P. J. Allen and O. Josephs, A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI, NeuroImage, vol.12, issue.2
DOI : 10.1006/nimg.2000.0599

P. J. Allen, . Polizzi, D. Krakow, . Fish, and . Lemieux, Identiication of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction

S. Amiri and R. Fazel-rezai, A Review of Hybrid Brain-Computer Interface Systems, Advances in Human-Computer Interaction, vol.9, issue.50, 1155.
DOI : 10.2307/2529937

M. Arns and S. De, EEcacy of neurofeedback treatment in ADHD: the eeects on inattention, impulsivity and hyperactivity: a metaanalysis, In: Clinical EEG and Neuroscience, p.pp. ???? (cit

M. Arns and J. Batail, Neurofeedback: One of today's techniques in psychiatry?, L'Enc??phale, vol.43, issue.2
DOI : 10.1016/j.encep.2016.11.003

M. Arns and H. Heinrich, Evaluation of neurofeedback in ADHD: The long and winding road, Biological Psychology, vol.95, p.pp. ???
DOI : 10.1016/j.biopsycho.2013.11.013

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, and B. A. Macvicar, Glial and neuronal control of brain blood ow, In: Nature, pp.10-1038

E. Bagarinao, T. Matsuo, and . Nakai, (a) Estimation of general linear model coeecients for real-time application, In: NeuroImage, issue.03, pp.10-1016

B. D. Berman, G. Silvina, G. Horovitz, and . Venkataraman, Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback, NeuroImage, vol.59, issue.2, p.150003
DOI : 10.1016/j.neuroimage.2011.07.035

F. Biessmann, S. Plis, F. C. Meinecke, and T. Eichele, Analysis of Multimodal Neuroimaging Data, IEEE Reviews in Biomedical Engineering, vol.4
DOI : 10.1109/RBME.2011.2170675

N. Birbaumer and A. Ramos, Neurofeedback and brain-computer interface clinical applications In: International review of neurobiology, pp.10-1016

N. Birbaumer and S. Ruiz, Learned regulation of brain metabolism, Trends in Cognitive Sciences, vol.17, issue.6
DOI : 10.1016/j.tics.2013.04.009

B. Blankertz, R. Tomioka, and S. Lemm, Optimizing spatial lters for robust EEG singletrial analysis, IEEE Signal Processing Magazine .., pp. ??. : 10. 1109/MSP, p.4408441, 2008.
DOI : 10.1109/msp.2008.4408441

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Britz and D. Van, BOLD correlates of EEG topography reveal rapid resting-state network dynamics, NeuroImage, vol.52, issue.4
DOI : 10.1016/j.neuroimage.2010.02.052

A. Buccino and . Paolo, Hybrid EEG-f NIRS asynchronous brain-computer interface for multiple motor tasks, In: PLoS ONE ... Ed. by Bin He
DOI : 10.1371/journal.pone.0146610

URL : http://doi.org/10.1371/journal.pone.0146610

T. Budzynski, J. Budzynski, and . Evans, Introduction to quantitative EEG and neurofeedback: Advanced theory and applications

R. Cannon and M. Congedo, Diierentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices, International journal of neuroscience, pp.10-1080

M. Cavazza, Towards emotional regulation through neurofeedback, Proceedings of the 5th Augmented Human International Conference on, AH '14, pp.10-1145
DOI : 10.1145/2582051.2582093

M. Chiew, M. Stephen, . Laconte, and . Simon, Investigation of fMRI neurofeedback of diierential primary motor cortex activity using kinesthetic motor imagery

S. Choi and . Han, Estimation of Optimal Location of EEG Reference Electrode for Motor Imagery Based BCI Using fMRI, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp.10-1109, 2006.
DOI : 10.1109/IEMBS.2006.260270

S. Choi and . Won, Is alpha wave neurofeedback eeective with randomized clinical trials in depression? A pilot study, In: Neuropsychobiology, pp.10-1159

R. Christopher-decharms, Control over brain activation and pain learned by using real-time functional MRI, In: Proceedings of the National Academy of Sciences of the United States of America, p.pp. ??? (

A. Cohen, Multi-modal Virtual Scenario Enhances Neurofeedback Learning, Frontiers in Robotics and AI, vol.6
DOI : 10.1371/journal.pone.0024522

URL : http://journal.frontiersin.org/article/10.3389/frobt.2016.00052/pdf

L. Confalonieri, G. Pagnoni, W. Lawrence, J. Barsalou, and . Rajendra, Brain Activation in Primary Motor and Somatosensory Cortices during Motor Imagery Correlates with Motor Imagery Ability in Stroke Patients, ISRN Neurology, vol.9, issue.8, pp.10-5402613595, 2012.
DOI : 10.1097/00001756-199806010-00036

M. Congedo and J. F. , Low-Resolution Electromagnetic Tomography Neurofeedback, IEEE Transactions on Neural Systems and Rehabilitation Engineering .., pp. ??. : 10.1109/ TNSRE, p.840492, 2004.
DOI : 10.1109/TNSRE.2004.840492

URL : https://hal.archives-ouvertes.fr/hal-00460517

R. W. Cox, AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages, Computers and Biomedical Research, vol.29, issue.3, p.pp. ?? (cit
DOI : 10.1006/cbmr.1996.0014

R. W. Cox, A. Jesmanowicz, S. James, and . Hyde, Real-Time Functional Magnetic Resonance Imaging, Magnetic Resonance in Medicine, vol.1, issue.2
DOI : 10.1007/978-1-4684-1423-3_16

