P. Rothwell, A. Coull, and L. Silver, Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study), The Lancet, vol.366, issue.9499, pp.1773-1783, 2005.
DOI : 10.1016/S0140-6736(05)67702-1

C. Stapf, H. Mast, and R. Sciacca, The New York Islands AVM Study: Design, Study Progress, and Initial Results, Stroke, vol.34, issue.5, pp.29-33, 2003.
DOI : 10.1161/01.STR.0000068784.36838.19

R. Al-shahi, J. Bhattacharya, and D. Currie, Prospective, Population-Based Detection of Intracranial Vascular Malformations in Adults: The Scottish Intracranial Vascular Malformation Study (SIVMS), Stroke, vol.34, issue.5, pp.1163-1169, 2003.
DOI : 10.1161/01.STR.0000069018.90456.C9

E. Sadowski, L. Bennett, and M. Chan, Nephrogenic Systemic Fibrosis: Risk Factors and Incidence Estimation, Radiology, vol.243, issue.1, pp.148-157, 2007.
DOI : 10.1148/radiol.2431062144

D. Hadizadeh, G. Kukuk, and D. Steck, Noninvasive Evaluation of Cerebral Arteriovenous Malformations by 4D-MRA for Preoperative Planning and Postoperative Follow-Up in 56 Patients: Comparison with DSA and Intraoperative Findings, American Journal of Neuroradiology, vol.33, issue.6, pp.1095-1101, 2012.
DOI : 10.3174/ajnr.A2921

T. Illies, N. Forkert, and T. Ries, Classification of Cerebral Arteriovenous Malformations and Intranidal Flow Patterns by Color-Encoded 4D-Hybrid-MRA, American Journal of Neuroradiology, vol.34, issue.1, pp.46-53, 2013.
DOI : 10.3174/ajnr.A3204

J. Ferre, H. Raoult, and S. Breil, Supra-aortic arteries: Three-dimensional time-resolved k-t BLAST contrast-enhanced MRA using a nondedicated body coil at 3 tesla in acute ischemic stroke, Journal of Magnetic Resonance Imaging, vol.44, issue.5, 2013.
DOI : 10.1097/RLI.0b013e31819ca048

URL : https://hal.archives-ouvertes.fr/inserm-01102331

W. Willinek, M. Born, and B. Simon, Time-of-Flight MR Angiography: Comparison of 3.0-T Imaging and 1.5-T Imaging???Initial Experience, Radiology, vol.229, issue.3, pp.913-920, 2003.
DOI : 10.1148/radiol.2293020782

J. Gauvrit, M. Law, and J. Xu, Time-resolved MR angiography: optimal parallel imaging method

X. Bi, P. Weale, and P. Schmitt, Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: A feasibility study, Magnetic Resonance in Medicine, vol.89, issue.3, pp.835-841, 2010.
DOI : 10.2214/ajr.169.3.9275891

H. Kramer, V. Runge, and J. Morelli, Magnetic resonance angiography of the carotid arteries: comparison of unenhanced and contrast enhanced techniques, European Radiology, vol.42, issue.83, pp.1667-1676, 2011.
DOI : 10.1097/RLI.0b013e3180661a77

J. Xu, D. Shi, and C. Chen, Noncontrast-enhanced four-dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: A preliminary trial, Journal of Magnetic Resonance Imaging, vol.63, issue.5, 2011.
DOI : 10.1002/mrm.22220

O. Bieri and K. Scheffler, Fundamentals of balanced steady state free precession MRI, Journal of Magnetic Resonance Imaging, vol.23, issue.1, 2013.
DOI : 10.1002/jmri.20486

W. Li, P. Storey, and Q. Chen, Dark Flow Artifacts with Steady-State Free Precession Cine MR Technique: Causes and Implications for Cardiac MR Imaging, Radiology, vol.230, issue.2, pp.569-575, 2004.
DOI : 10.1148/radiol.2302021257

M. Miyazaki and V. Lee, Nonenhanced MR Angiography, Radiology, vol.248, issue.1, pp.20-43, 2008.
DOI : 10.1148/radiol.2481071497

J. Ferre, E. Bannier, and H. Raoult, Arterial spin labeling (ASL) perfusion: Techniques and clinical use, Diagnostic and Interventional Imaging, vol.94, issue.12
DOI : 10.1016/j.diii.2013.06.010

