A. Al-dujaili, F. Merciol, and S. Lefèvre, GraphBPT: An Efficient Hierarchical Data Structure for Image Representation and Probabilistic Inference, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.301-312, 2015.
DOI : 10.1007/978-3-319-18720-4_26

URL : https://hal.archives-ouvertes.fr/hal-01168116

P. Alliez, N. Laurent, H. Sanson, and F. Schmitt, Mesh approximation using a volume-based metric, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293), pp.292-301, 1999.
DOI : 10.1109/PCCGA.1999.803373

L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba et al., Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.10, pp.453012-3021, 2007.
DOI : 10.1109/TGRS.2007.904923

URL : https://hal.archives-ouvertes.fr/hal-00177641

I. Amro, J. Mateos, M. Vega, R. Molina, K. Aggelos et al., A survey of classical methods and new trends in pansharpening of multispectral images, EURASIP Journal on Advances in Signal Processing, vol.74, issue.10, p.201179, 2011.
DOI : 10.1109/IGARSS.2006.974

N. Audebert, B. L. Saux, and S. Lefevre, How useful is regionbased classification of remote sensing images in a deep learning framework, IEEE Geoscience and Remote Sensing Symposium (IGARSS), pp.5091-5094, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01320016

N. Audebert, B. L. Saux, and S. Lefèvre, Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017.
DOI : 10.1109/CVPRW.2017.199

URL : https://hal.archives-ouvertes.fr/hal-01523573

M. Awrangjeb, M. Ravanbakhsh, and C. S. Fraser, Automatic detection of residential buildings using LIDAR data and multispectral imagery, ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, issue.5, pp.457-467, 2010.
DOI : 10.1016/j.isprsjprs.2010.06.001

V. Badrinarayanan, A. Handa, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint, 2015.
DOI : 10.1109/tpami.2016.2644615

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, 2015.

J. M. Bioucas-dias, A. Plaza, G. Camps-valls, P. Scheunders, N. M. Nasrabadi et al., Hyperspectral Remote Sensing Data Analysis and Future Challenges, IEEE Geoscience and Remote Sensing Magazine, vol.1, issue.2
DOI : 10.1109/MGRS.2013.2244672

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Christopher and . Bishop, Neural networks for pattern recognition, 1995.

T. Blaschke, Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, pp.2-16, 2010.

J. L. Boggs, T. D. Tsegaye, T. L. Coleman, K. C. Reddy, and A. Fahsi, Relationship Between Hyperspectral Reflectance, Soil Nitrate-Nitrogen, Cotton Leaf Chlorophyll, and Cotton Yield: A Step Toward Precision Agriculture, Journal of Sustainable Agriculture, vol.45, issue.3, pp.5-16, 2003.
DOI : 10.1080/00103629409369002

J. Frank, . Bossen, S. Paul, and . Heckbert, A pliant method for anisotropic mesh generation, 5th Intl. Meshing Roundtable, pp.63-74, 1996.

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh processing, 2010.
DOI : 10.1201/b10688

URL : https://hal.archives-ouvertes.fr/inria-00538098

Y. Boureau, J. Ponce, and Y. Lecun, A theoretical analysis of feature pooling in visual recognition, ICML, pp.111-118, 2010.

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.11, pp.1222-1239, 2001.
DOI : 10.1109/34.969114

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Calderero and F. Marques, Region Merging Techniques Using Information Theory Statistical Measures, IEEE Transactions on Image Processing, vol.19, issue.6, pp.1567-1586, 2010.
DOI : 10.1109/TIP.2010.2043008

URL : http://upcommons.upc.edu/bitstream/2117/7488/1/getPDF.pdf

V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Proceedings of IEEE International Conference on Computer Vision, pp.61-79, 1997.
DOI : 10.1109/ICCV.1995.466871

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. T. Liang-chieh-chen, G. Barron, K. Papandreou, A. Murphy, and . Yuille, Semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. arXiv preprint, 2015.

G. Liang-chieh-chen, I. Papandreou, K. Kokkinos, A. L. Murphy, and . Yuille, Semantic image segmentation with deep convolutional nets and fully connected CRFs, ICLR, 2015.