R. W. Cox, A. Jesmanowicz, S. James, and . Hyde, Real-Time Functional Magnetic Resonance Imaging, Magnetic Resonance in Medicine, vol.1, issue.2, p.pp. ??? (cit
DOI : 10.1007/978-1-4684-1423-3_16

. Cui, S. Xu, and . Bray, Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics, NeuroImage, vol.49, issue.4, p.pp. ?? (cit
DOI : 10.1016/j.neuroimage.2009.11.050

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818571

J. Danckert, S. Ferber, T. Doherty, and H. Steinmetz, Selective, Non-lateralized Impairment of Motor Imagery Following Right Parietal Damage

S. Darvishi, A. Gharabaghi, B. Chadwick, . Boulay, C. Michael et al., Proprioceptive feedback facilitates motor imagery-related operant learning of sensorimotor beta-band modulation, In: Frontiers in Neuroscience

D. Vos, R. Maarten, B. Zink, B. Hunyadi, and . Mijovic, e quest for single trial correlations in multimodal EEG-fMRI data, pp.10-10

S. Debener and M. Ullsperger, Single-trial EEG???fMRI reveals the dynamics of cognitive function, Trends in Cognitive Sciences, vol.10, issue.12
DOI : 10.1016/j.tics.2006.09.010

R. Decharms and . Christopher, Control over brain activation and pain learned by using real-time functional MRI, Proceedings of the National Academy of Sciences, vol.19, issue.1
DOI : 10.3171/jns.1962.19.2.0089

D. Esposito, . Mark, and Y. Leon, Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging, Nature Reviews Neuroscience, pp.10-1038

L. Dokkum, . Van, and . Ward, Brain computer interfaces for neurorehabilitation -its current status as a rehabilitation strategy poststroke In: Annals of physical and rehabilitation medicine

L. Dong, Simultaneous EEG-fMRI: Trial level spatio-temporal fusion for hierarchically reliable information discovery, NeuroImage, vol.99
DOI : 10.1016/j.neuroimage.2014.05.029

A. Eklund, M. Andersson, and H. Ohlsson, Using real-time fMRI to control a dynamical system by brain activity classiication, th International Conference on Pattern Recognition .Pt , pp. ??. : 10.1109/ICPR, p.894, 2010.

B. Elbert and . Rockstroh, Self-Regulation of the Brain and Behavior, pp.10-1007
DOI : 10.1007/978-3-642-69379-3

K. Emmert, R. Kopel, and Y. Koush, Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study, NeuroImage: Clinical, vol.14
DOI : 10.1016/j.nicl.2016.12.023

K. Emmert, R. Kopel, and J. Sulzer, Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?, NeuroImage, vol.124
DOI : 10.1016/j.neuroimage.2015.09.042

A. D. Engell and S. Huettel, The fMRI BOLD signal tracks electrophysiological spectral perturbations, not event-related potentials, NeuroImage, vol.59, issue.3, p.150003
DOI : 10.1016/j.neuroimage.2011.08.079

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277784

. Enriquez-geppert, . Stefanie, J. René, and . Huster, EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial, Frontiers in Human Neuroscience, vol.54, pp.10-3389
DOI : 10.1016/j.neuroimage.2010.08.078

S. Fazli and S. Dahne, Learning From More Than One Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain–Computer Interfaces, Proceedings of the IEEE, vol.103, issue.6
DOI : 10.1109/JPROC.2015.2413993

S. Fazli and J. Mehnert, Enhanced performance by a hybrid NIRS???EEG brain computer interface, NeuroImage, vol.59, issue.1
DOI : 10.1016/j.neuroimage.2011.07.084

URL : http://doi.org/10.1016/j.neuroimage.2011.07.084

E. E. Fetz, Operant Conditioning of Cortical Unit Activity, Science, vol.163, issue.3870
DOI : 10.1126/science.163.3870.955

M. K. Fleming, C. M. Stinear, and . Winston, Bilateral parietal cortex function during motor imagery, Experimental Brain Research, vol.1, issue.4, pp.10-1007
DOI : 10.1007/s00221-009-2062-4

E. Formaggio, S. F. Storti, and R. Cerini, Brain oscillatory activity during motor imagery in EEG-fMRI coregistration, Magnetic Resonance Imaging, vol.28, issue.10
DOI : 10.1016/j.mri.2010.06.030

K. J. Friston, D. Christopher, . Frith, S. Richard, R. Frackowiak et al., Characterizing Dynamic Brain Responses with fMRI: A Multivariate Approach, NeuroImage, vol.2, issue.2, p.pp. ?? (cit
DOI : 10.1006/nimg.1995.1019

A. Gaume, A. Vialatte, and A. , A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback, Neuroscience & Biobehavioral Reviews, vol.68
DOI : 10.1016/j.neubiorev.2016.06.012

D. Gembris, . Taylor, W. Schor, and . Frings, Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization In: Magnetic resonance in medicine : ocial journal of the Society of Magnetic Resonance in Medicine, Society of Magnetic Resonance in Medicine, vol.43, pp.10-10021522, 200002.