URL : https://hal.archives-ouvertes.fr/inserm-00845183

C. Herborn, D. Watkins, and V. Runge, Renal Arteries: Comparison of Steady-State Free Precession MR Angiography and Contrast-enhanced MR Angiography, Radiology, vol.239, issue.1, pp.263-268, 2006.
DOI : 10.1148/radiol.2383050058

M. Katoh, A. Buecker, and M. Stuber, Free-breathing renal MR angiography with steady-state free-precession (SSFP) and slab-selective spin inversion: Initial results, Kidney International, vol.66, issue.3, pp.1272-1278, 2004.
DOI : 10.1111/j.1523-1755.2004.00882.x

URL : http://doi.org/10.1111/j.1523-1755.2004.00882.x

R. Lanzman, A. Voiculescu, and C. Walther, ECG-gated Nonenhanced 3D Steady-State Free Precession MR Angiography in Assessment of Transplant Renal Arteries: Comparison with DSA, Radiology, vol.252, issue.3, pp.914-921, 2009.
DOI : 10.1148/radiol.2531082260

S. Yu, L. Yan, and Y. Yao, Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM): comparison with time of flight (TOF) and digital subtraction angiography (DSA), Magnetic Resonance Imaging, vol.30, issue.6, pp.869-877, 2012.
DOI : 10.1016/j.mri.2012.02.027

W. Chang, M. Loecher, and Y. Wu, Hemodynamic Changes in Patients with Arteriovenous Malformations Assessed Using High-Resolution 3D Radial Phase-Contrast MR Angiography, American Journal of Neuroradiology, vol.33, issue.8, pp.1565-1572, 2012.
DOI : 10.3174/ajnr.A3010

F. Siddiqui, A. Hassan, and N. Tariq, Endovascular Management of Symptomatic Extracranial Stenosis Associated with Secondary Intracranial Tandem Stenosis. A Multicenter Review, Journal of Neuroimaging, vol.30, issue.2, pp.243-248, 2012.
DOI : 10.1161/01.STR.30.2.282

P. Rouleau, J. Huston, and J. Gilbertson, Carotid artery tandem lesions: frequency of angiographic detection and consequences for endarterectomy, AJNR Am J Neuroradiol, vol.20, pp.621-625, 1999.

D. Marzewski, A. Furlan, S. Louis, and P. , Intracranial internal carotid artery stenosis: longterm prognosis, Stroke, vol.13, issue.6, pp.821-824, 1982.
DOI : 10.1161/01.STR.13.6.821

A. Coull, J. Lovett, and P. Rothwell, Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services Clinical alert: benefit of carotid endarterectomy for patients with high-grade stenosis of the internal carotid artery. National Institute of Neurological Disorders and Stroke Stroke and Trauma Division, North American Symptomatic Carotid Endarterectomy Trial (NASCET) investigators, pp.326-28816, 1991.

A. Halliday, A. Mansfield, and J. Marro, Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial, Lancet, vol.363, pp.1491-1502, 2004.

L. Bonati, J. Dobson, and A. Algra, Short-term outcome after stenting versus endarterectomy for symptomatic carotid stenosis: a preplanned meta-analysis of individual patient data, Lancet, vol.376, pp.1062-1073, 2010.

C. Maher, D. Piepgras, R. Brown, and . Jr, Cerebrovascular Manifestations in 321 Cases of Hereditary Hemorrhagic Telangiectasia, Stroke, vol.32, issue.4, pp.877-882, 2001.
DOI : 10.1161/01.STR.32.4.877

R. Fulbright, J. Chaloupka, and C. Putman, MR of hereditary hemorrhagic telangiectasia: prevalence and spectrum of cerebrovascular malformations, AJNR Am J Neuroradiol, vol.19, pp.477-484, 1998.

R. Gabriel, H. Kim, and S. Sidney, Ten-Year Detection Rate of Brain Arteriovenous Malformations in a Large, Multiethnic, Defined Population, Stroke, vol.41, issue.1, pp.21-26, 2010.
DOI : 10.1161/STROKEAHA.109.566018

A. Laakso and J. Hernesniemi, Arteriovenous Malformations: Epidemiology and Clinical Presentation, Neurosurgery Clinics of North America, vol.23, issue.1
DOI : 10.1016/j.nec.2011.09.012

C. Stapf, Malformations art??rioveineuses c??r??brales non rompues, Revue Neurologique, vol.164, issue.10, pp.787-792, 2008.
DOI : 10.1016/j.neurol.2008.07.017

