
HAL Id: tel-01614081
https://inria.hal.science/tel-01614081

Submitted on 10 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated Simulation of Hybrid Systems : Method
combining static analysis and run-time execution

analysis.
Ayman Aljarbouh

To cite this version:
Ayman Aljarbouh. Accelerated Simulation of Hybrid Systems : Method combining static analysis and
run-time execution analysis.. Computer Science [cs]. Université de Rennes 1, France, 2017. English.
�NNT : �. �tel-01614081�

https://inria.hal.science/tel-01614081
https://hal.archives-ouvertes.fr

He who loves practice without theory is like the sailor who
boards ship without a rudder and compass and never knows
where he may cast.

(Leonardo da Vinci)

i

This thesis is dedicated to my parents for their love, endless
support and encouragement.

iii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor, Benoît
Caillaud, for supervising this research work in a very professional manner, and for being
patient, caring, and supportive. He continuously motivated me to aim for high-quality
research, and was always available whenever I had a question about my research or
writing. His insightful criticism and comments were an enormous help to me, and have
led to highly improve the quality of my work.

I would like to thank all the members of my doctoral committee for their constructive
evaluation of my thesis, and for their valuable comments which helped me to improve
this document. In particular, I would like to thank Prof. Erika Ábrahám and Prof.
Eugenio Moggi for accepting the role of reviewers. Also I would like to thank Prof. Luc
Jaulin, Prof. Sophie Pinchinat, and Dr. Nathalie Bertrand who accepted to be part of
the committee as examiners.

I greatly appreciate and wish to thank Prof. Albert Benveniste, Dr. Khalil Ghor-
bal, Aurélien Lamercerie, and Angélique Jarnoux for providing me a great and friendly
work atmosphere duing my research work in the team Hycomes. I also would like to
thank Prof. Marc Pouzet and Dr. Timothy Bourke for the constructive discussions and
meetings during my visits with my supervisor to the team Parkas at École Normale
Supérieure.

During my Ph.D. project I had the opportunity to spend three months as a visiting
researcher at Halmstad University, where I worked in the team EMG (Effective Modeling
Group) under the guidance of Prof. Walid Taha. For this amazing experience, I would
like to thank Prof. Walid Taha for accepting me in his team and for providing me
an amazing constructive working environment. I always enjoyed the discussions and
attending the team meetings. I would also like to express my thanks to all the colleagues
in EMG team, especially Adam Duracz, Yingfu Zeng, and Fei Xu who made my working
days in Halmstad University instructive and at the same time really enjoyable.

This work is supported by the European project ITEA2-MODRIO (Contract No

6892), and the ARED grant of Brittany Regional Council. For part of this work, I was
supported by the Collège Doctoral International (CDI) of the European University of
Brittany. Their support is gratefully acknowledged.

Finally, I would like to express my gratitude to my family and friends for their con-
stant spiritual and emotional support and encouragement throughout my Ph.D. project.

v

Résumé en Français

Cette thèse de doctorat porte sur la modélisation et la simulation de systèmes hybrides
comportant des phénomènes Zénon.

Les systèmes hybrides peuvent être définis comme des systèmes dynamiques dans
lesquels les dynamiques en temps continu et les dynamiques en temps discret inter-
agissent les unes avec les autres. De tels systèmes existent dans un grand nombre
d’applications technologiques où l’évolution de la partie physique du système, le plus
souvent modélisée par un système dynamique en temps continu, est combinée avec des
actions de contrôle intégrées, modélisée par un système dynamique en temps discret. Les
modèles mathématiques des systèmes hybrides consistent généralement en dynamiques
de temps continu habituellement décrites par des équations différentielles qui décrivent
le comportement continu du système, et des dynamiques d’événements discrets telles que
les machines à états finis, qui décrivent le comportement discret du système.

Cependant, en raison de l’interaction complexe entre les dynamiques continues et
les dynamiques discrètes des systèmes hybrides, les concepteurs des systèmes complexes
technologiques devraient accorder une attention particulière lors de la modélisation des
systèmes hybrides. En fait, les modèles réalistes de systèmes hybrides nécessitent presque
toujours l’abstraction d’une partie du comportement physique du système modélisé.
Cette abstraction se fait au moyen d’équations idéales telles que la ré-initialisation et les
contraintes conditionnelles qui conduisent généralement à des discontinuités dans les sig-
naux physiques du modèle. Le terme abstraction de modélisation est donc désigné pour
tout mécanisme qui permet de “cacher” un comportement physique concret en consid-
érant des modèles idéalisés. Les modèles ainsi produits peuvent présenter des comporte-
ments Zénon, c’est à dire une séquence infinie d’événements discrets se produisant dans
un intervalle de temps fini. Fondamentalement, la présence du comportement Zénon
indique que le modèle décrive de manière incomplète le comportement physique réel du
système hybride. Ce comportement peut être considéré donc comme un problème de
modélisation.

Nous distinguons deux types de comportement Zénon dans les systèmes hybrides:
1) chattering-Zénon, et 2) genuinely-Zénon. Dans les modèles qui présentent de com-
portement chattering-Zénon, le système évolue de façon infinie entre ses états discrets,
selon un alternance de transitions de modes et de dynamiques continues différentes à
une fréquence infinie. Tout comportement Zénon qui n’est pas chattering-Zénon peut
être classifié comme un comportement genuinely-Zénon. Dans cette thèse nous étudions,

vii

d’une manière systématique et analytique, le comportement chattering-Zénon et aussi un
type particulier de comportement genuinely-Zénon appelé genuinely-Zénon géométrique.
Dans les modèles qui présentent de comportement genuinely-Zénon géométrique, une ac-
cumulation d’un nombre infini de commutations entre les états discrets — du système
hybride — se produit en temps fini. Le comportement genuinely-Zénon géométrique
amène la solution du système à converger vers un point limite Zénon selon une série
géométrique, c’est à dire, dans les modèles qui présentent de comportement genuinely-
Zénon géométrique, les événements discrets se produisent à une période de plus en plus
faible, convergeant vers une date limite.

La simulation des comportements Zénon — des systèmes hybrides — pose une dif-
ficulté majeure: la simulation devient numériquement incorrect; le simulateur devient
incapable d’avancer la simulation au delà du point limite Zénon, à cause de l’infinité des
commutations discrètes en temps fini.

Dans cette thèse, nous considérons les modèles de systèmes hybrides comme des pro-
grammes exécutables écrits par des langages de programmation ayant des sémantiques
hybrides. Fondamentalement, la définition d’un modèle sémantique hybride approprié
est la première étape vers un développement d’un environnement propre de simulation
pour les systèmes hybrides. Le développement d’un environnement de simulation hybride
consiste généralement à suivre les étapes suivantes:

1. Définir correctement un modèle sémantique hybride, qui peut considérer les pro-
priétés de comportement continue/discret des systèmes hybrides.

2. Concevoir et développer un simulateur capable à calculer les dynamiques et les
solutions des modèles des systèmes hybrides conformément au modèle sémantique
hybride défini.

3. Concevoir et développer un langage de programmation capable d’exprimer tous les
éléments et composants des modèles hybrides conformément au modèle sémantique
hybride défini. La vérification de code doit être incluse dans cette étape pour
prouver de manière statique la validité sémantique des modèles simulés.

4. Concevoir et développer un compilateur pour le langage de programmation développé.
Le compilateur devrait être capable d’effectuer une vérification statique efficace des
modèles, et rejeter les modèles invalides.

De nombreux outils de modélisation et de simulation pour les systèmes hybrides ont été
développés ces dernières années. Ils peuvent être classés en deux catégories: ceux qui
accordent une attention particulière à une définition rigoureuse des modèles, comme par
exemple SpaceEx [44], Ptolemy [27], et Zélus [57], et ceux qui utilisent une approche
informelle pour la définition des modèles, comme Simulink1, le langage Modelica [55]
et ses outils associés. Tous ces outils partagent la même approche de l’exécution du
modèle hybride alternant entre l’évolution continue et les séquences de commutations
discrètes similaire à l’approche définie par la notion d’automate hybride [30]. Pour tous

1https://fr.mathworks.com/products/simulink.html

viii

ces outils, la sémantique opérationnelle de la dynamique continue (équations différen-
tielles) n’est pas incluse dans le modèle sémantique: les solveurs numériques exécutent
le comportement continu en faisant progresser le temps et en calculant les valeurs des
variables continues physiques. Aucun de ces outils n’a un modèle sémantique qui permet
de détecter le comportement Zénon et de l’éliminer. Ils comptent tous sur l’analyse de
la sortie du solveur à chaque pas d’intégration numérique, sans aucun moyen de spécifier
le comportement du solveur au point limite Zénon.

Dans cette thèse, nous proposons une solution à ce problème. En particulier, nous
proposons une méthode combinant un analyse statique et un analyse à l’execution pour
détecter et éliminer le comportement Zénon lors de la simulation des modèles des sys-
tèmes hybrides. Nous montrons aussi comment notre méthode peut être utilisée dans le
développement d’outils de modélisation et de simulation qui produisent une simulation
correcte éliminatoire de comportement Zénon.

La première partie de notre contribution est destinée à proposer de sémantique
non-standard pour les exécutions Zénon des automates hybrides. Ceci est basé sur
l’interprétation des exécutions Zénon dans un domaine de temps hybride non-standard.
L’ avantage de l’utilisation de la sémantique non-standard dans l’analyse du comporte-
ment Zénon c’est que l’analyse non-standard permet aux solutions des modèles ayant
un comportement Zénon d’être bien définies au-delà des points limites Zénon, ainsi que
de représenter l’interaction complexe entre les dynamiques continues et les dynamiques
discrètes de manière concrète:

1. Les dynamiques continues du système hybride sont réduites à des équations récur-
rentes qui représentent rigoureusement l’itération infinie des commutations dis-
crètes en durée infinitésimale. Par conséquent, nous pouvons gérer les dynamiques
hybrides en appuyant seulement sur un paradigme complètement discret.

2. La représentation non-standard des dynamiques hybrides est complète, qui permet
de traiter les points limites Zénon.

La deuxième partie de notre contribution est attribuée à proposer une technique
de calcul éliminatoire de comportement Zénon. L’idée clé dans notre technique est
d’effectuer la détection et l’élimination de comportement Zénon en utilisant l’analyse
comportementale du système, au lieu de seulement considérer le nombre des passages à
zéro, comme ce qui est le cas désormais dans tous les outils de modélisation et de simu-
lation développés pour les systèmes hybrides. La technique d’analyse comportementale
que nous proposons pour le traitement de comportement Zénon est basée sur un anal-
yse systématique des deux types de Zénon. Nous proposons des conditions formelles
pour bien distinguer si les modèles hybrides simulés présentent ou non de comporte-
ment Zénon. Nous proposons également des méthodes pour une définition correcte des
solutions au delà des points limites Zénon. La question de l’existence et l’unicité de la
solution au delà du point limite Zénon est également bien étudiée dans cette thèse. Nos
méthodes proposées dans cette thèse permettent de sacrifier la notion de Zénon-free: 1)
la décision algorithmique est basé sur des conditions formelles explicitement définies et

ix

fournies au simulateur hybride, et 2) la notion correcte de solution au delà du point
limite Zénon est bien définie et établie dans notre technique proposée.

Des exemples de systèmes hybrides, illustrant l’utilisation des méthodes proposées
dans cette thèse, sont également présentés.

x

Abstract

The theme of this dissertation is to deal with Zeno behavior of hybrid systems from
a simulation perspective.

Hybrid systems can be defined as dynamical systems in which continuous and discrete
dynamics interact with each other. Such systems exist in a large number of technolog-
ical systems where the physical continuous evolution of the system is combined with
embedded control actions. The mathematical models of hybrid systems consist typically
of continuous time dynamics usually described by differential equations describing the
continuous behavior of the system, and discrete event dynamics such as finite state ma-
chines (synchronous or data-flow programs) that describe the discrete behavior of the
system.

However, due to the complex interaction between the continuous and discrete dy-
namics, designers should pay special attention when modeling hybrid systems. In fact,
realistic models of hybrid systems almost always necessitate part of the hybrid system’s
physical behavior to be abstracted by means of “ideal equations” such as reset and
conditional constraints that typically lead to discontinuities in physical signals. The
term modeling abstraction is thus designated to any mechanism that enables concrete
physical behavior to be “hidden” by considering idealized models. Intuitively, because
of such abstraction, the model jumps over instants corresponding to the violation of
abstraction mechanisms. Such modeling abstraction mechanism may result in hybrid
models that exhibit Zeno behavior. Formally, we define Zeno behavior as an infinite
sequence of discrete events occurring in a finite amount of time. Basically, the pres-
ence of Zeno behavior indicates that the hybrid system’s model incompletely describes
the real physical behavior of the system being modeled. If we consider the standard
semantics2 of executions of hybrid systems models, the problem can best be described
as follows: the physical system keeps evolving continuously beyond a certain point, but
the model’s continuous evolution is undefined beyond that point, because of the infinity
of the discrete transitions or mode switchings. Such inherent limitation of the hybrid
system model makes the solution of the system reaches a (Zeno limit) point in time at

2Apart from Zélus [57] which uses non-standard semantics, all the other modeling and simulation
tools of hybrid systems use standard semantics of executions of hybrid models.

xi

which the model is no longer valid. This is due the fact that the modeling abstraction
mechanism incompletely describes the complex interaction between the continuous and
discrete dynamics of the hybrid system being modeled. That is, Zeno behavior can be
seen as a modeling artifact that can never occur in reality.

Analytically, we distinguish between two different types of Zeno behavior in hybrid
systems: i) chattering-Zeno, and ii) genuinely-Zeno. In models that exhibit chattering-
Zeno, the system infinitely moves back and forth between modes in a discrete fashion with
infinitesimal time spent between the successive mode switchings. Any Zeno behavior
that is not chattering-Zeno can be classified as genuinely-Zeno. In this dissertation we
focus on both chattering-Zeno and a particular type of genuinely-Zeno which we call
geometric-Zeno. In models that exhibit geometric-Zeno, an accumulation of an infinite
number of mode switchings occurs in finite time. Geometric-Zeno behavior leads the
solution of the system to converge to a Zeno limit point according to a geometric series.
Roughly speaking, in geometric-Zeno models discrete events occur at an increasingly
smaller distance in time, converging against a limit point.

Zeno behavior is highly challenging from a simulation perspective. In fact, although
chattering-Zeno and geometric-Zeno are analytically different, the effect of these two
types of Zeno during the numerical simulation is similar: the simulation process ef-
fectively stalls, halts and terminates with an error message, or becomes numerically
incorrect and produces faulty results, as infinitely many discrete transitions would need
to be simulated.

This dissertation takes the perspective that models of hybrid systems are executable
programs written in programming languages having a hybrid system semantics. Basi-
cally, defining a proper hybrid semantic model is the first step of developing a simulation
framework for hybrid systems. This step is mandatory even before designing the lan-
guage or the simulator. The development of a hybrid simulation framework typically
include the following steps:

1. Properly define a hybrid semantic model that can account for the expected prop-
erties of the hybrid systems under simulation.

2. Design and develop a simulator that could approximate the model dynamics con-
forming to the defined hybrid semantic model.

3. Design a language capable of expressing all models elements and components con-
forming to the hybrid semantic model. Type-checking must be included in this
step to prove statically the semantic validity of the simulated models.

4. Design a compiler for the language. The compiler should be capable of performing
static checks of models and also rejecting models that are invalid.

Many modeling and simulation tools for hybrid systems have been developed in the
past years. They can be classified into two categories: those who put special attention
on defining models rigorously, such as for instance SpaceEx [44], Ptolemy [27] (based
on the super-dense time semantics in [47]), and Zélus [57] (based on the non-standard

xii

semantics in [54]); and those who use informal approach for model definition such as
Simulink3, Modelica language [55] and its associated tools. All these modeling and
simulation tools share the same approach of hybrid model execution alternating between
continuous evolution and sequences of discrete switchings [57] as defined by the notion
of hybrid automata [30]. For all of these tools, the operational semantics of continuous
dynamics (differential equations) is not included in the core semantic model: numerical
solvers execute the continuous behavior by advancing time and computing the values of
physical continuous variables. None of the above tools have a Zeno-free semantic model.
They all rely on analyzing the solver output at each integration time step, with the
solver behavior at the Zeno-limit point being usually unspecified.

In this dissertation we focus on the first two steps above. In particular, we focus
on proposing a rigorous Zeno-free computational framework for hybrid semantic model
design, and how this Zeno-free computational framework can be implemented in the
design of hybrid systems simulators.

The first part of our contribution is to propose non-standard semantics for Zeno
executions of hybrid systems models. This is based on interpreting Zeno executions
in a non-standard densely ordered hybrid time domain. The advantages of using non-
standard semantics in the analysis of Zeno behavior is that it allows for solutions of Zeno
hybrid models to be well-defined beyond the Zeno limit points, as well as representing
the complex interaction between continuous and discrete dynamics in a concrete way:

1. The continuous dynamics of the hybrid system is reduced to the recurrence equa-
tion that represents the infinite iteration of infinitesimal discrete changes with
infinitesimal duration. Therefore, we can handle the hybrid dynamics based only
on fully discrete paradigm.

2. The representation of dynamics based on non-standard analysis is complete and
the exact limit point of discrete change, like chattering-Zeno and geometric-Zeno
limit points, can be handled.

The second part of our contribution is to propose a rigorous Zeno-free computational
framework for hybrid semantic model design and implementation. The key idea in our
proposed computational framework is to perform Zeno detection and avoidance by using
behavioral analysis of the system, instead of only considering zero-crossings in a hybrid
time domain. The behavioral analysis technique we propose for treating Zeno is based
on analyzing both types of Zeno systematically. We provide formal conditions on when
the simulated models of hybrid systems display chattering-Zeno and geometric-Zeno
executions. We also provide methods for carrying solutions beyond Zeno. The issue of
existence and uniqueness of solution beyond Zeno is also studied in this dissertation.
Our Zeno-free computational framework allows sacrificing the notion of Zeno-freeness
as: i) the decision on whether or not the Zeno limiting state is chattering-Zeno or
geometric-Zeno is based on formal conditions explicitly defined and provided to the
hybrid simulator’s solver, and ii) the correct notion of solution beyond Zeno is well
defined and established in our framework.

3https://fr.mathworks.com/products/simulink.html

xiii

Our approach also supports mixing compile-time transformations of hybrid programs
(i.e. generating what is necessary for Zeno detection and avoidance), the decision, in
run-time, for the urgent transition from pre-Zeno to post-Zeno state (based on formal
conditions for the existence of Zeno), and the computation, in run-time, of the system
dynamics beyond Zeno.

Examples of hybrid systems with domains, guard sets, vector fields, and reset maps,
illustrating the use of the methods proposed in this dissertation, are also provided.

xiv

Contents

Acknowledgments v

Résumé en Français vii

Abstract xi

Contents xv

List of Figures xix

List of Tables xxiii

Publications xxv

1 Introduction 1
1.1 Scientific Context . 1

1.1.1 Hybrid Systems . 1
1.1.2 Modeling Abstraction . 3

1.2 Scientific Problem and Challenges . 3
1.2.1 Modeling Issue . 4
1.2.2 Simulation Issues . 6

1.3 Literature Survey . 9
1.3.1 Other Literature Survey on Chattering-Zeno 10
1.3.2 Other Literature Survey on Geometric-Zeno 10

1.4 Motivations . 11
1.5 Contributions . 12

1.5.1 Non-Standard Semantics for Zeno Executions 12
1.5.2 Behavioral-based Zeno Detection and Avoidance 13
1.5.3 Prototype Implementations . 14

1.6 Outline . 15

xv

2 Modeling and Simulation of Hybrid Systems 17
2.1 Dynamical Systems . 17

2.1.1 Ordinary Differential Equations (ODEs) and Flows 18
2.1.2 Continuous-Time/Discrete-Time Dynamical Systems 20

2.2 Hybrid Systems . 21
2.2.1 Discrete Event Systems . 23
2.2.2 Modeling of Hybrid Systems . 24
2.2.3 Mathematical Representation of Hybrid Systems 26
2.2.4 Hybrid Automata Modeling Formalism 27

2.2.4.1 Syntax . 27
2.2.4.2 Executions . 29
2.2.4.3 Examples of Hybrid Automata Models 32

2.2.5 Hybrid Automata: Limitations of Standard Semantics 36
2.2.6 Non-Standard Semantics for Hybrid Automata 37

2.2.6.1 The Theory of Non-Standard Reals ∗R 37
2.2.6.2 Non-Standard Time Domain 39
2.2.6.3 Hybrid Automata: Non-Standard Semantics 39

2.3 Simulation of Hybrid Systems . 40
2.3.1 The Event-Driven Method . 40
2.3.2 The Time-Stepping Method . 41

2.4 Survey of Hybrid Simulation Tools . 45
2.4.1 Simulink/Stateflow . 45
2.4.2 Modelica . 49
2.4.3 HyVisual . 51
2.4.4 Scicos . 53
2.4.5 Acumen . 55
2.4.6 Zélus . 57

3 Chattering-Zeno Detection and Avoidance 59
3.1 Chattering-Zeno in Hybrid Systems . 59

3.1.1 Examples of Chattering-Zeno Models 60
3.1.2 Challenges of Simulating Chattering-Zeno Models 70

3.2 Sliding Mode Approach . 74
3.2.1 The Case of Chattering-Zeno Between Two Dynamics 74
3.2.2 The Case of Chattering-Zeno Between More than Two Dynamics . 81

3.2.2.1 The Case of Chattering-Zeno Between 2p Dynamics with
p = 2 . 82

3.2.2.2 The Case of Chattering-Zeno Between 2p Dynamics with
p > 2 . 85

3.3 Chattering-Free Simulation Framework . 87
3.4 Prototype Implementations and Simulation Results 94

3.4.1 Prototype Implementation of Chattering-Zeno Freeness in FMI . . 95
3.4.1.1 Chattering-Zeno Freeness Support for FMI Standard . . . 96

xvi

3.4.1.2 Simulation Results . 98
3.4.2 Prototype of Chattering-Zeno Freeness in Acumen 102

3.4.2.1 Chattering-Zeno Freeness Support for Acumen 103
3.4.2.2 Simulation Results . 103

3.4.3 Performance Analysis and Testing 105

4 Geometric-Zeno Detection and Avoidance 109
4.1 Geometric-Zeno in Hybrid Systems . 109

4.1.1 Geometric-Zeno . 109
4.1.2 Examples of Geometric-Zeno Models 110
4.1.3 Challenges of Simulating Geometric-Zeno Models 113

4.2 Geometric-Zeno Detection and Elimination 117
4.2.1 Cycles Detection . 117
4.2.2 The Convergence to a Geometric-Zeno Limit Point 118
4.2.3 Geometric-Zeno Elimination . 120

4.3 Simulation Results . 141

5 Conclusions 145
5.1 Summary . 145
5.2 Future Directions . 146

xvii

List of Figures

1.1 Constrained pendulum. 2
1.2 Illustration of a chattering-Zeno trajectory. 5
1.3 Illustration of the geometric-Zeno behavior. 6
1.4 The simulation loop of a typical event-driven simulator. 7

2.1 Schematic of the Buck converter. 22
2.2 Ideal representation of the converter’s switching. 22
2.3 Trajectory of the bouncing ball system. 22
2.4 Continuous-time and discrete-event parts interaction in a hybrid system. . 24
2.5 Output signals: (a) continuous-time dynamical system, (b) discrete-event

dynamical system, and (c) hybrid dynamical system. 25
2.6 Hybrid trajectories for DDS: (a) A hybrid solution trajectory with identity

reset jump map, (b) a hybrid solution trajectory with non-identity reset
jump map. 27

2.7 Schematic representation of a hybrid automaton with three discrete states. 28
2.8 Hybrid time domain τ = {[τi, τ ′i]}3i=0. 30
2.9 Typical hybrid solution trajectory. 31
2.10 Thermostat system: the model represented by a hybrid automaton. 32
2.11 A possible execution of the hybrid automaton in Figure 2.10. 33
2.12 The system with three point masses. 34
2.13 The hybrid automaton model of the three point masses system. 34
2.14 Hybrid time sets of different executions: τA is finite, τC and τD are infinite,

τE and τF are Zeno. 37
2.15 Solutions of the relay system in (2.19). 42
2.16 Partitioning of the plane induced by (2.23) and (2.24). 44
2.17 Bouncing ball: The hybrid automaton model. 45
2.18 Bouncing ball model: Simulink diagram. 45
2.19 Bouncing ball simulation in Simulink: Simulation halt. 46
2.20 Bouncing ball simulation in Simulink: Error report. 47
2.21 Bouncing ball simulation in Simulink: Faulty simulation results. 47

xix

2.22 Simulation of the bouncing ball model in OpenModelica: The time evo-
lution of the height x1 and velocity x2 of the bouncing ball. 50

2.23 HyVisual bouncing ball model . 52
2.24 HyVisual bouncing ball model: model of the ball’s dynamics during falling. 52
2.25 Simulation of the bouncing ball model in HyVisual. 52
2.26 Bouncing ball model: Scicos diagram. 54
2.27 Simulation of the bouncing ball model in Scicos. 54
2.28 Simulation of the bouncing ball model in Acumen. 56
2.29 Simulation of the bouncing ball model in Acumen: Zoom on the neigh-

borhood of the Zeno limit point. 56
2.30 Simulation of the bouncing ball model in Zélus. 58

3.1 The hybrid automaton representing the discontinuous ODE (3.1). 61
3.2 Schematic of the Stick-Slip system in Example 3.2. 62
3.3 The hybrid automaton of the Stick-Slip system in Example 3.2. 62
3.4 Schematic of the Stick-Slip system in Example 3.4. 65
3.5 The hybrid automaton of the Stick-Slip system in Example 3.4. 65
3.6 The state space of the Stick-Slip system in Example 3.4. 66
3.7 Schematic of the Spring-Block chain system in Example 3.5. 67
3.8 The hybrid automaton of the Spring-Block chain system in Example 3.5. . 68
3.9 The state space of the Spring-Block chain system in Example 3.5. 69
3.10 Fixed time step simulation of Example 3.2 in Acumen. Up: time evolution

of the event function and the control input. Down: zoom on the first
chattering-Zeno window around the switching surface Σ = {x ∈ R4 : vr =
vm − vM = 0}. 72

3.11 Fixed time step simulation of Example 3.3 in Acumen. Up: time evolution
of the states and their derivatives. Down: zoom on the chattering-Zeno
windows around Σ1 = {x ∈ R2 : x1 = 0} and the origin ∆ = {x ∈ R2 :
x1 = 0 ∧ x2 = 0}. 73

3.12 A hybrid automaton with two modes and a hyper switching surface. . . . 74
3.13 The normal n orthogonal to the tangent plane Tx(Σ) and normal to Σ. . . 75
3.14 The case in which the solution trajectory crosses Σ. 76
3.15 The case in which the solution trajectory crosses Σ. 76
3.16 The case in which a chattering-Zeno occurs on Σ. 77
3.17 The case of non-uniqueness of solution on Σ. 77
3.18 The case in which the solution trajectory chatters on Σ. 78
3.19 Tangential discontinuity points of crossing or exit from sliding. 79
3.20 A geometric sketch of the sliding vector field. 81
3.21 A hybrid automaton with four modes and two hyper switching surfaces. . 82
3.22 The state space of the hybrid automaton model in Figure 3.21. 83
3.23 Illustration of a chattering-Zeno trajectory. 93
3.24 Data flow between the simulation environment and an FMU. 96

xx

3.25 Calling sequence of Model Exchange C functions in form of an UML 2.0
state machine. 97

3.26 Chattering-free simulation of the Stick-Slip system of three blocks in Ex-
ample 3.4: The time evolution of the relative velocity vr2 = vm − vM2 . . . 99

3.27 Chattering-free simulation of the Stick-Slip system of three blocks in Ex-
ample 3.4: The time evolution of the relative velocity vr1 = vm − vM1 . . . 100

3.28 Chattering-free simulation of the Spring-Block chain system in Example
3.5: The time evolution of the relative velocity vr1 = vm1 − vd. 101

3.29 Chattering-free simulation of the Spring-Block chain system in Example
3.5: The time evolution of the relative velocity vr2 = vm2 − vd. 101

3.30 Global fixed point semantics in Acumen: Continuous step performs all
updates in parallel; all updates are based on the state after discrete steps. 102

3.31 Chattering-free simulation in Acumen of Example 3.2: Time evolution of
the event function and the control input. 104

3.32 Chattering-free simulation in Acumen of Example 3.2: Zoom on the first
sliding window. 104

3.33 Chattering-free simulation in Acumen for the system in Example 3.3. Up:
time evolution of the states and their derivatives. Down: zoom on the
sliding on Σ1 = {x ∈ R2 : x1 = 0} and the origin ∆ = {x ∈ R2 : x1 =
0 ∧ x2 = 0}. 105

4.1 Example 4.1 (bouncing ball): The model represented by a hybrid automaton.110
4.2 Example 4.1 (bouncing ball): Geometric-Zeno behavior. 110
4.3 Example 4.2: Schematic of the two tanks system. 111
4.4 Example 4.2: The hybrid automaton model of the system. 111
4.5 Example 4.3: The hybrid automaton model of the system. 112
4.6 Example 4.3: Geometric-Zeno behavior. 113
4.7 Simulation of Example 4.1 in Modelica simulation tools: The time evolu-

tion of the height x1 and velocity x2 of the bouncing ball. 114
4.8 Simulation of Example 4.2 in Modelica simulation tools: The time evolu-

tion of the water levels x1 and x2. 114
4.9 Simulation of Example 4.3 in OpenModelica. 116
4.10 Generalized bounce cycle. 121
4.11 The hybrid solution trajectory of the bouncing ball model on (x1, x2)-plane.122
4.12 Example 4.2: The time evolution of the water levels in the two tanks. . . 124
4.13 The time evolution of the water levels in the two tanks. 126
4.14 The time evolution of the water levels in the two tanks. 126
4.15 The evolution of the water levels on (x1,x2)-plane. 127
4.16 The evolution of the water levels on (x1,x2)-plane. 128
4.17 The evolution of the water levels on (x1,x2)-plane. 130
4.18 Example 4.3: The time evolution of the system. 131
4.19 The evolution of the states x1 and x2 on (x1,x2)-plane. 134
4.20 The evolution of the states x1 and x2 on (x1,x2)-plane. 136

xxi

4.21 Zeno-free simulation of the bouncing ball model: x2 versus x1. 141
4.22 Zeno-free simulation of the bouncing ball model: The time evolution of

the position x1 and velocity x2 of the bouncing ball. 142
4.23 Zeno-free simulation of the bouncing ball model. Up: The time evolution

of the position x1. Down: The time evolution of the velocity x2. 142
4.24 Zeno-free simulation of the two tanks model: x2 versus x1. 143
4.25 Zeno-free simulation of the two tanks model: The time evolution of the

water levels x1 and x2. 144
4.26 Zeno-free simulation of the two tanks model. Up: The time evolution of

the water level x1. Down: The time evolution of the water level x2. 144

xxii

List of Tables

2.1 Guard conditions and reset maps for the hybrid automaton in Figure 2.13. 35

3.1 Summary of the performance analysis and testing for both Acumen and
FMI implementations of chattering-Zeno freeness. 106

3.2 Mean time of the chattering-free simulation: Manual manipulation by the
user versus automatic detection and elimination by the simulator. 107

xxiii

Publications

1. Ayman Aljarbouh, Yingfu Zeng, Adam Duracz, Benoît Caillaud, Walid Taha.
Chattering-Free Simulation for Hybrid Dynamical Systems [Semantics and Pro-
totype Implementation]. In Proceedings of the 19th IEEE International Confer-
ence on Computational Science and Engineering (CSE 2016), August 24-26, 2016
- Paris, France.

2. Ayman Aljarbouh, Benoît Caillaud. Chattering-Free Simulation of Hybrid Dy-
namical Systems with the Functional Mock-Up Interface 2.0. In Proceedings of the
First Japanese Modelica Conference, May 23-24, 2016, Tokyo, Japan. Linköping
Electronic Conference Proceedings, 124(013), pp. 95-105, 2016.

3. Ayman Aljarbouh, Benoît Caillaud. Robust Simulation for Hybrid Systems: Chat-
tering Path Avoidance. In Proceedings of the 56th Conference on Simulation and
Modelling (SIMS 56), October 7-9, 2015, Linköping, Sweden. Linköping Electronic
Conference Proceedings, 119(018), pp. 175-185, 2015.

4. Ayman Aljarbouh, Benoît Caillaud. On the Regularization of Chattering Execu-
tions in Run-Time Simulation of Hybrid Systems. In Proceedings of the 11th Baltic
Young Scientists Conference, July 2015, Tallinn, Estonia.

5. Adam Duracz, Ferenc A. Bartha, Ayman Aljarbouh, Jawad Masood, Roland Philippsen,
Henrik Eriksson, Jan Duracz, Fei Xu, Yingfu Zeng, Walid Taha, Christian Grante.
Using Rigorous Simulation to Support Hazard Analysis and Risk Assessment (HARA)
in the ISO 26262 Functional Safety Standard. Paper submitted to ACM Transac-
tions on Embedded Computing Systems (TECS), for a special Issue paper as an
extension to the paper of A. Duracz et al 4 presented at ICESS’15, New York, USA.

4http://www.duracz.net/adam/publications/icess15.pdf

xxv

Chapter 1

Introduction

This dissertation explores a new Zeno-free simulation technique for hybrid systems mod-
els exhibiting Zeno behavior. The motivation is to provide a rigorous general Zeno-free
computational framework so that hybrid systems modeling and simulation tools can
provide an efficient Zeno detection and avoidance support. This introductory chapter
motivates the work, and describes its contributions and origins.

1.1 Scientific Context

1.1.1 Hybrid Systems

Because of their heterogeneous structure, the term hybrid is attributed to dynamical sys-
tems having state variables that can evolve continuously and/or discontinuously. That
is, the presence of two different behaviors, continuous and discrete, is the cause of het-
erogeneity [2, 4]. In such systems, continuous and discrete dynamics interact with each
other. Systems of this type exist in a large number of technological systems where dis-
crete control switches combine the continuous evolution of the physical processes, such as
process control systems, embedded computation, avionic systems, mechatronic systems,
robotic systems, and many other technological systems [8].

Hybrid systems theory is multidisciplinary and can be considered as a young research
area in contrast to the mono-disciplinary research fields such as electrical, mechanical,
or software engineering. The urgent demand for interdisciplinary design and incorpora-
tive development methods for complex technological systems has accelerated the growth
of hybrid systems theory in recent years. Combining time-driven and event-driven dy-
namics, hybrid systems framework has proved to be an important and effective tool for
a large class of engineering systems that combine analog and digital devices, interact
through networks, conduct tasks collaboratively, and operate in environments filled with
uncertainties [6]. The mathematical models of hybrid systems consist typically of con-
tinuous time-driven dynamics, usually represented by differential equations, to describe
the continuous behavior of the system, and discrete event-driven dynamics such as finite
state machines to describe the discrete behavior of the system.

1

Figure 1.1: Constrained pendulum.

The execution of a hybrid system is typically characterized by smooth continuous
evolutions during which the discrete mode remains constant, separated by discrete events
(i.e. control actions). The discrete events are either time events or state events often
given by zero-crossing functions, guards being enabled, or invariants about to be violated.
The discrete actions could include instantaneous jumps in a continuous state variable
and/or switches to completely different dynamical modes [1, 3, 6, 9].

As a simple example of a two-modes hybrid system, consider a constrained pendulum
of length l as sketched in Figure 1.1, where a pin is placed to constrain the string’s move-
ment such that the length of the pendulum becomes lc after hitting the pin. The string’s
trajectory changes at θ = θpin, and another equation set is used for the trajectory of the
string. The continuous state x = (θ, v) is given by the angle θ and the angular velocity
v. This example is a hybrid system having two modes: i) unconstrained pendulum when
θ > θpin, and ii) constrained pendulum when θ ≤ θpin. Thus, it is no longer possible
to define the whole trajectory of the system with a single set of differential equations
or dynamics ẋ = f(x). In this case, it should be defined by two different dynamics
f1(x) (the dynamics of the unconstrained pendulum) and f2(x) (the dynamics of the
constrained pendulum):

f(x) =
{
f1(x) if θ > θpin,
f2(x) if θ ≤ θpin,

(1.1)

where

f1(x) =
{
θ̇ = 1

l · v,
v̇ = −(g · sin(θ))− (α · v),

(1.2)

f2(x) =
{
θ̇ = 1

lc
· v,

v̇ = −(g · sin(θ))− (α · v),
(1.3)

with g being the gravity constant, and α a friction coefficient. Obviously, the discrete
change between the modes is described in terms of the changing the pendulum length
from lc to l and vice versa. Indeed, in this hybrid system no state jumps occur during
the discrete switching between the two modes.

2

1.1.2 Modeling Abstraction

With powerful modeling tools and languages it is possible to model a large variety
of physical hybrid phenomena, but even so it is possible to generate models that are
unreasonable, mathematically or physically because of a bad use of the modeling tool or
language during modeling abstraction.

In fact, realistic models of hybrid systems almost always necessitate part of the hybrid
system’s physical behavior to be abstracted by means of “ideal equations” such as reset
and conditional constraints that typically lead to discontinuities in physical signals.

The term modeling abstraction is designated to any mechanism that enables concrete
physical behavior to be “hidden” by considering idealized models. Intuitively, because
of such abstraction, the model jumps over instants corresponding to the violation of
abstraction mechanisms. Thus, idealization yields explicitly in providing constraints to
be satisfied at these instants.

Practically, the price to pay to profit from high-fidelity modeling is most often quite
expensive in terms of simulation performance and model complexity.

Simulation performance may dramatically run into trouble if the simulated model has
excess modeling details. A solver that performs very well when simulating an idealized
(equation-based) model would dramatically struggles (and often breaks down) when it
is simulates a highly detailed model of the same system. Intuitively, the solver struggles
because most of the CPU time is attributed in solving the additional details of the high-
fidelity model, corresponding exactly to the physical details which we want to abstract
away.

This brings us to a similar conclusion: modeling abstraction helps concentrating on
the important parts of physical phenomena, making the model often simpler and easy to
control. However, even though modeling abstraction is very useful in practice, modelers
should pay a special attention when abstracting or over-approximating a system, because
a bad use of a modeling formalism during abstraction can result in models that are invalid
at certain points, such as Zeno models, and also can lead to singularities in the simulation
code. A simple typical example is the presence of ideal (or idealized) diodes in electrical
circuits, where unilateral constraints on currents and voltages (as ideal equations from
abstraction) require a special attention in the simulation code to avoid singularity.

1.2 Scientific Problem and Challenges

The interaction between the continuous and discrete dynamics of hybrid systems is com-
plex in its nature, which necessitates a special attention from designers when using
modeling abstraction in building idealized models of hybrid systems. In fact, modeling
abstraction or over-approximation mechanisms can lead to deviate models whose evolu-
tion is undefined at a certain point. In the following, we discuss this issue from both
modeling and simulation perspectives.

3

1.2.1 Modeling Issue

Even with powerful modeling languages and tools, once can easily generate models that
admit no solutions at a certain point, for some given initial states. This property is
undesirable in physical systems modeling because the mathematical model, in this case,
incompletely describes the real physical behavior of the system being modeled: the
physical system keeps evolving continuously beyond a certain point, but the model’s
continuous evolution is undefined beyond that point.

For instance, the execution of a hybrid system’s model may take an infinite sequence
of discrete mode switchings occurring in finite execution time. Such property is referred
to Zeno executions of idealized models of hybrid systems. Zeno behavior can be seen as a
modeling artifact that can never occur in reality. Basically, the presence of Zeno behavior
is an indication that the abstraction mechanism used in modeling imperfectly describes
the complex interaction between the discrete and continuous dynamics of the modeled
hybrid system. In the standard semantics of executions of hybrid systems, Zeno behavior
makes the evolution of the Zeno model reach a (Zeno limit) point in time beyond which
the model is no more valid. Roughly speaking, the model has no solutions defined past
the Zeno limit point. Since it is crucial to use abstraction in complex systems modeling,
it is then quite important to understand when it leads to Zeno.

Formally, we define Zeno behavior as an infinite sequence of discrete mode switchings
(i.e. transitions) that occur in a finite period of time. Analytically, we can distinguish be-
tween two types of Zeno behavior: i) chattering-Zeno, and ii) genuinely-Zeno. In models
that exhibit chattering-Zeno, the system infinitely moves back and forth between modes
in a discrete fashion with infinitesimal time spent between the successive mode switch-
ings. Any Zeno behavior that is not chattering-Zeno can be classified as genuinely-Zeno.
In this thesis we focus on both chattering-Zeno and a particular type of genuinely-Zeno
behavior which we call geometric-Zeno. In models that exhibit geometric-Zeno, an accu-
mulation of an infinite number of mode switchings occurs in finite time. The convergence
of the solution to a geometric-Zeno limit point occurs according to a geometric series.

• Chattering-Zeno:
Chattering-Zeno can be defined as a fast infinite repeated switching between differ-
ent control actions or modes of operation. Physically, chattering-Zeno occurs when
nearly infinitesimally equal thresholds for transition conditions of different modes
are given and the system starts to oscillate around them. Numerical errors may
also lead to chattering-Zeno because infinitesimally equal thresholds for transition
conditions may be satisfied due to local errors.

As a simple example of a hybrid system model exhibiting chattering-Zeno, consider
for instance the following discontinuous differential equation

ẋ(t) =
{

1 for x(t) < 0,
−1 for x(t) ≥ 0.

(1.4)

4

Figure 1.2: Illustration of a chattering-Zeno trajectory.

For an initial condition x(0), we obtain a solution of the initial value problem

x(t) =
{
t+ a for x(t) < 0,
−t+ b for x(t) ≥ 0,

(1.5)

with constants a and b being determined by the initial condition. Clearly, with
any time discretization scheme, a solution initialized outside x(t) = 0 can reach
the hyper discontinuous surface x(t) = 0 in finite time.
Consider for instance forward Euler discretization method x(ti+1) − x(ti) = h ·
f(x(ti)), where h > 0 is the integration step size. At a given time instant t ∈
(ti, ti+1], if the solution arrives at x(t) = 0 it can not leave it because x(ti+1) −
x(ti) = h > 0 for x(ti) < 0 and x(ti+1) − x(ti) = −h < 0 for x(ti) ≥ 0. The
solution starts then to exhibit on the hyper surface x(t) = 0 a chattering-Zeno
back and forth between the two disjoint continuous domains x(t) < 0 and x(t) > 0
(see Figure 1.2).

• Geometric-Zeno:
Geometric-Zeno behavior is characterized by an accumulation of an infinity of dis-
crete mode switchings (i.e. events) that occur in a finite execution time. Geometric-
Zeno behavior leads the solution of the system to converge to a Zeno limit point ac-
cording to a geometric series. Roughly speaking, in models that exhibit geometric-
Zeno behavior, discrete events occur at an increasingly smaller distance in time,
converging against a limit point. For example, if a new discrete event occurs after a
time duration equal to the half of the time between the two previous discrete events,
a series of events features that, after n events, has proceeded in time according to∑n
k=1

1
2k . This series asymptotically converges to 1 in the limit of n→∞.