D. Gembris, G. John, S. Taylor, and . Schor, Functional magnetic resonance imaging in real time (FIRE): Sliding-window correlation analysis and reference-vector optimization, Magnetic Resonance in Medicine, vol.276, issue.2, p.pp. ???? (
DOI : 10.1126/science.276.5315.1094

URL : http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P/pdf

E. Gerardin, Partially Overlapping Neural Networks for Real and Imagined Hand Movements, Cerebral Cortex, vol.10, issue.11, p.pp. ??? (cit
DOI : 10.1093/cercor/10.11.1093

URL : https://hal.archives-ouvertes.fr/hal-00349826

J. B. Goense and . Nikos, Neurophysiology of the BOLD fMRI Signal in Awake Monkeys, Current Biology, vol.18, issue.9
DOI : 10.1016/j.cub.2008.03.054

J. Goense and H. Merkle, High-Resolution fMRI Reveals Laminar Diierences in Neurovascular Coupling between Positive and Negative BOLD Responses
DOI : 10.1016/j.neuron.2012.09.019

URL : http://doi.org/10.1016/j.neuron.2012.09.019

S. Gonçalves, Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability, NeuroImage, vol.30, issue.1
DOI : 10.1016/j.neuroimage.2005.09.062

. Grosse-wentrup, D. Moritz, and . Mattia, Using brain???computer interfaces to induce neural plasticity and restore function, Journal of Neural Engineering, vol.8, issue.2, p.25004
DOI : 10.1088/1741-2560/8/2/025004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515347

J. H. Gruzelier, EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants, Neuroscience and biobehavioral reviews
DOI : 10.1016/j.neubiorev.2013.09.015

URL : http://research.gold.ac.uk/500/1/PSY_Gruzelier_2006a.pdf

A. Guillot and C. Collet, Brain activity during visual versus kinesthetic imagery: An fMRI study, Human Brain Mapping, vol.16, issue.7, pp.10-1002
DOI : 10.1113/jphysiol.1995.sp020554

T. Hanakawa, I. Immisch, and K. Toma, Functional Properties of Brain Areas Associated With Motor Execution and Imagery, Journal of Neurophysiology, vol.89, issue.2, pp.10-1152
DOI : 10.1152/jn.00132.2002

J. V. Hardt and J. Kamiya, Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects, Science, vol.201, issue.4350, pp.10-1126
DOI : 10.1126/science.663641

S. Hétu, e neural network of motor imagery: An ALE metaanalysis

E. M. Hillman, Coupling Mechanism and Signiicance of the BOLD Signal: A Status Report, In: Annual Review of Neuroscience, pp.10-1146

O. Hinds, S. Ghosh, and T. W. Ompson, Computing moment-to-moment BOLD activation for real-time neurofeedback, NeuroImage, vol.54, issue.1, p.150003
DOI : 10.1016/j.neuroimage.2010.07.060

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731777

O. Hinds, S. Ghosh, and W. Todd, Computing moment-to-moment BOLD activation for real-time neurofeedback, NeuroImage, vol.54, issue.1, p.pp. ?? (cit
DOI : 10.1016/j.neuroimage.2010.07.060

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731777

L. R. Hochberg, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nature, vol.105, issue.7398, pp.10-1038
DOI : 10.1073/pnas.0808113105

. Horovitz, G. Silvina, and B. Rossion, Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing, NeuroImage, vol.22, issue.4
DOI : 10.1016/j.neuroimage.2004.04.018

S. A. Huettel, Linking Hemodynamic and Electrophysiological Measures of Brain Activity: Evidence from Functional MRI and Intracranial Field Potentials, Cerebral Cortex, vol.14, issue.2, pp.10-1093
DOI : 10.1093/cercor/bhg115

C. Huneau and H. Benali, Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models, Frontiers in Neuroscience, vol.6
DOI : 10.1038/nn980

URL : https://hal.archives-ouvertes.fr/hal-01266115

R. J. Huster, N. Zacharais, and . Mokom, Brain???computer interfaces for EEG neurofeedback: Peculiarities and solutions, International Journal of Psychophysiology, vol.91, issue.1
DOI : 10.1016/j.ijpsycho.2013.08.011

H. Hwang and K. Kwon, Neurofeedbackbased motor imagery training for brain-computer interface (BCI), In: Journal of neuroscience
DOI : 10.1016/j.jneumeth.2009.01.015

J. Ives, . Warach, and . Schmitt, Monitoring the patient's EEG during echo planar MRI, Electroencephalography and Clinical Neurophysiology, vol.87, issue.6, p.pp. ?? (cit
DOI : 10.1016/0013-4694(93)90156-P

M. Jenkinson and P. Bannister, Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, NeuroImage, vol.17, issue.2, p.pp. ?? (cit
DOI : 10.1006/nimg.2002.1132

Y. Jeon, C. S. Nam, and Y. Joo, Event-related (De)synchronization (ERD/ERS) during motor imagery tasks: Implications for brain???computer interfaces, International Journal of Industrial Ergonomics, vol.41, issue.5
DOI : 10.1016/j.ergon.2011.03.005

C. Jeunet, C. Vi, D. Spelmezan, N. Bernard, F. Kaoua et al., Continuous Tactile Feedback for Motor-Imagery Based Brain-Computer Interaction in a Multitasking Context, pp.10-1007
DOI : 10.1007/978-3-319-22701-6_36

URL : https://hal.archives-ouvertes.fr/hal-01159146

J. Jorge, F. Grouiller, and R. Gruetter, Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion, NeuroImage, vol.120
DOI : 10.1016/j.neuroimage.2015.07.020

J. Jorge and W. Van, EEG???fMRI integration for the study of human brain function, NeuroImage, vol.102
DOI : 10.1016/j.neuroimage.2013.05.114

V. Kaiser, A. Kreilinger, R. Gernot, and . Müller-putz, First Steps Toward a Motor Imagery Based Stroke BCI: New Strategy to Set up a Classifier, Frontiers in Neuroscience, vol.5
DOI : 10.3389/fnins.2011.00086

. Kasamatsu and . Hirai, AN ELECTROENCEPHALOGRAPHIC STUDY ON THE ZEN MEDITATION (ZAZEN), Psychiatry and Clinical Neurosciences, vol.96, issue.4
DOI : 10.1016/0013-4694(56)90113-4

