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Abstract

Higher-order languages, whose paradigmatic example is the-calculus, are languages with
powerful operators that are capable of manipulating and exchanging programs themselves.
This thesis studies behavioral equivalences for programs with higher-order and probabilis-
tic features. Behavioral equivalence is formalized as a contextual, or testing, equivalence,
and two main lines of research are pursued in the thesis.

The rst part of the thesis focuses on contextual equivalence as a way of investigating
the expressiveness of di erent languages. The discriminating powers o ered by higher-
order concurrent languages (Higher-Order -calculi) are compared with those o ered by
higher-order sequential languages @ la -calculus) and by rst-order concurrent languages
@ la CCS). The comparison is carried out by examining the contextual equivalences in-
duced by the languages on two classes of rst-order processes, namely nondeterministic and
probabilistic processes. As a result, the spectrum of the discriminating powers of several
varieties of higher-order and rst-order languages is obtained, both in a nondeterministic
and in a probabilistic setting.

The second part of the thesis is devoted to proof techniques for contextual equivalence
in probabilistic -calculi. Bisimulation-based proof techniques are studied, with particular
focus on deriving bisimulations that are fully abstract for contextual equivalence (i.e.,
coincide with it). As a rst result, full abstraction of applicative bisimilarity and similarity
are proved for a call-by-value probabilistic -calculus with a parallel disjunction operator.
Applicative bisimulations are however known not to scale to richer languages. Hence,
more robust notions of bisimulations for probabilistic calculi are considered, in the form
of environmental bisimulations. Environmental bisimulations are de ned for pure call-
by-name and call-by-value probabilistic -calculi, and for a (call-by-value) probabilistic

-calculus extended with references (i.e., a store). In each case, full abstraction results are
derived.
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Chapter 1

Introduction

Program equivalence is a delicate notion. Nevertheless, there is a unifying and general
way of de ning what it means for two systems to be equivalent with respect to their
behavior. This is given by the so-called contextual, or testing, equivalences: contexts
of some language play the role of tests, and two programs or systems are contextually
equivalent if the execution of the same test returns the same observation. More formally,
given two systemsS; and S, (the tested systems), a languagé. that we can use to interact
with the systems (the testing language), and an observatiorObs (the result of the tests),
we say that S; and S, are contextually equivalent in L if whenever we put them in the
same contextC of L we have ObqC[S;]) = ObgqC[S;]). This de nition of contextual
equivalence thereby formalizes the idea of behavioral equivalence as interchangeability, or
indistiguishability, in a black-box testing scenario.

The study of contextually-de ned equivalences has been pursued along di erent paths:

analyzing the discriminating power of a language, as compared to other languages.
In this case, we are studying theexpressivenes®f a language by looking at the kind
of tests a context of the language can perform;

studying methods allowing us to prove that two programs in a language are con-
textually equivalent (with respect to the same language). This approach is thereby
devoted to nding proof techniquesfor contextual equivalence.

The rst perspective has been adopted in particular in concurrency theory, in which
several varieties of testing scenarios have been proposed. Given a cl&ssf tested systems,
we look at how one or more languages interact with systems iil€. Then languagel; is
strictly more discriminating than language L, if whenever S; and S, are equivalent with
respect to tests (or contexts) inL1 then they are also equivalent with respect to tests in
L., and there are systems that can be discriminated byL; but are equal in L.

In the second line of research, we typically consider contextual equivalences where both the
tested programs and the contexts are from the same language. Contextual equivalence
de nes what it means for two programs in the language to be equivalent, and we look for
e cient methods to prove program equivalence.

In both cases, however, the characterization of contextually-de ned equivalences in terms
of equivalences whose de nition is not directly of the form \for all contexts of the lan-
guage..." or \for all tests..." plays a crucial role. When studying the expressiveness of a
language, we aim at characterizing the contextual equivalence it induces on some cla€s

13



14 Chapter 1 Introduction

of systems as an equivalence that is directly de ned on the systems and does not mention
the testing language. This gives us a way of comparing the testing equivalences induced
by di erent languages with each other. On the other side, if we are interested in proving
contextual equivalence for a language, we can see that the universal quanti cation over
all contexts of a language makes it hard to exhibit proofs of equivalence. This holds in
particular for higher-order languages, whose operators are capable of manipulating and
exchanging programs themselves. In this setting, bisimulation-based equivalences have
been shown to provide e cient proof methods for contextual equivalences.

This thesis analyzes program equivalence for higher-order languages along these two
main lines of research: expressiveness and proof techniques. In particular, we focus on
how higher-order languages interact with probabilistic systems and features.

The theory of functional higher-order languages, starting from -calculi, has been thor-
oughly studied in the literature, and higher-order languages for concurrent and distributed
systems have been investigated as well. The interest in probabilistic programming and
computation has been growing for the last few years, motivated, for instance, by the need
of modeling complex systems evolving with some degree of uncertainty, and by the need
of implementing randomized algorithms for both e ciency and security reasons. Proba-
bilistic languages, equivalences, and models have been thereby proposed to this end, and
they now form an established and productive research topic.

In the presence of probabilities, the de nition of program equivalence must take into ac-
count the quantitative information that emerges from the systems under consideration. In
contextual equivalence, this information is embedded in the notion of observation, which
measures the successfulness of a test. On deterministic systems, we can observe whether
the execution of a test succeeds or not; if the system is nondeterministic, we can observe
whether there exists a succeeding run, or whether all runs succeed. By contrast, on proba-
bilistic systems we do not only observe thepossibility of succeeding but also theprobability

of success.

The following sections are devoted to a general introduction to the main languages and
notions studied in this thesis, and that we will formally introduce in the next chapters.
We conclude with an outline of the thesis.

1.1 Higher-order calculi, concurrency, and probabilities

Formally, higher-order calculi are calculi with variables that can be replaced by terms
of the language itself. We start from the -calculus, the core of functional higher-order
languages. Then we move to process calculi and their extension with higher-order features
or probabilistic features.

1.1.1 -calculi

The -calculus [Bar84] is the paradigmatic example of higher-order calculus, in that it is a
pure calculus of higher-order functions. Every term of the language represents a function,
and the only operation allowed is -reduction. Given a function x:f ; in variable x applied
to an argument f, (a function itself), -reduction allows us to substitute f, to the free
variable x in f.

There are di erent reduction strategies that we can adopt when evaluating a term of the
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-calculus. In the call-by-name reduction strategy, when a function is applied to an ar-
gument then the argument is substituted to the variable of the function as it is. On the
contrary, in the call-by value reduction strategy, the argument of a function is rst reduced
to a value (i.e., a function that cannot be further reduced) and then substituted.

The -calculus is at the core of functional programming languages, and many exten-
sions with computational e ects have been considered. To take into account features of
imperative programming languages, -calculi can be extended with references and a store,
as in ML-like languages [MTHM97]. Other computational e ects for -calculi concern
nondeterminism and probabilities. One of the easiest way to obtain such extensions con-
sists in adding to the pure -calculus a binary choice operator . In the nondeterministic
case, the choice between ternrM and term N is the term M N that nondeterminis-
tically reduces either to M or to N [Ong93;|San94; dP95]. In the probabilistic case,
denotes a choice with uniform probability, i.e., M N reduces with one half probability
to term M and with one half probability to term N [DZ12]. Hence, the result of the
evaluation of a term is a probability distribution on functions. An analogous solution in
the probabilistic case consists in endowing the choice operator with a probability valuep,
where M, N denotes the program that with probability p is M and with probability
1 pis N [Jon9(]. Indeed, several varieties of functional higher-order languages with
probabilistic operators have been introduced, from abstract ones [SD78; RP02; PPT08]
to more concrete ones [Pfe01; Gool3], also considering continuous distributions [BDG$16;
SYWHK186].

1.1.2 Process calculi and models

In concurrent systems, we have multiple programs running in parallel. So, we can use
processes rather than functions as modeling tools, since the latter ones are more suitable
for representing sequential computations.

The process calculus CCS (Calculus of Communicating Systems) was rst introduced
by Milner in [Mil80], and its theory was further developed in [Mil89]. It is a language
with operators for parallel composition and nondeterministic choice, whose semantics is
formalized by means of labeled graphs (Labeled Transition Systems). These structures are
nondeterministic and have labels allowing us to represent interactions between processes:
we can think of labels as communication channels, on which processes can synchronize.
Higher-order concurrency combines functional programming and concurrent programming:
the ability of exchanging values, common in concurrency, is enhanced by allowing values
to include terms of the language itself, the distinguishing feature of functional languages.
Calculi of this kind include CHOCS [Tho93] and the Higher-Order -calculus [San92],
which is the extension of CCS with higher-order features. CCS is arst-order concur-
rent language, since communication in CCS is just synchronization on atomic ( rst-order)
input-output channels. By contrast, communication in HO has a more complex struc-
ture. When a process communicates on an output channel, it sends in output a process.
A process with the same input channel can then synchronize with the output channel and
receive the process that was sent. This communication is higher-order, since it is a process
(i.e., a term of the calculus) that is exchanged in the communication.

An important extension to concurrent higher-order languages concerns distribution.
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This is usually achieved by means of constructs for expressing and operating on loca-
tions. As a consequence, the observable behavior of a system of processes depends not
only on the behavior of the constituent processes, but also on the locations in which these
processes are run. This can have a deep impact on the behavioral theory and algebraic
laws for the language. One of the simplest constructs that show these phenomena is
passivation Passivation o ers the capability of capturing the content of a certain loca-
tion, and then restarting the execution in di erent contexts. The semantics of passivation
has been the subject of a number of papers, usually in extensions of the Higher-Order
calculus [LSS094; LSS09b; LSS11; PS12a; KH13]. Passivation is also featured in the Homer
calculus [GHO5] and the M-calculus|[SSQ3]; a similar construct appears in the Seal calcu-
lus |[CVNO5] and in Acute |[Sew+07]. Passivation has been advocated to support run-time
system updates, fault recovery and fault tolerance (by providing the basis for mechanisms
for checkpointing computations and replicating them), and to support adaptive behaviors.

As far as probabilistic extensions of process calculi are concerned, CCS with a prob-
abilistic binary choice operator and its semantics have been investigated, e.g., in [YL92],
and with a di erent semantics in [DD07] and [Henl12]. Since the behavior of processes
running in parallel is nondeterministic, the processes represented in probabilistic exten-
sions of CCS have both nondeterministic and probabilistic choices.

A strict subset of this class of processes is that of reactive probabilistic processes (also
known as Markov decision processes or labeled Markov chains) which have, besides prob-
abilistic choices, only a limited form of nondeterminism, i.e., external nondeterminism.
External nondeterminism is a choice between dierent transitions with di erent labels
and represents choices that can be made by an external user interacting with the process.
By contrast, internal nondeterminism is a choice between transitions labeled by the same
action and represents choices that are internally made by the system. The classical parallel
operator of CCS is not closed with respect to this class of processes, hence process algebras
with a parametrized parallel operator have been proposed. Seg [SV04] for an overview of
probabilistic process algebras and classes of probabilistic processes.

Probabilistic extensions of higher-order process calculi have not been proposed yet.

1.2 Equivalence of programs

Section[1.2.] is devoted to bisimulations for nondeterministic and probabilistic processes.
Bisimulations for higher-order languages are presented in Section 1.2.3, after discussing
testing and contextual equivalences (Sectiof 1.2]2).

1.2.1 Behavioral equivalences on processes

It is not easy to understand what it means for two processes to have the same behavior.
If we are only interested in the behavior of the systems, requiring the structures of the
processes to be isomorphic is too strong a condition. At the same time, many equiva-
lence relations de ned in the literature might be too under-discriminating when applied

to nondeterministic processes ([Gla0O1] compares several varieties of equivalence relations
on processes). Trace-based equivalences, for instance, identify two processes by comparing
the sequences of actions they can (or cannot) perform. Hence, they are not sensitive to
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the branching-time of processes.

Bisimulation relations independently appeared in modal logic, in computer science and
in set theory between the 1970s and the 19805 [San12b], respectively in the works by van
Benthem [Ben83] on the expressiveness of propositional modal languages and classical
rst-order languages, in the works of Milner [Mil80] Mil89] and Park [Par81] on the se-
mantics of interactive systems, and in the works by Aczel on non well-founded sets [Acz38].
Bisimulations induce an equivalence relation on processes, i.e., bisimilarity, which is taken
to be a suitable notion of behavioral equivalence on Labeled Transition Systems. Ac-
cording to bisimilarity, processesP and Q are equivalent if wheneverP can perform an
action then Q can mimic the same action and the reached states are still equivalent, and
vice-versa. Furthermore, bisimilarity has a simple proof method: in order to prove that
two processes are equivalent, we exhibit a relation containing the pair of processes and we
verify that the relation is a bisimulation. This holds because bisimilarity is a coinductive
relation, whose de nition rests on the dual of the induction principle and allows for a form
of circularity. See [Sanl2a] for a xed-point approach to coinduction and [[JR12] for a
(co)algebraic approach.

Probabilistic bisimulation was rst proposed in [LS91], for reactive probabilistic sys-
tems. This bisimulation takes into account the quantitative information that is now avail-
able in the underlying structures it is applied to, by considering not only the possibility
but also the probability of performing a state-transition. The de nition was extended
to processes with both probabilities and nondeterminism in |[[SL95; Seg95]. In recent
years, several varieties of de nitions and characterizations of probabilistic bisimulation
and coarser probabilistic equivalences have been studied [DD11; Hen12; BDL14a; Denl4].

1.2.2 Contextual and testing equivalence

Contextual equivalence was rst de ned by Morris in [Mor68] for the pure -calculus.
Terms M and N are contextually equivalent if for any context C (i.e., for any term of
the language with a hole), term C[M ] (denoting the substitution of M to the hole of C)
converges (i.e., reduces to a value) if and only iC[N] does.
For the nondeterministic -calculus, we observe the existence of a reduction sequence that
converges, or, in other words, the possibility of convergence; for the probabilistic-calculus
[DLSA14;|CD14] the observability predicate is the probability of convergence of a term.
On rst-order process algebras, di erent formulations of contextual equivalence have
been examined. May testing equivalence[DH84; |BDP99] is a contextual equivalence on
process algebras where the observability predicate holds if there exists an internal com-
putation that reaches a successful state, i.e., a state that can perform an action denoting
success (corresponding to convergence in pure-calculi). Analogously, the observability
predicate of must testing equivalenceholds if all the internal computations succeed. On
CCsS-like languages, however, testing equivalences correspond to trace-based equivalences
[DH84; Phi87]. In order to have a contextual equivalence for CCS that coincides with
bisimilarity, we have to consider barbed congruencgMS92], that is, a bisimulation-based
contextual equivalence where the observability predicate is the set of actions allowed from
a state (its barbs) and the bisimulation game is only played on internal reductions. Barbed
congruence for HO is studied in [San92].
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In the probabilistic case, may and must testing preorders for process algebras have been
studied in [DGHMZ07a; DGHMOQ9] for the process algebra pCSP, and have been proved
to coincide with the probabilistic simulation preorder and the probabilistic failure simu-
lation preorder, respectively. In [DDO7] and [Henl12], probabilistic barbed congruence is
de ned and it is shown that, analogously to the nondeterministic case, it coincides with
probabilistic bisimilarity on nondeterministic and probabilisitic processes.

Testing equivalences are de ned in a general form by Abramsky in [Abr8[7]. A testing
equivalence is determined by a set of tested systems, a set of tests, a mechanism assigning
an output to the application of a test, and an observability predicate on the class of
outputs. The same paper focuses on de ning a language of tests (that resemble logical
formulas, since they have explicit conjunction, disjunction and quanti ers) that allows
us to recover bisimilarity on nondeterministic processes as a testing equivalence. On
reactive probabilistic processes, characterizations of bisimulation as a testing equivalence
via \logical" tests have been proposed in|[LS91] and [BMOWO5], showing how a smaller
class of tests is su cient in order to recover probabilistic bisimilarity in this case.

1.2.3 Bisimulations for higher-order languages

Due to the universal quanti cation on the contexts of the language, it is generally hard to
prove that two terms are contextually equivalent. Contextual equivalence proofs are par-
ticularly hard to carry out if the language under consideration has higher-order features.
Bisimulations o er an e cient, operational proof method; it is therefore desirable to nd
bisimulation relations which are sound with respect to contextual equivalence, i.e., bisimu-
lations inducing an equivalence relation - bisimilarity - that implies contextual equivalence.
Ideally, bisimilarity should be fully abstract with respect to contextual equivalence, i.e.,
coincide with it.

Applicative bisimilarity [Abr90] is such an equivalence relation, re ecting the standard
de nition of extensional equivalence for functions. Two -terms M and N are applicative
bisimilar if whenever M reduces to function x:M © N reduces to a function x:N °such
that for any term P given as input to the functions we still have equivalent termsM f P=g
and N fPxg. Applicative bisimilarity coincides with contextual equivalence both in the
call-by-name and in the call-by-value -calculus, while it is only sound with respect to (and
does not coincide with) contextual equivalence in the call-by-name and the call-by-value
nondeterministic -calculi [Ong93; Las98; Pit12]. The same result holds for probabilistic
applicative bisimilarity in the call-by-name probabilistic  -calculus [DLSA14], while in the
call-by-value case completeness is recovered, and thus probabilistic applicative bisimilarity
is fully abstract [CD14].

Applicative bisimilarity has a simple de nition, but it also has two main drawbacks.
First, the proof of congruence (the property that in turn allows us to prove soundness)
is carried out by exploiting a sophisticated and hard to scale technique called \Howe's
method" [How89; |How96; Pitl2]. Then, as argued in|[KLS11], in calculi with features
such as local store, exceptions, generative names, or existential types, and more generally
in calculi with forms of information hiding, applicative bisimulation is not sound and we
need to resort to bisimulations equipped with a notion of environment. Environmental
bisimulations [SKS11], re ning earlier proposals in [BS98] AG98| JR99; SP07a; KWO0Eb],
address the two problems illustrated above. Intuitively, the environments collect the ob-
server's knowledge about values computed during the bisimulation game. The elements
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of the environment can then be used to construct terms to be supplied as inputs during
the bisimulation game. The notion has been applied to a variety of languages, including
pure -calculi [SPO7h;| SKS11], extensions of -calculi [SPO7a;| KWO06h; |KW06g; |BL13;
ABLP16], and languages for concurrency or distribution [SS09; PS11; PS12a].

1.3 Outline of the thesis

This thesis is divided into two parts, re ecting the two lines of research for contextual
equivalences discussed in the introduction.

Part I, \Discriminating power via testing equivalences", compares the expressive-
ness of dierent calculi and models, from higher-order ones to rst-order ones, by
considering them as testing languages that are applied to discriminating both non-
deterministic systems and probabilistic systems.

Part I, \Full abstraction for probabilistic ~ -calculi", studies coinductive proof tech-
niques for -calculi with a probabilistic choice operator. In particular, the problem
of de ning relations that are fully abstract with respect to contextual equivalences
or preorders in extended lambda calculi is addressed.

Part | is based on works published in [BSV14a] and|[BSV14b]. Both works are co-
authored with Marco Bernardo and Davide Sangiorgi. The material in Part Il has been
published in |[CDLSV15], co-authored with Rapheelle Crubile, Ugo Dal Lago, and Da-
vide Sangiorgi, and [SV16], co-authored with Davide Sangiorgi. These papers are briey
summarized in Sectiond 1.311 an@1.312.

Each of the two parts of the thesis is composed as follows. First, we review the relevant
background. Then we present our contributions (each chapter corresponds to a revised
and extended version of the published works). Finally, we conclude and discuss additional
related work and future work.

1.3.1 Discriminating power via testing equivalences

In [BSV144d], the discriminating powers of a number of higher-order languages are analyzed
and compared. Both higher-order sequential languages (i.e.,-calculi) and higher-order
concurrent languages (i.e., Higher-Order -calculi) are considered, and they are compared
to rst-order process calculi (CCS-like) as well. The comparison is carried out by using the
languages to execute tests, formalized as contexts of the language, on rst-order processes.
The tests are rst applied to nondeterministic processes and then to reactive probabilistic
processes. The purpose of the paper is twofold:

to compare the discriminating powers of the languages with respect to the same class
of processes (the class of nondeterministic processes rst, then the class of reactive
probabilistic processes), and to characterize the contextual equivalences induced by
the languages as known behavioral equivalences;

to compare the discriminating power of a language on nondeterministic processes
to that of the same language on probabilistic processes, highlighting some cases in
which the interplay between higher-order or concurrent features and probabilities
increases the discriminating power of a language.
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In [BSV14b], testing equivalences on reactive probabilistic processes are analyzed, by
considering three classes of rst-order tests: nondeterministic processes, reactive prob-
abilistic processes and processes featuring both (full) nondeterminism and probabilistic
choices. These classes of tests are proved to have dierent discriminating powers, and
their position in the spectrum of equivalences for reactive probabilistic processes is stud-
ied.

1.3.2 Full abstraction for probabilistic -calculi

In [CDLSV15], a call-by-value probabilistic -calculus endowed with Plotkin's disjunction
operator (or \parallel or") is considered. The paper proves that not only applicative
bisimilarity is fully abstract with respect to contextual equivalence (i.e., it coincides with
it, being both sound and complete), but also the applicative simulation preorder is fully
abstract with respect to the contextual preorder in this calculus. The latter result was
known not to hold without the disjunction operator [CD14].

In [SV16], environmental bisimulations for probabilistic -calculi are de ned, so as
to have a proof technique applicable to probabilistic calculi with e ects such as a local
store. In order to achieve full abstraction of environmental bisimilarity, some non-trivial
modi cations to the de nition of environmental bisimulations for non-probabilistic calculi
are required:

in probabilistic calculi a term might evaluate (even with probability one) in a non-
nite number of steps. Thus, the bisimulation game is played with big-step, in nitary
reductions;

in order to have full abstraction, we are forced to de ne the bisimulation game
directly on probability distributions on values;

we must distinguish between di erent forms of environment, depending on the lan-
guage we are considering.

The paper shows that bisimulations built by taking into account these three new features
are fully abstract for contextual equivalence for call-by-name, call-by-value, and imperative
(with a higher-order, local store) probabilistic -calculi.
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Chapter 2

Background

We introduce three models for rst-order processes: nondeterministic processes, formalized
as LTSs, probabilistic and nondeterministic processes (NPLTSSs), and reactive probabilistic
processes (RPLTSs). We recall a number of behavioral equivalences for these rst-order
processes, the relations between them, and some important alternative characterizations
of the equivalences. We conclude by recalling the language and semantics of purecalculi.

2.1 Nondeterministic and probabilistic models

The behavior of a (fully) nondeterministic process can be represented through a labeled
transition system.

De nition 2.1. A labeled transition system(LTS) is a triple ( S;A;! ) where S is a
countable set of states (usually called processesh is a countable set of transition-labeling
actions, and! S A Sis a transition relation. The LTS is image- nite if fs°2 Sj
s!? sYis nite forall s2 Sanda2A.

We can generalize LTSs to more expressive models, that admit both nondeterministic
and probabilistic choices.

De nition 2.2. A nondeterministic and probabilistic labeled transition system NPLTS
for short, is a triple (S;A;! ) where S is a countable set of statesA is a countable set
of transition-labeling actions, and ! S A D (9)is a transition relation, with D(S)
being the set of discrete probability distributions over S.

We denote probability distributions by ; ::i. We can represent an LTS as an NPLTS
where all distributions are Dirac distributions dirac (s), i.e., distributions assigning prob-
ability one to a single state. Formally: dirac (s)(s) = 1 and dirac (s)(s® = 0 for all
s2 Snfsg.

In any state of an NPLTS, like in LTSs, nondeterministic choices can be both internal
(i.e., multiple transitions each with the same label) and external (i.e., multiple transitions
each with di erent labels). A reactive probabilistic process features external nondeter-
ministic choices, probabilistic choices, but no internal nondeterminism. In other words,
we can see a RPLTS as a model where the choice of the action to be performed is made
by the external environment, and then the target state is selected internally but purely
probabilistically. Its behavior can be described as a variant of an NPLTS.

23
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De nition 2.3. A reactive probabilistic labeled transition system(RPLTS) is an NPLTS
(S;A;! )suchthats!® jands!® Limply ;= ,foralls2Sanda2A.

2.2 Behavioral equivalences for nondeterministic processes

We introduce several varieties of behavioral equivalences for nondeterministic processes,
from the coarser ones (trace-based equivalences) to the ner ones (simulation-based and
bisimulation equivalences).

In Chapter 8] we will characterize the contextual equivalences induced on LTSs in
terms of simulation equivalence|[Mil89], ready simulation equivalence [BIM95; LS91], trace

equivalence [[BHR84], failure equivalence [BHR84], and failure-trace equivalence [Phi87;
Gla01].

2.2.1 Decorated traces and sets

De nition 2.4. Let L = (S;A;! ) be an LTS and s;s° 2 S. The sequencec def
Sp;S1:::Sn 1,Sn is a computation of L of length n from s = sp to s° = s, labeled by

Ch (s) the set of nite-length computations from s.

Let L = (S;A;! ) be an LTS and s;s1;S2 2 S. We de ne the following sets of
computations:

C(s; ) is the set of computations from s labeled with trace 2 A (the nite
sequences of actions ii).

CC(s; ) is the set of completed computations froms labeled with 2 A , i.e., the
computations from s labeled with  and such that the last state of the computation
cannot perform any other transition.

FC(s;'), where' =(;F)2A 2” is a failure pair, is the set of computations
from s labeled with  such that the last state of each computation cannot perform
any action in F.

RC (s;%, where %= ( ;R) 2 A 2" is a ready pair, is the set of computations
from s labeled with  such that the set of actions that can be performed by the last
state of each computation is preciselyR.

FTC(s; ), where = (ar;F1):::(an;Fn) 2 (A 2*) s a failure trace, is the set
of computations from s labeled with a; :::a, such that the state reached by each
computation after the i-th step, for1 i n, cannot perform any action in F;.

RTC(s; ), where = (ai;R1):::(an;Rn) 2 (A 2%) is a ready trace, is the set
of computations from s labeled with a; :::a, such that the set of actions that can
be performed by the state reached by each computation after tha-th step, for
1 i n,is preciselyR;.
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2.2.2 Equivalences and preorders

We can now de ne several varieties of trace-based equivalences on LTSs, one for every
di erent kind of decorated trace.

De nition 2.5. Let (S;A;! ) be an LTS. Processes;;s; 2 S are:

trace equivalent(s; 1 s2)i C(s1; )6 ;0 C (sp; )6 ; forall 2A ;

completed trace equivalen(s; c1r S2)i S1 1w S2andCCs;; )6 ;)0 CC  (sp; )6
forall 2A ;

failure equivalent (s; g Sp)i FC(s1;' )8 ;0 FC (sp;' )6 ; forall' 2A 2°,
ready equivalent(sy; r S2)i RC(s1;% 6 ;() RC  (s2;% 6 ; forall %2 A 2A.

failure trace equivalent (s; Fr S2) i FTC(s1; )6 ;() FTC (sp; ) 6 ; forall
2 (A 2%).

ready trace equivalent(sy gy S2)i RTC(sy; )6 ;() RTC (s2; ) 6 ; for all
2 (A 24 .

Traced-based equivalences are inductive equivalences. By contrast, simulation-based
equivalences have coinductive de nitions.

De nition 2.6. Let (S;A;! ) be an LTS and R be a binary relation over S. Relation
R is a simulation if, whenever (s1;s2) 2 R, then for all a 2 A it holds that for each
s1!? ? there existssy | ? 89 such that (s9;s9) 2 R. Relation R is aready simulation if,
additionally, s;! % implies s;! % . Relation R is a bisimulation if both R and its inverse
are simulations, i.e., whenever §;;s) 2 R, then for all a2 A it holds that:

for eachs; | * 9 there existss; ! * sJ such that (s9;s9) 2 R
for eachs, ! ® 9 there existss; ! * 9 such that (s9;s9) 2 R

Processessy; s, 2 S are simulation equivalent (s1 s S2) { resp., ready simulation
equivalent (s; Rrs Sp) { if there exist two simulations { resp., ready simulations { R and
RO9such that (s1;82) 2R and (s2;s1) 2 RO Processess;;s; 2 S are bisimilar (s1 B S2),
or bisimulation equivalent, if there exists a bisimulation R such that (s1;s2) 2R.

Except for bisimilarity, it is possible to de ne any of the equivalences considered
above by rst taking the corresponding preorder . , and then de ning the equivalence as
the intersection of the preorder and its inverse, i.e., =. \ (. ) L
For trace-based equivalences, the preorders are obtained by using =instead of )  in
the de nition. For instance, the trace preorder is dened as: s; . v S i C({s;; ) 6
; =) CC(sp; )6 ; forall 2 A . For the failure trace preorder and the ready trace
preorder, moreover, we have to require as well that the initial states have the same ready
set. This is implicit when considering equivalences, since trace equivalent states s° have
the same ready set, but it has to be made explicit for the failure trace preorder and the
ready trace preorder, since in the de nition of failure trace or ready trace we do not allow
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a failure set or ready set at the beginning of the trac@

For simulation-based preorders, we simply require the existence of a simulation, or a ready
simulation. Hence, processes;; sz 2 S are in the simulation preorder (s1 . s S2) { resp.,

in the ready simulation preorder (s; . rs S2) { if there exists a simulation { resp., a ready
simulation { R such that (s1;s2) 2R.

2.2.3 Spectrum for LTSs

The relations between all the equivalences de ned in the previous section are summarized
in Figure 2.1, where arrows represent strict inclusions| [Gla0]

B

!
\RT
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\/
l
\/

Figure 2.1: Spectrum for LTSs

-

2.2.4 Logical characterizations

In the following chapters, we are going to exploit the logical characterizations of the coin-
ductive equivalences that we have de ned, in particular for ready simulation equivalence
and simulation equivalence. The logical characterization of bisimilarity is given by the
Hennessy Milner Logic (HML). The formulas of HML are de ned by the following gram-
mar:

F.=> :F  F1”~F; haiF

for a ranging over the labels in a given setA. Given an LTS (S;A;! ), we de ne the
satis ability of formula F in state s (notation: s F) as follows:

1We could have equivalently de ned failure trace equivalence using the de nition of failure trace that
allows a failure set at the beginning of the trace as well, and analogously for ready trace equivalence.

2standard counterexamples for the strictness of these inclusions will be presented in examples in Chapter
B
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SE > always

SF:F [ S6 F

SEF1™MFp i sE FrandsfF F»

SF haiF i there is a s®such that s !® s%and s°F F.

Proposition 2.7 ([HM85]). Let (S;A;! ) be an image nite LTS. For every s1;S2 2 S,
s; B Sz if and only if for every formula F of HML, s; F F ifand only if s, F F.

Analogous characterization results, using weaker modal logics, hold for ready simu-
lation equivalence and simulation equivalence. The formulas oReady Simulation Logic
(RSL) on A are de ned as follows:

F:=> :a Fi{*"F; haiF

In contrast with Hennessy Milner Logic, this logic does not have a full negation operation
. F, since negation is limited to single (terminal) actions, via the operator: a. The
satis ability of : ais de ned as:

SE:a i s X

The formulas of Simulation Logic (SL) are obtained by removing action negation: a
from the de nition of RSL.

Proposition 2.8 ([Gla01l]). Let (S;A;! ) be an image- nite LTS. For every s;1;s, 2 S,
1. s; Rrs Sy if and only if for every formula F of RSL, s; F F ifand only if s, F F

2. 51 sspifand only if for every formula F of SL, s; F F ifand only if s, = F

2.3 Behavioral equivalences for probabilistic processes

2.3.1 RPLTS

We start by de ning equivalences and preorders on RPLTSs.

Given a transition s ! 2 , a process s%2 Sis not reachable froms via that a-transition
if ( s9 =0, otherwise it is reachable with probability p= ( s9. The reachable states
form the support of , i.e., supp()= fsP2 Sj ( sY > 0Og.

In the RPLTS setting, each state-to-state step of a computation is derived from a
state-to-distribution transition s!?

De nition 2.9. Let L = (S;A;! ) be an RPLTS and s:s92 S. The sequencec def

So;S1:::Sh 1,Sn IS a computation of L of length n from s = sp to s%= s, labeled by

= ap;apiinay if forall i = 1;:::;n there exists a transition s; 1 & i such that
si 2 supp( i), with  (si) being the execution probability of the step from s; 1 to s
via action a; conditioned on the selection of transitions; ; 1% i of L at state 5; 1. We

denote by C, (s) the set of nite-length computations from s.

Given a computation ¢ 2 C,, (s), its conditional execution probability prob(c) can be
de ned as the product of the conditional execution probabilities of the individual steps
of ¢. This notion is lifted to a set C C , (s) of identically labeled computations by letting
prob(C) = ., prob(c).
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Let L = (S;A;! ) be an RPLTS and s;s;;s2 2 S. The de nition of the sets of
decorated traces froms is de ned as for LTS, but using the de nition of computation
given above for RPLTSs. We then introduce probabilistic trace-based equivalences on
L as follows by analogy with [JS90; HT92]. Instead of only observing the possibility of
performing a (decorated) trace, we observe the probability of performing the trace.

S1 pr Sz i prob(C(sy; )) = prob(C(sp; )) forall 2A .

S1 pcty S21 S1 prr Sz and prob(C(s;; ))= prob(CGs;; )) forall 2A .
S1 pr S2 1 prob(FC(sy;' )) = prob(FC(sy;' )) forall * 2 A 27

S1 pr S2 i prob(RC(s1;%) = prob(RC(s2; %) for all %2 A 27

S1 pETr S21 Prob(FT C(s1; )) = prob(FT C(sp; )) forall 2 (A 24) .
S1 prr S i Prob(RT C(sy; )) = prob(RT C(sy; )) forall 2 (A 24) .

The corresponding preorders can be de ned by using instead of = in the de nitions
above, and, for failure trace and ready trace equivalence, by requiring that the initial
states have the same ready set.

To de ne probabilistic bisimilarity and similarity, we rst de ne the lifting function
lit ():S S!D (S) D (S), which lifts a relation on S to a relation on distributions
over S.

De nition 2.10. Given a relation R over a setS and ; 2 D(S), we say that
lift (R) if there is a countable index set | and probability values fp;gi2; such that
the following holds:

i21 P =1
P .
= pi dirac (si)
P .
= i pi dirac (tj)
foreveryi 2 1, s; R t;

De nition 2.11. LetL =(S;A;! ) be an RPLTS. A binary relation R on S is a prob-
abilistic simulation i, whenever (s1;s2) 2 R, then for all a 2 A it holds that s; ! &
implies sp 1% 5 with ( 1; 2) 2 lit (R). Relation R is a probabilistic bisimulation
if both R and its inverse are probabilistic simulations. Processes;;s; 2 S are proba-
bilistic simulation equivalent (s; ps S») if there exist two simulations R and R° such
that (s1;s2) 2 R and (s2;s1) 2 R® Processess;;s; 2 S are bisimilar (s1  pg Sp), or
bisimulation equivalent, if there exists a bisimulation R such that (s1;s2) 2 R..

Many equivalent de nitions of probabilistic bisimilarity have appeared in the literature.
We have introduced probabilistic similarity ps and probabilistic bisimilarity  pg using
the notion of probabilistic lifting of a relation, as in [Den14]. This is analogous to de ning
simulations and bisimulations using a weight function [JL91; Seg95; Bai98]. As shown in
[Seg95], the resulting bisimilarity is equivalent to the one given by the de nition by Larsen
and Skou in [LS91], which requires a probabilistic bisimulation to be an equivalence relation
and uses equivalence classes to compare the reached probability distributions:
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Figure 2.2: Strictness of inclusions in the spectrum for RPLTSs

An equivalence relation R is a probabilistic bisimulation i
(s1;s2) 2 R implies that for all a2 A it holds that s; ! a 1 (PB1)
implies s, 1% s with  1(S% = »(SY for all S°2 S=R.

Since the relation is an equivalence, and thereby symmetric, it is not necessary to
include the clause froms; (i.e., sp!'% 5 implies s 1% 1 with  1(S9 = (89 for
all S°2 S=R). Requiring a bisimulation to be an equivalence relation is however not
convenient when we want to prove that two states are bisimilar, since it requires to build
a re exive, symmetric and transitive relation.

The de nitions of probabilistic bisimulation presented so far lead to the same notion
of probabilistic bisimilarity. In other words, although the de nitions of bisimulation do
not coincide (i.e., a relation might be a bisimulation according to one de nition, but not
according to another one), their unions (i.e., the bisimilarities given by the di erent notions
of bisimulation) all capture the same equivalence relation pg.

When referring to probabilistic systems, we sometimes write bisimulation instead of
probabilistic bisimulation, and analogously for the other probabilistic equivalences and
preorders. For decorated traces, we also sometimes omit the notation for the speci c set
of computations when it is clear from the context (e.g., if we are explicitly considering
failure traces we write prob(s; ) instead of prob(FT C(s; ))).