Consider for example the model of a bouncing ball whose collisions are inelastic;
see Figure 1.3. During each bouncing collision, the loss of ball’s kinetic energy
occurs with a restitution coefficient λ ∈ (0, 1). We denote the height of the ball by
x1, with x1 ≥ 0 being the invariant constraint, and ẍ1 = −g being the dynamics
of the ball during the falling phase, where g is the gravitational constant. We
denote the velocity ẋ1 of the ball by x2. We include Newton’s restitution rule
x2(t) := −λx2(t) when x1(t) ≤ 0 and x2(t) < 0. We can easily compute the time

5

Figure 1.3: Illustration of the geometric-Zeno behavior.

instants of discrete events (or resets) {τi}i∈N by

τi+1 = τi + 2 · λi · x2(τ0)
g

; i ∈ N, (1.6)

assuming that x1(0) = 0 and x2(0) > 0. Hence, the series {τi} has a finite limit
τ∞ = 2x2(τ0)

g·(1−λ) < ∞, so the continuous state (x1, x2) converges to (0, 0) when
t→ τ∞.

The physical interpretation is that the ball is at rest within a finite time span, but
after infinitely many bounces. This example is a typical example of a hybrid system
model having geometric-Zeno behavior, where in this example we have an infinite
number of state re-initializations and the set of event times for the bouncing ball
contains a geometric-Zeno limit point.

1.2.2 Simulation Issues

Efficient simulation has to be explicitly concerned with the nature of the separate parts
that comprise hybrid dynamic system behavior.

Typically, the simulation of hybrid models uses numerical solvers for handling the
continuous evolution of the hybrid model. Whenever discrete events occur, the continuous-
time state vector of the model may change (in value and in dimension), and new initial
values may have to be computed. In the event-driven simulation technique (see Sec-
tion 2.3), the continuous-time evolution of the system is interrupted by discrete steps
that are triggered by the activation of discrete events.

6

Figure 1.4: The simulation loop of a typical event-driven simulator.

Discrete events are events that occur during the numerical integration of the differ-
ential equations that describe the continuous dynamics of the system.

A discrete event may be activated by a discrete time step. In this case, events are
called time events. Such time events are easier to handle as they may be specified directly
before the simulation begins.

A discrete event may also be triggered when some zero-crossing occurs. We call this
type of events state events. A zero-crossing is an arithmetic expression of the form up(z)
that uses a real-valued function z to identify the boundary at which the discrete change
-according to state events- occurs. A zero-crossing event function z may change its sign
or its domain, and is usually made of constants, computed variables, state variables, as
well as arithmetic operations of constants and/or variables. Numerical solvers have to
be very cautious not to miss zero-crossings because the latter are regions of maximal
stiffness. It is highly recommended then to use variable step size integration techniques
when simulating a model with event driven mode.

A typical event-driven simulator works as follows (Figure 1.4): The main simulation
loop starts by initializing the solver with the system’s state x(0) at initial time t = 0,
a system of differential equations, and a set of zero-crossing functions. Then the solver
integrates using the specified integration method until a time event occurs or one of the
zero-crossings is detected and located. When this occurs, a discrete control action is sent
back to the simulation loop, which triggers one or many discrete execution steps before
reinitializing the solver (reset) and continuing the integration.

The nature of zero-crossings detection is to ask the numerical solver to watch the
sign or domain of the values of the event functions at the beginning and at the end
of each time integration step [ti−1, ti], and if it changes, declare a state event. For a
given event function z, a zero-crossing could be triggered either when z(ti−1) ≤ 0 and
then z(ti) ≥ 0 (the so-called at-zero semantics), or when z(ti−1) < 0 and then z(ti) ≥ 0
(the so-called contact semantics), or when z(ti−1) ≤ 0 and then z(ti) > 0 (the so-
called crossing semantics) [18]. Simulation tools for hybrid systems use only the last
two semantics. In Simulink1, the semantics of zero-crossings detection is a disjunction
of “contact” and “crossing” semantics. In Modelica2, the programmer has the choice to
use either “contact” or “crossing” semantics.

For localizing the detected zero-crossing state events, solvers usually have to back-
1https://fr.mathworks.com/products/simulink.html
2https://www.modelica.org/

7

track and decrease the integration step in order to approximate the point of zero-crossing
up to a certain precision (usually initialized in advance). This requires, however, a robust
approach to detect when exactly a zero-crossing occurs.

Zeno hybrid models are particularly highly challenging from a simulation perspective.
In particular, simulation algorithms may collapse if the solution of the simulated model
is unspecified beyong a given point. The most challenging case is the simulation of
hybrid models exhibiting Zeno behavior.

Traditionally, the time-line of simulation relies either on a fixed time integration step,
where the size of the step is usually provided as a simulation parameter, or a variable
time integration step whose size is adjusted automatically during the simulation based
on the detected discrete events.

The advantage of the former is that it is a Zeno-free simulation technique by con-
struction, as at each integration step the time proceeds by a constant value. However,
fixed time stepping generates faulty simulation results whenever the solution activity is
higher than the frequency of the fixed time stepping.

On the other hand, variable step size simulation improves the accuracy of simulation.
It is based on bracketing the zero-crossing events (bi-sectional search or Secant method)
and using increasingly smaller and smaller step sizes to identify (up to a certain precision)
when the zero crossing event has occurred. Basically, the dynamic adjustment of the
variable time step size is done automatically by the solver, where the solver increases the
integration step size when a variable is changing slowly, and decreases the integration
step size when the variable is changing rapidly. Such mechanism makes the solver to
take very small integration steps in the neighborhood of a discontinuity region, because
usually the system variables are changing rapidly in these regions. Clearly, this improves
the accuracy and numerical precision of the simulation.

However, because of the nature of finite precision arithmetic on digital computers,
the time that the event occurred can only be located within an interval [tLeft, tRight]
that corresponds to the machine precision.

During each iteration of the zero-crossing localization, the zero-crossing function z is
evaluated twice: at the left and the right side of the reducing interval. Once the discrete
event is bracketed by tLeft and tRight, the solver firstly proceeds integration time from
the previous time instant ti−1 to tLeft. The solver is then reset before advancing to
tRight followed by switching the mode. In doing so, the assumption of continuity holds
throughout the numerical integration.

Although such mechanism is very efficient for many types of simulations, it can result
however in a simulation halt whenever an infinity of zero-crossing events is present. In
particular, Zenoness causes the previous tRight becomes tLeft of the next reducing interval
leading the continuous integration to be broken down.

We conclude that, although analytically distinctly different, the effect of chattering-
Zeno and geometric-Zeno behaviors during the numerical simulation is similar: both
chattering-Zeno and geometric-Zeno behaviors are highly problematic and challenging in
simulation (and thus in analysis) of hybrid systems, as the solver is asked to take in-
finitely many discrete execution steps corresponding to the triggered discrete transitions.

8

1.3 Literature Survey
Early works have considered only the executions of hybrid systems under the assumption
that they are not Zeno. Attention was later attributed to Zeno phenomena when the
research area of hybrid systems was extended to hybrid systems having rich continu-
ous physical dynamics. Both chattering-Zeno and geometric-Zeno problems have been
investigated by means of different methods and from many different perspectives.

A method that was proposed to avoid both types of Zeno is to add a small hysteresis
of size ε to the zero-crossing event functions z. This approach was adopted in the spec-
ification of the standard FMI (Functional Mock-up Interface)3 [10]. The disadvantages
of this approach are the followings:

1. The size of the small value ε of the hysteresis should be directly related to the
value of the event function z. That is, in order to determine the correct size of
ε in the simulation environment which simulates the model, the nominal value of
the event function z has to be reported by the modeler. This requires a manual
manipulation by the modeler to provide an appropriate set of ε for all the event
function z used in the simulation program. In the context of the FMI standard,
the situation becomes more complicated, because the nominal value of the event
function z has to be reported by the FMU (Functional Mock-up Unit) representing
the model, which requires more information from the simulation tool that has gen-
erated and exported the FMU, but cannot be handled efficiently in the simulation
environment that imports and simulates this FMU. If this would be handled in
the simulation environment which simulates the FMU, there is always the danger
that the simulation environment does not handle it properly, but the FMU would
be blamed for a failure.

2. Adding hysteresis to the event functions does not guarantee an efficient treatment
of Zeno, because the notion of Zeno-freeness here is done by construction, i.e.
equivalent to the above mentioned notion of Zeno-freeness using a fixed time step.
For example, in case of chattering-Zeno, the physics in the model cause the solution
xε(·) be a saw-toothed, or zigzag function, i.e. a function that oscillates around the
switching surface with peaks at −ε < 0 and +ε > 0, with ti+1−ti = 2ε. Clearly, for
both types of Zeno this results in incorrect simulation results as it disregard and
ignores the zero crossings up(z) when their magnitude remains below the level
ε. The incorrectness here means that there may be zero crossing events up(z)
with magnitude below ε and these events are associated with jumps to completely
different dynamics. In this case, ignoring such events produces a behavior deviant
from the expected behavior.

3. Many simulation tools add a hysteresis when handling zero crossings detection,
to ensure that the zero crossings up(z) happen with non-zero values of the input
arguments of z at the integration restart. Therefore, adding a hysteresis to avoid
Zeno will introduce the hysteresis twice to the event functions z, and as a result,
the resulting triggered state events are inaccurate.

3https://www.fmi-standard.org/start.

9

This method was proposed as a unified approach to deal with both chattering-Zeno
and geometric-Zeno from a practical simulation perspective. Below we list the literature
survey on both types of Zeno as they were investigated from different point of views.

1.3.1 Other Literature Survey on Chattering-Zeno

Chattering-Zeno behavior has also been investigated using sliding mode control ap-
proach. The sliding mode approach is based on detecting regions on the switching
manifold on which chattering-Zeno occurs, and then forcing the solution trajectory
of the system to slide on the manifold in these regions [11, 13, 14, 20]. While the in-
finitely fast switching between modes occurs, a smooth sliding motion takes place on
the switching surface to eliminate the fast chattering between modes. An additional
mode, the so-called sliding mode, can be inserted into the hybrid model to represent
the dynamics during sliding, and thus, replaces chattering-Zeno. Filippov’s differential
inclusions [17, 20] (the so-called equivalent dynamics) is a method that was developed
by Filippov to define the system dynamics on the switching surface in such a way that
the state trajectory slides along the switching surface on which chattering-Zeno occurs.
In this method, projections of the solution trajectories on both sides in a small neigh-
borhood around the surface are used to determine the average velocity on the surface.
However, the computation of the equivalent dynamics turns out to be difficult and highly
challenging whenever the system chatters between more than two dynamics. One of the
properties of chattering-Zeno behavior is that the solution trajectory may chatter be-
tween modes on a large number of discontinuous switching surfaces having different
dimensions. This special case of chattering-Zeno on discontinuous surfaces intersections
arises naturally when chattering-Zeno occurs in hybrid models having multiple discontin-
uous control variables. Such dimensionally different chattering-Zeno behavior may lead
to non-uniqueness of sliding solution even when applying Filippov’s approach, as the
computation of sliding equivalent dynamics requires, in this case, solving stiff nonlinear
equations for which a unique solution is not guaranteed.

1.3.2 Other Literature Survey on Geometric-Zeno

Due to its complex nature, geometric-Zeno behavior has been studied in many forms
and from many different perspectives, especially from asymptotic stability perspective.

A technique that has been proposed in the hybrid systems literature to deal with
geometric-Zeno is that of regularizing the original system, which was illustrated for par-
ticular examples in [97, 103, 107]. This technique is based on perturbing the dynamical
system in order to obtain non-Zeno solution, and then taking the limit as the perturba-
tion goes to zero. However, such perturbation may invalidate the notion of instantaneous
discrete transitions (i.e. mode switchings). Consequently, this can result in models that
are stiff, and as a result the simulation performance might run into trouble. Further-
more, depending on the methods of regularizations, different behavioral scenarios after
the Zeno limit point may be generated.

10

Necessary and sufficient conditions for geometric-Zeno behavior in linear complemen-
tarity systems were provided in [95,99], and more recently in [98].

In the context of Lagrangian hybrid systems, Ames et al. have shown that geometric-
Zeno limit points belong to the zero set of the unilateral switching function, with velocity
vector being tangential to this switching surface [106]. Therefore, they postulated that
after the Zeno time, the system switches to holonomically constrained dynamics, where
the holonomic constraints are based on the unilateral constraints on the configuration
space that originally defined the hybrid system.

In [102], Lamperski and Ames provided Lyapunov-like conditions for geometric-Zeno
behavior in Lagrangian hybrid systems near isolated Zeno equilibrium points. The results
in [102] were later extended in [105], where Zeno stability approach was described as a
special form of asymptotic stability. Moreover, [105] provided Lyapunov conditions for
Zeno stability of compact sets. More recently, the results of [102] were extended in [96] to
Zeno equilibria that are non-isolated. Sufficient conditions for geometric-Zeno behavior
in a special class of hybrid systems, called first quadrant hybrid systems were derived
in [100]. This work was then generalized in [104].

We observed that most of the proposed conditions for geometric-Zeno behavior tend
to be conservative, and apply to particular classes of hybrid systems, i.e. non-smooth
mechanics, Lagrangian hybrid systems, first quadrant hybrid systems, linear complemen-
tarity systems, etc. We believe that this is because geometric-Zeno behavior is a global
problem in its nature, which prevents the use of local methods in its regularization. Fur-
thermore, while understanding geometric-Zeno in these domains is quite sophisticated,
there is no proposition on how such methods can serve in a hybrid semantic model design
for modeling and simulation tools.

1.4 Motivations

From a practical simulation perspective, in order to guarantee a maximal robustness of
any simulation framework, it is important to define, at a first stage, a proper semantic
model for simulation. In fact, this is a mandatory step even before designing the simu-
lator or the language. The development of a simulation framework typically include the
following steps:

1. Defining properly a semantic model that can account for the expected properties
of the systems under simulation.

2. Designing and developing a simulator that could approximate the model dynamics
conforming to the defined semantic model. This step can also be used to validate
the semantic model (i.e. a semantic model is valid if all conforming models can be
simulated).

3. Designing a language capable of expressing all models elements and components
conforming to the semantic model. Type-checking must be included in this step
to prove statically the semantic validity of the simulated models.

11

4. Designing a compiler for the language. The compiler should be capable of per-
forming static checks of models and also rejecting models that are invalid.

This dissertation focuses on the first two steps above. It takes the perspective that
models of hybrid systems can be written as executable codes or programs in programming
languages that support and provide hybrid systems semantics.

Many modeling and simulation tools for hybrid systems have been developed in the
past years. They can be classified into two categories: those who put special attention
on defining models rigorously, such as for instance SpaceEx [44], Ptolemy [27] (based
on the super-dense time semantics in [47]), and Zélus [57] (based on the non-standard
semantics in [54]); and those who use informal approach for model definition such as
Simulink4, Modelica language [55] and its associated tools. All these modeling and
simulation tools share the same approach of hybrid model execution alternating between
continuous evolution and sequences of discrete switchings [57] as defined by the notion
of hybrid automata [30]. For all of these tools, the operational semantics of continuous
dynamics (differential equations) is not included in the core semantic model: numerical
solvers execute the continuous behavior by advancing time and computing the values of
physical continuous variables. None of the above tools have a Zeno-free semantic model.
They all rely on analyzing the solver output at each integration time step, with the
solver behavior at the Zeno-limit point being usually unspecified.

Our Motivation: Because in the physical hybrid system a solution exists past the
Zeno limit point, simulation tools for hybrid systems should be able to predict correctly
the solution after Zeno, and to provide an efficient Zeno detection and avoidance support.
This motivates the need of Zeno-free semantics for simulation synthesis to allow for the
Zeno execution (or trajectory) to be carried correctly past the Zeno limit point. This is,
in fact, the main motivation of our work.

1.5 Contributions

Our contribution is proposing a new Zeno-free computational framework for semantic
model design, and how this Zeno-free computational framework can be implemented in
the design of hybrid systems simulators.

The first part of our contribution is proposing non-standard semantics for Zeno ex-
ecutions of hybrid systems models. This is based on interpreting Zeno executions in a
non-standard densely ordered hybrid time domain.

1.5.1 Non-Standard Semantics for Zeno Executions

The advantages of using non-standard semantics in the analysis of Zeno behavior is
that the completeness in the space of the continuous dynamics and discrete dynamics
is naturally introduced so that it allows for solutions of Zeno hybrid models to be well-
defined beyond the Zeno limit points:

4https://fr.mathworks.com/products/simulink.html

12

1. The continuous dynamics of the hybrid system is reduced to the recurrence equa-
tion that represents the infinite iteration of infinitesimal discrete changes with
infinitesimal duration. Therefore, we can handle the hybrid dynamics based only
on fully discrete paradigm.

2. The representation of dynamics based on non-standard analysis is complete and
the exact limit point of discrete change, like chattering-Zeno and geometric-Zeno
limit points, can be handled.

The second part of our contribution is to propose a rigorous Zeno-free computational
framework for hybrid semantic model design and implementation. The key idea in our
proposed computational framework is to perform Zeno detection and avoidance by using
behavioral analysis of the system, instead of only considering zero-crossings in a hybrid
time domain. The behavioral analysis technique we propose for treating Zeno is based
on analyzing both types of Zeno systematically. We provide formal conditions on when
the simulated models of hybrid systems display chattering-Zeno and geometric-Zeno
executions. We also provide methods for carrying solutions beyond Zeno. The issue of
existence and uniqueness of a solution beyond Zeno is also studied in this dissertation.
Our Zeno-free computational framework allows sacrificing the notion of Zeno-freeness
as: i) the decision on whether or not the Zeno limiting state is chattering-Zeno or
geometric-Zeno is based on formal conditions explicitly defined and provided to the
hybrid simulator’s solver, and ii) the correct notion of solution beyond Zeno is well
defined and established in our framework.

Our approach also supports mixing compile-time transformations of hybrid programs
(i.e. generating what is necessary for Zeno detection and avoidance), the decision, in
run-time, for the urgent transition from pre-Zeno to post-Zeno state (based on formal
conditions for the existence of Zeno), and the computation, in run-time, of the system
dynamics beyond Zeno.

1.5.2 Behavioral-based Zeno Detection and Avoidance

Our behavioral analysis technique of treating Zeno is based on analyzing both types of
Zeno systematically. We provide formal conditions on when the simulated models of
hybrid systems display chattering-Zeno and geometric-Zeno executions. We also provide
methods for carrying solutions beyond Zeno. The issue of existence and uniqueness of
solution beyond Zeno is also studied and well-established in this dissertation.

• Chattering-Zeno Detection and Avoidance: We propose a novel sliding mode
computational framework for simulation semantic model design. It establishes
solvability requirements for simulating hybrid models while effectively performing
chattering-Zeno detection and avoidance. The main benefit of our proposed frame-
work is that chattering-Zeno detection and elimination is done “on the fly” without
any need neither to add small hysteresis to the zero-crossing event functions, nor
to solve stiff nonlinear equations for the computation of the equivalent sliding dy-
namics in case of chattering-Zeno on discontinuous surfaces intersections of high

13

dimensions. Our computational framework establishes an automatic switching be-
tween transversality mode and sliding mode simulation, as well as integrating each
particular state appropriately and localizing the structural changes in the system
in a highly accurate way.
Furthermore, we show by a special hierarchical application of convex combina-
tions that unique solutions can be found in general cases when the discontinuous
switching manifold (on which chattering-Zeno occurs) takes the form of finitely
many intersecting discontinuous surfaces, so that an efficient numerical treatment
of the sliding motion constrained on the entire discontinuity region, including dis-
continuous surfaces intersections, is guaranteed.

• Geometric-Zeno Detection and Avoidance: We propose a novel technique
for detecting and eliminating “orbitally” geometric-Zeno behavior. In particular,
we derive sufficient conditions for the existence of geometric-Zeno behavior, and
also we provide methods on how to allow for solutions to be carried beyond the
geometric-Zeno point. A cyclic path is a prerequisite and a necessary condition
for a hybrid system’s state machine to accept geometric-Zeno executions. In our
proposed technique, we consider that every pair of two consecutive triggers of
the same guard as the input argument for detecting cycles. We show that the
execution of a hybrid system’s model converges to a geometric-Zeno limit point
if all the cycles — detected during the execution — converge. We consider that
the evolution of the hybrid solution trajectory through cycles is described by a
transition system with a sequence of hybrid states. In order to derive sufficient
conditions for the hybrid system’s execution to be convergent to the Zeno limit
point, we study based on non-standard analysis the existence of a non-standard
contraction map in a complete metric space, and the convergence of the solution to
a geometric-Zeno limit point, through such map, according to a Cauchy sequence.
Such map indicates when exactly a decision should be taken to transition the
solution from pre-Zeno to post-Zeno, and thus eliminating Zeno behavior.

1.5.3 Prototype Implementations

A part of this dissertation was attributed to design, test, and validate Zeno-free simulator
prototypical implementations. The motivations behind such implementations are the
followings:

1. The first motivation was to validate our proposed Zeno-free computational frame-
work in standard semantics model of time. The emphasis of the validation is one
of correctness and preciseness.

2. The second motivation is to provide -via these implementations- a guidance for the
development of a Zeno-free version for hybrid systems simulation tools which use
standard model of time, giving a Zeno-free computational framework for an ideal
manipulation of Zeno.

14

We have developed, tested, and validated two Zeno-free simulator implementations
for chattering-Zeno detection and elimination. The first Zeno-free simulator implemen-
tation was developed in the language Acumen, while the second one was developed
conforming to the Functional Mock-up Interface (FMI) standard for Model Exchange.

Also we have developed, tested, and validated two Matlab/Simulink Zeno-free simu-
lator implementations for geometric-Zeno detection and elimination. The Matlab imple-
mentation includes a stand-alone simulator written in Matlab code, while the Simulink
implementation includes the basic ready-to-use Zeno-free Simulink library blocks that
allow for geometric-Zeno detection and elimination of any Zeno hybrid model exhibiting
geometric-Zeno.

The motivation behind choosing different simulation tools for the prototype imple-
mentations is to show that the methods proposed in this thesis for Zeno-free simulation
can be implemented in any hybrid systems simulation tool. Also another motivation is
to give via these implementations — in different simulation tools — a guidance for the
development of a Zeno-free version of hybrid systems simulation tools.

1.6 Outline

The structure of this dissertation is organized as follows:
Chapter 2 introduces the concepts and definitions relevant for understanding and

developing the theoretical results of this thesis. In this chapter we also present our
contribution of proposing non-standard semantics for Zeno executions of hybrid systems
models. We start this chapter by giving a thorough introduction to dynamical systems
in Section 2.1. Afterwards, we introduce hybrid systems in Section 2.2, including their
model formalization and executions. We start Section 2.2 by giving a brief introduc-
tion to discrete event systems (Section 2.2.1), and then we give an overview to hybrid
systems modeling (Section 2.2.2), and the mathematical representation of hybrid sys-
tems (Section 2.2.3). We introduce also hybrid automata (Section 2.2.4) as a modeling
framework for hybrid systems. A number of examples are presented to illustrate, in a
hybrid automata formalism, the interaction between the time-driven continuous variable
dynamics and the event-driven discrete logic dynamics. In Section 2.2.5 we discuss the
limitation of the standard semantics of hybrid automata in the full treatment of hybrid
dynamics. To overcome this problem, we present in Section 2.2.6 a non-standard seman-
tics for hybrid automata as well as a unified rigorous definition of Zeno behavior based
on a non-standard analysis of the hybrid time domain. Finally, we give an introduction
to hybrid simulation in Section 2.3, and we describe shortly some languages and tools
for hybrid simulation in Section 2.4.

In Chapter 3 we investigate chattering-Zeno behavior in details. We start this chapter
by giving an brief introduction to chattering-Zeno executions. To illustrate the problem
of simulating chattering-Zeno executions, we provide next a set of representative exam-
ples and realistic case studies of chattering-Zeno models (Section 3.1.1), and then we
discuss the challenges when simulating their executions (Section 3.1.2). Afterwards, we
present in details Fillipov’s equivalent dynamics approach as a method proposed in the

15

literature to deal with chattering-Zeno, and we discuss the limitation of this approach in
treating chattering-Zeno (Section 3.2). Next we provide our chattering-free simulation
technique for the purpose of detecting and eliminating chattering-Zeno behavior “on
the fly” during the simulation, including treating chattering-Zeno on the intersection of
finitely many intersected discontinuous surfaces (Section 3.3). Finally, we sketch two
prototype implementations for applying the chattering-free computational framework to
hybrid systems simulation tools (Section 3.4). Simulation results as well as a perfor-
mance analysis of our proposed chattering-free technique and implementations are also
presented.

In Chapter 4, we investigate geometric-Zeno behavior of hybrid models in details.
We start this chapter by giving a brief introduction to geometric-Zeno behavior (Sec-
tion 4.1.1), and then we show by a set of illustrative examples the problem of sim-
ulating hybrid systems models exhibiting geometric-Zeno behavior (Section 4.1.2 and
Section 4.1.3). Afterwards, we present a method for geometric-Zeno detection and elim-
ination (Section 4.2). We derive sufficient conditions for the existence of geometric-Zeno
behavior based on the existence of a non-standard contraction map in a complete met-
ric space, and the convergence of the solution to a geometric-Zeno limit point, through
such map, according to a Cauchy sequence. Such map indicates when exactly a decision
should be taken to transition the solution from pre-Zeno to post-Zeno, and thus elim-
inating Zeno behavior. Simulation results —using a prototype implementation of the
proposed technique— will be presented at the end of this chapter (Section 4.3).

Chapter 5 is dedicated to the conclusion and future work.

16

Chapter 2

Modeling and Simulation of
Hybrid Systems

We start this chapter by giving a thorough introduction to dynamical systems in Sec-
tion 2.1, including the basic notations and formal definitions behind the theory of
continuous-time and discrete-time dynamical systems, as well as the solution concepts.
Afterwards, in Section 2.2, we introduce hybrid systems, including their model formal-
ization and executions. We start Section 2.2 by giving a brief introduction to discrete
event systems (Section 2.2.1), and then we give an overview to hybrid systems modeling
(Section 2.2.2), and the mathematical representation of hybrid systems (Section 2.2.3).
We introduce also hybrid automata (Section 2.2.4) as a modeling framework for hy-
brid systems. A number of examples are presented to illustrate, in a hybrid automata
formalism, the interaction between the time-driven continuous variable dynamics and
the event-driven discrete logic dynamics. In Section 2.2.5 we discuss the limitation of
the standard semantics of hybrid automata in the full treatment of hybrid dynamics.
To overcome this problem, we present in Section 2.2.6 a non-standard semantics for
hybrid automata as well as a unified rigorous definition of Zeno behavior based on a
non-standard analysis of the hybrid time domain. Finally, we give an introduction to
hybrid simulation in Section 2.3, and we describe shortly some languages and tools for
hybrid simulation in Section 2.4.

2.1 Dynamical Systems
Concerning the qualitative definitions of dynamical systems, we can find two main fea-
tures in the literature. First, a system consists of interacting “components” and, sec-
ondly, a system is associated with a “function” it is intended to perform.

In order to analyze and to develop design and control techniques for systems, quan-
titative definitions are needed. Hence, a model or an abstraction of a system is sought.
A model is a mathematical device (or tool) which mimics the behavior of a system. A
mathematical model describes the relations between different variables and quantities in
a system by means of mathematics and physical laws.

17

Dynamical systems can be defined as systems whose behavior depends on the present
and the past values of their variables.

For a dynamical system, three important concepts need to be distinguished, i) the
state variables x, ii) the inputs u, and iii) the outputs y. The state variables correspond
to the minimal information that is necessary to describe the system behavior uniquely
for a given time instant. In other words, the state variables represent the “memory”
that the system has of its past. The state of a system refers to a specific value of
state variables and is generally denoted by x. The inputs u constitute the external
variables that influence the system. The outputs y are typically the variables that can
be measured, and they can be also variables acting as inputs to open connected systems.

Before introducing in more details the mathematical framework and solution concepts
of dynamical systems we start by giving a brief introduction to ODEs and flows.

2.1.1 Ordinary Differential Equations (ODEs) and Flows

We start by giving a short review on the classical theory of ordinary differential equations
(ODEs).

Notation 2.1. Let A ⊆ Rn, B ⊆ Rm, and k ∈ N. We denote by Ck(A,B) the set
of functions A → B that have continuous derivatives up to the order k. We abbreviate
C0(A,B) = C(A,B), C∞(A,B) = ∩k∈NCk(A,B), and Ck(A) = Ck(A,R).

An implicit ordinary differential equation (ODE) is typically of the form

F (t, x, x(1), x(2), · · · , x(k)) = 0 (2.1)

for unknown x ∈ Ck(J), where J ⊆ R being an interval, and x(j) being the j-th derivative
of x [109]

x(j)(t) = djx(t)
dtj

, j ∈ N. (2.2)

Here the relation F satisfies F ∈ C(A) where A is a subset of Rk+2 that is open.
Frequently, we call the variable t the independent variable, and the variable x the
dependent variable.

The order of the implicit ODE (2.1) (sometimes it is called the index of smooth-
ness of the differential equation) is the highest derivative that appears in the relation
F .

A solution for the implicit ODE (2.1) is a function ϕ(t) ∈ Ck(I), satisfying

For all t ∈ I : F (t, ϕ(t), ϕ(1)(t), ϕ(2)(t), · · · , ϕ(k)(t)) = 0 (2.3)

with I ⊆ J being an interval. This implicitly implies (t, ϕ(t), ϕ(1)(t), ϕ(2)(t), · · · , ϕ(k)(t)) ∈
A for all t ∈ I.

As it is dependent on the initial state x0 = x(t0), the solution of (2.1) can be
written as ϕ(t, x0). This solution depending on initial conditions is called the flow of
the differential equation.

18

Definition 2.2 (Flow) The flow ϕ(t, x0) is the solution of the ODE (2.1) with x(t0) =
x0 being the initial state.

We will assume that the general differential equation in (2.1) can be solved for the
highest derivative of x. This results in an explicit ODE given by

x(k) = f(t, x, x(1), x(2), · · · , x(k−1)), (2.4)

where in this new form we have f ∈ C(A), with the subset A ⊆ R1+k being open.
Implicitly, we can do this locally in the neighborhood of some point (t, y) ∈ A if, at the
point (t, y), the partial derivative which is taken with respect to the highest derivative
does not vanish. That is, ∂F

∂yk
(t, y) 6= 0. The case in which the dependent variable x

being x : J ⊆ R→ Rn gives us a system of ODEs of the form

x
(k)
1 = f1(t, x, x(1), x(2), · · · , x(k−1)),

· · · ,
x(k)
n = fn(t, x, x(1), x(2), · · · , x(k−1)). (2.5)

This system is linear homogeneous if we can write it in the form

x
(k)
i =

n∑
l=1

k−1∑
j=0

fi,j,l(t, x(j)
l). (2.6)

In addition, we can always reduce any system to a first-order system by substituting a
new set of variables y = (x, x(1), x(2), · · · , x(k−1)). This yields the first-order system

ẏ1 = y2,

· · · ,
ẏk−1 = yk,

ẏk = f(t, y). (2.7)
Also, in order to make the right-hand side to be independent of the variable t, we can
add the independent variable t to the dependent variables (t, y) = z

ż1 = 1,

ż2 = z3,

· · · ,
żk = zk+1,

żk+1 = f(z). (2.8)
This system is called autonomous since the function f does not depend on the time
variable t.

From a physical modeling point of view, it is sufficient to consider only first-order
autonomous systems in the modeling of dynamical systems, since — as mentioned above
— any higher order ODE, hence any higher order system, can be reduced to a (larger)
first order system.

19

2.1.2 Continuous-Time/Discrete-Time Dynamical Systems

Let’s consider a (nontrivial) first-order autonomous system of ODEs

ẋ = f(x), x(0) = x0, (2.9)

where the variable x : R→ Rn represents the system’s state, and f : Rn → Rn is a right
hand side (r.h.s) function that represent the continuous dynamics of the system. Usually,
we can write most of the ODEs in this form. This kind of system of ordinary differential
equations typically appears in a very wide variety of physical systems applications such
as biological, physical, electrical, mechanical, chemical, economical applications, and a
lot of other engineering and technological applications. It is even impossible to list all
the applications where this type of ODEs is used to define the system dynamics [109].

For the differential equation having initial condition p = x(0), we denote its solution
by ϕ(t, p). It is easy to prove that the function ϕ is continuously differentiable and sat-
isfies the assumptions in the following definition of a continuous-time dynamical system.

Definition 2.3 (Continuous-Time Dynamical System) A function ϕ : R×Rn → Rn
is a continuous-time dynamical system if this function satisfies the following conditions:

• For all p ∈ Rn, it holds that ϕ(0, p) = p,

• For all p ∈ Rn and s, t ∈ R, it holds that ϕ(t, ϕ(s, p)) = ϕ(t+ s, p),

where Rn represents the state space of the system, p ∈ Rn represents the system’s state,
and ϕ(t, p) is the system’s state after time t starting from p.

As we have stated above, a continuous-time dynamical system can be determined by
the solution of an autonomous first order system of ODEs (if necessary after rescaling
of time t). Furthermore, we can define an autonomous system of ODEs from a given
continuous-time dynamical system. Therefore, a continuous-time dynamical can be seen
to be an equivalent notion to an autonomous system of ODEs. Definition 2.3 can be
extended in many directions. One main alternative is when the time scale is discrete.
In such a case, the set of real numbers R is replaced by the set of real integers Z. Such
extension leads us to the notion of discrete-time dynamical systems.

Definition 2.4 (Discrete-Time Dynamical System) A function ϕ : Z × Rn → Rn
is called a discrete-time dynamical system if it satisfies the following conditions:

• For all p ∈ Rn, it holds that ϕ(0, p) = p,

• For all p ∈ Rn and m, k ∈ Z, it holds that ϕ(k, ϕ(m, p)) = ϕ(m+ k, p).

Similarly to the case of continuous-time dynamical systems where the system was
obtained from first-order autonomous ordinary differential equations, discrete-time dy-
namical systems can be obtained from difference equations. As in the case of continuous-
time dynamical systems the notion “flow” is used, in the case of discrete-time dynamical
systems the notion “map” is used. Namely, consider the function g : Rn → Rn that is a

20

map of a state space into itself, and the difference equation (or recursion) xk+1 = g(xk)
that have an initial condition p = x0, where xk is the state at the discrete time k ∈ Z. If
the solution function ϕ(k, p) = xk of this difference equation satisfies the conditions in
Definition 2.4, then we can consider that the difference equation xk+1 = g(xk) represents
a discrete-time dynamical system.

Both discrete-time and continuous-time dynamical systems can be dealt with con-
currently. Therefore, as a common notation for both Z and R, we denote the set of
points in time by T.

In general, the main objective of studying dynamical systems is to characterize geo-
metrically the system’s orbits. Orbits in continuous-time/discrete-time dynamical sys-
tems can be defined as follows.

Definition 2.5 (Orbit) We define the orbit of a dynamical system as the set {ϕ(t, p) :
t ∈ T} starting from an initial point p. This set is a curve in continuous-time dynamical
systems. In discrete-time dynamical systems, it is represented by a sequence of points.

2.2 Hybrid Systems

A particular feature of many complex dynamical systems is that they are hybrid systems,
i.e. the mathematical model of the system changes its operational evolution in time
depending on some indicators. As we have stated before, this a modeling issue because
of the approximation of the fast nonlinear phenomena of dynamical physical systems,
which typically results in non-smooth dynamical systems with discrete mode switchings
(transitions). The term non-smooth dynamics is related to dynamical systems for which
the state is not required to be a smooth (differentiable) function of time. Such systems
are usually represented by different mathematical formalisms, such as switching systems,
piecewise systems, projected dynamical systems, complementarity dynamical systems
(there exists many different form of these systems), differential inclusions, variational
evolution inequalities, impulsive ODEs, and so on.

Combining time-driven and event-driven dynamics, the hybrid systems framework
can be thought as an important and effective tool for modeling non-smooth dynamical
systems, as well as engineering systems that combine analog and digital devices, interact
through networks, conduct tasks collaboratively, and operate in environments filled with
uncertainties. In general, any dynamical system with discrete logical modes that interact
with continuous variable states can be modeled in this framework.

Typical examples for hybrid systems are electrical circuits with ideal (or idealized)
components, where for example the system contains different devices for different ranges
of frequency, or switching components like electric switches or diodes are included in the
system. For example, the presence of diodes in circuits may imply unilateral constraints
on currents and voltages, which in turn results in a switched system. Consider for
example a Buck converter whose schematic is sketched in Figure 2.1, where L is an
inductor, Q is a MOSFET transistor, D is a diode, R is a resistance, C is a capacitor,
and E is the stored energy. By applying Kirchoff’s laws, the dynamics of the converter

21

Figure 2.1: Schematic of the Buck converter.

Figure 2.2: Ideal representation of the converter’s switching.

model is given by

L
di

dt
= −v + uE, (2.10)

C
dv

dt
= i− v

R
, (2.11)

where u is a control input that is used in the converter’s model to represent the switching
between the diode’s non-conducting mode (when the control u have the value u = 1)
and the diode’s conducting mode (when u = 0); see Figure 2.2. Another important class
of applications that display hybrid behavior are non-smooth mechanical systems with
unilateral constraints, such as unilateral contact, dry friction, and impact phenomena.
Consider for example the famous model of a bouncing ball, whose trajectory can be

Figure 2.3: Trajectory of the bouncing ball system.

22

best represented as a trajectory of an impact system. In such model example, the ball
has a non-vanishing pre-contact velocity v− just before the contact with the ground.
Once the ball is in contact with the ground, the velocity has to jump to a post-contact
velocity v+, otherwise it penetrates the ground. Figure 2.3 illustrates the trajectory
of the bouncing ball model. In general, non-smooth models of mechanical systems are
often used in plasticity and contact dynamics theory. Another class of applications that
can also be modeled with the hybrid systems framework are structure varying systems
with changing number of degrees of freedom, such like robot manipulators or automatic
gear-boxes.

Hybrid systems can be defined as dynamical systems having components with in-
teracting continuous-time dynamics and discrete-event dynamics, where discrete-event
actions are combined with continuous-time physical processes. The main characteristic
of any hybrid system is that it consists of two different types of states variables; continu-
ous states taking values in a non-denumerable set, usually real numbers Rn, and discrete
states taking values in a countable set. A hybrid model is, then, one that specifies
evolution of the discrete states and continuous states, and also specifies the interaction
between the continuous-time and discrete-event dynamics. We have defined continuous-
time dynamical systems in Section 2.1.2. Before we give a mathematical representation
of hybrid dynamical systems, we first introduce, in the following, discrete event systems.

2.2.1 Discrete Event Systems

From a control engineering point of view, a discrete event system can be seen as an event-
driven discrete-state dynamical system whose evolution depends completely on the dis-
crete occurrence of events. A discrete event system consists essentially of event-driven
discrete transition mechanisms of states and a discrete phase (or state) spaces. The
discrete transitions between the states are combined with events which asynchronously
occur at points in time that are discrete. Thus, the system’s behavior is typically ob-
served in terms of sequences of discrete events. Discrete event systems are in general
represented by finite automata. An automaton is a device which generates a sequence of
state transitions in accordance with a set of well-defined rules. The term finite automata
reveals that the state space of the discrete event system is considered to be finite.

Definition 2.6 (Finite Automata) A finite automaton is a tuple (Q,E, π, Init), where
Q is a finite set of discrete states or locations whose elements are often denoted by q ∈ Q,
E is a finite set of input symbols or events denoted by ξ ∈ E, π ⊆ Q×E ×Q is a tran-
sition relation, and Init ⊆ Q is the set of initial states. The transition relation defines
the next discrete states q+, such that (q, ξ, q+) ∈ π. Next states q+ refer to a discrete
state that can be reached after a transition caused by the occurrence of the event ξ. A
finite automaton is called a deterministic finite automaton (DFA) if the relation π is a
function π : Q× E → Q.

The set E is also known as an alphabet. Finite automata can also be represented by
transition diagrams or graphs with vertices given by the elements of Q, and the edges
by the transition rules or events.

23

2.2.2 Modeling of Hybrid Systems

In terms of control theory, a continuous-time system (i.e. plant) and a discrete-event
system (i.e. controller) form together a hybrid system. The continuous-time system is
modeled using ODEs, whereas the discrete-event system is a computer program repre-
sented by a discrete transition system. In a hybrid system composed of continuous-time
and discrete-event sub-systems, each sub-system can interact with the other; see Fig-
ure 2.4. The continuous-time behavior of the hybrid system is usually influenced by
discrete-event components when the value of the continuous-time variables is changed
by discrete-event actions. A continuous-time subsystem can also influence the discrete-
event behavior, as a boolean condition which depends on the value of the continuous-
time variables becomes true and triggers a discrete-event action. The discrete-event and
continuous-time sub-systems — composing a hybrid system — have distinct types of
signals; see Figure 2.5. For continuous-time systems, all output signals are continuous
waveforms, while for discrete-event systems the activation signals are discrete and the
output signals are piecewise constant.

When putting together these two domains, the signals at the boundaries must be
treated carefully. A Zero-Order Hold (ZOH) converts a discrete-event into a continuous
waveform to have a value at the time points were no events occur. The output of the
resulting hybrid dynamical system is a piecewise continuous function.

Basically, the discrete-event part is activated by two types of events: 1) time events
that occur at a given time, and 2) state events that appear when a variable reaches a
certain threshold value. The continuous-time part can make a change in the discrete-
event part only if it generates a state event; see Section 1.2.2.

• Time events: Time events occur at a specified future time when the event is
scheduled, such as the sampling-time of a discrete-time controller. Time events
are easier to handle as they may be specified directly before the simulation begins.
The integration thereby may be stopped and restarted exactly at the possible
discontinuity point. An example of time events is process where an operator resets
a valve opening at a specified time.

Figure 2.4: Continuous-time and discrete-event parts interaction in a hybrid system.

24

Figure 2.5: Output signals: (a) continuous-time dynamical system, (b) discrete-event
dynamical system, and (c) hybrid dynamical system.

• State events: It is possible for a hybrid system to have several possible config-
urations whereby in each configuration the behavior of the system is described
by a system of differential equations. Such a system switches from one configu-
ration to another based on a condition. This condition may depend on the input
control of the system (such as human operators intervention), or may depend on
system states. In general, when modeling with state events, a switching from
a given operational mode to another one takes place when some constraints on
the continuous-time state variables are fulfilled. Therefore, the timing of discrete
switching can be seen as a function of the solution to the ordinary differential
equations that govern the system. The transition time is given by a transition
condition which depends on a zero-crossing event function z(t); see Section 1.2.2.
Whenever z(t) crosses zero, the transition condition switches its logical value. In
this case, an event is defined as the earliest time at which one of the currently
pending transition conditions becomes true. State events are then the mechanism
whereby the state of the continuous-time subsystem influences the discrete-event

25

subsystem. State events which are dependent on state variables of the system are
more difficult to handle accurately in time than the time events. One possible way
to detect state events is by calculating the value of the zero-crossing function at
the borders of each time step interval. To locate precisely the instant in time where
the state event appears, a bracketing may be employed in the time step interval
at which the state event is detected.

Numerical simulation tools and languages such as Modelica, HyVisual, Charon, Acumen,
Zélus, Simulink/Stateflow, Scicos, Shift, and many other languages and tools are usually
used in modeling of hybrid systems. Such tools also provide an integrated environment
for simulation, as well as test automation and code generation.