C. H. Kasess, C. Windischberger, R. Cunnington, and R. Lanzenberger, e suppressive innuence of SMA on MM in motor imagery revealed by fMRI and dynamic causal modeling

A. W. Keizer and M. Verschoor, e eeect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures, In: International Journal of Psychophysiology

J. N. Keynan, Limbic Activity Modulation Guided by Functional Magnetic Resonance Imaging???Inspired Electroencephalography Improves Implicit Emotion Regulation, Biological Psychiatry, vol.80, issue.6
DOI : 10.1016/j.biopsych.2015.12.024

S. Kinreich and I. Podlipsky, Categorized EEG Neurofeedback Performance Unveils Simultaneous fMRI Deep Brain Activation, In: Machine Learning and . . . Pp, vol.44, issue.4, p.??? (cit
DOI : 10.1109/78.492555

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Kinreich, I. Podlipsky, and S. Jamshy, Neural dynamics necessary and suucient for transition into presleep induced by EEG NeuroFeedback
DOI : 10.1016/j.neuroimage.2014.04.044

M. Kleiner, . Brainard, . Pelli, R. Ingling, and . Murray, What's new in Psychtoolbox, In: Perception, p.p. (cit

S. E. Kober and M. Witte, Learning to modulate one's own brain activity: the eeect of spontaneous mental strategies In: Frontiers in Human Neuroscience

S. E. Kober and G. Wood, Near-infrared spectroscopy based neurofeedback training increases speciic motor imagery related cortical activation compared to sham feedback, In: Biological Psychology
DOI : 10.1016/j.biopsycho.2013.05.005

J. Koberda, P. Lucas, and . Koberda, Pain Management Using -Electrode Z-Score LORETA Neurofeedback, Journal of Neurotherapy
DOI : 10.1080/10874208.2013.813204

O. Koenig, Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages, NeuroImage, vol.16, issue.1
DOI : 10.1006/nimg.2002.1070

R. Kopel and K. Emmert, Distributed patterns of brain activity underlying realtime fMRI neurofeedback training, IEEE Transactions on Biomedical Engineering, pp.10-1109

Y. Koush, -. E. Djalel, and . Meskaldji, Learning Control Over Emotion Networks rough Connectivity-Based Neurofeedback, In: Cerebral Cortex .., bhvvvv, pp.10-1093
DOI : 10.1093/cercor/bhv311

URL : https://academic.oup.com/cercor/article-pdf/27/2/1193/10929333/bhv311.pdf

Y. Koush, M. J. Rosa, F. Robineau, K. Heinen, W. Sebastian et al., Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI, NeuroImage, vol.81, p.pp. ??? (cit
DOI : 10.1016/j.neuroimage.2013.05.010

URL : http://doi.org/10.1016/j.neuroimage.2013.05.010

Y. Koush, M. J. Rosa, F. Robineau, K. Heinen, and S. W. Rieger, Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI, NeuroImage, vol.81
DOI : 10.1016/j.neuroimage.2013.05.010

URL : http://doi.org/10.1016/j.neuroimage.2013.05.010

Y. Koush, M. Zvyagintsev, and M. Dyck, Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI, NeuroImage, vol.59, issue.1, p.pp. ?? (cit
DOI : 10.1016/j.neuroimage.2011.07.076

F. Krause, Real-time fMRI-based self-regulation of brain activation across diierent visual feedback presentations, Brain-Computer Interfaces

P. Krishnaswamy, G. Bonmassar, C. Poulsen, E. T. Pierce, P. L. Purdon et al., Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression, NeuroImage, vol.128
DOI : 10.1016/j.neuroimage.2015.06.088

D. Lahat and T. Adali, Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects, Proceedings of the IEEE, pp.10-1109
DOI : 10.1109/JPROC.2015.2460697

URL : https://hal.archives-ouvertes.fr/hal-01179853

. Lal, A brain computer interface with online feedback based on magnetoencephalography, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.10-1145
DOI : 10.1145/1102351.1102410

A. Lecuyer, F. Lotte, R. B. Reilly, R. Leeb, and M. Hirose, Brain-Computer Interfaces, Virtual Reality, and Videogames, Computer, vol.41, issue.10, pp.10-1109410, 2008.
DOI : 10.1109/MC.2008.410

URL : https://hal.archives-ouvertes.fr/hal-00675619

J. Lee and . Hwan, Brain???machine interface via real-time fMRI: Preliminary study on thought-controlled robotic arm, Neuroscience Letters, vol.450, issue.1, p.150003
DOI : 10.1016/j.neulet.2008.11.024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209621

U. Leins and G. Goth, Neurofeedback for Children with ADHD: A Comparison of SCP and Theta/Beta Protocols, Applied Psychophysiology and Biofeedback, vol.36, issue.2, pp.10-1007
DOI : 10.4088/JCP.v63n1209

J. Lévesque and M. Beauregard, EEect of neurofeedback training on the neural substrates of selective attention in children with attention-deecit/hyperactivity disorder: a functional magnetic resonance imaging study

M. D. Liechti, First clinical trial of tomographic neurofeedback in attention-deecit/hyperactivity disorder: Evaluation of voluntary cortical control, In: Clinical Neurophysiology

N. K. Logothetis, . Pauls, T. Augath, and . Trinath, Neurophysiological investigation of the basis of the fMRI signal, Nature, vol.412, issue.6843, pp.10-1038
DOI : 10.1038/35084005

F. Lotte and F. Larrue, Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design, Frontiers in Human Neuroscience, vol.7
DOI : 10.3389/fnhum.2013.00568