X. Chen, S. Xiang, C. Liu, and C. Pan, Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, vol.11, issue.10, pp.1797-1801, 2014.
DOI : 10.1109/LGRS.2014.2309695

Y. Chen, W. Yu, and T. Pock, On learning optimized reaction diffusion processes for effective image restoration, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.5261-5269, 2015.
DOI : 10.1109/CVPR.2015.7299163

URL : http://arxiv.org/abs/1503.05768

Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, Deep Learning-Based Classification of Hyperspectral Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, issue.6, pp.2094-2107, 2014.
DOI : 10.1109/JSTARS.2014.2329330

Y. Chen, X. Zhao, and X. Jia, Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.8, issue.6, pp.2381-2392, 2015.
DOI : 10.1109/JSTARS.2015.2388577

D. Chutia, D. K. Bhattacharyya, K. Sarma, R. Kalita, and S. Sudhakar, Hyperspectral Remote Sensing Classifications: A Perspective Survey, Transactions in GIS, vol.5, issue.1, 2015.
DOI : 10.1109/LGRS.2008.915930

D. Ciresan, U. Meier, and J. Schmidhuber, Multi-column deep neural networks for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.3642-3649, 2012.
DOI : 10.1109/CVPR.2012.6248110

URL : http://arxiv.org/abs/1202.2745

D. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint, 2015.

A. Edward and . Cloutis, Hyperspectral geological remote sensing: evaluation of analytical techniques, International Journal of Remote Sensing, vol.17, issue.12, pp.2215-2242, 1996.

D. Cremers, J. Stanley, S. Osher, and . Soatto, Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation, International Journal of Computer Vision, vol.127, issue.2, pp.335-351, 2006.
DOI : 10.1007/s11263-006-7533-5

D. Cremers, F. Tischhäuser, J. Weickert, and C. Schnörr, Diffusion snakes: Introducing statistical shape knowledge into the Mumford-Shah functional, International Journal of Computer Vision, vol.50, issue.3, pp.295-313, 2002.
DOI : 10.1023/A:1020826424915

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, What is a good evaluation measure for semantic segmentation?, Procedings of the British Machine Vision Conference 2013, 2013.
DOI : 10.5244/C.27.32

URL : http://www.bmva.org/bmvc/2013/Papers/paper0032/paper0032.pdf

P. Das, O. Veksler, V. Zavadsky, and Y. Boykov, Semiautomatic segmentation with compact shape prior, Image and Vision Computing, vol.27, issue.1-2, pp.206-219, 2009.
DOI : 10.1016/j.imavis.2008.02.006

S. Descamps and X. Descombes, Arnaud Béchet, and Josiane Zerubia Automatic flamingo detection using a multiple birth and death process, IEEE ICASSP, pp.1113-1116, 2008.
DOI : 10.1109/icassp.2008.4517809

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

H. David, . Douglas, K. Thomas, and . Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Cartographica, vol.10, issue.2, pp.112-122, 1973.

A. Dubrovina, P. Kisilev, B. Ginsburg, S. Hashoul, and R. Kimmel, Computational mammography using deep neural networks, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol.15, pp.1-5, 2016.
DOI : 10.1007/s11263-015-0816-y

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, vol.12, pp.2121-2159, 2011.

C. Farabet, C. Couprie, L. Najman, and Y. Lecun, Learning Hierarchical Features for Scene Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1915-1929, 2013.
DOI : 10.1109/TPAMI.2012.231

URL : https://hal.archives-ouvertes.fr/hal-00742077

M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, C. James et al., Advances in Spectral-Spatial Classification of Hyperspectral Images, Proceedings of the IEEE, vol.101, issue.3
DOI : 10.1109/JPROC.2012.2197589

URL : https://hal.archives-ouvertes.fr/hal-00737075

F. Pedro and . Felzenszwalb, Representation and detection of deformable shapes, IEEE Trans. Pattern Anal. Mach. Intell, vol.27, issue.2, pp.208-220, 2005.

F. Pedro, . Felzenszwalb, B. Ross, D. Girshick, D. Mcallester et al., Object detection with discriminatively trained part-based models, IEEE Trans. Pattern Anal. Mach. Intell, vol.32, issue.9, pp.1627-1645, 2010.

S. Fernández, A. Graves, and J. Schmidhuber, An Application of Recurrent Neural Networks to Discriminative Keyword Spotting, ICANN, pp.220-229, 2007.
DOI : 10.1007/978-3-540-74695-9_23

C. Ferri, J. Hernández-orallo, A. Peter, and . Flach, A coherent interpretation of auc as a measure of aggregated classification performance, ICML, pp.657-664, 2011.