2.2.3 Mathematical Representation of Hybrid Systems

Definition 2.7 (Hybrid System) Following [70], a mathematical representation of a
hybrid system H can be given either in a set-valued mapping of the form:

H :
{
ẋ ∈ F (x), if x ∈ C,
x+ ∈ G(x), if x ∈ D,

(2.12)

or in a less general representation involving equations:

H :
{
ẋ = f(x), if x ∈ C,
x+ = g(x), if x ∈ D,

(2.13)

where C ⊂ Rn is the flow set, D ⊂ Rn is the jump set. The state of the hybrid system,
denoted by x, can change according to a flow map given by a differential inclusion
ẋ ∈ F (x) or differential equation ẋ = f(x) while evolving in the flow set C, and it
can change according to a jump map defined by a difference inclusion x+ ∈ G(x) or
difference equation x+ = g(x) while in the jump set D. ẋ represents the velocity of x,
while x+ represents the value of the state after a discrete instantaneous change. In
(2.13), f , respectively g, is assumed to be defined on at least the set C, respectively D.
In (2.12), F , respectively G, is assumed to have nonempty values on C, respectively D.

Remark 2.8 A special class of hybrid systems are non-smooth discontinuous dynam-
ical systems (DDS), e.g. ODEs with discontinuous r.h.s (right hand side). A DDS
may have one or multiple hyper discontinuous surfaces, where each hyper discontinu-
ous surface Σ = {x ∈ Rn : γ(x) = 0} splits the phase space into two disjoint regions
Si = {x ∈ Rn : γ(x) > 0} and Sj = {x ∈ Rn : γ(x) < 0} (Figure 2.6), defined as the
set of states where a smooth event function γ(x) is positive and negative, respectively.
In this case, each hyper surface of discontinuity Σ is a switching manifold of dimension
R(n−1). This manifold is included in ∂Si and ∂Sj which are the boundaries of the dis-
joint regions Si and Sj , respectively. That is, Σ = Si ∩ Sj . The flows ϕi(t, x(0)) and
ϕj(t, x(0)) in the regions Si and Sj on both sides of Σ are both well defined.

26

Figure 2.6: Hybrid trajectories for DDS: (a) A hybrid solution trajectory with identity
reset jump map, (b) a hybrid solution trajectory with non-identity reset jump map.

2.2.4 Hybrid Automata Modeling Formalism

The hybrid automata formalism is one of the main modeling formalisms in hybrid systems
theory. It has been developed as a formalism to model systems in which discrete control
logic interacts with a real-valued reality, and to facilitate mathematical proofs about
their behavioral properties. The focus lies on dependability of such systems and hence
on formal verification of properties. Besides their formal semantics, hybrid automata
offer a pleasing visual notation accessible with only a minimum of formal training.

2.2.4.1 Syntax

Hybrid automata results from an extension of finite-state machines by associating with
each discrete state a continuous state model. A hybrid automaton typically consists
of locations, transitions, invariants, guards, Rn-dimensional continuous functions, jump
functions, and synchronization labels [1, 2].

In particular, hybrid automata integrate diverse models such as differential equations
and state machines in a single formalism with a uniform mathematical semantics for
multi-modal control synthesis and for safety and real-time performance analysis.

By combining the definition of a continuous-time dynamical system (Definition 2.3),
and finite automata (Definition 2.6), we can define hybrid automata as follows:

Definition 2.9 (Hybrid Automata) A hybrid automaton H is a tuple

H = (Q,X, Init, f,D,E,G,R),
where

27

• Q is a finite set of locations or discrete states (also called modes of operation),
often denoted by qi ∈ Q;

• X ⊆ Rn is the state space in which the continuous-time variables evolve. A state
is often denoted by x ∈ X;

• Init ⊆ Q×X is a finite set of initial states;
• f : Q×X → X is the vector field representing the system’s dynamics, often defined

by a differential equation ẋ = f(qi, x);
• D : Q → X describes the set of continuous invariants (or domains) Inv(qi) ⊆ X

of the discrete states qi ∈ Q;
• E ⊆ Q×Q is a finite set of discrete transitions;
• G : E → X is a finite set of guard conditions;
• R : E → X ×X is a finite set of reset maps.

In the context of hybrid automata, the hybrid state (qi, x) of the system is a pair of
a discrete state qi ∈ Q and a valuation x ∈ X of the continuous state variables. The
hybrid state space of the system is the set of all possible values for the discrete location
and the continuous variables, i.e. Q×X.

Figure 2.7: Schematic representation of a hybrid automaton with three discrete states.

28

The hybrid automaton model elements lead to represent the hybrid system graphi-
cally as sketched in Figure 2.7. The discrete evolution of the hybrid system’s dynamics
is modeled in terms of a graph in which vertices represent the discrete states, and edges
represent state transitions.

Every vertex is associated with vector field f : Q × Rn → Rn which determines the
continuous evolution of the system’s state ẋ = f(qi, x) if the location (or discrete state)
is qi ∈ Q.

For every discrete state qi ∈ Q there is an invariant Inv(qi) ⊆ Rn associated to
it. This invariant is typically combined with constraints that should be satisfied by the
continuous state x to stay at this invariant.

Mode transitions can be triggered either by time events, or by state events due to
the invariants and guards. The change of the discrete state qi is described by the state
transition function (qi, qj) ∈ E, which determines the discrete successor state qj if the
system is in a given discrete state qi. This function is graphically represented by the
arrows among the discrete states in Figure 2.7.

A discrete transition (qi, qj) ∈ E is enabled if its guard condition G(qi, qj) ∈ G is true,
i.e. the valuation of the continuous variables must fulfill the guard. The guard conditions
G(qi, qj) ∈ G are basically represented by expressions of the form G(qi, qj) := a ./ b,
where ./ is a boolean relation (i.e. ./∈ {<,≤, >,≥, · · · }), and a and b are usually made
of constants, computed variables, state variables x, as well as arithmetic operations
� ∈ {+,−,×,÷} of constants and/or variables. From a practical simulation perspective,
it is possible to convert such guard expressions G into zero-crossing event functions
z by converting each guard expression G(qi, qj) := a ./ b into a real-valued function
z(t, x) := a− b.

During the transition, the continuous variables are reinitialized according to the
reset mapping R(qi, qj , x) ∈ R. The reset map is, in general, a set-valued function
that specifies the new value of the continuous states (and its relation to the previous
continuous states) for a particular transition.

Remark 2.10 Invariants and guards play complementary roles: while invariants can
be seen as constraints that determine when a discrete transition must take place (namely
when the evolution of the continuous state variables would violate the invariant), the
guards can be seen as “triggering conditions” that determine when a particular dis-
crete transition may be taken. Whenever both guard and invariant condition are true
simultaneously, a choice between discrete and continuous evolution must be taken. A
transition is therefore said to be deterministic if: i) it has a unique destination, and ii)
whenever this transition is possible, continuous evolution is impossible. Determinism or
non-determinism of transitions is hence a modeling issue.

2.2.4.2 Executions

In order to define formally the execution of a hybrid automaton model (i.e. the types
of solutions that it accepts) we first need to consider the sets of times over which these
solutions will be defined.

29

Figure 2.8: Hybrid time domain τ = {[τi, τ ′i]}3i=0.

Definition 2.11 (Hybrid Time Set) We define a hybrid time set τ as a sequence of
time intervals τ = {Ii}Ni=0 that is finite (N <∞) or infinite (N =∞) such that:

• Ii = [τi, τ ′i] for 0 ≤ i < N ;
• if N <∞, then either IN = [τN , τ ′N] or IN = [τN , τ ′N) with τ ′N =∞; and
• τi ≤ τ ′i = τi+1 for all i.

The instants τi are times of discrete transitions, i.e. discrete events time instants.
It is assumed that discrete transitions are instantaneous, therefore τ ′i = τi+1, where
τ ′i corresponds to the time instant just before taking a discrete transition (i.e. right
endpoint of one interval Ii), whereas τi+1 corresponds to the time instant just after taking
a discrete transition (i.e. left endpoint of the following interval Ii+1); see Figure 2.8. The
benefit of adopting this convention is that it allow us to model scenarios where several
discrete transitions emerges consecutively at the same time instant, in which case we
have τ ′i−1 = τi = τ ′i = τi+1 (c.f., the interval I2 = [τ2, τ

′
2] in Figure 2.8).

However, this convention pose a fundamental problem in case of Zeno executions
because no definition of solution is possible in this case past the Zeno limit point (because
of the infinity of discrete transitions). From a practical perspective this leads simulation
tools developers to adopt the notion of adding hysteresis to event functions, which in
turns leads to ignore events.

Definition 2.12 (Hybrid Solution Trajectory) Consider x ∈ Rn as the state vector
(Definition 2.9). We define a hybrid solution trajectory as a triple χ =(τ, {qi}Ni=0, {xi =
x(Ii)}Ni=0) consisting of a time set τ = {Ii}Ni=0 that is hybrid, and two sets of sequences
represented by qi ∈ Q and xi : Ii → Rn.
A typical hybrid solution trajectory is illustrated in Figure 2.9. If the hybrid time τ is
an infinite sequence or if τ is a finite sequence which ends with an interval like [τN ,∞),
then the hybrid trajectory is said to be an infinite trajectory.

30

Figure 2.9: Typical hybrid solution trajectory.

Definition 2.13 (Hybrid Execution) A hybrid solution trajectory χ =(τ, {qi}Ni=0, {xi}Ni=0)
is said to be an execution to a hybrid automaton model H if it satisfies the following prop-
erties:

• (q0, x0) = (q0, x0(τ0)) ∈ Init, with τ0 = 0;

• for all i < N : e = (qi, qi+1) ∈ E, xi(τ ′i) ∈ G(e), xi+1(τi+1) ∈ R(e, xi(τ ′i));

• for all i and all t ∈ [τi, τ ′i): xi(t) ∈ Inv(qi), ẋi(t) = f(qi, xi(t)).

Definition 2.13 determines which one of the hybrid solution trajectories is an execu-
tion to the hybrid automaton H, and which one is not, by setting some restrictions.

The first restriction says that any execution of a hybrid automaton should start with
an initial state that is included in Init.

The second restriction specifies when discrete transitions have to be triggered and
what is the new value of the state after taking a discrete transition. The requirements
relate the state (qi, xi(τ ′i)) before the discrete transition to the state (qi+1, xi+1(τi+1))
after the discrete transition: they should be such that (e = qi, qi+1) is a discrete transition
in E, xi(τ ′i) belongs to the guard of this transition, and xi+1(τi+1) belongs to its reset
map. It is convenient to think, in this context, of the guard conditions G(e) ∈ G to be as

31

enabling conditions for the discrete transitions e = (qi, qi+1) ∈ E: a discrete transition
e ∈ E is taken at time t during the execution when xi(t) ∈ G(e).

The third restriction specifies what happens during the continuous evolution of the
system, and how the continuous evolution can result in a discrete transition. The first
part says that, the discrete state keeps constant along continuous evolution. The second
part constrains that the continuous state of the system evolves according to the vector
field ẋi(t) = f(qi, xi(t)). The third part constrains that the state must remain in the
invariant Inv(qi) of the discrete state qi as long as the continuous evolution takes place. It
is convenient to think, in this context, of invariants Inv(qi) as forcing discrete transitions:
a transition must be taken when the continuous state is about to leave the invariant.

2.2.4.3 Examples of Hybrid Automata Models

Example 2.1 (Thermostat):
Consider for example a thermostat, which measures the temperature of a room and
controls the temperature x to be always between 18◦C and 22◦C by turning off and on
a heater. In its initial state, the heater is assumed to be on and the initial temperature
of the room is 20◦C. When the heater is in the mode on, the ambient temperature of the
room increases according to the dynamics ẋ = K(h−x), whereK is a constant parameter
representing a room constant, and h is a heater constant. During the heating phase, if
the temperature is equal to or is greater than 21◦C, but at latest when it is equal to
22◦C, then the control is given to the heater to switch it off. When the heater is switched
off, the temperature decreases according to the dynamics ẋ = −Kx. During the cooling
phase, if the temperature is equal to or is lower than 19◦C, but at latest if it is equal to
18◦C, then the control is given back to the heater to switch it on. Figure 2.10 shows the
hybrid automaton model of the system, and Figure 2.11 visualizes a possible execution
of the system. This system is fully hybrid. The continuous behavior is the temperature’s
evolution in time. The discrete behavior is the heater’s control switching. This hybrid
system is non-deterministic because the control is given within temperature intervals
(i.e. switching from on to off in the temperature interval [21◦C· · 22◦C], and switching
from off to on in the temperature interval [18◦C· · 19◦C]). To get a deterministic model
one may replace these temperature intervals by single values.

Figure 2.10: Thermostat system: the model represented by a hybrid automaton.

32

Figure 2.11: A possible execution of the hybrid automaton in Figure 2.10.

Example 2.2 (Collision of Three Masses):
Consider a mechanical system of three collision balls of masses m1, m2 and m3 disposed
on a surface (a table) having a height h and a length L and as sketched in Figure 2.12.
It is assumed that friction between the balls and the table be neglected. Masses m2 and
m3 are at rest, while mass m1 is considered to be moving according to an initial velocity
v1,0. Eventually, mass m1 collides with mass m2 which, as results moves towards m3
and collides with it. As a result, mass m3 falls and starts to bounce on the ground.

The law of the conservation of momentum and Newton’s collision rule govern each
collision between two masses. Let consider for example the collision between m1 and m2.
Denote vi and v+

i to the velocity just before and just after the impact between the masses,
respectively. Therefore, Newton’s collision rule implies that v+

1 −v
+
2 = −ε(v1−v2), where

ε is the coefficient of restitution.
The rule of conservation of momentum determines the velocities just after the colli-

sion: m1(v+
1 −v1) = m2(v2−v+

2). A collision between m1 and m2 happens when x1 ≥ x2
and v1 > v2. In this case, the post-collisions velocities are

v+
1 = v1

(m1 − εm2)
m1 +m2

+ v2
m2(1 + ε)
m1 +m2

, (2.14)

v+
2 = v1

m1(1 + ε)
m1 +m2

+ v2
(m2 − εm1)
m1 +m2

. (2.15)

The same applies for the collision betweenm2 andm3, where we assume that x2,0 < x3,0.
Figure 2.13 shows the hybrid automaton model of this system with all possible scenarios
of collisions between the three masses and/or their bouncing on the ground. The system’s
state variables are represented by the position and velocity of each mass. The labels Fi
represent the guard conditions and the reset maps when mass mi falls from the surface
towards the ground. The labels Cij specify the guard conditions and also the reset
maps in case in which a collision between a mass i and a mass j occurs. The labels Bi
represent the guard conditions and the reset maps when a falling mass mi bounces.

33

Figure 2.12: The system with three point masses.

Figure 2.13: The hybrid automaton model of the three point masses system.

During bounces, there is a loss of energy on the x and y directions. This is modeled
by the coefficients γx and γy, respectively. For each discrete state (or location), it is
assumed that its invariant is the conjunction of the complement of guards conditions
associated to the existing transitions form that discrete state.

34

Label Guard Reset
C12 x1 ≥ x2 ∧ vx1 > vx2 vx1 = vx+

1 ∧ vx2 = vx+
2

C23 x2 ≥ x3 ∧ vx2 > vx3 vx2 = vx+
2 ∧ vx3 = vx+

3
F1 x1 ≥ L ∧ y1 > 0 ∧ vx1 > 0 ay1 = −g
F2 x2 ≥ L ∧ y2 > 0 ∧ vx2 > 0 ay2 = −g
F3 x3 ≥ L ∧ y3 > 0 ∧ vx3 > 0 ay3 = −g
B1 y1 ≤ 0 ∧ vy1 < 0 vx1 = γxvx1 ∧ vy1 = −γyvy1
B2 y2 ≤ 0 ∧ vy2 < 0 vx2 = γxvx2 ∧ vy2 = −γyvy2
B3 y3 ≤ 0 ∧ vy3 < 0 vx3 = γxvx3 ∧ vy3 = −γyvy3

Table 2.1: Guard conditions and reset maps for the hybrid automaton in Figure 2.13.

Table 2.1 lists the guard conditions and the reset maps for each discrete transition
in the system. For the scenario sketched in Figure 2.12, the system behavior can be
described as follows: At start, all the masses are at rest on the table. We assume
yi = h, ai = 0, i = 1, 2, 3 (i.e. all the masses are at rest on the table, and all accelerations
are initialized to zero). Also it is assumed that that x1,0 = 0, and xi = xi,0 for i = 2, 3.
Mass m1 moves to the right initially with a given velocity v1,0 > 0 and collides with m2
(mode m1-m2). After the impact, mass m2 moves to the right and, in turn, collides with
mass m3 (mode m2-m3). Eventually, mass m3 drops from the table (transition F3) and
starts to bounce on the ground (state m3bounce and transitions B3).

To consider that the ground manifests some friction when bouncing, we consider both
horizontal and vertical loss of energy during bouncing. During the bouncing of m3 on
the ground, the two masses m1, m2 (depending on the values of the three masses) may
either fall also and start bouncing or eventually stop on the table. In all the discrete
states, the system’s dynamics is represented by linear differential equations. Let’s denote
ay, vy and ax, vx to the vertical and horizontal components of the acceleration and the
velocity, respectively. Then, we can write the system dynamics as: ẋi = vxi, v̇xi = axi,
ẏi = vyi, v̇yi = ayi.

From a practical simulation point of view, this example shows interesting phenomena.
For example, three discrete events can occur simultaneously (i.e. event iteration) if we
position mass m3 at the extreme edge of the table (i.e. setting x3,0 = L): the mass
m2 collides with the mass m3 and both of them then fall and start bouncing. These
events are ordered sequentially even though they are occurring simultaneously. In fact,
this is the reason for having many discrete states with the same system dynamics. With
only one state, the model would be a non-deterministic model, therefore not capable
of properly order the events. When both masses m2 and m3 fall and start bouncing
simultaneously, this also results in a non-determinism because the events of bounces can
be ordered arbitrarily. Indeed, this system can be seen as a system with geometric-Zeno
behavior because at least the mass m3 will fall from the table and starts bouncing, and
its sub-model becomes the one of a bouncing ball model which has a geometric-Zeno
behavior.

35

2.2.5 Hybrid Automata: Limitations of Standard Semantics

Although hybrid automata formalism is a well-established formalism for specifying hy-
brid systems in the context of modeling and verification, it has several limitations due to
its simplicity and it is sometimes insufficient for the full treatment of hybrid dynamics.
Among these limitations, we focus on the problem of Zeno executions.

Although analytically distinctly different, both chattering-Zeno and geometric-Zeno
behaviors share the same property: an infinite sequence of discrete transitions occurring
in a finite execution time. For an execution χ = (τ, q(·), x(·)) satisfying the conditions
in Definition 2.13, the execution time T (χ) is the sum of the time intervals in τ , that is
T (χ) = ∑N

i=0(τ ′i − τi). According to Lygeros et al [2], the execution χ is called:

• Infinite execution if either τ is an infinite sequence (i.e. i→∞) or T (χ) =∞;

• Finite execution if the sequence τ is finite (i.e., N <∞) and the last interval in
this sequence is closed (i.e. IN = [τN , τ ′N]);

• Maximal execution if the execution is not a prefix of any other execution;

• Zeno execution if τ is an infinite sequence and T (χ) is a finite time:

1. It is chattering-Zeno if it is Zeno and there exists a finite C such that
∀i ≥ C : τ ′i − τi = 0.

2. It is geometric-Zeno if it is Zeno and ∀i ∈ N : τ ′i − τi > 0.

Figure 2.14 (taken from [2]) shows the hybrid time sets for finite, infinite and Zeno
executions. The limitation of the standard semantics of executions of hybrid automata
is that, it is incomplete in the meaning that the limit point of discrete change, such as
Zeno limiting state cannot be handled properly. From a practical simulation perspective,
this poses a fundamental problem when simulating Zeno executions: In fact, many
modeling and simulation tools for hybrid systems have been developed in the past years.
They can be classified into two categories: those who put special attention on defining
models rigorously, such as for instance SpaceEx [44], Ptolemy [27] (based on the super-
dense time semantics in [47]), and Zélus [57] (whose semantics is based on non-standard
analysis [54]); and those who use an informal approach for model definition such as
Simulink1, Modelica language [55] and its associated tools. The problem is that all
these modeling and simulation tools share the same approach of hybrid model execution
alternating between continuous evolution and sequences of discrete switchings [57] as
formalized by the standard executions semantics of hybrid automata, which in turn
cannot handle properly Zeno limit points. To deal with this problem we propose to
replace the standard notion of hybrid time domain (Definition 2.11) by the notion of
non-standard densely ordered hybrid time domain. The advantages of using a non-
standard time domain in the executions semantics of hybrid automata are the following:

1https://fr.mathworks.com/products/simulink.html

36

Figure 2.14: Hybrid time sets of different executions: τA is finite, τC and τD are infinite,
τE and τF are Zeno.

1. The continuous dynamics of the hybrid system is reduced to the recurrence equa-
tion that represents the infinite iteration of infinitesimal discrete changes with
infinitesimal duration. Therefore, we can handle the hybrid dynamics based only
on fully discrete paradigm.

2. The representation of dynamics based on non-standard analysis is complete and
the exact limit point of discrete change, like chattering-Zeno and geometric-Zeno
limit points, can be handled.

2.2.6 Non-Standard Semantics for Hybrid Automata

Before introducing the non-standard model of time, and the proposed non-standard
semantics of hybrid automata, we start by giving a brief introduction to the theory of
non-standard reals ∗R.

2.2.6.1 The Theory of Non-Standard Reals ∗R

The field ∗R of non-standard reals has been used by several authors to define operational
semantics of continuous and hybrid systems [54, 57]. The idea is to enlarge the time
domain by enlarging the standard reals numbers R and integers N into non-standard
real numbers ∗R and non-standard ∗N. The set of non-standard real number ∗R is
constructed from the set of real number R via the ultra product construction [108].

37

Notation 2.14 We denote a non-standard object with the prefix ∗. For example, the
variable symbol ∗x denotes an element of ∗R. Whenever we can obviously know that the
object is non-standard, we omit the prefix ∗.

Definition 2.15 (Free Ultra filter) A filter U on a set J is a subset of P(J), the
power set of J , satisfying the following properties:

1. Proper filter: ∅ 6∈ U .

2. Finite intersection property: If A,B ∈ U , then A ∩B ∈ U .

3. Superset property: If A ∈ U and A ⊆ B, then B ∈ U .

A filter U is said to be a free ultra filter if it also satisfies:

1. Maximality: For all A ⊆ J , either A ∈ U or J \A ∈ U .

2. Freeness: U contains no finite subsets of J .

Definition 2.16 (Non-Standard Real Number) We fix a free ultra filter U of N.
Let W = RN denote a set of sequences of real numbers 〈a1, a2, · · · 〉. A non-standard real
number is defined by a set of sequences 〈ai〉i∈N closed under the following equivalence
relation on W :

〈a1, a2, · · · 〉 ∼ 〈b1, b2, · · · 〉 (2.16)

if and only if {k| ak = bk} ∈ U . We denote the equivalence class of 〈a1, a2, · · · 〉 by
[〈a1, a2, · · · 〉]. Namely, the set of all non-standard real numbers is defined as the quotient
∗R = RN/ ∼. Following the same principle, we denote the set of non-standard numbers
generated by integral sequences 〈ai〉 ∈ N, i ∈ N, by ∗N.

Every element of R is also an element of ∗R because for x ∈ R, we have [〈x, x, · · · 〉] ∈
∗R. Namely, R ⊆ ∗R. By virtue of the ultra product construction of ∗R, all properties of
R also hold in ∗R (transfer principle [54]). From the construction of ∗R, the arithmetic
operations and the relations on R are extended to ∗R as follows: Addition for ∗R is
defined as [〈a1, a2, · · · 〉] + [〈b1, b2, · · · 〉] = [〈a1 + b1, a2 + b2, · · · 〉]. The order on ∗R is
defined such that [〈a1, a2, · · · 〉] < [〈b1, b2, · · · 〉] if and only if {n| an < bn} ∈ U . Other
operations and relations are also defined by the same way. For example, consider two
non-standard numbers ∗j = [〈 1

n〉] ∈ ∗R and ∗w = [〈n〉] ∈ ∗R. Then it holds that
∗j ×∗ w = [〈 1

n × n〉] = [〈1〉] = 1,
√∗j = [〈 1√

n
〉], ∗w2 = [〈n2〉].

Definition 2.17 (Infinitesimal, Infinite) An infinitesimal ∂ ∈ ∗R is a number whose
absolute value is smaller than any non-negative standard real number. Namely, ∃∂ ∈
∗R : ∀a 6= 0 ∈ R : |∂| < |a|. An infinite ω ∈ ∗R is a number which absolute value is
larger than any standard real number. Namely, ∃ω ∈ ∗R : ∀a ∈ R : |ω| > |a|.

Definition 2.18 (Closeness) We introduce a binary relation a ≈ b between two non-
standard elements a ∈ ∗R and b ∈ ∗R, meaning that a is infinitesimally close to b, and
such that a ≈ b if and only if |a− b| is infinitesimal.

38

For every finite number a ∈ ∗R (namely a is not an infinitely large number), there
is a unique standard number b ∈ R such that a ≈ b. b is called a standard part of
a and denoted by b = ◦a. For any x = [〈x1, x2, · · · 〉] ∈ ∗R, we define a non-standard
∗f(x) for a standard function f(x) by ∗f(x) = [〈f(x1), f(x2), · · · 〉]. The continuity of a
non-standard function ∗f(x) is described as follows: for all x ∈ ∗R there exists y ∈ ∗R
such that y ≈ x and ∗f(y) ≈∗ f(x).

2.2.6.2 Non-Standard Time Domain

The proposal in [54] consists in defining the enlarged time set as

T∂ = {tn = n× ∂| n ∈ ∗N} (2.17)

for a time base (which is infinitesimal) ∂ ∈ ∗R, ∂ > 0, ∂ ≈ 0. That is, the following
property is satisfied:

∀t ∈ R+ : ∃tn ∈ T∂ such that t ≈ tn (2.18)

In the following, we give the hybrid automata’s non-standard semantics, as well as a
unified rigorous definition to Zeno behavior in the non-standard hybrid time domain.

2.2.6.3 Hybrid Automata: Non-Standard Semantics

The non-standard semantics of hybrid automata is based on using T∂ as its time set. It
suffices in this context to keep the symbolic structure of the standard hybrid automata
H (Definition 2.9) and only change the domain of interpretation of its executions from R
to ∗R. To ease future discussions, we define a function q(t) as the mode selector function
that returns a discrete state in Q for any time instant t ∈ T∂ .

Definition 2.19 (Non-Standard Execution of H) Given a time base ∂ ∈ ∗R, ∂ > 0,
∂ ≈ 0, time index set T∂ = {tn = n × ∂| n ∈ ∗N}. Fix B = {True, False}. A non-
standard execution ∗χ of a hybrid automaton H is a tuple of functions z : T∂ → B,
q : T∂ → Q, and ∗x : T∂ → ∗Rn satisfying the following properties:

1. (q(t0), ∗x(t0)) ∈ ∗Init and z(0) = False when t0 = 0;

2. ODE micro-step: For all t ∈ T∂: If z(t+∂) = False then q(t+∂) = q(t), ∗x(t+∂) ∈
∗Inv(q(t)), ∗x(t+ ∂) = ∗x(t) + ∂ × ∗f(q(t), ∗x(t));

3. Location change micro-step: For all t ∈ T∂: If z(t + ∂) = True then ∗x(t) ∈
∗G(e), e = (q, q′) ∈ E, q(t) = q, q(t+ ∂) = q′, and ∗x(t+ ∂) ∈ ∗R(e, ∗x(t)).

Remark 2.20 As mentioned in Remark 2.10 (page 29), determinism or non-determinism
is a modeling issue.Whenever the invariant of the current location holds and some out-
going transitions are enabled, then it is up to the modeler to give a priority either to
stay in the invariant or to exit from the invariant according to a transition.

39

2.3 Simulation of Hybrid Systems

Simulation methods for hybrid systems fall broadly into two categories: time-stepping,
and event-driven. Each of them may be worked out in many different ways.

2.3.1 The Event-Driven Method

The method of event-driven simulation is based on generating hybrid solution trajectories
according to the following steps:

1. Simulation of the smooth dynamics within a given mode (discrete state).

2. Event detection.

3. Determination of a new discrete state (new mode).

4. Determination of a new continuous state (re-initialization).

The idea is to simulate the continuous motion in some given mode with numerical
solvers using time-stepping method until a discrete event is detected.

Events within hybrid dynamical systems simulation can be distinguished in what we
called externally induced events such as time events (e.g. when switches are tuned in an
electrical network according to a predetermined schedule), and internally induced events
(or state events) which occur when an inequality constraint of a given event function
becomes active (zero-crossing activation). To catch the internally induced events, a
hybrid system simulator needs to be equipped with an event detection module. Such a
module will monitor the sign of certain event functions of the state to see if the required
inequality constraints are still satisfied.

In the combination with a time-stepping algorithm for the simulation of continuous
dynamics, one issue to be taken into account is that the time at which an event takes
place will in general not coincide with one of the grid points that the continuous simulator
has placed on the time axis. Both the event time itself and the value of the continuous
state at the time of the event will have to be found by some interpolation method. A
search is then a necessary requirement to find accurately the time of the event and the
corresponding state values. At this stage, ODE solvers usually have to backtrack in
order to accurately approximate the date and state at which the event occurs. Since this
is quite expensive and slows down simulation in some cases, some simulation tools, e.g.
Simulink/Stateflow, offer the option to execute discrete events without localizing their
time points precisely. However, this can easily result in unpredictable behavior.

The problem of finding the next discrete state is called the mode selection problem.
This problem may be easy in some cases (i.e. deterministic models). However, there
are other cases though in which the problem can be quite complicated so that decisions
will be very sensitive (i.e. the case of non-deterministic models). In such situations the
simulation software should provide a warning to the user, and if it is difficult to make
a definitive choice between several possibilities perhaps the solver should even work out
all reasonable options in parallel.

40

The next step is the restarting the integration from the new initial time and initial
condition in the new selected mode, and here the problem of re-initialization comes down
to determine the value of the continuous state at the event time so that the simulation
of the smooth dynamics in the new mode can start from an initial state that is correct
up to the specified tolerance. In some cases however, such as mechanical systems subject
to unilateral constraints, jumps need to be calculated.

Theoretically, the state after jump should satisfy certain constraints exactly; finite
word length effects however will cause small deviations due to the machine precision.
Such deviation may cause an interaction with the mode selection module; in particular
it may appear that a certain constraint is violated so that a new event is detected. In
this way it may happen that cycling between different modes occurs (i.e. chattering back
and forth between modes in a discrete fashion), and the simulator does not return to a
situation in which the continuous evolution according to some continuous dynamics is
generated, so that effectively the simulation stops.

2.3.2 The Time-Stepping Method

In a number of papers (see for instance [26,34–36,38,40,42,45,50,51,61,82] it has been
suggested that in fact it is not necessary to track events in order to obtain approximate
trajectories of hybrid dynamical systems. The term “time-stepping methods” has been
used to refer to methods that do not aim to determine event times. The basic idea of
time-stepping is to only check constraints and corresponding slack variables (Lagrange
multipliers) at fixed times at intervals ∆t. There are adaptations to standard methods
for integrating differential equations that are specifically designed for complementarity
systems, some of which are based on linear complementarity problem solvers that have
been developed in optimization theory [36,42,45].

Rather than giving a formal discussion of time-stepping methods let’s illustrate the
idea on an example. Consider for instance a relay system given by

ẋ =
{
ẋ1 = −sgn(x1) + 2sgn(x2),
ẋ2 = −2sgn(x1)− sgn(x2),

(2.19)

where the signum function (or relay element) sgn is actually not a function but a relation
(or multi-valued function) specified by

sgn(x) =


−1, when x < 0,
+1, when x > 0,
[−1,+1], when x = 0.

(2.20)

This system may be described as a piecewise constant system; in each quadrant of the
(x1, x2)-plane the right hand side is a constant vector. As demonstrated in Figure 2.15,
the solutions of this system are spiraling towards the origin, which is an equilibrium point.
It can easily be proved that solutions that start with initial conditions (x1(0), x2(0)) can-
not stay away from the origin (0,0) for a time longer than 1

2(|x1(0)|+ |x2(0)|). However,

41

Figure 2.15: Solutions of the relay system in (2.19).

the solutions cannot reach the origin (0,0) without passing by an infinity of discrete
modes switchings; and as these discrete mode switchings would have to happen in finite
time, there must be an accumulation of events. This is a typical example of a hybrid
dynamical system with Zeno behavior.

Clearly, an event-driven method is in principle not able to carry out simulation across
the Zeno accumulation point. The simplest fixed-step discretization scheme for (2.19) is
the forward Euler scheme

x1,k+1 − x1,k
h

= −sgn(x1,k) + 2sgn(x2,k), (2.21)

x2,k+1 − x2,k
h

= −2sgn(x1,k)− sgn(x2,k), (2.22)

where h denotes the size of the time step and the variable xi,k|i=1,2 is intended to an
approximation of xi(t) for t = kh. With the interpretation (2.20) of the signum function,
the system (2.19) is non-deterministic. An alternative is to use an implicit scheme. Even
though it is essential to use implicit scheme in such case, it should be noted however that
implicit method requires an extra computation and is harder to implement in general.
In addition, choosing large step sizes of time can result in a solution that is inaccurate.

42

Therefore, it is strongly required to verify the results by reducing the time step size until
the solution of the system does not change anymore. Back to our example, the simplest
choice of such a scheme is the following:

x1,k+1 − x1,k
h

= −sgn(x1,k+1) + 2sgn(x2,k+1), (2.23)

x2,k+1 − x2,k
h

= −2sgn(x1,k+1)− sgn(x2,k+1). (2.24)

At each step, x1,k and x2,k are given and the equations (2.23) and (2.24) are to be
solved for x1,k+1 and x2,k+1. Equations (2.23) and (2.24) may be written as a system of
equalities and inequalities by introducing some extra variables. Simplifying notation a
bit by writing simply xi instead of xi,k+1 and x\i instead of xi,k we obtain the following
set of equations and inequalities:

x1 = x\1 − hu1 + 2hu2, (2.25)

x2 = x\2 − 2hu1 − hu2, (2.26)

where for i = 1, 2 : ui =


−1, when xi < 0,
+1, when xi > 0,
[−1,+1], when xi = 0.

(2.27)

This system is to be solved in the unknowns x1, x2, u1, and u2 for arbitrary given
x\1 and x\2; h is a parameter. It can be verified directly that for each positive value
of h and for each given (x\1, x

\
2) the above system has a unique solution; alternatively,

one may recognize the system in (2.25), (2.26), and (2.27) as an instance of the Linear
Complementarity Problem and infer the same result of general facts about the LCP.
Figure 2.16 shows the partitioning of the (x\1, x

\
2) plane that corresponds to the nine

possible ways in which the disjunctions in (2.27) can be satisfied. For instance, the
solution x1 = 0 and x2 = 0 is obtained from the values of (x\1, x

\
2) such that the solution

of the equation [
x\1
x\2

]
+ h

[
−1 2
−2 − 1

] [
u1
u2

]
=
[

0
0

]
(2.28)

satisfies |u1| < 1 and |u2| < 1. A simple matrix inversion shows this happens when

− 5h < x\1 + 2x\2 < 5h, −5h < −2x\1 + x\2 < 5h, (2.29)

which corresponds to the central area in Figure 2.16. For this discretized system, the
solution behaves like that of the original system except in the narrow strips which do
not influence the solution very much, and except in the central area where the solution
jumps to zero whereas the continuous system goes through mode changes at a higher and
higher pace. When the step size h shrinks to zero, then the solution of the discretized
system converges to the solution of the original system, including the continuation of

43

Figure 2.16: Partitioning of the plane induced by (2.23) and (2.24).

this solution by x(t) = 0 beyond the accumulation of event times. Note that the explicit
scheme (2.21) and (2.22) shows a rather different and less satisfactory behavior.

We can argue from the discussion of this example that at least in some cases and by
using suitably selected discretization schemes it is possible to get an accurate approxima-
tion of the trajectories of hybrid systems without capturing discrete events. However,
errors are introduced by not accurately detecting the transition times, and therefore
time-stepping schemes are often of low-order accuracy (i.e. with error estimates that
∼ O(∆t)q for a low q) and can completely miss events associated with low-velocity
collisions. Several commercially available implementations of time-stepping algorithms
are available, especially for the specific case of rigid body mechanics; see the review
by Brogliato and co-workers [58] and the Chapter 2 by Abadie in [56] for more details.
In addition, there are many questions to be asked when using a time-stepping method
such as: i) under what conditions it is possible to use a time-stepping method, ii) which
discretization methods are most suitable in general cases of hybrid systems models with
non-trivial dynamics, and iii) what the consequences of using a fixed time step rather
than a variable time step, keeping in mind that the latter provides a much more ac-
curate results of the numerical simulation and that the fixed step can easily lead to
unpredictable behavior.

44

2.4 Survey of Hybrid Simulation Tools

The most widely used modeling languages for hybrid dynamical systems are those pro-
vided by numerical simulation tools. They offer features like modularity, hierarchy and
a data-flow or equational syntax. In the following we review briefly some languages and
tools for hybrid simulators.

2.4.1 Simulink/Stateflow

Simulink2 is an integrated tool platform for modeling, simulation, code-generation and
test automation of hybrid dynamical systems. It has a graphical data-flow-based input
language for specifying the continuous and discrete behavior. Consider for example the
hybrid automaton model of a bouncing ball system as shown in Figure 2.17, where x1
denotes the height and x2 denotes the velocity of the ball, respectively. In Figure 2.18,
a Simulink block diagram model of this automaton is shown.

Figure 2.17: Bouncing ball: The hybrid automaton model.

Figure 2.18: Bouncing ball model: Simulink diagram.
2https://fr.mathworks.com/products/simulink.html

45

The simulation engine in Simulink handles the model design’s components by using
a semantic domain that is continuous-time domain as a unique domain whenever both
discrete-time and continuous-time components are included in the model. The simula-
tion engine has many integration algorithms, which are called solvers. They are based
on the ODE (ordinary differential equation) suite of Matlab. The ODE solver sophisti-
catedly uses an adaptive algorithm of variable time-step size. The time-step is usually
selected and tuned adaptively during the simulation. In this algorithm, truncation errors
are allowed when estimating the correct size of time-step, and a backtracking is done
whenever the error exceeds a given threshold usually defined by the user as a parameter
at the beginning of the simulation. The simulation algorithm in Simulink is conservative
in terms of allowing all signals of the system to be evaluated at the time-step specified
by the algorithm of integration if there is no event occurred at these time-steps. To im-
prove the efficiency of the simulation, there are many multi-rate integration algorithms
that have been developed for the ODEs. However, these proposed algorithms have an
overhead that can make them slower than the conservative original algorithm.

Figure 2.19 shows the simulation of the bouncing ball model as parametrized in
Figure 2.18, i.e. with x1(0) = 0, x2(0) = 10, and the elasticity coefficient being 0.8. With
non-adaptive algorithm of zero-crossing, the simulation gets stuck and terminates with
a simulation error; see Figure 2.20. This is because the simulation exceeds the default
limit of 1000 for the number of consecutive zero crossings allowed in Simulink. With
adaptive algorithm of zero-crossing, the simulation does not get stuck, but a significant
oscillation around the switching surface results after the Zeno point.

Figure 2.19: Bouncing ball simulation in Simulink: Simulation halt.

46

Figure 2.20: Bouncing ball simulation in Simulink: Error report.

Figure 2.21: Bouncing ball simulation in Simulink: Faulty simulation results.

47

Now if we set the elasticity coefficient to be 0.5 instead of 0.8, the simulation does not
terminate with a halt, but generates faulty results: The ball falls through the surface on
which it is bouncing and then it goes into a free-fall in the space below; see Figure 2.21.
This artifact is due to the fact that discrete events are missed during simulation because
of the accumulation of an infinite number of discrete transitions. In this case, events
which should be detected by the level crossing detector are missed. The level crossing
detector works with the solver in attempt to identify the precise point in time when
event occurs. However, when numbers become sufficiently small — just before the Zeno
limit point — they are dominated by numerical errors, and these errors cause discrete
events to be missed. Because the sign of the vertical position and of the vertical velocity
remain negative between two integration steps, a new bouncing event is not generated,
and the ball falls below the level of the bouncing surface.

Simulink also provides the option of using integration methods with fixed time-
step. Even though this can considerably simplify the simulator’s control part, it may
result however in many problems. For example, if the model is stiff, i.e. a model with
substantially different time constants, in this case the integration algorithm, for stability
reasons, must use a time step specified by the fastest mode [21]. This can obviously
yield an inefficient simulation performance when the fast modes are not allowed and
the system’s behavior is only determined by the slower modes. Furthermore, the time
constants need to be known in order to select appropriately the time step. Finally,
the inability to control the time step size may result in inaccurate simulation due to
inaccurate estimation of the time at which the discrete events occur, or even worth due
to missing the discrete events altogether.

Stateflow3 is an interactive tool for development and design for complex dynamical
systems, supervisory logic and control systems. Stateflow provides a visual modeling and
simulation environment for complex systems by using simultaneously the concept of finite
state machine, flow diagram, and Statecharts [22]. It is possible to integrate a Stateflow
model as a sub-model in a Simulink model. Simulink and Stateflow interact with each
other at the data and events boundaries. The simulation of an entire system’s model
consisting of both Stateflow and Simulink sub-models is realized by using the method
of co-simulation, that is, the control of the execution to the two simulation engines
(of the two tools) is released alternatively. As there is a change of control alternatively
between the two simulation engines of Stateflow and Simulink, there may be an overhead
that may even be significant when events are exchanged in a high frequency rate. One
alternative simulation technique would be using a unified simulation engine. However,
this may require an overhaul of the two tools and their semantic models.

Overall, by its symbolic simulation tools, Simulink/Stateflow provides a toolset pow-
erful enough for complex systems modeling and design. However, there is often a need
to subject Simulink models to a more rigorous and complex domain-specific analysis. In
addition, one of the main drawbacks in Simulink/Stateflow is the lack of their formal
semantics. Recently, there are many research attempts carried out in the the pur-
pose of formalizing the semantics and providing a support for translation from and to

3https://fr.mathworks.com/products/stateflow.html

48

Simulink/Stateflow, specially the design of automatic semantic translators that can be
interfaced to Simulink/Stateflow and translate their models into models of other mod-
eling and simulation tools. In [23], Caspi et al. discuss an approach for translating the
discrete-time part of models in Simulink into Lustre programs. The method proposed
in [23] consists of hierarchical bottom-up translation, clock inference, and type inference.
The implementation of this method has resulted in a prototype tool called S2L.

2.4.2 Modelica

Modelica4 is an object-oriented modeling and simulation language for physical hierar-
chical modeling [24,25,29,32,55] targeting efficient simulation. The advantages of using
object orientation in modeling and simulation is that it helps writing reusable models.
With this method it is possible to define a set of equations common in different dynam-
ical systems and then, depending on the real application, specialize a model. A great
feature in Modelica is the non-causality of modeling. In such modeling’s paradigm, it
is required from the modelers to specify directly the relationship between inputs and
outputs of the system in terms of a function, but rather they can define this relationship
in terms of variables and the equations they should satisfy. Modelica provides a for-
mal type system, where many primitive types are included like Real, Boolean, Integer,
and String. Similarly as Java and C++, there is also a possibility for building more
complicated types by defining classes. Some of the supported types of classes: blocks,
packages, connectors, records, types, and models. It is also possible in Modelica to spec-
ify models that are causal by defining functions which are in Modelica considered as a
special class and can have algorithm section as well as inputs and outputs. Loops and
control statements are also provided in Modelica. There exist two loop statements, for
and while, and two control statements, if and when.