URL : https://hal.archives-ouvertes.fr/hal-00862716

J. F. Lubar, N. Margaret, and . Shouse, EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR) -A preliminary report, In: Biofeedback and Self-Regulation, pp.10-1007

Y. Ma, Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons, Proceedings of the National Academy of Sciences, vol.19, issue.11, pp.10-1073
DOI : 10.1113/jphysiol.2003.040709

E. Maggioni, Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation: An EEG-fMRI study, Human Brain Mapping, vol.36, issue.6, pp.10-1002
DOI : 10.1016/S0896-6273(02)01138-8

M. Mano, A. Lécuyer, E. Bannier, and L. Perronnet, How to Build a Hybrid Neurofeedback Platform Combining EEG and fMRI, Frontiers in Neuroscience, vol.63
DOI : 10.1016/j.neuroimage.2012.07.031

URL : https://hal.archives-ouvertes.fr/inserm-01576500

S. Marchesotti, M. Bassolino, and A. Serino, Quantifying the role of motor imagery in brain-machine interfaces, Scientific Reports, vol.86, issue.1, pp.10-1038
DOI : 10.1016/0013-4694(93)90110-H

C. Maumet and P. Maurel, An a contrario approach for the detection of patient-speciic brain perfusion abnormalities with arterial spin labelling

S. Maurizio, Comparing tomographic EEG neurofeedback and EMG biofeedback in children with attention-deecit hyperactivity disorder, In: Biological psychology

A. Mayeli and V. Zotev, Realtime EEG artifact correction during fMRI using ICA, In: Journal of Neuroscience Methods, p.pp. ???
DOI : 10.1016/j.jneumeth.2016.09.012

URL : http://doi.org/10.1016/j.jneumeth.2016.09.012

J. N. Meer and . Van-der, Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections-A validation of a real-time simultaneous EEG/fMRI correction method

Y. Meir-hasson and J. N. Keynan, One-Class FMRI-Inspired EEG Model for Self-Regulation Training, PLOS ONE, vol.60, issue.2
DOI : 10.1371/journal.pone.0154968.g006

URL : http://doi.org/10.1371/journal.pone.0154968

Y. Meir-hasson, S. Kinreich, and I. Podlipsky, An EEG Finger-Print of fMRI deep regional activation, NeuroImage, vol.102
DOI : 10.1016/j.neuroimage.2013.11.004

L. Michels, Simultaneous EEG-fMRI during a Working Memory Task: Modulations in Low and High Frequency Bands, PLoS ONE, vol.5, issue.4
DOI : 10.1371/journal.pone.0010298.s003

M. Mihara, Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation, PLoS ONE, vol.41, issue.3
DOI : 10.1371/journal.pone.0032234.t004

URL : http://doi.org/10.1371/journal.pone.0032234

R. Mukamel, H. Gelbard, A. Arieli, and U. Hasson, Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex, Science, vol.309, issue.5736, pp.10-1126
DOI : 10.1126/science.1110913

K. J. Mullinger, S. D. Mayhew, A. P. Bagshaw, and R. Bowtell, Evidence that the negative BOLD response is neuronal in origin: A simultaneous EEG???BOLD???CBF study in humans, NeuroImage, vol.94
DOI : 10.1016/j.neuroimage.2014.02.029

T. Murta and . Chaudhary, Phase???amplitude coupling and the BOLD signal: A simultaneous intracranial EEG (icEEG) - fMRI study in humans performing a finger-tapping task, NeuroImage, vol.146
DOI : 10.1016/j.neuroimage.2016.08.036

T. Murta, M. Leite, W. David, P. Carmichael, and . Figueiredo, Electrophysiological correlates of the BOLD signal for EEGinformed fMRI, Human Brain Mapping, pp.10-1002

T. Nakai, E. Bagarinao, and K. Matsuo, Dynamic monitoring of brain activation under visual stimulation using fMRI???The advantage of real-time fMRI with sliding window GLM analysis, Journal of Neuroscience Methods, vol.157, issue.1, p.pp. ??? (
DOI : 10.1016/j.jneumeth.2006.04.017

I. Neuner and J. Arrubla, Simultaneous EEG?fMRI acquisition at low, high and ultra-high magnetic elds up to .. T: Perspectives and challenges, Neuroimage, p.pp. ??? (
DOI : 10.1016/j.neuroimage.2013.06.048

C. Neuper and R. Scherer, Imagery of motor actions: Differential effects of kinesthetic and visual???motor mode of imagery in single-trial EEG, Cognitive Brain Research, vol.25, issue.3
DOI : 10.1016/j.cogbrainres.2005.08.014

C. Neuper and M. Wörtz, ERD/ERS patterns reeecting sensorimotor activation and deactivation, In: Progress in Brain Research, issue.06, pp.10-1016
DOI : 10.1016/s0079-6123(06)59014-4

T. Nierhaus, C. Gundlach, D. Goltz, D. Sabrina, B. Iel et al., Internal ventilation system of MR scanners induces speciic EEG artifact during simultaneous EEG-fMRI, NeuroImage, p.pp. ?? (cit

M. Ninaus, Neural substrates of cognitive control under the belief of getting neurofeedback training, Frontiers in Human Neuroscience, vol.7
DOI : 10.3389/fnhum.2013.00914

P. L. Nunez and R. Srinivasan, EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales, pp.10-1016

P. Nunez, F. Andrew, and . Westdorp, The surface laplacian, high resolution EEG and controversies, Brain Topography, vol.32, issue.3, p.pp. ???? (cit
DOI : 10.1007/BF01187712

T. Ono, Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke, Frontiers in Neuroengineering, vol.37
DOI : 10.1161/01.STR.0000206463.66461.97