D. Freedman and T. Zhang, Interactive Graph Cut Based Segmentation with Shape Priors, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.755-762, 2005.
DOI : 10.1109/CVPR.2005.191

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Funka-lea, Y. Boykov, C. Florin, M. Jolly, R. Moreau-gobard et al., Automatic Heart Isolation for CT Coronary Visualization Using Graph-Cuts, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.614-617, 2006.
DOI : 10.1109/ISBI.2006.1624991

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Galanda, Automated polygon generalization in a multi agent system, 2003.

S. L. Eduardo, M. M. Gastal, and . Oliveira, Domain transform for edge-aware image and video processing, ACM Trans. Graph, vol.3069, issue.4, pp.1-6912, 2011.

M. Gerke, Use of the stair vision library within the ISPRS 2d semantic labeling benchmark (vaihingen), 2015.

A. Felix, . Gers, N. Nicol, J. Schraudolph, and . Schmidhuber, Learning precise timing with lstm recurrent networks, Journal of machine learning research, vol.3, pp.115-143, 2002.

A. Ghiyamat and H. Z. Shafri, A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment, International Journal of Remote Sensing, vol.1, issue.7, pp.311837-1856, 2010.
DOI : 10.1016/j.rse.2006.06.010

G. Giribet, Efficient tree searches with available algorithms, Evolutionary bioinformatics online, vol.3, p.341, 2007.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, In AISTATS, pp.249-256, 2010.

X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks, JMLR, vol.15, issue.106, p.275, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752497

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, NIPS, pp.2672-2680, 2014.

L. Gorelick, F. R. Schmidt, and Y. Boykov, Fast Trust Region for Segmentation, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.1714-1721, 2013.
DOI : 10.1109/CVPR.2013.224

L. Gorelick, O. Veksler, Y. Boykov, and C. Nieuwenhuis, Convexity Shape Prior for Segmentation, ECCV, pp.675-690, 2014.
DOI : 10.1007/978-3-319-10602-1_44

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Graves, Supervised Sequence Labelling, Supervised Sequence Labelling with Recurrent Neural Networks, pp.5-13, 2012.
DOI : 10.1007/978-3-642-24797-2_2

A. Günay, H. Arefi, and M. Hahn, True orthophoto production using lidar data, ISPRS Joint Workshop Visualization and Exploration of Geospatial Data, p.4, 2007.

B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, Hypercolumns for object segmentation and fine-grained localization, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298642

URL : http://arxiv.org/abs/1411.5752

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1026-1034, 2015.
DOI : 10.1109/ICCV.2015.123

URL : http://arxiv.org/pdf/1502.01852

E. Geoffrey, N. Hinton, A. Srivastava, I. Krizhevsky, . Sutskever et al., Improving neural networks by preventing co-adaptation of feature detectors, 2012.

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

R. Huang, V. Pavlovic, and D. N. Metaxas, A graphical model framework for coupling MRFs and deformable models, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.739-746, 2004.
DOI : 10.1109/CVPR.2004.1315238

J. Thomas and . Hughes, The finite element method: linear static and dynamic finite element analysis, 2012.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long et al., Caffe, Proceedings of the ACM International Conference on Multimedia, MM '14, 2014.
DOI : 10.1145/2647868.2654889

P. Kaiser, Learning city structures from online maps, 2016.

M. Kampffmeyer, A. Salberg, and R. Jenssen, Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2016.
DOI : 10.1109/CVPRW.2016.90

K. Karantzalos and N. Paragios, Recognition-Driven Two-Dimensional Competing Priors Toward Automatic and Accurate Building Detection, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.1, pp.133-144, 2009.
DOI : 10.1109/TGRS.2008.2002027

N. Keshava, A survey of spectral unmixing algorithms. Lincoln Lab, J, vol.14, pp.55-78, 2003.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, 2012.
DOI : 10.1162/neco.2009.10-08-881

M. Pawan-kumar, P. H. Torr, and A. Zisserman, Obj cut, IEEE CVPR, pp.18-25, 2005.

C. Kurtz, N. Passat, P. Gancarski, and A. Puissant, Extraction of complex patterns from multiresolution remote sensing images: A hierarchical top-down methodology, Pattern Recognition, vol.45, issue.2, pp.685-706, 2012.
DOI : 10.1016/j.patcog.2011.07.017