However, hybrid systems modeling in Modelica is not that trivial. For example,
both reset maps and guard constraints can be defined in algorithm sections or equation
sections and they have very different meanings in these sections. When they are written
in algorithm sections, simultaneous events may be missed. A non-expert user of Modelica
may attempt to employ an if statement instead of a when statement. In this case the
meaning of the model may be completely different. The if statement has a “stateless”
expression meaning that it is tested without taking into account its previous value. For
the when statement, its expression evaluates to true when its value switches from false
to true. Indeed, by using the keyword edge, it is possible to transform a when into an
if statement, where one simply can transform a statement when expression then into
if edge(expression) then. An edge(expression) is true if the expression is true in
the current time step and was false in the previous time step.

Furthermore, with the non-causal modeling in Modelica, a discrete state at a given
time instant is typically not explicit but it is determined by a sequence of events that
occurred until that time instant. Also, discrete events and continuous states are defined
by a set of non-causal equations. Such two peculiarities make debugging in Modelica less

4https://www.modelica.org/

49

intuitive than other modeling and simulation tools like for instance HyVisual in which
models are causal.

There exist many industrial commercial environments for Modelica, such as Dymola5

(Dynamic Modeling Laboratory), and MathModelica6, which is a Modelica -based sim-
ulation environment embedded into Mathematica. Threre exist also OpenModelica7,
which is an open-source Modelica-based modeling and simulation environment devel-
oped by the Open Source Modelica Consortium (OSMC) and intended for industrial
and academic usage.

Figure 2.22 shows the simulation of the bouncing ball example in OpenModelica.
With any data set and simulation scenario the result is the same: The ball falls through
the surface on which it is bouncing and then it goes into a free-fall in the space below.
This artifact of generating faulty simulation results instead of terminating the simulation
with a halt is that Modelica tools always introduce a delay when executing a discrete
transition, so for model executions having an accumulation of an infinite number of
discrete transitions — as it is the case of geometric-Zeno models —, the simulation
continues because in this case it is Zeno-free by construction, but error-prone. The
faulty simulation results are due to numerical errors, making the error control phase —
performed by Modelica simulation tools for every discrete state transition — to be no
more valid because of the infinity of the discrete transitions at the Zeno limit point. For
the vertical position of the ball being negative, the model has more than one solution:
one that reverses the ball speed and another that continues decreasing x1.

Figure 2.22: Simulation of the bouncing ball model in OpenModelica: The time evolution
of the height x1 and velocity x2 of the bouncing ball.

5http://www.modelon.com/products/dymola/
6http://www.mathcore.com/products/mathmodelica/
7https://www.openmodelica.org/

50

OpenModelica Code of the Bouncing Ball Model:
01. model bouncing-ball

02. type Height = Real(unit = "m");

03. type Velocity = Real(unit = "m/s");

04. parameter Real lambda = 0.8;

05. parameter Height x10 = 0.0;

06. parameter Velocity x20 = 10.0;

07. Height x1; Velocity x2;

08. initial equation

09. x1 = x10; x2 = x20;

10. equation

11. der(x1) = x2;

12. der(x2) = -9.81;

13. when x1 <= 0 then reinit(x2, -lambda*pre(x2));

14. end when;

15. end bouncing-ball;

2.4.3 HyVisual

HyVisual is a simulator and block-diagram editor for hybrid systems and continuous-
time dynamical systems [33]. It is developed by the Ptolemy project [39,41], which is a
framework supporting the design of domain-specific tools. The continuous time behavior
of the systems, which is defined by ordinary differential equations (ODEs), is usually
represented in HyVisual as block-diagrams, and the discrete behavior of the system,
which is defined by finite state machines, is represented by bubble-and-arc diagrams.

HyVisual has a solid operational semantics and, in opposite to Simulink/Stateflow
and Modelica that completes the definition of their operational semantics by relying in
a particular simulator, HyVisual formally dos not assume any particular solver when
defining the traces that result from the model’s execution.

However, compared to Modelica, we can only define causal models in HyVisual, mod-
els that are based on a graphical syntax that is sometimes difficult to manipulate. That
is, when a model is highly complex, this can result in an increasing of the connections be-
tween the model blocks quadratically with the blocks, a scenario which makes sometimes
the model diagram quite difficult to edit and to manipulate.

Figure 2.23 shows the bouncing ball model in HyVisual. It is a modal model with
two states: init and free. During the time a modal model in a state, its behavior is
specified by the mode refinement. In this case, only the free state has a refinement;
see Figure 2.24. The init state is the initial state, which is used only for its outgoing
transition, and has set actions to initialize the ball model.

Figure 2.25 shows the simulation of the HyVisual bouncing ball model. Similarly
to the case shown in Figure 2.21 and Figure 2.22, the ball falls through the surface on
which it is bouncing and then it goes into a free-fall in the space below. This is because
the Level Crossing actor block has missed some events just before reaching the Zeno
limit point, because of numerical errors.

51

Figure 2.23: HyVisual bouncing ball model

Figure 2.24: HyVisual bouncing ball model: model of the ball’s dynamics during falling.

Figure 2.25: Simulation of the bouncing ball model in HyVisual.

52

2.4.4 Scicos

Scicos8 is a Scilab package with a graphical environment for modeling and simulation
of hybrid systems [46, 48]. Scilab9 (Scientific Laboratory) is a numerical computations
software package with a powerful computing environment for scientific and engineering
applications [52]. In Scicos, models can be constructed by composing functional blocks
that are predefined in the tool library. Scicos share with HyVisual the same property
of dealing only with causal models. The main application of using Scicos in modeling
and simulation is in embedded control: continuous-time blocks to model the physical
continuous behavior of the system, and other discrete blocks to model the controller’s
functionality. In addition. users in Scicos can generate executable C codes. Typically
the user generates an executable C code on the target hardware after simulating and
refining the model and the controller’s design if necessary. However, one of the drawbacks
of Scicos is that modifying an invariant condition or removing or adding a state to the
model could require a major change in the net-list of the model.

Consider again the bouncing ball model in Figure 2.17. The computational function
of a Scicos block realizing this model is the following:

1 #inc lude <s c i c o s / s c i c o s block4 . h>
2 void Bouncebal l (s c i c o s b lock ∗block , i n t f l a g)
3 {
4 double ∗y = GetOutPortPtrs (block , 1) ;
5 double ∗x = GetState (b lock) ;
6 double ∗h = &x [0] ;
7 double ∗v = &x [1] ;
8 double ∗xd = GetDerState (b lock) ;
9 double ∗hd = &xd [0] ;

10 double ∗vd = &xd [1] ;
11 double ∗ alpha = GetRparPtrs (b lock) ;
12 i f (f l a g==1){
13 ∗y = ∗h ;
14 } e l s e i f (f l a g==0){
15 ∗hd = ∗v ;
16 ∗vd = −9.8−∗alpha ∗(∗v) ∗(∗v) ∗(∗v) ;
17 } e l s e i f ((f l a g==2) & (GetNevIn (block)==−1)) {
18 i n t ∗ zcd=GetJrootPtrs (b lock) ;
19 i f (∗ zcd<0){
20 ∗v = −(∗v) ;
21 }
22 } e l s e i f (f l a g==9){
23 double ∗g=GetGPtrs (b lock) ;
24 ∗g = ∗h ;
25 }
26 }

The function jroot is used in order to switch the sign of the ball’s velocity only when
the ball crosses the zero level going downward. To use this function, first it should be

8http://www.scicos.org/
9http://www.scilab.org/fr

53

linked with Scilab. This can be done with the followingc Scilab commands (assuming
that the corresponding file is in the current directory):

1 i l i b_ f o r_ l i n k (’ Bouncebal l ’ , ’ bounceba l l . o ’ , [] , ’ c ’)
2 exec l oade r . s c e

The first command compiles the program and creates a shared library. The second
command links the shared library with Scilab. Figure 2.26 shows the diagram of the
bouncing ball model in Scicos including the block resulted from compilation. The name of
the simulation function is set to Bounceball, the function type to 4, the initial continuous-
time state to [0;10]. Figure 2.27 shows the simulation of the bouncing ball model in
Scicos. Scicos also gives faulty simulation results because of numerical errors. In such a
case, numerical errors make the test on the velocity’s sign by the function jroot to fail,
and therefore the ball bounces off the zero line and goes downward thereafter.

Figure 2.26: Bouncing ball model: Scicos diagram.

-3.5
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 1 2 3 4 5 6 7 8 9 10 11

Position

time (sec)

h
e
i
g
h
t

m
e
t
e
r
s

Figure 2.27: Simulation of the bouncing ball model in Scicos.

54

2.4.5 Acumen

Acumen10 is an experimental modeling and simulation environment for cyber-physical
systems and hybrid systems. It is built around a small, textual modeling language,
and was developed as an event-driven paradigm extension that adopts a similar flavor
to synchronous languages. That is, Acumen adds systems of functions or equations
on dense time for describing the purely cyber controllers and the physical environment
associated to them in synchronous formalisms. The standard mode for using the Acumen
environment is through the GUI, which makes it possible to: i) browse files in a given
directory, ii) load, edit, and save the text of a model, iii) run models, iv) view a plot, a
table, or a 3D visualization of variables over time, and v) read error messages reported
to the system. There are five types of statements in Acumen, namely: continuous
assignments, conditional (or guarded) statements, discrete assignments, iteration, and
sequences of statements. The semantics in Acumen is specified in terms of a series of
translations from a large source language to smaller subsets of the language. The core
language of Acumen is considered as the minimal subset that is needed to express all the
features of the full source language. For more details about the formal and operational
semantics of the Acumen language, the reader is referred to [67,77,83,87,101].

Let’s consider again the famous bouncing ball model. Such a model can be simulated
in Acumen with the following code:

01. model Main(simulator) =

02. initially

03. x = 0 , x’ = 10, x” = -9.81 , mode = "free-fall",

04. always

05. match mode with [

06. "free-fall" -> x”=-9.8,

07. if x <= 0 && x’ < 0 then x’+ = -0.8*x’,

08. mode + = "free-fall" noelse],

09. simulator.endTime+ = 15,

10. simulator.minTimeStep+ = 0.5*30

Figure 2.28 and Figure 2.29 show the simulation of the bouncing ball model in Acu-
men. As we can see, events are lost just before reaching the Zeno point, when a large
number of discrete transitions start to take place. This is because Acumen uses a fixed-
step integration scheme during simulation, and therefore it is Zeno-free by construction
(simulation does not get stuck), but it gives faulty results in this case, as events are
naturally missed in the neighborhood of the Zeno limit point. Adaptive time stepping al-
gorithm with event localization has been implemented in Acumen very recently11, where
the function simulator.minTimeStep+ can be used in this case for the adaptive time
stepping. However, adaptive time stepping algorithm also gives faulty results similar to
the results generated with fixed time stepping.

10http://www.acumen-language.org/
11https://bitbucket.org/effective/acumen-dev/overview

55

Figure 2.28: Simulation of the bouncing ball model in Acumen.

Figure 2.29: Simulation of the bouncing ball model in Acumen: Zoom on the neighbor-
hood of the Zeno limit point.

56

2.4.6 Zélus

Zélus12 is a data-flow synchronous programming language that is extended with hier-
archical hybrid automata resettable first-order ordinary differential equations. It was
mainly developed in the purpose of modeling and simulation of hybrid systems. The
originality of Zélus comes from extending a Lustre-like synchronous language13 with
ordinary differential equations [84–86]. This extension is conservative, meaning that a
synchronous program coded as hierarchical automata and data-flow equations can be
arbitrarily composed with ordinary differential equations in the same source code. Zélus
provides a combinations of continuous, discrete, and combinational elements. Concern-
ing discontinuities, they must occur on discrete clocks; any program that does not respect
this role is assumed to be rejected by the compiler. There is also static causality analysis
and type checking system in Zélus to ensure that there are no time leaks, that is, no
discontinuities occur during the continuous integration of the system since all discrete
transitions are assumed to be aligned with zero-crossing events. More details about the
formal rules and principles that underly the type system in Zélus can be found in [88,89].

Programs in Zélus are scheduled and translated statically into a sequential code
which runs in bounded time. Compilation of programs is done by source-to-source
translation to a small synchronous subset processed by a standard synchronous compiler
architecture. An off-the-shelf numerical solver is combined with the resulted code. Once
the source program is compiled and transformed into an executable program, a choice can
be taken to choose the zero-crossing detection algorithm as well as the numerical solver,
and also to set — from the command-line — their parameters. Zélus also provides
a modular framework which is based on OCaml first-class modules and functors to
integrate solvers. There are many features that are also available in Zélus such as the
possibility to use several numerical solvers, interfacing to the Sundials cvode solver [90],
as well as the possibility of using the “Illinois” false position technique for detecting
zero-crossing by using standard techniques [91] (Hermite interpolation, error estimation,
and Butcher tables).

Comparing with Simulink, the Zélus language is most distinguished by its type system
that regulates the compositions of the continuous discrete elements of the model, and
also the compilation technique based on source-to-source transformation. Furthermore,
in Simulink modelers who aim to compile their Simulink models into controllers are
advised to avoid some features; as for example to use function call triggers in order to
determine explicitly the order of execution of blocks. In contrast, Zélus has the benefit of
having a simple and consistent semantics, and the code generated from source-to-source
translations can be served for both embedded targets and simulation. In case of using the
code for embedded targets, there should be however a customization for specific targets.
The method of executing models in Zélus is based on alternating between sequences of
“run-to-completion” discrete actions and continuous phases, similar to SpaceEx14, and
Charon. The difference in Zélus is that it uses a synchronous paradigm which enforces a

12http://zelus.di.ens.fr/
13http://www-verimag.imag.fr/The-Lustre-Programming-Language.html?lang=fr
14http://spaceex.imag.fr/

57

strong discipline on causality — since the language ensures a single value per variable per
instant —, and also on communication through shared variables, which are considered
in Zélus as clocked streams.

The bouncing ball model in Figure 2.17 can be written in Zélus by the following
code:

1 (∗∗ Bouncing b a l l . ∗)
2

3 (∗ [ground x] r e tu rn s the po s i t i o n in [y] ∗)
4 l e t ground x = Flatwor ld . ground (x)
5 l e t ground_abs x = Flatwor ld . ground_abs (x)
6 l e t x_0 = 0 .0
7 l e t y_0 = 10 .0
8 l e t g = 9.81
9 l e t l o o s e = 0 .8

10 (∗ The bouncing b a l l ∗)
11 l e t hybrid b a l l (x , y_0) = (y , y_v , z) where
12 r e c
13 der y = y_v i n i t y_0
14 and
15 der y_v = −. g i n i t 0 . 0 r e s e t z −> (−. l o o s e ∗ . l a s t y_v)
16 and z = up(ground (x) −. y)
17 (∗ Main entry po int ∗)
18 l e t hybrid main () =
19 l e t (y , _, z) = ba l l (x_0 , y_0) in
20 pre sent (per iod (0 . 0 4)) | z −> Showball . show (x_0 , y fby y , x_0 , y) ;
21 ()

Figure 2.30 shows the simulation of the bouncing ball model in Zélus. The ball falls
through the bouncing surface due to limited floating-point precision and numerical errors
occurring when the ball’s trajectory is too close to the Zeno limit point.

Figure 2.30: Simulation of the bouncing ball model in Zélus.

58

Chapter 3

Chattering-Zeno Detection and
Avoidance

In this chapter, we investigate chattering-Zeno behavior of hybrid models in detail. We
start this chapter by giving a brief introduction to chattering-Zeno executions. To il-
lustrate the problem of simulating chattering-Zeno executions, we provide next a set of
examples and realistic case studies of chattering-Zeno models (Section 3.1.1), and then
we discuss the challenges when simulating their executions (Section 3.1.2). Afterwards,
we present in details Fillipov’s equivalent dynamics approach as a method proposed in
the literature to deal with chattering-Zeno, and we discuss the limitation of this approach
in treating chattering-Zeno (Section 3.2). Next, we introduce our computational frame-
work of chattering-Zeno freeness (Section 3.3), including treating chattering-Zeno when
it occurs on discontinuous surfaces intersections. Finally, we sketch two prototype imple-
mentations for applying the chattering-free computational framework to hybrid systems
simulation tools (Section 3.4). Simulation results as well as a performance analysis of
our proposed chattering-free technique and implementations are also presented.

3.1 Chattering-Zeno in Hybrid Systems

An execution of a hybrid system is called chattering-Zeno if it undergoes, in a finite
amount of time, an infinite repeated switching between different control actions or modes
of operation with opposed zero-crossings.

The main characteristic of chattering-Zeno behavior is that it causes the execution
to infinitely move back and forth between modes in a discrete fashion with infinitesimal
time spent between the repeated mode switchings.

Physically, chattering-Zeno occurs when nearly infinitesimally equal thresholds for
transition conditions of different modes are given and the system starts to oscillate
around them. Numerical errors may also lead to chattering-Zeno because infinitesimally
equal thresholds for transition conditions may be satisfied due to local errors.

In the following, we give examples of hybrid models exhibiting chattering-Zeno.

59

3.1.1 Examples of Chattering-Zeno Models

Example 3.1 (Discontinuous ODE)
Consider the following differential equation with discontinuous right hand side

ẋ =
{
u+ 1 for x ≤ 0,
u− 1 for x ≥ 0, with |u| < 1.

(3.1)

For an initial condition x(0) 6= 0 we can obtain a solution of the initial value problem

x =
{

(u+ 1)t+ a for x ≤ 0,
(u− 1)t+ b for x ≥ 0,

(3.2)

with constants a and b being determined by the initial condition. Adopting the “crossing”
semantics of zero-crossings, i.e. up(z):= z(ti−1) ≤ 0 and z(ti) > 0, with the zero-
crossing function z being the state variable x, leads to a hybrid automaton model of the
discontinuous ODE (3.1) as sketched Figure 3.1.

Notation 3.1 Denote A as the closure of an open subset A, and Si as the invariant
Inv(qi) of the discrete state qi ∈ Q.

In Figure 3.1 we have Inv(q1) = {x ∈ R : x ≤ 0}, Inv(q2) = {x ∈ R : x ≥ 0},
G(q1, q2) = {x ∈ R : x > 0}, and G(q2, q1) = {x ∈ R : x < 0}. Clearly, the ODE
(3.1) is discontinuous on a hyper surface Σ = G(q1, q2)∩ Inv(q1) = G(q2, q1)∩ Inv(q2) =
{x ∈ R : x = 0}, and the vector fields in the invariants S1 = {x ∈ R : x ≤ 0} and
S2 = {x ∈ R : x(t) ≥ 0} — on the both sides of the surface Σ — “oppose” each other.
Each solution initialized outside the hyper discontinuous surface Σ can reach it in finite
time. If the solution arrives at Σ it can not leave it, that is, the gradient of continuous-
time behavior in each one of two disjoint invariants is directed towards their common
hyper switching surface.

However, the chattering-execution of this hybrid automaton model has no standard
semantics. By applying the non-standard semantics to this automaton, its non-standard
behavior can be described as follows: Consider a non-standard discretization

xn+1 = xn + ∂(un + yn) (3.3)

of the system in a non-standard time domain T∂ (as defined in Section 2.2.6.2). In this
case, the evolution of the control variable yn is given by

yn+1 =


+1 if yn = +1 and xn ≤ 0,
−1 if yn = −1 and xn ≥ 0,
+1 if yn = −1 and xn < 0,
−1 if yn = +1 and xn > 0.

(3.4)

For all non-standards n,m such that n∂ and m∂ are not infinite it holds that (n −
m)∂ ≈ 0 implies un − um ≈ 0.

60

Figure 3.1: The hybrid automaton representing the discontinuous ODE (3.1).

It follows from (3.3) and (3.4) that: xn+2 < xn for all xn > 0; xn+2 > xn for all
xn < 0; xn+1 ≈ 0 for all xn ≈ 0; and xm ≈ 0 for all m ≥ n and xn ≈ 0.

We interpret a non-standard execution of hybrid automaton in Figure 3.1 as follow-
ing: When in either of the two adjacent invariants Si = Inv(qi)|i=1,2 on their common
hyper switching surface Σ an infinitesimal step ∂ causes a mode change. In any of the
two adjacent invariants, the gradient directs behavior to the other invariant, and after
an infinitesimal step in the current invariant a change to the other invariant occurs. The
solution starts then to exhibit on Σ a chattering-Zeno back and forth between the two
disjoint invariants S1 and S2.

Note that the hybrid automaton in Figure 3.1 behaves differently in the standard se-
mantics, for the simple reason that the guard of the exiting transition does not intersect
the invariant of the mode, and as a result, the time steps stop as soon as x becomes equal
to 0. This also applies to several examples mentioned in this thesis. All examples pre-
sented in this thesis must be understood in the framework of the non-standard semantics.

Example 3.2 (Stick-Slip System of Two Blocks Connected Vertically)
Consider a mechanical system consisting of two blocks of masses m and M as sketched
in Figure 3.2, where only the block of mass m is connected to a fixed support by a linear
spring of stiffness k, and is under the action of a sinusoidal external force u generated
by an actuator P . We denote xm and xM to the position of the small mass m and the
inertial mass M , respectively, and F to the tangential contact force on the frictional
interface between them. The friction between the inertial mass M and the ground is
neglected. The origin of the displacements xm and xM is taken where the spring is
unstretched. The external force u is modeled as a sine wave. The system’s state space
representation is given by

ẋ = f(x) =


ẋm = vm,

v̇m = 1
m(u− kxm −F),

ẋM = vM ,

v̇M = 1
MF ,

(3.5)

with x = [xm vm xM vM]T , where vm and vM are the velocities of the mass m and the
mass M , respectively.

61

Figure 3.2: Schematic of the Stick-Slip system in Example 3.2.

The friction force F is modeled phenomenologically, as a function of the relative
velocity vr = vm − vM between the two blocks

F =
{
−Fc, for vr ≤ 0,
+Fc, for vr ≥ 0,

(3.6)

where Fc is the level of the Coulomb friction.
Figure 3.3 shows the hybrid automaton of the system. Similarly to Example 3.1, the

system dynamics f(x) is discontinuous on a hyper surface

Σ = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x ∈ R4 : vm − vM = 0}

which separates the phase space into two disjoint invariants S1 = Inv(q1) = {x ∈ R4 :
vm − vM ≤ 0} and S2 = Inv(q2) = {x ∈ R4 : vm − vM ≥ 0}.

Figure 3.3: The hybrid automaton of the Stick-Slip system in Example 3.2.

62

In the physical system, the two masses stick and move together with vr = vm−vM = 0
when the force acting on the frictional interface between the two masses does not exceed
the level of Coulomb friction Fc.

However, in the hybrid model of the system, mimicking such scenario, the situation
becomes much more complicated because when M

m+M (u − kxm) < Fc we get v̇r > 0
when vr < 0 and v̇r < 0 when vr > 0. Roughly speaking, we have v̇m − v̇M = 1

m(u −
kxm) + m+M

m·M Fc > 0 when vm− vM < 0 and v̇m− v̇M = 1
m(u− kxm)− m+M

m·M Fc < 0 when
vm − vM > 0, so that the dynamics in the invariants S1 and S2 on both sides of Σ are
pointing towards Σ.

As a result, the solution trajectory starts to perform — on the hyper switching
surface Σ — an infinite number of repeated switchings back and forth between the two
invariants S1 and S2, such that in either of the two disjoint invariants Si = Inv(qi)|i=1,2
an infinitesimal step ∂ causes a mode change.

Both Example 3.1 and Example 3.2 represent the simplest case of chattering-Zeno,
where the system chatters between two different dynamics onto a single hyper switching
manifold.

In general, a system’s vector field could have several discontinuous switching surfaces,
and chattering-Zeno may occur on the intersection of finitely many switching manifolds.
Naturally, this may arise in systems having multiple discontinuous control variables.

The following examples demonstrate this special case of chattering-Zeno behavior on
discontinuous surfaces intersections.

Example 3.3 (ODE with Double Discontinuities)
Consider a discontinuous (x1, x2)-plane system with the dynamics

ẋ =


ẋ1 =

{
1 for x1 ≤ 0,
−1 for x1 ≥ 0,

ẋ2 =
{

1 for x2 ≤ 0,
−1 for x2 ≥ 0.

(3.7)

This system is a piecewise constant system, where in each quadrant of the (x1, x2)-
plane the right hand side is a constant vector.

This example represents the simplest case of chattering-Zeno on a switching intersec-
tion. The phase space is split into 22 disjoint invariants by two intersected discontinuous
surfaces Σ1 = {x ∈ R2 : x1 = 0} and Σ2 = {x ∈ R2 : x2 = 0}.

The finite time convergence to the origin (0,0) is easy to establish since for i = 1, 2
we have ẋi > 0 when xi < 0 and ẋi < 0 when xi > 0.

This system also has an infinity of spontaneous switches from the origin, that is,
there is an infinity of trajectories which start with the initial data (0,0) and, except for
the trivial solution that stays at the origin, they all cross infinitely the switching surfaces
Σ1 and Σ2 in a finite amount of time.

63

Example 3.4 (Stick-Slip System of Three Blocks Connected Vertically)
Consider a mechanical Stick-Slip system of three blocks and two frictional interfaces as
sketched in Figure 3.4. Similarly to Example 3.1, we denote xm, xM1 , and xM2 to the
position of the small mass m and the two inertial masses M1 and M2 respectively.

We denote F1 to the tangential contact force on the frictional interface between
the small mass m and the inertial mass M1, and F2 to the tangential contact force
on the frictional interface between the small mass m and the inertial mass M2. The
friction between the inertial mass M2 and the ground is neglected. The origin of the
displacements xm, xM1 , and xM2 is taken where the spring is unstretched. For x =
[xm vm xM1 vM1 xM2 vM2]T , the system’s dynamics is given by

ẋ = f(x) =



ẋm = vm,

v̇m = 1
m(u− kxm −F1 −F2),

ẋM1 = vM1 ,

v̇M1 = 1
M1
F1,

ẋM2 = vM2 ,

v̇M2 = 1
M2
F2,

(3.8)

where vm, vM1 , and vM2 are the velocities of the blocks. The friction forces are given by

F1 =
{
−Fc1 , for vr1 ≤ 0,
+Fc1 , for vr1 ≥ 0,

F2 =
{
−Fc2 , for vr2 ≤ 0,
+Fc2 , for vr2 ≥ 0,

(3.9)

where Fc1 and Fc2 are the levels of the Coulomb friction, vr1 = vm − vM1 , and vr2 =
vm − vM2 . Figure 3.5 shows the hybrid automaton model of the system. This system is
discontinuous on two intersected hyper switching manifolds Σ1,Σ2 ⊆ R6 defined as

Σ1 = Σ11 ∪ Σ12 = {x ∈ R6 : vr1 = vm − vM1 = 0},

Σ2 = Σ21 ∪ Σ22 = {x ∈ R6 : vr2 = vm − vM2 = 0},

where

Σ11 = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x ∈ R6 : vr1 = 0 ∧ vr2 ≥ 0},

Σ12 = G(q3, q4) ∩ Inv(q3) = G(q4, q3) ∩ Inv(q4) = {x ∈ R6 : vr1 = 0 ∧ vr2 ≤ 0},

Σ21 = G(q1, q4) ∩ Inv(q1) = G(q4, q1) ∩ Inv(q4) = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 = 0},

Σ21 = G(q2, q3) ∩ Inv(q2) = G(q3, q2) ∩ Inv(q3) = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 = 0}.

As demonstrated in Figure 3.6, the intersection ∆ = Σ1 ∩ Σ2 = {x ∈ R6 : vr1 =
0 ∧ vr2 = 0} splits the phase space into 22 disjoint invariants S1, S2, S3, and S4 where

S1 = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 ≥ 0}, S2 = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 ≥ 0},

S3 = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 ≤ 0}, S4 = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 ≤ 0}.

64

Figure 3.4: Schematic of the Stick-Slip system in Example 3.4.

Figure 3.5: The hybrid automaton of the Stick-Slip system in Example 3.4.

65

Figure 3.6: The state space of the Stick-Slip system in Example 3.4.

Let Σ = Σ1 ∪ Σ2 be the entire discontinuity region in the model’s phase space. A
switching between the four different vector fields in S1, S2, S3, and S4 takes place in
the neighborhood of the intersection ∆. A trajectory that crosses Σ transversally will
switch instantaneously between these vector fields without any specific form of flow vec-
tor field on Σ. The only alternative is that the model exhibits a chattering-Zeno on Σ
when either on one of the frictional interfaces or on both of them the applied tangential
friction force acting on the interface is lower than the level of the corresponding coulomb
friction. This yields: i) a chattering-Zeno on Σ1 either between S1 and S2 or between S3
and S4, ii) a chattering-Zeno on Σ2 either between S1 and S4 or between S2 and S3, or
iii) a chattering-Zeno on the intersection ∆ between the invariants S1, S2, S3, and S4.

Example 3.5 (Spring-Block Chain on a Conveyor Belt)
Consider a mechanical system consisting of three blocks of masses m1, m2, and m3 on a
moving belt with velocity vd, as sketched in Figure 3.7. The three blocks are connected
along a line by two linear springs of stiffness k12 and k23, and connected to a fix support
by to linear springs of stiffness k1, k2, and k3. The system’s dynamics is given by

ẋ = f(x) =



ẋm1 = vm1 ,

v̇m1 = 1
m1

(u1 − k1xm1 −F1),
ẋm2 = vm2 ,

v̇m2 = 1
m2

(u2 − k2xm2 −F2),
ẋm3 = vm3 ,

v̇m3 = 1
m3

(u3 − k3xm3 −F3),

(3.10)

66

Figure 3.7: Schematic of the Spring-Block chain system in Example 3.5.

with
u1 = k12(xm2 − xm1) + k13(xm3 − xm1),

u2 = k12(xm1 − xm2) + k23(xm3 − xm2),

u3 = k13(xm1 − xm3) + k23(xm2 − xm3),

where vri = vmi − vd. We denote xm1 , xm2 , and xm3 to the position of the masses m1,
m2, and m3; F1, F2, and F3 to the tangential contact force on the frictional interfaces
between the moving belt and the three masses m1, m2, and m3 respectively, where for
all i ∈ {1, 2, 3} we have Fi = −Fci if vri ≤ 0 and Fi = +Fci if vri ≥ 0. This system is
discontinuous on three hyper switching manifolds Σ1,Σ2,Σ3 ∈ R5 given by

Σ1 = Σ11 ∪ Σ12 ∪ Σ13 ∪ Σ14 = {x ∈ R6 : vr1 = vm1 − vd = 0},

Σ2 = Σ21 ∪ Σ22 ∪ Σ23 ∪ Σ24 = {x ∈ R6 : vr1 = vm2 − vd = 0},

Σ3 = Σ31 ∪ Σ32 ∪ Σ33 ∪ Σ34 = {x ∈ R6 : vr1 = vm3 − vd = 0},

where

Σ11 = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x : vr1 = 0 ∧ vr2 ≥ 0 ∧ vr3 ≥ 0},

Σ12 = G(q3, q4) ∩ Inv(q3) = G(q4, q3) ∩ Inv(q4) = {x : vr1 = 0 ∧ vr2 ≤ 0 ∧ vr3 ≥ 0},
Σ13 = G(q5, q6) ∩ Inv(q5) = G(q6, q5) ∩ Inv(q6) = {x : vr1 = 0 ∧ vr2 ≥ 0 ∧ vr3 ≤ 0},
Σ14 = G(q7, q8) ∩ Inv(q7) = G(q8, q7) ∩ Inv(q8) = {x : vr1 = 0 ∧ vr2 ≤ 0 ∧ vr3 ≤ 0},
Σ21 = G(q1, q4) ∩ Inv(q1) = G(q4, q1) ∩ Inv(q4) = {x : vr2 = 0 ∧ vr1 ≥ 0 ∧ vr3 ≥ 0},
Σ22 = G(q2, q3) ∩ Inv(q2) = G(q3, q2) ∩ Inv(q3) = {x : vr2 = 0 ∧ vr1 ≤ 0 ∧ vr3 ≥ 0},
Σ23 = G(q5, q8) ∩ Inv(q5) = G(q8, q5) ∩ Inv(q8) = {x : vr2 = 0 ∧ vr1 ≥ 0 ∧ vr3 ≤ 0},
Σ24 = G(q6, q7) ∩ Inv(q6) = G(q7, q6) ∩ Inv(q7) = {x : vr2 = 0 ∧ vr1 ≤ 0 ∧ vr3 ≤ 0},
Σ31 = G(q1, q5) ∩ Inv(q1) = G(q5, q1) ∩ Inv(q5) = {x : vr3 = 0 ∧ vr1 ≥ 0 ∧ vr2 ≥ 0},
Σ32 = G(q2, q6) ∩ Inv(q2) = G(q6, q2) ∩ Inv(q6) = {x : vr3 = 0 ∧ vr1 ≤ 0 ∧ vr2 ≥ 0},

67

Σ33 = G(q4, q8) ∩ Inv(q4) = G(q8, q4) ∩ Inv(q8) = {x : vr3 = 0 ∧ vr1 ≥ 0 ∧ vr2 ≤ 0},

Σ34 = G(q3, q7) ∩ Inv(q3) = G(q7, q3) ∩ Inv(q7) = {x : vr3 = 0 ∧ vr1 ≤ 0 ∧ vr2 ≤ 0}.

Figure 3.8 shows the hybrid automaton model of the system.

Figure 3.8: The hybrid automaton of the Spring-Block chain system in Example 3.5.

68

Figure 3.9: The state space of the Spring-Block chain system in Example 3.5.

In addition to the R5-dimensional switching manifolds Σ1, Σ2, and Σ3, the disconti-
nuity region includes three R4-dimensional switching intersections Σi ∩ Σj |i,j∈{1,2,3},i 6=j ,
and a single R3-dimensional switching intersection (point) ∆ = ⋂3

k=1 Σk.
As demonstrated in Figure 3.9, the intersection ∆ = Σ1∩Σ2∩Σ3 = {x ∈ R6 : vr1 =

0 ∧ vr2 = 0 ∧ vr3 = 0} splits the phase space into 23 disjoint invariants

S1 = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 ≥ 0 ∧ vr3 ≥ 0},

S2 = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 ≥ 0 ∧ vr3 ≥ 0},
S3 = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 ≤ 0 ∧ vr3 ≥ 0},
S4 = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 ≤ 0 ∧ vr3 ≥ 0},
S5 = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 ≥ 0 ∧ vr3 ≤ 0},
S6 = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 ≥ 0 ∧ vr3 ≤ 0},
S7 = {x ∈ R6 : vr1 ≤ 0 ∧ vr2 ≤ 0 ∧ vr3 ≤ 0},
S8 = {x ∈ R6 : vr1 ≥ 0 ∧ vr2 ≤ 0 ∧ vr3 ≤ 0}.

A chattering-Zeno occurs on the discontinuous surface Σi if the applied friction force
on the frictional interface between the block of mass mi and the moving belt is lower
than the corresponding level of Coulomb friction Fci . When a chattering-Zeno occurs on
a switching intersection, the solution trajectory moves infinitely back and force between
all the invariants in the neighborhood of the intersection.

69

3.1.2 Challenges of Simulating Chattering-Zeno Models

As we mentioned in Section 1.2.2, hybrid systems simulation tools struggle when simu-
lating chattering-Zeno models. We distinguish two different situations:

1. Variable step simulation: When simulating a chattering-Zeno model with vari-
able step simulation, the root finding to locate the exact time of occurrence of
the chattering-Zeno event breaks down the numerical integration. The simulation
inevitably halts at the chattering-Zeno limit point, as infinitely many discrete tran-
sitions would need to be simulated.
For example, consider the numerical simulation of Example 3.2 (the case of chat-
tering on a single switching manifold) and Example 3.3 (the case of chattering on
switching intersection) with a variable step simulation in OpenModelica simulation
tool. When simulating the model of the system in Example 3.2 in OpenModel-
ica with a variable step simulation for a data set m = M = 1[kg], Fc = 0.4[N],
ω = 0.055[rad/sec], k = 1[N ·m−1], x0 = [1 1 1 0]T , the simulation effectively ter-
minates with a halt when the solution reaches the chattering-Zeno point at time
2.895. OpenModelica reports the following message: {Chattering detected around
time 2.89522335659..2.89522338163 (100 state events in a row with a total time
delta less than the step size 0.0012)}.

OpenModelica Code of Example 3.2:
01. model example-3.2

02. parameter Real Fc=0.4, w=0.055,k=1,m=1,M=1;

03. parameter Real xm0=1, vm0=1, xM0=1, vM0=0;

04. Real xm,vm,xM,vM,F;

05. initial equation

06. xm = xm0; vm = vm0; xM = xM0; vM = vM0; F = Fc * sign(vm - vM);

07. equation

08. when vm - vM < 0 then

09. F = -Fc;

10. elsewhen vm - vM > 0 then

11. F = Fc;

12. end when;

13. der(xm) = vm;

14. der(vm) = sin(w) - k * xm - F;

15. der(xM) = vM;

16. der(vM) = F;

17. end example-3.2;

Similarly, when simulating the model in Example 3.3 with variable step simu-
lation, the simulation gets stuck at time 1.0. In OpenModelica, the simula-
tion halts with the following error message: Chattering detected around time
1.0000000001..1.0000000199 (100 state events in a row with a total time delta
less than the step size 0.008).

70

OpenModelica Code of Example 3.3:
01. model example-3.3

02. parameter Real x10 = 1, x20 = 2;

03. Real x1,x2, u1, u2;

04. initial equation

05. x1 = x10; x2 = x20; u1 = -sign(x1); u2 = -sign(x2);

06. equation

07. when x1 < 0 then

08. u1 = 1;

09. elsewhen x1 > 0 then

10. u1 = -1;

11. end when;

12. when x2 < 0 then

13. u2 = 1;

14. elsewhen x2 > 0 then

15. u2 = -1;

16. end when;

17. der(x1) = u1; der(x2) = u2;

18. end example-3.3;

2. Fixed step simulation: When simulating a chattering-Zeno model with fixed
step simulation, the simulation does not terminate with a halt, as fixed step simu-
lation has the advantage of being Zeno-free by construction, i.e. the time advances
by a constant value ignoring the localization of the events. However this also
produces wrong simulation results whenever the solution signal activity is higher
than the fixed sampling frequency. Events associated with jumps to completely
different dynamics could be missed, which results a behavior deviant from the one
expected. Furthermore, the smaller the fixed step size the higher is the frequency
of the fast oscillation around the switching surface, and the greater is then the
time consumption of the simulation process, i.e. simulation becomes excessively
slow. Consider for example the fixed step simulation of Example 3.2 and Example
3.3 in Acumen. Figure 3.10 shows the simulation of Example 3.2 in Acumen with
a fixed time step of 0.0012, and the same data above.

Acumen Code of Example 3.2:
01. model Main(simulator) =

02. initially

03. xm = 1, vm = 1, xM = 1, vM = 0, xm’= 0, xM’= 0, vm’= 0, vM’= 0,

04. Fc = 0.4, w = 0.055, vr = 0, k = 1, m = 1, M = 1, F = 0

05. always xm’ = vm, vm’ = (1/m) * (sin(w) - (k * xm) - F),

06. xM’ = vM, vM’ = (1/M) * F,

07. if vm - vM > 0 then F = Fc

08. elseif vm - vM < 0 then F = -Fc noelse,

09. simulator.timeStep += 0.0012, simulator.endTime += 10

71

0 1 2 3 4 5 6 7 8 9 10
time

-0.5

0

0.5

1

th
e

re
la

tiv
e

ve
lo

ci
ty

 v
r,

an
d

th
e

fri
ct

io
n

fo
rc

e
F A plot of the relative velocity vr and the friction force F versus time t

F versus t
vr versus t

2.8 3 3.2 3.4 3.6 3.8 4
time

-3

-2

-1

0

1

2

3

th
e

re
la

tiv
e

ve
lo

ci
ty

 v
r,

an
d

th
e

fri
ct

io
n

fo
rc

e
F ×10-3 A plot of the relative velocity vr and the friction force F versus time t

F versus t
vr versus t

Figure 3.10: Fixed time step simulation of Example 3.2 in Acumen. Up: time evolution
of the event function and the control input. Down: zoom on the first chattering-Zeno
window around the switching surface Σ = {x ∈ R4 : vr = vm − vM = 0}.

Figure 3.11 shows the fixed time step simulation of Example 3.3 in Acumen for a
step size of 0.0012, and initial conditions x1(0) = 1, x2(0) = 2.
Acumen Code of Example 3.3:
01. model Main(simulator) =

02. initially x1 = 1, x1’ = 0, x2 = 2, x2’ = 0, u1 = 0, u2 = 0

03. always x1’ = u1 - (2*u1*u2*u2), x2’ = u2 - (2*u2*u1*u1),

04. if x1 > 0 then u1 = 1 elseif x1 < 0 then u1 = -1 noelse,

05. if x2 > 0 then u2 = 1

06. elseif x2 < 0 then u2 = -1 noelse,

07. simulator.timeStep += 0.0012,

08. simulator.endTime += 4

72

0 0.5 1 1.5 2 2.5 3 3.5 4
time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

th
e

st
at

e
x1

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
1)

A plot of x1 and der(x1) versus time t

der(x1) versus t
x1 vr versus t

0 0.5 1 1.5 2 2.5 3 3.5 4
time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

th
e

st
at

e
x2

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
2)

A plot of x2 and der(x2) versus time t

der(x2) versus t
x2 vr versus t

0.95 1 1.05 1.1 1.15 1.2
time

-10

-5

0

5

th
e

st
at

e
x1

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
1)

×10-4 A plot of x1 and der(x1) versus time t

der(x1) versus t
x1 vr versus t

1.95 2 2.05 2.1 2.15 2.2
time

-5

0

5

10

th
e

st
at

e
x2

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
2)

×10-4 A plot of x2 and der(x2) versus time t

der(x2) versus t
x2 vr versus t

Figure 3.11: Fixed time step simulation of Example 3.3 in Acumen. Up: time evolution
of the states and their derivatives. Down: zoom on the chattering-Zeno windows around
Σ1 = {x ∈ R2 : x1 = 0} and the origin ∆ = {x ∈ R2 : x1 = 0 ∧ x2 = 0}.

Many methods have been proposed in the literature to deal with models exhibiting
chattering-Zeno behavior.

One of the proposed methods to add a small hysteresis ε to the event functions which
represent the switching surfaces. In Section 1.3 we discussed the disadvantages of this
approach.

Another proposed method to deal with chattering-Zeno is based on sliding mode
approach, that is, detecting regions on the switching manifold in which chattering-Zeno
occurs and then forcing the solution trajectory to slide on the manifold in these regions.
While the fast infinite switching between modes occurs, a smooth sliding motion along
the switching surface may emerge while eliminating the fast chattering. Differential
Inclusions (DIs) of the Filippov type (the so-called equivalent dynamics) is a method
that was developed by Filippov for formulating the equations for flows that slide on the
chattering-Zeno portions of switching surfaces.

In the following section, we give an introduction to the sliding mode approach, and
then we discuss the limitations of the Filippov method.

73

3.2 Sliding Mode Approach
We restrict ourselves to abstracted models of hybrid systems where the system’s dy-
namics is discontinuous on a finite number of hyper switching surfaces. Firstly, we start
with the simplest case of chattering-Zeno where the model solution trajectory chatters
between two different dynamics on a single switching surface, and then we discuss the
general case of chattering-Zeno where chattering-Zeno occurs on switching surfaces in-
tersections between more than two dynamics.