2.3.2 Spectrum for RPLTSs

It was shown in [Bai98; BKOQ] that pg and ps coincide, hence the variants in between
(ready similarity, failure similarity, completed similarity) collapse too. Moreover, the
proofs of the results in [JS90;| HT92] for fully probabilistic processes can be smoothly
adapted to the RPLTS case, and also extended to deal with pgrry and ppr. As a
consequence, we have the following spectrum under the assumption that every state has
nitely many outgoing transitions, i.e., it is nitely-branching.

Proposition 2.12.  On nitely-branching RPLTS processes, it holds that:
pe= ps( prRr = pPrr ( PR= pPE( Pcw = pm

The strictness of all the inclusions above is witnessed by the counterexamples in
Fig. 2.2. The graphical conventions for process descriptions are as follows. Vertices
represent states and action-labeled edges represent action-labeled transitions. Given a
transition s!? | the corresponding a-labeled edge goes from the vertex for stats to a
set of vertices linked by a dashed line, each of which represents a stag82 supp() and
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is labeled with ( s9. The label ( s9 is omitted when it is equal to 1, i.e., when is the
Dirac distribution dirac (s9.

2.3.3 Testing characterizations

On RPLTSs, probabilistic bisimilarity can be captured by considering a simple class of
tests. Let T be the language of testd de ned as follows:

tu=1 ] oat | (tyty)

where a ranges over the labels in the action setA of the RPLTS. The test ! represents
successa:t sequentially checks whether it's possible to da and then proceeds with test
t, and (t1;t2) is the conjunctive test. Formally, given a reactive probabilistic processs,
the probability of success Prt; s) when the testt is executed ons is de ned by structural

induction on t:

Pr(l;s)=1
( .
Pr(ait;s) = B if s! &
- s9%2 supp() ( sY Pr(t;s% if sl a

Pr((ty;t2);s) =Pr(ty;s) Pr(ts;s):

It holds that two processes are bisimilar if and only if, for every test of T, they have the
same probability of passing the test.

Theorem 2.13. ([BMOWO5]) On reactive probabilistic processes,s pg s%i Pr (t;s) =
Pr(t;sY for every testt in T.

The theorem above provides a further simpli cation of the class of tests de ned by
Larsen and Skou in[[LS91], and proved to characterize probabilistic bisimulation. Indeed,
the tests in [LS91] also contain a probabilistic negation operator. a restricted to actions,
de ned as .

0 ifs!

U

2.3.4 NPLTS and resolutions

The de nitions of simulation and bisimulation on NPLTSs are the same as on RPLTSs
(De nition . The de nition of trace-based equivalences could not be applied directly
to NPLTSs, since they rely on the fact that the model has no internal nondeterminism.
To extend the de nition to NPLTSs, we introduce resolutions, which represent RPLTSs
that can be obtained by applying a scheduler (resolving the internal nondeterminism) to
the NPLTS under consideration.

De nition 2.14. Let L = (S;A;! )bean NPLTS and s 2 S. An NPLTS Z =
(Z;A;! 2)is aresolution of s if there exists a state correspondence functiorcorr 7 :
Z ! S such that s = corrz(zs), for somezs 2 Z, and for all z 2 Z it holds that:

If z1® , , then corrz(z)!® ©with corrz being injective over supp() and
( 29= YQcorrz(2Y) for all z°2 z.
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a a.
If z!"™* ; jandz!® ; 5, thenaj=aand 1= o.

We let zZ denote the correspondent ofs in a resolution Z of s (i.e., s = corrz (z%)),
and we sometimes simply writezs if the resolution we are referring to is clear from the
context.

Z is maximal if, for all z 2 Z, wheneverz has no outgoing transitions, thencorr z (z)
has no outgoing transitions either. We respectively denote byRes(s) and Resmax(S) the
sets of resolutions and maximal resolutions os.

As Z 2 Res(s) is fully probabilistic (i.e., it has no nondeterminism), the probability
prob(c) of executing ¢ 2 Cy, (zs) is the product of the (no longer conditional) execution
probabilitiq§ of the individual steps of c. This notion is lifted to C C  (zs) by letting
prob(C) = ., prob(c) whenever none of the computations inCis a proper pre x of one
of the others.

Using resolutions, we can de ne trace-based equivalences on NPLTSs

De nition 2.15. Let be any of the trace-based equivalences de ned for RPLTSs. Let
L =(S;A;! )be an NPLTS and s;s%two states of the NPLTS. Thens  s0if

70

for every resolution Z of s there exists a resolutionZ? of s® such that zZ  z%

(where is de ned as for RPLTSSs);

70

for every resolution Z° of s° there exists a resolutionZ of s such that zZ  z%

(where is de ned as for RPLTSS).

In both items above, the second occurrence of is de ned as for RPLTS, since res-
olutions are indeed RPLTS. However, since also external nondeterminism is resolved by
resolutions, decorated traces would not be visible. Hence, we assume that failure or ready
sets are checked on the states of the original NPLTS. For instance, given a state in a
NPLTS and a resolution Z of s, the probability of zg having the failure trace (aiaz:::an; F)
is the sum of the probabilities of all the computations zg; z1; z5; ::::; z, from zg in the res-
olution such that the computation is labeled by trace ajay:::a, and the correspondent
corr z (zn) of the last state of the computation in the original NPLTS cannot perform any
of the actions in F.

The spectrum of equivalences for NPLTS and variations over the de nition of resolu-
tions (e.g., by considering probabilistic, instead of nondeterministic, schedulers) can be
found in [BDL14a; BDL13]. Finally, the probabilistic equivalences considered in this thesis
are exact probabilistic equivalences, i.e., we require the observed probabilities to be the
same in the compared processes; di erent approaches allow the probabilities to di er up
to some boundp [DLTO8].

2.4 Calculi
The terms of pure -calculi are generated by the following grammar:
M:N = X X:M MN

where x is a variable from a countable set of variables,x:M is an abstraction and term
MN is the application of term M to N. A term M is closed if every variablex occurring



32 Chapter 2 Background

in M is bound by x . We identify -convertible terms. We write M f N=xg for the capture-
avoiding substitution of N for x in M . The valuesare the terms of the form x:M . We use
meta-variables M; N ::: for terms, and V;W;::: for values. When we write terms of the
-calculus, we use the standard notational convention for parenthesis: abstraction binds
to the right and application binds to the left.
A context C is an expression obtained from a term by replacing some subterms with
holes of the form [];. We write C[My;:::;Mp] for the term obtained by replacing each

any term is a context. The context may bind variables in Mq;:::;M,; for example, if
C= x[lhand M = x, then C[M]is xix, not y:x . The indexing of the holes in
contexts is usually omitted.

In call-by-name, term M reduces in one step to termN if there is a derivation of
M I N using the rules Beta-CBN and EvCon in Figure[2.3, using the CBN evaluation
contexts. Evaluation contexts, in contrast with standard contexts, may have only one
occurrence of a single hole T. In call-by-value, one-step reduction is de ned analogously,
but using rule Beta-CBV and rule EvCon with the CBV evaluation contexts.

The rules are de ned using a single-step (or small-step) reduction relation. We write
=) for the multi-step reduction relation, de ned as the re exive and transitive closure of
I

We use a tilde to denote a tuple; for instance,l(/l is a tuple of terms Mq;:::;; My, for
somen, and (f1); is its i-th element. Hence, we write C[f1], with &1 = Mq;::; My,
for C[Mq;::;;Mp]. Sometimes we write tuples asf Mjg; when we want to emphasize the
indexing set. All notations are extended to tuples componentwise.

We use :M to denote athunked term, i.e., aterm x:M for x a variable not occurring
in M.

Beta-CBN Beta-CBV
(xxM )N ! MfNxg (xxM V!  MfVxg
EvCon M ! N C is an evaluation context
CIM]! C|N]

CBN evaluation contexts C=[] CM
CBYV evaluation contexts cC=[] CM VC

Figure 2.3: Operational semantics for pure -calculi



Chapter 3

The discriminating power of
higher-order languages

In this chapter we study the discriminating power o ered by higher-order concurrent lan-
guages, and contrast this power with those o ered byhigher-order sequentiallanguages
(which are deprived of all concurrency) and by rst-order concurrent languages (which
are deprived of all higher-order features). The comparison is carried out by considering
embeddings of rst-order processes into the languages, and then examining the equiva-
lences induced by the resulting contextual equivalences on the rst-order processes. In
other words, the discriminating power of a language refers to the existence of appropri-
ate contexts of the language that are capable of separating the behaviors of rst-order
processes.

The higher-order sequential languages are -calculi with a store location, akin to im-
perative -calculi. The -calculi o er constructs for reading the content of the location,
overriding it, and for performing basic observations on the process stored in the location.
The higher-order concurrent languages are HO, which allows higher-order communi-
cation, and HO pass, an extension of HO with passivation (similar to the languages
in [PS12a;|KH13; |LSS11]). Both languages also admit rst-order communications, to
be able to interact with the embedded rst-order processes. The rst-order concurrent
language that we consider is CCS, a CCS-like calculus.

The -calculi also allow us to observe the inability for a process to perform a certain
action. In concurrency, this possibility is referred to as action refusal. For a thorough
comparison, we therefore also consider both restrictions of the -calculi without the re-
fusal observation (though at the price of allowing computations that may get stuck) and
extensions of HO , HO pass, and CCS  with the refusal capability.

Concerning the tested rst-order processes, embedded into the above languages, we
consider both ordinary LTSs and RPLTSs. We show that, on LTSs, the di erence between
the discriminating power of HO and HO pass is captured, in the -calculi, through the
di erence between the call-by-name and call-by-value evaluation strategies, both with and
without refusals. The correspondence between the HO,ass Calculi and the call-by-value

-calculi appears robust, and is maintained in all scenarios examined. The same does
not hold between the HO calculi and the call-by-name -calculi, whose correspondence
breaks on RPLTSs. The case of RPLTSs is more involved also when we consider the
rst-order language CCS . For instance, the discriminating power of CCS s strictly in

33
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between that of the call-by-name -calculus and HO . In contrast, the three languages
are equally discriminating on LTSs.

We also discuss variations of the above settings. In languages with locations, commu-
nication may or may not be a ected by spatial proximity. This is the di erence between
global vs. local communications. This di erence is important for the semantics of the
languages but, as we shall see, does not impinge on their discriminating power.

The contextual equivalences that we consider are may-like (a test, i.e., a context, is
successful on a process if there is at least one successful computation). We also discuss
the contextual preorders, and ‘must' forms of success (all computations are successful).
We isolate a few scenarios in which, surprisingly, the may and must forms of contextual
equivalence coincide.

Section[3.2 considers the embeddings of LTSs and RPLTSs into-calculi. Section[3.3.1
shows the syntax and operational semantics of the concurrent languages (CCS- and HO
like), whose discriminating power is studied in Sectiong 3J4 anfl 3|5. Sectidn 3.6 discusses
variations of the scenarios examined, such as language extensions and must-equivalences.

Notation: In examples, we sometimes use a CCS-like notation, with pre xing and
choice, to describe the processes of an LTS or RPLTS.

3.1 Contextual equivalences

Given a set of processes as states of an LTS or RPLTE and an algebraic languageAL
(i.e., generated by a grammar), we can embed the states in the grammar by rst taking a
bijection f from the set of statess; s®:: to a set of constantsP; P%:: added to the language,
and then de ning the behavior of the constants as corresponding to the behavior of the
states, i.e.,s! * slifand onlyif f (s)= P! * PO9= f(s9. Then we say that the equivalence
induced by AL equates theL processes; and s, if C[f (s1)] and C[f (s2)] behave the same
for all contexts C of AL

Here “behave the same' is formalized as in (‘may') contextual equivalence: for any
P1; P2, C[P1] is as successful a€[P,] with respect to a special success observation, indi-
cated with ! . The context C is an AL-expression with asingle occurrence of the hole |
in it.

We useP; Q::: to range over the (constants for) processes in the language, corresponding
to L processes;t:::. For simplicity, L is used both to denote the LTS or RPLTS of tested
rst-order processes and to denote the corresponding constants embedded in the language.

Moreover, in these tested processes each transition represents a visible action, i.e.,
there is a corresponding coaction with which the action can synchronize and produce a
reduction; the actions available forL do not include the success signal . We write AL(L)
for the extension of AL with the (constants corresponding to) L processes

In a languageAL(L ), reductions are represented as -transitions!  (or simply ! ,in

-calculi). Each languageAL used will have constructs for testing the action capabilities

of L processes; thus, the set of action names fdr is supposed to appear in the grammar
for AL We emphasize that probabilities may appear in the testedL processes, but they
may not appear in the AL languages that test the processes.

The operational semantics ofAL(L ) will be based on di erent LTS-like models depend-
ing on the nature of L. A nite-length computation cfromaterm M 2 AL(L) is successful
if each step ofc is labeled with , the last state of c can perform! , and no preceding state
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of ¢ can perform! . We denote by SQM) the set of successful computations fromM .
In the nondeterministic case, whenL is an LTS, the semantic model underlyingAL(L) is
again an LTS.

De nition 3.1. Let L be an LTS, P; and P, two processes olL, and AL an algebraic
language. InAL(L):

P1 is contextually may-lessthan P,, written P; 'A-L Py, if SQCIP1]) 6 ; =)
SQC[P2]) 6 ; for all contexts C of AL

P is contextually may-equivalentto P, written Pq ' ',;L P,, if Py ',;L P, and P, ',;L
Pi.

In the case thatL is an RPLTS, the de nition of contextual equivalence is more involved
because the semantic model underlyind\L(L ) is a nondeterministic and probabilistic LTS
(NPLTS). Hence, we resort to resolutions (De nition P.14).

The contextual equivalence de ned below is inspired by|[YL92| JY95; Seg96; DGHMO(8].
Intuitively, P; is worse thanP, if, for all contexts C, the maximum probability of reach-
ing success in an arbitrary maximal resolution ofC[P;] is not greater than the maximum
probability of reaching success in an arbitrary maximal resolution of C[P,]. To correctly
guantify success, we restrict ourselves tdres. nax (C[P]), the set of maximal resolutions
obtained from C[P] by forbidding the execution of actions not resulting in interactions
(i.e., actions).

De nition 3.2. Let L be an RPLTS, P; and P, be two processes of., and AL be an
algebraic language. We say that inAL(L):

P is contextually may-lessthan Py, written P; ',gL P,, if for all contexts C of AL it
holds that:

G G
prob(SQzcp,y)) prob(SQAzcp,))
Z]_Z ReS; max (C[Pl]) ZZZReS; max (C[Pz])

P is contextually may-equivalentto P, written Pq ' ,kL P, if Py ',gL P, and P, ',gL
P1.
We sometimes abbreviate “contextual may equivalence' as “contextual equivalence' or
even “may equivalence'.

3.2 -calculi

3.2.1 Syntax

Figure shows the syntax of the -calculus with a location '°¢ into which we embed
the processes of a (rst-order) LTS or RPLTS L. The grammar of the language resulting
from the embedding, '°°(L), has therefore the additional production

M:=::]P
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Terms: M ::= X (variables) jMiseqM; (sequentialization)
j x:M (functions) | loc (read)
j MM (applications) jloc := M (write)
jc (constants) jif M1 then M, else Mj(if-then-else)

jr? (action test)

Figure 3.1: Syntax of o

whereP is a constant for anL process, as described in Sectidn 3.1; moreover, in the action
test, r is supposed to range over the actions ir.

The evaluation of a -term M is de ned with respect to a location containing a process.
The language includes a constructioc := M that evaluates M and writes the resulting
value in the location, and a construct loc for reading the content of the location. The
language also features sequentializatioM seq N, whereM is a command (of unit type).
The action-test construct r? allows us to check whether the process contained in the
location can perform actionr.

The remaining constructs are common constructs of typed -calculi. We assume that the
set of constants includes the boolean valuetue and false and the unit value ?. The
writing construct loc := M rewrites the content of the location with the result of the
evaluation of M. The calculus is simply-typed with recursive types (typing rules are as
expected [Pie02]), and the type system ensures that the location has process type (the
type of the embedded rst-order processes). Hence, reading the content of the location
always returns a process, and the term tested by ? is a process.

The calculus is indeed an imperative -calculus with a one-place store, and the seman-
tics and operators for interacting with the store of ¢ are those standard of such calculi.
Extensions and variations of ', and in particular the possibility of allowing more than
one location in the calculus, are discussed in Sectidn 3.6.1.

Reduction is de ned on terms that are closed(i.e., without free variables) and equipped
with a location containing a processP, i.e., con gurations of the form hP ; M.

3.2.2 Nondeterministic processes

We consider both call-by-name and call-by-value reduction strategies. We call (L) the
call-by-name language, (L) its call-by-value version, as usual omitting the parameter
L when referring to the pure languages (withoutL processes). WhernL is an LTS, a
reduction step has the formhP ; Mi!'h P?% M4, saying that the evaluation of M with
P in the location produces a new termM 9 with process P?in the location. The rules for
reduction are in Figure[3.2

In the call-by-name language 'NOC(L), only the functional part of an application is
evaluated, hence ruleBeta-V and the production V C for evaluation contexts are omitted.
In call-by-value, both the function and the argument of an application are evaluated, hence
rule Beta-N is omitted in '\‘,’C(L). In all these languages, although the operators of the

-calculi themselves are sequential, nondeterministic computations are possible because

the process in the location may present internal nondeterminism. As usual, ¥ is the
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BelaN 5 (XM DMai Th P M fMagi
BelaV s (xM Wilh P MfVxgi
It hP; if true then M1 else Myilh P ; Mji
It2 hP ; if false then M1 else Myilth P ; Msi
write hPO; loc:= Pi'h P;?i Read hP;lloci'h P ; Pi
r oo Lo
Act rP;Fr)’;i!hP (IIDnO;LtZuei RefAct 5 r’:!!ﬁ (II: ;Lf)alsei
e 5 2seqMith P M
EvCon C is an evaluation context P ; Milh P9 M4

WP ; C[MJi'h P9 C[MQi
Evaluation contexts:
- call-by-nameC :=[ ]j if C then M; else M;jCsegM jloc:= CjCM
- call-by-valueC :=[]j if C then M; else M;jCseqM jloc:=CjCM jVvC

Values: V:i=cj xM jP

Figure 3.2: Reduction rules of '°°(L) for L an LTS

re exive and transitive closure of !

In the call-by-name calculus ',EJJC(L), during a computation an L process may be moved
around, may be copied, and may be placed into the location. However, once placed into
the location for evaluation, the process cannot be stoppednd later re-evaluated. Indeed,
in call-by-name, when theRead rule is used, a value is produced and therefore the whole
computation terminates.

In call-by-value, by contrast, the Read rule may be used by the argument of a function,
and then the process so obtained may be passed to the function; as a consequence, the
process may later be evaluated. This gives us more sophisticated process tests than call-
by-name. Example[3.3 shows how the terms in | and 1% can test the existence of
decorated traces in the behavior of a process placed in the location, and how some tests
are available only in call-by-value.

Example 3.3. Below, a test is encoded in '\?C as a thunked boolean expressionM and
(:M )?is its ‘unthunking'. (Thunking is useful in composition of tests. We assume here
that thunked variables are all of unit type.) A test :M is successful on a procesB if
there is a run starting from hP; :M i in which true is produced, i.e.,hP; (:M )?i =)
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HPO: true i for someP?

o
o
o,

Ta a?
T.. % . if a? then false else true
Seq® x:y:: if x? then y? else false
Ldgf xiy:: ((z:if x? then (loc:= z)seq (y?) else false )!loc)

Test T, checks whether the proces® in the location can perform action a (i.e., P! a ).

Dually, T.a checks whetherP is unable to performa. Function Seq composes the two
argument tests sequentially. Thus, we can de ne the following test

M1 %' Seq Ta(SeqT. ¢ Ty)

that checks the existence of ana-derivative of the process in the location that cannot

perform ¢ but can perform b (i.e., P!  POwith P9 % and P4 ° | for someP9). Function
And makes the conjunction of the two argument tests. In general, for any pairM;N
of tests, AndMN checks whetherP passes both the testM and the test N. Thus the
following term

M2 %" Seq Ta(And Ty Te)

checks the existence of am-derivative that can perform both b and c. Finally, term
M3 £’ Seq T4 (And (SeqTy Tc)(Seq Ty T ¢))

checks the existence of ara-derivative with both a b-derivative that can perform c and a
b-derivative that cannot perform c.

In the call-by-name calculus ',ﬁ,’c while Seqand Ta; T: a; M1 have the same outcomes
as in the call-by-value calculus '{,’C, function And (and so alsoM ,; M 3) cannot be encoded.
As a consequence, only the call-by-value calculi can separate

o

©f 2(b+ )+ P

P% ab+ac and po

When applied to PC test M, consumes an actiora and then, in case the rst a-branch of
PYis taken, the whole expression reduces to

hb+ c; (z:if Tp? then (loc:= z)seq(T.?) else false )!loci

Now, term !loc is not a value, hence in call-by-value it is evaluated and produces process
b+ c. Since processes are valueb;+ c is substituted for the variable z. Thus b+ cis placed
in the location with which the test T . is performed on the same procesb+ c, once the
test Ty reports success. By contrast, in call-by-nameléc is substituted for z before being
evaluated, henceb+ cis lost before performing test Tc.

In  -calculi, well-typed terms are supposed to produce computations that never get
stuck. To maintain this property, we have to ensure that the action-test construct a?
returns a value even when the process in the location is unable to perform the requested
action a. That is, we are allowed to observe the inability for the process to perform a certain
action, in concurrency referred to asaction refusal and usually omitted. We therefore
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consider also variants of the above -calculi without the refusal capability. Formally, rule

RefAct is omitted. Of course, the price to pay is that computations from a well-typed
term may get stuck. The call-by-name calculus without RefAct is called ',{fc ref (L),
whereas call-by-value without RefAct is '\?C ref (L)

Example 3.4. (We reuseP? M1; M3 from Example .) The processes® and P 0%
a:(b+ c) are distinguished in 'N°C and '\?C (via the test M 1), but they are equivalent in

| | in |
N et @and ¢ . In contrast, only in ¢ the processes

Q% abic+ ab and Q%" ai(bic+ b)

can be separated via testM 3.

Theorem[3.6 summarizes the results on the discriminating power of the four -calculi
when the embedded processes are fully nondeterministic.

De nition 3.1 Jof contextual equivalence is adapted to the -calculi supposing that the
reduction relation ! is labeled with and adding the rule:

Omega ———
P ; true i !

Contexts are terms with a single occurrence of a hole in one of the four languages
de ned above. The contexts contain noL processes, whilst the hole has process type.

In -calculi with store, the de nition of contextual equivalence usually quanti es over
all possible stores containing the locations occurring in the terms. In our case, this cor-
responds to quantifying over all possible assignments of the location to a process in
(for simplicity, we omit the case in which the location does not occur in the terms, and
thereby the store would be empty). Hence, in this setting we have that processeB and
Q in L are contextually equivalent in AL if for any unary context C of AL and for any
processP%2 L, hP%; C[P]i has a successful computation if and only ifP°; C[Q]i has a
successful computation. In what follows, we usé, to denote the process used to initialize
the location in the de nition of contextual equivalence.

Remark 3.5. The same results could be obtained by adding a constant of process type
to the syntax of '°°, and then de ning\ M has a successful computation" ashc; Mi has a
successful computation” (or, equivalently, by de ning contexts as pairs of the formic; Ci,
where C is de ned as above). This would yield a de nition of contextual equivalence that
immediately ts De nition 3[2, [since it does not require the further quanti cation on all
possible instantiations of the location. We choose the de nition with the universal quan-
ti cation over processes for continuity with the de nitions in the literature of contextual
equivalence on -calculi with store.

Theorem 3.6. If L is an image- nite LTS, then:

1. L,OC = Rs (ready simulation equivalence);
\Y

2.' Lo = e (failure trace equivalence);
N

3.0 L = s (simulation equivalence);
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4. LK.’“ f = 1 (trace equivalence).
Sketch. The proofs are di erent for inductive and coinductive equivalences. For the induc-
tive equivalences, we discuss failure-trace equivalence ancﬁC (item (2)). In one direction,
one shows that for every failure trace there is a contextC of 1% such that P has the
failure trace i HP,; C [P]i producestrue , for any processP, initializing the location.

For the opposite direction, supposeP and Q have the same failure traces, and Sup-
posehP, ; C[P]i =) ! . We show that there is also a computaltion P ;CQli="! ,
proceeding as follows. Consider the computatioriP, ; C[PJi =) !~ . First, we show that
the reading capability in a boolean term in call-by-name is always followed by re-writing
the location, and therefore has no impact on the computation. Then, to analyze what
happens to the context and the processes inside them during the computation, we adopt
an annotated operational semantics (equivalent to the original one) thanks to which we
keep track of all the times a process is written in the location and of the observations
made on the processes in the location (the transitions performed, the actions refused).
Such observations are failure traces. Since proce€¥ has the same failure tracesI a®, the
con guration hP; ; C[Q]i can mimic the successful computationhP, ; C[PJ]i =) ! * . Note
that during this computation the hole may get duplicated, and therefore the context may
become polyadic.

As an example for the coinductive equivalences, we consider ready simulation equiva-
lence and '\‘,’C(L). In one direction, supposeP is not ready simulated by Q. By proposition
[2.8, there is a formulaF of Ready Simulation Logic that discriminates the two processes.
We show that there is an encoding of these formulas to '\‘,’C—contexts, i.e.,P satises F if
and only if P in the context encoding F succeeds. Hence, there is a context discriminating
the processes.

For the opposite direction, one shows that the relation

R % t(hP; C[B]i:hQ; C[@]i) j P;® are pairwise ready simulated byQ: @g

where C is a polyadic context of '\‘,’C is a strong ready simulation on reductions (in
the sense that if P ; C[P]i R hQ; C[®]i and P ; C[®]i ' h P9 Mi then PO Mi =
PO C[®Ji and Q; C[®]i ! h QP C[@Yi with HP?; C[PJiRhQ?; C[®@Ti). As a con-
sequence, any successful computation frorhP, ; C[P]i may be mimicked by hP, ; C[Q]i.
More detailed proofs are presented in Sectioh 3]7. 2

3.2.3 Reactive probabilistic processes

The reduction relation for (L) when L is an RPLTS is the expected probabilistic
modi cation of the system for the nondeterministic case and is de ned in Figure[3.3.
For any probability distribution 1 on processes and for any distribution » on terms
of the language, we de ne the probability distribution h 1; »i on con gurations hP ; M i
as follows:
h 1 20(P;Mi)= 41(P) 2(M)

This is used to propagate the probability distribution reached from a process in the location
to a -term, in rules Act and EvCon in Figure B.3. Moreover, in rule EvCon , for a
distribution on terms and an evaluation context C we de ne the distribution on terms
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Beta-N P (xM )Myi!  dirac (hP; M1f M=xgi)
Beta-V WP (x:M )Vi! dirac (WP ; M fVxgi)
If1 hP; if true then Mj else M,i! dirac (WP ; Mii)
112 hP; if false then M else Myi! dirac (hP; Mai)
Write 5o ioc = PiT dirac (7)o B loci T dirac (P P1)
r . Y i
Act 5 1 lprll ;(”:jirall_c) (true )i RefAct hP;rai! . dﬁfa(;n(flgi false i)
e tp 2seqMi!  dirac (P M)
EvCon C is an evaluation context HP; Mi!h 1; 2l

P CMJith 1 C[ 2i

Figure 3.3: Reduction rules of (L) for L an RPLTS

C[] as follows:

(MY if M =C[MI

C[I( M) = .
0 otherwise

The de nitions of values and of evaluation contexts for call-by-name and call-by-value are

the same as in the nondeterministic case (Figur¢ 3]2).

Since the tested processes do not feature internal nondeterminism, all terms of|{c,
loc loc loc i ilicti i .
N e v and ¢ are reactive probabilistic processes, i.e., for any; B and for any

context C the operational semantics ofhP ; C[]i describes an RPLTS where states are
con gurations consisting of a term with a process in the location, and the transition are
given by the reductions from such con gurations to distributions over such con gurations.
Hence, for any contextC of these languages and for any reactive probabilistic proceds,
hP, ; C[P]i has only one -labeled, maximal resolution on reductions.

Then we omit any reference to the resolutions and we writeprob(SQHhP, ; C[P]i)) to
denote prob(SQzp, ;cpyi)), Where zp, . cpy is the state associated withhP, ; C[P]i in
the (unique) resolution.

Example 3.7. Consider the processes and-terms de ned below, where Seq And, T4,
T., are as in Example[3.8. In all four -calculi, the test M1 separatesﬁtweerP and
P % since the resulting success probabilities are:B and 025, respectively. The termM
distinguishes P and P% both in | and in 1%, since prob(SQhP ; M,?i)) = 0:5 and
prob(SQHP % M,7?i)) = 0. The same processes are distinguished bz in '\?C ref+ Which
shows that the refusal operator is not necessary if the tested processes can be copied.

Finally, only in 1% . and 1 the test M4 distinguishes Q and QS since it is only in
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call-by-value calculi that we can encode test_And

P € a((b+ cid) + o5 (f + c16))
PO% a:((b+ c:@) + o5 (F + c:d)
P""’e a(((b+ c:d) + o5 C:d) + o5 (F + C:6)
Q%= ay(bic+ o5 b)
QE" arbic+ ¢:50)
M1 % Seq Ta(Th)
M, % Seq Ta(SeqT. ¢ (SeqTe Tq))
M3 dffSeqT (And Tp(SeqTe Tq))

2% Seq Ta(And (SeqTp Tc)(SeqTp Te))

A peculiarity of probabilistic processes (with respect to nondeterministic processes) is
that even when testing nite RPLTS there can be in nitely many successful computations
from a term. This is because we are testing probabilistic systems using powerful languages
such as -calculi, which can encode xed-points. Hence, it does not generally hold that
there exists a maximal length of the successful computations, as the following example
shows.

Example 3.8. Let P %" a:(b+¢s50) and M be
y: (x: SeqTa(: if b? then true else (loc := x) seq (yy?)))!loc

In '\‘,’C, the term HP ; MM ? i with probability O :5 reports success and with probability 05
becomes agairtP ; MM?i. Thus, there are in nitely many successful computations from
hP ; MM?i, and the overall success probability is 1. (Note that the typing of M requires
recursive types.)

Theorem 3.9. If L is an RPLTS, then:

1.' L. ="k, = pg (probabilistic bisimilarity);

Vv Vo ref
2. L.ﬁc = prrr (probabilistic failure trace equivalence);
3. L,oc = p7r (probabilistic trace equivalence).

N ref

Sketch. For the inductive equivalences, the proof schemata are as in the nondeterministic
case, but we now have to reason directly at the level of probability distributions over
con gurations of the form hP ; Mi. To this end, we rede ne reductions and trace equiv-
alences as relations over probability (sub)distributions, i.e., distributions that can have
weight possibly smaller than one.

For item (1), in one direction We exploit the testing characterization of probabilistic
bisimilarity presented in Sectlon , using the language of tests ::= ! j r:t j (ty;t2).
We show that these tests are encodable in % . (some hints are provided by Example
and Example), i.e., for every testt in T there is a term M such that for every P,
Pr(t;P) = prob(SQHhP ; M.i)). Hence, if P 6 pg Q then there is a context of '\‘,’C of that

distinguishesP and Q. The same holds for the language '°, since it includes ¢ ;.
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For the other direction, the proof is in two steps, analogously to the case of nondeter-
ministic processes: we rst prove that if P; Q are probabilistic bisimilar L processes and
C is a -calculus context, then alsohP, ; C[P]i and hP, ; C[Q]i are probabilistic bisimilar
when the bisimulation game is only played on reductions and succes$ | transitions. We
then prove that, if P, ; C[P]i and hP, ; C[Q]i are probabilistic bisimilar in this sense, then
prob(SAhP, ; C[P]i)) = prob(SQhP, ; C[Q]i)), using the fact that probabilistic bisimilar-
ity implies trace equivalence. More detailed proofs can be found in Section 3.7. 2

3.3 Concurrency: syntax and operational rules

3.3.1 Syntax

We present here the concurrent languages used to test the rst-order processes taken
from an LTS or RPLTS L. This section gives the syntax and operational rules. The
following two sections study the equivalences induced by the languages. To simplify the
presentation, we assume that also rst-order communications exchange values, namely the
unit value ?. Names include channelsa;b;::: and locations |;m;:::. The operators are
those common to CCS and Higher-Order -calculi. The special pre x ! indicates success
of a computation. We add the basic constructs of calculi with passivation, namely the
kell [M ] and the passivation pre x pass;(x):M. The refusal prex g:M, wherel is a
location containing L processes, succeeds if the processliis unable to perform the action
r. (The addition of other operators is discussed in Sectio3.) Kells may be nested,
and the kell structure is transparent with respect to communications. In the remainder,
unless otherwise stated, all mentioned processes are supposed to ¢tdesed (without free
variables). A channel or pre x is rst-order or higher-order depending on whether the
exchanged value is? or is a process. We sometimes abbreviate rst-order pre xesa(x):M
and ah?i:M asa:M and a:M respectively, and omit the trailing 0 in : 0.

The language with all operators, HO pass:ref, IS given in Figure@. The subset without
the refusal pre x is HO pass; the subset without passivation is HO (ef; the subset without
passivation and refusal is HO . These are thehigher-order concurrent languages. In a
rst-order concurrent language, in contrast, all channels and pre xes are rst-order (i.e.,
unit is the only communicable value) and the passivation pre x is disallowed. The resulting
language is CCS;;; when also refusal is disallowed, the language is CCS (The "-' sign
emphasizes the lack of the choice operator; see however Sect.6.3.)

As usual, for any language, sa)AL, we write AL(L) for the extension of ALwith the rst-
order processes from the LTS or RPLTSL, i.e., with the additional grammar production

M:=:::jP

where P is an L process. In the languages without passivation, the presence of kells is
irrelevant; e.g., a processN j [M ], behaves likeN j M.

To avoid run-time errors in interactions, we assume a basic type system, that distin-
guishes three types of values: the unit value?, the set Pr_ of tested L processes, and
arbitrary processesPry;, with the subtyping Pr_ Pra. As a consequence, there are
three types of names and variables. We distinguish the tested processes from arbitrary
processes because we allow refusal to act only on the former processes (this simpli es the
operational rules, though it is not essential).
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uz=a j | (names)

r:=aj a (input/output channels)
=a(x) j amMi j ! j pass(x) | B (pre xes)

M:=MjM |j M j xjOoij ML j? (processes and values)

Figure 3.4: Syntax for HO pass;ref

Myl M2 Myl M2
ParL 1 L ParR L 2
MijMz! M2jM; M1jMz! MpjMJ
Myl M Mol M2 PI" PO®in L
Com —— "1 C 2 foPr .(I )
MijM2! MPjM2 pt "™ po
Inp , Out —
a0):M 1PN M fNxg amNi:M N
1'% (i
RefLoc L(ml.) RefPre 5
PL!" [P B:N %N
| 0
SucCc ————— Kell _ME M
M 1 M MTiY MY,
PassLoc msnN L PassPre bass N
INT!' 0 pass/(x):M! 7 MfNxg

Figure 3.5: Operational semantics for HO pass:ref (L)

3.3.2 Nondeterministic processes

The operational rules for the full language HO passref (L), When L is an LTS, are presented
in Figure B.5. The grammar for action labels is:

.= jamMijamMij! jpassM j passN j B ] B

whereahM i, pass;M , and g are the dual of, and synchronize with,ahM i, pass|N, and g.
The dual of is ™. In the languages without refusal (HO pass(L), HO (L), CCS (L)),
rulesRefLoc and RefPre are missing; in the languages without passivation (HO ¢ (L),
HO (L), CCS (L), CCS,(L)), rules PassLoc and PassPre are missing. Further, in
the CCS languages the only value exchanged 8

3.3.3 Reactive probabilistic processes

If L is an RPLTS, the rules for parallel composition (Figure[3.6) propagate the probability
distributions reached from the processes irL. For any 1; », we de ne the distribution
1] 2 on terms of the language as follows:

(
. M M if M =M1|jM
0 a(M) def 1(M1)  2(Mp) | 1) M2
0 otherwise
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1 1
ParL _ M. ! 1 ParR _ MZ'_ 2 _
M1 jMs! 1 j dirac (M) M1jMy!  dirac (M1)j 2
M,! Myl
Com M1 . 1 2' 2
M1 My! 1] 2

Figure 3.6: Rules for parallel composition in the probabilistic setting

Di erently from the contexts of -calculi, now the contexts are nondeterministic.
Therefore, in generalC[P] is a nhondeterministic and probabilistic term (i.e., an NPLTS).

3.4 CCS languages: separation results

In the results on the concurrent languages, we include, in parenthesis, reference to the
results for the -calculi to ease the comparison.

3.4.1 Nondeterministic processes

When L is an LTS, IEcs coincides with ordinary may-testing equivalence |[DH84] and

hence with 1, because the canonical tests of [DH84] can be encoded without resorting

to the choice operator. For a similar reason,' IEcs coincides with the refusal testing
ref

equivalence of|[Phi87] and hence with ¢y .

3.4.2 Reactive probabilistic processes

When L is an RPLTS, the contextual equivalences induced by CCS and CCS,; are
comprised between pg and pery .