Y. Lai, . Shi-min, . Hu, R. Ralph, and . Martin, Automatic and topology-preserving gradient mesh generation for image vectorization, ACM Trans. on Graphics, vol.28, issue.3, p.85, 2009.
DOI : 10.1145/1531326.1531391

URL : http://cg.cs.tsinghua.edu.cn/papers/Siggraph_2009_imagevectorization.pdf

P. Lassalle, J. Inglada, J. Michel, M. Grizonnet, and J. Malik, A Scalable Tile-Based Framework for Region-Merging Segmentation, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.10
DOI : 10.1109/TGRS.2015.2422848

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=7101250

G. Lecot and B. Levy, Ardeco: automatic region detection and conversion, 17th Eurographics Symposium on Rendering, pp.349-360, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00105620

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Lefevre, L. Chapel, and F. Merciol, Hyperspectral image classification from multiscale description with constrained connectivity and metric learning, 6th International Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2014.
URL : https://hal.archives-ouvertes.fr/hal-00998254

V. Lempitsky, A. Blake, and C. Rother, Image Segmentation by Branch-and-Mincut, ECCV, pp.15-29, 2008.
DOI : 10.1007/978-3-540-88693-8_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Leprince, S. Barbot, F. Ayoub, and J. Avouac, Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.6, pp.1529-1558, 2007.
DOI : 10.1109/TGRS.2006.888937

E. Michael, . Leventon, L. Eric, O. Grimson, and . Faugeras, Statistical shape influence in geodesic active contours, IEEE CVPR, pp.316-323, 2000.

F. Li and A. Lippman, Random tree optimization for the construction of the most parsimonious phylogenetic trees, 2009 43rd Annual Conference on Information Sciences and Systems, pp.757-762, 2009.
DOI : 10.1109/CISS.2009.5054819

T. Li, J. Zhang, and Y. Zhang, Classification of hyperspectral image based on deep belief networks, 2014 IEEE International Conference on Image Processing (ICIP), pp.5132-5136, 2014.
DOI : 10.1109/ICIP.2014.7026039

W. Li, F. Michael, R. Goodchild, and . Church, An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems, International Journal of Geographical Information Science, vol.5, issue.27, pp.1227-1250, 2013.
DOI : 10.1016/j.ecolmodel.2005.08.022

R. Liu, Z. Lin, W. Zhang, and Z. Su, Learning PDEs for Image Restoration via Optimal Control, ECCV, pp.115-128, 2010.
DOI : 10.1007/978-3-642-15549-9_9

R. Liu, Z. Lin, W. Zhang, K. Tang, and Z. Su, Toward designing intelligent PDEs for computer vision: An optimal control approach, Image and Vision Computing, vol.31, issue.1, pp.43-56, 2013.
DOI : 10.1016/j.imavis.2012.09.004

URL : http://arxiv.org/pdf/1109.1057

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298965

URL : http://arxiv.org/pdf/1411.4038

H. Lu, C. John, M. Woods, and . Ghanbari, Binary Partition Tree for Semantic Object Extraction and Image Segmentation, IEEE Transactions on Circuits and Systems for Video Technology, vol.17, issue.3, pp.378-383, 2007.
DOI : 10.1109/TCSVT.2006.888943

F. Luus, B. Salmon, . Van-den, B. Bergh, and . Maharaj, Multiview Deep Learning for Land-Use Classification, IEEE Geoscience and Remote Sensing Letters, vol.12, issue.12, pp.2448-2452, 2015.
DOI : 10.1109/LGRS.2015.2483680

E. Maggiori, Y. Tarabalka, and G. Charpiat, Improved partition trees for multi-class segmentation of remote sensing images, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1016-1019, 2015.
DOI : 10.1109/IGARSS.2015.7325941

URL : https://hal.archives-ouvertes.fr/hal-01182772

E. Maggiori, Y. Tarabalka, and G. Charpiat, Optimizing Partition Trees for Multi-Object Segmentation with Shape Prior, Procedings of the British Machine Vision Conference 2015, 2015.
DOI : 10.5244/C.29.64

URL : https://hal.archives-ouvertes.fr/hal-01182776

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, Fully convolutional neural networks for remote sensing image classification, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.5071-5074, 2016.
DOI : 10.1109/IGARSS.2016.7730322

URL : https://hal.archives-ouvertes.fr/hal-01350706

K. Makantasis and K. Karantzalos, Anastasios Doulamis, and Nikolaos Doulamis Deep supervised learning for hyperspectral data classification through convolutional neural networks, IEEE IGARSS, pp.4959-4962, 2015.
DOI : 10.1109/igarss.2015.7326945

D. Marmanis, D. Jan, S. Wegner, K. Gallianib, M. Schindler et al., Semantic segmentation of aerial images with an ensemble of cnns, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp.473-480, 2016.