3.2.1 The Case of Chattering-Zeno Between Two Dynamics

This is the case of a hybrid automaton model of two locations, where the state space Rn
of the system is split into two disjoint invariants S1 and S2 by a hyper switching surface
Σ such that Rn = S1 ∪ Σ ∪ S2; see Figure 3.12. The hyper surface Σ is defined by a
scalar continuous function γ(x) where the state x is in Σ when γ(x) = 0. The invariants
S1 and S2 and the hyper surface Σ can be formulated as

Σ = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x ∈ Rn : γ(x) = 0}, (3.11)

S1 = Inv(q1) = {x ∈ Rn : γ(x) ≤ 0}, (3.12)

S2 = Inv(q2) = {x ∈ Rn : γ(x) ≥ 0}. (3.13)

The dynamics of the system in the state space is given by

ẋ = f(x) =
{
f1(x), for x ∈ S1,
f2(x), for x ∈ S2,

(3.14)

where the vector field f1, respectively f2, is assumed to be Lipschitz continuous on the
invariant S1, respectively S2, to ensure that the solution within S1 and S2 exists and is
unique.

Figure 3.12: A hybrid automaton with two modes and a hyper switching surface.

74

Figure 3.13: The normal n orthogonal to the tangent plane Tx(Σ) and normal to Σ.

Notation 3.2 Denote x? to a discontinuity point in Σ, and x• to the limit point
approaching x? from a small neighborhood in the invariant Si.

The normal n perpendicular to Σ (Figure 3.13) is given then for all x? by

n(x?) = ∇γ(x?)
||∇γ(x?)|| , ∇γ(x?) = ∂γ(x?)

∂x
, (3.15)

where we assume that γ is in C1(Rn) and that ∂γ(x?)
∂x 6= 0 for all x?.

Let fN1 (x?) and fN2 (x?) be the normal projections of dynamics f1 and f2 at the
discontinuity point x? ∈ Σ. The normal projectionsfN1 (x?) and fN2 (x?) are given by

fN1 (x?) = n(x?)T · f1(x•), x• ∈ S1, (3.16)

fN2 (x?) = n(x?)T · f2(x•), x• ∈ S2. (3.17)
From a geometric point of view, the normal projections fN1 (x?) and fN2 (x?) represent

the limits f+
1 (x?) and f+

2 (x?) as the point x? ∈ Σ is approached from opposite sides of
the tangent plane to Σ, that is

fN1 (x?) = f+
1 (x?) = lim

x•∈S1→x?∈Σ
x•, (3.18)

fN2 (x?) = f+
2 (x?) = lim

x•∈S2→x?∈Σ
x•. (3.19)

Upon hitting the hyper discontinuous surface Σ, the behavior of the solution trajec-
tory is characterized by the directions of the vector fields on both sides of the Σ. We
distinguish between the following three different cases:

1. If the vector fields — in the invariants — on both sides of the hyper switching
surface Σ have the same direction, that is

fN1 (x?) · fN2 (x?) > 0, (3.20)

then the solution hits Σ and passes through the discontinuity; see Figure 3.14. Any
solution x(t) initialized outside Σ and hits Σ transversally exists and is unique.

75

Figure 3.14: The case in which the solution trajectory crosses Σ.

Figure 3.15: The case in which the solution trajectory crosses Σ.

Geometrically, if the line segment joining the endpoints of fN1 (x?) and fN2 (x?)
is on one side of the tangential plane Tx(Σ), then the solution crosses the hyper
switching surface Σ to the region to which belong the line; see Figure 3.15.

2. If the vector fields — in the invariants — on both sides of the hyper switching
surface Σ have opposite directions, then two scenarios are possible:

(a) Chattering-Zeno: If the normal projections fN1 (x?) and fN2 (x?) have op-
posite signs but pointing towards the surface, that is

fN1 (x?) · fN2 (x?) < 0, (3.21)

fNi (x?) · γ(x•) < 0|i∈{1,2}, x• ∈ Si, (3.22)
then the solution after hitting Σ has a tendency to remain on Σ and move
along it. This is the case in which chattering-Zeno occurs, as the solution is
pushed from both sides of the switching surface Σ; see Figure 3.16.

76

Figure 3.16: The case in which a chattering-Zeno occurs on Σ.

Figure 3.17: The case of non-uniqueness of solution on Σ.

(b) Non-determinism: A special case is when the normal projections fN1 (x(t))
and fN2 (x(t)) have opposite signs but pointing out of Σ, that is

fN1 (x?) · fN2 (x?) < 0, (3.23)

fNi (x?) · γ(x•) > 0|i∈{1,2}, x• ∈ Si. (3.24)

In this case, a solution which starts close to Σ will move away from it. But a
solution emanating from Σ may either stay on Σ or go off the surface Σ into
the invariants S1 or S2; see Figure 3.17. Such situations lead to non-unique
solutions, and hence a non-deterministic hybrid model. That is, the solution
still exists but is not unique in forward time.

77

Figure 3.18: The case in which the solution trajectory chatters on Σ.

Clearly, when the normal projections fN1 (x?) and fN2 (x?) have opposite signs, the
line segment joining the endpoints of fN1 (x?) and fN2 (x?) intersects the tangential
plane Tx(Σ); see Figure 3.18 for the case of chattering-Zeno.

3. The case in which fN1 (x?) · fN2 (x?) = 0 indicates that one of the vector fields is
tangential to the switching surface Σ, that is, one of the normal projections starts
to change its sign at x? ∈ Σ. In this case x? ∈ Σ is called tangential discontinuity
point. A solution which is initialized at a tangential discontinuity point or hits it
coming from an invariant Si will cross Σ and evolve either in the invariant Sj or
in the invariant Si. A solution that hits a tangential discontinuity point during
sliding on Σ will exit from sliding tangentially and evolve in one of the disjoint
invariants Si or Sj ; see Figure 3.19. Roughly speaking, a smooth exit from sliding
always takes place on tangential exit points, and therefore such points form the
borders of the sliding region, and can be considered as points that belong to the
crossing region on Σ. In Figure 3.19, the sets of tangential discontinuity points ζ1
and ζ2 are given by

ζ1 = {x ∈ Σ : fN1 (x) = 0}, (3.25)
ζ2 = {x ∈ Σ : fN2 (x) = 0}. (3.26)

Definition 3.3 (Crossing Region) The crossing region on the hyper switching surface
Σ = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x? ∈ Rn : γ(x?) = 0} of a hybrid
automaton model with dynamics of the form

ẋ = f(x) =
{
f1(x), for γ(x) ≤ 0,
f2(x), for γ(x) ≥ 0,

is given by that portion Σc ⊆ Σ for which fN1 (x?) · fN2 (x?) ≥ 0, x? ∈ Σ, where

fNi (x?) =
(∇γ(x?)
||∇γ(x?)||

)T
· fi(x•), x• 6∈ Σ→ x? ∈ Σ.

78

Figure 3.19: Tangential discontinuity points of crossing or exit from sliding.

Definition 3.4 (Sliding Region) The sliding region on the hyper switching surface
Σ = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x? ∈ Rn : γ(x?) = 0} of a hybrid
automaton model with dynamics of the form

ẋ = f(x) =
{
f1(x), for γ(x) ≤ 0,
f2(x), for γ(x) ≥ 0,

is given by that portion Σs ⊆ Σ for which: i) fN1 (x?) · fN2 (x?) < 0, x? ∈ Σ, and ii)
fNi (x?) · γ(x•) < 0, where

fNi (x?) =
(∇γ(x?)
||∇γ(x?)||

)T
· fi(x•), x• 6∈ Σ→ x? ∈ Σ.

Yet, it is not clear how the dynamics is defined on the hyper switching surface Σ.
That is, the system’s dynamics in (3.14) does not define a vector field that can be used
to represent sliding on the surface Σ when chattering-Zeno occurs on it. This problem
can be overcome by replacing (3.14) by a set-valued extension F (x) which includes the
convex set with two right-hand sides f1(x) and f2(x)

ẋ ∈ F (x) =


f1(x), for x ∈ S1,

co{f1(x), f2(x)} = {(1− α)f1(x) + αf2(x)}, for x ∈ Σ,
f2(x), for x ∈ S2,

(3.27)

79

where the parameter α is a coefficient which defines the convex combination and has no
physical meaning. This parameter α should satisfy α = [0, 1] to ensure sliding on Σ.

The extension of (3.14) into a convex differential inclusion (3.27) is known as Filip-
pov’s convex method. According to Fillipov, when chattering-Zeno occurs on the hyper
switching surface Σ, the dynamics of the system should be such that the evolution of
the system takes place on that surface. Thus, in the sliding region Σs (Definition 3.4)
the sliding dynamics fs(x) should satisfy ẋ = fs(x) ∈ co{f1(x), f2(x)} for every x ∈ Σs.
To force the solution to be in a sliding motion we impose γ̇(x) = 0 for x ∈ Σs. That is,
the normal projection of the sliding dynamics onto Σ is equal to 0

fNs (x) =
(∇γ(x)
||∇γ(x)||

)T
· co{f1(x), f2(x)} = 0, (3.28)

which yields

α = fN1 (x)
fN1 (x)− fN2 (x)

= ∇γ(x)T · f1(x)
∇γ(x)T · (f1(x)− f2(x)) , (3.29)

and therefore the sliding vector field fs(x) is given by

ẋ = fs(x) = fN1 (x)f2(x)− fN2 (x)f1(x)
fN1 (x)− fN2 (x)

. (3.30)

It is obvious from the signs of normal projections fNi (x) that the value of the pa-
rameter α in (3.29) always satisfies α ∈ (0, 1) in the sliding region Σs, so that the sliding
vector field fs(x) is always tangential to the surface Σ in this region. The solution on the
switching surface in this case is known as a “sliding motion” or “sliding mode” solution.
Clearly, the values α = 0 and α = 1 are the borders of the sliding region, i.e. the points
of tangential exit from sliding.

From a geometric point of view, the end point of the vector field fs(x) in (3.30) lies on
the intersection of the tangent plane Tx(Σ) with a linear segment joining the endpoints
of the the normal projections fN1 (x) and fN2 (x); see Figure 3.20. Existence can be
guaranteed with the following notion of upper semi-continuity of set-valued functions.

Definition 3.5 (Upper Semi-Continuity) A set valued function F (x) is upper semi-
continuous in x if for y → x

supa∈F (y)infb∈F (x)|a− b| → 0 (3.31)

The following theorem is proven in Aubin and Cellina [19] (theorem 3, page 98):

Theorem 3.6 (Existence of Solution of a Differential Inclusion) Let F be a
set-valued function. We assume that F is upper semi-continuous, non-empty, closed,
convex and bounded for all x ∈ Rn. Then for each x0 ∈ Rn there exists a τ > 0 and
an absolutely continuous function x(t) defined on [0, τ], which is a solution of the initial
value problem

ẋ ∈ F (x), x(0) = x0. (3.32)

80

Figure 3.20: A geometric sketch of the sliding vector field.

Filippov’s convex method together with the above existence theorem defines the solution
in the sense of Filippov for the discontinuous dynamics in (3.14).

Definition 3.7 (Solution in The Sense of Filippov) An absolute continuous function
x(t) : [0, τ] → Rn is said to be a solution of ẋ = f(x) in (3.14) in the sense of Filippov
if for all t ∈ [0, τ] it holds that ẋ ∈ F (x), where the differential inclusion F (x) in (3.27)
is the closed convex hull of all the limits of f(x).

Remark 3.8 If the solution x(t) is in a region where the vector field is continuous,
i.e. an invariant Si, then of course it must hold that F (x(t)) = fi(x(t)). If the solution
x(t) slides on a hyper surface of discontinuity Σ, then ẋ(t) ∈ co{fi(x(t))}. The solution
proposed by Filippov disregards the values (if any) of the vector fields on surfaces of
Zero Lebesgue measure in the state space, and therefore one can assign any value to the
vector field on Σ and this does not change the r.h.s of the differential inclusion; see [43]
for more details.

3.2.2 The Case of Chattering-Zeno Between More than Two Dynamics

Obviously, when chattering-Zeno occurs on the intersection of p hyper switching surfaces,
i.e. on ⋂pi=1 Σi, then one needs to find a sliding vector field fs which keeps the solution
in sliding on all the discontinuity surfaces Σi on which chattering occurs. That is, one
needs to find p sliding coefficients αi, i ∈ {1, · · · , p}, satisfying: i) αi ∈ (0, 1) for all i,
and ii) ∑p

i=1 αi = 1. In this case, the construction procedure of the sliding dynamics
with Filippov convexification becomes much more complicated and cumbersome when
the number of the switching surfaces Σi increases, because non-uniqueness of solution
for αi arises for p > 2. In the following, we discuss this issue in more details.

81

3.2.2.1 The Case of Chattering-Zeno Between 2p Dynamics with p = 2

This is the case of a hybrid automaton model of four locations, where the state space Rn
of the system is split into four disjoint invariants S1, S2, S3, and S4 by the intersection of
two hyper switching surfaces Σ1 and Σ2; see Figure 3.21 and Figure 3.22. The invariants
Si|i=1,2,3,4 and the hyper surfaces Σ1 and Σ2 are given by

Σ1 = Σ11 ∪ Σ12 = {x ∈ Rn : γ1(x) = 0},

Σ2 = Σ21 ∪ Σ22 = {x ∈ Rn : γ2(x) = 0},

Σ11 = G(q1, q2) ∩ Inv(q1) = G(q2, q1) ∩ Inv(q2) = {x ∈ Rn : γ1(x) = 0 ∧ γ2(x) ≥ 0},

Σ12 = G(q3, q4) ∩ Inv(q3) = G(q4, q3) ∩ Inv(q4) = {x ∈ R6 : γ1(x) = 0 ∧ γ2(x) ≤ 0},

Σ21 = G(q1, q4) ∩ Inv(q1) = G(q4, q1) ∩ Inv(q4) = {x ∈ R6 : γ1(x) ≥ 0 ∧ γ2(x) = 0},

Σ22 = G(q2, q3) ∩ Inv(q2) = G(q3, q2) ∩ Inv(q3) = {x ∈ R6 : γ1(x) ≤ 0 ∧ γ2(x) = 0},

S1 = Inv(q1) = {x ∈ Rn : γ1(x) ≥ 0 ∧ γ2(x) ≥ 0},

S2 = Inv(q2) = {x ∈ Rn : γ1(x) ≤ 0 ∧ γ2(x) ≥ 0},

S3 = Inv(q3) = {x ∈ Rn : γ1(x) ≤ 0 ∧ γ2(x) ≤ 0},

S4 = Inv(q4) = {x ∈ Rn : γ1(x) ≥ 0 ∧ γ2(x) ≤ 0}.

Figure 3.21: A hybrid automaton with four modes and two hyper switching surfaces.

82

Figure 3.22: The state space of the hybrid automaton model in Figure 3.21.

The system’s dynamics in this case is given by

ẋ = f(x) =


f1(x), for x ∈ S1,

f2(x), for x ∈ S2,

f3(x), for x ∈ S3,

f4(x), for x ∈ S4.

(3.33)

Let’s denote Σ to the entire discontinuity region in the state space, that is Σ = Σ1 ∪Σ2.
Then we can replace the discontinuous dynamics in (3.33) by the following set-valued
extension

ẋ ∈ F (x) =
{
fi(x)|i=1,2,3,4, for x ∈ Si,
co{fi(x?)|i=1,2,3,4}, for x? ∈ Σ,

(3.34)

with

co{fi(x?)|i=1,2,3,4} =
4∑
i=1

λifi(x?), (3.35)

where λ1 = α1α2, λ2 = (1 − α1)α2, λ3 = (1 − α1)(1 − α2), and λ4 = α1(1 − α2). For
j = 1, 2 we have αj ∈ (0, 1) for x? ∈ Σj in case of chattering-Zeno on Σj .

To be consistent with Filippov convexification we restrict λi to satisfy ∑4
i=1 λi = 1,

that is, the parameters α1 and α2 should satisfy

α1α2 + (1− α1)α2 + (1− α1)(1− α2) + α1(1− α2) = 1. (3.36)

83

Similarly to what we stated in equations (3.28), (3.29), and (3.30), one way to com-
pute α1 and α2 is by using the projections of the convex combination (3.35) on the
normals n1 and n2 of Σ1 and Σ2. Roughly speaking, we suppose a chattering-Zeno
scenario on the intersection ∆ = Σ1 ∩ Σ2, and we try to find α1 and α2 that keep the
solution trajectory in sliding on ∆ as long as chattering-Zeno is occurring on it:

(1− α1)WN1
1 + α1W

N1
2 = 0, (3.37)

(1− α2)WN2
3 + α2W

N2
4 = 0, (3.38)

where
WN1

1 = (1− α2)fN1
3 (x?) + α2f

N1
2 (x?), (3.39)

WN1
2 = (1− α2)fN1

4 (x?) + α2f
N1
1 (x?), (3.40)

WN2
3 = (1− α1)fN2

3 (x?) + α1f
N2
4 (x?), (3.41)

WN2
4 = (1− α1)fN2

2 (x?) + α1f
N2
1 (x?). (3.42)

Existence of Solution: From (3.37) and (3.38) we have a fixed point problem. The
solution of this problem exists. It is given by

α1 = (1− α2)fN1
3 (x?) + α2f

N1
2 (x?)(

(1− α2)fN1
3 (x?) + α2f

N1
2 (x?)

)
−
(
(1− α2)fN1

4 (x?) + α2f
N1
1 (x?)

) , (3.43)

α2 = (1− α1)fN2
3 (x?) + α1f

N2
4 (x?)(

(1− α1)fN2
3 (x?) + α1f

N2
4 (x?)

)
−
(
(1− α1)fN2

2 (x?) + α1f
N2
1 (x?)

) , (3.44)

for WN1
1 6= WN1

2 and WN2
3 6= WN2

4 .

Uniqueness of Solution: By the substitution of (3.43) in (3.44) we get a quadratic
equation for α2

Π(α2) = m2α
2
2 +m1α2 +m0 = 0, (3.45)

where

m2 = (fN1
3 fN2

4 −f
N1
4 fN2

3)+(fN1
1 fN2

3 −f
N1
3 fN2

1)+(fN1
2 fN2

1 −f
N1
1 fN2

2)+(fN1
4 fN2

2 −f
N1
2 fN2

4),

m1 = (fN1
2 fN2

4 − fN1
4 fN2

2) + (fN1
3 fN2

1 − fN1
1 fN2

3) + 2(fN1
4 fN2

3 − fN1
3 fN2

4),

m0 = fN1
3 fN2

4 −f
N1
4 fN2

3 .

In addition to the constraint α2 ∈ (0, 1), the parameter α2 should also satisfy (3.45)
during sliding on the intersection ∆ = Σ1 ∩ Σ2. For α2 = 0 we have Π(0) = m0 =
(fN1

3 (x?) · fN2
4 (x?))− (fN1

4 (x?) · fN2
3 (x?)). For α2 = 1 we have Π(1) = m2 +m1 +m0 =

(fN1
2 (x?) · fN2

1 (x?)) − (fN1
1 (x?) · fN2

2 (x?)). As stated in Definition 3.4 (Sliding Region),
when chattering-Zeno occurs on the intersection ∆ = Σ1 ∩ Σ2, the dynamics fi(x?) in

84

the neighborhood of ∆ pushes the solution towards it. That is, the normal projections
f
Nj
i (x?), in our case, satisfy

fN1
1 (x?) < 0, fN2

1 (x?) < 0,

fN1
2 (x?) > 0, fN2

2 (x?) < 0,

fN1
3 (x?) > 0, fN2

3 (x?) > 0,

fN1
4 (x?) < 0, fN2

4 (x?) > 0.

It holds then that Π(0) > 0 and Π(1) < 0, and therefore there exist a solution to Π(α2)
satisfying α2 ∈ (0, 1). Furthermore, the solution of Π(α2) is unique since Π(α2) is a
parabola function. The same applies for α1.

3.2.2.2 The Case of Chattering-Zeno Between 2p Dynamics with p > 2

The situation becomes much more complicated when chattering-Zeno occurs on the
intersection of p > 2 discontinuous surfaces.

Let’s consider the most general case where we have a hybrid automaton model having
p > 2 hyper switching surfaces Σ1,Σ2, · · · ,Σp, such that Σj = {x ∈ Rn : γj(x) = 0},
with the dimension n satisfying n ≥ p+ 1, where p is the total number of the intersected
surfaces. Denote ∆ as a switching intersection, i.e. ∆ = ∩j=1:kΣj for some index k 6= 1
in {1, · · · , p}, and denote Σ as the entire discontinuity region, i.e. Σ = ∪pj=1Σj . In this
case, Filippov differential inclusion F (x) is given in a general form by

ẋ ∈ F (x) =
{
fi(x)|i=1,··· ,2p , for x ∈ Si,
co{fi(x?)|i=1,··· ,2p}, for x? ∈ Σ,

(3.46)

where

co{fi(x?)|i=1,··· ,2p} =
2p∑
i=1

λifi(x?),
2p∑
i=1

λi = 1, (3.47)

λi =
p∏
j=1

(1−Ψj,i + 2Ψj,iαj
2

)
, (3.48)

∀j : αj ∈ (0, 1) for x? ∈ Σj when chattering on Σj . (3.49)

The coefficient Ψj,i is a sign parameter which gives the sign of γj(x•) for all x• ∈ Si
in a small neighborhood to the discontinuity point x? ∈ Σ, that is

Ψj,i = sgn(γj(x•))|x•∈Si→x?∈Σj (3.50)

85

Lemma 3.9 In agreement with Definition 3.4, a chattering-Zeno occurs on a discon-
tinuous surfaces intersection ∆ = ∩j=1:kΣj for some index k 6= 1 in {1, · · · , p} if

∀i, j : sgn(fNji (x?) = −Ψj,i. (3.51)

To keep the solution trajectory in a sliding motion on the intersection ∆ = ∩j=1:kΣj

on which a chattering-Zeno occurs, the sliding vector field should be in the tangent plane
Tx(∆), i.e. the sliding vector field in the tangent plane Tx(Σj) for all j. This, however,
requires solving the following non-linear problem

∀j = 1, 2, · · · , k ≤ p :
2k∑
i=1

k∏
j=1

(1−Ψj,i + 2Ψj,iαj
2

)
f
Nj
i (x?) = 0. (3.52)

Similarly to what we did in (3.37) and (3.38), we can write (3.52) as

(1− αj)W
Nj
1 + αjW

Nj
2 = 0, (3.53)

and therefore

αj = W
Nj
1

W
Nj
1 −WNj

2
, (3.54)

where

W
Nj
1 =

∑
i:Ψj,i=−1

 k∏
m=1,m 6=j

(1−Ψm,i + 2Ψm,iαm
2

) fNji (x?), (3.55)

W
Nj
2 =

∑
i:Ψj,i=1

 k∏
m=1,m 6=j

(1−Ψm,i + 2Ψm,iαm
2

) fNji (x?). (3.56)

Note that, the product term ∏k
m=1,m 6=j

(
1−Ψm,i+2Ψm,iαm

2

)
in (3.55) and (3.56) is a

product of αm and (1 − αm), i.e. αm for Ψm,i = 1 and (1 − αm) for Ψm,i = −1, and
therefore this product takes always a value (0,1) for αm ∈ (0, 1). As a result, when
chattering-Zeno occurs on an intersection ∆ = ∩j=1:kΣj it holds ∀j = 1, 2, · · · , k ≤ p :
W

Nj
1 > 0 ∧ W

Nj
2 < 0.

A solution to the non-linear problem (3.52) exists since (3.54) maps a hypercube
convex hull (0, 1)k≤p strictly into itself, and thus it has a fixed point.

However, it is much more elusive to prove that the solution of (3.52) is unique. This
is the main limitation of the classical Filippov convex approach for treating chattering-
Zeno behavior on discontinuous surfaces intersections.

We conclude that, although Filippov convexification method is efficient to deal with
chattering-Zeno, it is however limited to the case of chattering-Zeno between 2p dynamics
with p ≤ 2, as it requires solving stiff non-linear equations for computing the sliding
coefficients αj when the number of the hyper switching surfaces on which chattering-
Zeno occurs increases. Furthermore, high computational load results when solving such

86

non-linear equations in the case in which chattering-Zeno occurs on the intersection of
a large number of hyper switching surfaces; a scenario which prevents the simulation to
be completed in a reasonable time.

In the following section, we provide a computational framework for an efficient treat-
ment of chattering-Zeno in terms of detection and elimination. Our proposed computa-
tional framework is based on extending Filippov convexification to more complete con-
vexification so that there is no need at all to deal with solving stiff non-linear equations
for the computation of the sliding coefficients αj (in case of chattering-Zeno occurring
on the intersection of a large number of hyper switching surfaces).

3.3 Chattering-Free Simulation Framework
We consider the most general case where we have a hybrid automaton model H =
{Q,X, Init, f,D,E,G,R} whose the state space Rn is split into 2p Rn-dimensional dis-
joint invariants Si = Inv(qi) ∈ D, qi ∈ Q, i = 1, · · · , 2p, by p ≥ 1 hyper switching
surfaces Σj ∈ Rn−1, where in each invariant the system dynamics is defined by a vector
field fi(x) extendable over a small neighborhood of the surfaces Σj .

To ease for future discussion, we consider each hyper switching surface Σj splits the
state space into two disjoint invariants Sj1 and Sj2 such that Rn = Sj1 ∪ Σj ∪ Sj2. The
subspaces Sj1 and Sj2 and the hyper surfaces Σj can be formulated for all j as

Sj1 = Inv(qj1) = {x ∈ Rn : γj(x) ≤ 0}, (3.57)

Sj2 = Inv(qj2) = {x ∈ Rn : γj(x) ≥ 0}, (3.58)
Σj = G(qj1, qj2) ∩ Inv(qj1) = G(qj2, qj1) ∩ Inv(qj2) = {x ∈ Rn : γj(x) = 0}. (3.59)
For each hyper switching surface Σj , the normal nj perpendicular to Σj is given then

for all x? ∈ Σj by

nj(x?) = ∇γj(x?)
||∇γj(x?)||

, ∇γj(x?) = ∂γj(x?)
∂x

, (3.60)

where we assume that ∂γ(x?)
∂x 6= 0 for all x?. Moreover, nj are assumed to be linearly

independent on any intersection ⋂k≤pj=1 Σj .
At a discontinuity point x? ∈ Σj , the normal projection of the dynamics fi in a small

neighborhood to x? is given by

f
Nj
i (x?) = nj(x?)T · fi(x•), (3.61)

where x• ∈ Si → x? ∈ Σj .
Any hybrid simulation computational framework supporting chattering-Zeno detec-

tion and avoidance should be able to detect regions on the switching manifold on which
chattering-Zeno occurs and force the solution trajectory of the system to slide on the
manifold in these regions. It also has to decide when a smooth exit from sliding should
take place to evolve continuously in the next Rn-dimensional invariant. Therefore, the
following steps should be performed:

87

1. Continuous integration outside the entire discontinuity region Σ = ∪pj=1Σj .

2. Accurate detection and location of the discontinuity points x? ∈ Σj , including the
intersections discontinuity points x? ∈ ⋂k≤pj=1 Σj .

3. Check at the detected discontinuity points x? whether x? is a transversality point,
i.e. x? belongs to the crossing region Σc (Definition 3.3), or a chattering-Zeno limit
point, i.e. x? belongs to the sliding region Σs (Definition 3.4).

4. In case x? is a chattering-Zeno limit point, integrate the model at x? with equivalent
sliding dynamics fs(x?).

5. Decision of whether the solution should stay in sliding, or exit tangentially from
its sliding to evolve in an Rn-dimensional invariant Si.

1. Continuous Integration Outside the Discontinuity Region:
For discretization the system dynamics fi(x) in the invariants Si outside the discon-

tinuity region Σ, any explicit/implicit integration scheme proposed by the simulator’s
solver can be used.

2. Handling of Discontinuities:
At the end of each continuous time integration step [ti, ti+1] we check whether or not

the discontinuity region has been crossed. Denote xi to x(ti) and xi+1 to x(ti+1). We
distinguish between the following two cases:

1. If γj(xi) ·γj(xi+1) > 0 for all j = 1, · · · , p, then we continue at xi+1 the continuous
integration with the same vector field used in the last continuous integration step.

2. If there exist j ∈ {1, · · · , p} such that γj(xi) · γj(xi+1) < 0, this indicates a zero-
crossing of a hyper switching surface Σj during the current integration step. In
this case we have a continuous smooth switching function γj(x(t)) taking opposed
signs at ti and ti+1, and therefore it has a zero at t ∈ (ti, ti+1) which defines the
discontinuity point x? ∈ Σj at which the zero-crossing occurs, i.e. γj(x?(t)) = 0.
In this case, the solver have to backtrack and use root finding in order to locate the
discontinuity point x? up to a certain precision. Note that, if γj(xi) · γj(xi+1) < 0
and γj(x?(t)) = 0 for all j = 1, · · · , k ≤ p, with p > 1, then the discontinuity
point x? belongs to a switching intersection ∆ = ∩j=1:kΣj for some index k 6= 1 in
{1, · · · , p}.

3. Chattering-Zeno Detection:
The next step is to check whether or not the detected discontinuity point x? ∈ Σj is a

transversality point, i.e. leads to cross Σj , or a chattering-Zeno point, i.e. leads to slide
on Σj . This should be done by analyzing the gradient of the continuous-time behavior
of the system in a small neighborhood to detected discontinuity point.

88

• Definition 3.10 A discontinuity point x? ∈ Σj is a transversality point if

∀j : f
Nj
j1 (x?) · fNjj2 (x?) ≥ 0, (3.62)

where fj1 and fj2 are the dynamics in the disjoint invariants Sj1 = {x ∈ Rn :
γj(x) ≤ 0} and Sj2 = {x ∈ Rn : γj(x) ≥ 0} in the neighborhood of x?.

• Definition 3.11 A discontinuity point x? ∈ Σj is a chattering-Zeno limit point if

∃j : f
Nj
j1 (x?) · fNjj2 (x?) < 0 and f

Nj
ji (x?) · γj(x•) < 0|i=1,2, (3.63)

where x• ∈ Sji → x? ∈ Σj and fj1 and fj2 are the dynamics in the disjoint
invariants Sj1 = {x ∈ Rn : γj(x) ≤ 0} and Sj2 = {x ∈ Rn : γj(x) ≥ 0} in the
neighborhood of x?.

We can re-write Definition 3.11 as following:

• Definition 3.12 A discontinuity point x? ∈ Σj is a chattering-Zeno limit point
if at x? the normal projections of the dynamics in all the invariants Si in the
neighborhood of x? are pointed towards x?, that is for all i, j it hold that fNji (x?) ·
γj(x•) < 0, where x• ∈ Si → x? ∈ Σ.

Note that, Definition 3.10 and Definition 3.11 take the most general case where x? may
belong to an R(n−1)-dimensional hyper switching surface as well as to hyper switching
surfaces intersections ∆ = ∩j=1:kΣj .

4. Chattering-Zeno Elimination:
If a discontinuity point x? is a chattering-Zeno limit point, then the model should be

integrated with sliding dynamics fs at x?. The sliding dynamics fs is constructed at
x? as a convex combination co{fi(·)} of all the dynamics fi used in the invariants Si in
the neighborhood of x?. During the continuous integration with the sliding dynamics
fs, a monitoring is done at the end of each integration step to decide whether or not
we should continue integrating with fs (i.e. continue sliding), or exit tangentially from
sliding to evolve in one of the invariants Si.

1. Defining the sliding dynamics fs: As the sliding dynamics fs(x?) is constructed
as a convex combination of all the dynamics fi|i=1,··· ,2p in the neighborhood of x?
then fs(x?) is disgustingly different from one discontinuity point to another, and
it depends strictly on the number p of the hyper switching surfaces Σj to which
belong x?. Formally we write fs as

fs(x?) =
2p∑
i=1

(
κi(x?)∑2p
k=1 κk(x?)

· fi(x?)
)
, (3.64)

where κi(x?) are convexification coefficients, given as rational functions by

κi(x?) =

(∏2p−1
l=1;l 6=i(Ωl)

) 1
2p−1

(∏2p−1
l=1;l 6=i(Ωl)

) 1
2p−1 − Ωi

, Ωi =
p∑
j=1

(
Ψj,i · f

Nj
i (x?)

)
. (3.65)

89

To allow for sliding when chattering-Zeno occurs, Ψj,i should satisfy

Ψj,i =
{
−sgn(fNji (x?)), for i = 1,
− sgn(fNji (x?)), for i = 2, · · · , 2p.

(3.66)

The advantage of using the signs constraint in (3.66) is that it gives us always
Ω1 > 0 and Ωi < 0 for all i ∈ {2, .., 2p}, which yields: i) κi(x?) ∈ (0, 1) as long as
chattering-Zeno takes place at x?, and ii) κk(x?) = 0 for all k 6= i when κi(x?) = 1,
which in turns allows us to detect easily when the solution exits tangentially from
sliding to evolve in one of the invariants Si in the neighborhood of x?.

Application to the case of chattering-Zeno between two dynamics:
Let’s consider again the case of chattering-Zeno between two dynamics as presented
in Section 3.2.1. In this case, the discontinuity dynamics is given by

fs(x?) = κ1(x?)
κ1(x?) + κ2(x?)f1(x?) + κ2(x?)

κ1(x?) + κ2(x?)f2(x?), (3.67)

κ1(x?) = Ω2
Ω2 − Ω1

, κ2(x?) = Ω1
Ω1 − Ω2

, (3.68)

Ω1 = Ψ1,1f
N
1 (x?), Ψ1,1 = sgn(fN1 (x?)), (3.69)

Ω2 = Ψ1,2f
N
2 (x?), Ψ1,2 = −sgn(fN2 (x?)). (3.70)

With respect to what stated in (3.12), (3.13) and (3.14), a chattering-Zeno occurs
on the discontinuous surface Σ = {x? ∈ Rn : γ(x?) = 0} at x? ∈ Σ if fN1 (x?) > 0
and fN2 (x?) < 0, for which we have from (3.69) and (3.70) Ψ1,1 = 1, Ψ1,2 = 1,
Ω1 > 0, Ω2 < 0, and therefore κ1(x?), κ2(x?) ∈ (0, 1) as long as chattering-Zeno
occurs on Σ. A smooth exit from sliding on Σ to evolve in the invariant S1 is
expected at the time instant at which the gradient the continuous time behavior
according to the vector field f1 starts to change it sign. That is, when the normal
projection fN1 (x?) is tangential to Σ, i.e. when fN1 (x?) = 0. In this case, we have
Ω1 = 0, and therefore κ2 = 0 and κ1 = 1, which yields an immediate selection of
the vector field f1 in (3.67). The same applies for the smooth exit from sliding
on Σ to evolve in the invariant S2, i.e. fN2 (x?) = 0, Ω2 = 0, κ1(x?) = 0, κ2(x?) = 1.

Application to the case of chattering-Zeno between 2p dynamics with
p = 2:
Now let’s consider the case of chattering-Zeno between 2p dynamics with p = 2
presented in Section 3.2.2.1. In this case the discontinuity dynamics is given by

fs(x?) = 1
κ1(x?) + κ2(x?) + κ3(x?) + κ4(x?)

4∑
i=1

(κi(x?) · fi(x?)) , (3.71)

where

κ1(x?) =
3√Ω2 · Ω3 · Ω4

3√Ω2 · Ω3 · Ω4 − Ω1
, κ2(x?) =

3√Ω1 · Ω3 · Ω4
3√Ω1 · Ω3 · Ω4 − Ω2

,

90

κ3(x?) =
3√Ω1 · Ω2 · Ω4

3√Ω1 · Ω2 · Ω4 − Ω3
, κ4(x?) =

3√Ω1 · Ω2 · Ω3
3√Ω1 · Ω2 · Ω3 − Ω4

,

Ω1 = Ψ1,1f
N1
1 (x?) + Ψ2,1f

N2
1 (x?), ∀j : Ψj,1 = sgn(fNj1 (x?)),

Ω2 = Ψ1,2f
N1
2 (x?) + Ψ2,2f

N2
2 (x?), ∀j : Ψj,2 = −sgn(fNj2 (x?)),

Ω3 = Ψ1,3f
N1
3 (x?) + Ψ2,3f

N2
3 (x?), ∀j : Ψj,3 = −sgn(fNj3 (x?)),

Ω4 = Ψ1,4f
N1
4 (x?) + Ψ2,4f

N2
4 (x?), ∀j : Ψj,4 = −sgn(fNj4 (x?)).

Consider the scenario where chattering-Zeno occurs on the intersection ∆ = Σ1 ∩
Σ2. We know now that a chattering-Zeno occurs on ∆ if ∆ is nodal attractive:

fN1
1 (x?) < 0, fN2

1 (x?) < 0,

fN1
2 (x?) > 0, fN2

2 (x?) < 0,

fN1
3 (x?) > 0, fN2

3 (x?) > 0,

fN1
4 (x?) < 0, fN2

4 (x?) > 0,

so we have Ω1 > 0, Ω2 < 0, Ω3 < 0, and Ω4 < 0 as long as chattering-Zeno occurs
on ∆, and therefore, a smooth sliding on ∆ is guaranteed with κi(x?) ∈ (0, 1),
i = 1, 2, 3, 4. A smooth exit from sliding on ∆ to evolve in the invariant Si|i=1,2,3,4
is expected at the time instant at which the normal projections of fi normal onto
∆ start to change their sign, i.e. a smooth exit from sliding on ∆ to evolve in S1 is
expected when fNj1 (x?) = 0 for j = 1, 2, so that Ω1 = 0 and therefore κ1(x?) = 1
and κk(x?) = 0 for all k 6= 1.

2. Sliding/Smooth Exit from Sliding: For discretization the sliding dynamics
(3.64), any explicit/implicit integration scheme proposed by the simulator’s solver
can be used. However, at the end of each sliding integration step [tm, tm+1] an
immediate decision should be taken (depending on the values of κi(x?)) on whether
or not we should continue integrating with fs, i.e. keep sliding, or exit from sliding
tangentially. We distinguish between the following two cases:

(a) If κi(x?(tm+1)) ∈ (0, 1) for all i, then we continue at x?(tm+1) integrating
with the same sliding dynamics used at x?(tm).

(b) If there exists i such that κi(x?(tm+1)) = 1, this indicates that the sufficient
condition for chattering-Zeno is no more satisfied after the current sliding
step. In this case, the solver have to backtrack and use root finding in order
to locate, up to a certain precision, the state x?(tσ)|tm<tσ≤tm+1 at which the
change from κi(x?(tm)) ∈ (0, 1) to κi(x?(tm+1)) = 1 took place, so that
a smooth exit from sliding emerges at x?(tσ) to evolve in the invariant Si.
Indeed, the exit from sliding to evolve in Si is tangential since in this case we
have fNji (x?(tσ)) = 0 for all j ∈ {j : γj(x?(tσ)) = 0}.

91

As we have raised in the previous section, applying Filippov’s convexification method
in case of chattering-Zeno on switching intersections requires solving stiff nonlinear
equations for computing the chattering-free coefficients. This is computationally time-
consuming and does not guarantee a unique solution for sliding if the solution chatters on
the intersection of more than two hyper switching surfaces surfaces. It is clear to notice
that, in contrary with the classical Filippov approach, the advantages of the convexifica-
tion in (3.64) is that it does not require solving stiff nonlinear equations for computing
the sliding coefficients κi.

Remark 3.13 Denoted by xs, a standard sliding solution in R is the standardization
of a non-standard chattering-Zeno solution ∗xch in ∗R, namely, xs = st(∗xch). In the
following, we clarify this issue.

Notation 3.14 Denote xs to the sliding mode solution of the hybrid system in a
standard time domain, and ∗xch to the chattering-Zeno solution of the hybrid systems
in a non-standard time domain T∂ .

We consider the most general case where we have a hybrid automaton model whose
the state space Rn is split into 2p Rn-dimensional disjoint invariants Si = Inv(qi) ∈ D,
qi ∈ Q, i = 1, · · · , 2p, by p ≥ 1 hyper switching surfaces Σj = {x ∈ Rn : γj(x) = 0},
where in each invariant the system dynamics is defined by a vector field fi(x) Lipschitz
continuous on the invariant Si.

In each invariant Si, the evolution of the solution in the non-standard time domain
T∂ is given, for n ∈ ∗N, m ∈ N, and ∂ ≈ 0, ∂ ∈ ∗R, by

∗xn+m = ∗xn +m∂∗fi(∗xn)) (3.72)

The evolution of a chattering-Zeno execution in a non-standard time domain is typ-
ically characterized by a repeated switching back and forth between modes in a dis-
crete fashion with infinitesimal time ∂ spent in between the repeated mode switchings.
Roughly speaking, when in either of the adjacent invariants, on their common hyper
switching surface, an infinitesimal step ∂ causes a mode change and the solution enters
a new invariant. In the new invariant the gradient directs behavior to the previous in-
variant, and after another infinitesimal step ∂ a change to the previous invariant occurs.

Mathematically, a non-standard chattering-Zeno evolution around a switching sur-
face (or an intersection of many switching surfaces) is described by

∗xn+m = ∗xn +m∂
2p∑
i=1

(∗fi(∗xn) ·Mi), (3.73)

where 2p is the total number of the invariants Si in the neighborhood of the switching
surface/intersection on which chattering-Zeno occurs, and Mi is the probability for ∗fi
to be used in the current infinitesimal micro step. Mi is given by

Mi = 1
m

k<m∑
l=0

wil, with wil =
{

1, if ∗xn+l ∈ Si,
0, if ∗xn+l 6∈ Si.

(3.74)

92

Figure 3.23: Illustration of a chattering-Zeno trajectory.

Consider again the simplest example of chattering-Zeno behavior (Figure 3.23), where
the system dynamics is given by

ẋ(t) =
{

1 for x(t) < 0,
−1 for x(t) ≥ 0, with x(0) < 0

(3.75)

In T∂ , the non-standard chattering-Zeno evolution of this example behaves as follows:
• At t = n∂ the solution becomes infinitesimally close to the switching surface x = 0,

so we have −∂ ≤ ∗xn < 0.
• At t = (n+ 1)∂ we have 0 ≤ ∗xn+1 = ∗xn + ∂ < ∂.
• At t = (n+ 2)∂ we have −∂ ≤ ∗xn+2 = ∗xn < 0.
• At t = (n+ 3)∂ we have 0 ≤ ∗xn+3 = ∗xn + ∂ < ∂.
• At t = (n+ 4)∂ we have −∂ ≤ ∗xn+4 = ∗xn < 0.

So in general, by applying (3.73), we get ∗xn+4 = ∗xn + 4∂(1
2 −

1
2) = ∗xn, ∗xn+5 =

∗xn + 5∂(3
5 −

2
5) = ∗xn + ∂ = ∗xn+1, ∗xn+6 = ∗xn, ∗xn+7 = ∗xn+1, and so on.

In this context, it holds that a chattering-Zeno with ∂ micro steps takes place on
a switching surface Σj as long as Mi in (3.73) is bounded |Mi| < 1 for all i, i.e. the
dynamics in each invariant Si, in the neighborhood of the switching surface Σj , directs
behavior towards Σj .