B. Gross and R. Du, Natural history of cerebral arteriovenous malformations: a meta-analysis, Journal of Neurosurgery, vol.118, issue.2, pp.437-443, 2013.
DOI : 10.3171/2012.10.JNS121280

C. Stapf, H. Mast, and R. Sciacca, Predictors of hemorrhage in patients with untreated brain arteriovenous malformation, Neurology, vol.66, issue.9, pp.1350-1355, 2006.
DOI : 10.1212/01.wnl.0000210524.68507.87

T. Todaka, J. Hamada, and Y. Kai, Analysis of Mean Transit Time of Contrast Medium in Ruptured and Unruptured Arteriovenous Malformations: A Digital Subtraction Angiographic Study, Stroke, vol.34, issue.10, pp.2410-2414, 2003.
DOI : 10.1161/01.STR.0000089924.43363.E3

V. Parkhutik, A. Lago, and J. Tembl, Postradiosurgery Hemorrhage Rates of Arteriovenous Malformations of the Brain: Influencing Factors and Evolution With Time, Stroke, vol.43, issue.5, pp.1247-1252, 2012.
DOI : 10.1161/STROKEAHA.111.635789

J. Hernesniemi, R. Dashti, and S. Juvela, NATURAL HISTORY OF BRAIN ARTERIOVENOUS MALFORMATIONS, Neurosurgery, vol.63, issue.5, pp.823-829, 2008.
DOI : 10.1227/01.NEU.0000330401.82582.5E

H. Kim, S. Sidney, and C. Mcculloch, Racial/Ethnic Differences in Longitudinal Risk of Intracranial Hemorrhage in Brain Arteriovenous Malformation Patients, Stroke, vol.38, issue.9, pp.2430-2437, 2007.
DOI : 10.1161/STROKEAHA.107.485573

T. Illies, N. Forkert, and D. Saering, Persistent Hemodynamic Changes in Ruptured Brain Arteriovenous Malformations, Stroke, vol.43, issue.11, pp.2910-2915, 2012.
DOI : 10.1161/STROKEAHA.112.669945

L. Lunsford, A. Niranjan, and D. Kondziolka, Radiosurgery of Arteriovenous Malformations, Contemporary Neurosurgery, vol.15, issue.24, pp.108-119, 2008.
DOI : 10.1097/00029679-199315240-00001

C. Stapf, E. Connolly, and H. Schumacher, Dysplastic Vessels After Surgery for Brain Arteriovenous Malformations, Stroke, vol.33, issue.4, pp.1053-1056, 2002.
DOI : 10.1161/hs0402.105319

URL : http://stroke.ahajournals.org/content/strokeaha/33/4/1053.full.pdf

J. Castel and G. Kantor, Postoperative morbidity and mortality after microsurgical exclusion of cerebral arteriovenous malformations. Current data and analysis of recent literature], Neurochirurgie, vol.47, pp.369-383, 2001.

X. Lv, Z. Wu, and C. Jiang, Complication risk of endovascular embolization for cerebral arteriovenous malformation, European Journal of Radiology, vol.80, issue.3, pp.776-779, 2011.
DOI : 10.1016/j.ejrad.2010.09.024

L. Pierot, C. Cognard, and D. Herbreteau, Endovascular treatment of brain arteriovenous malformations using a liquid embolic agent: results of a prospective, multicentre study (BRAVO), European Radiology, vol.60, issue.10, pp.2838-2845, 2013.
DOI : 10.3174/ajnr.A3409

I. Saatci, S. Geyik, and K. Yavuz, Endovascular treatment of brain arteriovenous malformations with prolonged intranidal Onyx injection technique: long-term results in 350 consecutive patients with completed endovascular treatment course, Journal of Neurosurgery, vol.115, issue.1, pp.78-88, 2011.
DOI : 10.3171/2011.2.JNS09830

K. Maruyama, M. Shin, and M. Tago, Radiosurgery to Reduce the Risk of First Hemorrhage from Brain Arteriovenous Malformations, Neurosurgery, vol.60, issue.3, pp.453-458, 2007.
DOI : 10.1227/01.NEU.0000255341.03157.00

R. Liscak, V. Vladyka, and G. Simonova, ARTERIOVENOUS MALFORMATIONS AFTER LEKSELL GAMMA KNIFE RADIOSURGERY, Neurosurgery, vol.60, issue.6, pp.1005-1014, 2007.
DOI : 10.1227/01.NEU.0000255474.60505.4A

H. Jokura, J. Kawagishi, and K. Sugai, Gamma Knife Radiosurgery for Arteriovenous Malformations: The Furukawa Experience, Prog Neurol Surg, vol.22, pp.20-30, 2009.
DOI : 10.1159/000163379

J. Baranoski, R. Grant, and L. Hirsch, Seizure control for intracranial arteriovenous malformations is directly related to treatment modality: a meta-analysis Natural history of cerebral arteriovenous malformations and the risk of hemorrhage after radiosurgery, J Neurointerv Surg Prog Neurol Surg, vol.5527, pp.5-21, 2013.