G. Mattyus, S. Wang, S. Fidler, and R. Urtasun, Enhancing Road Maps by Parsing Aerial Images Around the World, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.197

URL : http://elib.dlr.de/100653/1/roadwidth_for_iccv_final_compressed.pdf

Q. Mcnemar, Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika, vol.12, issue.2, pp.153-157, 1947.
DOI : 10.1007/BF02295996

J. Michel, D. Youssefi, and M. Grizonnet, Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.2
DOI : 10.1109/TGRS.2014.2330857

. Me-midhun, R. Sarath, . Nair, . Vt-prabhakar, and . Kumar, Deep Model for Classification of Hyperspectral image using Restricted Boltzmann Machine, Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, ICONIAAC '14, p.35, 2014.
DOI : 10.1145/2660859.2660946

T. Mikolov, M. Karafiát, and L. B. Cernock, Cernock`y, and Sanjeev Khudanpur . Recurrent neural network based language model, Interspeech, 2010.

V. Mnih, Machine learning for aerial image labeling, 2013.

V. Mnih, E. Geoffrey, and . Hinton, Learning to detect roads in highresolution aerial images, ECCV, pp.210-223, 2010.
DOI : 10.1007/978-3-642-15567-3_16

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Raul, E. Montero, and . Bribiesca, State of the art of compactness and circularity measures, Int. Mathematical Forum, vol.4, issue.27, pp.1305-1335, 2009.

V. Nair, E. Geoffrey, and . Hinton, Rectified linear units improve restricted boltzmann machines, ICML, pp.807-814, 2010.

C. Nieuwenhuis, E. Töppe, and D. Cremers, A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model, International Journal of Computer Vision, vol.3, issue.4, pp.223-240, 2013.
DOI : 10.1109/CVPR.2012.6247860

H. Noh, S. Hong, and B. Han, Learning Deconvolution Network for Semantic Segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1520-1528, 2015.
DOI : 10.1109/ICCV.2015.178

URL : http://arxiv.org/pdf/1505.04366

M. Ortner, X. Descombes, and J. Zerubia, Building Outline Extraction from Digital Elevation Models Using Marked Point Processes, International Journal of Computer Vision, vol.24, issue.5, pp.107-132, 2007.
DOI : 10.1142/p060

S. Paisitkriangkrai, J. Sherrah, and P. Janney, Van-Den Hengel, et al. Effective semantic pixel labelling with convolutional networks and conditional random fields, IEEE CVPR Workshops, 2015.

G. Palou and P. Salembier, Occlusion-based depth ordering on monocular images with Binary Partition Tree, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1093-1096, 2011.
DOI : 10.1109/ICASSP.2011.5946598

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML, vol.28, pp.1310-1318, 2013.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, 2016.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : http://authors.library.caltech.edu/6498/1/PERieeetpami90.pdf

B. Price and W. Barrett, Object-based vectorization for interactive image editing. The Visual Computer, pp.661-670, 2006.
DOI : 10.1007/s00371-006-0051-1

K. Reumann and A. Witkam, Optimizing curve segmentation in computer graphics, Proceedings of the International Computing Symposium, pp.467-472, 1974.

S. David and . Richeson, Euler's gem: the polyhedron formula and the birth of topology, 2012.

Y. Rubner, C. Tomasi, and L. J. Guibas, A metric for distributions with applications to image databases, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp.59-66, 1998.
DOI : 10.1109/ICCV.1998.710701

A. Saalfeld, Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm, Cartography and Geographic Information Science, vol.26, issue.1, pp.7-18, 1999.
DOI : 10.1559/152304099782424901

H. Sak, W. Andrew, F. Senior, and . Beaufays, Long short-term memory recurrent neural network architectures for large scale acoustic modeling, Interspeech, pp.338-342, 2014.