Theorem 3.10. If L is an RPLTS, then:
pe ( ICECSref( "ces (0 pEm (= Llr\?c)

Sketch. To prove the rst inclusion, we exploit the congruence of pg, and we observe that
if C[P1] and C[P-] are bisimilar with respect to actions and! then for every resolution
of C[P1] there is a resolution of C[P;] that has the same probability of success, and vice-
versa. The details of the proof can be derived from the proof of the more general result
that pg ' I|:|O , that we will present in the next section (Theorem|3.13, item (1)).

The second inclusion is immediate. To prove the third inclusion, we rst show that
contextual equivalence (even when only deterministic, non-probabilistic contexts are con-
sidered) implies probabilistic failure equivalence. Then we show how, for any process, the
probability of an arbitrary failure trace  can be recovered in terms of the probabilities of
failures, from which the result follows. The details of the proof can be found in the proof
of Theorem[4.3, presented in the following chapter.
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The inclusion of ' L and hence of L in  ppyr IS strict: the  pery -equivalent

CCs !’ CCS '
processes
P L ay((b:d+ c:@) + o5 (b:f + C:g)

POL a(b(d+os )+ ci(e+os Q)
are distinguished by the CCS context

def

C =[]ja(bd:! jcg:!)

The maximum probability of succeeding for C[P] is 1, whereas that of C[P9 is 0:5. The
inclusion of ' L in' L is strict as well: the processe®; Q%in Example are not

ccs ccs
distinguished in CCS , but they are distinguished by the CCS,; context

ref

cO%[ 11 j a:(bz:! jba)

The maximum probabilities of success are respectively 1 and:b.
Finally, probabilistic bisimilarity is strictly included in ' |5CS , since the non proba-
ref

bilistic bisimilar processes

R %" d:(e:Q + o5 Q)

RO%" d:e(Q + 05 Q9
cannot be distinguished by any CC$,;-context. The di erent timing of the initial choices
in R and RYis visible under bisimilarity but is not under the may semantics. (Intuitively,
in the may semanticsQ and Q° can only be distinguished by tests that exhibit success
probabilities 1 and 0.5, respectively; we would need however a richer range of success
probabilities to be able to separateR and RO.)E] 2

3.5 HO languages: separation results

3.5.1 Nondeterministic processes

The proof schemata for Theoren] 3.1l are as those for the analogous results incalculi;
in one direction we essentially encode the (higher-order) separating tests of the-calculi
into the Higher-Order -calculi.

Theorem 3.11. If L is an image- nite LTS, then:

v L = =" L .
L HO pass;ref RS ( I\(/)C )’

o L = ="' L .
2. HO ref Fr ( KI)C )’

L = ="' L .
3. HO pass s V ret )
4 ho = m (=" he )

3 We will further discuss analogous examples in the next chapter.
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Example 3.12. In this example, we test a processP by placing it in a kell and then
running a test M in parallel, as in [P]; j M. The testsa:! and a;:! check whetherP! a
andP! &, respectively. The testM 2, below, in HO (¢ performs the same test as the term
My in [ discussed in Exampl, whileM 2 in HO pass corresponds toM, in - 1%
(the second occurrencepass;(y) of the passivation operator destroys the rst copy of the
tested process, so as to ensure that the test:! is executed on the second copy).

M 9% 3:6:b:!

M9« apass, (x):(Ix] j bpass, (y):(Ix]i j c!))

3.5.2 Reactive probabilistic processes

The proof of Theorem|[3.13(1) is analogous to the proofs for the -calculi ¢ and ¢ .

Again, in one direction we essentially encode the separating tests of the-calculi. For the
opposite direction, we show that bisimilarity on RPLTSs P; and P, implies bisimilarity
on C[P;1] and C[P;] with respect to actions and!. Unlike in -calculi, we now have
that, as in CCS , processesC[P;] and C[P,] are NPLTSs, and thereby have internal
nondeterminism. Hence, we may have several resolutions (possibly an in nite number of
resolutions). We show that for every resolution of C[P;] there is a resolution of C[P,] that
has the same probability of success, and vice-versa.

Theorem 3.13. If L is an RPLTS, then:

1. ] L = 1 L - PB (: ] L — 1 L ).
HO pass;ref HO pass l\?c l\?c et
2 ] L ] L ( 1 L .
' HO ref HO CCs !

v L v L .
3. HO ref( CCS

The inclusions in (2) and (3) follow from the inclusions of the calculi. The following
processes withess the strictness of the inclusion tho in ' '5(:5 :

PL 4:0+ exf +050)

PO%" 4:Q0+ ef +¢s50)
for Q; Q%as in Example. ProcesseB; PO di erent under pg, are identi ed by Iécs .
They are also separated in HO, via the context

C € RHJij h(x):(x j da:(be:! jbix &) j ! ))

Intuitively, this context uses higher-order communication to make copies of the tested
process at the beginning, and then exploits the right-hand branche:(f +o.5 0) of the
process itself in order to test the left-hand branch.
Analogously, let R; R%be as in Sectior] 3.4.2 and de ne the processes
SE R+ f:(g+050)+ hi(i +060)
SO% RO+ f: (g +:50) + hi(i + 06 0):
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It follows from R* L ROthat S' L S° while the HO -context C°distinguishes S

c:csref Ccsref
and S° o
er —, P .3 . T

COZTHIIj j(X):(xjd(eaT je(xjhil)))

T % bt jhxjFg:):
Since HO HO ¢, the example shows the strictness of the inclusion of hO . in

re
v L
ccs,,

ref

A summary of the results presented so far can be found in Chaptdr|5, guref 5|1 and
B.2.

3.6 Extensions and variations

3.6.1 Extending -calculi

Both in the call-by-name and in the call-by-value -calculi, a term is evaluated before
being written in the store. Formally, this corresponds to the fact that the location can
only be assigned to a process value (by rule Write only values can be written in the store),
and | := C is an evaluation context. This is a standard property of the semantics of
functional languages with imperative feature, and it can be understood by noticing that
if this were not the case then we could write in the store terms capable of performing
operations over locations (e.g., reading, writing or testing a process, in our case). This, in
turn, would require us to de ne another store with respect to which such terms should be
evaluated.

The possibility of evaluating a term before assigning it to a location makes call-by-name
computations closer to call-by-value ones. This can be seen by considering call-by-name
calculi with a store that can contain more than one location, and with the operator for
testing actions indexed by the location containing the process to be tested. The presence
of multiple locations allows us to de ne the following term:

o

M Lt a?, then (lz:=!l1)seq(ls:='l1)seqN else false

with N %" jf b?, then if c?, then true else false else false . If 11 contains

processP, term M allows us to check whetherP can perform a and then reach a process
performing both b and c. Since the evaluation of M is independent of the evaluation

strategy, a call-by-name calculus with multiple locations could encode conjunctive tests
and be as discriminating as the call-by-value calculus.

To prevent this, we have considered a call-by-name calculus with only one location. An
alternative solution consists in de ning a calculus with multiple locations which, however,
does not allow the evaluation of a term before a location assignment.

By contrast, a store with multiple locations would not increase the discriminating
power of call-by-value calculi.

3.6.2 Global vs. local communications

In our higher-order concurrent calculi, communications arenetwork transparent, in the
sense that they take place irrespective of the locations in which the interacting processes
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are placed. In the literature, this approach to communication is sometimes calledjlobal as
opposed to thelocal approach, where communication is subject to physical proximity. Un-
der local communications, kells form communication barriers, because they con ne where
interactions can occur, with a ner control over communication interferences. This extra
precision in communications, which can be obtained by formalizing local communications
as in the Kell calculus [SS05], would not a ect the discriminating power of the languages
as far as contextual equivalences are concerned.

3.6.3 Other operators

The concurrent calculi we have considered do not include certain common operators, such
as restriction, recursion, relabeling, and choice, so as to make the operational rules simpler
or because often omitted in higher-order languages. The addition of these operators would
not change the results presented (we assume that the hole of a context is not allowed to
occur in recursive de nitions). Some care is necessary with restriction in the presence
of passivation, along the lines of [[PS12a; KH13], because the lazy scope extrusion on
restriction could allow contextual equivalence to make distinctions on processes solely on
the basis of their free names [LSS11].

In HO we only allow communication of processes; the addition of processbstractions, or
the name-passing communications of the -calculus, as in the full HO , would not a ect
the results.

3.6.4 May vs. must equivalences

We have considered so far only contextual equivalences with success de ned in the ‘may"
style. In the LTS case, the ‘must' variants focus on the success of all maximal -
computations (i.e., whose steps are all labeled with ). With respect to De nition
the preorder I/Kumust is introduced by requiring that, if all maximal -computations from
C[P1] are successful, then so are those fror@[P;]. In the RPLTS case, the de nition of

kumust is obtained from De nition by simply using u in place oft , i.e., by considering
the minimum probability of reaching success in the various maximal -resolutions.

The must-equivalences coincide with the may-equivalences when the tested processes
are RPLTSs and the testing language is a -calculus, because internal nondeterminism
does not occur C[P] is an RPLTS with a unique maximal resolution of nondeterminism).

In contrast, nondeterminism may spring up when the testing language is concurrent,
or when the tested processes are LTSs rather than RPLTSs. We discuss below a few
scenarios in which the relationship (and sometimes the coincidence) between must- and
may-equivalences can be derived despite the presence of nondeterminism.

Let us start with LTSs. Due to the absence of divergence, in CCR; the must-
equivalence coincides with the refusal testing equivalence af [Phi87] and hence wither ;
thus, it coincides with the may-equivalence. In contrast, it follows from [Nic87] that in
CCS the must-equivalence coincides with g and hence is strictly ner than the may-
equivalence, which is 7.

By contrast, we can show that, if the testing language is '\‘,’C or HO passiref, then the
reverse inclusion holds.

Theorem 3.14. |If L is an LTS, then 'A-L:. RS IA_L'must for AL2 f '\‘,’C;HO pass;ref 9-
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Proof. In the proof of Theorem(3.11, we have seen that iP . rs Q then C[P]. rs C[Q],
with respect to actions and !, for C a context of HO pass;ref. In order to show that

P I|:|O pass:ref must Q, we prove that if all -labeled maximal computations from C[Q]

succeed then all -labeled maximal computations from C[P] succeed. We show the result
by contraposition. If C[P] has a -labeled maximal computations that does not succeed,
one of the following holds:

C[P] has a nite -labeled computation such that all states in the computation
cannot perform ! , and the last state is stuck;

C[P] has an in nite -labeled computation such that all states in the computation
cannot perform! .

It is easy to see by induction onn that if C[P]R C[Q] for some ready simulation RI with
respect to actions and! and C[P] = Mg ! Mq ! o ! Mp, with M; IX for
O i n,thenC[Q]=Npo! Ngp! ! Npwith Nj X andM;RNPfor0 i n.
Hence, in both cases described above, proce€§Q] has a corresponding path that does
not succeed, which implies the result.

The result for '\‘}C follows analogously, using the proof of Theore6 which implies that
if P . Rrs Q then HP, ; C[P]i . rs HP, ; C[Q]i with respect to actions and!, for C a
context of 1%, 2

As a corollary, we have that may-equivalence implies must-equivalence on LTSs for
these languages.

Corollary 3.15. If Lisan LTS, then ' k= rs' Kimust fOr AL2f 1€ HO pasererd.

The refusal operator (respectively, theRefAct rule in -calculus) is essential for the

inclusion to hold: the processes? %" 2b+ aand PO% abare s-equivalent and hence
may-equivalent both in ' . and in HO pass, but only PC always succeeds when the
trace abis tested.
We now move to RPLTSs. By Theorem[3.6, the tests needed in order to distinguish

pg-inequivalent RPLTSs are encodable in % . The passivation operator allows us
to encode these tests in HOpass Without losing the sequentiality of the tests. Since
RPLTSs do not have internal nondeterminism and the tests are sequential, the resulting
NPLTS has a unigue maximal resolution. Hence, pg-inequivalent RPLTSs are neither
may-equivalent nor must-equivalent. Moreover, the same argument used to show that

pg implies may-equivalence can be adapted to the must-case. We have seen in the
proof of Theorem[3.13 that, on RPLTS, P pg Q implies C[P] pg C[Q] with respect
to actions and!, for C a context of HO pass Or HO passiret- We have also seen how
this implies that for every resolution of C[P] there is a resolution of C[Q] such that
prob(SQzcpy)) = prob(SAzcgy)), and vice versa for every resolution ofC[Q] there is a
resolution of C[P] such that prob(SQzcp)) = prob(SAzc(q;)). Hence, we can conclude
that

I I
prob(SQzcpy)) = prob(SAzcqy))
Zcpi2Res max (C[P]) Zcoj2Res max (C[Q])

and thereby pg IA‘L-must-
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Theorem 3.16. If L is an RPLTS, then ' ks ="' k= ps, for AL2 FHO pass;
HO pass;ref 0.

3.7 Proofs

Proof of Theorem 3.p - Jeft-to-right inclusions

We prove the left-to-right inclusions of Theorem[3.8, by showing how to encode tests
that discriminate non-equivalent (with respect to simulation-like or trace-like equivalences)
processes.

For item (1) (' L rs), We prove that there is an encoding function Enc() from

the Ready Slmulatlon Logic formulas (Sectior 2.2.4) to %°-terms such that P = F if and
only if P ; Enc(F)i has a successful computation (i.e.hP ; Enc(F)i =) ! ). Hence, if
P and Q are not ready simulation equivalent then (by Proposition -) there is a formlﬂla
F suchthat P F F ang Q 6] F, which is equivalent to saying that P ; Enc(F)i =) !
and hQ; Enc(F)i &) ! . Then, by de ning context Cg = loc := [ ]seq Enc(F) and
noting that hP, : CE[Pi =) !' i HPO Enc(F)i =) !  for any P® we derive that
WP, ; Ce[Pli=) !' and P, : Ck[Qli =) !’ . Therefore, P 6 rs Q implies P 6 'L, Q.
We de ne the encoding as follows: Y

Enc(>) = true

Enc(: r) = if r? then false else true

Enc(hriF)= if r? then Enc(F) else false

Enc(F1 " F2) =( z: if Enc(F1) then (loc:= z)seqEnc(F;) else false )!loc

We prove by structural induction on F that P = F if and only if hP ; Enc(F)i =) ! !
The casess = > andF = : r immediately follow from the operational semantics of 1%. If
F = hriFCthen the statement follows from the inductive hypothe3|s ifP! " POfor some
PO such that P° F FC%then WP ; Enc(F)i =) h P% Enc(F%i =) ! . Otherwise, either
P16, in which casehP ; Enc(F)i =) h P; false i, or P 6 F for all Pthat P reaches
by doing r. In this case, by the inductive hypothesis we have that for everytP?; M i such
that P ; Enc(F)i'h P9% Mi, P% Mi never performs! .

Finally, suppose that F = F1 * F,. If P satis es the formula, then we have the following
sequence of reductions:

hP ; Enc(F1 ™ Fo)i =)

hP; if Enc(F1) then (loc:= P)seqEnc(F,) else false i =) (inductive hypothesis)
hPO; if true then  (loc := P)seq Enc(F,) else false i!

hPO: (loc := P)seq Enc(Fo)i =)

hP ; Enc(Fo)i =) (inductive hypothesis)
P true i

If F is false atP and P & F1 then

hP ; Enc(F1 ™ Fz)i =) h P; if Enc(F;) then (loc := P)seqEnc(F;) else false i
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and by the inductive hypothesis Enc(F1) never becomestrue . The case whenP F F;
and P §j F, is analogous.

The same encoding allows us to prove that for every formuld= of Simulation Logic,
P F F ifand only if hP; Enc(F)i =) ! . Since the encoding of Simulation Logic does
not exploit the capability of observing action refusal, we can use '\?c of AS target language.

Thus, P 6 5 Q impliesP 6 'L,OC Q.
VvV ref
For failure trace equivalence, we prove that for any failure trace = (ri;Fi); n 2
. . . . ! .
(A 2%) , processP has the failure trace ifandif lP;t i =) ! , wheret is dened

by induction on n:

t. = true
triF)y i ne = I Tnea? then if  tg ., then t..r,), , , else false else false

and for any failure setF, term tg is true if F is empty, while forr 2 F and F°= F nfrg
we havetg = if r? then false else tgo (we assume some ordering on the labels in
the failure set F, so that the term tg is uniquely determined by labels in the set).
Analogously, for traces we can build discriminating tests by considering the term
Yo oo for any trace rq;:::;rn. In this case, rule RefAct is not necessary, hence test

il i loc
i) , canbe builtin  {° . as well.

Proof of Theorem 3.6 - Jright-to-left inclusions
We start from the coinductive equivalences, and in particular from item (1) (' rs

' Lm)- We rst prove that that the following relation is a ready simulation on reductions:
\Y

RE"f(P; C[B]i;hQ; C[®]i)) j PiP. rs Q@ g

where C is a polyadic context of '\?C.
Consider term hP ; C[P]i and let P;P . rs Q; ®. We prove by structural induction on
C thatif P ; C[B]iRhQ; C[@]i andhP ; C[®B]i'h P9 MithenhQ; C[@]i'h Q% Ni
with P9 MiRhQY; Ni.
If C=[]orCisa constant orC = x:C °then both terms cannot perform any

reduction.

If C = C1C; then C[R] = C4[P]C;[P] and C[@] = C4[®]C,[®] with B . rs @. We
have two cases. ItP ; C1[B]i 'h P9 Mi we have by the inductive hypothesis that
M = tPO; Ci[®%i and Q; C4[@]i 'h QP CI@Yi with PO, rs Q% ®C Hence,
hP ; Ci[P]Co[Pli ' h PO CI®IC,[®]i
hQ; Ca[@IC2[@li 'h QY% CQIC[Qi
and the reached con gurations are related.
If C1[P] is a value then if P ; Co[Pli 'h PO CS[PJi we have the same reasoning.
If both C1[P] and C,[P] are values thenC4[P] = x:C 3[P] and

hP ; Ci[R]Co[R]i ' h P ; Cs[R]f Co[Pkxgi
hQ; Ca[@]C2[@]i 'h  Q; Ca[@]f C2[@kxgi
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Sincex cannot occur in processesiP ; Cs[R]f C2[Pkgi = HP ; Csf Caxg[R]i is related
to hQ; C3[@If C2[®kxgi = hQ; Csf Caxg[@]i.

If C= if C; then C, else CzandhP;C[®]i'h P9 Mi then we have three
cases. IfCy istrue then hP; C[Rli'h P ; CyPli andhQ; C[@]i'h Q; C,[®]i
with P ; C;[P]liRhQ; C,[®]i.

The case whenC; = false is symmetric.

Otherwise, P ; C1[Bli 'h P ; C{®Ji and rule EvCon is used to derive the tran-
sition. In this case, the conclusion follows from the inductive hypothesis.

If C = CyseqC; and Cy = ?then by rule Seq both hP ; C[P]i and hQ; C[@]i reach
con gurations that are in relation R. If lP; Cy[®]i ' h P9 Mi then the result
follows from the inductive hypothesis.

If C =!loc we havehP ;lloci'h P ;PiandhQ;!loci!h Q; Qi and the result
follows.

If C = loc := C; then:

{ if C.[P]is processP; then P ; loc := Pii'h Py; ?i and C1[®] = Q. There-
fore, Q; loc:= Qqi'h Qq; 2, with P1. rs Q1 ;
{ ifP;Cy[®li'h PO Mi then by the inductive hypothesis we have thatM =

CP9 and Q; C1[®li ' h QP CY®Ti and the con gurations reached are in
R, hence the result follows.

If C = r? then we have two cases:

{ ifP!" POthenhP;r2ith P9 truei and, sinceP is ready simulated by Q,
Q!'" Q%with P%. rs Qand hQ;r2i ' h QO true i, and the con gurations
are related.

{ If P16 thenQ!6 and the con gurations reached aretP ; false iRhQ; false i.

Hence, since trivially P, . rs Py, if there is a path hP, ; C[P]i =) h PO true i then
there is a path hP, ; C[Q]i =) h QP; true i for someP% Q° Therefore, P ' rs Q implies

Pl Lloc Q
\

The proof for P 5 Q implies P* Lloc Q is analogous, the only di erence being that

VvV ref

we use simulations instead of ready simulations.

We now prove the right-to-left inclusions for the inductive equivalences, starting from
trace equivalence ( 1 ' le ). The proof is based on the fact that in call-by-name the
N

ref

presence of a successful computation is not a ected by the reading capability, as we now
show. We rst note that the following holds:

Lemma 3.17. hP;Mi!h P% Ni has a derivation where theRead axiom is used i
either M =!loc or M = E[loc :=!loc] for E an evaluation context.
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Proof. The right-to-left implication is trivial, while the other direction follows by induction
on the derivation of P ; Mi ! h P9 Ni. We have two cases: either the derivation is
the Read axiom, in which caseM = !loc, or the derivation has been derived using the
rule for evaluation contexts, i.e., there is an evaluation contextE such that M = E[M],
N = E[My]Jand P ; Milh P9 Ni is derived by P ; M4i ' h P9 Myi. Then by the
inductive hypothesis onhP ; M3i 'h P9 M,i we have two cases. EitheM; = Eloc :=
lloc], and the result follows, or M1 = !loc. In this case, we prove by induction on the
de nition of E that either E =[ ] or E = Eloc := [ ]], from which the result follows.

If E =[] then the property holds by de nition. For the inductive cases, if E = loc := E°
then by the inductive hypothesis either E?= E%loc :=[ ]J] or E®= ], and in both cases
we have that E is of the form E°foc := [ ]] for some E % Otherwise (if E = E%eqM or
E=EM orE=if E°then M else N) then, by typing, E°cannot be of the form
[1, so by the inductive hypothesisE®= E%loc := [ ]] and the property holds. 2

Since in a derivation of the formhP ; Mi =) h P9; true i the terms to which M reduces
to cannot be equal to loc, it follows from Lemma that P ; Mi =) h PY; true i
i hP;Mi =) hPO; true i, where 29 is de ned as ©) except for the fact that we
substitute all pairs of transitions of the form

hP; EYloc:=!locli'h P;Eqoc:=Plith P;EY7

with
hP; EYloc:=!locli'h P ;EJ7i
Since these steps are deterministic and have no e ect on the value in the location, in

what follows we can assume without loss of generality to have an operational semantics
where the Read rule is substituted by

Read'

hP;loc:=!loci'h P; 2

In the remainder of the proof, we omit the symbol and we directly use! and =) to
denote ! and =)
Based on this semantics, we now de ne the relation/! as follows, for = W;r;

hP:Mi 7Yh PO MY if the derivation of the transiton HP: Milh P% M9 uses
the Write rule;

hP:Mi 71 h P9 MJ if the derivation of the transition P : Mi!'h P% MA uses
the Act rule on labelr;

hP:Mi7'h P% MY otherwise.

This relation is well de ned since the rules Write and Act cannot be used both in a
derivation, and they occur at most once in a derivation. For 0= W:rand a sequence of

labels in © we de ne the weak labeled transitionhP ; M i Z)Oh P% MY (where any nite
number of -transitions can occur before and after action is performed) and its re exive
and transitive closure P ; Mi Z)h P% MY as usual, for 2 fWg[A )

We prove the following lemmas. If not speci ed otherwise, contexts are assumed to
be polyadic and process names do not occur in the contexts, i.e., they are pure contexts
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of the -calculus language. We say thatC is a P-evaluation context if it is an evaluation
context where the only process name that can occur i®. For 2 A , we write!  for the
re exive and transitive closure of! " on processes, i.eP! POif there is a computation
labeled by from P to P°

Lemma 3.18. If P9 C[PJi Z) h P Ni then:
PO= P%and N = CYP] for some C°
8 Q;8Q°MQY% C[QJi 2) h Q% CcHQji

The lemma follows by induction on the length of Z) . Suppose thathP?; C[P]i 7!
PO NG Z)h P9 Ni. The result follows from the inductive hypothesis if we can prove
that P9= P%and N°= CYP] for some C% and 8Q;8Q°% hQ°% C[Q]i 7! h Q% CYQ]i.
This in turn follows by induction on the derivation of HP%; C[P]i7!h P% N4, since the
derivation cannot consist of axiomsAct or Write , and all the other rules (as well as
axiom Read') satisfy the hypothesis.

Lemma 3.19. If hPy; C[P,]i Z) h P2; Ni with 2 A then:
rule Write is not used
N = CYP,] with P! P}

8Q1;Qz; if Q1! QF then MQ1; C[Qli 2) h QF; CYQ]i

The rst item follows from the de nition of the relation Z) . The others are proved by

induction on the length of the sequence . Let =r °By Lemma(3.1§,hP;; C[P]i Z)
0

hPy; CYP2li 7V h P2 NG Z) h P Ni, and 8Q1; Q2; MQ1; C[Q2li Z) h Q1; CYQyJi. If
hP1; CYP,Ji 71 h PY; NG, the derivation uses ruleAct and by induction on the derivation
we have that CYP,] is of the form C°r?] for C%a P-evaluation context, and iP2; NG =
hPO: CO%true ]i with P1! * P2, and 8Q1; Q,; and for any Q,-evaluation context C, if Q1! '
QY then MQq; C[r?]i 7 h QY; Cftrue ]i. Then we can apply the inductive hypothesis to
HPY; NG 2)'h P9 Ni and the result follows.

Lemma 3.20. If P2 C[P]i ?h P Ni then:
C[P] = CYloc := P] and Clis a P-evaluation context
P%= P and N = C9?]
8 Q:8Q°MQ°% C[Q]i 7Yh Q: C%?]i and C%°= C¥Qpg

As above, the proof is by induction on the derivation of the reduction.

Finally, we note that if hP, ; C[P]i =) h PO; true i then rule RefAct is never used in
the derivation of the sequence of transitions, since wheneveRefAct is used we either
have false or a term that is stuck (and is not a value).

Suppose thatP QandhP; ; C[P]i =) h P9 true i. It follows from the de nition of
7! that we have two cases. If aW-labeled transition is never performed then by Lemma
we haverP; ; C[Q]i =) h P% true i. If it is, then by Lemma and Lemma|3.20
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we derive P, ; C[P]i Z’h P?; CYloc := P]i MhP:Cq?l 2 h PO truei with C0a
P -evaluation context and of the form W W W:W ,for 2A ,andforalli 1,
P! ' . Hence, by the same lemmas and by the assumption thaP 1 Q we derive that
WP, ; C[Qi 2°h P2 C%loc := Qi 7Y h Q; C%?ji 2) h QO true i, for C®= C¥Qpg,
which in turn implies WP, ; C[Q]i =) h Q°; true i.

The proof of item (2) is analogous. We rst assume that the reduction relation !
is based on the modi ed rule Read ', and then we de ne the reduction 7! as above, but
adding the following clause:HP ; Mi 7'h P92 M4 if the derivation of the transition uses
the RefAct rule on labelr. The set of negated action labels r is denoted by:A .

Now, rule RefAct can be used in a sequence of reductions that reaches success. Hence,
we have to modify Lemma[3.19 as follows: instead of traces;, we use syntactic versions
of failure traces, i.e., | 2 (A[:A ), whereP! " POif PO= P and P! 6. Then the
result follows as in the previous case, by considering process€sand Q that are failure
trace equivalent, rather than trace equivalent.

Proof of Theorem 3.P - Jright-to-left inclusions .

We rst prove the result for item (1), i.e., p ' -
\Y
In what follows, we useD;D © and their indexed versjgns to denote distributions on
con gurations of the form hP ; Mi. For a distribution = i pi dirac (P;) over progesses,
we also sometimes usdér; Mi to denote h; dirac (M)i, i.e., the distribution i Pi

dirac (hP;; Mi).

Analogously to the nondeterministic case, we rst show that strong probabilistic bisim-
ilarity is preserved by '\‘,’C-contexts, i.e., we prove that if P pg Q then C[P] pg C[Q],
with  pg de ned on the transitions!  (correspondingto! ) and! ! (performed by the
term true ).

We show that the following is a probabilistic bisimulation:

RE (P ; C[®i;Q; C[@li) | P;® ps Q;&g

where contextsC are polyadic.
To do so, we prove by induction onC that if P ; C[B]iRhQ; C[®]i andhP ; C[P]i! D
then Q; C[@]i! DO°with DIift (R)DC which in turn means that there are an index
set| and probability values fpjgi»; such that:

- P ipi dirac (WP ; Ci[B]i) ;
P . :

pi dirac (Qi; Ci[&]i) ;
Pi peQiandB pg &

Most cases are proved analogously to the nondeterministic case, by either exploit-
ing the fact that the transition reaches a Dirac distribution or by directly applying the
inductive hypothesis. The interesting case is when the locations contain probabilistic
bisimilar processesP and Q, and the terms perform an action testr?, i.e., C[®] =
C[®] = r?. There are two cases. If bothP and Q do not perform r, then they re-
duce to distributions dirac (hP ; false i) and dirac (hQ; false i), which are in lift (R)
sincehP ; false iRhQ; false i. Otherwise, if P!" and Q!" then lift ( pg) .
Hence, there are an index set and probability values fp;gi2; such that:
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P .
i dirac (Pj) ;

P ,
= i pi dirac (Qj) ;
Pi pe Qi.
SincehP;r?2i'h ; truei andhQ;r?!'h ; true i, by applying the decomposition

of and given above we derive that h; trueilift (R)h; truei.

Finally, probabilistic bisimilarity implies probabilistic trace equivalence, so we have
P ; C[P)i pr hQ; C[®@]i, with traces de ned on the labels and! .

Since for any P;B; C the semantics ofhP ; C[P]i is an RPLTS, and no state cannot
perform both an ! and a action, we derive that the probability of success ofC[P]
coincides with

prob(C[P]; "!)
n 0
i.e., the sum of the probabilities of performing a trace of arbitrary length leading to
success. Hence, it follows frontP ; C[P]i p1, hQ; C[®]i that they have the same prob-
ability of success.

The proof for '\‘,’C of 1S the same, except for the case in whiclC[®] = C[®] = r? and
both terms get stuck, since both the bisimilar processe$® and Q in the locations cannot
perform action r.

To prove the results for the inductive equivalences (items (2) and (3)), we rede ne
trace (and failure trace) equivalence as a relation ors*_lpdistributions over con gurations
gf processes and terms, i.e., distributions of the form ; p; dirac (hP;; Mji) such that

i pi is less than or equal to 1 (the di erence being that the weights do not have to sum
to 1).
Given a labeled transition relation! :S!D (S), we can lift it to subdistributions as
follows:
X
! Oif 0= ( P) der(P)( )
P2 supp()

where supp() =fP jP 2 supp() "P!g andderP)( )= if P! . For the
sake of simplicity, we use the same symbdl for the lifted relation.

We extend the de nition of the probability of -compatible computations to distribu-
tions as follows:

(
prob( ; )= P _ .I : _J 0
P 2supp() ( P) prOb(der(P)( )a (5 if =
It is easy tosee that prob(dirac (IQ); ) = prob(P; ).
Let weight ( ; pi dirac (Pj))= , pi be the weight of a subprobability distribution.

We can de ne probabilistic trace equivalence on subdistributions as follows:
pr ifandonlyif 8 2 A , weight (der()( ))= weight (der()( ))

Sinceprob( ; )= weight (der()( )) for every trace , this relation coincides with prob-
abilistic trace equivalence on states if we consider the Dirac distributions over the same
states, i.e.,P prr Q if and only if dirac (P) pr dirac (Q).
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By considering transitions between subdistributions, we obtain the following useful
property of probabilistic trace equivalence:

Lemma 3.21. If prr  then:
weight () = weight ()
if ! Othen ! Oand © PTr 0

As in the proof for nondeterministic processes, we rst consider a transition relation
based on ruleRead ', since the probability of success ofC[P] is invariant with respect to
this modi cation.

Then, analogously, we de ne a labeled transjion7! , for = W;r; , from con gu-
rations HP ; M i to distributions ofﬁ,he foom D =, p diratg (hP; ; Mji). We sometimes
omit the Dirac function and write  ; pi hP;; M;i to denote ; p; dirac (hP;; Mji). This
transition relation is lifted to a transition relation between subdistributions D 7! D%as
described above. Then, we de ne the weak version of this transition and we have the
following lemmas.

P
Lemma 3.22. ipi hPi; C[P]i 7! D implies:
P .
D= ip hPi; CqPIi
0 P 5 : P 5 :
8Q:p’Q, ;P hQ;CRN 7! p hQ; CIQI
P . .
Lemma 3.23. i pi hPi; C[P]i " D implies:
P
C = CYloc :=[ ]] for C%a P-evaluation context andD = ; p; hP ; CY7]i
0 P 0 i W P o 0pi 00,
8Q:p’Q;, ;P hQ;CN 7T p’ hQ; Cof?i, for C%®= C¥Qpg

Lemmas[3.22 and 3.23 follow as in the nondeterministic case, by induction on the
derivation of the transition.

Lemma 3.24. h; C[P]i 71 D implies:
D = hder()( r); CYP]i

r

8Q; ,if prr  then ! Ofor 9 pry %andh; C[QJi 7Th 9 cIQi

By Lemma [3.2], we derive Lemmg 3.24 as in Lemmpa 3.]19 for the nondeterministic
case, sincen; C[P]i 7! D implies C[P]= CYr?] for C°a P-evaluation context. Hence,
Lemmal[3.25 follows by the de nition of weak transition and by Lemmas[3.22 and 3.24.
Lemma 3.25. For 2A , h; C[PJi Z) D implies:

D = kder()( ); C[PIi

8Q; ,if prr  then ! Ofor O pr %andh; C[Qli Z)h ©; CcYQii
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Using the reduction relations between subdistributions, by the Lemmas above we can
see that: =) and Z) are deterministic, andh; C[P]i! Di h; C[P]i 7! D with

= W;r; andD of the form h °; CYP]i,

Moreover, whenever ,p; hP;; C[P]i 7! D with = W; the whole distribution
progresses (i.e., no con gurationhP; ; C[P]i gets stuck or becomes true or false, and all
hP; ; C[P]i perform a reduction), and whenever ; p; hP;; C[P]i 71 D thecon gurations
hP; ; C[P]i that do not progress are stuck (and will never r%urn true or progress).

Hence, there is a unique distribution D of the form ;p; hP;; true i such that
hdirac (P;); C[P]i =) D. The probability of success ofC[P] (given by the sum of the
probabilities of all the computations reaching a state of the formhP?; true i for someP9
can be equivalently de ned as the weight ofD.

If dirac (HP, ; C[P]i) =) h ; true i then, by Lemma|3.25, eitherdirac (hP, ; C[P]i)
Z) h ; truei and dirac (hP, ; C[Q]i) Z) h ; true i, or there exists a sequence of
the form oW W >W:.:W , for ; 2fAg such that (by Lemma ) hP, ; C[P]i 2
h; Cql := PJi 2 h 9 truei, with C°a P-evaluation context, and hP, ; C[Q]i 2
h:; CO% := Q]i, with C%= C%Qpq.

If h; C[P]i 2) D with oftheform W W::W ,,for ; 2fAg ,thenbylLemmas
and[3.25 we have thatD = h % CYP]i and there exists, a sequence 1;::;

such that ! * 4, 0= and, for1 i n if ;= ;p Pjthen s is

the subdistribution such that b P! ' i+1. By the same lemmas, if PTr

andP pry Qthenh; C[QJi & h © CO[Q]IE> and there is g sequence 1;::; n with
It oy, %= gandforl i nif = ;p Qthen ;p Q ' . Hence,

%and %have the same weight, and the result follows.

For probabilistic failure trace equivalence, we extend the labels of the reduction relation
7! with actionsin :A . The proof is made more complicated by the fact that if we consider
the de nition of 7! on subdistributions, we have that the relation is now (externally)
nondeterministic, since from a subdistribution h; C[r?]i, for C an evaluation context,
there are two reductions, one with labelr and the other with label : r. However, these
reductions capture the whole state space of the support ofi ; CJ[r?]i, since either a state
P performsr, in which casehP ; C[r?]i 7' h der(P)(r); C[r?]i, or it does not, in which
casehP ; C[r?]}_.,?!rh dirac (P); C[r?]. P

For = b P, dene !°"  Cif 0= tijp 2supp() ~Pl6 g P

peTr IS de ned as pTr , but using traces 2 (A[:A .

Pi. Then

Lemma 3.26. h; C[PJi 7" D implies:
D = hder(P)(: r); CYP]i
8Q; ,if per then 17 O%for O pen Candh; C[QJi 7''h 9 CYQi

The lemma follows sinceC[P] must be of the form CYr ?] for C%a P -evaluation context,
and if peTr  then their derivatives after performing r or: r are stillin ~ ppy . Lemmas
[3.22 and 3.28 remain the same, Lemnia 3.24 holds withpgeyy instead of pyr, and Lemma
holds with ppr, instead of pr and 2 (A[:A ).