It is assumed that all the switching functions γj(x) — which define the switching
surfaces Σj = {x ∈ Rn : γj(x) = 0} — be continuous and differentiable on x. From a
non-standard sense, a sliding evolution from ∗xn to ∗xn+m on any switching surface Σj

implies that the value of ∗γj(∗xn+k) should satisfy

− ∂ ≤ ∗γj(∗xn+k) ≈ ∗γj(∗xn) ≤ ∂, (3.76)

for all k such that n < k ≤ m. Note that, in the case in which the chattering-Zeno takes
place on an intersection of many switching surfaces Σj , (3.76) should be satisfied for all
∗γj(∗xn+k). Equation (3.76) yields

− ∂ ≤ ∗γj(∗xn + k∂
2p∑
i=1

∗fi(∗xn) ·Mi) ≤ ∂, (3.77)

− ∂ ≤ ∗γj(∗xn) + k∂(
2p∑
i=1

∗f
Nj
i (∗xn) ·Mi) ≤ ∂, (3.78)

93

for all k such that n < k ≤ m, where again ∗fNji (∗xn) is the normal projection at ∗xn of
∗γj in the direction of ∗fi, given by

∗f
Nj
i (∗xn) = ∂∗γj(∗xn)

∂x
· ∗fi(∗xn). (3.79)

Therefore, a non-standard sliding motion emerges on Σj and satisfies −∂ ≤ ∗γj(∗xn+k) ≈
∗γj(∗xn) ≤ ∂, if and only if

2p∑
i=1

∗f
Nj
i (∗xn) ·Mi = 0. (3.80)

Equation (3.80) is equivalent, in the standard domain, to the constraint on the sliding
vector field fs to be tangential to the switching surface/intersection on which chattering-
Zeno occurs; see (3.64), (3.65), and (3.66).

We conclude that, any sliding solution in the standard domain Rn is the standard-
ization of a non-standard chattering-Zeno solution in the non-standard domain ∗Rn.

3.4 Prototype Implementations and Simulation Results

A part of this dissertation was attributed to design, test, and validate hybrid simula-
tor prototypical implementations supporting chattering-Zeno freeness. The motivation
behind these implementations are the followings:

1. The first motivation was to validate our proposed computational framework for
chattering-Zeno freeness in a standard semantic model of time. The emphasis of
validation is one of correctness and preciseness.

2. The second motivation is to provide — via these implementations — a guidance
for the development of a chattering-free version for hybrid systems simulation tools
which use standard model of time, giving a computational framework for an ideal
manipulation of chattering-Zeno.

As simulation environments, we have used the Functional Mock-up Interface (FMI)
v2.0 for Model Exchange, and Acumen Simulation tool. In both implementations,
chattering-Zeno is treated internally “on the fly” by the implemented chattering-free
simulator, without any need neither to a manual manipulation by the modeler (includ-
ing adding a small hysteresis around the hyper switching surfaces on which chattering-
Zeno occurs), nor to solve stiff nonlinear equations for the computation of the equivalent
sliding dynamics in case of chattering-Zeno on switching surfaces intersections. An au-
tomatic inspection for chattering-Zeno is performed at each detected discontinuity point
(i.e. state event). Whenever chattering-Zeno is detected, the simulator internally gener-
ates the sliding dynamics and switches to integrate the simulated model with the sliding
dynamics in the time intervals in which the chattering-Zeno is detected. An inspection
for a smooth exit from sliding is also performed by the simulator in each sliding time
integration step.

94

3.4.1 Prototype Implementation of Chattering-Zeno Freeness in FMI

The Functional Mock-up Interface (FMI)1 is an open standard for model exchange and
co-simulation between multiple software systems. This new standard, resulting from the
ITEA2 project MODELISAR in 2010, is a response to the industrial need to connect
different environments for modeling, simulation and control system design.

The goal of the FMI is to describe input/output blocks of dynamic systems defined
by differential, algebraic and discrete equations and to provide an interface to evaluate
these equations as needed in different simulation environments, as well as in embedded
control systems, with explicit or implicit integrators and fixed or variable step-size. Some
details of the type of systems that can be handled are shown in Figure 3.24.

Formally, FMI is used to create an instance of a model which can be loaded into
any simulator providing an import function for FMI. A software instance compatible
to the FMI is called a Functional Mock-up Unit (FMU). An FMU is distributed as
a compressed archive with a .fmu file extension. It contains a concrete mathematical
model described by differential, algebraic and discrete equations with possible events of
a dynamic physical system. An FMU consists basically of two parts:

• an XML format for model interface information,
• C API model interface functions according to the FMI specification, for model

execution.
The XML format is specified by an XML schema conforming to the FMI specification.

It contains all static information about model variables, including names, units and
types, as well as model meta data. The C API, on the other hand, contains C functions
for data management, as setting and retrieving parameter values, and evaluation of
the model equations. The implementation of the C API may be provided either in
C source code format or in binary forms, e.g. in the form of Windows dynamic link
library .dll or a Linux shared object library .so files, to protect the model developer’s
intellectual property. Additional parts can be added and compressed into the FMU such
as the documentation and the icon of the model. FMUs can be written manually or
can be generated automatically from a modeling and simulation environment. More
information about the FMI standard can be found in [10]. In the current specifications
version of the FMI standard, chattering-Zeno is treated by adding a small hysteresis of
size ε to the event functions in the FMU level. That is, an FMU — which represents
the model — should add a small hysteresis to the event functions to exclude chattering-
Zeno scenarios [10]. In Section 1.3 we have raised the disadvantages of this approach.
The main motivation of this implementation is then to provide a correct simulation
for any chattering-Zeno model represented as an FMU, which may be either a generic
FMU developed manually by a modeler, or an exported FMU generated automatically
by a modeling and simulation environment in which chattering-Zeno models can not be
simulated correctly, whenever the compliance with FMI specification for model exchange
is fulfilled. In the following section, we describe the functionality of the implemented
prototypical implementation for chattering-Zeno freeness in FMI.

1https://www.fmi-standard.org/

95

Figure 3.24: Data flow between the simulation environment and an FMU.

3.4.1.1 Chattering-Zeno Freeness Support for FMI Standard

Prior to a simulation experiment, the model has to be instantiated. This includes extract-
ing the files in the FMU, loading the DLL and XML files and calling the instantiation
function available in the DLL. A model can be instantiated multiple times for which the
function fmi2SetupExperiment is provided.

Simulating an FMI model means to split the solution computation process in three
different phases, categorized according to three modes: Initialization Mode, Continuous-
Time Mode, and Event Mode (Figure 3.25).

In the Initialization Mode, the model is initialized by calling the FMI function
fmi2EnterInitializationMode in order to compute the continuous-time states and the
output variables at the initial time t0. There are FMI functions used in this Mode such
as fmi2GetContinuousStates, as well as functions of the form fmi2(Get/Set)(type) for
setting and getting values of type Real, Integer, String, and Boolean values. The
input arguments to the Initialization Mode functions consist of the all variables that are
declared with “input” and “independent” causality in the FMU XML files, as well as all
variables that have a start value with (initial = exact). Once the model is instantiated
and initialized it can be simulated.

The main simulation loop starts once the FMI function fmi2ExitInitializationMode

is called. The simulation is performed by calculating the derivatives and updating time
and states in the model via the functions fmi2SetContinuousStates, fmi2SetTime,
fmi2GetContinuousStates, fmi2GetDerivatives, as well as the four fmi2(Get/Set)(type)
functions. To retrieve or set variable data during a simulation, value-references are used
as keys. All variables are connected to a unique number defined and provided in the
FMU XML-file. This number can then be used to retrieve information about variables
via functions in the interface or can be used to set input values during a simulation.

96

Figure 3.25: Calling sequence of Model Exchange C functions in form of an UML 2.0
state machine.

Discrete events are monitored via the FMI functions fmi2GetEventIndicators and
fmi2CompletedIntegratorStep. Events are always triggered from the environment in
which the FMU is called, so they are not triggered inside the FMU. Step events are
checked after calling the function fmi2CompletedIntegratorStep when an integration
step was successfully completed. A step event occurs if indicated by the return argument
(nextMode = EventMode).

For capturing state events during continuous integration, the master algorithm of the
FMI monitors, at every completed integrator step, the set of event indicator functions
zj(x) = γj(x) provided in the function fmi2GetEventIndicators. All event indicators
zj(x) are piecewise continuous and are collected together in one vector of real numbers.
A state event occurs when one of the functions changes its sign. In this case, the sim-
ulation environment informs the FMU by calling the function fmi2NewDiscreteStates.
Denote xi = x(ti) and xi+1 = x(ti+1). Therefore, during the continuous integration, we

97

distinguish the following cases:

1. If zj(xi) · zj(xi+1) > 0 for all j = 1, ..., p, where p is the total number of the event
functions, then we continue the integration with the same dynamics used at xi.

2. If there exist j ∈ {1, · · · , p} such that zj(xi) · zj(xi+1) < 0, this indicates a
zero-crossing during the current integration step. In this case we have a con-
tinuous smooth switching function zj(xi+1) taking opposed signs at ti and ti+1,
and therefore it has a zero, which defines the discontinuity point (state event)
x? ∈ Σj = {x ∈ Rn| zj(x) = 0} at which the zero-crossing occurs. In this case, the
solver have to backtrack and use root finding in order to locate the discontinuity
point x? up to a certain precision. If zj(xi) · zj(xi+1) < 0 and zj(xi+1(σ?)) = 0
for all j = 1, · · · , k ≤ p, with p > 1, then the discontinuity point x? belongs to a
switching intersection ∆ = ∩j=1:kΣj .

At a discontinuity point x?, the function fmi2NewDiscreteStates has to be called.
This function updates and re-initializes the model in order for the simulation to be contin-
ued. Information is also given about if the states have changed values, if new state vari-
ables have been selected, and also information about upcoming time events. The compu-
tation of the chattering-free solution is embedded in the function fmi2NewDiscreteStates,
and is split in two phases: i) chattering-Zeno detection, and ii) chattering-Zeno elimina-
tion.

The chattering-Zeno detection phase starts once a discontinuity point x? is detected
and located. The algorithm inspects whether the x? is a chattering-Zeno point or not.
This implies analyzing the gradients of the continuous time behavior in the neighborhood
of x? (Definition 3.10 and Definition 3.11). For doing so, the the normal projections at
x? of all dynamics in the neighborhood of x?, are computed and evaluated.

In the chattering elimination phase, the set-valued convexification in equations (3.64)
to (3.66) is employed in order to compute the smooth equivalent sliding dynamics inter-
nally, given the dynamics fi(x) in the neighborhood of x?, and the set of event functions
zj(x) = γj(x). A monitoring for a smooth exit from sliding is performed while inte-
grating with the sliding dynamics. This is done by monitoring the value of the sliding
coefficient κi at the end of each sliding integration step [ti, ti+1] in which the FMU is
integrated with the sliding dynamics.

Finally, once the solution is at the final time of a simulation, the function fmi2Terminate

is called to terminate the simulation. After a simulation is terminated, the memory has
to be deallocated. The function fmi2FreeInstance is then called to deallocate all the
memory that have been allocated since the initialization.

3.4.1.2 Simulation Results

Figure 3.26 and Figure 3.27 show the chattering-free simulation of the Stick-Slip system
in Example 3.4. The model was simulated with a time step of size 0.0012, and with the
data set x0 = [0.8295 0.8491 0.3725 0.5932 0.8726 0.9335]T , m = M1 = M2 = 1[kg],
k = 0.88[N ·m−1], Fc1 = 0.01996[N], and Fc2 = 0.062[N]. The force u was modeled as
a sine wave of frequency of ω = 0.073[rad/sec].

98

In this simulation, the sliding bifurcations depend on the effect of the external force
u and the levels of Coulomb friction Fc1 and Fc2 .

At the beginning of the simulation, the solution starts in the invariant S3 = {x ∈
R6 : vr1 = vm− vM1 ≤ 0 ∧ vr2 = vm− vM2 ≤ 0}. The two masses M1 and M2 slip then
on the small mass m as long as the solution evolves continuously in the invariant S3.

At the time instant t = 32.69, the two masses m and M2 stick together and the
solution starts to slide on the hyper switching surface Σ2 = {x ∈ R6 : vr2 = vm −
vM2 = 0} ensuring a chattering-Zeno path avoidance on Σ2 between the two invariants
S2 = {x ∈ R6 : vr1 = vm − vM1 ≤ 0 ∧ vr2 = vm − vM2 ≥ 0} and S3 = {x ∈ R6 : vr1 =
vm − vM1 ≤ 0 ∧ vr2 = vm − vM2 ≤ 0}.

A smooth exit from sliding on Σ2 to evolve again into the invariant S3 was detected
at the time instant t = 77.23. A transversality switching (crossing) from the invariant
S3 = {x ∈ R6 : vr1 = vm − vM1 ≤ 0 ∧ vr2 = vm − vM2 ≤ 0} to the invariant
S1 = {x ∈ R6 : vr1 = vm − vM1 ≥ 0 ∧ vr2 = vm − vM2 ≥ 0} passing by the intersection
∆ = Σ1 ∩ Σ2 = {x ∈ R6 : vr1 = vr2 = 0} was detected at t = 92.04.

At t = 108, the two masses m andM1 stick together and the solution start to slide on
the hyper switching surface Σ1 = {x ∈ R6 : vr1 = vm − vM1 = 0} replacing a chattering
on Σ1 between the two invariants S3 = {x ∈ R6 : vr1 = vm − vM1 ≤ 0 ∧ vr2 =
vm− vM2 ≤ 0} and S4 = {x ∈ R6 : vr1 = vm− vM1 ≥ 0 ∧ vr2 = vm− vM2 ≤ 0}. During
a simulation time of 120 seconds, 5 mode switches have been detected.

Figure 3.26: Chattering-free simulation of the Stick-Slip system of three blocks in Ex-
ample 3.4: The time evolution of the relative velocity vr2 = vm − vM2 .

99

Figure 3.27: Chattering-free simulation of the Stick-Slip system of three blocks in Ex-
ample 3.4: The time evolution of the relative velocity vr1 = vm − vM1 .

Figure 3.28 and Figure 3.29 show the chattering-free simulation of the Spring-Block
chain system in Example 3.5.

The system was simulated with a time step of size 0.0012, and with the data set x0 =
[4.7799 0.2797 4.0038 1.7144 1.2922 4.1263]T , m1 = m2 = m3 = 1[kg], Fc1 = 0.14[N],
Fc2 = 0.13[N], Fc3 = 0.12[N], k1 = k2 = k3 = k12 = k13 = k23 = 0.01[N · m−1], and
vd = 0.5[m/sec].

During a simulation time of 100 seconds, four chattering-Zeno windows were detected
in the time intervals I1 = [14.83 · ·15.55], I2 = [26.83 · ·31.63], I3 = [74.84 · ·89.07], and
I4 = [37.19 · ·100.00].

The sliding motion takes place on the hyper switching surface Σ1 = {x ∈ R6 :
vr1 = vm1 − vd = 0} in the intervals I1 and I3, and on the hyper switching surface
Σ2 = {x ∈ R6 : vr2 = vm2 − vd = 0} in the intervals I2 and I4.

At t = 76.69 the solution passes through the intersection ∆ = Σ1 ∩ Σ2 ∩ Σ3 = {x ∈
R6 : vm1 = vm2 = vm3 = vd} switching from a sliding on the intersection Σ1 ∩ Σ2 in the
positive direction of the discontinuous surface Σ3 = {x ∈ R6 : vr3 = vm3 − vd = 0} to a
sliding on Σ1 ∩ Σ2 in the negative direction of Σ3.

100

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
A plot of the relative velocity vr1 versus time t.

time (t): [sec]

Th
e

re
la

tiv
e

ve
lo

ci
ty

 v
r1

: [
m

/s
ec

]

vr1 versus t
events

Figure 3.28: Chattering-free simulation of the Spring-Block chain system in Example
3.5: The time evolution of the relative velocity vr1 = vm1 − vd.

Figure 3.29: Chattering-free simulation of the Spring-Block chain system in Example
3.5: The time evolution of the relative velocity vr2 = vm2 − vd.

101

3.4.2 Prototype of Chattering-Zeno Freeness in Acumen

Models of hybrid systems are simulated in Acumen [67, 77, 83, 87, 101] by a fine inter-
leaving of sequences that can consist of multiple discrete computations, followed by a
single computation updating the values that should evolve continuously. Thus, simu-
lating what is happening at any single instant in time consists of zero or more discrete
steps followed by a single continuous step; see Figure 3.30.

The discrete steps capture sudden changes in the system’s state, e.g. the impact of
two objects, and consist of collecting and evaluating all active discrete actions (discrete
assignments or structural actions) in the program until the whole system is stabilized.
A system is stabilized when no more discrete steps are required.

The following example illustrates how discrete assignments are handled in Acumen:
Acumen Example:
01. class Main (simulator)

02. private x = 0; y = 1; z = 1; end

03. if x<5 x = x+1 end;

04. end

The entire model is repeatedly evaluated until the condition in the if statement is
false. Simulation time (or logical time) is not advanced during these iterations. Acumen
considers such changes to all be happening in the same instant. Using this type of global
fixed point semantics allows Acumen to realize, among other things, what is sometimes
called the “synchrony hypothesis” whereby the author of the model assume that certain
discrete or digital events can happen “fast enough” so that we can view them in the rest
of the model as happening instantaneously. In the example above, because the initial
value of x is zero, the iteration will end when x has the value 5. Once all discrete actions
have taken place, the system moves on to perform all adjustments to the continuous
state of the system. The continuous step performs all updates in parallel, meaning that
all updates are based on the state that results after the sequence of discrete steps, rather
than some later state that resulted from other continuous updates.

Figure 3.30: Global fixed point semantics in Acumen: Continuous step performs all
updates in parallel; all updates are based on the state after discrete steps.

102

3.4.2.1 Chattering-Zeno Freeness Support for Acumen

In our chattering-Zeno freeness implementation in Acumen, a check for detecting state
events x? is performed at the end of each time integration step [ti, ti+1] by using the sign
of the event functions γj(x) represented by the if statements in Acumen program. The
technique of detecting state events is similar to what we used in the FMI chattering-
Zeno freeness implementation above. However, in Acumen the technique of computing
the event functions γj(x) is by parsing the if statement (if Expr then Action). The
branches of an if statement are scanned sequentially until a guard sequence Expr which
evaluates to true is found. The found predicate Expr is then converted into a set of
switching functions, by converting a Boolean relation ./ of the form {Expr:= a ./ b}
into a switching function γj = a− b, where ./∈ {<,≤, >,≥, . . .}. The sub-expressions a
and b are usually made of constants, computed variables, and state variables, as well as
of arithmetic operations � ∈ {+,−,×,÷, . . .} of constants and/or variables.

Similarly to our chattering-Zeno freeness implementation in FMI, chattering-Zeno
condition is checked once a state event x? is detected. Acumen solver starts the chattering-
Zeno detection phase by computing and evaluating, at the detected state event, the
normal projections of the dynamics in the neighborhood of the detected state event.
The normal projections are then used to check whether the detected state event is a
transversality point or a chattering-Zeno point (Definition 3.10 and Definition 3.11).

In the chattering elimination phase, the set-valued convexification in equations (3.64)
to (3.66) is employed in order to compute the smooth equivalent sliding dynamics inter-
nally, given the dynamics fi(x) in the neighborhood of x?, and the set of event functions
γj(x). A monitoring for a smooth exit from sliding is performed while integrating with
the sliding dynamics. This is done by monitoring the value of the sliding coefficient κi at
the end of each sliding integration step [ti, ti+1]. Once the solution is at the final time of
a simulation, and the previous step was Fixed Point, then the simulation is terminated.

3.4.2.2 Simulation Results

Figure 3.31 and Figure 3.32 show the chattering-free simulation in Acumen for the Stick-
Slip system in Example 3.2, with a fixed time step of size 0.0012. The simulation
data set m = M = 1[kg], Fc = 0.4[N], k = 1[N · m−1], and x0 = [1 1 1 0]T . The
external force u was modeled as a sine wave of frequency ω = 0.055[rad/sec]. The
first chattering-Zeno event was detected at time t = 2.89. During a simulation time
of 10 seconds, two chattering-Zeno windows were detected at I1 = [2.89 . . . 3.99] and
I2 = [6.73 . . . 8.69], where the system was integrated in these intervals with the sliding
dynamics. Figure 3.33 shows the chattering-free simulation of Example 3.3 in Acumen.
The system was simulated with the data set x1(0) = 1, x2(0) = 2 and a step size 0.0012.
The first chattering event was detected at t = 1, where the solution trajectory started
to chatter on the switching manifold Σ1 = {x ∈ R2 : x1 = 0 ∧ x2 > 0}. The solution
trajectory converged to the origin (0,0) at time t = 2, where the chattering on the
intersection ∆ = Σ1 ∩ Σ2 = {x ∈ R2 : x1 = 0 ∧ x2 = 0} was replaced by sliding on it
with the chattering-free dynamics (0,0).

103

Figure 3.31: Chattering-free simulation in Acumen of Example 3.2: Time evolution of
the event function and the control input.

Figure 3.32: Chattering-free simulation in Acumen of Example 3.2: Zoom on the first
sliding window.

104

0 0.5 1 1.5 2 2.5 3 3.5 4
time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

th
e

st
at

e
x1

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
1)

A plot of x1 and der(x1) versus time t

der(x1) versus t
x1 vr versus t

0 0.5 1 1.5 2 2.5 3 3.5 4
time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

th
e

st
at

e
x2

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
2)

A plot of x2 and der(x2) versus time t

der(x2) versus t
x2 vr versus t

0.95 1 1.05 1.1 1.15 1.2
time

-10

-5

0

5

th
e

st
at

e
x1

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
1)

×10-4 A plot of x1 and der(x1) versus time t

der(x1) versus t
x1 vr versus t

1.95 2 2.05 2.1 2.15 2.2
time

-5

0

5

10

th
e

st
at

e
x2

, a
nd

 th
e

de
riv

at
iv

e
de

r(x
2)

×10-4 A plot of x2 and der(x2) versus time t

der(x2) versus t
x2 vr versus t

Figure 3.33: Chattering-free simulation in Acumen for the system in Example 3.3. Up:
time evolution of the states and their derivatives. Down: zoom on the sliding on Σ1 =
{x ∈ R2 : x1 = 0} and the origin ∆ = {x ∈ R2 : x1 = 0 ∧ x2 = 0}.

3.4.3 Performance Analysis and Testing

Other chattering-Zeno case studies were simulated with different simulation scenarios
for the purpose of evaluating the efficiency of both FMI and Acumen prototype im-
plementations. In particular, a performance analysis and testing was done, where the
performance of the two implementations was evaluated based on the following criteria:

1. The time spent by the simulator to compute the chattering-free solution.
2. The accuracy of the chattering-free simulation. Namely, whether or not:

(a) all chattering-Zeno events are captured;
(b) the solution enters the sliding mode instantly when chattering-Zeno occurs;
(c) the exit from sliding is exactly at the sliding set’s boundary;
(d) the resulted sliding dynamics are correct (based on (b) and (c)).

Table 3.1 shows the performance testing results on six case studies simulated in both
FMI and Acumen chattering-free implementations. Table 3.2 compares the time taken to
generate the chattering-free solution for the six case studies listed in Table 3.1 when: i)
chattering-Zeno is handled manually by the user on the model level, ii) chattering-Zeno

105

is handled internally by the FMI chattering-free simulator, and iii) chattering-Zeno is
handled internally by the Acumen chattering-free simulator.

Case St. The Model ACED?† CTI‡[s] TISE[[s]
ẋ1 = v1, ẋ2 = v2,
v̇1 = sin(ω) - x1 - (Fc · sign(vr)),

1 v̇2 = Fc · sign(vr), vr = v1 - v2, YES I1=[2.89··3.99] 3.99
x1(0) = 1, v1(0) = 1, I2=[6.74··8.69] 8.69
x2(0) = 1, v2(0) = 0,
ω=0.055, Fc=0.4,
Simulation Time: 10.
ẋ1 = - sign (x1),
ẋ2 = - sign (x2), YES I1=[1.00··4.00] -

2 x1(0) = 1, x2(0) = 2, I2=[2.00··4.00] -
Simulation Time: 4.
ẋ1 = -3x1 + x2 - u,
ẋ2 = -3x1 + x3 + u,
ẋ3 = -x1 - 0.25u,

3 u = sign(x1), YES I1=[2.65··3.42] 3.42
x1(0) = 0.5, x2(0) = 3, I2=[8.22··9.03] 9.03
x3(0) = 0.1,
Simulation Time: 10.
ẋ = -2 · sign(y), φ̇ = 0.5,
y = x - (0.3 · exp (φ)),

4 x(0) = 1, φ(0) = 0, YES I1=[0.32··5.18] 5.18
Simulation Time: 6.
ẋ1 = x2,
ẋ2 = sin(φ) - x1 - (Fc · sign(x2)),

5 φ̇ = ω, ω = 0.4, Fc = 0.4, YES I1=[0.00··3.74] 3.74
x1(0) = 1, x2(0) = 0, φ(0) = 1, I2=[8.92··11.0] 11.0
Simulation Time: 20. I3=[16.5··19.2] 19.2
ẋ1 = -2x1 + x3 - u,
ẋ2 = -101x1 + x3 + 4u,
ẋ3 = -100x1 - u, u = sign(x1),

6 x1(0) = 0.5, x2(0) = -1, YES I1=[0.45··1.00] -
x3(0) = 1,
Simulation Time: 1.

Table 3.1: Summary of the performance analysis and testing for both Acumen and FMI
implementations of chattering-Zeno freeness.

† ACED?: All Chattering Events are Detected?
‡ CTI: Chattering Time Intervals.
[TISE: Time Instants of the Smooth Exits.

106

Chattering-Free Chattering-Free Chattering-Free
Case St. Manually (User) (FMI Solver) (Acumen Solver)

1 10.288 [s] 1.50 [s] 1.864 [s]
2 5.212 [s] 0.25 [s] 0.480 [s]
3 7.221 [s] 1.20 [s] 1.605 [s]
4 1.728 [s] 0.10 [s] 0.765 [s]
5 15.33 [s] 2.00 [s] 3.196 [s]
6 0.888 [s] 0.10 [s] 0.164 [s]

Table 3.2: Mean time of the chattering-free simulation: Manual manipulation by the
user versus automatic detection and elimination by the simulator.

107

Chapter 4

Geometric-Zeno Detection and
Avoidance

In this chapter, we investigate geometric-Zeno behavior of hybrid models in details.
We start this chapter by giving a brief introduction to geometric-Zeno behavior in Sec-
tion 4.1.1. To better understand geometric-Zeno behavior, we give in Section 4.1.2
illustrative examples of hybrid systems models having geometric-Zeno executions, and
then we discuss in Section 4.1.3 the problem of simulating their executions. Afterwards,
in Section 4.2 we present a method for geometric-Zeno detection and elimination. We
derive sufficient conditions for the existence of geometric-Zeno behavior based on the
existence of a non-standard contraction map in a complete metric space, and the con-
vergence of the solution to a geometric-Zeno limit point, through such map, according
to a Cauchy sequence. Such map indicates when exactly a decision should be taken to
transition the solution from pre-Zeno to post-Zeno, and thus eliminating Zeno behavior.
In Section 4.3 we present simulation results using a prototype implementation of our
proposed technique of geometric-Zeno detection and avoidance.

4.1 Geometric-Zeno in Hybrid Systems

4.1.1 Geometric-Zeno

Geometric-Zeno solutions involve an accumulation of an infinite number of discrete
events occurring in finite time, leading to the convergence of solutions to a limit point.
In hybrid models that exhibit geometric-Zeno behavior, discrete events occur at an in-
creasingly smaller distance in time, converging against a limit point. The convergence
itself to the geometric-Zeno limit point is according to a geometric series. For example,
if a new event occurs after half the time between the two previous events, a series of
events emerges that, after n events, has moved in time according to∑n

k=1
1
2k . This series

converges against 1 in the limit of n→∞. In the following section, we give two typical
examples of hybrid systems models having geometric-Zeno behavior, and we discuss the
simulation of their executions.

109

4.1.2 Examples of Geometric-Zeno Models

Example 4.1 (Bouncing Ball)
A typical example of a model that exhibits geometric-Zeno behavior is the model of a
bouncing ball whose collisions are inelastic. We consider that the collision of the ball
with the ground occurs with a restitution coefficient λ ∈ (0, 1). Figure 4.1 shows the
hybrid automaton of the bouncing ball, and Figure 4.2 illustrates the geometric-Zeno
behavior of the model. The height of the ball is denoted by x1, with the invariant
constraint x1(t) ≥ 0 and dynamics ẍ1(t) = −g, where g is the gravitational constant.
The velocity ẋ1 of the ball will be denoted by x2. We include Newton’s restitution rule
x2(t) := −λx2(t) when x1(t) ≤ 0 and x2(t) < 0. We can easily compute the time instants
of discrete events (or resets) {τi}i∈N by

τi = τ0 + 2x2(τ0)
g

i−1∑
k=0

λk; i ∈ N. (4.1)

Hence, {τi} has a limit τ∞ = τ0 + 2x2(τ0)
g·(1−λ) <∞, and (x1, x2) converges to (0, 0) at τ∞.

Figure 4.1: Example 4.1 (bouncing ball): The model represented by a hybrid automaton.

Figure 4.2: Example 4.1 (bouncing ball): Geometric-Zeno behavior.

110

The physical interpretation is that the ball is at rest within a finite time span, but
after infinitely many bounces. A continuation beyond τ∞ can be defined by (x1(t),
x2(t)) = (0, 0) for t > τ∞. This example is a typical example of a hybrid model having
geometric-Zeno behavior, where in this example we have an infinite number of state
re-initializations, where the set of event times contains a geometric-Zeno limit point.

Example 4.2 (Two Tanks)
Another canonical example of a geometric-Zeno model is the model of a water tanks
system as sketched in Figure 4.3. We denote x1 and x2 to the water levels, r1 and r2
to the critical thresholds, v1 and v2 to the constant water flow going out of the tanks,
and w to the constant water flow going into either tank at any given point of time.
We assume that (v1+v2) > w. Thus, the water levels x1 and x2 keep dropping. When
in either tanks the water level drops below the critical threshold, the pipe switches to
deliver the water to that tank. Figure 4.4 shows the hybrid automaton model of the
system, where switching the input water pipe between the two tanks occurs with zero
time. With initial conditions x1 > r1 and x2 > r2, the water levels x1 and x2 will drop
and as a result the input water pipe gets switched between the two tanks each time the
water level hits the critical threshold in either tanks.

Figure 4.3: Example 4.2: Schematic of the two tanks system.

Figure 4.4: Example 4.2: The hybrid automaton model of the system.

111

As much and much water go out of tanks, we will see that the switching frequency of
the input water pipe becomes greater and greater. In the limit point at which x1 = r1 and
x2 = r2, the switching frequency becomes infinite, and both guards conditions x1 ≤ r1
and x2 ≤ r2 become instantaneously true. As a result, the hybrid automaton would
not operate anymore in either of the modes q1 and q2. Comparing with the physical
system’s behavior, we can obviously see how the model can result in a deviant behavior.
In the physical system, both tanks become empty at some point in time. In the hybrid
automaton model, the water level never gets below the threshold.

Example 4.3 (Spiraling Piecewise Constant System)
Consider the following differential equation with discontinuous right hand side

ẋ =


ẋ1 = −α+ 2β,
ẋ2 = −2α− β,
ẋ3 = 1,

α =
{
−1 if x1 < 0,
+1 if x1 > 0,

β =
{
−1 if x2 < 0,
+1 if x2 > 0,

(4.2)

with initial state x1(0) > 0, x2(0) > 0, x3(0) ∈ R. In this system, each quadrant of
the (x1, x2)-plane the right hand side is a constant vector. Figure 4.5 shows the hy-
brid automaton model of this example. As we can see in Figure 4.6, the solutions of
this system are spiraling towards the (x1, x2)-plane’s origin (0, 0, x3). Solutions start-
ing at (x1(0) > 0, x2(0) > 0, x3(0)) cannot stay away from (0, 0, x3) for longer than
1
2(|x1(0)|+ |x2(0)|) units of time. However, solutions cannot arrive at (0, 0, x3) without
going through an infinite number of modes switches; since these mode switches would
have to occur in a finite time interval, there must be an accumulation of events.

Figure 4.5: Example 4.3: The hybrid automaton model of the system.

112

Figure 4.6: Example 4.3: Geometric-Zeno behavior.

4.1.3 Challenges of Simulating Geometric-Zeno Models

Now imagine that one tries to determine, by a numerical simulation, the trajectory of
the above three examples, by iteratively integrating over the continuous smooth phases,
detecting state events, localizing the time instants of the detected state events, resetting
the states, and so on. Such simulation would be broken down and the simulator would get
stuck at or before the Zeno limit point. In Simulink, the simulation of the bouncing ball
system in Example 4.1 with the data set: λ = 0.5, g = 9.81, and x(0) = [1 0]T terminates
with a halt at t = 1.3546, which is the Zeno time. The simulation in Simulink of the
two tanks system in Example 4.2 with the data set: w = 1.8, v1 = 1, v2 = 1, r1 = 5,
r2 = 5, and x(0) = [8 6]T terminates also with a halt at t = 20.0018. Most of the
simulation tools give faulty simulation results when simulating geometric-Zeno models.
Consider for example the simulation of Example 4.1, Example 4.2, and Example 4.3 with
Modelica simulation tools. In simulation of Example 4.1 with either OpenModelica or
Dymola, when the solution converges to the Zeno limit point x∞ = {x(t) ∈ R2 : x1(t) =
0 ∧ x2(t) = 0} at t = 1.3546[sec], the height x1 of the ball becomes negative, decreases
monotonically, and remains negative forever. Figure 4.7 clearly shows that at some point
the value of x1 will constantly decrease assuming negative value while the equations
describing the model are still satisfied. Similarly in Example 4.2, when both x1(t) and
x2(t) converge to the Zeno limit point x∞ = {x(t) ∈ R2 : x1(t) = r1 ∧ x2(t) = r2} at
t = 20.0018[sec], the water level in one tank increases monotonically above the threshold,
while the water level in the other tank decreases monotonically below the threshold;
see Figure 4.8. Other simulation tools, such as HyVisual, Scicos, Acumen, Zélus also
generate faulty results the same as the results generated by Modelica simulation tools.

113

Figure 4.7: Simulation of Example 4.1 in Modelica simulation tools: The time evolution
of the height x1 and velocity x2 of the bouncing ball.

Figure 4.8: Simulation of Example 4.2 in Modelica simulation tools: The time evolution
of the water levels x1 and x2.

114

As we have mentioned in Section 2.4; this is due to numerical errors which prevents
the simulator from capturing all the state events, when numbers become sufficiently
small just before the Zeno limit point.

OpenModelica Code of Example 4.1:
01. model Example4_1

02. type Height = Real(unit = "m");

03. type Velocity = Real(unit = "m/s");

04. parameter Real lambda = 0.5;

05. parameter Height x10 = 1.0;

06. Height x1; Velocity x2;

07. initial equation

08. x1 = x10;

09. equation

10. x2 = der(x1); der(x2) = -9.81;

11. when x1 <= 0 then

12. reinit(x2, -lambda*pre(x2));

13. end when;

14. end Example4_1;

OpenModelica Code of Example 4.2:
01. model Example4_2

02. parameter Real w = 1.8, v1 = 1, v2 = 1, r1 = 5, r2 = 5;

03. parameter Real x10 = 8.0, x20 = 6.0;

04. Real x1, x2, u1, u2;

05. initial equation

06. x1 = x10; x2 = x20; u1 = w - v1; u2 = 0 - v2;

07. equation

08. der(x1) = u1; der(x2) = u2; der(u1) = 0; der(u2) = 0;

09. when x1 <= r1 then

10. reinit(u1, w - v1); 11. reinit(u2, -v2);

12. end when;

13. when x2 <= r2 then

14. reinit(u1, -v1);

15. reinit(u2, w - v2);

16. end when;

17. end Example4_2;

Simulating Example 4.3 with both when and if statements in OpenModelica termi-
nates with a halt. With an initial state (x(0) = [2, 2, 0]T) the simulation halts around
time 2.0; see Figure 4.9. OpenModelica reports the following error message: {Chattering
detected around time 1.99999916495..2.00000001116 (100 state events in a row with a
total time delta less than the step size 2e-6)}.

115

Figure 4.9: Simulation of Example 4.3 in OpenModelica.

OpenModelica Code of Example 4.3 with when Statement:
01. model Example4_3

02. parameter Real x10 = 2.0; x20 = 2.0; x30 = 0.0;

03. Real x1, x2, x3, u1, u2;

04. initial equation

05. x1 = x10; x2 = x20; x3 = x30; u1 = 1; u2 = -3;

06. equation

07. when x1 > 0 and x2 <= 0 then reinit(u1, -3); reinit(u2, -1); end when;

08. when x1 <= 0 and x2 < 0 then reinit(u1, -1); reinit(u2, 3); end when;

09. when x1 < 0 and x2 >= 0 then reinit(u1, 3); reinit(u2, 1); end when;

10. when x1 >= 0 and x2 > 0 then reinit(u1, 1); reinit(u2, -3); end when;

11. der(x1) = u1; der(x2) = u2; der(x3) = 1; der(u1) = 0; der(u2) = 0;

12. end Example4_3;

OpenModelica Code of Example 4.3 with if Statement:
01. model Example4_3

02. parameter Real x10 = 2.0; x20 = 2.0; x30 = 0.0;

03. Real x1, x2, x3, alpha,beta;

04. initial equation

05. x1 = x10; x2 = x20; x3 = x30; alpha = 1; beta = 1;

06. equation

07. if x1>0 then alpha=1; elseif x1<0 then alpha=-1; else alpha = 0; end if;

08. if x2>0 then beta=1; elseif x2<0 then beta=-1; else beta=0; end if;

09. der(x1) = -alpha + 2*beta; der(x2) = -2*alpha - beta; der(x3) = 1;

10. end Example4_3;

Because in the physical system the hybrid solution can exist beyond the geometric-
Zeno limit point, the simulator should be able to predict correctly the solution be-
havior after Zeno. This motivates the need to a Zeno-Free simulation technique that
allows for the geometric-Zeno execution (or trajectory) to be carried correctly beyond
the geometric-Zeno limit point.

116

4.2 Geometric-Zeno Detection and Elimination
A cyclic path is a prerequisite and a necessary condition for a hybrid system’s state
machine (i.e. hybrid automaton) to accept geometric-Zeno executions. We consider
that every pair of two consecutive triggers of the same guard as the input argument for
detecting cycles. The convergence of the execution of a hybrid automaton to a geometric-
Zeno limit point is completely determined by the convergence of all the cycles detected
during the execution through the discrete locations.

4.2.1 Cycles Detection

We firstly introduce the notion of simple cycles and finite cyclic paths in the finite di-
rected graph A = (Q,E).

Definition 4.1 (Finite Cyclic Path) Given a directed graph A = (Q,E), E ⊆ Q×Q.
A path is an alternating sequence of discrete states qi ∈ Q and edges ei ∈ E of the form

q0
e1−→ q1

e2−→ q2
e3−→ · · · em−→ qm

em+1−→ · · ·

such that ei = (qi−1, qi) for all i. A path is called:
1. Simple path: if all the discrete states qi ∈ Q appearing in the path are distinct.
2. Finite path: if it is a finite sequence q0

e1−→ q1
e2−→ q2

e3−→ · · · em−→ qm.
3. Finite cyclic path: if it is finite, and the starting state is the same as the ending

state. For example the finite path q0
e1−→ q1

e2−→ q2
e3−→ · · · em−→ qm is called a finite

cyclic path if q0 = qm. Also a portion of a finite path can be a finite cyclic path
such as q1

e2−→ q2 with q1 = q2, or q2
e3−→ · · · em−→ qm with q2 = qm, etc.

Notation 4.2 To ease future discussion, we denote Cqi = 〈qi; ei+1, ei+2, · · · , em; qi〉
to a finite cyclic path with qi being its starting and ending state, where i ≥ 0 and
both m, i ∈ N being finite. Furthermore, we denote E(Cqi) to the set of all edges ei
that appear in the finite cyclic path Cqi . When applied to a finite cyclic path Cqi =
〈qi; ei+1, ei+2, · · · , em; qm = qi〉 we get E(Cqi) = {ei+1, ei+2, · · · , em}.

During the execution of a hybrid automaton, a cycle is detected at τb on the finite
cyclic path Cqi if there exists a transition ek ∈ E(Cqi) such that

x(τa) ∈ G(ek) ∧ x(τb) ∈ G(ek), τa, τb ∈ τ, τb > τa (4.3)
where τ is a sequence of intervals (see Definition 2.11 and Figure 2.8), G(ek) ∈ G is
the guard of the transition ek. In other words, a cycle is detected for every pair of two
consecutive triggers of the same guard, within a non-zero time duration.

Lemma 4.3 (Necessary Condition for Geometric-Zeno Behavior) A hybrid au-
tomaton H accepts a geometric-Zeno execution only if there exists a finite cyclic path in
the directed graph (Q,E) of H.
Proof. If (Q,E) has no cyclic path, then H accepts executions only with a finite number
of discrete mode changes. Such an execution cannot be Zeno.

117

4.2.2 The Convergence to a Geometric-Zeno Limit Point

We consider the evolution of the hybrid solution through cycles be represented as a
transition system on a metric space. Therefore, in order to derive sufficient conditions
for the hybrid automaton’s execution to be convergent to a geometric-Zeno limit point,
we study, based on non-standard analysis, the existence of a contraction map in a com-
plete metric space, and the convergence of the solution to a geometric-Zeno limit point,
through such map, according to a Cauchy sequence.
Definition 4.4 (Non-Standard Euclidean Distance) In Cartesian coordinates, con-
sider two non-standard points ∗p = (∗p1,

∗p2, · · · , ∗pn) and ∗q = (∗q1,
∗q2, · · · , ∗qn) in a

non-standard Euclidean n-space ∗Rn, then the Euclidean distance d ∈ ∗R between ∗p and
∗q is given by the Pythagorean formula:

d(∗p, ∗q) = ||∗p, ∗q||E =

√√√√ n∑
i=1

(∗pi − ∗qi)2. (4.4)

Note that, in ∗R, the distance between ∗pi and ∗qi is given by

d(∗pi, ∗qi) = |∗pi − ∗qi|. (4.5)

Definition 4.5 (Non-Standard Metric Space) A non-standard metric on a set
∗X ⊆ ∗Rn is a function d : ∗X × ∗X → ∗R satisfying for ∗x, ∗y, ∗z ∈ ∗X:

1. d(∗x, ∗y) ≥ 0 for all ∗x, ∗y ∈ ∗X;
2. d(∗x, ∗y) = 0 if and only if ∗x = ∗y, and d(∗x, ∗y) > 0 when ∗x 6= ∗y;
3. d(∗x, ∗y) = d(∗y, ∗x) for all ∗x, ∗y ∈ ∗X (Symmetry);
4. d(∗x, ∗y) + d(∗y, ∗z) ≥ d(∗x, ∗z) for all ∗x, ∗y, ∗z ∈ ∗X (Triangle Inequality).

A non-standard metric space is a pair (∗X, d) consisting of a set ∗X ⊆ ∗Rn and a
non-standard metric d on ∗X.
Definition 4.6 (Open and Closed Balls and Sets in a Non-Standard Metric
Space) Given a non-standard metric space (∗X, d), where ∗X ⊆ ∗Rn, the open ball with
center ∗x ∈ ∗X and radius ∗r is the set

∗Bo(∗x, ∗r) = {∗y ∈ ∗X : d(∗x, ∗y) < ∗r}. (4.6)

A closed ball is defined analogously as the set
∗Bc(∗x, ∗r) = {∗y ∈ ∗X : d(∗x, ∗y) ≤ ∗r}. (4.7)

A subset ∗U of a metric space (∗X, d) is open if for all ∗x ∈ ∗U , there is ∗r > 0 such
that ∗Bo(∗x, ∗r) ⊂ ∗U . A subset ∗U of a metric space (∗X, d) is closed if it complement
∗X \ ∗Y = {∗x ∈ ∗X|∗x 6∈ ∗Y } is open. A subset ∗U of a metric space (∗X, d) is bounded
if there exists a closed ball of finite radius that contains it. In other words, d(∗x, ∗y) ≤ ∗k
for all ∗x, ∗y ∈ ∗X and some constant ∗k <∞.