P. Salembier, S. Foucher, and C. López-martínez, Low-level processing of PolSAR images with binary partition trees, 2014 IEEE Geoscience and Remote Sensing Symposium, 2014.
DOI : 10.1109/IGARSS.2014.6946602

P. Salembier and L. Garrido, Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval, IEEE Transactions on Image Processing, vol.9, issue.4
DOI : 10.1109/83.841934

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Salembier, A. Oliveras, and L. Garrido, Antiextensive connected operators for image and sequence processing, IEEE Transactions on Image Processing, vol.7, issue.4, pp.555-570, 1998.
DOI : 10.1109/83.663500

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Schoenemann and D. Cremers, Globally Optimal Image Segmentation with an Elastic Shape Prior, 2007 IEEE 11th International Conference on Computer Vision, pp.1-6, 2007.
DOI : 10.1109/ICCV.2007.4408972

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Robert and . Schowengerdt, Remote sensing: models and methods for image processing, 2006.

I. ?evo and A. Avramovi?, Convolutional Neural Network Based Automatic Object Detection on Aerial Images, IEEE Geoscience and Remote Sensing Letters, vol.13, issue.5, pp.740-744, 2016.
DOI : 10.1109/LGRS.2016.2542358

J. Sherrah, Fully convolutional networks for dense semantic labelling of highresolution aerial imagery. arXiv preprint, 2016.

W. Shi and C. Cheung, Performance Evaluation of Line Simplification Algorithms for Vector Generalization, The Cartographic Journal, vol.5, issue.4, pp.27-44, 2006.
DOI : 10.1007/3-540-63818-0_5

W. Bernard and . Silverman, Density estimation for statistics and data analysis, 1986.

E. Simo-serra, S. Iizuka, K. Sasaki, and H. Ishikawa, Learning to simplify, ACM Transactions on Graphics, vol.35, issue.4, p.121, 2016.
DOI : 10.1145/2512349.2512801

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

A. Kemal, S. , and L. Grady, Uninitialized, globally optimal, graph-based rectilinear shape segmentation-the opposing metrics method, ICCV, pp.1-8, 2007.

G. Slabaugh and G. Unal, Graph cuts segmentation using an elliptical shape prior, IEEE International Conference on Image Processing 2005, pp.1222-1225, 2005.
DOI : 10.1109/ICIP.2005.1530282

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Slavkovikj, S. Verstockt, W. De-neve, S. Van-hoecke, and R. Van-de-walle, Hyperspectral Image Classification with Convolutional Neural Networks, Proceedings of the 23rd ACM international conference on Multimedia, MM '15, pp.1159-1162, 2015.
DOI : 10.1109/TGRS.2005.863297

URL : https://biblio.ugent.be/publication/7034491/file/7034499.pdf

P. Soille, Constrained connectivity for hierarchical image partitioning and simplification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.7, pp.1132-1145, 2008.
DOI : 10.1109/TPAMI.2007.70817

J. Tobias-springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for simplicity: The all convolutional net, 2014.

N. Srivastava, E. Geoffrey, A. Hinton, I. Krizhevsky, R. Sutskever et al., Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

J. Sun, L. Liang, F. Wen, and H. Shum, Image vectorization using optimized gradient meshes, ACM Transactions on Graphics, vol.26, issue.3, p.11, 2007.
DOI : 10.1145/1276377.1276391

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Tarabalka and A. Rana, Graph-cut-based model for spectral-spatial classification of hyperspectral images, 2014 IEEE Geoscience and Remote Sensing Symposium, pp.3418-3421, 2014.
DOI : 10.1109/IGARSS.2014.6947216

URL : https://hal.archives-ouvertes.fr/hal-01011495

Y. Tarabalka, C. James, and . Tilton, Improved hierarchical optimization-based classification of hyperspectral images using shape analysis, 2012 IEEE International Geoscience and Remote Sensing Symposium, pp.1409-1412, 2012.
DOI : 10.1109/IGARSS.2012.6351272

URL : https://hal.archives-ouvertes.fr/hal-00729038

J. Tilton and E. Pasolli, Incorporating edge information into best merge region-growing segmentation, 2014 IEEE Geoscience and Remote Sensing Symposium, 2014.
DOI : 10.1109/IGARSS.2014.6947591

URL : http://hdl.handle.net/2060/20150001295

T. Godfried and . Toussaint, The rotating calipers: An efficient, multipurpose, computational tool, ICCTIM, pp.215-225, 2014.