The probability of success oftP, ; C[P]i is now given by the sum of the weights of the
distributions such that dirac (hP, ; C[P]i) Z)h ; truei,forall 2 (A[:A[f WQg)
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We show this by proving that for all n, h; C[PJi =) ! "D
X
D= D

f 2(ALAf  Wg) jh; CIPliE&) 4 D g

This is well-de ned since every denotes a unique path. The labels inA[:A  are the
only ones that can create a branching in the labeled transition system with subdistributions
on con gurations as states and with transitions 7! , where either D can perform only
transition 7! , or only transition ?’V , or both 77 and 7" , but with every state in the
support performing either 71 or 71" , and not both. Hence, the set of allD® such that
there is a path of lengthn with D 7% D; 7% Do 7P 1" DOfor 2 (ALA[f W: 9),
coincides with the set ofD%such that thereisa 2 (A[:A[f Wg) suchthatD ) !
D

Proof of Theorem 3.p - Jleft-to-right inclusions

In order to prove ' L|oc pg and '’ me pe, We exploit the testing characteri-
zation of probabilistic bisvirr;eiflarity described iVn Section [2.3.3, using the language of tests
T. As we have seen, on RPLTS it holds thatP pg Qi Pr( t;P) = Pr(t;Q) for ev-
ery testt in T [BMOWO5]. We show that these tests are encodable in i . i.e., that
there is an encoding Enc() : T ! 1% ;. such for every testt in T and for every P,
Pr(t;P) = prob(SQHhP ; Enc(t)i)). Hence, if P 6 pg Q then there is context of '\‘,’C ref

(namely, context C def (loc:=[ ]) seq Enc(t), for somet) that distinguishes P and Q. The
same holds for the language ', since it includes %, and since the the possibility of
exploring the else branches does not allow to add any successful computation (since the
else branches always lead tofalse ).

We de ne the encoding analogously to the encoding of the Simulation Logic Formulas
in the nondeterministic case:

Enc(! ) = true
Enc(r:it) = if r? then Enc(t) else false
Enc((t1;t2)) = ( z: if Enc(ti) then (loc := z) seqEnc(t;) else false )!loc

We prove by induction on the de nition of t that Pr(t;P) = prob(SQHhP ; Enc(t)i)).
The caset = ! s trivial.

Caset = r:t% The interesting case is whenP ! % . Then the result follows from

the fact that the set SQIHP ; Enc(t)i) coincides with the set of computations of the
form

hP ; Enc(t)i;

HPO; if true then  Enc(t9 else false i;

HPO; Enc(tYi;

O
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for P°2 supp() and c°2 SC(rPO' Enc(t9i). We have

prob(SQhP ; Enc(t)i)) = Pczsc(rp Enc(t),)prolg(c)

~ p P%2supp() (P c2SC(hP0; Enc(t9)i) prob(c)
= posupp (P9 Pr(tSP9
=Pr(t;P)

Caset = (t1;t,). The set of computations SQHP ; Enc(t)i) coincides with the set
of computations of the form

hP; (z:.if Enc(ti1) then (loc:= z)seqEnc(ty) else false )!loci;
hP; (z: if Enc(ty) then (loc:= z)seqEnc(ty) else false )Pi;
Clcil;

hPO; loc := P seq Enc(ty)i;

hP ; ?seq Enc(ty)i;

Co o

for ¢ 2 SC(hP ; Enc(tj)i), and C[c;] denoting the computation ¢, but with every
term put in the context C = if [] then (loc:= P)seqEnc(t,) else false , and
POthe last value of the location in c;. Hence, the result follows from the inductive
hypothesis ont1 and t:

P
prob(SQhP ; Enc(t)l))— P c2SC(P ; EnC(t),)prob(c)

c12SC(HP : Enc(t1)i) PrOP(C1) ¢, 25c(hp :Enc(tz)i) PTOB(C2)
Pr( tl, P) Pr(tz, P)
=Pr(t;P)

For the inductive equivalences, we rst consider consider probabilistic failure trace
equivalence, i.e., we prove Lm perr- FOor 2 (A[:A ), we dene the term t as
N

follows by induction on
if isemptythent = true
if =r %thent = if r?then t o else false
if =:r %hent = if r? then false else to

We exploit the de nitions of reductions and labeled transition relations 7! used in the
opposite direction of the proof, and the de nition of failure trace equivalence as a relation
on subdistributions.

We prove by induction on that ! % h; tiZh O truei.

At each step fromh; t i either we have a reductlonZ) where the whole distribution
progresses or we have a branch wit’! and 7! , where one of the two branches deter-
ministically progresses tofalse . Hence, there is onIy one/! -path from h; t i reaching
a distribution with states with values true , and this distribution is exactly the one such
that h; ti Z h O truei. As a consequence, the probability of success &f; t i is
the weight of  © which in turn coincides with the probability of of performing trace
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We derive that

prob(P; )= prob(dirac (P); )

weight (der( )(dirac (P)))

weight ( %j hdirac (P);t i Z)h ©; true i)
prob(SQHhP ; t 1))

prob(SQhP, ; loc := P seqt i))

Hence, processes with di erent probabilities of performing a failure trace (which is a
special case of a sequence2 (A[:A ) ) have dierent probabilities of success when put
in context loc :=[ ]seqt .

For trace equivalence the proof is analogous, but we only consider tests with 2 A .
At each step from h; t i either we have a reductionZ) where the whole distribution
progresses or we have a reductiod) where the part of distribution that does not progress
gets stuck (and therefore never reaches fue state).

Proof of Theorem 3.[L[1 - Jeft-to-right inclusions

For the coinductive equivalences, as in the proof for -calculi, we show that the tests for
Ready Simulation logic and Simulation logic can be encoded in HOpass:ref and HO pass
respectively.

We de ne the encoding as follows:

Enc(>) = !

Enc(: r)= g:!

Enc(hriF) = T.Enc(F)

Enc(F1 " Fp) = pass,(x):([x]i j Enc(Fy)fPass(y):([x]i j Enc(F2))= g

For C =[ 1l j Enc(F), we have that C[P] =) ! Lop F F.
For failure trace equivalence, we prove that for any failure trace = (r;i;Fi); n, process
|
P has the failure trace ifandif Pjt =) ! |, wheret is de ned by induction on n:

= Uar) nn = et tron Taor)

and tg is! if F is empty, while for r 2 F and F°= F nfrg we havetr = g:tro.
All these tests are sequential, hence the proofs follow analogously to the-calculi.

Proof of Theorem 3.[[T - right-to-left inclusions

The proof structure is analogous to the -calculus case.

We start from ready simulation equivalence and HO passref. IN What follows, we write
2AFif = Jr ]! jm] g (asusual,r denotes actionrt?i) and 2 AM if
= ahMi | ahVi | passM | passM. We rst show that ready simulation equivalence

is preserved by (pure) HO pass:ref-contexts, by proving that the relation

de

R % f(C[P];C[®]) j P is ready simulated by @g

where C is a polyadic context of HO pass:ref, IS @ strong ready simulation on transitions
labeled by rst-order actions AF. As a consequence, since ready simulation equivalence
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implies trace equivalence, any successful computation (i.e., any trace of the form"!)
from C[P] may be mimicked by C[Q], and vice-versa.

The proof uses the following syntactical characterization of the shape of processes
performing an higher-order action, i.e., an action inAH .

Lemma 3.27. If C[®]! MO for 2 AWM, thenC = C,[:::C, [C,, ]::] for somen,
where:

C, = CHjllll; jC? fori n, oravariant where one or bothC! and C? (and the
parallel composition) do not occur and such thaf ] is a hole labeled so as to be lled
with context Cy,, ,

C|n+1 = Cl

In+1 J

0CcOj c2 . °CO where °= if O= ancqedi or °=
In+1

pass;,, CIPY, and %= pass|(x) if = passN for someN, and ©= a(x) if
= ahNi for someN.

The lemma follows by induction on the derivation of C[®]! M?©
Then, we prove the result by structural induction on the contexts C of HO pass:ref-
Let C[P]R C[®]. We show that:

1. forall 2AF,if C[P]! M thenC[®]! M%andM R M? for someM?

2. forall 2AF,if C[@]! then C[P]!

if C =[], the result follows by C[P]= P . rs Q = C[Q].

if C=1C9C=a(x):C%cC=g:C%C=amNi:C’%C = pass/(x):C°and the action
performed is rst-order, then the reached processes ar€4®] and C9®], and for all
2AF, C[Pl! i C[®]

if C =[CY),, there are two cases:

{ cqe]! MPOwith 2AF, and the transition is derived by rule Kell.
Then the result follows by the inductive hypothesis.

{ C[P]! M with = g is derived by rule ReflLoc.
Then CqP] = P IX and CY®] = Q X . Hence,M =[P], M°=[Q], and
the result follows.

The second condition follows analogously, by considering the two cases above when
deriving C[@] ! and using the factthat P . rggsQ and Q! imply P !

if C= Cy j Cy then C[P] = C41[P] j Cy[P] and C[@] = C1[@] j C,[®] with
B . rs ©i. There are three main cases:

{ C[P]! M isderived by rule ParL (the case of ParR is symmetric). Then the
result follows by the inductive hypothesis.

{ C[P]! M is derived by rule Comm, by the synchronization of actions ; —
in A, The result follows again by the inductive hypothesis.
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{ C[P]!'" M is derived by rule Comm, by the synchronization of actions; ~in
AH . Then we cannot use the inductive hypothesis, and the result follows from
Lemmal[3.27.

Suppose now thatC[@] ! . Then we have the same three cases, and the result
follows analogously.

The proof for HO pass is analogous, but we consider contexts lled with processes such
that B . 5 ®, and we only prove that the obtained relation is a simulation on actions in
AF.

Then the result follows since actions and! are included in AF, and ready similarity
implies similarity, which implies trace inclusion. Hence, if P . rs Q, or P . s Q, and C[P]
performs trace "! for somen (i.e., it has a successful computation) thenC[Q] performs
trace "!.

For the inductive equivalences, as in the case of -calculi, we consider an alternative
labeled semantics which is meant to keep track of when derivatives of the initial processes
are tested for actions.

De ne the following:

a processP in L is active inaterm M of HO (L) if M = M1 j M2 j 1 ] M2 and
P = M; for somei.

we say that C is aP-context of HO if it is a context where the only process name in
L that occurs is P, and P is inactive (i.e., the context is not a parallel composition
where P occurs top level). We denote such a context withCp, and we useCq for
the same context with P substituted to Q.

Let Cp be aP-context and let § be a sequence of processes Iin Let (§); denote
the i-th element of the sequence. We assume that every hole of a context is numbered
and occurs at most once. We write§!"" €0if (€);! © P%and $%is equal to § but with
PO at the i-th place. We extend this notation to the case where more than one action is
performed in parallel, i.e., S! " &0for r a set of indexed labelg;r2:::, each with di erent

indexes (and where the labels are indexed i, i.e., they have as maximal index the length
j §j of the sequence).

If Cp[8]! MO then it follows from the operational semantics of HO that M° =
CS[@O, P"], where §! " &%for some (possibly empty) setr of labels indexed in§, and P"
is a sequence composed hy-copies ofP.

This holds since a synchronization might bring to the top level some copies dP that
occur in Cp (that is, the sequenceP"), and since it can be be given by three possible
kinds of interactions between processes at the top level:

two pre xes of HO synchronize, and thenr = ;

there is a synchronization where process; of § performing r synchronizes with a
pre x r in the context, in which caser = frig

there are processes;! " and Si! " in § that synchronize with each other, in which
caser = fri;rjo.



3.7 Proofs 65

r

Moreover, for any Q and F such that B! © F°we have Co[F]! Cg['ﬁ‘o, Q"]

Since the three cases described above cover all cases in wh@h[S] performs a action,

we can derive by induction on the lengthn of the -labeled sequenc&Cp[§] =) M °that
Cp[S]=) MZOi there are Cip[§]for0 i n such that:

STRR i
S =8P
Cop[50] = Cp[S]
MO= Cpnp [6n]

We write Cp[S] 7! CI[S%P"] if Cp[S]! CQ[S%P"] with §! " %9 and we write
Cp[S]Zf M Ofor its re exive and transitive closure. Then, Cp[§] =) MPi Cp[S] Z}
MO with ! ° .

Note that the actions in e might be indexed with indexes that are greater thanj S j.

Then $§! ® is de ned by restricting the set indexes to those of§. More formally, given a
sequencee of sets of actions with indexes inn, each of which contains at most one action

for each index, let #;(€) be the sequence of actions with index. Then S! ] i §j,
(S)I #i (e)
|. .

Lemma 3.28. If Cp[S] ZF ! ' then for any Q such thatP 1 Q and for any F of the
same length as$ such that (F);! #i® for every indexi j §j we have thatCo[®] Z)
Cg[ﬂ].
We prove the lemma by induction on the length ofe. For the inductive case, suppose
0
Cp[S] 71 MO 2‘3 ' . Then (by induction on the derivation of the transition) M?©° =
0
CR[89 with § 1" $§%and §°= §%®, and Co[f] 7! C3[P®@], with B! " F%and
(B9 1 *¢ fori | € j=j B9 j. Then, since P and Q are trace equivalent, §%°® 1€
implies 9@ 1" Therefore, we can apply the inductive hypothesis toC3[P*?@] and
derive that Co[®] 7§ CQ[e®@] & 1 .
For failure traces, the proof is the same but the sets now include not only indexed
actions r; but also indexed refusal actions: r;, which correspond to the case when the

top-level processP; cannot perform action i and synchronizes with a refusal operator on
r.

Proof of Theorem 3.13 1

To prove item (1), we rst show that the tests characterizing probabilistic bisimilarity
of Section[2.3.3 can be encoded in HQ as in the proof for call-by-value -calculi.

We de ne the encoding as follows:

Enc(!)=!

Enc(r:t) = rEnc(t)
Enc((t1;t2)) = pass(x):([x] j Enc(t1)fPass;(y):([x]i j Enc(t2))= g
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For any test t, since the encoding oft is sequential we have that the processH]; ]
Enc(t) has no internal nondeterminism (with respect to -actions). Hence, there is only
one possible resolution ofSQ[P]; j Enc(t)), for any P, and the probability of success is
unique (i.e., may and must success coincide).

We prove by induction on the de nition of t that Pr(t;P) = prob(SQ[P]i j Enc(t)).
The caset = ! s trivial.

Caset = r:t® The interesting case is whenP ! . Then the result follows from
the fact that the set SQ[P]; j Enc(t)) coincides with the set of computations of
the form

[P1i j Enc(t); [P% j Enc(t9; ¢

for P92 supp() and c®2 SC([P] j Enc(t)). We have

_ P
prob(SAIP] J Enc(t)) = b coscpyj enciy) PIER(C)
= peaswp) ( P) cscey jencro) Prob(C)
= poeuppy ( P9 Pr(tSPY
=Pr(t;P)

Caset = (ty;t2). The result follows form the fact that the set of computations
SA[P] j Enc(t)) coincides with the set of computations of the form

[P1i j Enc(t);
[P1 j Enc(tq)fPass(y):([P]i j Enc(t2))= g;
C1;

[P j pass;(y):(IP1: j Enc(t2));
C2;
[

for ¢ 2 SC([P]i j Enc(t;)) but without the last term, and P9the last value of the
location in ¢; (it is easy to prove by induction on t that cis a successful computation
from [P], j Enc(t) i itisa -labeled computation from [P]; j Enc(t) whose last
term is of the form [PY, j !).

Hence, we have ho pass pe. Since HO pass is a sublanguage of HO pass;ref, We

L L
HO pass;ref HO pass’

It remains to prove that - L .
P PB HO pass;ref

As in the nondeterministic case, and like for -calculi, we rst show that probabilistic
bisimilarity is preserved by contexts of HO pass:ref, With respect to labels and ! .

Formally, we show that the following is a probabilistic bisimulation on the rst-order
labels (de ned as in the proof of the corresponding item in Theoren] 3.11):

also have'

REf(C[®]CI®) | B ps @9

where contexts are polyadic. We prove by induction onC that if C[®] R C[®] and
c[ey for 2 AF then C[Q]! with lift (R) .
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The proof proceeds as in the corresponding case in the proof for the nondeterministic
case (Theorem[3.11). Whenever a higher-order action is performed, we have that the
analogous of Lemmd 3.27 holds, and performing the higher-order action leads to a dirac
distribution.

We only consider the case wherC = C; j C, and C[P®] ! = 1] 2, derived
by rule Comm with a synchronization of Cy[®] ! 1 and Cy[P] ! o, for 2 AF.
Then C[®] = C4[®] ] C,[®] with B pg @, and by the inductive hypothesis C1[®] ! 1
and Cy[P;] ! 2, with lit (R) ; and C[Q] ! = 1] 2. It remains to

prove that it (R). By F-,Iift (R) i, there are index %etsJ;K such that 1 =
j2s B dirac (Mj)and 1= ;,,p dirac (Mjo), and 2=, & dirac (Ng) and
2= ok G dirge (N9, and for all j;k, Mj R Mj0 ang Nk R N?. As a consequence,
we have that = = ,,p o dirac (Mj jNk)and = k)P G dirac (M) NQ),
and it follows from M; R Mand Nx R N2 that M; j Ny R M%) N,
We now prove that if C[P] and C[Q] are probabilistic bisimilar with respect to actions
and !, then they have the same probability of success. There are two main di erences
with respect to the proof for the -calculus case in the probabilistic setting:

C[P] (and C[Q]) have internal nondeterminism with respect to -actions, hence we
have di erent possible resolutions to consider.

a state reached by C[P] might perform both ! and ; Hence, given a specic
fesolution Z of C[P] it does not hold that the probability of success of zcpp; is

n oProb(zcpy; "!'). Indeed, prob(zcpy; "!) also includes the weights of paths
where not only the nal state, but also some states before, are successful, and such
weights should not be added to the probability of success, since they do not corre-
spond to weights of successful paths. Hence, we are going to consider probabilistic
failure traces instead of probabilistic traces.

SinceP perr Q on RPLTS implies that P; Q have the same initial labels, we have
that P; Q are equivalent also with respect to \extended" probabilistic failure traces of the
form ((Fi;ri)i nF), where an initial failure set is allowed.

Let SG,P denote the set of successful computations fror® of leggth n. Then for any
RPLTS P its probability of success at lgngthn is prob(SG((P)) = = psc, p PrOb(0).

Hence, we have thatprob(SQP)) = , prob(SG,((P)) = prob(P;(f! g )";!;).

We know from |[BDL14a; |BDL13] that on NPLTSs, as for LTSs, bisimilarity implies
failure trace equivalence.

Hence, it follows from C[P] pg C[Q] with respect to labels ;! that C[P] prr C[Q]
with respect to the same labels. Sinc&C[P] and C[Q], this is equivalent to saying that for
every resolutionsZ cp of C[P] there is a resolutionZ¢[q; on C[Q] such that zcpy  prmr
Zciq) (where, sincezp and zg are RPLTSs, the last instance of pryr is de ned as on
RPLTSs). Hence, for everyn 0, given the (extended) failure trace ¢! g )";!; we have
prob(zcpey: (F1 g )™ ! ;) = prob(zggp: (! g )™;!;), and we derive that

P
prob(SQzc(p))) = p n Prob(SG ((zcipy))
= p nProb(zcpy; (g )™ 1)
p n Prob(zcqy; (F1.g )" 15)
n Prob(SG ((zciop)
prob(SQz¢(q)))
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Symmetrically, for every resolution Z¢q) of C[Q] there is a resolutionZ ¢ p; of C[P] such
that prob(SQz¢(qy)) = prob(SQzcry))-
As a consequence,

G G
prob(SQzc(py)) = prob(SAzc(qy))
Zcpi2Res max (C[P)) Zco12Res max (C[Q])



Chapter 4

Probabillistic testing

In the previous chapter we have considered testing equivalences induced by contexts of
languages that may have higher-order and/or concurrent features, but that do not have
probabilistic features. In this chapter, we study testing equivalences for RPLTSs where
the tests may have also probabilistic choices. Instead of considering testing equivalences
where tests are given by contexts from some language, we de ne the equivalences using
tests that are semantically de ned. In particular, we consider three di erent classes of
observers respectively formalized as RPLTS, LTS, and NPLTS. These can be seen as the
semantics of terms of rst-order process calculi, possibly allowing probabilistic choices. In
order to apply such a test to an RPLTS, we look at the interactions between the RPLTS
and the observer running in parallel.

In Section[4.] we introduce the testing scenario used in this chapter. We give upper
and lower bounds to the discriminating power of the three classes of observers on RPLTSs
in Section[4.2.], and then we investigate the relationships among the resulting testing
equivalences (Sectiof 4.2]2). We conclude by discussing two open problems and conjectures
(Section ). Detailed proofs of the results presented in this chapter can be found in
Section[4.4.

4.1 Testing equivalences for RPLTS processes

Given an RPLTS, we assume that the elements of its action sefA are all visible. The
action set of each considered test will beA[f ! g, where A = faj a2 Ag is the set of
coactions forA and ! 2 A is a distinguished action denoting success. Every coaction
must synchronize with the corresponding action; when this happens, the invisible action

2 A is produced. Therefore, the resulting interaction system is an NPLTS with action
setf ;! g, whose transition relation !  is derived from the transition relation ! 1 of the
RPLTS process under test and the transition relation ! , of the observer, through the
following two rules:

a a !
sl 1 1 0! 5 » ol 2 2

(s;0! (17 2) (s;o)!! (dirac (s); 2)

where ( ;) s20) = ( s9 ( 09. This operation corresponds to putting in parallel the
tested process and the observer seen as terms of some language, and only considering the

69
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-labeled transitions resulting from the synchronization of inputs from the tested term
with outputs from the observer.

We then apply the de nitions of computations, successful computations, and resolu-
tions we have seen in Sectiofi 2|3 to the NPLTS resulting from the observer interacting
with the RPLTS. This allows us to de ne testing equivalences analogously to the previ-
ous chapters. In contrast with previous chapters, we consider directlytest-equivalence
which is the intersection of may- and must-equivalence. May equivalence is de ned by
considering the supremum of the probabilities of success of al resolutions. By contrast,
must-equivalence checks whether the in mum is the same. The relationship between may-
and must-equivalences in this setting is further discussed in Section 4.3.1.

Given a resolutionZ of (s; 0), we denote by SQ(zs;,) the set of successful computations
from the state zs., of Z corresponding to (5;0). We respectively denote byt and u the
supremum and the in mum of the set of probability values prob(SQzs.,)) computed in the
various resolutions of the interaction system. To avoid in ma to be trivially zero, in the
next de nition, which is inspired by [YL92;|JY95; KN98]| we restrict ourselves to maximal
resolutions.

De nition 4.1. LetL =(S;A;! L) be an RPLTS. We say that s;;s, 2 S are proba-
bilistic tu -testing equivalent written S;  pre-ty Sz, | for every test T = (O;A;! 1)
with initial state 02 O it holds that:

F
prob(SQz&})) = prob(S Az%))
Z 12 Reggjax (51;0) Z22 Resgax (52;0)
prob(SQZZ1,)) = prob(SQ(z&3))
Z12ReSmax (S1;0) Z 22 ReSmax (S2:0)

The equivalence is respectively denoted by pre-ty ;rp, PTe-tu :nd» OF  PTe-tu :np depending
on whether the considered tests are all reactive probabilistic, (fully) nondeterministic, or
nondeterministic and probabilistic.

We assume tests to be nite, i.e., nite state, nitely branching, and loop free.
On the one hand, this entails that interaction systems will have nitely many maximal res-
olutions, thus ensuring the validity of our results also for a slightly ner variant of  pre-ty
that we could de ne following [Seg96; DGHMO08]. On the other hand, this restriction will
be exploited in the proofs of some results.

4.2 Properties of the RPLTS testing equivalences

4.2.1 Placing the testing equivalences in the RPLTS spectrum

Our rst result is that the three relations  pre-tu :p,  PTe-tu :nd» @Nd  pTe-tu ;np are com-
prised between prry and pg. This con rms the power of the interplay between proba-
bilities and nondeterminism for discriminating purposes, which was already noticed in the
testing theory for NPLTS processes|[JHSY94; DGHMZ07b; BDL14D].

The proof that each of the three equivalences is strictly ner than pgyy bene ts from
an analogous result with respect to pg. Both proofs focus on tests that are deterministic
LTS models (DLTS for short) as they admit neither internal nondeterminism nor prob-
abilities. Since these tests constitute a submodel common to RPLTS, LTS, and NPLTS
tests, the inclusion proofs relying on them scale to the three more expressive families of
tests.
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Figure 4.1: Counterexample for testing equivalences and probabilistic failure trace equiv-
alence on RPLTSs

Lemma 4.2. On RPLTS processes, for all 2 f rp;nd;npg it holds that:
pre-tu; ( PF

Theorem 4.3. On RPLTS processes, for all 2 f rp;nd;npg it holds that:
PTe-tu ; ( PFTr

The inclusions in  ppry are strict as shown by the two RPLTS processes, the DLTS
test, and the two NPLTS interaction systems in Figure [4.1, because we havé =1 and
u =0inthe rst systemand t = u =0:5 in the second one.

The proof that pg is included in each of the three testing equivalences exploits the
fact that pg is a congruence with respect to parallel composition. Inclusion stems from
showing that, under pg, for each maximal resolution of any of the two interaction sys-
tems, there exists a maximal resolution of the other interaction system, such that the two
resolutions have the same success probability.

Theorem 4.4. On RPLTS processes, for all 2 f rp;nd; npg it holds that:
PB PTe-tu ;

4.2.2 Relationships among the RPLTS testing equivalences

Our second result is concerned with the relationships among the discriminating powers of
PTe-tu ;rp»  PTe-tu :nd» @Nd  pre-wu ;np, Which will help us investigating the strictness of
the inclusions of Theorem[4.4.

First of all, we observe that pre.ty :np is included bothin  pre.ty :rp @NA IN pre-ty ;nd»
because RPLTS tests and LTS tests are special cases of NPLTS tests. Both inclusions are
strict, as shown in the upper part of Figure [4.2, where the NPLTS test yieldst = 0:75
and u = 0:25 in the rst interaction system and t = u = 0:5 in the second one. We
remark the need of both internal nondeterminism and probabilities in the distinguishing
test. A linear test succeeding after performinga, b, and ¢ would not be able to tell apart
s3 and s4. Likewise, those two states would not be distinguishable by a test obtained from
the previous one by replacing thec-transition with a probabilistic choice between that
transition and a terminal/success state, or introducing a nondeterministic choice through
a further b-transition to a terminal/success state after the a-transition.

Secondly, it turns out that, in general, pre-ty ;p @Nd  pre-t ;nd @re incomparable
with each other. For instance, in the middle part of Figure we have thatss  pre-tu :rp
Se, While S5 6 pre-tu :nd Se because the LTS test yieldst = 1 and u = 0 in the rst
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Figure 4.2: Counterexamples for probabilistic bisimilarity and testing equivalences on
RPLTSs

interaction system andt = u = 0:5 in the second one. Notice the necessity of internal
nondeterminism in the distinguishing test. In contrast, in the lower part of Figure #.2]
we have that s7  p1e-ty ;nd S8, While S7 6 pre-tu ;ip Sg because the RPLTS test yields
t =0:75 andu =0:25 in the rst interaction system and t = u =0:5 in the second one.
Unlike the upper part of Figure 4.2, here internal nondeterminism is not necessary in the
distinguishing test.
Thirdly, if  pre-tu ;;p @dmitted only restricted RPLTS tests, then it would include

PTe-tu :nd, With the inclusion being strict as shown in the middle part of Figure [E A
restricted RPLTS (RRPLTS for short) test is a test such that its probabilistic choices,
i.e., its non-Dirac transitions, are not preceded by nondeterministic choices. The proof of
this fact is based on the deprobabilization of an RRPLTS test. This is an algorithm that
performs a top-down traversal of the test until a set of DLTS subtests is generated, which
preserves the extremal success probabilities induced by the original test.

When encountering a non-Dirac transition in the top-down traversal of the RRPLTS
test, as shown in Figurd 4.3 the algorithm replaces the test with as many RRPLTS subtests
{ which are DLTS subtests in the nal steps { as there are ways of resolving the probabilis-
tic choice. For simplicity, only the non-Dirac transition, labeled with a, originating the
probabilistic choice is depicted in the gure, but in general it could be the last transition
in a computation { traversing states where no nondeterministic choices occur { going from
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the initial state o of the test to the probabilistic choice. Given a state s of the process
under test, the two formulas in Figure [4.3 witness that the two convex combinations of
the extremal success probabilities induced by then subtests respectively coincide with the
two extremal success probabilities induced by the original test.

Should a nondeterministic choice precede the considered probabilistic choice, it would
not be appropriate to generate subtests by resolving both choices. The reason is that it
would then be natural to focus on the maximum and the minimum of the extremal success
probabilities induced by the various subtests arising from the resolution of the nondeter-
ministic choice. This certainly works when the nondeterministic choice is originated from
the initial state of the test, or from the state reached by a Dirac transition of the test that
synchronizes with a Dirac transition of the process under test. However, the synchroniza-
tion of a Dirac transition of the test with a non-Dirac transition of the process results
in a non-Dirac transition in the interaction system, for which a convex combination (as
opposed to maximum and minimum) of the extremal success probabilities of the various
subtests needs to be computed.

Fourthly, if  pre-tu :na @dmitted only DLTS tests, then it would include  pre.ty :rp»
with the inclusion being strict as shown in the lower part of Figure[4.2. The reason is that
a DLTS test is a special case of RPLTS test in which there are no probabilistic choices.
In conclusion, we have:

Theorem 4.5. On RPLTS processes, it holds that:

=

pTe-tu ;np ( PTe-tu :nd @Nd  pre-tu ;np ( PTe-tu :rp-

2. pPTe-tu ;nd and  pre-w ;rp are incomparable with each other.

w

4. pre-tu :p ( PTe-tu :na if ONly DLTS tests were admitted by pre-ty :nd-

It follows from Theorem [4.4 and from Theorem[4.5(1) that the testing equivalence
induced by RPLTS or LTS tests is strictly included in probabilistic bisimilarity.

Corollary 4.6. On RPLTS processes, for all 2 f rp;ndg it holds that:
pe ( PTe-tu ;
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4.3 Open problems and conjectures

4.3.1 May vs. must testing

In the case of testing LTS or NPLTS processes, it is known that must testing equivalence
is strictly ner than may testing equivalence in the absence of divergence, otherwise the
two equivalences are incomparable [Nic87; DGHMZ07b]. When testing RPLTS processes,
the relationships between pre.t (mMay testing) and pre-y (Must testing) are not clear,
even if we restrict ourselves to NPLTS tests and we admit -actions within them.

In that case, we could derive that pre.y:np pTe-t :np DY exploiting the construction
used in [DGHMZ07h] for proving an analogous result on NPLTS processes. The purpose
of that construction is to build from a given NPLTS test a dual one, which generates all
complementary success probabilities in the interaction system. The idea is to transform
every state of the test having an outgoing! -transition into a terminal state, and to add
to any other state a -transition followed by an ! -transition.

The absence of internal nondeterminism within RPLTS processes would however pre-
vent us from concluding that the above inclusion is strict. Indeed, the typical counterex-
ample made out of a test succeeding after performing followed by b, which distinguishes
a process that can perform eithera followed by b, or a followed by c, from a process that
can perform a and then has a choice betweel and c, is not applicable because the rst
process is not an RPLTS.

Such considerations lead us to conjecture that, for each of the three variants of pre-1y
its may part pre.t coincides with its must part pre-y, and hence both coincide with

pTe-tu DY virtue of the de nition of the latter. This is certainly true when restricting
attention to fully probabilistic tests { as they yield, when interacting with an RPLTS
process, a single maximal resolution, in whicht and u necessarily coincide { or tests
having exactly one nondeterministic choice that occurs in the initial state { as can be
easily proved by induction on the number of maximal resolutions of each such test.

4.3.2 Characterizing RPLTS testing equivalences

Our ndings in Section #.2] leave open the question whether pg is strictly ner than

PTe-tu ;np OF coincides with it. In the latter case, we would have that, in the RPLTS
setting, testing equivalence reaches the same discriminating power as bisimilarity not
only in the presence of an explicit copying capability within tests [LS91], but also in the
absence of it, provided that tests are equipped with both internal nondeterminism and
probabilities. We point out that this would be a peculiarity of RPLTS processes, because
it is known that NPLTS tests are less powerful than bisimilarity in the case of NPLTS
processes [BDL14a].

The numerous examples of RPLTS processes that we have examined lead us to con-
jecture that on RPLTS processes pre-tu :np = pB. AS a consequence of Theore@A, it
su ces to prove that  pre.ty ;np is included in  pg. This is equivalent to showing that,
given two statess; and s, of an RPLTS, if sy 6 pg S, then s; 6 pre-tu ;np S2-

The idea is to use a logic characterizing probabilistic bisimilarity on RPLTS to build a
distinguishing NPLTS test. Probabilistic Modal Logic (PML), a modal logic characterizing

pe ON RPLTS, was rst proposed in [LS91] and then led to a minimal form in [DEPO2].
PML comprises the always true constant>, logical conjunction ~ , and the diamond
operator haip, where a is an action and p is a probability lower bound. Formula hai,F
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is satis ed by an RPLTS state if an a-labeled transition is possible from that state, after
which a set of states satisfyingF is reached with probability at least p. The proof of the
conjecture appears far from being trivial. The connection between PML and the testing
approach of [LS91] is intuitively clear, as multiplying the success probabilities resulting
from the application of independent choice-free tests to as many copies of the current
state under test is analogous to taking the logical conjunction of a number of formulas
each starting with a suitably decorated diamond. In contrast, the tests used in this chapter
follow the classical theory of [DH84], hence do not admit any copying capability and, most
importantly, may contain choices, which t well together with logical disjunction rather
than conjunction. The characterization of probabilistic bisimulation via a modal logic
based on disjunction has been recently studied in [BM16], and could be used as basis for
proving the conjecture.

We conclude by mentioning that an alternative proof strategy for this conjecture, when
only considering may testing equivalence, may exploit Propositi02 (ps = ps) and
the characterization of may testing via simulation provided by [DGHMO08|. However, we
recall that in [DGHMO08] -actions are admitted, the considered probabilistic simulation
is not the standard one, and the focus is on preorders rather than equivalences.

4.4 Proofs

Proof of Lemma 4[2_]
We rst prove that the same result holds for probabilistic trace equivalence.

Lemma 4.7. On RPLTS processes, for all 2 f rp;nd;npg it holds that:

pre-tu ; ( PTr

Proof. Since pre-ty ; IS included in  pre-t: , it iS Su cient to prove that the latter is
included in p1r. Moreover, let us restrict ourselves to consider only DLTS tests, in which
neither internal nondeterminism nor probabilities are allowed, and denote by pre.t -q the
may part of the resulting probabilistic testing equivalence. Since a DLTS is a submodel
common to RPLTS, LTS, and NPLTS, pre-t: isincluded in pre.t.q. Thus, if we prove
the inclusion in  p for the DLTS case, then the inclusion in  p1 will hold also for the
other three cases.

Givenan RPLTS L = (S;A;! )ands;;s; 2 S, we consider the contrapositive statement.
If 516 p1r Sy, i.€., if there exists atrace 2 A such that prob(C(s1; )) 6 prob(C(s2; )),
then the DLTS test T with initial state o0 having a single maximal computation that is
labeled with ! vyields:

PIOb(SUzey.0 )) = Prob(C(ss; )) 6
6 prob(C(sz; )) =  prob(SUzey )

Z 22 ReSmax (S2;0 )

Z12ReSmax (S1;0 )

which means that s; 6 pre-t :q S2. 2

As in the previous proof, to show that all testing equivalences are included in pg it
is su cient to prove the inclusion of  pre.t . IN  pE.
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Given an RPLTS L = (S;A;! ) and s1;s2 2 S, suppose thats;  pre-t :.g S2. For an
arbitrary failure pair * =( ;F ), whereF 6 ; to avoid overlapping with  p;, we consider
a DLTS test T- with initial state o that can only perform a computation labeled with

after which a state is reached having an outgoinga-transition followed by an ! -transition

for eacha?2 F.

Forall s2 Sit holgs that:

prob(SAzs;e )) = prob(C(s; )) prob(FC(s;"))
Z2 ReSmax (S;0 )

hence we haves; pre.t;d S2 ands; pr S2 (by Lemma[4.7), and it follows that:

prob(FC(sy;" ) = prob(C(s1; )) F( prob(SQzs, 0 ) =
F Z12ReSmax (s1;0
= prob(C(sz; )) prob(SA(zs,;0 )) = prob(FC(sz;" ))

Z 22 ReSmax (S2;0 )

which means thats; pg So.