118

Definition 4.7 (Non-Standard Convergent Sequences) In any set ∗X, a sequence
{∗xn} in ∗X is just a mapping ∗ρ : ∗X → ∗X, n 7→ ∗xn, n ∈ ∗N. Let (∗X, d) be a metric
space and {∗xn} ⊂ ∗X, n ∈ ∗N, be a sequence in ∗X, we say that {∗xn} converges to an
element ∗x ∈ ∗X if for all ε > 0, ε ∈ ∗R, there exists an N = N(ε) ∈ ∗N such that for
all n ≥ N , d(∗xn, ∗x) < ε. We denote this by ∗xn → ∗x, and in this case, ∗x is said to
be the limit of the sequence {∗xn}, namely st(d(∗xn, ∗x))→ 0 as n→∞, where st(d(·))
denotes the standardization of d(·). If a sequence {∗xn} has a limit, this limit is unique.
Definition 4.8 (Non-Standard Cauchy Sequences) Let (∗X, d) be a metric space
and {∗xn} ⊂ ∗X, n ∈ ∗N, be a sequence ∗X, we say that {∗xn} is a Cauchy sequence
if for all ε > 0, ε ∈ ∗R, there exists an N = N(ε) ∈ ∗N such that for all m,n ≥ N ,
m,n ∈ ∗N, d(∗xn, ∗xm) < ε. As n,m→∞ we have st(d(∗xn, ∗xm))→ 0.
Lemma 4.9 A non-standard metric space (∗X, d) is complete if every non-standard
Cauchy sequence {∗xn} contained in ∗X is convergent to some ∗x ∈ ∗X.
Definition 4.10 (Continuity in a Non-Standard Metric Space) Let ∗ρ : ∗X → ∗X
be a non-standard map on the metric space (∗X, d), and let ∗x ∈ ∗X. We say that ∗ρ
is continuous at ∗x if for all ε > 0, ε ∈ ∗R, there is δ > 0, δ ∈ ∗R, such that for all
∗y ∈ ∗X, if d(∗x, ∗y) < δ then d(∗ρ(∗x), ∗ρ(∗y)) < ε. We say ∗ρ is continuous if it is
continuous at every ∗x ∈ ∗X. Equivalently, ∗xn → ∗x implies ∗ρ(∗xn)→ ∗ρ(∗x).
Definition 4.11 (Non-Standard Contraction Mapping in Non-Standard Met-
ric Space) Let ∗ρ : ∗X → ∗X be a non-standard map on the non-standard metric space
(∗X, d). We say that ∗ρ is a contraction of modulus β ∈ ∗R if there exists β ∈ (0, 1),
β ∈ ∗R, such that d(∗ρ(∗x), ∗ρ(∗y)) ≤ βd(∗x, ∗y) for all ∗x, ∗y ∈ ∗X. Informally, a
contraction map brings any two points of a set closer to each other.
Theorem 4.12 Let (∗X, d) be a non-standard complete metric space and ∗ρ : ∗X → ∗X
be a non-standard contraction with modulus β, then:

1. ∗ρ has a unique fixed point ∗x? ∈ ∗X satisfying ∗ρ(∗x) = ∗x?;
2. the sequence ∗x1 = ∗ρ(∗x0), ∗x2 = ∗ρ(∗x1), ..., ∗xn+1 = ∗ρ(∗xn) is a Cauchy

sequence in ∗X, and converges to ∗x? for any starting point ∗x0 ∈ ∗X.

Proof. Pick any ∗x1 ∈ ∗X and iterate ∗xn+1 = ∗ρ(∗xn), n = 1, 2, · · · . For all n we have

d(∗xn+1,
∗xn) ≤ βn−1d(∗x2,

∗x1). (4.8)

(4.8) results from induction, noting that

d(∗xn+2,
∗xn+1) = d(∗ρ(∗xn+1), ∗ρ(∗xn)) ≤ βd(∗xn+1,

∗xn). (4.9)

If m > n we deduce from (4.8) that

d(∗xm, ∗xn) ≤ βn−1(1 + · · ·+ βm−n−1)d(∗x2,
∗x1) = βn−1

1− βd(∗x2,
∗x1). (4.10)

Hence {∗xn} is a Cauchy sequence, and since ∗X is complete then ∗xn → ∗x? for some
∗x? ∈ ∗X. Passing to the limit in ∗xn+1 = ∗ρ(∗xn) we get ∗x? = ∗ρ(∗x?).

119

Theorem 4.13 (Sufficient Condition for Geometric-Zeno Behavior) An exe-
cution of a hybrid automaton H is geometric-Zeno if the following two conditions are
satisfied:

1. The directed graph (Q, E) of H contains at least one finite cyclic path Cqi, i.e. the
necessary condition in Lemma 4.3 for the existence of geometric-Zeno behavior is
fulfilled.

2. The continuous part of the automaton’s hybrid solution trajectory is a non-standard
Cauchy sequence {∗xn}, n ∈ ∗N, in a complete non-standard metric space ∗X. Any
line that starts from the limit x? of {∗xn} and intersects all cycles will form a non-
standard Cauchy subsequence {∗xj} ⊂ {∗xn}, j ∈ ∗N, satisfying ∗xj+1 = ∗ρ(∗xj)
for all j, with ∗ρ being non-standard contraction map of fixed modulus β. The limit
point to which both Cauchy sequences {∗xn} and {∗xj} converge is the geometric-
Zeno limit point.

The second condition in Theorem 4.13 indicates that for any ∗xn ∈ {∗xn} we can
find a subsequence {∗xj} ⊂ {∗xn} that is a Cauchy sequence, and that converges —
according to a geometric series — to the same limit point to which converges {∗xn}.

4.2.3 Geometric-Zeno Elimination

A way to eliminate geometric-Zeno behavior is by enabling a transition from the pre-
Zeno to a post-Zeno — and thus stopping the Cauchy sequence {∗xn} of the solution —
at ∗xn ∈ {∗xn} once ∗xn ≈ ∗ρ(∗xn). The step in which this transition is taken would be
used as the final step with the original dynamics, and this step would be used to carry
the transition from pre-Zeno to post-Zeno state.

The idea of carrying the execution beyond the geometric-Zeno limit point is by
forcing the system to slide on the switching surface to which belong the geometric-Zeno
limit point. In the interval in which the transition from pre-Zeno to post-Zeno is taken,
the system switches its dynamics to the sliding dynamics ∗f∞ = 0 · ∗f(qi, ∗x) where
∗f(qi, ∗x) is the original dynamics of the system. Note that the transition from pre-Zeno
to post-Zeno is urgent.

When the transition from pre-Zeno to post-Zeno is taken, the simulator switches in-
stantly to integrate the system with the new dynamics and the rest of the events before
the Zeno time point are discarded.

Example 4.1 (Bouncing Ball) revisited: Consider again the bouncing ball model
in Example 4.1. The ball’s velocity and height as functions of time from ∗ts ∈ T∂ to
∗t ∈ T∂ are given by

∗x2(∗t− ∗ts) =∗x2(∗ts)− (∗t− ∗ts) · g,

∗x1(∗t− ∗ts) =∗x1(∗ts) + (∗t− ∗ts) · ∗x2(∗ts)−
g · (∗t− ∗ts)2

2 .
(4.11)

120

Figure 4.10: Generalized bounce cycle.

Consider a bouncing cycle occurring from ∗τi−1 to ∗τi as shown in Figure 4.10. We can
find out at what time ∗tmax,i the ball reaches its maximum height ∗x1max,i by solving
for the time at which the velocity is zero using (4.11) with ∗ts = ∗τi−1 and ∗x2(∗ts) =
∗x2max,i . This gives us:

∗tmax,i =
∗x2max,i

g
. (4.12)

Next, we can then find the ball’s maximum height ∗x1max,i at time ∗tmax,i using (4.11)
and (4.12) with ∗x1(∗ts) = 0, and again ∗x2(∗ts) = ∗x2max,i . This gives us

∗x1max,i =
∗x2

2max,i
2g . (4.13)

Denote ∗x20 to the initial rebound velocity. As the ball is bouncing according to a
coefficient of restitution λ on velocity, the relation for any rebound velocity ∗x2max,i to
the initial rebound velocity ∗x20 is given by

∗x2max,i = λi · ∗x20. (4.14)

Using (4.14) we can re-write (4.12) and (4.13) as

∗tmax,i = λi · ∗x20
g

, ∗x1max,i = λ2i · ∗x2
20

2g . (4.15)

Figure 4.11 shows the trajectory of the bouncing ball on (x1, x2)-plane. For each
bouncing cycle i, the curve is given by

∗x1,i = 1
2g (∗x2

20λ
2i − ∗x2

2,i). (4.16)

121

Figure 4.11: The hybrid solution trajectory of the bouncing ball model on (x1, x2)-plane.

We can observe that the hybrid solution trajectory in this example is a non-standard
Cauchy sequence in a non-standard complete metric space. If we draw a line starting
from the Zeno limit point (0,0) and intersecting each cycle i at a state (∗x1,i ,

∗x2,i),
we find that all the states (∗x1,i ,

∗x2,i), that lie on this line form also a non-standard
Cauchy subsequence {∗xj}, satisfying ∗xj+1 = ∗ρ(∗xj) for all j, with ∗ρ being non-
standard contraction map of fixed modulus β ∈ (0, 1). Consider for example the three
states (∗x1,0 ,

∗x2,0), (∗x1,1 ,
∗x2,1), and (∗x1,2 ,

∗x2,2) picked up as sketched in Figure 4.11.
We have:

∗x1,0 = 1
2g (∗x2

20 − ∗x2
2,0),

∗x1,1 = 1
2g (∗x2

20λ
2 − ∗x2

2,1),

∗x1,2 = 1
2g (∗x2

20λ
4 − ∗x2

2,2).

(4.17)

122

In (4.17), we can see that:

• For the pair of states (∗x1,0 ,
∗x2,0) and (∗x1,1 ,

∗x2,1), with ∗x2,1 = λ∗x2,0 we have
∗x1,1 = λ2∗x1,0 .

• Similarly, for the pair of states (∗x1,1 ,
∗x2,1) and (∗x1,2 ,

∗x2,2), with ∗x2,2 = λ∗x2,1
we have ∗x1,2 = λ2∗x1,1 .

• Similarly, for the pair of states (∗x1,0 ,
∗x2,0) and (∗x1,2 ,

∗x2,2), with ∗x2,2 = λ2∗x2,0
we have ∗x1,2 = λ4∗x1,0 .

Denote Ψ = {∗xi = (∗x1,i ,
∗x2,i)} to the sequence of states ∗xi = (∗x1,i ,

∗x2,i) that lie on
the same line which starts from the Zeno limit point (0,0). We have ∗x2,i+m = λm∗x2,i ,
∗x1,i+m = λ2m∗x1,i for all ∗x1,i ,

∗x2,i ∈ Ψ. Also, let ∗ρ1,
∗ρ2 be two maps such that

∗x1,i+1 = ∗ρ1(∗x1,i), and ∗x2,i+1 = ∗ρ2(∗x2,i), then it holds that:

1. For all ∗x2,i ∈ Ψ we have
d(∗ρ2(∗x2,i), ∗ρ2(∗x2,i+1)) = λd(∗x2,i ,

∗x2,i+1). (4.18)

2. For all ∗x1,i ∈ Ψ we have

d(∗ρ1(∗x1,i), ∗ρ1(∗x1,i+1)) = λ2d(∗x1,i ,
∗x1,i+1). (4.19)

Both ∗ρ1 and ∗ρ2 are contraction maps because λ ∈ (0, 1) as it is assumed in the
model. Geometric-Zeno elimination involves enabling a transition from pre-Zeno to
post-Zeno by integrating the system with dynamics (0,0) once ∗x1,i ≈ ∗ρ1(∗x1,i) and
∗x2,i ≈ ∗ρ2(∗x2,i), namely once d(∗x1,i ,

∗x1,i+1) ≈ 0 and d(∗x2,i ,
∗x2,i+1) ≈ 0. Note that,

this naturally occurs when λm → 0 and λ2m → 0 as m→∞.

Example 4.2 (Two Tanks) revisited: Consider again the two tanks model in Ex-
ample 4.2. The system hybrid automaton (Figure 4.4) contains two cyclic paths, Cq1 =
〈q1; e1, e2; q1〉 and Cq2 = 〈q2; e2, e1; q2〉, where e1 is the transition from q1 to q2 guarded
by the guard condition G(e1) = {x(t) ∈ R2 : x2(t) ≤ r2}, and e2 is the transition from
q2 to q1 guarded by the guard condition G(e2) = {x(t) ∈ R2 : x1(t) ≤ r1}.

In the discrete state q1 (mode filling tank 1), the water levels in the two tanks as
functions of time from ∗ts ∈ T∂ to ∗t ∈ T∂ are given by

∗x1(∗t− ∗ts) =∗x1(∗ts) + (∗t− ∗ts) · (w − v1),
∗x2(∗t− ∗ts) =∗x2(∗ts)− (∗t− ∗ts) · v2.

(4.20)

In the discrete state q2 (mode filling tank 2), the water levels in the two tanks as
functions of time from ∗ts ∈ T∂ to ∗t ∈ T∂ are given by

∗x1(∗t− ∗ts) =∗x1(∗ts)− (∗t− ∗ts) · v1,
∗x2(∗t− ∗ts) =∗x2(∗ts) + (∗t− ∗ts) · (w − v2).

(4.21)

On either of the two cyclic paths Cq1 = 〈q1; e1, e2; q1〉 and Cq2 = 〈q2; e2, e1; q2〉, each
cycle occurs within two discrete transitions from ∗τi−1 to ∗τi+1; see Figure 4.12.

123

Figure 4.12: Example 4.2: The time evolution of the water levels in the two tanks.

We can find out what time ∗t1max,i the water level in tanks 1 takes to reach its
maximum height ∗x1max,i at ∗τi starting from the threshold level r1, by solving for the
time at which the water level in tanks 2 is equal to the threshold level r2, using (4.20)
with ∗ts = ∗τi−1, ∗t = ∗τi, ∗x2(∗ts) = ∗x2max,i−1 , and ∗x2(∗t− ∗ts) = r2. This gives us:

∗t1max,i =
∗x2max,i−1 − r2

v2
. (4.22)

Next, we can then find the maximum height ∗x1max,i at ∗τi starting from the threshold
level r1, using (4.20) and (4.22) with ∗x1(∗ts) = r1 and ∗x2(∗ts) = ∗x2max,i−1 .
This gives us:

∗x1max,i − r1 = k1 · (∗x2max,i−1 − r2), k1 = w − v1
v2

. (4.23)

Similarly, we can find out what time ∗t2max,i the water level in tanks 2 takes to reach
its maximum height ∗x2max,i at ∗τi starting from the threshold level r2, by solving for the
time at which the water level in tanks 1 is equal to the threshold level r1, using (4.21)
with ∗ts = ∗τi−1, ∗t = ∗τi, ∗x2(∗ts) = ∗x2max,i−1 , and ∗x1(∗t− ∗ts) = r1.
This gives us:

∗t2max,i =
∗x1max,i−1 − r1

v1
. (4.24)

124

From (4.24) and (4.21) with ∗x2(∗ts) = r2 and ∗x1(∗ts) = ∗x1max,i−1 , the maximum
height x2max,i of the water level in tank 2 at τi is given by

∗x2max,i − r2 = k2 · (∗x1max,i−1 − r1), k2 = w − v2
v1

. (4.25)

Denote ∗x10 to the initial highest level of water in tank 1, and ∗x20 to the initial
highest level of water in tank 2 (given in Figure 4.12 by ∗x10 = ∗x1(∗τ0) and ∗x10 =
∗x2(∗τ1)).

From (4.23) and (4.25), the relation for any maximum water level’s height ∗xkmax,j
to its previous maximum height ∗xkmax,j−1 , k ∈ {1, 2} and to the initial highest level
∗xk0 is given for both tanks by

∗x1max,j − r1 = λ · (∗x1max,j−1 − r1)
= λj(∗x10 − r1),

(4.26)

∗x2max,j − r2 = λ · (∗x2max,j−1 − r2)
= λj(∗x20 − r2),

(4.27)

where
λ = k1 · k2 =

(
w − v1
v2

)
·
(
w − v2
v1

)
. (4.28)

From (4.26) and (4.27), we see obviously —with w < v1 + v2 hence λ < 1 as it is
assumed in the model— that the maximum heights of water levels in both tanks converge
asymptotically and geometrically to a Zeno limit point at the limit j →∞.

In the system’s model, when in either tanks the water level drops below the critical
threshold, the inflow pipe switches to deliver the water to that tank, so the water level
increases in one tank while it is decreasing in the other tank.

Denote ∗xp to the initial highest water level at the initial switching time ∗τ0, where
∗xp is measured starting from a threshold level.

Let’s consider the same scenario in the hybrid automaton of the model (Figure 4.4)
where the initial mode is q1 (filling tanks 1). In this case ∗xp would be ∗xp = ∗x10 − r1,
i.e. the initial highest peak will be recorded in tank 1.

In Figure 4.13 and Figure 4.14, we show two regions for the solution trajectory:

1. The violet regions (Figure 4.13) correspond to filling tank 2. In all these violet
regions, the evolution of the state (∗x1,

∗x2) on (x1,x2)-plane is given by

(∗x1,i − r1) + (∗x2,i − r2) = ki1 · ki2 · ∗xp, k1 = w − v1
v2

, k2 = w − v2
v1

, (4.29)

where i corresponds to the i-th cycle on the cyclic path Cq1 = 〈q1; e1, e2; q1〉.

2. The green regions (Figure 4.14) correspond to filling tank 1. In all these green
regions, the evolution of the state (∗x1,

∗x2) on (x1,x2)-plane is given by

(∗x1,i − r1) + (∗x2,i − r2) = ki1 · ki+1
2 · ∗xp, k1 = w − v1

v2
, k2 = w − v2

v1
, (4.30)

where i corresponds to the i-th cycle on the cyclic path Cq2 = 〈q2; e2, e1; q2〉.

125

Figure 4.13: The time evolution of the water levels in the two tanks.

Figure 4.14: The time evolution of the water levels in the two tanks.

126

If we consider the opposite scenario where the hybrid automaton starts initially in
mode q2 (filling tanks 2), then ∗xp would be ∗xp = ∗x20 − r2 (the initial highest peak
would be recorded in tank 2). In this case, the violet regions would correspond to filling
tank 1, thus increasing ∗x1 with the evolution relation given by

(∗x1,i − r1) + (∗x2,i − r2) = ki1 · ki2 · ∗xp, k1 = w − v1
v2

, k2 = w − v2
v1

, (4.31)

where i corresponds to the i-th cycle on the cyclic path Cq2 = 〈q2; e2, e1; q2〉, while the
green regions would correspond to filling tank 2, thus increasing ∗x2 with the relation

(∗x1,i − r1) + (∗x2,i − r2) = ki+1
1 · ki2 · ∗xp, k1 = w − v1

v2
, k2 = w − v2

v1
, (4.32)

where i corresponds to the i-th cycle on the cyclic path Cq1 = 〈q1; e1, e2; q1〉.
Let’s keep going with what is stated in hybrid automaton (Figure 4.4), i.e. the initial

mode is q1, and therefore the same as what is sketched in Figure 4.13 and Figure 4.14,
hence (4.29) and (4.30) hold. Figure 4.15 shows the trajectory of the two tanks system
on (x1, x2)-plane.

Figure 4.15: The evolution of the water levels on (x1,x2)-plane.

127

We can observe that the hybrid solution trajectory in this example is a non-standard
Cauchy sequence in a non-standard complete metric space. If we draw a line starting
from the Zeno limit point (r1, r2) and intersecting each cycle i at a state (∗x1,i ,

∗x2,i),
we find that all the states (∗x1,i ,

∗x2,i) on this line form also a non-standard Cauchy
subsequence {∗xj}, satisfying ∗xj+1 = ∗ρ(∗xj) for all j, with ∗ρ being non-standard
contraction map of fixed modulus β ∈ (0, 1).

Consider for example the three states (∗x1,0 ,
∗x2,0), (∗x1,1 ,

∗x2,1), and (∗x1,2 ,
∗x2,2)

picked when filling tank 2 (violet regions), as sketched in Figure 4.16. From (4.29) we
have:

(∗x2,0 − r2) = ∗xp − (∗x1,0 − r1),
(∗x2,1 − r2) = k1k2

∗xp − (∗x1,1 − r1),
(∗x2,2 − r2) = k2

1k
2
2
∗xp − (∗x1,2 − r1).

(4.33)

Figure 4.16: The evolution of the water levels on (x1,x2)-plane.

128

In (4.33), we can see that:

• For the pair of states (∗x1,0 ,
∗x2,0) and (∗x1,1 ,

∗x2,1), with ∗x1,1 − r1 = k1k2(∗x1,0 −
r1) we have ∗x2,1 − r2 = k1k2(∗x2,0 − r2).

• Similarly, for the pair of states (∗x1,1 ,
∗x2,1) and (∗x1,2 ,

∗x2,2), with ∗x1,2 − r1 =
k1k2(∗x1,1 − r1) we have ∗x2,2 − r2 = k1k2(∗x2,1 − r2).

• Similarly, for the pair of states (∗x1,0 ,
∗x2,0) and (∗x1,2 ,

∗x2,2), with ∗x1,2 − r1 =
k2

1k
2
2(∗x1,0 − r1) we have ∗x2,2 − r2 = k2

1k
2
2(∗x2,0 − r2).

Denote Ψ = {∗xi = (∗x1,i ,
∗x2,i)} to the sequence of states ∗xi = (∗x1,i ,

∗x2,i) that lie
on the same line which starts from the Zeno limit point (r1,r2) as sketched in Figure 4.16.
We have ∗x1,i+m − r1 = km1 k

m
2 (∗x1,i − r1) and ∗x2,i+m − r2 = km1 k

m
2 (∗x2,i − r2) for all

∗x1,i ,
∗x2,i ∈ Ψ.

Also, let ∗ρ1,
∗ρ2 be two maps such that ∗x1,i+1 = ∗ρ1(∗x1,i), and ∗x2,i+1 = ∗ρ2(∗x2,i),

then it holds that:

1. For all ∗x2,i ∈ Ψ we have

d(∗ρ2(∗x2,i), ∗ρ2(∗x2,i+1)) = k1k2d(∗x2,i ,
∗x2,i+1). (4.34)

2. For all ∗x1,i ∈ Ψ we have

d(∗ρ1(∗x1,i), ∗ρ1(∗x1,i+1)) = k1k2d(∗x1,i ,
∗x1,i+1). (4.35)

Now consider the three states (∗x1,0 ,
∗x2,0), (∗x1,1 ,

∗x2,1), and (∗x1,2 ,
∗x2,2) picked

when filling tank 1 (green regions), as sketched in Figure 4.17. From (4.31) we have:

(∗x2,0 − r2) = k2
∗xp − (∗x1,0 − r1),

(∗x2,1 − r2) = k1k
2
2
∗xp − (∗x1,1 − r1),

(∗x2,2 − r2) = k2
1k

3
2
∗xp − (∗x1,2 − r1).

(4.36)

In (4.36), when filling tank 1 (green regions) we will have the same as when when
filling tank 2 (violet regions):

• For the pair of states (∗x1,0 ,
∗x2,0) and (∗x1,1 ,

∗x2,1), with ∗x1,1 − r1 = k1k2(∗x1,0 −
r1) we have ∗x2,1 − r2 = k1k2(∗x2,0 − r2).

• Similarly, for the pair of states (∗x1,1 ,
∗x2,1) and (∗x1,2 ,

∗x2,2), with ∗x1,2 − r1 =
k1k2(∗x1,1 − r1) we have ∗x2,2 − r2 = k1k2(∗x2,1 − r2).

• Similarly, for the pair of states (∗x1,0 ,
∗x2,0) and (∗x1,2 ,

∗x2,2), with ∗x1,2 − r1 =
k2

1k
2
2(∗x1,0 − r1) we have ∗x2,2 − r2 = k2

1k
2
2(∗x2,0 − r2).

129

Figure 4.17: The evolution of the water levels on (x1,x2)-plane.

Denote Ψ = {∗xi = (∗x1,i ,
∗x2,i)} to the sequence of states ∗xi = (∗x1,i ,

∗x2,i) that lie
on the same line which starts from the Zeno limit point (r1,r2) as sketched in Figure 4.17.
We have ∗x1,i+m − r1 = km1 k

m
2 (∗x1,i − r1) and ∗x2,i+m − r2 = km1 k

m
2 (∗x2,i − r2) for all

∗x1,i ,
∗x2,i ∈ Ψ. Also, let ∗ρ1,

∗ρ2 be two maps such that ∗x1,i+1 = ∗ρ1(∗x1,i), and
∗x2,i+1 = ∗ρ2(∗x2,i), then it holds that:

1. For all ∗x2,i ∈ Ψ we have

d(∗ρ2(∗x2,i), ∗ρ2(∗x2,i+1)) = k1k2d(∗x2,i ,
∗x2,i+1). (4.37)

2. For all ∗x1,i ∈ Ψ we have

d(∗ρ1(∗x1,i), ∗ρ1(∗x1,i+1)) = k1k2d(∗x1,i ,
∗x1,i+1). (4.38)

Both ∗ρ1 and ∗ρ2 in (4.34), (4.35), (4.37), and (4.38) are contraction maps because
k1 = w−v1

v2
< 1 and k2 = w−v2

v1
< 1 as it is assumed in the model with w < v1 + v2. Note

that, we get the same results when the initial model of the system’s hybrid automaton
is q2. Geometric-Zeno elimination involves enabling a transition from pre-Zeno to post-
Zeno by integrating the system with dynamics (0,0) once ∗x1,i ≈ ∗ρ1(∗x1,i) and ∗x2,i ≈
∗ρ2(∗x2,i), namely once d(∗x1,i ,

∗x1,i+1) ≈ 0 and d(∗x2,i ,
∗x2,i+1) ≈ 0. Note that, this

naturally occurs when (k1k2)m → 0 as m→∞.

130

Example 4.3 (Spiraling Piecewise Constant System) revisited: Consider again
the Spiraling piecewise constant system model in Example 4.3.

The solution, as a function of time from ∗ts ∈ T∂ to ∗t ∈ T∂ is given by

∗x1(∗t− ∗ts) =∗x1(∗ts) + (∗t− ∗ts) · (2β − α),
∗x2(∗t− ∗ts) =∗x2(∗ts)− (∗t− ∗ts) · (2α+ β),
∗x3(∗t− ∗ts) =∗x3(∗ts) + (∗t− ∗ts).

(4.39)

Figure 4.18 shows the time evolution of ∗x1, ∗x2, and ∗x3. As the switching between
the four modes is based on the values of ∗x1, and ∗x2, then each time the state ∗x2
switches its domain at ∗τi from negative to positive or vice-versa we can find out what
time ∗t1∓max,i the state ∗x1 reaches its positive/negative peak ∗x1∓max,i by solving for
the time at which the state ∗x2 is zero using (4.39). If ∗x2 switches its domain at the
initial switching time ∗τ0, then from (4.39) we have with ∗x2(∗t− ∗ts) = 0, ∗t = ∗τ0, and
∗x2(∗ts) = ∗x2(0); see Figure 4.18. This gives us:

∗t1∓max,0 =
∗x2(0)
2α+ β

,

∗x1∓max,0 =∗x1(∗τ0 − ∗ts) = ∗x1(0) + 2β − α
2α+ β

· ∗x2(0).
(4.40)

Figure 4.18: Example 4.3: The time evolution of the system.

131

For all other switching times ∗τi when ∗x2 switches its domain, we have ∗x2(∗t−∗ts) =
0, ∗ts = ∗τi−1, ∗t = ∗τi, ∗x1(∗ts) = 0, and ∗x2(∗ts) = ∗x2∓max,i−1 . This gives us:

∗t1∓max,i =∗τi − ∗τi−1 =
∗x2∓max,i−1

2α+ β
,

∗x1∓max,i =∗x1(∗τi − ∗τi−1) = 2β − α
2α+ β

· ∗x2∓max,i−1 .

(4.41)

Similarly, each time ∗x1 switches its domain at ∗τi from negative to positive or vice-
versa we can find out what time ∗t2∓max,i the state ∗x2 reaches its positive/negative
peak ∗x2∓max,i by solving for the time at which the state ∗x1 in is zero using (4.39). If
∗x1 switches its domain at the initial switching time ∗τ0, then from (4.39) we have with
∗x1(∗t− ∗ts) = 0, ∗t = ∗τ0, and ∗x1(∗ts) = ∗x1(0). This gives us:

∗t2∓max,0 =
∗x1(0)
α− 2β ,

∗x2∓max,0 =∗x2(∗τ0 − ∗ts)

=∗x2(0)− 2α+ β

α− 2β ·
∗x1(0).

(4.42)

For all other switching times ∗τi when ∗x1 switches its domain we have ∗x1(∗t− ∗ts) = 0,
∗ts = ∗τi−1, ∗t = ∗τi, ∗x2(∗ts) = 0, and ∗x1(∗ts) = ∗x1∓max,i−1 . This gives us

∗t2∓max,i =∗τi − ∗τi−1

=
∗x1∓max,i−1

α− 2β ,

∗x2∓max,i =∗x2(∗τi − ∗τi−1)

=2α+ β

2β − α ·
∗x1∓max,i−1 .

(4.43)

As it was shown in the hybrid automaton of the system (Figure 4.5), we have four
locations q1, q2, q3, q4, where each cycle is completed after four zero-crossings: two zero-
crossings by ∗x1 (changing its domain from positive to negative and from negative to
positive), and two zero-crossings by ∗x2 (also changing its domain from positive to
negative and from negative to positive).

Denote ∗xp to the initial highest peak of either ∗x1 or ∗x2 at the initial switching
time ∗τ0.

Let’s consider the case as sketched in Figure 4.18, that is, at the initial switching time
∗τ0, it is ∗x2 who changes its domain from positive to negative. In this case, from (4.40)
we have ∗xp = ∗x1+max,0 = ∗x1(0) + 2β−α

2α+β ·
∗x2(0), and (4.41), respectively (4.43), applies

for computing —using ∗xp— the peaks ∗x1∓max,i , respectively ∗x2∓max,i , each time ∗x2,
respectively ∗x1, changes its domain at ∗τi.

132

Starting from the initial switching time ∗τ0, we have four zero crossings at ∗τ1, ∗τ2,
∗τ3, and ∗τ4 for completing the first cycle; (see Figure 4.18):
∗x1(∗τ1) = ∗x2(∗τ2) = ∗x1(∗τ3) = ∗x2(∗τ4) = 0,
∗x2(∗τ1) = ∗x2−max,1 = ∗xp ·

(2α+ β

2β − α

)
α=1,β=−1

< 0,

∗x1(∗τ2) =∗x1−max,2 = ∗x2−max,1 ·
(2β − α

2α+ β

)
α=−1,β=−1

= ∗xp ·
(2α+ β

2β − α

)
α=1,β=−1

·
(2β − α

2α+ β

)
α=−1,β=−1

< 0,

∗x2(∗τ3) =∗x2+max,3 = ∗x1−max,2 ·
(2α+ β

2β − α

)
α=−1,β=1

= ∗xp ·
(2α+ β

2β − α

)
α=1,β=−1

·
(2β − α

2α+ β

)
α=−1,β=−1

·
(2α+ β

2β − α

)
α=−1,β=1

> 0,

∗x1(∗τ4) =∗x1+max,4 = ∗x2+max,4 ·
(2β − α

2α+ β

)
α=1,β=1

= ∗xp ·
(2α+ β

2β − α

)
α=1,β=−1

·
(2β − α

2α+ β

)
α=−1,β=−1

·
(2α+ β

2β − α

)
α=−1,β=1

·
(2β − α

2α+ β

)
α=1,β=1

> 0.

(4.44)

So in (4.44) we have

∗x1(∗τ1) = 0, ∗x2(∗τ1) = −1
3 ·

∗xp,

∗x2(∗τ2) = 0, ∗x1(∗τ2) = −1
3 ·

1
3 ·
∗xp,

∗x1(∗τ3) = 0, ∗x2(∗τ3) = −1
3 ·

1
3 ·
−1
3 ·

∗xp,

∗x2(∗τ4) = 0, ∗x1(∗τ4) = −1
3 ·

1
3 ·
−1
3 ·

1
3 ·
∗xp.

(4.45)

Note that the initial cycle that started at ∗τ0 is completed at ∗τ4 because at ∗τ0
we had ∗x2(∗τ0) = 0, ∗x1(∗τ0) > 0, and now at ∗τ4 we have the same mode change
happened at ∗τ0, namely ∗x2(∗τ4) = 0, ∗x1(∗τ4) > 0. In general, for all the switching
times ∗τi, a cycle that starts at ∗τi terminates at ∗τi+4 where, depending on the initial
switching at ∗τ0, we have either x1(∗τi+4) = ∗x1(∗τi) = 0 and ∗x2(∗τi+4) = (1

3)4 ·∗x2(∗τi),
or ∗x2(∗τi+4) = ∗x2(∗τi) = 0 and ∗x1(∗τi+4) = (1

3)4 · ∗x1(∗τi). The relation with the
initial peak ∗xp at ∗τ0 is the following: Whenever a cycle is completed at ∗τi we have,
again depending on the initial switching at ∗τ0, either ∗x1(∗τi) = ∗x1(∗τ0) = 0 and
∗x2(∗τi) = (1

3)4i · ∗xp, or ∗x2(∗τi) = ∗x2(∗τ0) = 0 and ∗x1(∗τi) = (1
3)4i · ∗xp. We see

now obviously why the solution forms a Cauchy sequence that converges to the state
(0, 0, ∗x3); whatever is the case of the initial switching at ∗τ0, namely whether it is a
zero-crossing on ∗x1 or ∗x2, the state (∗x1,

∗x2) converges to (0,0) at the limit when
i→∞.

133

Figure 4.19: The evolution of the states x1 and x2 on (x1,x2)-plane.

Denote ∗S1, ∗S2, ∗S3, and ∗S4 to the invariants of the four discrete states q1, q2, q3,
and q4 of the system’s hybrid automaton in Figure 4.5. These invariants are given by

∗S1 = {∗x ∈ ∗R3 : ∗x1 > 0 ∧ ∗x2 > 0}, ∗S2 = {∗x ∈ ∗R3 : ∗x1 > 0 ∧ ∗x2 < 0},
∗S3 = {∗x ∈ ∗R3 : ∗x1 < 0 ∧ ∗x2 < 0}, ∗S4 = {∗x ∈ ∗R3 : ∗x1 < 0 ∧ ∗x2 > 0}.

(4.46)

Figure 4.19 shows the trajectory of the system’s hybrid automaton on (x1, x2)-plane,
where the evolution of the state variables ∗x1 and ∗x2 on (x1, x2)-plane is given, for each
invariant, by

∗x1,i + ∗x2,i =(1
34)i · sign(∗x1,i) · ∗xp for (∗x1,i ,

∗x2,i) ∈ ∗S1,

∗x1,i + ∗x2,i =(1
3)i · sign(∗x2,i) · ∗xp for (∗x1,i ,

∗x2,i) ∈ ∗S2,

∗x1,i + ∗x2,i =(1
32)i · sign(∗x1,i) · ∗xp for (∗x1,i ,

∗x2,i) ∈ ∗S3,

∗x1,i + ∗x2,i =(1
33)i · sign(∗x2,i) · ∗xp for (∗x1,i ,

∗x2,i) ∈ ∗S4,

(4.47)

where i corresponds to the i-th cycle on the cyclic path cq1 = 〈q1; e1, e2, e3, e4; q1〉.

134

We can observe that the hybrid solution trajectory in this example is a non-standard
Cauchy sequence in a non-standard complete metric space. On (x1, x2)-plane, if we
draw a line starting from the Zeno limit point (0,0) and intersecting each cycle i at a
state (∗x1,i ,

∗x2,i), we find that all the states (∗x1,i ,
∗x2,i), that lie on this line, form

also a non-standard Cauchy subsequence {∗xj}, satisfying ∗xj+1 = ∗ρ(∗xj) for all j,
with ∗ρ being non-standard contraction map of fixed modulus β ∈ (0, 1). Consider for
example the states (∗x1,1 ,

∗x2,1), (∗x1,2 ,
∗x2,2), and (∗x1,3 ,

∗x2,3) picked in ∗S2, as sketched
in Figure 4.19. From (4.47) we have:

∗x2,1 =(1
3) · sign(∗x2,1) · ∗xp − ∗x1,1 ,

∗x2,2 =(1
3)2 · sign(∗x2,2) · ∗xp − ∗x1,2 ,

∗x2,3 =(1
3)3 · sign(∗x2,3) · ∗xp − ∗x1,3 .

(4.48)

In (4.48), we can see that:

• For the pair of states (∗x1,1 ,
∗x2,1) and (∗x1,2 ,

∗x2,2), with ∗x1,2 = 1
3
∗x1,1 we have

∗x2,2 = 1
3
∗x2,1 .

• Similarly, for the pair of states (∗x1,2 ,
∗x2,2) and (∗x1,3 ,

∗x2,3), with ∗x1,3 = 1
3
∗x1,2

we have ∗x2,3 = 1
3
∗x2,2 .

• Similarly, for the pair of states (∗x1,1 ,
∗x2,1) and (∗x1,3 ,

∗x2,3), with ∗x1,3 = (1
3)2∗x1,1

we have ∗x2,3 = (1
3)2∗x2,1 .

Denote Ψ = {∗xi = (∗x1,i ,
∗x2,i)} to the sequence of states ∗xi = (∗x1,i ,

∗x2,i) that
lie on the same line which starts from the Zeno limit point (0,0) and intersects cycles
i as sketched in Figure 4.19. We have ∗x2,i+m = (1

3)m∗x2,i , ∗x1,i+m = (1
3)m∗x1,i for

all ∗x1,i ,
∗x2,i ∈ Ψ. Also, let ∗ρ1,

∗ρ2 be two maps such that ∗x1,i+1 = ∗ρ1(∗x1,i), and
∗x2,i+1 = ∗ρ2(∗x2,i), then it holds that:

1. For all ∗x2,i ∈ Ψ we have

d(∗ρ2(∗x2,i), ∗ρ2(∗x2,i+1)) = 1
3d(∗x2,i ,

∗x2,i+1). (4.49)

2. For all ∗x1,i ∈ Ψ we have

d(∗ρ1(∗x1,i), ∗ρ1(∗x1,i+1)) = 1
3d(∗x1,i ,

∗x1,i+1). (4.50)

Both ∗ρ1 and ∗ρ2 are contraction maps because β = 1
3 ∈ (0, 1).

135

Now consider the states (∗x1,1 ,
∗x2,1), (∗x1,2 ,

∗x2,2), and (∗x1,3 ,
∗x2,3) picked in S3, as

sketched in Figure 4.20. From (4.47) we have:
∗x2,1 =(1

32) · sign(∗x2,1) · ∗xp − ∗x1,1 ,

∗x2,2 =(1
32)2 · sign(∗x2,2) · ∗xp − ∗x1,2 ,

∗x2,3 =(1
32)3 · sign(∗x2,3) · ∗xp − ∗x1,3 .

(4.51)

In (4.51), we can see that:
• For the pair of states (∗x1,1 ,

∗x2,1) and (∗x1,2 ,
∗x2,2), with ∗x1,2 = 1

32
∗x1,1 we have

∗x2,2 = 1
32
∗x2,1 .

• Similarly, for the pair of states (∗x1,2 ,
∗x2,2) and (∗x1,3 ,

∗x2,3), with ∗x1,3 = 1
32
∗x1,2

we have ∗x2,3 = 1
32
∗x2,2 .

• Similarly, for the pair of states (∗x1,1 ,
∗x2,1) and (∗x1,3 ,

∗x2,3), with ∗x1,3 = (1
32)2∗x1,1

we have ∗x2,3 = (1
32)2∗x2,1 .

Figure 4.20: The evolution of the states x1 and x2 on (x1,x2)-plane.

136

Denote Ψ = {∗xi = (∗x1,i ,
∗x2,i)} to the sequence of states ∗xi = (∗x1,i ,

∗x2,i) in ∗S3
and that lie on the same line which starts from the Zeno limit point (0,0) and intersects
cycles i as sketched in Figure 4.20. We have ∗x2,i+m = (1

32)m∗x2,i , ∗x1,i+m = (1
32)m∗x1,i

for all ∗x1,i ,
∗x2,i ∈ Ψ. Also, let ∗ρ1,

∗ρ2 be two maps such that ∗x1,i+1 = ∗ρ1(∗x1,i), and
∗x2,i+1 = ∗ρ2(∗x2,i), then it holds that:

1. For all ∗x2,i ∈ Ψ we have

d(∗ρ2(∗x2,i), ∗ρ2(∗x2,i+1)) = 1
32d(∗x2,i ,

∗x2,i+1). (4.52)

2. For all ∗x1,i ∈ Ψ we have

d(∗ρ1(∗x1,i), ∗ρ1(∗x1,i+1)) = 1
32d(∗x1,i ,

∗x1,i+1). (4.53)

Both ∗ρ1 and ∗ρ2 are contraction maps because β = 1
32 ∈ (0, 1).

The same analysis applies in the invariants ∗S1 and ∗S4, where in ∗S4 the modulus
β for both ρ1 and ρ2 is β = 1

33 , and in ∗S1 the modulus β for both ρ1 and ρ2 is β = 1
34 .

In the following, we prove that there exists also the solution on the ∗x3-plan forms
also a Cauchy sequence and converges to a Zeno limit point.

Denote ∗x30 to the state ∗x3 at the initial switching time ∗τ0, that is ∗x30 = ∗x3(∗τ0),
and again ∗xp to the initial highest peak of either ∗x1 or ∗x2 at the initial switching time
∗τ0.

If ∗x2 switches its domain at the initial switching time ∗τ0, then from (4.39) (see also
Figure 4.18) we have

∗x30 = ∗x3(∗τ0) = ∗x3(0) +
∗x2(0)
2α+ β

, (4.54)

otherwise if it is ∗x1 who switches its domain at ∗τ0, then from (4.39) we have

∗x30 = ∗x3(∗τ0) = ∗x3(0) +
∗x1(0)
α− 2β . (4.55)

For all other switching times ∗τi if ∗x2 switches its domain at ∗τi, then from(4.39)
∗x3(∗τi) is give by

∗x3(∗τi) = ∗x3(∗τi−1) +
∗x2(∗τi−1)

2α+ β
, (4.56)

otherwise if it is ∗x1 who switches its domain at ∗τi, then from(4.31) ∗x3(∗τi) is give by

∗x3(∗τi) = ∗x3(∗τi−1) +
∗x1(∗τi−1)
α− 2β . (4.57)

where in (4.54) and (4.55) the values of α and β are evaluated for ∗t ∈ [0, ∗τ0), and in
(4.56) and (4.57) the values of α and β are evaluated for ∗t ∈ (∗τi−1,

∗τi).

137

Let’s consider the case as sketched in Figure 4.18, that is, at the initial switching time
∗τ0, it is ∗x2 who changes its domain from positive to negative. In this case, (4.54) applies
for computing ∗x30 = ∗x3(∗τ0), and ∗xp is given by ∗xp = ∗x1(∗τ0) = ∗x1(0) +

∗x2(0)
2α+β .