D. Ding, C. Yen, and Z. Xu, Radiosurgery for patients with unruptured intracranial arteriovenous malformations Treatment of brain arteriovenous malformations: a systematic review and meta-analysis, J Neurosurg JAMA, vol.118306, pp.958-966, 2011.

J. Choi, H. Mast, and R. Sciacca, Clinical outcome after first and recurrent hemorrhage in patients with untreated brain arteriovenous malformation Outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: population-based studies, Stroke Brain, vol.37132, pp.1243-1247, 2006.
DOI : 10.1161/01.str.0000217970.18319.7d

URL : http://stroke.ahajournals.org/content/strokeaha/37/5/1243.full.pdf

J. Mohr, M. Parides, and C. Stapf, Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial, The Lancet, vol.383, issue.9917, 2013.
DOI : 10.1016/S0140-6736(13)62302-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119885

L. Pierot, J. Fiehler, and C. Cognard, Will A Randomized Trial of Unruptured Brain Arteriovenous Malformations Change Our Clinical Practice?, American Journal of Neuroradiology, vol.35, issue.3, pp.416-417, 2014.
DOI : 10.3174/ajnr.A3867

B. Davis, K. Royalty, and M. Kowarschik, 4D Digital Subtraction Angiography: Implementation and Demonstration of Feasibility, American Journal of Neuroradiology, vol.34, issue.10, pp.1914-1921, 2013.
DOI : 10.3174/ajnr.A3529

H. Ota, K. Takase, and H. Rikimaru, Quantitative Vascular Measurements in Arterial Occlusive Disease, RadioGraphics, vol.25, issue.5
DOI : 10.1148/rg.255055014

A. Conti, A. Pontoriero, and G. Farago, Integration of Three-Dimensional Rotational Angiography in Radiosurgical Treatment Planning of Cerebral Arteriovenous Malformations, International Journal of Radiation Oncology*Biology*Physics, vol.81, issue.3, pp.29-37, 2011.
DOI : 10.1016/j.ijrobp.2010.12.024

D. Clevert, T. Johnson, and H. Michaely, High-grade stenoses of the internal carotid artery: Comparison of high-resolution contrast enhanced 3D MRA, duplex sonography and power Doppler imaging, European Journal of Radiology, vol.60, issue.3, pp.379-386, 2006.
DOI : 10.1016/j.ejrad.2006.07.012

R. Schernthaner, A. Stadler, and F. Lomoschitz, Multidetector CT angiography in the assessment of peripheral arterial occlusive disease: accuracy in detecting the severity, number, and length of stenoses, European Radiology, vol.11, issue.S1, pp.665-671, 2008.
DOI : 10.1148/radiology.214.2.r00fe18363

K. Nael, J. Villablanca, and W. Pope, Supraaortic arteries: contrast-enhanced MR angiography at 3

M. Gough, Preprocedural imaging strategies in symptomatic carotid artery stenosis, Journal of Vascular Surgery, vol.54, issue.4, pp.1215-1218, 2011.
DOI : 10.1016/j.jvs.2011.05.101

URL : http://doi.org/10.1016/j.jvs.2011.05.101

P. Nederkoorn and Y. Van-der-graaf, MRA for Carotid Artery Stenosis, Stroke, vol.40, issue.3, pp.77-78, 2009.
DOI : 10.1161/STROKEAHA.108.540096

URL : http://stroke.ahajournals.org/content/strokeaha/40/3/e77.full.pdf

J. Menke, Diagnostic accuracy of contrast-enhanced MR angiography in severe carotid stenosis: meta-analysis with metaregression of different techniques, European Radiology, vol.242, issue.Suppl 2, pp.2204-2216, 2009.
DOI : 10.7326/0003-4819-147-12-200712180-00005