Proof of Theorem 4.8
As in the previous proof, it is su cient to demonstrate the inclusion of  pre.t ¢ in

PFTY -
Given an RPLTS L = (S;A;! ) and s3;s2 2 S, suppose thats;  pre-t:q S2. For an
arbitrary failure trace = (a1;F1)(az;F2) :::(an; Fn), where n 1, a4 2 F 4 for all
i=2;:::;n,and F; 6 ; for somei =1;:::;n to avoid trivial cases as well as overlapping
with  p7r, we consider a DLTS testT with initial state o that can only perform a

performing a; has also an outgoinga-transition followed by an ! -transition for each a 2 F;.
For all s2 S it holds that:
prob(SQzs;, )) = prob(X(s; a1))
P
prob(FT C(s; (ay;F1) :::(ai 1;Fi 1[f &0)))
i=2
prob(FT C(s; ))

The reason is that, foralli =1;:::;n 1, given a computation ofs labeled with a; :::a;,
for each state in the support of the target distribution reached after performing & there
are the following three alternative cases:

Z2 ReSmax (S;0 )

the state can perform at least one action inF;, thereby leading to success in the
interaction with T ;

the state can perform neither actions inF; nor action a;+1 , thereby leading to failure
in the interaction with T ;

the state can perform no actions inF; but can perform action aj+1 ;
where the last two cases boil down to the same one leading to failure whein= n (the

state can perform no actions inFp). Therefore:

X
prob(SQzse )) = prob(CYs;(as;F1) i (& 1:Fi 1) (&; 9F1)))
Z2 ReSmax (S;0 ) i=1
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whereCY(s; (a1;F1) :::(a 1;Fi 1)(ai;9F)))is the set of computations ofs compatible with
the failure trace (a1; F1) ::: (& 1;F; 1) that can subsequently perform actiona and reach

prob(Cqs; (ar;F1) :::(ai 1;Fi 1) (ai; 9F¢)))
= prob(Cs;(as;F1):::(ai 1;Fi 1) &)
prob(FT C(s;(ar;F1) :::(a 1;F;i 1) (&;Fi)))

where C%s; (a1;F1) :::(a 1;F; 1) &) is the set of computations of s compatible with
the failure trace (a1;F1):::(a 1;Fi 1) that can subsequently perform action a;, hence

prob(C¥s; (as;F1) :::(a 1;Fi 1)&)) = prob(FT C(s;(a1;F1):::(ai 1;Fi 1))
prob(FT C(s;(ar;F1) :::(a 1;Fi 1[f &0)))

Summing up:

prob(SAzs; ))
Z2 ReSmax (S;0 )

[ prob(C(s;a1)) prob(FT C(s; (a1; F1)))]

+ P [prob(FT C(si (aniFa) 2@ 13Fi 1)
=2 prob(FT C(s;(ay;F1) ::: (& 1;Fi 1[f &g))
prob(FT C(s;(ai;F1) :::(a 1;Fi 1)(a;Fi)))]
prob(C(s; a1))
prob(FT C(s; (ay;F1) ::: (@ 1;Fi 1[f &)

prob(ET C(s; )

Recall now that s;  pre-t:g S2, hences; pr S2. We show that prob(FT C(s1; ))
= prob(FT C(sp; )) by proceeding by inductiononj j=n 1:

Let n =1. Then:

F
prob(FT C(s1; )) = prob(C(sy; )) , ( )IOFOb(SC(Zsl;o ) =
Z12Resmax (S1;0
= prob(C(sz; )) " prob(SQzs,;0 )) = prob(FT C(sz; ))

Z32ReSmax (S2;0 )

Let n > 1 and suppose that the result holds for each failure trace of length such
thatl | n 1. Then:

prob(FT C(s1; )) = prob(C(sy; a1))
prob(FT C(s1; (a1;F1) ::i(a 1;Fi 1[f &)

= prob(SQze, o ))

Z2 ReSmax (S1;0 )
proFt;(C(sz a1))
prob(FT C(sz; (a1;F1) :::(a 1;Fi 1[f &Q)))
2
prob(SQzs,:0 ))

Z2 ReSmax (S2;0 )

prob(FT C(s2; ))
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We can thus conclude thats; prr S2.

Proof of Theorem 4.4_]

We prove that pg implies  pre-tu ;np-
We know that pg on NPLTS is preserved by the parallel operator [SL95], which implies
thatif (s1;S2) 2 pg then ((s1;0);(s2;0) 2 pg, for o an arbitrary NPLTS test. Then the
proof proceeds analogously to the proof of Theorerh 3.13 (item (1)). Bisimilarity implies
failure trace equivalence on NPLTS|[BDL13], which means that for each resolutiorZ ; of
(s1; 0) there is a resolution Z, of (s; 0) such that for every failure trace computation

prob(FT C(zs;:0; )) = prob(FT C(zs,.0; ))

and vice versa.
Let SG,(zs:0) denote the set of successful computations fronzg, ., of length n, for
b2 f1,29. Then the probability of success at lengthn of zs;, is prob(SGi(zs;;0)) =
€2SCn (25, 10) prob(c), and it is in turn equal to prob(FT C(zs,.0; (f' g )";!;)).
Hence, we derive

X X
prob(Sqzs; ;o)) = prob(S G (zs;:0)) = prob(FT C(zs;:0; (f! g )";!3)) :
n n
(Note that we are here allowing a failure set also at the beginning of the failure trace. As
we have seen, failure trace equivalence allows us to do so.)
Since for each resolutionZ; of (s3; 0) there is a resolution Z, of (s2; 0) such that for every
n,
prob(FT C(zsy;05 (f1 g )5 1)) = prob(FT C(zs,0; (1 g )" ! 1))

(and vice versa) the result follows.

Proof of Theorem 4.6_]
LetL =(S;A;! )beanRPLTS:

1. The two inclusions immediately follow from the fact that LTS tests and RPLTS tests
are special cases of NPLTS tests.

2. Incomparability stems from the middle part and the lower part of Figure 4.2,

3. First of all, we establish the correctness of the deprobabilization algorithm for
RRPLTS tests, i.e., the fact that the set of DLTS subtests generated by the algo-
rithm preserves the extremal success probabilities induced by the original RRPLTS
test. More precisely, givens 2 S and an RRPLTS test T = (O;A;! 1) with initial
state 02 O, it holds that:

2 F
prob(SAzse)) = g prob(S Azs;0))

Z2 ReSmax (S;0) j=1 Z 2 Resmax (5;00)

P d
prob(SQzs0)) = G prob(SQzs.ep))

Z2 ReSmax (S;0) j=1 Z P2 Resmax (s;07)
as we prove below by proceeding by induction on the numbek 2 N 1 of DLTS



4.4 Proofs 79

If k=1, then T has no non-Dirac transitions at all, and hence the only DLTS
test ST‘l’ with initial state 0 = o and associated probability 1 generated by the
deprobabilization algorithm coincides with T. In this case, the result trivially
holds.

Let k 2 and assume that the result holds for all RRPLTS tests for which
the deprobabilization algorithm generates at mostk 1 DLTS subtests. From
k 2,itfollows that T has at least one non-Dirac transition. Consider the rst
of these transitions encountered in the top-down traversal ofT , whose target
distribution is supposed to assign to the states in its support the probability
valuespi, 1 i n,with n2 N ,. Let ST;,1 i n, be the corresponding
RRPLTS subtests generated by the deprobabilization algorithm, with initial

Due to the absence inT of nondeterministic choices preceding the considered
non-Dirac transition, we have that:

P F
prob(SAzs0)) = P prob(Sqzs;o))
Z2 Resmax (S;0) i=1 Zi2Resmax (S;0i)
P d
prob(SQzs;o)) = Pi prob(SQzs;q))
Z2 ReSmax (S;0) i=1 Zi2Resmax (S;0;)

Since the application of the deprobabilization algorithm to each such subtest
ST; generatesk; k 1 DLTS subtests (which are DLTS subtests of T t00)
STi?h, 1 h ki, with initial states o0y;:: :;oi(;’ki and associated probabilities

P f F
prob(SQzs;,0)) = Pi G;h prOb(SC(Zs;oiQh )
Z2 ReSmax (S;0) i=1 h=1 Zi?h 2 ReSmax (s;oi?h ) '
[ d
prOb(SC(Zs;o)) = Pi G;h prOb(SC(Zs;oiQh ))
Z2 ReSmax (S;0) i=1 h=1 Zi?h 2 ReSmax (s;oﬁh ) '

which can be rewritten as follows due to the distributivity of multiplication
with respect to addition:

P R F
prob(SQzs;,0)) = _ (Pi Gn) prOb(SC(Zs;o?h )
Z2 ReSmax (S;0) i=1 h=1 Zif’h 2 ReSmax (s;oi?h ) '
P R d
prob(SQzs;0)) = (P G:h) prob(SQzs;c0, ))
Z2 ReSmax (S;0) i=1 h=1 Zif’h 2 ReSmax (s;oi?h ) '

Given s1;82 2 S, suppose now thats; pre-ty :ndg S2 @and consider an arbitrary
RRPLTS test T = (O;A;! 1) with initial state 02 O for which the deprobabiliza-
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in particular that s; and sp cannot be told apart by any DLTS test, hence:

(3 F
prob(SQzs;0)) = G prob(SAzs, 00))
Z12ReSmax (S1;0) =1 Z7; 2Resmax (s1:0)
(2 F
= g prOb(SqZSZ;o}’))
j=1 2 2Resmax (52:0”)
= prob(SA(zs,;0))
Z22ReSmax (S2;0)
1
prob(SQzs, o)) = . pl’Ob(Sc(Zsl;ojO))
Z 12 ReSmax (51:0) j=1 Z9. 2Resmax (s1;00)
(3 d
= g prOb(SqZSZ;oJQ))
j=1 79 2Resmax (s2:00)
= prob(SQzs, o))

Z 22 ReSmax (S2;0)

4. The inclusion immediately follows from the fact that DLTS tests are special cases of
RPLTS tests.
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Conclusions

5.1 Additional related works

There are analogies between our results on the contextual equivalences induced by higher-
order languages on ordinary LTSs and results in the literature on the equivalences on LTSs
that characterize the coarsest congruences contained in trace equivalence for operators
whose operational rules comply with certainrule formats. Some of these formats allow
negative premises in the rules, with which refusals may be encoded, or allow rules in which
an argument of an operator may end up, in the derivative of the rule, within a prede ned
context; when the context is polyadic, this yields a form of copying. In higher-order
languages, in contrast, copying is achieved through the variable binding mechanisms of
the languages. Passivation or, in the -calculi, call-by-value, are necessary to obtain the
discriminating power of powerful formats such as GSOS| [BIM95] and tyft/tyxt [GV92]
(which give ready simulation equivalence and simulation equivalence, respectively).

Rule formats for probabilistic processes include [Bar0Z; LT0O9; DL12], where the empha-
sis is on ensuring congruence properties for bisimilarity. Testing of reactive probabilistic
processes is studied in [KN98], obtaining an equivalence strictly coarser than bisimilarity,
though the comparison with the equivalences induced by our contextual equivalences is
unclear.

5.2 Conclusions and future work

In Chapter B] we have studied the discriminating power o ered by higher-order concur-
rent languages such as HO, without and with passivation, and contrasted it with those
o ered by higher-order sequentiallanguagesa la -calculus and by rst-order concurrent
languagesa la CCS. We have measured this discriminating power on the basis of the dis-
tinctions that the languages, possibly extended with refusal, allow us to make on rst-order
processes that are either fully nondeterministic (LTSs) or reactive probabilistic (RPLTSS).
The discriminating power of HO with passivation coincides with that of the call-by-
value -calculus, both on LTSs and on RPLTSs. Intuitively, HO with passivation and the
call-by-value -calculus are both capable of implementing the "and' of two tests. That is,
the equivalence induced by these languages are characterized by modal logics that include
the "and' connective between formulas and are therefore “branching-sensitive'.

81
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ready simulation equivalence
I\(/JC =HO (ef:pass

simulation equivalence / failure trace equivalence
0 ef =HO pass 1€ =HO (¢t = CCS

CoNL

e 4 =HO =cCs

ref
trace equivalence

Figure 5.1: The spectrum of equivalences for nondeterministic processes

The addition of refusal increases the discriminating power of all the considered lan-
guages when testing LTSs. This is not always the case on RPLTSs. One reason is that,
similarly to fully probabilistic processes [JS90;|JL91], the spectrum of equivalences for
RPLTSs is narrower than for LTSs.

On LTSs, the extra discriminating power o ered in concurrency by passivation over
higher-order communication corresponds, in -calculi, to the call-by-value possibility of
reducing the argument of a function and then capturing the result.

On RPLTSs, we do not know exactly what are the equivalences induced by CCSand
CCS,;, though we know they are strictly in between probabilistic failure-trace equivalence
and probabilistic bisimilarity. We are not aware of RPLTS equivalences in the literature
with the same property. The lack of any copying facility makes the CCS equivalence
also strictly coarser than those of HO and of all other concurrent languages considered.
Another question that remains open is whether the equivalences induced by HO (with or
without refusal) coincide, and whether they are strictly coarser than probabilistic bisimi-
larity.

Figures[5.1 and[5.2 summarize the relationship among the various equivalences on a
rst-order LTS or RPLTS, respectively, that have been considered in Chapter[3. In the
gures, the name of a language, sayAl, stands for the contextual equivalence' 'A-L. A
single arrow denotes a strict inclusion, unless the arrow is coupled with a question mark,
in which case we do not know whether the inclusion is strict or not.

The contextual equivalences we have focused on in Chaptéf 3 are “may' forms of con-
textual equivalence. We have discussed a few instances of ‘'must' contextual equivalence,
and we leave it as future work to systematically address the must-equivalences.

When testing LTSs and RPLTSs with contexts from CCS-like or higher-order languages
in Chapter 38| we have admitted probabilities in the tested rst-order processes, but not in
the testing languages. It would be interesting to see if and how the addition of probabilities
to the testing languages a ects the results. A rst attempt at answering this question
is given by the testing scenarios presented in Chaptef|4, where RPLTS processes are
tested using probabilistic tests as well. We have considered testing equivalences induced
on RPLTSs by three classes of tests: LTS-like tests, RPLTS-like tests and NPLTS-like
tests. The testing equivalence induced by RPLTS and LTS tests are incomparable with
each other and they both are strictly more discriminating than probabilistic failure trace
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probabilistic bisimilarity

| — loc — —
\(/)C ref = \(/)C =HO pass — HO ref;pass
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Figure 5.2: The spectrum of equivalences for reactive probabilistic processes

equivalence on RPLTS processes. NPLTS tests induce a testing equivalence that is strictly
more discriminating than the ones induced by RPLTS or LTS tests. In particular, in a
language-based testing akin to that of Chapte@, the case pre-tu ;np When the tests are
NPLTS would correspond to testing RPLTS by putting them in contexts of the form
C=1[]1] M, whereM is a term from a probabilistic, nitary and synchronization-
free CCS language. Hence, the discriminating power of the language is deeply increased
by the presence of probabilities already when a restricted, rst-order class of contexts is
considered. Indeed, we have shown that probabilistic bisimilarity is included in  pre-ty ;np
and we have conjectured that these equivalences actually coincide. This would mean that
probabilistic bisimilarity can be captured by rst-order tests (and languages) featuring
both probability and nondeterminism.

The tested LTSs/RPLTSs processes in this work do not feature internal (i.e., -labeled)
moves, which means that the induced equivalences are “strong'. A natural developments of
this work thus consists in admitting internal actions in the tested processes and therefore
move to “weak' behavioral relations.

Finally, we have examined the equivalences induced on purely nondeterministic pro-
cesses (LTSs), and on reactive probabilistic processes (RPLTSs), but we have not con-
sidered combinations of them; this would amount to studying whether the contextual
equivalences induced on NPLTSs coincide with known probabilistic testing equivalences,
e.g., [Seg9p; DGHMO0B; DGHMO09] (characterized also as variants of simulation), or other
behavioral relations are needed. The study of the spectrum of equivalences for NPLTSs is
a non-trivial extension of the one for RPLTSs, since many of the characterization results
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for probabilistic equivalences presented in the previous chapters rely on the fact that the
considered processes only feature external nondeterminism. For instance, the proof that
the contextual equivalences induced by languages!%® . ;; '%;HO pass and HO ref:pass all
collapse and coincide with probabilistic bisimilarity on RPLTSs (Theorems[3.9 and[ 3.1B)
could not be adapted to the case when the tested processes are NPLTSs. The proof that
these contextual equivalences imply probabilistic bisimilarity exploits the peculiar result
that probabilistic bisimilarity and probabilistic similarity coincide on RPLTSs, and that

on RPLTS they are captured by tests that only admit conjunction and testing of actions

(see Sectior] 2.3]3).
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Chapter 6

Background

We recall the de nitions of applicative and environmental bisimulations for pure (non-
probabilistic) -calculi, and we discuss counterexamples motivating the use of environmen-
tal bisimulations for richer languages such as imperative -calculif] Then in Section[6.2
we introduce the semantics of pure probabilistic call-by-name and call-by-value -calculi.

6.1 Bisimulations for -calculi

In pure non-probabilistic -calculi (Section[2.4), the de nition of contextual equivalence
is based on observing convergence, or termination. We say that a ternM converges
(notation: M +) if M =) V for some valueV. Otherwise, we say that M diverges
(notation: M *).

De nition 6.1  ([Mor68]). Terms M; N of the call-by-name -calculus (respectively: call-
by-value) are contextually equivalent if for every context C of the calculus, CIM] + i
C[N]+.

Example 6.2. Terms = ( x:xxx )(x:xx )and | = x:x are respectively a diverging
term and the identity function. Trivially, they are not contextually equivalent since using
the empty context C = [ ] we haveC[] * and C[I] +. This holds both in call-by-name
and in call-by-value.

Examples of contextually equivalent terms, both in call-by-name and in call-by-value,
are the identity function | and its variant x: Ix. We will prove that they are contextually
equivalent in call-by-value using applicative bisimulations in the following section.
Notation: We useM;N;L;P;Q forterms of -calculi, and V;W for values.

6.1.1 Applicative bisimulation

We de ne both applicative and environmental bisimulation using big-step clauses. This
aims at simplifying the comparison between the non-probabilistic de nitions and the de -

nitions for probabilistic calculi, which we will present in the following chapters and which,

as we will see, have to be big-step.

* The results presented in this section and references to these results in the literature have been discussed

in Section @
87
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In applicative bisimulation, we test that equivalent terms both converge (clauses (1)
and (2)) and, if so, that the reached values are equivalent whenever they are given the
same argument (clause (3)).

De nition 6.3  (Applicative bisimulation, call-by-name [Abr90]) . A relation R over closed
terms of the call-by-name -calculus is an applicative bisimulation if M R N implies that:

1.ifM =) VthenN =) WandV R W;
2. ifN =) WthenM =) V andV R W (i.e., the symmetric condition, from N);
3.ifM = xM %and N = x:N °then for every term P, M ¥Pxg R N ¥ Pxgq.

Terms M and N are applicative bisimilar if there is an applicative bisimulation R such
that M R N.

De nition 6.4  (Applicative bisimulation, call-by-value) . The de nition for the call-by-
value -calculus is the same except for the third clause, which becomes:

32 ifM = xM %and N = x:N %then for every valueV, M ¥Vxg R N % Vxg.

If we used general terms instead of values to test abstractions in call-by-value, then
the terms : | (recall that a thunk :M isaterm x:M wherex does not occur free inM )
and x: (: 1)x would not be bisimilar in call-by-value, since whenx is substituted with
argument the rst term converges and the second one diverges. However, the two terms
are contextually equivalent in call-by-value.

The greatest applicative bisimulation (applicative bisimilarity ) is an equivalence re-
lation, and coincides with the union of all bisimulations. In pure, deterministic calculi,
applicative bisimilarity coincides with applicative simulation equivalence. Simulations are
de ned, as usual, by removing the second (symmetric) clause in the de nition of bisimu-
lation.

The de nition of applicative bisimulation can be recovered as the standard ( rst-order)
bisimulation applied to an LTS, as de ned in Section[2.2.2 (De nition 2.6). To this end,
we de ne an LTS whose states are -terms and with transitions representing both the
evaluation of -terms and the test of a value carried out by providing it with an argument.

We de ne here the LTS for the call-by-name -calculusf] Let and V be the sets of
closed terms and values of the calculus, respectively.

De nition 6.5. The LTS (S;Al ) is given by:
A set of statesS = f g]f ¥'g, where terms and values are taken modulo -equivalence
and ¥ = ¥ j V 2 Vg is a set containing copies of the values in decorated with We
call these valuesdistinguished values
A set of labelsA = [f evalg, where, again, terms are taken modulo -equivalence.
A transition relation!  such that:
for everyM 2 and forevery ¥ 20, M1 ¥ i M =) v;

for every xM 2 ¥ and for everyP 2 , xM 17 MfPxg.

5This LTS is built analogously to the ones in [DLSA14;|CD14]|for the probabilistic case, that we will
present in the next chapter.
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If V 2V, then both V and ¥ are states of the LTS. Distinguished values allow us to
distinguish between a valueV seen as term that is going to be reduced and a valug seen
as the result of the reduction of a term.

The LTS for call-by-value is de ned analogously, but with set of actionsA = V[f evalg,
since only values are given as arguments to functions in the bisimulation game. Hence,
the last item of the de nition of the transition relation becomes:

for every x:M 2 ¥ and for everyVv 2V, xM 1V MfVxg

Applicative bisimulations enjoy a simple and easy to apply de nition, and have been
proved to be fully abstract with respect to contextual equivalence both in pure call-by-
name and in pure call-by-value -calculi (see [Pit1Z] and Sectior{ 1.2/3). Full abstraction
means that applicative bisimilarity is sound (applicative bisimilarity implies contextual
equivalence) and complete (contextual equivalence implies applicative bisimilarity), and
thus coincides with contextual equivalence.

Example 6.6. By the full abstraction results, if we want to prove that in the call-by-value
-calculus terms | and x: Ix are contextually equivalent, we can exhibit the following
relation:

R =1(l; x IxX)g[f (V;1V)j Visavalug[f (M;M)] M is aatermg

The relation is an applicative bisimulation since terms | and x: Ix are already values
and thereby trivially satisfy clauses (1) and (2). Then, whatever valueV they are given
as input we obtain a pair of the form (V;1V), which is in R by the second set and so
clause (3) holds. In a pair of the form (/; V) the two terms evaluate to the same value
V, and we stay in the relation since identity is included in the relation. Finally, equal
terms evaluate to equal values, and if we substitute the same terms to the same values we
obtain equal terms. Hence, also the second and third sets in the de nition oR satisfy
the applicative bisimulation clauses.

6.1.2 Applicative vs. environmental bisimulation

We recall here the de nition of environmental bisimulation [SKS11ff and we discuss how
it solves some drawbacks of applicative bisimilarity.

An environmental relation is a set of elements each of which is of the formE; M; N ) or
E, where M; N are closed terms ancE is a relation on closed values. In a triple E; M;N )
the relation component E is the environment, and M; N are the tested terms We write
MREgN for (E;M;N) 2 R. The contextual closureR? of a binary relation R is the set

f(CM1;::5;Mu; C[N1; 5 NpD j Mi R Nig

De nition 6.7  (Environmental bisimulation, call-by-name). An environmental relation
R is an environmental bisimulation if

1. MRgN implies:
(@ if M=) VthenN =) WandE|[f (V;W)g2R;

5The de nition of environmental bisimulation in [SKS11] lises small-step clauses. For uniformity with
the rest of the thesis, we de ne here the big-step version.
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(b) the symmetric condition, from N;

2. if E 2 R then for all (x:P; x:Q ) 2 E and for all (M;N) 2 E? it holds that
PfMxgRgQf Nxg.

Environmental bisimilarity is the union of all environmental bisimulations.

Hence, in environmental bisimulation terms are related with respect to a set of values
E that grows during the bisimulation game. As in applicative bisimulation, related terms
should both converge (clause (1)). In contrast with applicative bisimulation, the reached
values are collected in environmentE, and the values in E are then tested by using argu-
ments in the contextual closure of the same environmenk (clause (2)). As a consequence,
we are allowing a larger class of tests for functions with respect to applicative bisimulation
(since the identity relation on terms is included in E?).

Analogously to applicative bisimilarity, the de nition for call-by-value is obtained by
only allowing values as arguments for related abstractions. Formally, we writeR? for the
contextual closure ofR restricted to values, and clause 2 becomes:

20 if E 2 R then for all (x:P; x:Q ) 2 E and for all (V;W) 2 E? it holds that
PfVxg Re Qf W=xg.

Remark 6.8. In de nition we have de ned the environment E as a set of pairs of
values, following [SKS11]. This environment can be alternatively formalized using tuples
of values. Instead of setsE we use pairs of tuples of values'§ ;W) where € and v have

the same length, and then we de ne an environmental relation as a relation on pairs of the
form either (¥; M; N ), i.e., con gurations of tuples of values each with a running term,

or (¢ ;W) (note that the relation is directly de ned on tuples, so ¥ R ¥ does not denote
the pointwise relation on corresponding values in the tuples). Then an environmental
relation R on such pairs is an environmental bisimulation (for call-by-name) if

1. ¢;M R ;N implies:

(@ if M=) VthenN=) Wand¥®;VR W;w;
(b) the symmetric condition, from N;

2. if ¢ R W then for all ( x:P; x:Q ) such that (®); = x:P and (W); = x:Q for
somei (i.e., the i-th projections of the tuples) and for every (M;N ) 2 (¢ ;fN)'-’ (i.e.,
M = C[®] and N = C[W] for someC) we have ®;PfM=xg R W; Qf Nxg.

The usefulness of this alternative de nition will become clear in Chapter|[8.

As argued in the introduction (Section ), the de nition of applicative bisimulation
has some drawbacks, that can be solved by resorting to bisimulations with a more complex
de nition such as environmental bisimulations. First, it is generally hard to prove that
applicative bisimilarity is a congruence. To prove congruence in a direct manner, we
can try to show that the contextual closure of an applicative bisimulation R is itself an
applicative bisimulation. Such a proof fails since we have to show that the application
of values in R to pairs of terms in the contextual closure of the relation is again in the
contextual closure of the relation. The problem is that when xxM R x:N :
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we want to derive that M fPxg R NfQxg, for all (P;Q) in the contextual closure
of R;

by the de nition of applicative bisimulation, we can only derive that MfPxg R
N f Pxg, for every P.

Hence, the congruence proof of applicative bisimulation is carried out using Howe's method
[How8¢9], which is based on building a syntax-based relation which enjoys substitutivity
properties by de nition. Then we have to prove that this relation coincides with applicative
bisimilarity, by showing complicated properties of the de ned relation. By contrast, the
congruence proof for environmental bisimulation can be carried out directly, since by
de nition functions are tested with inputs built from the contextual closure of terms in
the environment.

Secondly, applicative bisimilarity is not sound in many extensions of pure -calculi
[KLS11]. In particular, suppose we add imperative features, namely higher-order refer-
ences (with private locations), to the call-by-value calculus, along the lines of the languages
in [KWO06b] SKS11].

Reduction is now de ned on con gurations hs; Mi, where s is a store (a function
mapping locations to values) andM is a term. We assume a countable set of locationk
The syntax of the calculus is extended with constructs for reading and writing in the store,
for creating fresh locations, and for performing operations on constants (e.g., arithmetical
operations or identity checks on integers), that include booleans, integers and the unit
value ?. We only consider a minimal version of the language, that is however su cient
for our purposes in this section. We will consider an extended, probabilistic version of the
calculus in Chapter|[8.

The syntax of terms and values is:

M = variables
] c constants
] xM functions
] MiM» applications
] ( x:=M1)M2 new location
ju dereferencing
] 1:= M; assignments
J op(M1;:::Mp) primitive operations
J if My then M, else M3 if-then-else

Vi=c j x:M

The small-step reduction and the evaluation contexts are de ned in Figure[6.1. We
write s[l ! V] to denote the the update of s (possibly an extension ofs if | is not in
the domain of s). The language is typed, to ensure that in any store updates[l ! V],
value V has the type appropriate forl. In all semantic rules, any con guration s; Mi is
well-formed, in that M is closed and all the locations inM and s are in the domain of s.

In -calculi with imperative features, and in particular in calculi with a local store
(where fresh locations might be created at run time, and not made available to the con-
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Beta
hs; (xM )Vilh s;MfVxgi
| not in the domain of s

New - :
s; ( x:=V)Milh s[l! V]:Mfkagi

. s()= V
A Deref
SN T = Vith ol V] % O e lith s Vi

IfT . - -
fue hs; if true then M, else Myilh s; Mji

IfFal - . -
aise hs; if false then M1 else Msoilh s; Moi
. Prim(op; e) =
PrimO -
fmep hs; op(e)i'h s;cd
hs:Milh s% MY Cis an evaluation context
Eval

hs; C[MJi'h s9 C[MQi

Evaluation contexts C:= []] CM | VC | if C then M; else M,
j ope;C;f) j1:=cC

Figure 6.1: Single-step reduction relation for imperative -calculus

texts), applicative bisimilarity is not sound. For instance, consider the following terms:

M déef( x:=0)( : if Ix=0 then (x:=1seqtrue) else )

N %€ true
where M3 seq M, denotes term (:M )My, i.e., the execution ofM; and M in sequence.
The terms are not contextually equivalent, since they are discriminated by contextC =
(x: (x?) seq (x?))[ ], starting from the empty store s = ;. When put in context C, a term
is evaluated in argument position, then the produced value is copied two times and the
two copies are executed in sequence. Terml creates a fresh locationl that is set to O,
and evaluates toV %" : if 11=0 then (I :==1seqtrue ) else . The rsttime the
context appliesV to ?, it converges totrue and sets the location to 1. Then, the second
time V ?is evaluated, it diverges. By contrast, N? always converges. As a consequence,
we haveh;; C[M]i* andh;; C[N]i +.

Suppose we extend the de nition of applicative bisimulation to the imperative calculus
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de ned in this section, by simply considering terms evaluated with respect to a store. Using
this de nition, terms h;; Mi and h;; Ni would be applicative bisimilar by relation:

R =f(h;; Mi;h;; Ni);(H=0; :if U=0 then (I :zlﬁtrue) else  i;h;; Ni);
(H=1; true i;h;; true i)g

and so applicative bisimilarity would be unsound with respect to contextual equivalence.
The reason for this is that bisimulations are forgetful, since they do not allow us to
accumulate terms and possibly test them twice in a row.

The example above is inspired by [KLS11]. The same paper presents several interesting
and more involved examples justifying the di erent features of the de nition of environ-
mental bisimulation and its increased complexity with respect to applicative ones.
Environmental bisimulations allow us to accumulate and reuse values in the environment,
and would thereby be able to discriminate termsM and N . Indeed, environmental bisim-
ulations are fully abstract with respect to contextual equivalence in imperative -calculi
[SKS11].

6.2 Probabilistic -calculi

We extend the syntax of the pure -calculus with a binary choice operator , that we will
interpret as a probabilistic, fair choice.
The terms of the probabilistic -calculus are generated by the following grammar:

M;N = X X:M MN M N

The values are the terms of the form x:M (the abstractions). We call V the set of
values. As usual, contexts are terms with holes I.

6.2.1 Semantics

Because of the probabilistic nature of choice in , a program does not evaluate to a
value, but rather evaluates to a probability subdistribution on values. Therefore, we need
the following notions to de ne an evaluation relation.[] p

A value (sub)distribution is a function : V ! [0;1], suchthat ., (V) 1. As
we will see, we use subdistributions instead of distributions (i.e., we allow the total weight
of a distribution to be strictly less than 1) in order to model divergence. We generally omit
the pre x and use \distributions" to denote subdistributions, unless otherwise speci ed.
Given a value distribution , we let supp() denote the set of those values V such that
( V) > 0. Given asetX of yalues, ( X)is the sum of the probabilities assigngsd to every
element of X, i.e.,, ( X) = ,x ( V). Moreover, we de ne weight () = v (V)
which corresponds to the total weight of the distribution . A value distribution is
nite whenever supp() has nite cardinality. If V is a value, we writedirac (V) for the
value distribution such that ( W) =1if W = V and ( V) = 0 otherwise. We use

for the pointwise preorder on value distributions and we let ; ; ; range over

value distributions.

"We recall here and adapt to the present setting some notions concerning probability distributions
introduced in Chapter Z]
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As is [DZ12], we rst de ne an approximation semantics, which attributes nite proba-
bility distributions to terms, and only later de ne the actual semantics, which is the least
upper bound of all distributions obtained through the approximation semantics. The
reason why the semantics is in nitary is that, intuitively, while in pure -calculi a term
converges (i.e., it terminates its computation) in a nite number of small-step reductions,
in probabilistic calculi there may be several terminating computation paths, in which the
total number of reductions need not be nitary (see Example).

We de ne the approximation semantics in a big-step style, by means of a binary relation
+ between closed terms and value distributions, which is de ned by the set of rules from
Figure[6.2. Hence,M + means that is an approximation of the semantics of M. As
in non-probabilistic calculi, the application rule is di erent depending on the evaluation
strategy. In call-by-name we use ruleApp-cbn , and in call-by-value we use ruleApp-cbv .
A small-step semantics (of approximations) for probabilistic call-by-name and call-by-value
calculi can be de ned as in[DZ12]. In Chapter[§ we will exploit an alternative, small-step
semantics for probabilistic -calculi.

Empty ™M Value Sum

M + N +
+; V + dirac (V) +

M N+1

NIl

M + fPfNxg+ Lgup 2supp()
MN +

App-cbn
x:P 2supp() ( X:P) P

M+ N + fPfV:xg + P;Vgx:P 2supp() ;V2supp()
App-cbv = p :
MN + V 2supp() (V) ( xp 2supp() ( xXP) pv)

Figure 6.2: Operational semantics for pure probabilistic -calculi

De nition 6.9.  For any closed term M, we de ne the (in nitary) big-steps semantics
JMKof M asIMK=supf jM + g.

Since distributions form an! -complete partial order, and for everyM the set of those
distributions such that M + is a countable directed set, the semantics is well-de ned
[DZ12].

Example 6.10. The semanticsJ Kof the always diverging term = ( x:xx )( X:xx ) is
the distribution ; assigning probability O to every value. The semantics ofl = x:x is the
distribution 1 dirac (1). In between, one can nd terms suchasl ,and | (1 ),
whose semantics are the probability distributions assignings and 2 to 1, repectively.

The following example shows why we adopt an in nitary semantics in probabilistic
-calculi.
Example 6.11. Consider the terms

P % RR and ngf: ; for R= x:(xx) Q
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Both P and Q have probability 1 of becoming term Q i.e., they have the same semantics
1 dirac (Q). Intuitively, after some computation steps, P may becomeQ or may become
P again, with equal probability. However, the semantics ofP is given as the supremum
of an in nite set of distributions such that P + , and none of these approximants
coincides with JPK= 1 dirac (Q), since can only be a distribution assigning to Q a
probability value strictly smaller than one.

In the following chapters, the pure (probabilistic) -calculi will be untyped, whereas
we will nd types convenient to treat the extension with store presented in Chapter [3.

6.2.2 Contextual preorder and equivalence

In contextual equivalence for probabilistic calculi, the observationM + becomes proba-
bilistic. Instead of checking the possibility of convergence, we check the probability of
convergence, i.e.weight (M ). Then, a term M is contextually equivalent to N if for any

context C, the probability of convergence of C[M] is the same as to the probability of
convergence of the program obtained by replacind by N in C. In the contextual pre-

order, we require the probability of convergence ofC[M ] to be less than or equal to that
of C[N].

De nition 6.12. TermsM;N are inthe contextual preorder (M <« N) if for every con-
text C of such that C[M ] and C[N] are closed terms, it holds thatweight (JC[M ]K
weight (JCI[N]JK. M;N are contextually equivalent (M =¢x N)if M ¢ N, and
N cx M.

Equivalently, M = N if for every context C such that C[M] and C[N] are closed
terms, weight (JC[M ]K = weight (JC[N ]K.

It is easy to verify that the contextual preorder is indeed a preorder, and analogously
for equivalence. The de nitions of contextual preorder and equivalence can be applied to
both closed and open terms. If the term is open, the contexts can bind the free variables
of terms.
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Chapter 7

Full abstraction for probabilistic
applicative simulation

In [DLSA14|, Abramsky's applicative bisimulation [Abr90] is generalized to the call-by-
name, untyped -calculus with a binary, fair, probabilistic choice [DZ12]. Probabilistic
applicative bisimulation is shown to be a congruence, thus included in context equivalence.
Completeness, however, fails, but can be recovered if call-by-value evaluation is considered,
as shown in [[CD14]. This can appear surprising, given that in nondeterministic -calculi,
both when call-by-name and call-by-value evaluation are considered, applicative bisimi-
larity is a congruence, but ner than context equivalence [Las93]. But there is another,
even less expected result: the aforementioned correspondence does not hold anymore if we
consider applicative simulation and the contextual preorder.

The reason why this happens can be understood if one looks at the testing-based
characterization of probabilistic similarity and bisimilarity from the literature [DEPO2;
BMOWO5]: the class of tests characterizingoisimilarity (see Section) is simple enough
to allow any test to be implementable by a program context. This is impossible for tests
characterizing similarity, which, as we will see in Sectiorj 7.4, include not only conjunction
(which can be implemented as copying) but also disjunction, an operator that seems to
require the underlying language to be parallel.

In this chapter we show that, indeed, the presence of Plotkin's parallel disjunction
[Plo77; AO93] turns applicative similarity into a relation which coincides with the con-
text preorder. This is done by checking that the proof of precongruence for applicative
bisimilarity [DLSA14;| CD14] continues to hold (Section [7.3), and by showing how tests
involving conjunction and disjunction can be implemented by contexts (Section).
This somehow completes the picture about how applicative (bi)similarity behaves in a
probabilistic scenario.