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083225

V. Paquette, M. Beauregard, and . Dominic, Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder, Psychiatry Research: Neuroimaging, vol.174, issue.3
DOI : 10.1016/j.pscychresns.2009.06.002

. Pascual-marqui, D. Roberto, M. Esslen, K. Kochi, and D. Lehmann, Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review In: Methods and ndings in experimental and clinical pharmacology, p.pp. ??? (

F. Peeters, M. Oehlen, and J. Ronner, Neurofeedback As a Treatment for Major Depressive Disorder ??? A Pilot Study, PLoS ONE, vol.104, issue.3
DOI : 10.1371/journal.pone.0091837.s002

E. Peniston and . Kulkosky, Alpha-theta brainwave training and betaendorphin levels in alcoholics In: Alcoholism, clinical and experimental research, p.pp. ???? (cit

W. D. Penny, E. Klaas, A. Stephan, and . Mechelli, Modelling functional integration: a comparison of structural equation and dynamic causal models, NeuroImage, vol.23
DOI : 10.1016/j.neuroimage.2004.07.041

W. D. Penny, J. Karl, . Friston, T. John, . Ashburner et al., Statistical parametric mapping: the analysis of functional brain images

L. Perronnet and A. Lécuyer, Brain Training with Neurofeedback, pp.10-1002
DOI : 10.1016/j.neuroimage.2013.04.126

URL : https://hal.archives-ouvertes.fr/hal-01413424

L. Perronnet, A. Lécuyer, and M. Mano, Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task, Frontiers in Human Neuroscience, vol.85
DOI : 10.1016/j.neuroimage.2013.04.126

URL : https://hal.archives-ouvertes.fr/hal-01519755

G. Pfurtscheller, Z. Brendan, and . Allison, The hybrid BCI, Frontiers in Neuroscience, p.pp. ???
DOI : 10.3389/fnpro.2010.00003

URL : http://doi.org/10.3389/fnpro.2010.00003

G. Pfurtscheller, C. Guger, and G. Müller, Brain oscillations control hand orthosis in a tetraplegic, Neuroscience Letters, vol.292, issue.3, pp.10-1016
DOI : 10.1016/S0304-3940(00)01471-3

G. &. Pfurtscheller, F. Lopes, and . Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clinical Neurophysiology, vol.110, issue.11, pp.10-1016
DOI : 10.1016/S1388-2457(99)00141-8

G. Pfurtscheller and A. Schwerdtfeger, Distinction between Neural and Vascular BOLD Oscillations and Intertwined Heart Rate Oscillations at 0.1 Hz in the Resting State and during Movement, PLOS ONE, vol.31, issue.1
DOI : 10.1371/journal.pone.0168097.t002

URL : http://doi.org/10.1371/journal.pone.0168097

G. Prasad and P. Herman, Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study, Journal of NeuroEngineering and Rehabilitation, vol.7, issue.1, pp.10-1186
DOI : 10.1186/1743-0003-7-60

E. Ran, J. Mattout, and K. T. , Disentangling motor execution from motor imagery with the phantom limb, pp.10-1093

H. Ramoser and J. Müller, Optimal spatial ltering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, pp.10-1109
DOI : 10.1109/86.895946

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Ramos-murguialday and . Ander, Brain-machine interface in chronic stroke rehabilitation: A controlled study, Annals of Neurology, vol.10, issue.1, pp.10-1002
DOI : 10.1038/nrn2735

G. Rayner and G. Jackson, Cognition-related brain networks underpin the symptoms of unipolar depression: Evidence from a systematic review, Neuroscience & Biobehavioral Reviews, vol.61
DOI : 10.1016/j.neubiorev.2015.09.022

A. K. Rehme, B. Simon, C. Eickho, and . Rottschy, Activation likelihood estimation meta-analysis of motorrelated neural activity aer stroke

S. Rimbert and L. Bougrain, Amplitude and latency of beta power during a discrete and continuous motor imageries, Tech. rep
URL : https://hal.archives-ouvertes.fr/hal-01152205

P. Ritter and M. Moosmann, Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD sig- BIBLIOGRAPHY nal in primary somatosensory and motor cortex, Human Brain Mapping, pp.10-1002
DOI : 10.1002/hbm.20585

F. Robineau, Maintenance of Voluntary Self-regulation Learned through Real-Time fMRI Neurofeedback, Frontiers in Human Neuroscience, vol.9, issue.148
DOI : 10.3389/fnbeh.2015.00148

B. Rockstroh, T. Elbert, and W. Lutzenberger, Birbaumer (() Biofeedback: Evaluation and erapy in Children with Attentional Dysfunctions In: Brain and behavior in child psychiatry, p.pp. ?? (cit

B. Rockstroh, Cortical self-regulation in patients with epilepsies, Epilepsy Research, vol.14, issue.1, pp.10-1016
DOI : 10.1016/0920-1211(93)90075-I

T. Ros, Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback, NeuroImage, vol.65
DOI : 10.1016/j.neuroimage.2012.09.046

M. J. Rosa and J. Daunizeau, EEG-fMRI INTEGRATION: A CRITICAL REVIEW OF BIOPHYSICAL MODELING AND DATA ANALYSIS APPROACHES, Journal of Integrative Neuroscience, vol.3, issue.04, pp.10-1142
DOI : 10.1038/nn980

R. Scheeringa, Neuronal Dynamics Underlying High- and Low-Frequency EEG Oscillations Contribute Independently to the Human BOLD Signal, Neuron, vol.69, issue.3
DOI : 10.1016/j.neuron.2010.11.044

R. Scherer, A. Schloegl, F. Lee, and H. Bischof, The Self-Paced Graz Brain-Computer Interface: Methods and Applications, Computational Intelligence and Neuroscience, vol.2007, pp.10-115579826, 2007.
DOI : 10.1109/TBME.2004.827078