From (4.54), (4.56), and (4.57) we have

∗x3(∗τ0) = ∗x30 = ∗x3(0) +
∗x2(0)
2α+ β

= ∗x3(0) +
∗x2(0)

3 ,

∗x3(∗τ1) = ∗x30 +
∗x1(∗τ0)
α− 2β = ∗x30 +

∗x1(∗τ0)
3 ,

∗x3(∗τ2) = ∗x30 +
∗x1(∗τ0)
α− 2β +

∗x2(∗τ1)
2α+ β

= ∗x30 +
∗x1(∗τ0)

3 −
∗x2(∗τ1)

3 ,

∗x3(∗τ3) = ∗x30 +
∗x1(∗τ0)
α− 2β +

∗x2(∗τ1)
2α+ β

+
∗x1(∗τ2)
α− 2β = ∗x30 +

∗x1(∗τ0)
3 −

∗x2(∗τ1)
3 −

∗x1(∗τ2)
3 ,

∗x3(∗τ4) = ∗x30 +
∗x1(∗τ0)
α− 2β +

∗x2(∗τ1)
2α+ β

+
∗x1(∗τ2)
α− 2β +

∗x2(∗τ3)
2α+ β

= ∗x30 +
∗x1(∗τ0)

3 −
∗x2(∗τ1)

3 −
∗x1(∗τ2)

3 +
∗x2(∗τ3)

3 .

(4.58)

By using (4.45), and with ∗xp = ∗x1(∗τ0) = ∗x1(0) +
∗x2(0)

3 we can re-write (4.58) as
following

∗x3(∗τ0) = ∗x30 = ∗x3(0) +
∗x2(0)

3 = ∗x3(0)− ∗x1(0) + ∗xp,

∗x3(∗τ1) = ∗x3(0)− ∗x1(0) + ∗xp +
∗xp
3 ,

∗x3(∗τ2) = ∗x3(0)− ∗x1(0) + ∗xp +
∗xp
3 +

∗xp
32 ,

∗x3(∗τ3) = ∗x3(0)− ∗x1(0) + ∗xp +
∗xp
3 +

∗xp
32 +

∗xp
33 ,

∗x3(∗τ4) = ∗x3(0)− ∗x1(0) + ∗xp +
∗xp
3 +

∗xp
32 +

∗xp
33 +

∗xp
34 ,

(4.59)

so in general at the switching time ∗τi the state ∗x3(∗τi) is given by

∗x3(∗τi) = ∗x3(0)− ∗x1(0) +
i∑

k=0

∗xp
3k . (4.60)

The geometric series in (4.60) is convergent because 1
3 < 1. At the limit, when i→∞,

the time interval ∗τi − ∗τi−1 =
∗xp
3i —between two successive switching times ∗τi−1 and

∗τi— shrinks to 0. The geometric series (4.60) converges then to a geometric-Zeno state
given by

∗x3(∗τ∞) = ∗x3(0)− ∗x1(0) + lim
i→∞

i∑
k=0

∗xp
3i = ∗x3(0)− ∗x1(0) +

∗xp

1− 1
3
,

∗x3(τ∞) = ∗x3(0)− ∗x1(0) + 3
2
∗xp.

(4.61)

138

With (0.0) being the Zeno state on (x1, x2)-plane, the solution of Example 4.3 con-
verges asymptotically to a Zeno limit point given by (0,0,∗x3(0) − ∗x1(0) + 3

2
∗xp) with

∗xp = ∗x1(0) +
∗x2(0)

3 .
As mentioned above, the hybrid automaton of this system contains four locations

q1, q2, q3, q4. Each cycle is completed after four zero-crossings, namely from ∗τi−4 to ∗τi.
For example, the initial cycle that started at ∗τ0 is completed at ∗τ4 because at ∗τ0

we have ∗x2(∗τ0) = 0, ∗x1(∗τ0) > 0, and at ∗τ4 we have the same mode change happened
at ∗τ0, namely ∗x2(∗τ4) = 0, ∗x1(∗τ4) > 0.

From (4.59) we can see that, during the initial first cycle from ∗τ0 to ∗τ4, the state
∗x3 has evolved

∗x3(∗τ4)− ∗x3(∗τ0) =
∗xp
3 +

∗xp
32 +

∗xp
33 +

∗xp
34 . (4.62)

Denote ∆∗x3,i to the evolution of ∗x3 at each cycle. For all the cycles we have:

Cycle 0: ∆∗x3,0 =
∗xp
3 +

∗xp
32 +

∗xp
33 +

∗xp
34 ,

Cycle 1: ∆∗x3,1 =
∗xp
35 +

∗xp
36 +

∗xp
37 +

∗xp
38

= 1
34 ∆∗x3,0 ,

Cycle 2: ∆∗x3,2 =
∗xp
39 +

∗xp
310 +

∗xp
311 +

∗xp
312

= 1
34 ∆∗x3,1 ,

Cycle 3: ∆∗x3,3 =
∗xp
313 +

∗xp
314 +

∗xp
315 +

∗xp
316

= 1
34 ∆∗x3,2 ,

...

Cycle i: ∆∗x3,i =
∗xp

34i+1 +
∗xp

34i+2 +
∗xp

34i+3 +
∗xp

34i+4

= 1
34 ∆∗x3,i−1

= 1
34i∆

∗x3,0 .

(4.63)

Consider the three states ∗x3(∗τ0), ∗x3(∗τ4), and ∗x3(∗τ8) that lie on the same line
starting from the Zeno state ∗x3(∗τ∞); see Figure 4.19 with ∗x3 plane being vertical eye

139

view plane. We have:

∗x3(∗τ∞)− ∗x3(∗τ0) =
∗xp
3 +

∗xp
32 +

∗xp
33 +

∗xp
34 + · · ·+

∗xp
3∞ ,

∗x3(∗τ∞)− ∗x3(∗τ4) =
∗xp
35 +

∗xp
36 +

∗xp
37 +

∗xp
38 + · · ·+

∗xp
3∞ ,

= 1
34 (∗x3(∗τ∞)− ∗x3(∗τ0)),

∗x3(∗τ∞)− ∗x3(∗τ8) =
∗xp
39 +

∗xp
310 +

∗xp
311 +

∗xp
312 + · · ·+

∗xp
3∞ ,

= 1
34 (∗x3(∗τ∞)− ∗x3(∗τ4)),

= (1
34)2(∗x3(∗τ∞)− ∗x3(∗τ0)).

(4.64)

The same, if we consider the three states ∗x3(∗τ1), ∗x3(∗τ5), and ∗x3(∗τ9) that lie on
the same line starting from the Zeno state ∗x3(∗τ∞), we have

∗x3(∗τ∞)− ∗x3(∗τ1) =
∗xp
32 +

∗xp
33 +

∗xp
34 +

∗xp
35 + · · ·+

∗xp
3∞ ,

∗x3(∗τ∞)− ∗x3(∗τ5) =
∗xp
36 +

∗xp
37 +

∗xp
38 +

∗xp
39 + · · ·+

∗xp
3∞ ,

= 1
34 (∗x3(∗τ∞)− ∗x3(∗τ1)),

∗x3(∗τ∞)− ∗x3(∗τ9) =
∗xp
310 +

∗xp
311 +

∗xp
312 +

∗xp
313 + · · ·+

∗xp
3∞ ,

= 1
34 (∗x3(∗τ∞)− ∗x3(∗τ5)),

= (1
34)2(∗x3(∗τ∞)− ∗x3(∗τ1)).

(4.65)

The same also results when we consider the three states ∗x3(∗τ2), ∗x3(∗τ6), and ∗x3(∗τ10)
that lie on the same line starting from the Zeno state ∗x3(∗τ∞), and also for the three
states ∗x3(∗τ3), ∗x3(∗τ7), and ∗x3(∗τ11) that lie on the same line starting from the Zeno
state ∗x3(∗τ∞).

Denote Ψ = {∗xi = (∗x3,i ,
∗x2,i ,

∗x3,i)} to the sequence of states ∗xi = (∗x1,i ,
∗x2,i ,

∗x3,i)
that lie on the same line which starts from the Zeno limit point (0, 0, ∗x3,i) and intersects
all the cycles i on (x1, x2, x3)-plane, and let ∗ρ3 be a map such that ∗x3,i+1 = ∗ρ3(∗x3,i),
then it holds that for all ∗x3,i ∈ Ψ we have

d(∗ρ3(∗x3,i), ∗ρ3(∗x3,i+1)) = 1
34d(∗x3,i ,

∗x3,i+1). (4.66)

The map ∗ρ3 is a contraction map because β = 1
34 ∈ (0, 1).

Geometric-Zeno elimination involves enabling a transition from pre-Zeno to post-
Zeno by integrating the system with dynamics (0,0,0) once ∗x1,i ≈ ∗ρ1(∗x1,i), ∗x2,i ≈
∗ρ2(∗x2,i), and ∗x3,i ≈ ∗ρ3(∗x3,i), namely once d(∗x1,i ,

∗x1,i+1) ≈ 0, d(∗x2,i ,
∗x2,i+1) ≈ 0,

and d(∗x3,i ,
∗x3,i+1) ≈ 0.

140

4.3 Simulation Results
As a simulation environment for the prototype implementation of our Zeno-free simu-
lation technique we have used Matlab/Simulink. We have implemented two Zeno-free
simulators in both Matlab and Simulink environments. The motivation is to provide a
correct Zeno-free simulation for hybrid systems models exhibiting geometric-Zeno behav-
ior. The Matlab implementation [110] includes a Zeno-free simulator written in Matlab
code, while the Simulink implementation [111] includes the basic Simulink library blocks
that allow for Zeno-free simulation of Zeno models written in Simulink.

Figure 4.21, Figure 4.22, and Figure 4.23 show the Zeno-free simulation results for
the bouncing ball system in Example 4.1 with the data set: λ = 0.5, g = 9.81, and
x(0) = [x1(0) x2(0)]T = [1 0]T . The simulation time is set to 2.0. During the sim-
ulation, the ball’s velocity x2 decreases due to the energy loss through impact. As a
consequence, more and more collisions are triggered and the time interval between two
consecutive collisions keeps shrinking. One cyclic path Cq1 = 〈q1; e1; q1〉 was detected by
the simulator when executing the hybrid automaton of the system in Figure 4.1, where
q1 = Fly and e1 = Bounce. The first cycle was detected at the time instant t = 0.9031.
The solution converged of to the Zeno limit point at the time instant 1.3549. The dense
points near the time 1.3549 indicates that more and more computation steps are taken
near the estimated Zeno limit point. The simulation closely approaches the Zeno point
before the behavior of the ball automatically switches to what the sliding dynamics
(ẋ1 = 0, ẋ2 = 0) specifies. Therefore, the simulation does not halt, freely moving beyond
the geometric-Zeno point in a manner consistent with physical reality.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x1 position

-5

-4

-3

-2

-1

0

1

2

3

x 2 v
el

oc
ity

Figure 4.21: Zeno-free simulation of the bouncing ball model: x2 versus x1.

141

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t time

-5

-4

-3

-2

-1

0

1

2

3

x 1 p
os

iti
on

, x
2 v

el
oc

ity

Figure 4.22: Zeno-free simulation of the bouncing ball model: The time evolution of the
position x1 and velocity x2 of the bouncing ball.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t time

0

0.2

0.4

0.6

0.8

1

x 1 p
os

iti
on

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t time

-6

-4

-2

0

2

4

x 2 v
el

oc
ity

Figure 4.23: Zeno-free simulation of the bouncing ball model. Up: The time evolution
of the position x1. Down: The time evolution of the velocity x2.

142

Figure 4.24, Figure 4.25, and Figure 4.26 show the Zeno-free simulation results for
the two tanks system in Example 4.2 with the data set: w = 1.8, v1 = 1, v2 = 1, r1 = 5,
r2 = 5, and x(0) = [x1(0) x2(0)]T = [8 6]T . The simulation time is set to 25.0.

Two cyclic paths, Cq1 = 〈q1; e1, e2; q1〉 and Cq2 = 〈q2; e2, e1; q2〉, were detected by the
simulator when executing the hybrid automaton of the system in Figure 4.4, where e1 is
the transition from q1 to q2 guarded by the guard G(e1) = {x(t) ∈ R2 : x2(t) ≤ r2}, and
e2 is the transition from q2 to q1 guarded by the guard G(e2) = {x(t) ∈ R2 : x1(t) ≤ r1}.

The initial cycle 0 on the cyclic path Cq1 = 〈q1; e1, e2; q1〉 was detected at the time
instant t = 7.8402, and the initial cycle 0 on the cyclic path Cq2 = 〈q2; e2, e1; q2〉 was
detected at the time instant t = 10.2723.

The convergence of solution to the Zeno limit point was estimated to be at (0,0,2).
Again the dense points near the Zeno time 20.0018 indicates that more and more compu-
tation steps were taken near the Zeno limit point. The simulation closely approaches the
Zeno point before the simulator automatically switches to integrate the system with the
sliding dynamics (ẋ1(t) = 0, ẋ2(t) = 0), (i.e. sliding along the surface to which belong
the Zeno state x∞ = {x(t) ∈ R2 : x1(t) = r1 ∧ x2(t) = r2}, carrying the solution past
the Zeno limit point.

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
x1 the water level in Tank1

4.5

5

5.5

6

6.5

7

7.5

8

8.5

x 2 th
e

w
at

er
 le

ve
l i

n
Ta

nk
2

Figure 4.24: Zeno-free simulation of the two tanks model: x2 versus x1.

143

0 5 10 15 20 25
t time

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

x 1 th
e

w
at

er
 le

ve
l i

n
Ta

nk
1, x

2 th
e

w
at

er
 le

ve
l i

n
Ta

nk
2

Figure 4.25: Zeno-free simulation of the two tanks model: The time evolution of the
water levels x1 and x2.

0 5 10 15 20 25
t time

4

5

6

7

8

9

x 1 th
e

w
at

er
 le

ve
l i

n
Ta

nk
1

0 5 10 15 20 25
t time

4

5

6

7

8

9

x 2 th
e

w
at

er
 le

ve
l i

n
Ta

nk
2

Figure 4.26: Zeno-free simulation of the two tanks model. Up: The time evolution of
the water level x1. Down: The time evolution of the water level x2.

144

Chapter 5

Conclusions

This chapter summarizes the contents of this thesis and highlights several potential
future research thrusts.

5.1 Summary
In this thesis, we have addressed the problem of both chattering-Zeno and geometric-
Zeno behaviors of hybrid systems from a simulation perspective. We provided a static
analysis of both types for Zeno in a non-standard hybrid time domain. We proposed
a Zeno-free computational framework for Zeno detection and elimination “on the fly”
based on an execution analysis and formally introduced conditions on when the simulated
hybrid models exhibit chattering-Zeno or geometric-Zeno. We also provided methods for
carrying solution beyond Zeno. A part of this thesis was also attributed to design, test,
and validate Zeno-free implementations using the theory that we have proposed.

Non-Standard Static Analysis of Zeno Behavior. In Chapter 2 we gave a thor-
ough introduction to hybrid dynamical systems, their model formalization, and execu-
tions. We discussed the limitation of the standard semantics of hybrid automata in
the full treatment of the hybrid dynamics, especially for hybrid models exhibiting Zeno
behavior. We proposed a non-standard semantics for Zeno executions of hybrid systems
models, based on interpreting Zeno executions in a non-standard densely ordered hybrid
time domain. The advantages of using non-standard semantics in the analysis of Zeno
behavior is that the completeness in the space of the continuous dynamics and discrete
dynamics is naturally introduced so that it allows for solutions of Zeno hybrid models
to be well-defined beyond the Zeno limit points, while at the same time preserving the
original semantics of the model:

1. The representation of dynamics based on non-standard analysis is complete.
2. In non-standard analysis, the continuous dynamics of the hybrid system is reduced

to the recurrence equation that represents the infinite iteration of infinitesimal
discrete changes with infinitesimal duration, and therefore, we can handle the
hybrid dynamics based on fully discrete paradigm.

145

Chattering-Zeno Detection and Elimination. In Chapter 3, we have proposed a
sliding mode computational framework with hierarchical application of convex combina-
tions. The main benefit of the proposed framework is that chattering-Zeno detection and
elimination is done “on the fly” without any need neither to add small hysteresis to the
zero-crossing event functions, nor to solve stiff nonlinear equations for the computation
of the equivalent sliding dynamics in case of chattering-Zeno on discontinuous surfaces
intersections of high dimensions. The proposed hierarchical application of convex com-
binations provides a unique solution for chattering-free coefficients in general cases when
the discontinuous switching manifold — on which chattering-Zeno occurs — takes the
form of finitely many intersecting discontinuous surfaces.

Geometric-Zeno Detection and Elimination. In Chapter 4, we have proposed a
new technique for detecting and eliminating “orbitally” geometric-Zeno behavior. We
provided formal conditions for detecting cycles during execution of hybrid automata,
and we derived sufficient conditions for the existence of geometric-Zeno behavior based
on the existence — through the detected cycles — of a non-standard contraction map in
a complete metric space, and the convergence of the solution to a geometric-Zeno limit
point, through such map, according to a Cauchy sequence. Such map indicates when
exactly a decision should be taken to transition the solution from pre-Zeno to post-Zeno,
and thus eliminating Zeno behavior.

Prototype Implementations. A part of this dissertation was attributed to design,
test, and validate Zeno-free simulator prototypical implementations. We have developed,
tested, and validated two Zeno-free simulator implementations for chattering-Zeno de-
tection and elimination. The first Zeno-free simulator implementation was developed in
Acumen language, while the second one was developed conforming to Functional Mock-
up Interface (FMI) standard for Model Exchange. Also we have developed, tested, and
validated two Matlab/Simulink Zeno-free simulator implementations for geometric-Zeno
detection and elimination. The Matlab implementation includes a stand-alone simulator
written in Matlab code, while the Simulink implementation includes the basic ready-
to-use Zeno-free Simulink library blocks that allow for geometric-Zeno detection and
elimination of any Zeno hybrid model exhibiting geometric-Zeno.

5.2 Future Directions

The work described in this thesis can be continued in many different directions. In the
following we suggest some ideas for possible future work:

• One of the possible future research directions would be to explore our theory in
experimental case studies of complex hybrid systems having a large number of
state variables (and thus a large space dimension), and whose models exhibit Zeno
behavior.

146

• Another possible future research direction would be to extend our theory in such a
way that it would be possible to measure as well as to control the sliding velocity
(accelerating, slowing) without affecting the decision making for smooth exit from
sliding.

• Our theory proposed in this thesis is purely an event-driven theory for hybrid
systems simulation. A possible research direction thus would be to explore and
to discuss how the methods proposed in this thesis would be used in a mixed
hybrid simulation technique combining event-driven simulation and time-stepping
simulation.

• Another future research thrust would be to extend our geometric-Zeno detection
and avoidance technique presented in Chapter 4 in a way that includes an esti-
mation of the geometric-Zeno limiting state using advanced state estimation tech-
niques, as for example the use of state estimation with filtering (i.e. using Kalman
Filetrs, Particle Filters, etc). It is worth noting that at the end of this disserta-
tion we did not have enough time to discuss the computational load of our Mat-
lab/Simulink prototype implementations — presented in Chapter 4 for geometric-
Zeno detection and elimination — for larger case studies where the geometric-Zeno
models contain a large number of state variables. This has been left for future re-
search work.

147

Bibliography

[1] R. Alur, T. A. Henzinger, P. -H. Ho. Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering, vol. 22, no. 3, pp. 181-201,
1996.

[2] J. Lygeros, C. Tomlin, and Sh. Sastry. Hybrid Systems: Modeling, Analysis and
Control, Lecture Notes on Hybrid Systems, 2008.

[3] R. Alur, C. Coucoubetis, N. Halbwachs, T. A. Henzinger, P. -H. Ho, X. Nicollin, A.
Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of hybrid systems. Theoret-
ical Computer Science, vol. 138, no. 1, pp. 3-34, 1995.

[4] P. J. Antsaklis. Special issue on hybrid systems: theory and applications a brief
introduction to the theory and applications of hybrid systems. In proceedings of
IEEE, vol. 88, no. 7, pp. 879-887, 2000.

[5] R. Alur, T. A. Henzinger. Modularity for timed and hybrid systems. In Proceedings
of the 9th International Conference on Concurrency Theory, LNCS 1243, pp. 74-88,
1997.

[6] C. Cai, R. Goebel, R. Sanfelice, and A. Teel, Hybrid systems: limit sets and zero
dynamics with a view toward output regulation, Springer-Verlag, 2008.

[7] Boris Golden, Marc Aiguier, and Daniel Krob. Modeling of complex systems II: A
minimal- ist and unified semantics for heterogeneous inte- grated systems. Applied
Mathematics and Com- putation, 218(16):8039–8055, 2012.

[8] J. Zhang, K. H. Johansson, J. Lygeros, and Sh. Sastry, Zeno hybrid systems,
International Journal of Robust and Nonlinear Control, 11(05), pp.435-451, 2001.

[9] R. Alur, C. Courcoubetis, T. A. Henzinger, P. -H. Ho. Hybrid Automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In Hybrid
Systems, LNCS 736, pp. 209-229, 1993.

149

[10] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. ClauB, H. Elmqvist, M.
Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel, Func-
tional Mockup Interface 2.0: The Standard for Tool independent Exchange of Sim-
ulation Model, In Proceedings of 9th International Modelica Conference, Munich,
Germany, 076(17), pp.173-184, 2012.

[11] M. di Bernardo, C. J. Budd, A. R. Champneys, Piotr Kowalczyk, A. B. Nord-
mark, G. O. Tost, and P. T. Piiroinen, Bifurcations in Nonsmooth Dynamical
Systems, SIAM Review, 50(5), pp.629-701, 2008.

[12] K. H. Johansson, A.E. Barabanov, and K.J. Astrom, Limit cycles with chattering
in relay feedback systems, IEEE Transactions on Automatic Control, 47(9), pp.1414-
1423, 2002.

[13] D. Weiss, T. Kupper, and H.A. Hosham, Invariant manifolds for nonsmooth systems
with sliding mode, Mathematics and Computers in Simulation, 110, March 2014.

[14] V. I. Utkin, Sliding Mode in Control and Optimization, Springer Berlin Heidelberg,
ISBN: 978-3-642-06029-8, 2004.

[15] R. I. Leine, and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical
Systems, Springer Berlin Heidelberg, ISBN: 978-3-642-84379-2, 1992.

[16] V. I. Utkin. Sliding Modes in Control and Optimization. Springer, 1992.

[17] A.F. Filippov. Differential Equations with Discontinuous Righthand Sides, Springer
Netherlands, ISBN: 978-94-015-7793-9, 1988.

[18] P. Schrammel. Logico-Numerical Verification Methods for Discrete and Hybrid Sys-
tems, PhD dissertation, 2012.

[19] J. P. Aubin, A. Cellina. Differential Inclusions, Springer, ISBN: 978-3-642-69514-8,
Volume 264, 1984.

[20] M. Biák, T. Hanus, and D. Janovská, Some applications of Filippov’s dynamical
systems, Journal of Computational and Applied Mathematics, 254, pp.132–143,
2013.

[21] https://fr.mathworks.com/company/newsletters/articles/improving-simulation-
performance-in-simulink.html.

[22] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-
puter Programming, vol. 8, p. 231:274, July 1987.

[23] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis, “Translat- ing discrete-
time Simulink to Lustre,” in Proc. of the Third Intl. Conf. on Embedded Soft-
ware (EMSOFT). Philadelphia, PA, (R. Alur and I. Lee, eds.), (Berlin), pp. 84–99,
Springer Verlag, October 2003.

150

[24] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. J. Wiley and Sons, 2004.

[25] P. Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica
3.3: A Cyber-Physical Approach. J. Wiley and Sons, 2015.

[26] J.J. Moreau. Bounded variation in time. In J.J Moreau, P.D. Panagiotopoulos,
and G. Strang, editors, Topics in Nonsmooth mechanics, pages 1–74, Basel, 1988.
Bikh¨auser.

[27] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S.
Sachs, and Y. Xiong. Taming heterogeneity: The Ptolemy approach. Proceedings
of the IEEE, 91(1):127– 144, 2003.

[28] P. Fritzson. Introduction to Modeling and Simulation of Technical and Physical
Systems with Modelica. Wiley-IEEE Press, 2011.

[29] Michael M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Aca-
demic Publishers”, 2001.

[30] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, LICS’96, pages 278–292.
IEEE Society Press, 1996.

[31] François E. Cellier, Ernesto Kofman, Gustavo Migoni, and Mario Bortolotto. Quan-
tized state system simulation. Proceedings of Grand Chal- [14] lenges in Modeling
and Simulation (GCMS’08), pages 504–510, 2008.

[32] Modelica Association. Modelica - a unified object-oriented language for physical
systems modeling, language specification. December 2000.

[33] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, and H. Zheng. Hyvisual:
A hybrid system visual modeler. Technial Report UCB/ERL M03/1, UC Berkeley,
2003.

[34] J. J. Moreau. Standard inelastic shocks and the dynamics of unilateral constraints.
In Unilateral problems in Structural Analysis (G. del Piero and F. Maceri eds),
Springer, New York, 1983, pp. 173-221.

[35] J. J. Moreau. Liaison unilatérales sans frottement et chocs inélastiques. C.R. Acad.
Sc. Paris, 296:1473-1476, 1983.

[36] V. Acary and B. Brogliato. Higher order moreau’s sweeping process. In P. Alart, O.
Maisonneuve, and R.T. Rockafellar, editors, Non smooth Mechanics and Analysis:
Theoretical and numerical advances, Colloquium in the honor of the 80th Birthday
of J.J. Moreau (2003). Kluwer, 2005.

151

[37] A. Girard, A. A. Julius, G. J. Pappas. Approximate Simulation Relations for Hybrid
Systems. Discrete Event Dynamic Systems, Springer, doi:10.1007/s10626-007-0029-
9, Volume 18, Issue 2, pp 163–179, 2008.

[38] M. Schatzman. A class of nonlinear differential equations of second order in time.
Non linear Analysis, 2(3):355–373, 1978.

[39] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig, S. Neuendorf- fer, S. Sachs,
and Y. Xiong. Taming heterogeneity—The Ptolemy approach. Proceedings of the
IEEE, 91(1):127–144, January 2003.

[40] J.J. Moreau. Numerical aspects of the sweeping process. Computer Methods in Ap-
plied mechanics and Engineering, 177:329–349, 1999. Special issue on computational
modeling of contact and friction, J.A.C. Martins and A. Klarbring, editors.

[41] E.A. Lee and Y. Xiong. System-level types for component-based design. In T.A.
Henzinger and C.M. Kirsch, editors, Embedded Software. Proceeding of the First
International Workshop, EMSOFT 2001. Tahoe City, CA, volume 2211 of Lecture
Notes in Computer Science, Berlin, October 2001. Springer Verlag.

[42] V. Acary, B. Brogliato, A. Daniilidis, and C. Lemaréchal. On the equivalence be-
tween complementarity systems, projected systems and unilateral differential inclu-
sions. Systems and Control Letters, 2005.

[43] V. Acary, B. Brogliato. Numerical Methods for Nonsmooth Dynamical Systems:
Applications in Mechanics and Electronics. Springer-Verlag Berlin Heidelberg, vol.
35, ISSN: 1613-7736, DOI:10.1007/978-3-540-75392-6, 2008.

[44] Goran Frehse, Colas Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx:
Scalable verification of hybrid systems. In Ganesh Gopalakr- ishnan and Shaz
Qadeer, editors, Computer Aided Verification, volume 6806 of Lecture Notes in
Computer Science, pages 379–395. Springer Berlin Heidelberg, 2011. doi: 10.1007/
978-3-642-22110-1-30.

[45] V. Acary, B. Brogliato, and D. Goeleven. Higher order moreau’s sweeping process :
Mathematical formulation and numerical simulation. Mathematical Programming
A, 2005.

[46] S. L. Campbell, J-P. Chancelier, and R. Nikoukhah. Modeling and Simulation in
Scilab/Scicos with ScicosLab 4.4. Springer-Verlag New York, 2006.

[47] Edward A. Lee and Haiyang Zheng. Opera- tional semantics of hybrid systems. In
Man- fred Morari and Lothar Thiele, editors, Hy- brid Systems: Computation and
Control, volume 3414 of Lecture Notes in Computer Sci- ence, pages 25–53. Springer
Berlin Heidelberg, 2005. ISBN 978-3-540-25108-8. doi: 10.1007/ 978-3-540-31954-2-
2.

152

[48] R. Nikoukhah and S. Steer. SCICOS A dynamic system builder and simulator user’s
guide - version 1.0. Technical Report Technical Report 0207. INRIA, (Rocquencourt,
France, June), 1997.

[49] H. Jerome Keisler. Foundations of Infinitesimal Calculus. On-line Edition, 2007.
URL http://www.math.wisc.edu/keisler/ foundations.html.

[50] J. J. Moreau. Approximation en graphe d’une évolution discontinue. R.A.I.R.O.
Analyse Numérique / Numerical Analysis, 12:75-84,1978.

[51] J. J. Moreau. Numerical aspects of the sweeping process. Computer Methods in
Applied Mechanics and Engineering. 177 (1999) 329-349.

[52] C. Gomez. Engineering and Scientific Computing with Scilab. Birkhauser Verlag,
1999.

[53] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Ku- mar, I. Lee, P.

[54] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet. Non-
standard semantics of hybrid systems modelers. Journal of Computer and System
Sciences, 78:877–910, May 2012. doi: 10.1016/j.jcss.2011.08.009.

[55] Peter Fritzson. Introduction to modeling and simulation of technical and physical
systems with Modelica. Wiley-IEEE Press, 2011. ISBN 978- 1-118-01068-6.

[56] B. Brogliato. Impacts in Mechanical Systems – Analysis and Modelling.
Springer–Verlag, New York, 2000. Lecture Notes in Physics, Volume 551.

[57] Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with ODEs.
In 16th International Conference on Hybrid Systems: Computation and Control
(HSCC’13), pages 113–118, Philadelphia, USA, March 2013.

[58] B. Brogliato, A.A. ten Dam, L. Paoli, F. Génot, and M. Abadie. Numerical sim-
ulation of finite dimensional multibody nonsmooth mechanical systems. Applied
Mechanics Reviews, 5:107–150, 2002.

[59] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. J. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embedded
systems. Proceedings of the IEEE, November 2002.

[60] Bernard P. Zeigler and Jong Sik Lee. Theory of quantized systems: formal basis
for DEVS/HLA distributed simulation environment. In SPIE Pro- ceedings, volume
3369, pages 49–58, 1998.

[61] J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In J.J.
Moreau and P.D. Panagiotopoulos, editors, Nonsmooth mechanics and applications,
number 302 in CISM, Courses and lectures, pages 1–82. Springer Verlag, 1988.

153

[62] R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic, V. Kumar, I. Lee,
J.P. Ostrowski, G. Pappas, J. Southall, J. Spletzer, and C.J. Taylor. A framework
and architecture for multirobot coordination. In Proc. ISER00, 7th Intl. Symp. on
Experimental Robotics, pages 289– 299, 2000.

[63] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifica- tion of hybrid
systems in charon. LNCS 1790. Springer-Verlag, 2000.

[64] Heinrich Rust. Operational Semantics for Timed Systems: A Non-standard Ap-
proach to Uniform Modeling of Timed and Hybrid Systems, vol- ume 3456 of
Lecture Notes in Computer Sci- ence. Springer, 2005. ISBN 3-540-25576-1. doi:
10.1007/978-3-540-32008-1.

[65] A. Deshpande, A. Gollu, and P. Varaiya. Shift: a formalism and a programming
language for dynamic networks of hybrid automata. In Hybrid Systems IV, LNCS
1273, pages 113–134. Springer-Verlag, 1997.

[66] Sébastien Furic. Enforcing model composability in Modelica. In Proceedings of the
7th Interna- tional Modelica Conference, Como, Italy, pages 868–879, 2009.

[67] A. Duracz, Ferenc A. Bartha, W. Taha. Accurate Rigorous Simulation Should be
Possible for Good Designs. In Proceedings of the 2nd International Workshop on
Symbolic and Numerical Methods for Reachability Analysis (SNR’16), April 11,
2016, Vienna, Austria.

[68] Abraham Robinson. Non Standard Analysis. North Holland, 1966.

[69] A. Deshpande, A. Gollu, and P. Varaiya. The shift programming language for
dynamic networks of hybrid automata. IEEE Trans. on Automatic Control,
43(4):584–7, April 1998.

[70] R. G. Sanfelice, A. R. Teel. Dynamical Properties of Hybrid Systems Simulators.
Automatica, Volume 46, Number 2, p.239–248, 2010.

[71] L. Semenzato, A. Deshpande, and A. Gollu. Shift reference manual. Technical re-
port, California PATH, June 1996.

[72] Simon Bliudze and Daniel Krob. Modelling [11] of complex systems: Systems as
dataflow machines. Fundamenta Informaticae, 91:1–24, 2009. doi: 10.3233/FI-2009-
0001.

[73] M. Antoniotti and A. Gollu. Shift and smart ahs: a language for hybrid system
engineering modeling and simulation. In Proceedings of the Conference on Domain-
Specific Languages, Santa Barbara, CA, USA, Oct. 15-17 1997.

[74] A. Deshpande, D. Godbole, A. Gollu, L. Semenzato, R. Sengupta, D. Swaroop,
and P. Varaiya. Automated highway system tool interface format. Technical report,
California PATH Technical Report, January 1996.

154

[75] A. Deshpande, D. Godbole, A. Gollu, and P. Varaiya. Design and evaluation tools
for automated highway systems. In Hybrid Systems III, Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[76] Stephen L Campbell, Jean-Philippe Chancelier, [13] and Ramine Nikoukhah. Mod-
eling and Sim- ulation in Scilab/Scicos with ScicosLab 4.4. Springer, 2010. ISBN
978-1-4419-5527-2.

[77] Acumen 2015 Reference Manual.
https://docs.google.com/document/d/1H1u64jmYAs7cbU7YWLw4HK2SEBjH1Y-
Vi314a-8B-d8/edit.

[78] Michal Konecny, Walid Taha, Jan Duracz, Adam Duracz, and Aaron Ames. En-
closing the behavior of a hybrid system up to and beyond a Zeno point. In Cyber-
Physical Systems, Networks, and Applications (CPSNA), 2013 IEEE 1st Interna-
tional Conference on, pages 120–125, 2013. doi: 10.1109/CPSNA.2013.6614258.

[79] A. Gollu and P. Varaiya. Smart ahs: a simulation framework for automated vehi-
cles and highway systems. Mathematical and Computer Modeling, 27(9-11):103–28,
May-June 1998.

[80] P. Varaiya. Smart cars on smart roads: problems of control. IEEE Trans. Automatic
Control, 38(2), 1993.

[81] T. Simsek. Shift tutorial: A first course for shift programmers. Tech- nical report,
UC Berkeley, 1999.

[82] D. Stewart. Convergence of a time-stepping scheme for rigid-body dynamics and
resolution of Painlev´e’s problem. Archives of Rational Mechanics and Analysis,
145:215–260, 1998.

[83] A. Duracz. Rigorous Simulation: Its Theory and Applications. PhD thesis, Halm-
stad University, 2016.

[84] F. Rocheteau and N. Halbwachs. Pollux, a Lustre-based hardware design environ-
ment. Conference on Algorithms and Parallel VLSI Architectures II. June 1991.

[85] Lionel Morel. Efficient Compilation of Array Iterators for Lustre. First Workshop
on Synchronous Languages, Applications, and Programming, SLAP02, Grenoble,
April 2002.

[86] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic Testing of Reac-
tive Systems. 19th IEEE Real-Time Systems Symposium. Madrid, Spain, December
1998.

[87] W. Taha, et al., Acumen: An Open-source Testbed for Cyber-Physical Systems
Research, In Proceedings of EAI International Conference on CYber physiCaL sys-
tems, iOt and sensors Networks, October 2015.

155

[88] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. A Hybrid Synchronous Lan-
guage with Hierarchical Automata: Static Typing and Translation to Synchronous
Code. In EMSOFT’11, Taiwan, Oct. 2011.

[89] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. Divide and recycle: types
and compilation for a hybrid synchronous language. In LCTES’11, USA, Apr. 2011.

[90] A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Wood-
ward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers.
ACM Trans. Math. Soft., 31(3):363–396, Sept. 2005.

[91] G. Dahlquist and A. Bjorck. Numerical Methods in Scientific Computing: Volume
1. SIAM, 2008.

[92] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O automata. Info. and
Comp., 185(1):105–157, Aug. 2003.

[93] V. Kanovei, S. Shelah. Pang. A definable nonstandard model of the reals. Journal
of Symbolic Logic, vol. 69, Issue , pp. 159-164, 2004.

[94] E. Levy. Non standard analysis as a functor, as local, as iterated. Technical report
(https://arxiv.org/pdf/1601.00488.pdf). Department of Mathematics, Technion Is-
rael Institute of Technology, 2016.

[95] J. Shen, J. S. Pang. Linear complementarity systems: Zeno states. SIAM Journal
on Control and Optimization, vol. 44, no.3, pp. 1040–1066, 2005.

[96] A. Lamperski, A. D. Ames. Lyapunov theory for Zeno stability. IEEE Transactions
on Automatic Control, vol. 58, no. 1, pp. 100–112, 2013.

[97] A.D. Ames, S. Sastry. Blowing up affine hybrid systems. In proceedings of the 43rd
IEEE Conference on Decision and Control, vol. 1, pp. 473-478, 2004.

[98] L. Q. Thuan. Non-Zenoness of piecewise affine dynamical systems and affine com-
plementarity systems with inputs. Control Theory and Technology, vol. 12, no. 1,
pp. 35–47, 2014.

[99] M. K. Camlibel, J. M. Schumacher. On the Zeno behavior of linear complementarity
systems. In Proceedings of the IEEE Conference on Decision and Control, 2001, vol.
1, pp. 346–351.

[100] A. Ames, A. Abate, S. Sastry. Sufficient Conditions for the Existence of Zeno
Behavior. In Proceedings of the 44th IEEE Conference on Decision and Control
and 2005 European Control Conference. CDC-ECC ’05., Dec. 2005, pp. 696–701.

[101] Y. Zeng, C. Rose, W. Taha, A. Duracz, K. Atkinson, R. Philippsen, R. Cartwright,
M. O’Malley. Modeling Electromechanical Aspects of Cyber-Physical Systems, Jour-
nal of Software Engineering for Robotics, 1(1), September 2015, 123-126, ISSN:
2035-3928.

156

[102] A. Lamperski, A. D. Ames. Lyapunov-Like Conditions for the Existence of Zeno
Behavior in Hybrid and Lagrangian Hybrid Systems. In Proceedings of the 46th
IEEE Conference on Decision and Control, 2007, pp. 115–120.

[103] K. H. Johansson, J. Lygeros, S. Sastry, M. Egerstedt. Simulation of Zeno hybrid
automata. In proceedings of the 38th IEEE Conference on Decision and Control,
vol. 4, pp. 3538-3543, 1999.

[104] A. Lamperski, A. D. Ames. On the existence of Zeno behavior in hybrid systems
with non-isolated Zeno equilibria. In Proceedings of the 47th IEEE Conference on
Decision and Control, pp. 2776–2781, 2008.

[105] R. Goebel, A. R. Teel. Lyapunov characterization of Zeno behavior in hybrid sys-
tems. In Proceedings of the 47th Conference on Decision and Control, 2008, pp.
2752-2757.

[106] A. D. Ames, H. Zheng, R. D. Gregg, S. Sastry. Is there life after Zeno? Taking
executions past the breaking (Zeno) point. In Proceedings of American Control
Conference, 2006, pp. 2652–2657.

[107] K. H. Johansson, M. Egerstedt, J. Lygeros, S. Sastry. On the regularization of
Zeno hybrid automata. Systems and Control Letters, vol. 38, pp. 141–150, 1999.

[108] R.Goldblatt:Lecture on the Hyperreals: An Introduction to Nonstandard Analysis,
New York, Springer (1988).

[109] G. Teschl. Ordinary Differential Equations and Dynamical Systems. vol.140, 356
pp, 2012, ISBN: 978-0-8218-8328-0.

[110] DOMNA: A Lite Matlab Simulator for Zeno-free Simulation of Hy-
brid Dynamical Systems with Zeno Detection and Avoidance in Run-Time,
https://bil.inria.fr/fr/software/view/2691/tab.

[111] SEVAMA: A Simulink Toolbox and Simulator for Zeno-free Simulation of Hy-
brid Dynamical Systems with Zeno Detection and Avoidance in Run-Time,
https://bil.inria.fr/fr/software/view/2679/tab.

157

	Acknowledgments
	Résumé en Français
	Abstract
	Contents
	List of Figures
	List of Tables
	Publications
	Introduction
	Scientific Context
	Hybrid Systems
	Modeling Abstraction

	Scientific Problem and Challenges
	Modeling Issue
	Simulation Issues

	Literature Survey
	Other Literature Survey on Chattering-Zeno
	Other Literature Survey on Geometric-Zeno

	Motivations
	Contributions
	Non-Standard Semantics for Zeno Executions
	Behavioral-based Zeno Detection and Avoidance
	Prototype Implementations

	Outline

	Modeling and Simulation of Hybrid Systems
	Dynamical Systems
	Ordinary Differential Equations (ODEs) and Flows
	Continuous-Time/Discrete-Time Dynamical Systems

	Hybrid Systems
	Discrete Event Systems
	Modeling of Hybrid Systems
	Mathematical Representation of Hybrid Systems
	Hybrid Automata Modeling Formalism
	Syntax
	Executions
	Examples of Hybrid Automata Models

	Hybrid Automata: Limitations of Standard Semantics
	Non-Standard Semantics for Hybrid Automata
	The Theory of Non-Standard Reals R
	Non-Standard Time Domain
	Hybrid Automata: Non-Standard Semantics

	Simulation of Hybrid Systems
	The Event-Driven Method
	The Time-Stepping Method

	Survey of Hybrid Simulation Tools
	Simulink/Stateflow
	Modelica
	HyVisual
	Scicos
	Acumen
	Zélus

	Chattering-Zeno Detection and Avoidance
	Chattering-Zeno in Hybrid Systems
	Examples of Chattering-Zeno Models
	Challenges of Simulating Chattering-Zeno Models

	Sliding Mode Approach
	The Case of Chattering-Zeno Between Two Dynamics
	The Case of Chattering-Zeno Between More than Two Dynamics
	The Case of Chattering-Zeno Between 2p Dynamics with p = 2
	The Case of Chattering-Zeno Between 2p Dynamics with p > 2

	Chattering-Free Simulation Framework
	Prototype Implementations and Simulation Results
	Prototype Implementation of Chattering-Zeno Freeness in FMI
	Chattering-Zeno Freeness Support for FMI Standard
	Simulation Results

	Prototype of Chattering-Zeno Freeness in Acumen
	Chattering-Zeno Freeness Support for Acumen
	Simulation Results

	Performance Analysis and Testing

	Geometric-Zeno Detection and Avoidance
	Geometric-Zeno in Hybrid Systems
	Geometric-Zeno
	Examples of Geometric-Zeno Models
	Challenges of Simulating Geometric-Zeno Models

	Geometric-Zeno Detection and Elimination
	Cycles Detection
	The Convergence to a Geometric-Zeno Limit Point
	Geometric-Zeno Elimination

	Simulation Results

	Conclusions
	Summary
	Future Directions