7.1 Probabilistic applicative simulation and bisimulation

In this section we recall the notions of probabilistic applicative simulation and bisimulation
from [DLSA14; |CD14] for the pure, probabilistic -calculus presented in Sectiofi 6]2. We
directly de ne the relations for call-by-value calculi. The de nitions for call-by-name
calculi can be obtained as usual by considering terms as arguments, instead of values.

97
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Given arelaton R X Y andasetZ X,let R(Z)= fyj9x 2 Z such that
XRyg.

De nition 7.1. A relation R is a probabilistic applicative simulation if
M R N implies:

forall X V ,IMKX) JINKR (X))

if M = xxM %and N = x:N °then M¥VxgRN%Vxgforall V2V .
A relation R is a probabilistic applicative bisimulation if both R and R ! are proba-
bilistic applicative simulations. We say that M is simulated by N (M . N) if there exists
a probabilistic applicative simulation R such that M RN. Terms M;N are bisimilar
(M N) if there exists a probabilistic applicative bisimulation R such that M R N.

Analogously to what happens in pure -calculi, these de nitions correspond to simu-

lations and bisimulations on a probabilistic rst-order system.
We show how to de ne an RPLTS representing terms of  and their evaluation. States
in the RPLTS correspond to -terms, and the statesM; N in the RPLTS are in the sim-
ulation preorder (respectively, bisimilar) if and only if terms M;N are in the applicative
simulation preorder (respectively: applicative bisimilar).

In order to model divergence, we are now considering terms that evaluate to sub-
distributions. Hence, we loosen the de nition of RPLTS by allowing subdistributions
(as opposed to distributions) to be reached after performing a state transition, follow-
ing [DEPO2]. In what follows, we use RPLTS to denote systems de ned as in De nition
[2.3, except that we have subdistributions instead of distributions.

De nition 7.2.  The Reactive Probabilistic Labeled Transition SystemL =(S;A;! )
is given by:
A set of statesS = f g]f ¥ g where terms and values are taken modulo -
equivalence andV = f¥ j V 2 V g is the set of distinguished values containing
copies of the values in  decorated with”
A set of labelsA = V ]f evalg, where, again, terms are taken modulo -equivalence.
A probabilistic transition relation ! (S A D (9)) such that:

forevery M 2, M ! ®® 2K with JMKa probability subdistribution that
behaves analogously toJM K on distinguished values, i.e., M KY) = IMKV) for
everyV 2¥ ,and MKM9Y=0forall M2

forevery xM 2 ¥ andforeveryv 2v , xM 1V dirac (MfVxg).

If V2V ,then both V and Y are states of the RPLTSL . This RPLTS is de ned in
[DLSA14] for the call-by-name untyped probabilistic -calculus , and for a call-by-value
typed probabilistic version of PCFin [CD14]. Asinthe rst-order LTS for non-probabilistic
calculi (De nition actionsin V and action eval respectively represent the application
of a term to a value and the evaluation of a term.

On an RPLTS with subdistributions, instead of distributions, we can directly apply
the de nition of bisimulation as de ned by Larsen and Skou in [LS91] (see de nition
(PB1) in Section )E] For probabilistic simulation, we can use a de nition based on the

8 To apply the de nition based on lift (R), we have to rede ne the probabilistic lifting by allowing
distributions to have weight smaller than 1. By contrast, when it comes to probabilistic simulation,
requiring the reached probability subdistributions to be in the lifting lift (R) of the simulation relation
R is too strong a condition, since it would imply that the subdistributions must have the same weight.
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y( ) )
eval
)
Vv
D
Neval  ev
®

Figure 7.1: RPLTS for M;N .

comparison of the weights of theR images of sets of states, as in [BMOWGQ5; DLSA14;
CD14].

Denition 7.3. LetL =(S;A;! ) bean RPLTS. A probabilistic simulation is a binary
relation R on S such that if (s1;s2) 2 R then for all a2 A it holds that s; ! a 1 implies
1% owith  1(S9  2(R(S9Y) forall SO S.

Requiring a simulation to be a preorder is not necessary, since the largest probabilistic
simulation according to De nition T.3]is a preorder, and it coincides with the union of
all simulations. We let . ps denote the simulation preorder based on this de nition;
probabilistic bisimilarity coincides with . ps\ . Psl [DLSA14]. The de nition of simulation
implies that whenever M is simulated by N we have that weight (IM K weight (JN K.
Analogously, if M is bisimilar to N, then weight (JM K = weight (N K.

An applicative simulation R onterms of  can be easily seen as a simulation relation
R % on states of L , obtained by adding to relation R the pairs f(¥ ;W) j VR Wg.
Analogously, a simulation relation onL corresponds to an applicative simulation for

Hence, we derive that on terms of , applicative similarity . and bisimilarity
coincide with . ps and pg de ned on the RPLTS L

In what follows, we will often use the characterizations of simulation and bisimulation
for the RPLTS L . Moreover,. coincides with the simulation preorder de ned in [CD14],
which requires simulations to be preorders themselves. Consider now the termd and
N de ned in Example [7.6 and represented in Figurg 7.]L as states ih . Term M is not
simulated by N: if a simulation R relates them, then it must also relate term ( 1) to
both term andterm |. However, ( I) can perform eval and reach | with probability
one half, while has zero probability of becoming a value, which means thatR cannot be
a simulation relation. In the other direction, we have that N cannot be simulated by M
either. If R is simulation such that N R M then it must relate term | to term ( 1),
but the former has probability one of convergence and the latter has probability one half
of convergence.
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7.2 A probabilistic -calculus with parallel disjunction

In this section, we present the syntax and operational semantics of -, a -calculus
endowed with probabilistic choice and parallel disjunction (or \parallel or") operators.

De nition 7.4. The terms of  are expressions generated by the following grammar:
M;N;L =x] xM JM N JMN j[MkN] L
wherex 2 Var .

We let FV (M) denote the set of free variables of the termM. A term M is closed
if FV (M) = ;. Given a setX of variables, (X) is the set of terms M such that
FV (M) X. Wewrite o for ().

The constructs of the -calculus have their usual meanings, andM N is the binary,
fair, probabilistic choice operator. The construct [M k N] L corresponds to the so-
called parallel disjunction operator: if the evaluation of M or N terminates, then the
behavior of M k N] L is the same as the behavior oL, otherwise this term does
not terminate. Since we are in a probabilistic calculus, this means that M k N] L
converges toL with a probability that is equal to the probability that either M or N
converge. (This formulation of parallel disjunction is equivalent to the binary one, without
the third term.)

The evaluation relation is the extensionto  ; of the evaluation relation presented in
Figure [6.2 for the untyped probabilistic -calculus. Since the calculus has a call-by-value
evaluation strategy, function arguments are evaluated before being passed to functions.
Hence, the operational semantics is given by adding the rule in Figurg 7}2 to the rules for
the probabilistic call-by-value -calculus.

M + N + L+
[M kN] L + (weight()+ weight() (weight ()  weight ()))

Figure 7.2: Big-step semantics for parallel disjunction

Lemma 7.5. For everyterm M, if M + ,and M + | then there exists a distribution
such thatM +  with , and

Proof. The proof is by induction on the structure of derivations for M + . We only
consider two cases, since the others are the same as |in [DZ12]:
If the derivation for M + is EMpty M +. - thenitis enough to take =, and

since; and the result holds.
If the derivation for M + is of the form:

P+ 1 N+ » L+ 3

M=[PkN] L+ =( weight( 1)+ weight( ) (weight( 1) weight( »)) s

SinceM = [P kN] L , there are only two possible structures for the derivation of
M + : either = ; and the result holds by =, or the structure of M + s the
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following:
P + 1 N + 2 L+ 3

M =[P kN] L+ =( weight( 1)+ weight( ) (weight( 1) weight( 2))) 3

By applying the induction hypothesis, we obtain that there exist 1; 2; 3
value distributions such that P + 4, N + 5 L + 3 and, more-

over, 1; 1 L2 2 2, and 3 3 3= We dene =
(weight (1) + weight ( 2) (weight( 1) weight( 2))) 3, and we have thatM + .
We must show that and . Let f :[0;1] [0;1]! [O;1] be the function

denedby f (x;y) = x+y x y. The result follows from the fact that f is an increasing
function, which holds since its two partial derivatives are positive.
2

Since distributions form an ! -complete partial order, and for everyM the set of those
distributions such that M + is a countable directed set (by Lemma , the in ni-
tary big-step semanticsJM K= supy,, is well-de ned, and associates a unique value
distribution to every term.

The de nitions of probabilistic applicative bisimulation and simulation can be directly
appliedto o and its operational semantics, and the RPLTSL o for o is de ned as
L . The contextual equivalence and preorder are as in De nition 6.1R, using the contexts
of o, which are de ned by the following grammar:

Ci=x]J[]] xC JCM jMCJC M]JM C
jICkM] N j[MkC] N j[MkN] C:

Example 7.6. To see how things di er when we consider the contextual preorder in
and in o, consider the following terms of

M= y:( 1) N=(Cy:) (y: 1)

where and | are de ned as in Example[6.10. We let and = respectively denote
the contextual preorder and equivalence for the language |, i.e., the relations restricted
to terms and contexts without the parallel disjunction construct. In [CD14] it is proved

that M N. The converse does not hold, since if we take the context

C=(x (xNH(xNI]

we have that in C[M ] the term vy: ( 1) is copied with probability one, while in C[N]
bothterm y: andterm vy: | are copied with probability one half. Hence,C[M ] converges
with probability one quarter (i.e., the probability that | converges two times in a row)
while C[N] has probability one half of diverging (i.e., one half times the probability that
diverges two times in a row) and one half of converging (i.e., one half times the probability
that | converges two times in a row). In o we still have that N 6 .« M, since the
contexts of are contexts of o as well, but we also have thatM 6 o N. Consider
the context

C=(x [(x)kxDl  DI]
If we put term M in context C then y: ( I) is copied, and y: ( I) has probabil-
ity one half of converging when applied to |. Hence, by summing the probabilities of
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convergence of the two copies of y: ( 1)) I and subtracting the probability that they
both converge, we obtain that JC[M K= % dirac (1). Term C[N] only converges with
probability one half, since with one half probability we have the parallel disjunction of two
terms that never converge and with one half probability we have the parallel disjunction
of two terms that always converge. Hence, both in and in or terms M; N are not
contextually equivalent, but it is only in or that neither M is below N nor N is below
M in the contextual preorder. We will see in the following section that this corresponds
to what happens when we consider the simulation preorder.

7.3 The simulation preorder is a precongruence

The extension- of the applicative simulation preorder to open terms is de ned by con-
sidering all closing substitutions, i.e., for all M;N 2 or(X1;:::;Xn), we have M- N
if

Here we show that- is a precongruence, i.e., closed with respect to the operators of
or -

It is here convenient to work with generalizations of relations called o -relations, i.e.
sets of triples in the form (X; M;N ), where M;N 2 4 (X). Given a relation R on open
terms, if M RN and M;N 2 or(X) then the triple (X;M;N ) is in the corresponding

or-relation. We denote this by x © M R N. We extend the usual notions of symmetry,
re exivity and transitivity to or-relations as expected.

De nition 7.7. A -relation R is compatible if and only if the following conditions
hold:

(Coml) 8X;8x2X,X  xRXx;

(Com2) 8x;8x 62X;8M;N ,X[f xg "  MRN =) X xM R xN ;
(Com3) 8x;8M;N;P;Q, X  MRNAX PRQ = X MP RNQ;
(Com4) 8x;8M;N;P;Q, X MRNAX"PRQ= x M PRN Q;
(Comb5) 8x;8M;N;P;Q;T,X "  MRN~AX"  PRQ =)

X [MkP] TRI[NKQ] T:

It follows from these properties that a compatible relation is re exive, since this holds
by (Coml) on variables, and it is preserved by the other operators by(Com2)-(Comb5):

Proposition 7.8. If a relation is compatible, then it is re exive.

7.3.1 Howe's method

The main idea of Howe's method consists in de ning an auxiliary relation- " such that
it is easy to see that it is compatible, and then prove that- =-H.

De nition 7.9.  Let R be a relation. We de ne inductively the relation R" by the rules
in Figure [7.3.

We are now going to show that if the relation R we start from satis es minimal
requirements, namely that it is re exive and transitive, then R" is guaranteed to be
compatible and to contain R. This is a direct consequence of the following results, whose
proofs are standard inductions:
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X[f xg° xR M x[fxg>MRHN x> xN RL
x[f xg> xR" M x> xM RHPL

x> MRHFN X LR"P X NPRR
x> ML RHR
x> MRAN x LRHPP XN PRR
XM LRFR
x> MRAN x LRHP x  [NkP] TRR
x> [MkL] TR"R

Figure 7.3: Howe's construction

Let R be a re exive relation. Then RY is compatible.
Let R be transitive. Then:

x> MRP'N "Xx"NRL)) x MR"L (7.1)

If R is re exive,then X~ M R N impliesx ™ M RH N.
We can now apply Howe's construction to- , since it is clearly re exive and transitive.
The properties above then tell us that- " is compatible and that - - H. What we are
left with, then, is proving that - M is also a simulation[f]

Lemma 7.10. - " is value-substitutive: for all terms M:N and valuesV; W such that
x> M-HNand;" V-HW,itholds that;> MfVxg-H NfWxg

Proof. By induction on the derivation of x° M - H N. 2

We also need an auxiliary, technical, lemma about probability assignments, that we
will use in the proof of the Key Lemma (7.13).

Denition 7.11. P= fpg1 i n; fr||g, f Liing I:,is said to be a probability assignment

.....

if forevery | f 1;:;ng, it holds that ,, pi nie: 3

Lemma 7.12 (Disentangling Sets) Let P = fpigs i n;frig ¢ 1.:ng be @ probability
assignment. Then for every non-emptyl f 1;:::;ng, and for every k 2 |, there is an
Sk 2 [0; 1] satisfying the folllpwing conditions:

forevery |, it holds that ;s 1 p

for every k 2 1;:::;n, it holds that pyx flik21g Skl i

The proof is an application of the Max-Flow Min-Cut Theorem, see e.g., [DLSA14;

CD14].
Given a set of set of open termsX, let xXX =fxM jM 2 Xg.

%In the proof of congruence for the probabilistic call-by-value -calculus presented in [CD14], the tran-
sitive closure of - " is considered, since the de nition of simulation required the relation to be preorder,
which implies that the transitivity of - " is needed. Since we relaxed the de nition of simulation, this is
not anymore necessary.
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Lemma 7.13 (Key Lemma). For all terms M;N, if ; = M - H N, then for every
XX V o itholdsthat MK(x:X ) JINK- x: -H(X)

Proof. We show that the inequality holds for every approximation of the semantics of
M, which implies the result since the semantics is the supremum of the approximations.
In particular, we prove by induction on the structure of the derivation of M + that,
forany M;N,if M + and ;> M -H N, then for every xxX V it holds that

( xX ) INK- x -H(X) . We consider separately every possible rule which
can be applied at the bottom of the derivation:

If the rule used corresponds to the fact that, for every term, the empty distribution is
an approximate semantics, the derivation is: M + then = ;, and for all set of

values x:X , ( x:X ) =0, and it concludes the proof.

If M is avalueV = x:L and the last rule of the derivation is V + dirac (V)

then = dirac (V) is the Dirac distribution for V and, by the de nition of Howe's
lifting, ;> xL - N was derived by the following rule:
x> L-HP - xP - N
> xL -HN
It follows from the de nition of applicative simulation and from ( ;~ x:P - N) that

1 = INK- fxP g). Let xX V o. If xL 62xX then ( xxXX ) =0
and the thesis holds. Otherwise, ( x:X )= ( xiL)=1= INK- fxP g). It
follows from L - " P and from xL 2 xX that xP 2 x:(-" X); hence,
INK- fxP g INK- x(-" X).

If the derivation of M + s of the following form:

Ml+ M2+ fPfV:Xg"' PV OxP 2supp() ;V 2supp()

5)
MiM3 + V 2 supp() (V) x:P 2 supp() ( xP) PV

Then M = MM and we have that the last rule used in the derivationof;> M - H N
is:

;S Mp-H M2 M-PME s MM N
;S MM, -H N
Let supp() = fxP 4y xPpgandK; = - fxL jx P -" Lgand, sym-
metrically, supp() = fVi;::i;Mgand X = - fxL j Vg = xM %and x °

MO - H gL Then by the indyctive hypothesis on M1 + and Mz & we have
that o 5 f xPig MK ", Ki foreveryl f Liyngand (o, fVk0)
MK ", Xk foreveryl f 1;:;lg. S

Lemma|[7.12 allows us to derive that for allU 2, ; K; there exist probability
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S
valuesrf; . rH and forall W 2, , | X\ there exist probability values W ::;S}N
such that:
X X [ [
IM YK U) rY MK W) s 8u2 Ki;W 2 Xk
1xi n X 1 k| 1in 1 k|
( xP ) rV ( Vi) sy 81 i n1 k |
U2K; W2X

Hence, for every valueZ 2V ;, we have that:

X X
(2)= ( Vi) ( xXPi)  pw(2)
1Xk | X V:t/| S( X |
Sk ri Pi;Vk(Z)
1k 1TW2Xy 1§ nU2K;

If U= x:U %2 K; then there exists S such that:
2 ;> xS- U @3 x P -Hs

By (2), ; ° SfW=xg- U%Wsg. By (3) and by Lemma [7.10, for W 2 X\ we have
that ; ° PifViexg - 1 SfW=g. It follows from (F.I) that ; ~ P;if Viexg - # U%W=g.
Hence, by the induction hypothesis applied toP;f Vk=xg we derive that p,.v, ( X:X )
JUFWxgK- x: (- " X)). Therefore,

X X X X
(XX ) SV Y m (XX )
1 k IW2Xg 1 i nU2K;
X X W U H
S S Sk I JLU;WI'(' X: (- X))
w2 Xy U2 Ki fkjw2Xkg fiju2Kig
1 k | 1.0 n

IMKW) MKU) LywK- x: (-1 X))

S
W2 Xk U2 Ki
1ok | 1 n

IMMM- x: (- H X))

where Ly.w = U¥W=g for any U such that U = x:U ©
A detailed proof for this case is presented in Sectiof 7]5.

If M + is derived by:

M1+ 1 M2+ o

1 1
My Mz+3 1+35 2

then ;> M - " N is derived by:

;Mg -H Ny ;T My -H N, ;7 N1z Nz- N

;‘ M 4 Mz-HN
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By the inductive hypothesis, fori 2 f 1;2g we have that for any x:X V4,
(X ) NiK- x: (- T X))
Hence, the result follows from:
3 auxX )+ 3 20X ) N x (- FX)+ 5 N x (- H X))
If the last rule applied in the derivation of M + s of the following form:

M1+ 1 M2+ o

M1 kM,] T + (weight( 1)+ weight( ) weight( 1) weight( »)) dirac (T)

thenM = [M1kMy] T and;> M -" N is derived by:

;0 Mg -H Ny ;M -H N, ;7 [N1kN2] T- N

MikM,] T -H N

By inductive hypothesis on M1 + ; we have that for any x:X V¢, 1(Xx:X )
IN1K-  x: (- P X)). Hence, for x:X =supp( 1) we have that:

weight ( 1)=  1(xX ) JINiK- x: (-7 X)) IN1Ksupp(IN1K) = weight (IN1K

and, symmetrically, by the inductive hypothesis on M, + > we haveweight ( )
weight (JN2K). Therefore,

weight () 1+ weight() > weight() 1 weight() »
weight (JIN1K + weight (IN2K  weight (JN1K  weight (IN2K)

Let XXX V . If T62x:X then =0 and the result follows. Otherwise, it follows
fromT = xT %2- x: (- " fTY) (since both - and- " are re exive) that

( xX )= ( xT 9= weight() 1+ weight() » weight() 1 weight() »
weight (IN1K + weight (JN2K)  weight (IN1K  weight (IN2K)

INKxT 9= INK- x: (-1 X))

2

A consequence of the Key Lemma, then, is that relation- H on closed terms is an
applicative simulation, thus included in the largest one, namely. . Hence, if M;N are
open terms andx1;:::;Xn = M -H N then it follows from Lemma that for all

i.e.,, M- N. Since- is itself included in - H, we obtain that - =-". Hence, it follows
from the transitivity of - and from the fact that - " is compatible that:
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Theorem 7.14 (Congruence) - is a precongruence .

The congruence of allows us to prove that it is a sound with respect to the contextual
preorder.

Theorem 7.15 (Soundness) If M- N thenM  N.

Proof. Let M- N. Using Theorem[7.14, it can be easily proved by induction orC that
for any context C it holds that C[M]- C[N]. If C[M]- C[N] then weight (JC[M ]K
weight (JC[M ]K, which implies the result. 2

7.4 FRull abstraction

As we have seen in Sectioh 2.3.3, bisimilarity on reactive probabilistic processes is charac-
terized by the language of testsT, de ned by the following grammar:

t;us=1! j at | h;ui

where a 2 A ranges over the actions of the considered probabilistic transition system.
This characterization is used in [CD14] to show that applicative bisimilarity on terms is
fully abstract with respect to contextual equivalence.

This full-abstraction result is based on the fact that, when we consider the particular
probabilistic transition system for the probabilistic -calculus de ned in Section[7.1, any
of these tests can actually be encoded by a context. However, the characterization of the
simulation preorder requires to add disjunctive tests.

De nition 7.16.  Let L = (S;A} ) be a RPLTS. The test languageT _ is given by the
grammart;u:="! ] at ] ht;ui J t_u, wherea2A.

The probability of success of a test is de ned as in Sectiofi 2.3]3, fot, the test for
actions a:t and the conjunctive test ht;ui. The probability of success of the disjunctive
test corresponds to the probability that at least one of the two tests is successful:

Pr(t _u;s)=Pr(t;s)+Pr(u;s) Pr(t;s) Pr(u;s)

The following proposition characterizes the simulation preorder on RPLTSs by means of
sets of tests.

Proposition 7.17 ([BMOWO5]). Let L = (S;At ) be an RPLTS and lets;s°2 S. Then
s. sPif and only if for every t 2 T it holds that Pr(t;s) Pr(t;s9.

Example 7.18. Consider the two termsM = x: (I  )and N =( x: I) (x: ) from
Example [7.6. We already know that, since they do not verifyM . N, there exists a
testt 2 T whose success probability when executed oM is strictly greater that its
success probability when executed ofmN. We can actually explicitly give such a test: let
t = eval:(l:eval:!! _ l:eval:!! ). Then it holds that:

3 1

2 Pr(t;(x: 1) (x: )= =:

Pr(t; x: (I )= >
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7.4.1 From tests to contexts

It is shown in [CD14] that the applicative simulation preorder is not fully abstract for
PCFL with respect to the contextual preorder: a direct consequence is that disjunctive
tests cannot be simulated by contexts. In other words, it is not possible to write a program
that has access to two sub-programs, and terminates with a probability equal to the
probability that at least one of its sub-programs terminates. The proof of [CD14] is based
on an encoding fromT to the set of contexts. We are going to extend it into two encodings
from T _ to the set of contexts of  o;: one encoding (denoted by Enc) expresses the action
of tests on states of the formM , and the other one (denoted byEnc) on states of the form
¥). The intuitive idea behind Enc and Enc is the following: if we take a testt, its success
probability starting from the state M is the same as the convergence probability of the
context Enc(t) lled by M, and similarly, its success probability starting from the state
\) is the same as the convergence probability of the context En¢j lled by V.

We let C denote the set of all contexts of .

De nition 7.19. LetEnc:T ! CandEnc:T ! C be de ned by:

Enc(! )= x: []; Enc(! )= x[];
Enc(Vit)= [ |; Bnc(vi) = Enc(t)[([ IV)];
Enc(evalit) = ( x: Enc(t)[x])[]; an(eval:t) =[ I
Enc(t _ u) = g(Enc(t); Enc(u)); Bnc(t _ u) = g(Bnc(t); Bnc(u));
Enc(ht;ui) = f (Enc(t); Enc(u)); Bnc(tt;ui) = f (Enc(t); Bnc(u));

wheref;g :C C ! C are de ned by:

F(C:D)=(x (y;z: D(CIXIND I x: [D);
9(C;D) =( x: ([CIxITkDxI]  H(x: []:

The apparently complicated structure of f and g comes from the fact that we chose not
to build contexts with several holes, to highlight how unary contexts can mimic polyadic
contexts in the calculus. Intuitively, we could say that g(C;D) would correspond to a
multihole context [C k D] | . Moreover, the encoding of the fragment of T _ corre-
sponding to T does not use parallel disjunction, i.e., the image off by the encoding is a
subset of the contexts of . We can now apply this encoding to the test we de ned in

Example[7.18.

Example 7.20. Recall the testt = eval:(l:eval! _ I:eval!) de ned in Example [7.18|
We can apply the encoding to this particular test:

Encit)=( x: (z: [(y: (wy Dzl k(y: (wy)zll] D(yx DI

We can see that if we considertheterm® = x: (I )and N =(x: 1) (x: )dened
in Example , the probability of convergence of the context Enc() is the probability of
success of the test with respectto M and N:

Pr(t; M) = weight (JEnc(t)[M ]K Pr(t;N) = weight (JEnc(t)[N]K:
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Theorem 7.21. Lett be atestinT . For every closed termM and every closed value
V it holds that:

Pr(t; M) = weight (JEnc(t)[M ]K Pr(t;¥) = weight (JEnc(t)[V]K):

Proof. We prove the thesis by induction on the structure oft.
If t = !, then for every closed termM and every closed value/, Pr(!;M )=Pr(!; V) =
1, and we have de ned Enc( ) = E'nc(! )= x: []. Since Enc{ )[M ] and Enc(! V] are
values, the weight of their semantics is 1, and so the result holds.
If t = huq;uqi, we can directly adapt the construction proposed in |[CD14] to the
untyped case. By the inductive hypothesis, for 1 i 2 it holds that for every closed
term M and every closed valuev,

Pr(uj; M) = weight (JEnc(u;)[M ]K Pr(u;;V) = weight (Jénc(ui)[V]K):

The overall e ect of f is to copy the content of the hole into the holes of the two
contexts C and D. For any closed termM , we can express the convergence probability
of f (C;D)[M] as a function of the convergence probability ofC[M ] and D[M ]:

weight (JF (C; D)[M]K = (weight (JC[( x:M )1]K) (weight (JD[( x:M ) 1]K)
= (weight (JC[M ]K) (weight (JD[M ]K)

Recall that we have de ned:

Enc(huy;uzi) = f (Enc(uy); Enc(uy))
Enc(huy; usi) = f (Enc(uy); Bnc(uy))

We have that, for any closed termM , and any closed valueV .

weight (JEnc(huq; uzi)[M]Q =Pr( ug;M) Pr(uz; M) =Pr( hug;uzi; M)
weight (J8nc(hu; u2i)[VIK = Pr( ur; ) Pr(uz;X) = Pr( huy;usi; V)

Now the caset = ui _ u». By the inductive hypothesis, forall1 i 2 it holds that
for every closed termM and every closed valuev,

Pr(uj; M) = weight (JEnc(u;)[M ]K Pr(uj; \'7) = weight (JEnc(ui)[V]K):
The de nition of g allows us to show:

weight (Jg(C; D)[M 1K = weight (JC[M ]K + weight (JD[M 1K
weight (JC[M 1K weight (JD[M ]K

and now it is straightforward to see that:

weight (JEnc(u; _ u2)[M]K =Pr(uz _uz M);
weight (J8nc(us _ u2)[VIR =Pr( u; _ uz;¥):

If t = a:u, there are two di erent kinds of actions:
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when a = eval, we rst consider Enc(t): since the eval action is relevant only for
states ofL o which are terms (and not distinguished values), we Wanténc(t)[V] to
always diverge. Sinceflnc(t) = [ ] and sinceJ K= ;, we have that for any closed
value V, Jlnc(t)[VIK= ;.

Now, we consider Enc{). By the inductive hypothesis, we know that:

Pr(u; V) = weight (JEnc(u)[V]R:

We have de ned: Enc(a:u) = x: (ﬂnc(u)[x])[ ]: Let be M a closed term. Then it
holds that:

X
weight (JEnc(a:u)[M ]K = JMKV) weight (Jénc(u)[V]K)

= IMKV) Pr(u;¥)

X

= IMKYQ) Pr(u;¥)
0

=Pr(u;M)

When a = V, with V 2 V 4, we consider rst Enc(V:u). It has been designed
to be a context which diverges whatever its argument is, and so we indeed have:
Pr(Vu;M) = 0 = weight (JEnc(V:u)[M]K. Then we considerBnc(t). Recall that
we have de ned: Bnc(Vu) = Enc(u)[[ ]V]: Let W = x:M be a closed value:

weight (JEnc(V:u)[W]K) = weight (JEnc(u)[WV]K

=Pr(u; WV)
= Pr( u; M fV=xg) since W VK= IM f VxgK
=Pr(Vu;W):
2
Theorem 7.22. . is fully abstract with respect to the contextual preorder.
Proof. We already know that . is sound, that is . ctx - Hence, what is left to show

is that ¢ ., which follows from Theorem[7.2]. LetM and N be two closed terms
such that M o« N. We want to show that M . N. By the testing characterization of
simulation, it is su cient to show that, for every test t 2 T , Pr(t;M) Pr(t;N). Then
the result is a consequence of Theorein 7.1, since every tasbf T can be encoded by
a context of .

2

7.5 Proofs

Proof of Theorem 7.3 - Japplication case

We show the detailed proof of the application case of the Key Lemma.
If the derivation of M + is of the following form:
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M1+ IV|2+ fPfVQ(g"' Pv Ox:p 2supp() ;
V 2 supp()

P P
MiMa + V 2 supp() (V) x:P 2supp() ( XP) pv

then M = M1M> and we have that the last rule used in the derivationof;> M - H N
is:

;S Mp-H MYt Ma-P MY MIMS- N
;MM -H N
We are rst going to apply the induction hypothesis to the derivation of M1 + . The
support of the value distribution is a nite set, say supp()= f x:P 1;:::; X:P ,g. For
every x:P ;, we dene the setK; = - fxL jx P -" Lg. Now we can apply the
induction hypothesis to the derivation of M1 + . Since we know that ;> Mi- " M9 we

derive from the induction hypothesis that for all I f 1;::;ng,
! !

[
fxPig IMX K, (7.2)
i21 i21
Inequation (7.2) allows us to apply Lemma[7.12.,For everyi 2 f 1;:::;ng, let p; =
( x;Pj)andforeveryl f 1;:;;ngdener, = IM KU). We can see that

U st fiju2K;g=1

in the Lemma.

For every U 2 Ki and for everyi 2f 1;:::;ng, de ne r! = Si;fjju2K; g IM IKU)
1im
ifi2fjjuU2K;gand riU = 0 otherwise. We have that:

X [

IM YKU) rV 8U 2 K
1Xi n 1in

(V) rY 81 i n

U2K;

In the same way, we can apply the inductive hypothesis taVl,. Let supp() = fVi;:::;Vig
andlet Xj = - fxL jVi= xM %andx > M%-H Lqg. We have by the induction
hypotgesis that for all I f 1;:51g, (fVej k21g) IMXK w21 Xk - Hence, for all
W 2 ;| Xk there exist| real numberss¥';::; sV, such that:

X [
IM IwW) sy 8W 2 Xk
1)8< | 1 k|
( Vi) sy 81 k |
W2 X

For every valueZ 2V -, we have that:

X X
( Z) = ( Vk) ( X:P i) Pi:Vk(Z)
1 k | 1in
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0 1 0 1
X X X X
@ S\IIVA @ riUA Pi;Vk(Z)
1k | W2Xy 1§ n_ U2K;
0 0 0 111
X X X X
= @ @ @ ) py(@)AAA
1k | W2Xy 1i n U2K;
We prove that for any x:X V 4, if U= xU 02 Kj,and 1 i n, and W 2 Xy,
then p.y (XX ) JUFWxgK x: - X).
Let U2 Kj and W 2 X for somei;k suchthatl i nand1 k |. Then there
exists S such that
;. xS - U (7.3)
X" P - H S (7-4)
Moreover, sinceW 2 X we have that:
Ve -Pw (7.5)

By (7:3), ; ° SfW=xg- U%W=xg, and by (7.4), (7.5) and Lemma[7.10 we have that
;" PifViexg - " SfW=g. It follows by (F-I) that ;~ Pif ixg - H U%¥W=g. Hence, by the
induction hypothesis applied to Pif Visxg we have p,y, (XX ) JUFWxgK- x: (- H
X)). Then we derive:

( xX)
0 0 0 111
X X X X
@ @ @ ) py(xX)AAA
1 k I W2Xg 1 i n_ U2K;
0 0 111
X X X X
@ @ @ Y LuwK- x (- X)AAA
1k I W2Xg 1in U2K;
10 1
X X X X
@ VA @ rYAJLpwK- x: (- H X))
S ! IS ! k s.t. W2Xy i s.t. U2K;
w2 Xk U2 K
1 k |1 1 i n
X X
IMIKW)  IMIKU) LywK- x: (-7 X))
I
S ' s |
w2 X U2 K

1 k | 1 i n

MM x: (- X))

where Lyw = U¥W=g for any U such that U = x:U ©



Chapter 8

Probabilistic environmental
bisimulation

Applicative simulations and bisimulations are known to have some signi cant limitations,
as we have seen in Chaptdr|6. With probabilities, the drawbacks of applicative bisimilarity
are magni ed: full abstraction with respect to contextual equivalence may fail also in a
pure -calculus, and Howe's technique has to be enriched with non-trivial "disentangling'
properties for sets of real numbers, these properties themselves proved by modeling the
problem as a ow network and then applying the Max- ow Min-cut Theorem (see Section
[7.3.1 in the previous chapter).

The price to pay to go beyond these limitations is moving to a more complex de nition
of bisimulation, based on a notion of environment. In this chapter, we de ne environmental
bisimulations for probabilistic higher-order languages. As representative calculi we con-
sider call-by-name and call-by-value -calculi, and a (call-by-value) -calculus extended
with higher-order references.

In Section[8.1, we discuss the main features of our de nitions of environmental bisimu-
lations for probabilistic calculi. We then present in Section[8.2 environmental bisimulations
for pure call-by-name, establish basic properties including full abstraction for bisimilar-
ity and similarity, and develop various up-to techniques. Section[8.8 is devoted to the
pure call-by-value -calculus, and in Section 8.4 we study the extension with imperative
features. In each case we derive full abstraction results for probabilistic environmental sim-
ilarity and bisimilarity with respect to the contextual preorder and contextual equivalence,
respectively.

8.1 Main features

We discuss here the main di erences of our proposals in comparison with ordinary (i.e.,
non probabilistic) environmental (bi)simulations.

Static and dynamic environments In ordinary environmental bisimulation the val-
ues produced during the bisimulation game are placed into the environment, so that the
observer can later play them at will during the bisimulation game. This schema is irrespec-
tive of the evaluation strategy (call-by-name or call-by-value), and is the distinguishing
feature of environmental bisimulations over the applicative ones. "Playing a term' means

113
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copying it. However, in the -calculus the copying possibilities for call-by-name and call-
by-value are quite di erent. In call-by-name, evaluation only occurs in functional position
and therefore the term resulting from the evaluation may not be copied. In call-by-value,
in contrast, a term may be evaluated also in argument position, and then given as input to
a function; thus copying is possible also after evaluation. The di erent copying behavior
is well visible, for instance, in linear logic interpretations of call-by-name and call-by-value
[MOTWO99].

Now, as we have seen in the previous chapter, the semantics of probabilistic languages is
sensitive to the copying operation; for instance the probability of success of an experiment,
if non-trivial, may be lowered by playing the experiment several times. This has a strong
impact on behavioral equivalences for call-by-name and call-by-value in probabilistic -
calculi. As an example,

AR v (x ) and BE(xx) (x) 8.1)
are contextually equivalent in call-by-name: if evaluated alone they always terminate; if
evaluated with an argument, they return the argument with the same probability. More
generally, in call-by-name abstraction distributes over probabilistic choice. In contrast, dis-
tributivity fails in call-by-value, exploiting the possibility of copying evaluated terms; e.g.,
the probabilities of termination for A and B are di erent in the context ( x:xx (X y:y ))[ ]
(see Examplg 7.5).

To be able to express such behavioral di erences, in our environmental bisimulations
the values produced during the bisimulation game are placed into the environmenbnly
in call-by-value. We call such a value environment adynamic environment because it may
grow during the bisimulation game. It is precisely the use of the dynamic environment
that allows us to separate the two termsA and B above. In probabilistic call-by-name,
dynamic environments would break full abstraction for contextual equivalence. The only
environment for call-by-name is static. The static environment for two compared objects
F; G is a pair of -terms M; N , which are, intuitively, the initial  -terms from which, using
evaluation and interaction according to the bisimulation game, the objectsF; G have been
derived. This (small) static environment is su cient to ensure that the congruence proof of
the bisimilarity remains in the style of ordinary environmental bisimulation (i.e., it does not
require sophisticated techniques such as Howe's). In short, the static environment re ects
the copying possibility for terms before evaluation, whereas the dynamic environment
re ects the copying possibility for values resulting from evaluation.