V. Lee, D. Martin, and G. Krinsky, Gadolinium-Enhanced MR Angiography, American Journal of Roentgenology, vol.175, issue.1
DOI : 10.2214/ajr.175.1.1750197

M. Miyazaki and M. Akahane, Non-contrast enhanced MR angiography: Established techniques, Journal of Magnetic Resonance Imaging, vol.194, issue.1, pp.1-19, 2012.
DOI : 10.2214/AJR.09.2814

A. Wheaton and M. Miyazaki, Non-contrast enhanced MR angiography: Physical principles, Journal of Magnetic Resonance Imaging, vol.27, issue.2, pp.286-304, 2012.
DOI : 10.1002/jmri.21256

S. Coley, J. Wild, and I. Wilkinson, Neurovascular MRI with dynamic contrast-enhanced subtraction angiography, Neuroradiology, vol.45, issue.12, pp.843-850, 2003.
DOI : 10.1007/s00234-003-1075-0

Y. Wu, K. Johnson, and S. Kecskemeti, Time resolved contrast enhanced intracranial MRA using a single dose delivered as sequential injections and highly constrained projection reconstruction (HYPR CE), Magnetic Resonance in Medicine, vol.29, issue.4, pp.956-963, 2011.
DOI : 10.1002/jmri.21761

URL : http://onlinelibrary.wiley.com/doi/10.1002/mrm.22792/pdf

A. Deshmane, V. Gulani, and M. Griswold, Parallel MR imaging, Journal of Magnetic Resonance Imaging, vol.3, issue.1, pp.55-72, 2012.
DOI : 10.1016/j.jcmg.2010.03.009

A. Zavodni, D. Emery, and A. Wilman, Performance of steady-state free precession for imaging carotid artery disease, Journal of Magnetic Resonance Imaging, vol.45, issue.1, pp.86-90, 2005.
DOI : 10.1161/01.CIR.100.22.2284

O. Bieri and K. Scheffler, Flow compensation in balanced SSFP sequences, Magnetic Resonance in Medicine, vol.40, issue.4, pp.901-907, 2005.
DOI : 10.1148/radiology.219.3.r01jn44828

I. Koktzoglou and R. Edelman, STAR and STARFIRE for flow-dependent and flow-independent noncontrast carotid angiography, Magnetic Resonance in Medicine, vol.52, issue.1, pp.117-124, 2009.
DOI : 10.1148/radiology.199.1.8633172

H. Raoult, J. Gauvrit, and J. Petr, Innovations en IRM fonctionnelle c??r??brale??: marquage de spins art??riels et diffusion, Journal de Radiologie, vol.92, issue.10, pp.878-888, 2011.
DOI : 10.1016/j.jradio.2011.04.016

R. Edelman, B. Siewert, and M. Adamis, Signal targeting with alternating radiofrequency (STAR) sequences: Application to MR angiography, Magnetic Resonance in Medicine, vol.18, issue.2, pp.233-238, 1994.
DOI : 10.2214/ajr.154.3.2106232

M. Stuber, P. Bornert, and E. Spuentrup, Selective three-dimensional visualization of the coronary arterial lumen using arterial spin tagging, Magnetic Resonance in Medicine, vol.34, issue.2, pp.322-329, 2002.
DOI : 10.1002/mrm.1910340113

J. Detre, J. Leigh, and D. Williams, Perfusion imaging, Magnetic Resonance in Medicine, vol.3, issue.1, pp.37-45, 1992.
DOI : 10.1038/jcbfm.1985.9

R. Edelman, B. Siewert, and D. Darby, Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency., Radiology, vol.192, issue.2, pp.513-520, 1994.
DOI : 10.1148/radiology.192.2.8029425

D. Alsop, J. Detre, and X. Golay, Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia, Magn Reson Med, 2014.

N. Lummel, T. Boeckh-behrens, and J. Lutz, Evaluation of the supraaortic arteries using non-contrastenhanced Velocity MR Angiography, Neuroradiology, 2012.

P. Schmitt, X. Bi, and P. Weale, Non-contrast-enhanced 4D intracranial MR angiography: Optimizations using a variable flip angle approach, Proceedings of the 18th Annual Meeting of the ISMRM, 2010.