URL : http://doi.org/10.1155/2007/79826

U. Schridde, M. Khubchandani, E. Joshua, . Motelow, G. Basavaraju et al., Negative BOLD with Large Increases in Neuronal Activity, Cerebral Cortex, vol.18, issue.8, pp.10-1093
DOI : 10.1093/cercor/bhm208

K. Schulz, Simultaneous BOLD fMRI and ber-optic calcium recording in rat neocortex, In: Nature Methods, pp.10-1038
DOI : 10.1038/nmeth.2013

P. Sepulveda, R. Sitaram, M. Rana, and C. Montalba, How feedback, motor imagery, and reward innuence brain self-regulation using real-time fMRI, Human Brain Mapping, pp.10-1002
DOI : 10.1002/hbm.23228

N. Sharma and . Baron, Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis In: Frontiers in human neuroscience

L. H. Sherlin, Neurofeedback and Basic Learning eory: Implications for Research and Practice, Journal of Neurotherapy
DOI : 10.1080/10874208.2011.623089

K. Shindo, EEects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study, In: Journal of rehabilitation medicine, pp.10-2340

. Shmuel, &. Amir, and . David, Neuronal correlates of spontaneous uctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest, Human Brain Mapping, pp.10-1002

M. Shouse and . Lubar, Operant conditioning of EEG rhythms and ritalin in the treatment of hyperkinesis, Biofeedback and Self-Regulation, vol.18, issue.2, pp.10-1007
DOI : 10.1001/archneur.1968.00470320062007

M. B. Shtark, Synergetic fMRI-EEG Brain Mapping in Alpha-Rhythm Voluntary Control Mode, Bulletin of Experimental Biology and Medicine, vol.85, issue.3, pp.10-1007
DOI : 10.1016/j.neuroimage.2013.04.126

. Siero, C. Jeroen, D. Hermes, H. Hoogduin, R. Peter et al., BOLD Consistently Matches Electrophysiology in Human Sensorimotor Cortex at Increasing Movement Rates: A Combined 7T fMRI and ECoG Study on Neurovascular Coupling, Journal of Cerebral Blood Flow & Metabolism, vol.4, issue.6, pp.10-1038
DOI : 10.1006/nimg.1996.0071

A. Sirigu, J. Duhamel, . Cohen, . Pillon, . Dubois et al., e Mental Representation of Hand Movements Aer Parietal Cortex Damage

R. Sitaram, S. Lee, S. Ruiz, and M. Rana, Real-time support vector classiication and feedback of multiple emotional brain states

R. Sitaram and T. Ros, Closed-loop brain training: the science of neurofeedback, Nature Reviews Neuroscience, vol.95, issue.2, pp.10-1038
DOI : 10.1152/jn.00166.2006

R. Sitaram and H. Zhang, Temporal classiication of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface

A. M. Smith, Investigation of Low Frequency Drii in fMRI Signal

B. Soldati, V. D. Nicola, L. Calhoun, and . Bruzzone, ICA analysis of fMRI with real-time constraints: an evaluation of fast detection performance as function of algorithms, parameters and a priori conditions, Frontiers in Human Neuroscience, vol.7, pp.10-3389
DOI : 10.3389/fnhum.2013.00019

T. Sollfrank, e eeect of multimodal and enriched feedback on SMR-BCI performance, In: Clinical Neurophysiology

A. Solodkin, P. Hlustik, E. E. Chen, and . Steven, Fine Modulation in Network Activation during Motor Execution and Motor Imagery, Cerebral Cortex, vol.14, issue.11, pp.10-1093
DOI : 10.1093/cercor/bhh086

URL : https://academic.oup.com/cercor/article-pdf/14/11/1246/17295035/bhh086.pdf

B. Sorger and B. Dahmen, Another kind of ???BOLD Response???: answering multiple-choice questions via online decoded single-trial brain signals, pp.10-1016
DOI : 10.1016/S0079-6123(09)17719-1

URL : http://orbi.ulg.ac.be/bitstream/2268/40362/1/sorger_PBR_coma_science_2009.pdf

B. Sorger and T. Kamp, When the brain takes ???BOLD??? steps: Real-time fMRI neurofeedback can further enhance the ability to gradually self-regulate regional brain activation, Neuroscience
DOI : 10.1016/j.neuroscience.2016.09.026

M. E. Spencer, M. Richard, J. Leahy, . Mosher, and . Lewis, Adaptive lters for monitoring localized brain activity from surface potential time series, Signals, Systems and Computers, . Conference Record of e Twenty-Sixth Asilomar Conference on. IEEE, p.??? (
DOI : 10.1109/acssc.1992.269278

M. Sterman and . Friar, Suppression of seizures in an epileptic following sensorimotor EEG feedback training, Electroencephalography and Clinical Neurophysiology, vol.33, issue.1, pp.10-1016
DOI : 10.1016/0013-4694(72)90028-4

M. Sterman, . Lopresti, and . Fairchild, Electroencephalographic and behavioral studies of monomethylhydrazine toxicity in the cat
DOI : 10.21236/AD0691474

L. E. Stoeckel, Optimizing real time fMRI neurofeedback for therapeutic discovery and development
DOI : 10.1016/j.nicl.2014.07.002

URL : http://doi.org/10.1016/j.nicl.2014.07.002

U. Strehl, S. M. Birkle, and S. Wörz, Sustained Reduction of Seizures in Patients with Intractable Epilepsy aer Self- Regulation Training of Slow Cortical Potentials -Years Aer, In: Frontiers in Human Neuroscience, pp.10-3389