Formal sums  In our probabilistic relations the objects compared are not plain -terms
but formal sums that are the objects produced by the semantics of a term. These are,
intuitively, syntactic representations of probability distributions. As a consequence, envi-
ronments are not just tuples of values, but formal sums of tuples of values. To see why
related objects must be formal sums, consider again the term#é and B in (: our en-
vironmental bisimulation for call-by-name equatesA and B by relating A and the formal
sum resulting from the evaluation of B. None of the components of the formal sum,x:x
and x: , could separately be related with A. (A form of bisimulation on formal sums,
namely a probabilistic version of logical bisimulation, is already de ned in [DLSA14] for
call-by-name; its drawbacks are discussed in Sectign 9.1.)

In pure call-by-value -calculus, full abstraction for contextual equivalence would also
hold without formal sums (i.e., relating plain -terms), for the same reason why, in the
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same language, applicative bisimilarity on plain terms is fully abstract [CD14]. We do not
pursue this simpli cation of environmental bisimulations because it would be unsound in
extensions of the calculus. For instance, consider the following terms of a probabilistic
-calculus with store (again, an instance of distributivity):
def o . def — . .
H=( x=0)(:(M N)) K= ( x:=0)(:M ‘N )

where, as in Sectior| 6.1]2, (x :=0) indicates the creation of a new reference, initialized
with 0, :L is athunk (i.e., z:L for z not free in L), and where, usinngﬁ L, for the
sequential evaluation ofL 1 followed by L,

o

M%E if 1x=0 then (x:= 1seqtrue ) else

N = if Ix=0 then (x:=1seqfalse ) else

(o}
=

The terms M and N only di er at their rst evaluation, when the fresh location | (that
was created with value 0 and substituted tox) is set to 1 and M producestrue whereas
N producesfalse ; thereafter | is 1 and both terms diverge. As a consequencé] and K
are contextually equivalent: at their rst evaluation they always terminate, each returning
true and false with the same probability, and at later evaluations they always diverge.

To placeH and K in a bisimulation, H has to be related with the formal sum obtained
from the evaluation of K ; again, the single components alone would be distinguished. Once
more, this is a copying issue, due to the possibility of copying terms but not stores.

Big-step reduction, term closure, and congruence proof To achieve full abstrac-
tion, in the probabilistic case the bisimulation clauses have to use a big-step, rather than
a small-step, reduction relation. As we have seen in Sectidn 8.2, the semantics of the prob-
abilistic -calculus is given by taking the supremum of its nitary big-step approximants.
Consider once again the terms de ned in Exampld 6.11:

P% RR and deef ., for RE x: (xx) Q (8.2)

(o}

The terms P and Q are contextually equivalent. However, only by exploring the whole
computation tree produced by P does one nd out that the in nite nhumber of leaves in
the tree makes a probability 1 of obtaining Q (i.e., a formal sum made of a nite subset
of the leaves of the tree would not be equivalent toQ).

When the reduction relation is small-step, as in ordinary environmental bisimulations
[SKS11], the related terms need not be values, because a normalizing term need not
produce a value in a single step and bisimulations must be closed under the reduction
adopted. In contrast, as our environmental bisimulations are big-steps, the bisimulation
game may be con ned to values.

A more signi cant consequence of the adoption of big-step reductions concerns the
congruence proof. In environmental bisimulations the proof of congruence goes by in-
duction over contexts, as in proofs for rst-order languages. For this, the proofs in the
literature rely on a "small-step' reduction relation. This allows a tight control over the
syntax of the contexts, which fails with big-step reductions because in a higher-order lan-
guage contexts may arbitrarily grow during reduction. The induction over contexts in the
proofs of congruence for ordinary environmental bisimulations is replaced, in probabilistic
environmental bisimulation, by an induction on the number of small-step reductions with
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which a big-step approximant is derived (possibly coupled with an induction on the size
of a context), combined with two levels of continuity arguments. One level stems from the
least xed point construction employed in the de nition of the in nitary big-step seman-
tics on terms. The second level stems from a characterization of bisimilarity as the kernel
of the similarity preorder and, in turn, as the kernel of a nitary similarity in which (on
the challenger side) the big-step reduction relation employed is nite. The proof of the
characterization with the nitary similarity makes use of least xed-points via a saturation
construction on formal sums where, intuitively, a formal sum is better than another formal
sum if the former one conveys more accurate probabilistic information than the latter one.

Up-to techniques Our proofs and examples rely on a few enhancements of the bisim-
ulation proof method ("bisimulations up-to'), some of which are extensions of common
(bi)simulation enhancements, others are specic to probabilistic calculi. An example of
the latter is “simulation up-to lifting’, whereby it is su cient, in the coinductive game,
that two derivative formal sums are in the probabilistic lifting of the candidate relation,
rather than in the candidate relation itself.

While the bisimulations act on formal sums and use in nitary big-step reductions to
values, we also explore coinductive games played on plainterms and on nitary multi-
step reductions to terms (not necessarily values) as sound proof techniques. In particular,
we combine these with up-to context, so to be able to compare terms in the middle of
their evaluation when a common context can be isolated and removed.

8.2 Probabilistic call-by-name -calculus

The terms of the probabilistic -calculus, as we have seen in Chaptér] 6, are generated by
the following grammar:

M;N = X X:M MN M N

In probabilistic languages, the semantics of a term is usually asub)distribution, that
is, a function that species the probabilities of all possible outcomes for that term. We
de ne here an alternative semantics based orfiormal sums i.e., syntactic representations
of distributions. Formal sums allow us a tighter control on the manipulations of the
operational semantics, which is important in various places of our coinductive de nitions
and proofs. Formal sums have the form

i21 Pii M

where O< p; 1, for eachi, P i1 B 1,andl is a (possibly in nite) indexing set. In a
summandp;; M; of a formal sum, p; is its probability value (or weight), and M; is its term.
The terms of di erent summands of a formal sum need not be di erent. We gxtend some
de nitions for probapility distributions to formal sums. The weight weight (5, pi; M)
of a formal sumis ,,, pi. We let F; G range over formal sums, and we write the empty
formal sum as; (i.e., the formal sum with no summands). We write F = G if F and G
are syntactically equal modulo a permutation of the summands and modulo the presence
of ; as summand. We use "+' for binary sums, in the usual in x form, and sometimes
apply it also to formal sums, as inF + G. We write the empty formal sum as;. Value
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formal sums ranged over byY;Z are formal sums in which the term of each summand is
a value.

There is an obvious mapping from formal sums to distributions, whereby a formal sum
F yields the distribution in which the probability of a term M is the sum of the weights
with which M appears in summands ofF. The mapping is not injective: in general,
in nitely many formal sums yield the same distribution (because of possible duplicates in
the terms of the summands of a formal sum). For instance};M + ;M and 3;M are
two di erent formal sums, that correspond to the same distribution assigning probability
% to term M and probability 0 to any N such that N 6 M.

ng sometimes decompose formal sums using a lifting construction. Given formal sums
Fi= " 25 Pij;Mjj, fori2 1, wedene

P P
i1 i Fi &t i215 23 P Pij yMij

with p; ; = ;. The semantics of a termM , written JM K is a value formal sum produced
as the supremum of the value formal sums obtained by nite computations starting from
M, using a preorder px on formal sums in whichF1 apx F2 if F1 is an approximant of
F» (in other words F» conveys more information thanF); formally, F» = F1+ G for some
G. The semantics is obtained in various steps, whose rules are presented in Figyre|8.1:

1. asingle-step reduction relation!  from terms to formal sums (where the evaluation
contexts are the usual ones for call-by-name, i.eC :=[ ]JCM) ;

2. a multi-step reduction relation =) from terms and formal sums to formal sums,
from which a relation Z) to value formal sums is extracted by retaining only the
summands whose term is a value via the functiorval :

P def P Y
val ( pi;Mi) = fijMiisavaIuegpi'lvIi '

3. the semanticsJ K mapping terms and formal sums to value formal sums via the
supremum construction.

If M =) i1 Pi;M;j then | is nite, and each i represents a "possible world' of the
probabilistic run of M, with probability p; and outcomeM;. The subset of possible worlds
in which M; is a value makes for an approximant ofM , and from such approximants the
semantics ofM is obtained.

Since value formal sums form an! -complete partial order with respect to the apx
preorder, and for everyM the set of those value formal sumsy such that M Z) Y is a
countable directed set, the semanticsIM Kof a term M exists and is unique.

Relations =) andZ) are nitary in the sense that a derivation proof where one of such
relations appears in the conclusion only contains a nite number of “small steps' (relation
I' ). When reasoning by induction, sometimes we will need to make such number explicit,
therefore writing =) ,, and Z) |, respectively.

Rule MulT , in contrast with MulFS , does not need a nitary condition on the in-
dexing set because a formal sum obtained in a small step from a term may have at most
two summands.

Additional notation. We introduce here some additional notation, allowing us to easily
manipulate terms and formal sums. This simpli ed notation is only used in the proofs
of oup results; in the rest of:,the paper, we use the extended notation de ned above. For
Y= ,p;xMjandF = ;p;M;, we de ne:
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single-step reduction relation from terms to formal sums

ta Sum
(xxM )N ! 1;MfNxg Mi Ma! LMo+ 5M,

Be

;M C ils_, an evaluation context
CM]! i pi; C[Mi]

Eval

Evaluation Contexts C:=[]iCM

multi-step reduction relation from terms to formal sums

P
- M! iP;My  Mi=) F
MulO M) LM MulT M =) I o F

multi-step reduction relation from formal sums to formal sums:

Mi :) % .
MulFS R I | nite
i21 Pi;Mi+ G =) i21 P Fi+G

multi-step reduction relation from terms and formal sums to value formal sums

M=) F val (F) = Y F=) FO val (F9) = Y
MDY MulVES F5 v

MulvVT

the semantic mapping, from terms and formal sums to value formal sums

MKE supfy jM2) Yg IFKEsupfy jF2) vg

Figure 8.1: Operational semantics for call-by-name

- xM P=MfPxg;

def P
-Y PE | piiMifPxg;

cF1® Y piemil;

P
-FPE i piMiP .

Remark 8.1. By default, the results and de nitions of environmental bisimulations we
will present are (implicitly) stated for closed terms. They can be generalized to open terms
in a standard way for bisimulations in -calculi [SPO7a; KWO06h;|SKS11], essentially deriv-
ing properties between open termav and N from the corresponding properties between
the closed terms M and =N, forfeg FV(M)[ FV (N). We will often omit the
word \closed" when referring to closed terms and values.
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8.2.1 Environmental bisimulation

In call-by-name, a probabilistic environmental relation is a set of elements each of which
is of the form (M;N ) or ((M;N);Y;Z), where M;N;Y;Z are all closed,M;N are -
terms and Y; Z value formal sums. Intuitively, in the former elements M and N are terms
that we wish to prove equal, and in the latter elementsY and Z are value formal sums
obtained from M and N via evaluations and interactions with the environment. We use
R; S to range over probabilistic environmental relations. In a triple (M;N );Y; Z) the pair
component (M;N ) is the static environment, and Y;Z are the tested formal sums We
write Ry ) for the relation f(Y;Z) j ((M;N);Y;Z) 2 Rg; we accordingly use the in x
notation Y Ru.n) Z, and similarly for M R N. In the remainder of the chapter, when
discussing probabilistic environmental relations, bisimulations, simulations, or similar, we
abbreviate “probabilistic environmental' as "PE', or even omit it when non-ambiguous.
Static environments (that is, pairs of  -terms) are ranged over byE. If E= (M; N ) then
its context closurg written E?, is the set of all pairs of the form (C[M]; C[N]). We use a
similar notation for the context closure of relations on -terms.

Remark 8.2 (Static environment). Our results would also hold admitting arbitrary sets
of pairs of -terms as static environments, rather then single pairs. We have chosen
single pairs so to bring up the minimal requirement on static environments for our proofs
to hold (notably the congruence for bisimilarity).

De nition 8.3  (Environmental bisimulation, call-by-name). A PE relation R is a (PE)
bisimulation if

1. M R N implies M KR y.n y INK;

P P o
2. ;pi; XM R LE X:N j implies:
P P
(a) iPi= G
., P P
(b) forall (P;Q) 2E?,  ;pi IMifPxgKRe | g JIN;fCxgK.
We write  for (PE) bisimilarity , the union of all PE bisimulations.

While is a PE relation, we are ultimately interested in comparing -terms (M N
if M R N for some bisimulation R).

Remark 8.4. Using the additional notation de ned in Section B.2, we can write the
bisimulation clauses for formal sums as follows:

(2) Y Re Z implies:

(@) weight (Y) = weight (Z2) ;
(b) forall (P;Q)2E? JY PKRgJZ OK.

Example 8.5. We have
def

d

= () () S ) € N:

This is proved noting that M K= %; :: + 3;: and JNK=1; N, using the bisimulation
R inwhich M RN, IMKRwn)INK 3 : Rwny 350 ,and ;R w5 - Terms M;N
could not be equated by a bisimulation that acted only on terms (ignoring formal sums),
as neither :: nor : can be equatedto N.

—h

M
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De nition 8.6  (Simulation). In De nition §.3,]and in the remainder of the chapter for
other de nitions of probabilistic bisimulation, the corresponding simulation is obtained
by replacl'gpg the g,quality '=" on the weights with © '; thus in De nition clause (2a)
becomes ; pi R

The union of all simulations, similarity , is written . .

Theorem 8.7.
1. and. are the largest bisimulation and simulation, respectively.
2. . is a preorder, and an equivalence.
3. =.\. 1L

Proof. 1. 1f M N then there is a bisimulation R such that M R N. Therefore,
((M;N); IMKJINK 2R . Analogously, if (E;Y;Z) 2 then (E;Y;Z) 2R for
some bisimulationR and the formal sums have the same weight and, for alP; Q 2 E?,
(E;dy PKJZ QK2R . The same holds for simulation.

2. Identity is a simulation, hence . is re exive. If R ;S are simulations, then their
relational composition

RS=f(M;N)j9P suchthat M RP SNg
[f ((M;N);Y;Z)j9YSP such that Y R (w:p )Y %Sy Z9

is a simulation. If M R P S N then MKRup) JPKSp.n) INK Hence,
JMKR S)(M;N )JN K If YR (M;P )YO S(P;N) Z then weight (Y) weight (Y%
weight (Z) and for every C, JY C[M KR (u.p) Jy?© C[P]KSp:ny JZ CIN]K Then

is transitive and re exive. Analogously, is re exive and transitive, and for any
bisimulation R it holds that

R t=f(MiN)jNRMg[f (M;N);Y;Z)jZR nm)Y9
is a bisimulation as well
3. The result follows from (1) and from the fact that the calculus is deterministic:

(a) if R is a bisimulation then both R and R ! are simulations;

(b) to prove that . \ . 1 , we show that . \ . ! is a bisimulation. Let
R and S be two simulations. If M R N and N S M then JM KR(MN)
INKand INKSn:m )y IM K which implies that ((M;N );IMKJINK 2. \ .

If (M;N);Y; Z) 2 R and (N;M);Z;Y) 2 S then for all C we have JY
CIMIKRmn) Z C[N]JKand Z C[N]JKSnmy JY C[M]K Therefore,
(M;N);JY C[M]KJZ CIN]J® 2. \ . 1 Finally the clause on the weights
holds by ((M;N );Y;Z) 2R and ((N;M );Z;Y) 2 S, which imply weight (Y)
weight (Z) and weight (Z) weight (Y), respectively.

2

The bisimilarity, or similarity, is directly de ned using the semantics of terms, which
is a least- xed point on top of big-step approximants. When proving properties about
bisimilarity and similarity, therefore, we need to reason about such approximants. For this,
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we introduce a nite-step simulation in which the challenge reductions of the simulation
game employ the big-step approximants (the relationZ) of Figure [8.1). We cannot
have characterizations of bisimilarity in terms of a nite-step bi-similarity because in
general the weights of the approximants of two bisimilar terms are di erent, as shown in
Example[8.§. Hence, to reason about bisimilarity we go through its characterization via
similarity (Theorem 8.7), and then the characterization of similarity via the nite-step
similarity (Corollary §.12).

Example 8.8. Let P and Q be the terms discussed in[(8]2) in Sectioh 8]1. A bisimulation
relating P and Q is

P
f(P;Q);((P;Q) & 155 Q1,Q):((P;Q)is5)

We could not prove the eqL\gllty usmg nite-step approximants for bisimulation, since
those for P are of the form = ; | ., 5:Q, for somem, and thus have a smaller total
weight than the formal sum 1;Q immediately produced by Q.

De nition 8.9. A PE relation R is a nite-step simulation if
1. MRN andM Z) Y imply Y RNy INK;

P P . .
2. ;pi; XM jRg L E x:N j implies:
P P
@ ip i G
. > o P . p P
(b) forall (P;Q) 2E", if ;p;MifFPxgZ) Y thenY Re g IN; f QxgK.

We write . , for nite-step similarity . In nite-step simulations, the challenges are
expressed by nitary reductions. Moreover, any result about nite-step similarity . , on

-terms can be established using a nite-step simulation with nite formal sums on the
challenger side, though this constraint is not required in the de nition.

Remark 8.10. Clause [2B) of De nition 8.9] -cannot be written thus:

for al|:,(P Q) 2E" II,|f MifPxgZ) Y for everyi

then  ;piYiRe ;g IN; i f QxgK
because, as the index sek can be in nite, the challenge in the bisimulation game might
not be nitary. By contrast, reduction Z) on formal sums (from Figure) is nitary.
This allows proofs by induction on the number of single-steps in a reduction.

We denote by Pairs (R) the set of pairs of terms in a PE relation R. We use two
saturation constructions to turn a simulation into a nite-step simulation and conversely.
Given a PE relation R, its saturation by approximants is

Pairs (R) [f (E;Y;Z) j there isYOwith YORgZ and Y a5« YO0
S
and its saturation by supremais | R", where

RO
RN+l

Ilm ||(‘D

R
"Rn [f (E;Y;Z) j there arefY;g; with
Yi REZ; Yi apx Yi+1; and Y =supfYigig:
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Lemma 8.11.
1. The saturation by approximants of a simulation is a nite-step simulation.
2. The saturation by suprema of a nite-step simulation is a simulation.

Proof. The proof of (1) follows from the de nition of JM Kas the suprgmum of the set
f:,Y jM Z) Yg. For (2), the crux is proving by induction on n that if ,pi; xXM ; RE
i G XN j then:
P P
1. pi PG
P o P 5
2. ;pi;MifPxgZ) Y impliesY RE ;g JIN;fQxgK for all (P;Q) 2 E”.
The details of the proof can be found in Sectiorj 8.5. 2
Corollary 8.12. The similarity and nite-step similarity preorders, . and. |, coincide.

Proof. The result follows from Lemma|8.11 and from the fact that a simulation (respec-
tively: a nite-step simulation) is included in its saturation by approximants (respectively:
by suprema). 2

The following example highlights the di erences between simulations and nite-step
simulations, by proving the equality in Example using nite-step simulations.

Example 8.13. Terms P and Q of Example[8.8§ can be prov%d equwalent by exhibiting

the following nite-step simulations, where Yy def ;and Yy = 1n moar ,Q form 1:
RE1(PQ:(PiQ):i)alf (P1Q):iYag1iQ) j m  0g
def 2

S_f(Q P) ((QP),,,,)((QP)]-Q an”’Q)g

To derive the substitutivity properties of the similarity, and hence of the bisimilarity,
we also need an up-to technique for the nite-step similarity. Speci cally, we need an
up-to lifting technique whereby, in the simulation game, two derivative formal sums can
be decomposed into “smaller' formal sums and it is then su cient that these are pairwise
related. We write lift (S) for the probabilistic lifting of a relation S on formal sumsE]

lift (S) f(F G) j therea'[,el,pi;Fi;Gi,forlg,ZI,with
FiSGiandF = ,pFiandG= ,p Gig

De nition 8.14. A PE relation R is a nite-step simulation up-to lifting if
1. MRNandM Z) Y imply Y lift (Run)) INK;

P P o
2. ipi; XM iRe q;xNjimplies:
P P
(a) i Pi iG o
s . P . P
(b) forall (P;Q) 2E? if ,pi;MifPxg2Z) Y thenY lift (Rg) quNijqu

91n contrast with the lifting relation de ned in Chapter 2 @e nition 2.1e lifting relation de ned
here takes a relation on formal sums and returns a relation on formal formal sums. The lifting relation
in Chapter E]takes a relation on states (corresponding to terms in the setting of the present chapter) and
returns a relation on distributions on states (formal sums in the present chapter).
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Lemma 8.15. If R is a nite-step simulation up-to lifting then R . .

Proof. Let R be a nite-step simulation up-to lifting. Then S is nite-step simulation:

SE Pairs (R)[f (M;N);Y;2)j Y lift (R oun))Zg

If M S N then M RN, which implies that if M Z) Y then Y lift (R mwn))INK
Hence,Y Sy INK p =
Let Y Suny Z, e, Y = oY, Z = P Zi and YR (N )Zi. For every i,
weight (Y;)  weight (Z;), henceweight (Y) weight (Z).
Foreveryi,Y; C[M]Z) Y\ implies \{,Olift (R (mny) IZi CINIKby the de nition of R.

SinceY C[M]2) Y°implies Y°= " p Y for someY,°such that Yi C[M]2) Y
andJZ C[N]K= ;pi;JZi CIN]K then Y Olift  ( lift (Rmny))JZ CINJK The result
follows from litt (It (R gny)) = Nt (R v y)- 2
Example 8.16. LetP % . Q% ..  and

def def

M=(P P) (Q Q; N=(P Q (P Q):
The following nite-step simulation up-to lifting shows M. , N:
R EF(M;N ); ((M:N ) 1P 1P); (M3 N ) 15 Q: 15 Q);
(M;N);55 LP)((M;N); 55 1,Q)g

The “up-to lifting' technique allows us to have a relation with only empty or Dirac formal
sums (i.e., a single summand with probability 1).

Remark 8.17. We have seen in Exampl8 that the termsP and Q de ned in (,
Section[8.], cannot be proved equivalent using a bisimulation with small-step, nitary
clauses. We could prove the terms equivalent by using a bisimulation with small-step
clauses if we allowed the reached formal sums to be decomposed into equally weighted for-
mal sums (formally: using the up-to-distribution-and-lifting technique discussed in Section

[8.2.3). In this case, it would be su cient to de ne a bisimulation relating P and Q, and

we would only need to consider the formal sum%; P+ %;Q (reached by P in one step)

and decompose 1Q (the formal sum reached in zero steps byQ) as %; Q+ %; Q.
However, such a bisimulation would not be complete, since the same reasoning would

not apply to the terms M and N de ned below, where R; e x: (xx) xQ and

R, % x: (xx) Q

o

def e

ME(RR) 10 N ¥ :(RR) 0

Terms M and N cannot be proved equivalent using a small-step bisimulation, since N
is only equivalent to the semantics of M, which is not reachable in a nite number of
steps. Indeed, no decomposition of Iy can be matched with a decomposition of any
approximation of the semantics ofM .

Lemma 8.18. If M. N thenC[M]. , C[N], for any context C.
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Proof. Given a a nite-step simulation R saturated by approximants, we prove that the
PE relation

f(CIM;CIN]) j M RNg

[f ((CIMJ;CIND; L x:C IM];1; x:C IN]) j M RNg

[f (CIMLCIND;Y:Z) j YR mN)Z9

[f (M;N);;;Z) ] forsomeM;N;Z g

is a nite-step simulation up-to lifting. The details of the proof can be found in Section
8.5. 2

Hence, (pre)congruence results for bisimilarity and similarity follow from Lemma[8.18,

Corollary B.12 and the fact that = . \ . ! (Theorem[8.7).

Corollary 8.19. On -terms, is a congruence, and. a precongruence.

8.2.2 Contextual equivalence

The contextual preorder and equivalence are de ned as in Sectiop 6.2.2, using the weight
of the semantics of terms, which are now formal sums. We se¥l + det weight (JM K (the

probability of termination).

De nition 8.20  (Contextual preorder and equivalence) M and N are in the contextual
preorder, written M x N, (resp. in contextual equivalence written M =y N), if
C[M]+ CIN]+ (resp.C[M]+ = C[N]+), for every context C.

Lemma 8.21 (Completeness) On  -terms, cix

Proof. We prove that the following is a simulation:

RE( ) [f (M;N);JICMIKICINI® j M cx Ng

We have M R N if and only if M« N, which by de nition of R implies that
IMKR vy ) INK
If Y Rgwny Z thenY = JC[M JKand Z = JC[N ]Kfor some contextC. Hence, for anyC°we
havedY CIM]K= JX[M]K CIM K= JC[M]CIM ]JKandJZ CYN]K= JI[N]K CIN]K=
JC[N]CANJKand by the de nition of R we haveJC[M JCIM JKR (y.n )JC[NICIN]K

2

Corollary 8.22 (Full abstraction). On  -terms:
1. relations o and. coincide.
2. relations =« and coincide.

Proof. Completeness of the simulation preorder holds by Lemm@ 8.21. The converse, i.e.,
soundness, follows from the fact that. is a precongruence (Corollary 8.19) and\l . N
implies weight (JM K weight (JNK (by clause (2a) of simulation). Hence,M . N
implies C[M]. C[N] implies weight (JC[M]K  weight (JC[N ]K.

Completeness and soundness for follow from (1) and the fact that  (respectively: =)

is the kernel of . (respectively: ¢ ), by item (3) of Theorem B.7] 2
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8.2.3 Up-to techniques

We have pointed out (Example[8.5 and 8.8) that our simulations (and bisimulations) have
to be based on formal sums and cannot employ nitary reductions, as in ordinary envi-
ronmental bisimulations, in order to faithfully represent contextual equivalence. However
each of these features is sound and can therefore be used in proof techniques. In this
section we show examples of such techniques. These techniques are very limited and we
leave for future work the development of more conclusive ones.

Finitary reductions | the possibility of stopping the evaluation of a term after a
few -reductions | are interesting in enhancements with up-to context (the ability of
isolating and removing common contexts in derivative terms) because sometimes such
common contexts appear in the middle of a reduction. For applicability, up-to context
is usually combined with further up-to techniques that allow us to bring up the common
contexts. In the rst up-to technique, where the coinduction game still uses formal sums,
we combine up-to context with up-to lifting, so to be able to decompose related formal
sums into pieces with di erent common contexts. In the technique, the context closure of
the up-to context is only applied onto -terms. The closure could probably be made more
powerful by applying it also on formal sums, at the price of a more complex proof, but its
usefulness is unclear.

In clause ) below, and in the remainder of the chapter, we use the functiordirac
that takes a set of pairs of -terms (M;N ) and returns the pairs of their (Dirac) formal
sums (1;M; 1;N).

De nition 8.23. A PE relation R is a nite-step simulation up-to lifting and context if:
1. MRN andM Z) Y imply Ylift (R gn)) INK;

P P L
2. ipi; xMiRe q;xN;jimplies:

P P

@ ip i G

(b) for all (P;Q) 2 E?, one oIthhe following holds: b
there areF; G such that  ; pi;MifPxg=) Fand q;N;fQxg=) G with
F l'gt (dirac (E?)) G ;
if ., pi;MifPxgZ) Y the
Y lift (dirac (E))[R g) ;g IN;fQxgK.

The following lemma proves the soundness of the up-to lifting and context technique.
Lemma 8.24. If R is a nite-step simulation up-to lifting and context then R . .

Proof. Let R be a nite-step simulation up-to lifting and context. We prove that

RO%" pairs (R)

[f (M;N);Y;2) ) YOR (un)Z and Y ap YO for someY %
[f (M;N);1;xC [M];1; xC [N])) j M R Ng

[f (M;N);;;Z) ] forsomeM;N;Zg

is a nite-step simulation up-to lifting, from which the result follows by R R % The
details of the proof can be found in Sectiorj 85.
2
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Example 8.25. The up-to lifting and context technique allows us to prove that terms
A;B de ned in (B.1) in Section [8.1 are bisimilar. We prove A . B using the PE relation

f(A;B);((A;B); JAKIBKgQ :

Indeed, JAK=1; A and BBK= %; XX + %; x: and, for any pair of arguments of the form

(C[A]; C[B]) used to test the formal sums, we have 1C[A] I 1;C[A]+ %; and the

pair (3;C[A]+ 3; ;3:C[B]+ 3; )isin lift (dirac (f(A;B)g?). Analogously, using the
relation f(B;A);((B;A); IBKJARg[f ((B;A);;;Z) j forany Zg we proveB . A .

In the second up-to technique, the game is entirely played on terms, without appeal to
formal sums. We present the technique in combination with forms of up-to context, up-to
distribution, up-to reduction, and up-to lifting. This technique will allow us to prove the
equivalence of two probabilistic xed-point combinators in Section[8.2.4.

A term relation is a relation T(y.y y on values of  and the index (M;N ) is a pair of

-terms. The index corresponds, intuitively, to a static environment of an environmental

bisimulation. We use the notation T(?M;N ) for Tmwny [ (M;N ).

A term M deterministically reduces to G (notation: =§1 )if M =) G and only the
last reduction in the sequence may be derived using rul&um. We write M M%if M
and M ° deterministically reduce to the same formal sum, butM ©takes fewer steps. That
is, there are G:m:m%with m  m%and with M :51 m G, and MO:SJ mo G. Thus, in

De nition : ?T(I'\’A;N) is the set

f(P;Q) j P ?P%or POwith P{Tmny [f (M;N)g?)Qg:

We then write F =4is FYif F and F°represent the same probability distribution. In the
up-to technique below, gives us the “up-to reduction’, and =gs the 'up-to distribution'.
We use up-to distribution to manipulate formal sums, which are purely syntactic objects.
Finally, :Sj =g4is IS the composition of the two relations, i.e.,M :5‘ =4is F if there is FO
with M =J F%and FO= ;s F.

De nition 8.26. A term relation Ty.y ) is a bisimulation up-to context closure, distri-
bution, reduction, and lifting if

1. IM K=4s dirac (T(M;N )) =dis INK;
2. if xM Ty x:N Othen for all (P; Q) 2f (M;N )g?,

M%Pxg=y =4 lift (dirac ( T ) = 4is (5 N¥Qxg:

(

We rst establish the soundness of the up-to distribution and lifting technique. For
a relation R on formal sums, we write dislift  (R) for the set of pairs F; G such that
F =gis lift (R) =g4is G. The up-to distribution and lifting technique is obtained by
substituting lift () with dislift () in De nition

Lemma 8.27. If R is a nite-step simulation up-to distribution and lifting then R . .

The proof follows as the one for the up-to lifting technique (Lemmg 8.15), and exploits
the fact that dislift  (dislift ()) = dislift (). Then we derive the soundness of the
full technique (the proof can be found in Section 8.5).
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Lemma 8.28. If Ty ) is a bisimulation up-to context closure, distribution, reduction,
and lifting then (M;N ) 2

Remark 8.29. The rst clause of the up-to technique in De nition §.26is not sound if
T(m:n ) Is substituted by T(",i,I_N )- inthis case, for any pair of valuesV; W, relation T(\,;W)déaf
; would satisfy the de nition, since VK= 1; V, IWK= 1; W and 1;Vdirac (f(V;W)g’)1;W:

8.2.4 Fixed-point combinator example

In the reductions of this example, we write a Dirac formal sum 1M as M, so to have
reductions between -terms. We exploit the up-to technique of De nition 8.26]to prove
the equivalence between two xed-point combinators. One of the combinators is :

o

e

E' vy (Dy(Dy))

whereD €' y:xy (xx) :
For any term L we have
L '  L(DL(DL)) (8.3)
and then DL (DL) ! L(DL (DL)) :

The other combinator at any cycle can probabilistically decide whether to behave
di erently (i.e., as Turing's xed-point combinator) or to turn for good into the previous
combinator:
odef hopyo
def
where D' x:y: ((y(Dy(Dy))) (Y(xxy))) :

Thus the computation of 9L will unveil, for a while, some L's while computing as Turing's
combinator, and then will continue unveiling L's by computing as . Indeed, for

9L y: (y(Dy(Dy)) (y(DDY));

we have
Q1 Lt (L(DL(DL)) (L(DDYLY) (8.4)
I LL(OLMDL)+ L(DDL):
We can establish O using the term relation

T . 9= f(; 9g:

The interesting case is the bisimulation clause for (; 9). Take any M f( ; 9g’ N.
By (8.3), we have M | M (DM (DM )), whereas by (8.4), N =J L:N (DN (DN ))+
%; N (DD N). Now we could conclude, up-to context closure, distribution, reduction, and
lifting, if we can show that the pairs
(M (DM (DM ));N (DN (DN )))
and (M (DM (DM ));N( N))

are in ?T(KA;N ) This holds because: the rst pairisinf( ; 9g’; for the second pair, by

(B.3) we deduceDM (DM ) M, and then we have
M(DM (DM)) "M ( M)f( ; Y’ N( N):

The example also shows the usefulness of static environments (whose terms need not
be values) for context closures in "up-to context' techniques.
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8.3 Probabilistic call-by-value -calculus

In call-by-value, the static environments are not anymore su cient. As in ordinary envi-
ronmental bisimulations, we need a dynamic environment to record the values produced
during the bisimulation game. In ordinary environmental bisimulations we can see such
environments as tuples of value@ In the probabilistic case formal sums come into the
picture. Environment formal sums are terms of the form

i i pis
(i.e., sums of weighted tuples) in which all tuplesbﬂ have the same length and, as for
ordinary formal sums, 0< p; 1 for eachi and ;pi 1. We call the length of the
tuples ¥ 's the length of the environment formal sum. The tuples'¥ represent the dynamic
environment: the knowledge that an observer has accumulated during the bisimulation
game. There may be several such elemen®, re ecting the possible worlds produced by
the probabilistic evaluation. During the bisimulation game, the environment formal sum
is updated. Viewing the environment formal sum as a matrix, in which % represents the
i-row and the elements §);; (%)r;::: (the r-th element of each row) represent ther-th
column, a column is a set of values that the various possible worlds have produced at the
same step of the bisimulation game. (This explains why the tuples@'s of the sum have
the same length.)

More precisely, in the bisimulation game at each possible world a term M; (con-
structed from the ¥'s using a context closure discussed below) is evaluated. The evalua-
tion of M; yields, probabilistically, a multiset of values (as a formal sum). This multiset
is empty when all evaluations from M; diverge; in this case the whole rowi disappears,
meaning that in the i-th possible world the observer never receives an answer. When the
multiset is non-empty, the row i is split into as many possible worlds as the values in the
multiset. For instance if the evaluation of M; producesV with probability % and V9 with
probability % then the row p;;'§ is split into the two rows 1 pi;%;V and 3 pi;@; Ve

This spliging operation is captured by the following f_@ultiplication of an environment
formal sum ,,, pi; % and a tuple of formal sumsY; = i23; P VVij -

P def P
i2] pi; % i = i215 29; Pi Bijj ;el;\/i;j :

We useY ;Z to range over environment formal sums, and we sometimes treat a formal
sum as a special case of environment formal sum in which all tuples have length one.

The view of environment forlgnal sums as matrices is illustrated in Figure 8.R, for an
environment formal sum Y %' 1 i 3bi;% of length 4. The gure also illustrates the
extraction of the column r of the formal sum, written Y ., that yields the tuple of values
along the same column, and the multiplication of an environment formal sum with formal
sums resulting from the semantics of terms, one per row (wherd = x:x is the identity
function).

P P
The dynamic environment of two environment formal sums ;,, pi; % and  ;,; g v,
is the pair of tuples (of tuples) (f % gi2) ;ij gj23)- In environmental bisimulations, the

1 The de nition of environmental bisimulation given in Chapter 6 @e nition 6.7 non-probabilistic
calculi has a unique notion of environment E, which corresponds to what we call here the dynamic environ-
ment. In remark £.8] we have seen how this environment can be alternatively formalized in non-probabilistic
calculi using tuples of values.
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Y 1Y 2Y 3Y 4

—_—

x  Pu Vi1 | Va2 | Viz | Via } A2
Y = P2; | V21 | Voo [Voi3 | Vous } \
P3; | V31| Va2 | V33| Vaa } ¥

BL- v [Vio | |

X X o | V11| Vi
Vi1 |V I K _

oo e = B Ve [Va |

P2; | V2:1 | V22 : %2; Vo1 | Vo

Figure 8.2: Formal sums as matrices

input for two higher-order functions is constructed as the context closure of their environ-
ments. In call-by-value, the environments have both a static and a dynamic component
and the inputs are constructed accordingly. Given a static environment M;N ) and a

dynamic environment (f & g;; ij gj ), their context closure, written

(FM; @9 fN; W g)?

is the set of all pairs of tuples ¢ Tig;;fUjg;) for which there is a context C such that for
every i we haveT; = C[M; ¥], and for everyj we haveU; = C|N; Wj]. Thus every T;
is obtained from the same contextC by lling its holes with the rst element M of the
static environment and the dynamic environment %. Similarly for U;, using N, the tuple
Wj and the same contextC. Moreover, as we are in call-by-value,C should be a value
context, that is, terms T; and U; are values for alli;j .