R. Lanzman, P. Kropil, and P. Schmitt, Nonenhanced ECG-gated time-resolved 4D Steady-state free precession (SSFP) MR angiography (MRA) for assessment of cerebral collateral flow: comparison with digital subtraction angiography (DSA), European Radiology, vol.31, issue.6, pp.1329-1338, 2011.
DOI : 10.1002/mrm.1910310219

R. Lanzman, P. Kropil, and P. Schmitt, Nonenhanced ECG-gated time-resolved 4D steady-state free precession (SSFP) MR angiography (MRA) of cerebral arteries: Comparison at 1.5T and 3T, European Journal of Radiology, vol.81, issue.4, pp.531-535, 2012.
DOI : 10.1016/j.ejrad.2011.06.044

L. Yan, S. Wang, and Y. Zhuo, Unenhanced Dynamic MR Angiography: High Spatial and Temporal Resolution by Using True FISP???based Spin Tagging with Alternating Radiofrequency, Radiology, vol.256, issue.1, pp.270-279, 2010.
DOI : 10.1148/radiol.10091543

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897689

P. Cao, G. Olympe, and B. Ramond, A New Production Method of Elastic Silicone Carotid Phantom Based on MRI Acquisition Using Rapid Prototyping Technique Overestimation of carotid artery stenosis with magnetic resonance angiography compared with digital subtraction angiography, J Vasc Surg, vol.36, pp.806-813, 2002.

N. Takei, M. Miyoshi, and H. Kabasawa, Noncontrast MR angiography for supraaortic arteries using inflow enhanced inversion recovery fast spin echo imaging, Journal of Magnetic Resonance Imaging, vol.46, issue.4, pp.957-962, 2012.
DOI : 10.1002/mrm.1282

I. Koktzoglou, N. Gupta, and R. Edelman, Nonenhanced extracranial carotid MR angiography using arterial spin labeling: Improved performance with pseudocontinuous tagging, Journal of Magnetic Resonance Imaging, vol.64, issue.2, pp.384-394, 2011.
DOI : 10.1002/mrm.22465

P. Robson, W. Dai, and A. Shankaranarayanan, Time-resolved Vessel-selective Digital Subtraction MR Angiography of the Cerebral Vasculature with Arterial Spin Labeling, Radiology, vol.257, issue.2, pp.507-515, 2010.
DOI : 10.1148/radiol.10092333

K. Nandalur, E. Baskurt, and K. Hagspiel, Carotid Artery Calcification on CT May Independently Predict Stroke Risk, American Journal of Roentgenology, vol.186, issue.2, pp.547-552, 2006.
DOI : 10.2214/AJR.04.1216

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955288

K. Yoshida, N. Sadamasa, and O. Narumi, Symptomatic Low-Grade Carotid Stenosis With Intraplaque Hemorrhage and Expansive Arterial Remodeling Is Associated With a High Relapse Rate Refractory to Medical Treatment, Neurosurgery, vol.70, issue.5, pp.1143-1150, 2012.
DOI : 10.1227/NEU.0b013e31823fe50b

R. Bond, K. Rerkasem, and P. Rothwell, Systematic Review of the Risks of Carotid Endarterectomy in Relation to the Clinical Indication for and Timing of Surgery, Stroke, vol.34, issue.9, pp.2290-2301, 2003.
DOI : 10.1161/01.STR.0000087785.01407.CC

J. Golledge, R. Greenhalgh, and A. Davies, The Symptomatic Carotid Plaque, Stroke, vol.31, issue.3, pp.774-781, 2000.
DOI : 10.1161/01.STR.31.3.774

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.535.3744

L. Gury-paquet, A. Millon, and F. Salami, Carotid plaque high-resolution MRI at 3 T: evaluation of a new imaging score for symptomatic plaque assessment, Magnetic Resonance Imaging, vol.30, issue.10, pp.1424-1431, 2012.
DOI : 10.1016/j.mri.2012.04.024

A. Frangi, W. Niessen, and K. Vincken, Vessel enhancement filtering Fully automated reconstruction of ungated ghost magnetic resonance angiograms, Proc. of the First Int. Conf. on MICCAI, pp.130-137655, 1998.