G. Sudre, L. Parkkonen, E. Bock, S. Baillet, W. Wang et al., rtMEG: A Real-Time Software Interface for Magnetoencephalography, Computational Intelligence and Neuroscience, vol.104, issue.5, p.327953, 2011.
DOI : 10.1152/jn.00239.2010

URL : http://doi.org/10.1155/2011/327953

J. Sulzer, Real-time fMRI neurofeedback: Progress and challenges, NeuroImage, vol.76
DOI : 10.1016/j.neuroimage.2013.03.033

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878436

A. Sumiyoshi, H. Suzuki, T. Ogawa, J. J. Riera, and H. Shimokawa, Coupling between gamma oscillation and fMRI signal in the rat somatosensory cortex: Its dependence on systemic physiological parameters, NeuroImage, vol.60, issue.1
DOI : 10.1016/j.neuroimage.2011.12.082

E. Biofeedback, A meta analysis of EEG biofeedback in treatment of epilepsy In: Clinical EEG and, Normative EEG Databases In: Journal of Neurotherapy, pp.10-1300

. Tzourio-mazoyer, Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage, vol.15, issue.1, p.pp. ?? (cit
DOI : 10.1006/nimg.2001.0978

A. &. Viswanathan, Neurometabolic coupling in cerebral cortex reeects synaptic more than spiking activity, In: Nature Neuroscience, pp.10-1038
DOI : 10.1038/nn1977

J. D. Wander, Distributed cortical adaptation during learning of a brain-computer interface task, Proceedings of the National Academy of Sciences, vol.51, issue.6, pp.10-1073
DOI : 10.1109/TBME.2004.827072

J. Wang, Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches, Human Brain Mapping, vol.24, issue.1, p.150003
DOI : 10.1093/cercor/bhs353

T. Warbrick and M. Reske, Do EEG paradigms work in fMRI? Varying task demands in the visual oddball paradigm: Impli- BIBLIOGRAPHY cations for task design and results interpretation

N. Weiskopf, Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data, NeuroImage, vol.19, issue.3, pp.10-1016
DOI : 10.1016/S1053-8119(03)00145-9

D. J. White and M. Congedo, Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation, Frontiers in Behavioral Neuroscience, vol.35
DOI : 10.1016/s0031-3203(01)00101-7

URL : https://hal.archives-ouvertes.fr/hal-01077180

J. R. Wolpaw, W. Elizabeth, and . Wolpaw, Brain-computer interfaces: principles and practice

C. Wong, V. Ki, M. Zotev, and . Misaki, Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR), NeuroImage, vol.129
DOI : 10.1016/j.neuroimage.2016.01.042

URL : http://doi.org/10.1016/j.neuroimage.2016.01.042

X. Wu and T. Wu, A realtime method to reduce ballistocardiogram artifacts from EEG during fMRI based on optimal basis sets (OBS), In: Computer Methods and Programs in

W. &. Wyrwicka and M. B. Sterman, Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat, Physiology & Behavior, vol.3, issue.5, pp.10-1016
DOI : 10.1016/0031-9384(68)90139-X

L. Yan, Physiological origin of low-frequency drii in blood oxygen lcyci dependent (BOLD) functional magnetic resonance imaging (fMRI), In: Magnetic Resonance in Medicine, pp.10-1002

S. Yin and Y. Liu, Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study In: Frontiers in Human Neuroscience, pp.10-3389

J. J. Yoo, When the brain is prepared to learn: Enhancing human learning using real-time fMRI, NeuroImage, vol.59, issue.1, p.pp. ??
DOI : 10.1016/j.neuroimage.2011.07.063

S. Yoo, J. H. Schik, H. O. Lee, L. P. Leary, . Panych et al., Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery, International Journal of Imaging Systems and Technology, vol.36, issue.1, p.150003
DOI : 10.1177/155005940303400308

B. M. Young and J. Williams, BCI-FES: could a new rehabilitation device hold fresh promise for stroke patients? " In: Expert review of medical devices

K. D. Young, Real-Time fMRI Neurofeedback Training of Amygdala Activity in Patients with Major Depressive Disorder, PLoS ONE, vol.213, issue.3
DOI : 10.1371/journal.pone.0088785.s001

H. Yuan and T. Liu, Negative covariation between task-related responses in alpha/betaband activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements

H. Yuan and V. Zotev, Spatiotemporal dynamics of the brain at rest ??? Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks, NeuroImage, vol.60, issue.4
DOI : 10.1016/j.neuroimage.2012.02.031

A. Zaidi and . Danish, Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates, NeuroImage, vol.120
DOI : 10.1016/j.neuroimage.2015.07.019

C. Zich, S. Debener, C. Kranczioch, M. G. Bleichner, and I. Gutberlet, Real-time EEG feedback during simultaneous EEG-fMRI identiies the cortical signature of motor imagery

A. Zilverstand and B. Sorger, Windowed Correlation: A Suitable Tool for Providing Dynamic fMRI-Based Functional Connectivity Neurofeedback on Task Difficulty, PLoS ONE, vol.56, issue.1
DOI : 10.1371/journal.pone.0085929.t003

. Zotev, R. Vadim, H. Phillips, and . Yuan, (a) Self-regulation of human brain activity using simultaneous real- 10

. Zotev, R. Vadim, H. Phillips, and . Yuan, (b) Self-regulation of human brain activity using simultaneous realtime fMRI and EEG neurofeedback, NeuroImage, p.pp. ???? (cit

. Zotev, H. Vadim, and . Yuan, Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression, NeuroImage: Clinical, vol.11
DOI : 10.1016/j.nicl.2016.02.003