH: evidence of a solid???solid transformation toward Li2O close to the melting temperature, Solid State Communications, vol.108, issue.4, pp.241-245, 1998.
DOI : 10.1016/S0038-1098(98)00346-9

D. Su, D. Han-seo, Y. Ju, Z. Han, K. Ostrikov et al., Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries, NPG Asia Materials, vol.113, issue.7, p.286, 2016.
DOI : 10.1038/am.2016.91

URL : http://doi.org/10.1038/am.2016.91

F. Fehér, I. Von-wilucki, and G. Dost, Beitr??ge zur Kenntnis des Wasserstoffperoxyds und seiner Derivate, VII. Mitteil.: ??ber die Kristallstruktur des Lithiumperoxyds, Li2O2, Chemische Berichte, vol.47, issue.11, pp.1429-1437, 1953.
DOI : 10.1002/cber.19530861111

J. Liu, The O2 electrode performance in the Li-O2 battery, Structural Chemistry, 2015.

J. M. Bijvoet, A. Claasen, and A. Karssen, The scattering power of lithium and oxygen determined from the diffraction-intensities of powdered lithiumoxide, Proc. K. Akad. Van Wet, pp.1286-1292, 1926.

S. Harder, J. H. Van-lenthe, N. J. Van-eikema-hommes, and P. V. Schleyer, Nucleophilic Ring Opening of Epoxides by Organolithium Compounds: Ab Initio Mechanisms, Journal of the American Chemical Society, vol.116, issue.6, pp.2508-2514, 1994.
DOI : 10.1021/ja00085a035

A. Hunt, D. A. Dikin, E. Z. Kurmaev, T. D. Boyko, P. Bazylewski et al., Epoxide Speciation and Functional Group Distribution in Graphene Oxide Paper-Like Materials, Advanced Functional Materials, vol.66, issue.18, pp.3950-3957, 2012.
DOI : 10.1002/adfm.201200529

S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal et al., Room-temperature metastability of multilayer graphene oxide films, Nature Materials, vol.90, issue.6, pp.544-549, 2012.
DOI : 10.1038/nmat3316

URL : https://hal.archives-ouvertes.fr/hal-00911814

P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher et al., Scalable enhancement of graphene oxide properties by thermally driven phase transformation, Nature Chemistry, vol.111, issue.2, pp.151-158, 2014.
DOI : 10.1103/PhysRevLett.77.3865

P. Sun, Y. Wang, H. Liu, K. Wang, D. Wu et al., Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved?, PLoS ONE, vol.1, issue.11
DOI : 10.1371/journal.pone.0111908.s001

S. J. Blanksby and G. B. Ellison, Bond Dissociation Energies of Organic Molecules, Accounts of Chemical Research, vol.36, issue.4, pp.255-263, 2003.
DOI : 10.1021/ar020230d

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.616.3043

V. B. Oyeyemi, J. A. Keith, and E. A. Carter, Trends in Bond Dissociation Energies of Alcohols and Aldehydes Computed with Multireference Averaged Coupled-Pair Functional Theory, The Journal of Physical Chemistry A, vol.118, issue.17, pp.3039-3050, 2014.
DOI : 10.1021/jp501636r

. Après-l-'impulsion-de-radiofréquence, aimantation longitudinale retourne vers sa valeur d'équilibre. On montre que la vitesse de retour, que l'on note dM z /dt , de l'aimantation longitudinale est, à chaque instant t, proportionnelle à la différence entre l'aimantation longitudinale Mz(t) et sa valeur d'équilibre M 0 . Le coefficient de proportionnalité a la dimension inverse d'un temps, et on l'exprime par la constante 1/T 1 : La constante de temps T 1 définie par ces relations est appelée temps de relaxation longitudinale (ou temps de relaxation spin-réseau) Cette relation montre que si le temps

. La, de proportionnalité a une dimension inverse d'un temps ; elle est notée 1/T 2 . Dans cette expression, le signe -signifie simplement que l'aimantation transversale décroît. Cette relation permet de définir la constante de temps T 2 appelée temps de relaxation transversale (ou temps de relaxation spin-spin)

F. Dans-le-cas-d-'un, signal temporel) possédant plusieurs signaux RMN issus de noyaux non équivalents, celui-ci devient extrêmement difficile à interpréter car les différentes contributions sont difficilement séparables. On effectue donc une transformée de Fourier du signal temporelle et on obtient un signal fréquentiel où toutes les

I. La, Spectroscopie Infrarouge à Transformée de Fourier donne des informations sur les fonctions qui s'expriment via les vibrations des liaisons Chaque fonction absorbe dans des longueurs d'onde correspondant à différents modes. On peut les constater entre 400 et 4000 cm -1 . Cependant on peut avoir superposition et les longueurs d'onde référencées ciaprès sont approximatives dans la mesure où elles

L. Mesures, Résolution : 8 -32 balayages) sont réalisées en transmission via l'interface OMNIC, KBr étant le milieu dispersant sur l'appareil Thermo. 1.4.1.3 DRX La DRX est riche en informations structurales. Elle constitue un moyen fiable pour déterminer les phases organisées des matériaux. Les diffractogrammes sont réalisés sur l'appareil Philips X'pert suivant une

. Le-goniomètre-positionne, La radiation K?1 du cuivre (?=1,5404 Å) est utilisée. Le rayonnement issu du tube de rayons X est diffracté par l'échantillon puis capté par un détecteur. L'ensemble est piloté par un ordinateur sous l'interface Data Collector. . Des enregistrements lents ont été faits en mode pas à pas