D. Lesage, E. Angelini, and I. Bloch, A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Medical Image Analysis, vol.13, issue.6, pp.819-845, 2009.
DOI : 10.1016/j.media.2009.07.011

S. Deoni, Quantitative Relaxometry of the Brain, Topics in Magnetic Resonance Imaging, vol.21, issue.2, pp.101-113, 2010.
DOI : 10.1097/RMR.0b013e31821e56d8

H. Raoult, J. Gauvrit, P. Schmitt, L. Couls, V. Bannier et al., Non-ECG-gated unenhanced MRA of the carotids: Optimization and clinical feasibility, European Radiology, vol.61, issue.11, pp.3020-3028, 2013.
DOI : 10.1002/mrm.21769

URL : https://hal.archives-ouvertes.fr/inserm-00845210

H. Raoult, E. Bannier, C. Robert, . Barillot, . Schmitt et al., Time-resolved Spin-labeled MR Angiography for the Depiction of Cerebral Arteriovenous Malformations: A Comparison of Techniques, Radiology, vol.271, issue.2, pp.271524-271557
DOI : 10.1148/radiol.13131252

URL : https://hal.archives-ouvertes.fr/inserm-00945211

H. Raoult, E. Bannier, P. Maurel, C. Neyton, J. Ferré et al., Hemodynamic quantification in brain arteriovenous malformations with time-resolved spin-labeled MRA. Stroke 2014
DOI : 10.1161/strokeaha.114.006080

R. 1. Hadizadeh, D. Kukuk, G. Steck, and D. , Noninvasive Evaluation of Cerebral Arteriovenous Malformations by 4D-MRA for Preoperative Planning and Postoperative Follow-Up in 56 Patients: Comparison with DSA and Intraoperative Findings, American Journal of Neuroradiology, vol.33, issue.6, pp.1095-1101, 2012.
DOI : 10.3174/ajnr.A2921

C. Taschner, J. Gieseke, L. Thuc, and V. , Intracranial Arteriovenous Malformation: Time-resolved Contrast-enhanced MR Angiography with Combination of Parallel Imaging, Keyhole Acquisition, and k-Space Sampling Techniques at 1.5 T, Radiology, vol.246, issue.3, pp.871-879, 2008.
DOI : 10.1148/radiol.2463070293

J. Xu, D. Shi, and C. Chen, Noncontrast-enhanced four-dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: A preliminary trial, Journal of Magnetic Resonance Imaging, vol.63, issue.5, pp.1199-1205, 2011.
DOI : 10.1002/mrm.22220

S. Yu, L. Yan, and Y. Yao, Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM): comparison with time of flight (TOF) and digital subtraction angiography (DSA), Magnetic Resonance Imaging, vol.30, issue.6, pp.869-877, 2012.
DOI : 10.1016/j.mri.2012.02.027

L. Yan, S. Wang, and Y. Zhuo, Unenhanced Dynamic MR Angiography: High Spatial and Temporal Resolution by Using True FISP???based Spin Tagging with Alternating Radiofrequency, Radiology, vol.256, issue.1, pp.270-279, 2010.
DOI : 10.1148/radiol.10091543

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897689

N. Forkert, J. Fiehler, T. Illies, D. Möller, H. Handels et al., 4D blood flow visualization fusing 3D and 4D MRA image sequences, Journal of Magnetic Resonance Imaging, vol.64, issue.2 Pt 1, pp.443-453, 2012.
DOI : 10.1002/mrm.22458

T. Illies, N. Forkert, T. Ries, J. Regelsberger, and J. Fiehler, Classification of Cerebral Arteriovenous Malformations and Intranidal Flow Patterns by Color-Encoded 4D-Hybrid-MRA, American Journal of Neuroradiology, vol.34, issue.1, pp.46-53, 2013.
DOI : 10.3174/ajnr.A3204

E. Sadowski, L. Bennett, and M. Chan, Nephrogenic Systemic Fibrosis: Risk Factors and Incidence Estimation, Radiology, vol.243, issue.1, pp.148-157, 2007.
DOI : 10.1148/radiol.2431062144

R. Lanzman, P. Kröpil, and P. Schmitt, Nonenhanced ECG-gated time-resolved 4D Steady-state free precession (SSFP) MR angiography (MRA) for assessment of cerebral collateral flow: comparison with digital subtraction angiography (DSA), European Radiology, vol.31, issue.6, pp.1329-1338, 2011.
DOI : 10.1002/mrm.1910310219

X. Bi, P. Weale, P. Schmitt, S. Zuehlsdorff, and R. Jerecic, Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: A feasibility study, Magnetic Resonance in Medicine, vol.89, issue.3, pp.835-841, 2010.
DOI : 10.2214/ajr.169.3.9275891

C. Stapf, H. Mast, R. Sciacca, J. Choi, A. Khaw et al., Predictors of hemorrhage in patients with untreated brain arteriovenous malformation, Neurology, vol.66, issue.9, pp.1350-1355, 2006.
DOI : 10.1212/01.wnl.0000210524.68507.87