G. Trigeorgis, P. Snape, A. Mihalis, E. Nicolaou, S. Antonakos et al., Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4177-4187, 2016.
DOI : 10.1109/CVPR.2016.453

S. Valero, P. Salembier, and J. Chanussot, Hyperspectral Image Representation and Processing With Binary Partition Trees, IEEE Transactions on Image Processing, vol.22, issue.4, pp.1430-1443, 2013.
DOI : 10.1109/TIP.2012.2231687

URL : https://hal.archives-ouvertes.fr/hal-00798351

S. Valero, P. Salembier, and J. Chanussot, Object recognition in urban hyperspectral images using Binary Partition Tree representation, 2013 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, pp.4098-4101, 2013.
DOI : 10.1109/IGARSS.2013.6723734

O. Veksler, Star Shape Prior for Graph-Cut Image Segmentation, ECCV, pp.454-467, 2008.
DOI : 10.1145/1015706.1015720

A. W. Vieira, L. Velho, H. Lopes, G. Tavares, and T. Lewiner, Fast stellar mesh simplification, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003), pp.27-34, 2003.
DOI : 10.1109/SIBGRA.2003.1240988

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Vilaplana, F. Marques, and P. Salembier, Binary Partition Trees for Object Detection, IEEE Transactions on Image Processing, vol.17, issue.11, pp.2201-2216, 2008.
DOI : 10.1109/TIP.2008.2002841

O. Vinyals, M. Fortunato, and N. Jaitly, Pointer networks, NIPS, pp.2692-2700, 2015.

M. Visvalingam and J. Whyatt, Line generalisation by repeated elimination of points, The Cartographic Journal, vol.30, issue.1, pp.46-51, 1992.
DOI : 10.1179/caj.1993.30.1.46

M. Volpi and D. Tuia, Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks, IEEE Tran. Geosci. Remote Sens, 2016.

V. Walter, Object-based classification of remote sensing data for change detection . ISPRS Journal of photogrammetry and remote sensing, pp.225-238, 2004.

J. Wang, J. Song, M. Chen, and Z. Yang, Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine, International Journal of Remote Sensing, vol.73, issue.9, pp.3144-3169, 2015.
DOI : 10.1109/TIP.2006.887731

J. Weickert, Anisotropic diffusion in image processing, Teubner Stuttgart, 1998.

P. Werbos, Backpropagation through time: what it does and how to do it, Proc. of the IEEE, pp.1550-1560, 1990.
DOI : 10.1109/5.58337

H. David and . Wolpert, The lack of a priori distinctions between learning algorithms, Neural computation, vol.8, issue.7, pp.1341-1390, 1996.

S. Wu and M. Márquez, A non-self-intersection Douglas-Peucker algorithm, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003), pp.60-66, 2003.
DOI : 10.1109/SIBGRA.2003.1240992

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Ting-fan, C. Wu, . Lin, C. Ruby, and . Weng, Probability estimates for multiclass classification by pairwise coupling, The Journal of Machine Learning Research, vol.5, pp.975-1005, 2004.

T. Xia, B. Liao, and Y. Yu, Patch-based image vectorization with automatic curvilinear feature alignment, ACM Trans. on Graphics, vol.28, issue.5, p.115, 2009.
DOI : 10.1145/1618452.1618461

J. Yang, B. Price, S. Cohen, H. Lee, and M. Yang, Object Contour Detection with a Fully Convolutional Encoder-Decoder Network, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.28

URL : http://arxiv.org/pdf/1603.04530

M. Yang, K. Kpalma, and J. Ronsin, A survey of shape feature extraction techniques. Pattern recognition, pp.43-90, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00446037

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions . arXiv preprint, 2015.

J. Yue, W. Zhao, S. Mao, and H. Liu, Spectral???spatial classification of hyperspectral images using deep convolutional neural networks, Remote Sensing Letters, vol.6, issue.6, pp.468-477, 2015.
DOI : 10.1109/LGRS.2010.2047711

D. Matthew, R. Zeiler, and . Fergus, Visualizing and understanding convolutional networks, 2014.

W. Zhao and S. Du, Spectral???Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.8, pp.4544-4554, 2016.
DOI : 10.1109/TGRS.2016.2543748

S. Zheng, S. Jayasumana, B. Romera-paredes, V. Vineet, Z. Su et al., Conditional Random Fields as Recurrent Neural Networks, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1529-1537, 2015.
DOI : 10.1109/ICCV.2015.179

URL : http://arxiv.org/pdf/1502.03240