T. Illies, N. Forkert, D. Saering, K. Wenzel, T. Ries et al., Persistent Hemodynamic Changes in Ruptured Brain Arteriovenous Malformations, Stroke, vol.43, issue.11, pp.2910-2915, 2012.
DOI : 10.1161/STROKEAHA.112.669945

H. Raoult, E. Bannier, B. Robert, C. Barillot, P. Schmitt et al., Timeresolved spin-labeled MR angiography for the depiction of cerebral arteriovenous malformations: a comparison of techniques, Radiology, vol.2014, pp.271524-533
URL : https://hal.archives-ouvertes.fr/inserm-00945211

S. Ansari, S. Schnell, T. Carroll, P. Vakil, M. Hurley et al., Intracranial 4D Flow MRI: Toward Individualized Assessment of Arteriovenous Malformation Hemodynamics and Treatment-Induced Changes, American Journal of Neuroradiology, vol.34, issue.10, pp.1922-1928, 2013.
DOI : 10.3174/ajnr.A3537

URL : http://www.ajnr.org/content/ajnr/34/10/1922.full.pdf

W. Chang, M. Loecher, Y. Wu, D. Niemann, B. Ciske et al., Hemodynamic Changes in Patients with Arteriovenous Malformations Assessed Using High-Resolution 3D Radial Phase-Contrast MR Angiography, American Journal of Neuroradiology, vol.33, issue.8, pp.1565-1572, 2012.
DOI : 10.3174/ajnr.A3010

J. Xu, D. Shi, C. Chen, Y. Li, M. Wang et al., Noncontrast-enhanced four-dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: A preliminary trial, Journal of Magnetic Resonance Imaging, vol.63, issue.5, pp.1199-1205, 2011.
DOI : 10.1002/mrm.22220

S. Yu, L. Yan, Y. Yao, S. Wang, M. Yang et al., Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM): comparison with time of flight (TOF) and digital subtraction angiography (DSA), Magnetic Resonance Imaging, vol.30, issue.6, pp.869-877, 2012.
DOI : 10.1016/j.mri.2012.02.027

L. Yan, S. Wang, Y. Zhuo, R. Wolf, M. Stiefel et al., Unenhanced Dynamic MR Angiography: High Spatial and Temporal Resolution by Using True FISP???based Spin Tagging with Alternating Radiofrequency, Radiology, vol.256, issue.1, pp.270-279, 2010.
DOI : 10.1148/radiol.10091543

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897689

A. Machet, C. Portefaix, K. Kadziolka, G. Robin, O. Lanoix et al., Brain arteriovenous malformation diagnosis: value of time-resolved contrast-enhanced MR angiography at 3.0T compared to DSA, Neuroradiology, vol.34, issue.10, pp.1099-1108, 2012.
DOI : 10.1002/jmri.22699

N. Forkert, J. Fiehler, M. Schönfeld, J. Sedlacik, J. Regelsberger et al., Intranidal Signal Distribution in Post-Contrast Time-of-Flight MRA is Associated with Rupture Risk Factors in Arteriovenous Malformations, Clinical Neuroradiology, vol.50, issue.6, pp.97-101, 2013.
DOI : 10.1007/s00234-008-0380-z

T. Todaka, J. Hamada, Y. Kai, M. Morioka, and Y. Ushio, Analysis of Mean Transit Time of Contrast Medium in Ruptured and Unruptured Arteriovenous Malformations: A Digital Subtraction Angiographic Study, Stroke, vol.34, issue.10, pp.2410-2414, 2003.
DOI : 10.1161/01.STR.0000089924.43363.E3

K. Matsumoto, M. Urano, M. Hirai, H. Masaki, H. Tenjin et al., Haemodynamic evaluation of cerebral arteriovenous malformations by quantification of transit time using high speed digital subtraction angiography: basic considerations, Journal of Clinical Neuroscience, vol.7, issue.1, pp.39-41, 2000.
DOI : 10.1054/jocn.2000.0709

I. Supplemental-table, Hemodynamic patterns for high (HRR) and low (LRR) rupture risk groups and for hemorrhagic (N) and non hemorraghic (NH) groups. Values are mean (minimum-maximum)

H. Lrr and P. Nh, 408-780) 484 (272-660) 0.054 662 (540-780) 512(272-780) 0.059 nidus