The operational semantics of call-by-value is de ned as in call-by-name, provided that
the rule for -reduction and the evaluation contexts are rede ned thus:

BetaV
© (xxM V! 1;MfVxg

Evaluation contexts cC=[] CmM VC

8.3.1 Environmental bisimulation

In call-by-value, a probabilistic environmental relation (that we still abbreviate as PE
relation) is like for call-by-name, except that formal sums are replaced by environment
formal sums. That is, each element of the relation is either of the form ;N ) (a pair of
-terms) or Y Rg Z (two environment formal sums, collecting the dynamic environment,
with a static environment).
If E=(M;N) is a static environment, then E; and E, denote the projections, i.e., the
terms M and N, respectively.
In a PE relation, related environment formal sums arecompatible meaning that they
have the same length. In the remainder, compatibility of environment formal sums is
tacitly assumed.
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De nition 8.30  (Environmental bisimulation, call-by-value) . A PE relation is a (PE)
bisimulation if

1. M R N implies IM KR y.n )y INK;
P P L

2. ;p;% Re jq;fNj implies:
P P

@ ip= ;G;

(b) for all r, if (%), = xM ; and (Wj)r = x:Nj then for all (fTigi;fUjg) 2
(fE1; % gi; fE2; W g )? we have

P P
0% IMifTixgKRE | ;W) IN;fUisgK;

P P
© p:¥% JEKRe ;q;v FEK.

(PE) bisimilarity , , is the union of all PE bisimulations, and the corresponding
similarity is. .

The structure of the above de nition is similar to that of ordinary environmental
bisimulations. There are three main di erences: rst, the appearance of formal sums and
of probability measures (notably in clause (2a)); second, the use of an (in nitary) big-step
semantics, rather than a small-step, which shows up in the functiond Kin clauses (1),
(2b) and (2c); thirdly the appearance of a static environment, that is used in the context
closure and in clauses (1) and (2c). In clause (2b), the related environment formal sums,
viewed as matrices, grow by the addition of a new column resulting, on left-hand side,
from the multiplication of each row p;;% with the formal sum JM;f TixgK and similarly
on the right-hand side. Thus the compatibility between related environment formal sums
is maintained. Clause (2c) allows to re-evaluate the static environment at any time. This
clause and other features are necessary in order to achieve full abstraction in the imperative
case (see Sectioh 8.4.1); they could be removed in pure call-by-value, followirig [CD14].

Remark 8.31. Clause (1) could be substituted by
(19 M R N implies 1;; R (v 155

where 1;; is the Dirac formal sum with empty environment. Clause (2c) then guarantees
that IMKRu,n) JNK We did not use this de nition for continuity with the call-by-
name case, and since not needed for pure calculi. By contrast, a modi cation of clause
(1) analogous to (19 is used in De nition of bisimulation for imperative calculi (see

Example[8.42).
Theorem 8.32.

1. and. are the largest bisimulation and simulation, respectively.
2. . is a preorder, and an equivalence.
3. =.\. 1

Proof. The proof is analogous to the one for call-by-name. The addition of the dynamic
environment is not relevant for this proof, and the extra clause (2c) is treated analogously
to clause (2b). 2
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Example 8.33. Terms M and N in Example [8.5 are equivalent in call-by-name, but
not in call-by-value. A bisimulation relating these terms should contain the formal sums
MK= %1;:: + 10 and INK= 1;N, with static environment E = (M;N ), and
thus the triple (E; %; N ;%; N; : ) would be in the relation as well. However, the
values in the rst column of the dynamic environment can be tested again, by clause (2b)

of bisimulation, leading to the triple

which does not satisfy clause (2a).

The main results for environmental bisimilarity and similarity in call-by-value (congru-
ence and full abstraction with respect to contextual preorder and equivalence) are as for
call-by-name, and the structure of the proofs is similar. The details are however di erent
due to the presence of dynamic environments. As for call-by-name, so in call-by-value to
reason about bisimilarity and similarity we need a nite-step simulation, with challenges
produced by the nitary big-step approximants. To make sure that the challenges are
nite-step, we de ne extended environment formal sumsi.e., terms

P
i P &M

in which the environment formal sum P i pi; % is extended with an additional column
of arbitrary -term (not necessarily values). Intuitively, an element ¥ ;M; indicates
that the -term M; has to be run with an observer whose knowledge i¥. Extended
environment formal sums are ranged over byF; G and val (F) is de ned analogously to
formal sums:

def P

=]
val (i pi;%:Mj) = @M.

fijMiis a valueg Pis

Extended environment formal sums allow us to de ne the multi-step reduction re-
|§tion from extended environment formal sums to environment formal sums: forF =
2] pi;%; M+ G, wherel is a nite set, we set

Mi Z) Y. foreveryi
F2) ., m% Y+ val(G)

This intuitively corresponds to the multi-step reduction relation from formal sums to value
formal sums. In clause (1) below we see formal sums as special cases of environment formal
sums. For an extended environment formal sunt = pi; %; M;, we IetJFdefsupr ]
FZ) Yg Since ;pi;% IM;K= JFK we could have equivalently de ned the operational
semantics for call-by-value directly on extended environment formal sums.

Additional notation. We extend to (extended) environment formal sums the notations
for -reduction, contexts, and application on formal sums, and introduce a notation for
extending the dynamic environments. We user to range over indexes of columns of
environment formal sums, and we letj Y j denote the length of an environment formal
sumyY . @,busing notation, we sometimes writej Y j also for the index setf1;:::;j Y jg.
LetY = p;®andF =, p;%;M; and P be a term.

P
- foranyr,if (&)= xM jweletY;Y ; p df i % MifPxg ;
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- forany r, if (&) = xXM ; and C islg\ context with holes with indexes ranging over
AV . . def .a-M.fCIP: @ .
jYj+lweletY;Y  C[P;Y]= ,p: % MfCIP¥Ixg;

P
Y PE T 6P
def P
- for any context C, we let C[F] =, pi; %;C[Mi];
P P def P
- for Fj = i21; Py ;Mji , we let i G Ci[F1 = pizn 9 P , Ci [My;i ].

Using this notation, the call-by-value bisimulation clauses for environment formal sums
become as follows:

(2) Y Rg Z implies:

(&) weight (Y) = weight (Z2) ;
(b) for all r and for all contexts C, JY ;Y  C[E;Y]IKRg JZ;Z . C[E;Z]K;
(c) JY ;ElKRg JZ; EXK.

As for call-by-name, we will use this additional notation only for proofs.
De nition 8.34. A PE relation is a nite-step simulation if

1.MRN andM Z) Y imply Y Rpyn) INK;
P P . .

2. ;p;% Re jq;fNj implies:
P P

@ i Pi i

(b) for all r, if (&) = xM ang> (Wj)r = Xx:Nj then for all (fTig;fUjg;) 2
(fEl;Vi:gi;sz;f/\/j g)? we have . pi;®;MifTixgZ) Y implies
Y Re ;q:W INjfUsgK;

(©) Pipi;\%;Elz) Y implies Y REP] q: 1 XK.

We write . , for the union of all nite-step simulations. Analogously to call-by-
name, we use a saturation by approximants and a saturation by suprema to move from
a simulation to a nite-step simulation and conversely, and exploit this to prove that
similarity and nite-step similarity coincide.

Lemma 8.35. Relations. and. , coincide.

The proof follows as in call-by-name. We prove that the saturation by approximants of
a simulation is a nite-step simulation and that the saturation by suprema of a nite-step
simulation is a simulation. Clause (2c) is treated analogously to clause (2b).

As in call-by-name, we derive congruence for bisimilarity and similarity by rst prov-
ing the property for nite-step similarity. We also exploit a combination of two up-to
techniques for nite-step simulation, namely up-to lifting and up-to environment. Up-to
lifting is de ned analogously to call-by-name, using the lifting operation on environment
formal sums. Up-to environment intuitively allows us to exchange columns of environment
formal sums (when these are viewed as matrices as in Figu.2), and to add new columns.
Adding columns is safe because it means enlarging the dynamic environment: terms that
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are equal in the larger environment are also so in the smaller environment as the tests
that can be built (when playing the bi-simulation game) with the latter environment are
a subset of those that are obtained from the former environment.

The up-to environment technique is based on the de nition of the preorder ¢n On
pairs of formal sums (where, for each pair, the formal sums in the pair have the same
length). Environment formal sums (Y ; Z) are below formal sums { ¢ 29 if, in the second
pair, the dynamic environment of the rst pair is extendeq, and the colu‘gwns have been
Igossibly permuted. Formally, (Y;Z) en (Y3Z9if Y = ;pi®:Z= " q:Wy,Y0=

ip;88Z%= " g ;Wjo and for every indexr in j Y j there is an indexr®in j Y %j such
that Y , = Y% 0andZ ;, = Z9 0.
Hence, given a relationR on environment formal sums,Y lift ( eny (33)) Z holds if there
are pi, Y and Z;, for i ranging over some index set, such thaty = ,pj Y; and Z =
. pi Zi, and for everyi there are Y 2% such that Y Rz%and (Yi;Zi) env (Y 2Z9).

De nition 8.36. A PE relation is a probabilistic nite-step simulation up-to lifting and
environment if:

1. M RN impliesM Z) Y implies Y lift ( env (Remin))) INK

P P
2. .p:%Re jq;flvj implies:

P P

(@ i i G

(b) for all r, if (%) = xM ; and (f/vb)r = X:Nj then for all (fTigi;fU;jg;) 2
(fEl;Vigi;sz;fNj gj)? we have that  pi;%;MifTixgZ) Y implies

P
Yiift (e (Re) G0 INjfUisgk;

P N : P
(© p:;%;EZ) Y impliesY lift ( env (RE)) iG ;Wj JEK
We now prove that the up-to lifting and environment technique is sound.

Theorem 8.37. If R is a nite-step simulation up-to lifting and environment then R

- n-

Proof. Let R be a nite-step simulation up-to lifting and environment. Then the following
is a nite-step simulation:

S= Pairs (R) [ SE lift  ( env (RE))

If M SN then M R N, which implies thatif M Z) Y then Y lift ( env (Rw;n))) INK
Hence,Y Spuny INK p

Let Y Syuny Z,ie,Y = pYi,Z= p Ziand foreveryi there are Y RN ) Z
such that (Yi;Zi) env (Y2 Z9.

Clause (a) holds since for everyi, weight (Y9  weight (Z9). Therefore, weight (Y)
weight (Z2). =

To prove clause (b), suppose thaty ;Y , C[M;Y]Z) W. ThenW = ,p W;, for
someW; suchthat Y;;Y; ; C[M;Yi]Z) W,;. Analogously, we have

P
JZ;Z ¢ CIN;ZJK= ;pi IZi;Zi + CIN;Z]K
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SupposethatY ;Y ; C[M;Yi]= Pj G:%:MjandZ;;Z; ; C[M; Zi]= P kq?;flvk;Nk.

Then it follows from the de nition of the envr_i;onment preorder ¢ny that there are

g and C; such that Y3Y?, Ci[M; Y] = q;8%M; and 20,27, Ci[N;Z]] =
« @ W2 Ny Therefore, there is aw ?such that Y2 Y0, Ci[M;YJ2Z) W?and

(Wi;3Zi;Zi v CIN;Zil®  env (W 3ZPZP 1, GilN; ZPK

with W2lift  ( env (Rawn))) IZ%Z0 1 CiIN; Z9K, since R is a nite-step simulation
up-to lifting and environment and Y ?R w.n y ZP. Hence, we have

Wift  ( env (it ( env (Rvin))))) 3252+ CIN; Z]K

and the result follows from lift  ( eny (lift ( env (Rmin))))) = Nift ( env (Rmin))) -
Finally, clause (c) follows analogously to clause (b).
2

Having these up-to techniques, we derive the result by showing that the context closure
(which, di erently from call-by-name, is now applied both to terms and to the environ-
ments of formal sums) of a nite-step simulation saturated by approximants is a nite-step
simulation up-to lifting and environment.

Lemma 8.38. If M. 5 N then for every contextC we have thatC[M]. , C[N].

Proof. We rst de ne, for any pairs of terms ( M;N ), the preorder cce(u:n) (context
closure of environments) on pairs of environment formal sums: Y ;Z)  ccemin ) (Y®Zz9
ity = p;®, 2= q;Wj with j Y j=jZj, Y%= ,p;®% z0= j q;WjOWith
jY%=jz% and

for every indexr inj Y jthereis anindexr®inj Y 9j suchthatsuchthatyY , = Y%,o
andZ , = Z%,0

for every index r%in j Y 9| there is a value-context C whose indexes range over
j Y j such that for every i;j, (%0 = C[M; %] and (f/vjo)ro = C[N; W] (e,
(Y9,0;2%0) 2 (F(M; ®gi;fN; W; g)?).

Intuitively, this corresponds to considering all nite subsets of the context closure of
a relation: given formal sums (Y ; Z), related elements are columns of their environments
that have the same indexes, and Y ¢ 29 expands (Y ; Z) (up-to permutation of columns of
the pair) with columns that are obtained by lling the same context with related columns
and with the static environment.

Let R be a nite-step simulation saturated by approximants such that M R N. We
can assume without loss of generality that this is the only pair of terms inR and that for
any Esuchthat Re R we haveE = (M;N ). We can also assume thaRR .\ ) contains
all pairs in relation f(;;Y) j Y is an environment formal sung, and that it contains the
pair of Dirac formal sums with empty environment (1;;;1;;), since these pairs trivially
satisfy the nite-step simulation clauses.

Let Rf,f,le;N )d§f cce(M:N ) (R(m:n)), Which is turn denotes the set

f(Y;2) j9Y%Z%uch that (Y%Z9 ccemny (Y352Z) * YOR ) Z%:
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We prove that the following is a nite-step simulation up-to lifting and environment:

sEf(CIMJ:CIN]iM R Ng[f (CIMI;CIND:Y;2) | Y Ry Zg:

We require R .y ) to contain the pair (1; ;;1;;) in order to include triples such as
(x:C [M]; xC [N]);1; x:C [M];1; x:C [N])

which must be in S since x:C [M]S x:C [N].

We assume; R (w:n) Z for any Z since, for any C that is not a value context, we have

C[M]2); ,sowe wantto derive; lift ( eny (R"CeN ))) JCINIK

Finally, relatlon R must be saturated by approxmants since, as shown in Exampl@ﬁ

a nite-step simulation need not to be and it might contain, e.g., the triple (( P; Q) 5:Q+

? ;Q;1,Q) but not the triple (( P;Q); 4,Q 1;Q). However, if C = I[] then 2,C[Q] +
2, C[Q] 2) Q and it might be the case that there are noY ;Z such that Y Rp.q) Z

and % Q; 1)) aee (Y:2)

The proof follows the same steps as the congruence proof for the imperative-calculus,

and we thereby refer the reader to Sectiof 8]5, proof of Theorern 8.51. 2

8.3.2 Contextual equivalence

The de nitions of the contextual preorder and equivalence, x and =y, are as for
call-by-name.

Theorem 8.39 (Completeness) If M ¢« N thenM. N.
Proof. We prove that the relation
_ NY-D mvieeyil P el
R =f(M;N); ipi;V{;:5Vy, CE W B W) j

M o N ’\F;)C such that JC[M K= P xexVodv)
A ICINIK= g x:xW 1 :wig

is a simulation. I:'J'hen we derive the Eesult as follows: letM x N andP =(yxxy ).
Ehen if MK= . pi;Vi and INK= i G ,Wj then PM K=, pj; xxV j and PNK=
G XXW which implies that IM KR .y y INK Hence,M . N.

To proye that R is a simulation, Suppoge that there areM; N; C such g;atM ox N,
JC[M]K:P Py XXV | V! and JC[N |K= i G XixW ' WL LetY = Ip.,Vl,:::;V
andZ =, q; W‘,::"WJ

We want to prove that for any r 2 f 1;:::;ng and for any context C

IY;Y o COM; YIKRmny IZ;Z + COfN; ZIK
which is equivalent to saying that there is a contextD such that

P
DMIK= 5 ipi; x: (CUZERVAN VAR ol | VEAVARSRSAVAY [
IDINIK= " q; x: (xwi WJJ\NJ COPN; W WK

Let C°be any context and let

Pm:co= X 1;:5 Xn:( Z; XiXx 1:::xnz)C°[M;x1;:::;xn]
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and Py.co the same term with M substituted to N. It follows from M ¢ N that
CIM]Pu.co cx C[NIPN.co. We have that:

JC[M Py coK= JEM Py coK
=Jpi pi; (Pm:c oV ::Vp)K _ _
=P iIOi;(z;x:xV'l':::\(r{z)C({M;Vlf;:::;an]K
=pi pi; ( zZ; x:xV 1':::_Vn'z)JCO[I\_/I;Vl'; :_::;Vn']K
= pi(xexVoviacqM; v s VIR
and analogously forN :
P : . : :
JC[NIPy.coK= "~ g (x:XW 1WARICAN; W s WATK
Then by the de nition of R we have that for any context C°

P i i : : P j j j j
PV s Ve ICAM; VY VKR (v P G W W JCIAN; W1 ;o WATK

This holds in particular for any context of the form C%=1 J;+1 C% for r 2 f 1;:::;ng and
C%a value-context, which implies the clause (b) of simulation on formal sums.
Clause (c) is proved using the same result, by takingC%=[ ]1. =

inally, to verify the rst clause of simulation on formal sums, we,must prove that = ; p;
PG which directly follows from M ¢ N, weight (MK = ; p; and weight (INK) =

iG- 2

Theorem 8.40 (Full abstraction). On  -terms:
1. relations x and. coincide;
2. relations = and coincide.

Proof. . is complete by Theorem[8.3p. The soundness follows from the fact that it is a

congruence, which is obtained by exploiting the characterization. = . .
The result for the equivalences follows from =. \ . land =¢x = e \ C&. 2
8.4 Probabilistic imperative -calculus

In this section we add imperative features, namely higher-order references (locations),
to the call-by-value calculus, along the lines of the languages in [KWO06b; SKS11]. The
language is an extension of the one presented in Secti¢n 6.[l.2. The syntax of terms and
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values is:

M =X variables
] ¢ constants
] xM functions
] MM, applications
] locations
] ( x:=M)M; new location
LY, dereferencing
] M1:= M, assignments
j op(Mq;::5;Mp) primitive operations
] if My then M, else M3 if-then-else
] #i(M) projection
] (M5 Mp) tuples
] M1 My probabilistic choice

Vizc|] xM 1] (Vi Va)

We uses;t to range over stores, i.e., mappings from locations to closed values, argk
over locations. Thens[l ! V] is the update of s (possibly an extension ofs if | is not in
the domain of s). The locations that occur in a term M are Loc(M ). We assume that the
set of primitive operations contains the equality function on constants, and write ? for the
unit value (i.e., the nullary tuple).

The language is typed | a simply-typed system with recursive types | to make sure
that the values in the summands of a formal sum have the same structure (e.g., they
are all abstractions). We allow recursive types to maintain the peculiar possibility of
probabilistic languages of having in nite but meaningful computation trees. Whenever
possible, we omit any mention of the types. For instance, in any store updates[l ! V]
it is intended that V has the type appropriate for I; in this case we say that the type of
V is consistent with that of I. In examples,M1seq M, denotes term (:M 2)My, i.e., the
execution of M1 and M in sequence. -

Reduction is de ned on terms with a store, i.e., con gurations of the form hs; Mi;
hence such con gurations appear also in formal sums (where we omit brackets). The
small-step reduction and the evaluation contexts are de ned in Figure[8.B, where we
assume that the semantics of primitive operations is already given by the functionPrim.
The rules for the semantic mapping,J K and the multistep reductions relations, =) and
Z) , remain those of Figure[8.1, with the addition of a store. In all semantic rules, any
con guration hs; Mi is well-formed, in that M is closed and all the locations inM and
s are in the domain dom(s) of s. As in the previous calculi, it is easy to check that the
semantics of a term exists and is unigue.

Notations and terminology for (environment) formal sums are adapted to the extended
syntax in tl*lg expected manner. We only recalllghe multiplication of an environment formal

def def D
sumY = i pi;si; % and formal sumsY; £ i23; Pij 5 S ; Vij which is de ned as:

P get P
0% YT o PSRV
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Beta Sum

s; (xM Vil 1;s:MfVxg hs; My Mai!  LissMi+ 3is,M5

. s()= V

A - Deref -

SO T =vit Lol VE?2 o el LisV
| not in the domain of s
New -

ks; ( x:=V)Mi! 1;8[I! V];Mflxg

ITrue hs; if true then M, else Mji! 1;s;M¢
IfFalse

hs; if false then M1 else Myi! 1;5;M>

Prim(op;e) = c°

roj PrimO :
Vs ai)i1 1s.9), P siop@i! Ls®
M P . .
Eval hs; Mi! i PisSi ,.Mi g is an evaluation context
hs; CMT]i! i PisSi; C[Mi]

Evaluation contexts C:= []J CM jVCj!IC|jC:=M jl:=C
j if C then M; else My | (8;C;M) | #;C
j op(e;C;fn)

Figure 8.3: Single-step reduction relation for imperative probabilistic -calculus

The context closure of an environment, {M; ﬁgi;fN;fNj gj)n, is de ned as in the
previous section, but now contexts ardocation-free, i.e., no locations occur in the contexts.
This constraint, standard in environmental bisimulations for imperative languages, ensures
well-formedness of the terms and is not really a limitation because locations may occur in
terms of the environments and may thus end up in the terms of the context closure.

8.4.1 Environmental bisimulation

The notion of environmental relation is modi ed to accommodate stores, which are needed
to run terms. The elements of an environmental relation are now well-formed pairs of
con gurations (hs; Mi;h; Ni) or well-formed triples

P P
(B pisa % gt W)
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Well-formedness on triples ensures that the stores; of the possible worldi de nes all
locations that appear in sj, ¥, and E;, and similarly for tj, WJ- and E,. Further, the
triples must be compatible: the related environment formal sums should have the same
length, and should respect the types, that is, corresponding columns of the environment
formal sums should contain terms that have the same type.

Since locations could occur in the terms we want to prove equivalent, we parametrize
bisimulations with respect to a set ffy of locations such that the pairs of terms in the
relation must have stores with domainffy. This allows us to put these locations in the
dynamic environment of the relation (clause G)), which re ects the fact that the locations
occurring in the terms are public (i.e., contexts can access them). In what follows, when
we write ffg we assume that no repetitions of the same location occur in the sequence
€ For a pair (fsigi;ftjg) of (tuples of) stores, we say that locations €ligi;fkjg;) are
(fsigi; ftjg;)-fresh if for every i;j we havel; 62dom(s;) and k; 62dom(t;).

De nition 8.41  (Environmental bisimulation, imperative) . A PE relation is a (PE) ff&y-
bisimulation if

1. bs; MiRht; Ni implies dom(s) = dom(t) = fRyand 1;5;#Ru.n ) 1;1; F;

P P
2. pi;si; % Re jq;tj;Wj implies:

P P
@ ip= ;G;

(b) for all r,if (%) = xM ; and (Wj)r = x:N j then
for all (fTigi;fUjg) 2 (fE1; @ gi; FE2; W g)?,

P P
(0% Jhsi; MifTigiKiift (Re) gty Jny s NjfUisgik;
(c) forall r,if (%), = I; and (Wj)r = kj then

P _ P
s st (Re) gt s (k)
for all (fTigi;fU;gj) 2 (fE1; %gi; FE2; W g)®,

Pipi;Si[li! Til; % REij;tj[kj! ULw ;

(d) for any (fsig;ft;g)-fresh locations (ligi; fkjg;),
and for all (fTigi;fU,g) 2 (fE1; % gi; fE2; W g )P,

P P
ipissilli b TiL¥IIRe gtk ! ULW;k

(e) forall r, if (%) = ¢ and (Wj)r = ¢ then all constants in the two columns are
the same (i.e., there is ac with ¢; = ¢ = cfor all i;j );

(f) forall r,if (&)r =(Vi1;:5; Vi) and (Wj)r = (Wj 1,5 Wi ) then
P _ P
s Vi Vi it (Re) gty W Wy W

(9 Pipi;?' Jrs; ; Eqi Kiift (Re)ijJWj s Bik
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We let % denote the union of all f &-bisimulations.

With respect to the de nition for pure call-by-value, the de nition above has the
additional ingredient of the store, and of clauses[(2c) and[(2d) to deal with the case in
which the values are locations: ) gives an observer the possibility of reading and writing
the store, and (2d) the possibility of extending the store with fresh locations. Clause[(2f)
adds all elements of a tuple to the dynamic environment. These aspects are similar to
those in ordinary environmental bisimulations for imperative languages |[SKS11; KLS11].

Three further aspects, however, are new. First, by clausee), related environment
formal sums should berst-order consistent, meaning that corresponding columns of con-
stants should contain exactly one constant. This constraint is a consequence of the equality
test on constants in the language. To ensure that rst-order consistency is maintained in
the bisimulation game, most of the clauses use a lifting construction. Thus, when the
evaluation of rst-order terms may probabilistically yield di erent constants, lifting allows
us to separate the nal possible worlds according to the speci ¢ constants obtained. This
constraint is further discussed in Exampleq 8.4b andl 8.46. A second new aspect is that,
since the e ect of the evaluation of the terms in the static environment may change de-
pending on the current store, clausesml) andg) allow us to derive a congruence result for
arbitrary terms (not necessarily values), as illustrated in the example below. Finally, we
parametrize the relation with a set of locations in order to deal with terms where (public)
locations may occur.

In what follows, we sometimes omit any reference to the set of locations parametrizing
the relation, and simply refer to (bi)simulations and (bi)similarity when the parametrizing
set is not relevant.

Example 8.42. LetM €' 1:=1and N € if 11=0 then 1:=1 else . Without

the static environment, terms H =0; Mi andH =0; Ni are bisimilar. However, they are
not contextually equivalent: if C d§f[ ]seq [], then H = 0; C[M]i terminates whereas

H =0:; C[N]i does not. This aspect is determined by the store, probabilities do not really
matter. Ordinary environmental bisimulations do not have a static environment, and
cannot therefore test repeated runs of given terms that are not values; as a consequence
M and N are equated, and bisimulation is not fully substitutive on arbitrary terms (see
[SKS11, Section 5.2]).

Clause @) is also modi ed with respect to pure call-by-name and call-by-value calculi.
Indeed, if we de ned the clause as follows:

ks; MiRht; Ni implies Jos; MiKlift (R, ))Jdt; NiK

then the bisimulation would not be sound with respect to terms that diverge at the rst
run. For instance, the termsM %" if 1l =1 then true else and N & if 11 =
1 then false else (that are not contextually equivalent thanks to context C def

| ;= 1seq []) would be bisimilar with store | = 0, by simply considering the relation
f(H=0; Mi;);H=0; Nig.

Even if we make the locationl public by starting the bisimulation game from terms (M; )
and (N;1) and by exploiting clause ), so as to allow contexts to use the location as in
[SKS11, Theorem 5.10], we still have thatl = 0; (M;1)i andH =0; (N;I)i are bisimilar,
sincedJd =0; (M;1)iK=J1 =0; (N;I)iK=;.

Hence, clause[(lL) ensures that location is actually put in the dynamic environment, so
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that we can use clause[(Zc) to change the value dfand then evaluate againM and N

using clause [(2).

If the domains of the stores are empty then we can consider bisimulations parametrized
by the empty set of locations, and in clause (L) we will have empty sequences of values
in the dynamic environment. Anyway, clause ) can be applied independently of the
presence of values in the dynamic environment.

The following examples are meant to further illustrate and motivate the form and the
clauses of our bisimulation. The examples only use boolean and integer locations, and
we accordingly assume that all locations in the language are of these types. Higher-order
locations would not a ect the essence of the examples and would complicate the description
of the required bisimulations due to the possibility of extending the store (clause[(2)).
(The full abstraction results will not rely on the existence of locations of speci ¢ types.)
Moreover, since the terms compared always have the same locations, we assume that fresh
locations for the extensions of the store are the same on both sides.

Example [8.43 shows that in imperative call-by-value, in contrast with pure call-by-
value, to achieve full abstraction it is necessary to de ne bisimulation on formal sums
rather than on terms.

Example 8.43. We have explained in Sectior] 8.l why the terms

HEC x=0(:(M N) KE(C x=0(:M N)

where

© it 1x=0 then X := 1 seqtrue else
je

f
i
def if Ix=0 then x:=1 gfalse else

M
N
are contextually equivalent, but would be separated by a bisimulation that acted on terms.
With our bisimulation, we can prove H and K equal using a relation that contains the pair
(hs; Hi;hs; Ki), for s the empty store, and all triples ((H;K );Y ;Z) in which Y ;Z are
rst-order consistent, have the same total weight and, seeing them as matrices, for every
column r of the dynamic environments that is not made of constants one of the following
properties holds:

(a) there is | such that all terms in Y , are : (M  N)flxg, whereas all terms inZ
are either :M flkxgor :N flxg; moreoverl does not occur elsewhere in terms of the
dynamic environment and its value in the stores is 1,

(b) there is | such that all terms in Y , are : (M  N)flxg, whereasZ , contains
both :M flxg and :N flxg; moreover| does not occur elsewhere in the dynamic
environment and its value in the stores is 0. The right-hand matrix obtained by
erasing all columns that are not of this shape is either, or (without considering the
stores) of the form (::((Y1 Y2) Ys) 1) Ya,for Yi = 1; :M flixg+ 3; :N flixg. This
clause guarantees that:M flixg and :N flixg have the same probability in every
column (if I; is set to 0 in the stores), and that this property still holds if the matrix
is splitted by separating the rows with :M flixg from the rows with :N flixg;

(c) there is | such that all terms in Y  and Z ; are |; moreoverl is set to the same
value in all the stores.
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Finally, we add to the relation the triple (( H; K ); 1;s;;; 1;s;; ), where; denotes the empty
dynamic environment, to satisfy clause [1) of De nition B.41. Clause [2¢) is handled
appealing to item (b). The most interesting case is the bisimulation clause) applied
to a column r of functions that satisfy item (b). The result of the evaluation of such

functions (with ? as argument) is that | is set to 1 and thentrue and false are returned,

with the same probability. Using the lifting construction we can now split the possible

worlds in which true has been produced and those in whicalse has been produced,
yielding two pairs of environment formal sums both of which are in the bisimulation (note

that the lifting splits the original column r so that the corresponding column in the two
nal pairs satis es item (a) above).

In this work we sometimes view environment formal sums as matrices (Figuré¢ 8|2).
This however is only for representation convenience: our environments artiples of rows
(each row representing a possible world originated by the probabilistic evaluation of terms),
rather than tuples of columns that is, tuples of formal sums. The next example shows
that if the environments were tuples of formal sums, where formal sums are added to
the environment following the evaluation of terms during the bisimulation game, then
bisimilarity would not be complete. Intuitively this happens because the histories of
di erent possible worlds would not be anymore separated and could interfere.

Example 8.44. Let

AL y=oL M) BE( yi=o(L N)
L % 'y M def 1 (y=1seq?2) N %o

Terms A and B create a new location and allow the reading capability on it in the
subterm L. The writing capability, in contrast, exists only in the subterm M of A. A
behavior from A that could not be mimicked with B is the run of M, where 1 is assigned
to the location x, followed by a run of L, where x is read and 1 is emitted (with B, any
value produced byL would be 0). This behavior, however, is impossible, becaude and M
are in a probabilistic choice and are therefore obtained in two distinct possible worlds, in
one of whichx can only be read, in the otherx can only be written. Moreover, the writing
capability alone is irrelevant, because the location is private; hence it can be omitted
from M, resulting in the term N that appears in B. Indeed, A and B are contextually
equivalent.

However, the "wrong' behavior above forA could be reproduced in the bisimulation if
the environments were tuples of formal sums (that is, all possible worlds have the same
environment, made of formal sums). The formal sum obtained by the evaluation ofA,
with summand terms L and M, would be stored in the environment and could then be
executed several times, with possible interleaving of evaluations df and M . (The example
could be made more complex so as to obtain a “wrong' behavior from the execution of two
di erent formal sums in the environment, rather than by multiple executions of the same
formal sum.)

With our bisimulation, we can prove A;B equal using a relation composed by A; B)
(for simplicity, we leave out the store) and by all triples ((A;B); Y ; Z) where the environ-
ment formal sumsY =1;s;Vy;:::V, and Z = 1; t; Wq;::; W, are rst-order consistent,
and for each columnr that does not contain constants one of the following holds:
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(a) there is | such that V, = Lflsyg = W,; moreover| does not occur elsewhere in the
dynamic environment or within a location of the stores, and is set to 0 in both stores;

(b) there is | such that V; = Mfligand W, = N; and, again,| does not occur elsewhere
in the dynamic environment or within a location of the stores; moreover in the store
s we haves(l) 2 f 0; 1g whereas int we havet(l) = 0;

() V; = W, = | for somel assigned to the same value in both stores.

The proof that this relation is a bisimulation crucially exploits the lifting construction.
For instance, using (a) and (b) one shows that the semantics oA and B are in the lifting
of the relation, and similarly one proceeds when handling clausg) of the bisimulation.

The main purpose of the lifting construct in De nition §.41 jof environmental bisimu-
lation is to maintain the rst-order consistency of related environment formal sums. One
may wonder whether something simpler would su ce, namely avoiding the lifting con-
struct altogether and simply requiring that, whenever two rst-order terms are evaluated,
the probability of obtaining a given constant is the same on both sides (and thus main-
taining st-order consistency by avoiding the addition of such values onto the dynamic
environments). The example below shows that this would be unsound.

def

Example 8.45. We compare the termsA d:ef( x:=0)(M;Ny)andB = ( x:=0)(M;N>)

where

M =" if Ix=0then ((x :=1seqtrue) (x =2 seqfalse )) else
N, % i ix =2 then x := 3 seq n else
degf cif (Ix=1_I1x=2) then x:=3seq(n ) else

and n is any integer. The termsA and B produce the values M; N 1)f kg and (M; N »)f g
and | is a location that is accessible only to such values. The de nitions oM flxg and
Niflxg (for i = 1;2) use conditionals on the content ofl in such a way that the only
meaningful manipulations with the values (M flxg; N;flxg) is to evaluate M flxg rst,
and then, possibly, to evaluate Niflxg. Any other order of evaluation would produce a
divergence.

We explain why, intuitively, bisimilarity would equate A and B if, on constants, bisim-
ulation simply checked the probabilities of obtaining each constant (rather than employing
the lifting construction). The evaluation of (the body of) M flxg producestrue or false |,
with the same probability % and with | respectively setto 1 and 2. Then the only meaning-
ful observation is the evaluation of the valuesN;flxg. This means evaluating the formal
sums

P21 =1 Niflxg?+ ;1 =2; N,flxg?

and F = 3;1=1; Noflxg? + ;1 =2; Noflxg?
The evaluation of F; terminates only when | = 2, yielding the value formal sum Y; def

%;I =3; n. The evaluation of F», in contrast, may terminate under both stores, yielding

the value formal sum Y, %' 7:1=3;n+ %;1=3;n. Both in Y; and in Y, the outcome n
has the overall probability 3.

The terms A and B however are not contextually equivalent, because distinguished
by a context C that evaluates M f kxg and then proceeds with the evaluationN;f g only
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when the outcome fromM flxg was true . Now, C[A] never terminates, whereasC[B]
terminates and producesn with probability %1.

Our environmental bisimulation distinguishes A from B because we separately analyze
the possible worlds in which the evaluation ofM f =g has producedtrue and the possible
worlds in which the evaluation has producedfalse , somehow mimicking the e ect of the
context C above.

Yet another possibility for avoiding the lifting construct of the De nition 8[41 gf bisim-
ulation might have been to drop the requirement of rst-order consistency, allowing envi-
ronment formal sums in which a rst-order column may contain di erent constants. Thus
constants would be added to the dynamic environment as any other type of value, and one
would simply check that, at any time, the weights for the occurrences of a given constant
in related columns are the same; formally, replacing clause) with:

@ igr every column b and every constantc,
i) e=cgP =t jy)i=cg 9

Example[8.46 shows that this choice would be unsound too. We write (x; y :=0) M
for the creation of two locations in which the initialization of the rst one is irrelevant.

Example 8.46. This is a variation of the previous example.
We compare the termsM 1 d:ef( X; y:=0)(A;B1) and M» déaf( X; y:=0)( A; B ) where

A% if ly=0theny:=1seq(z: (x:= zseqz))(true false ) else
def seq o
Bi=

def
B, =

if ly=1 theny =2 seq!x else
cif ly=1theny:=2seq(true false )else

As in the previous example,M 1 and M, respectively yield the values @; B 1)fl; IO:x;yg and
(A;B)fli1%;yg, and the interactions of the terms with the store is such that the only
meaningful experiment is to evaluateAfl;!%;yg rst, and then B;fl;!%;yg (indeed, the
location 1%is only used to this end).

We explain why, intuitively, the variant (ZEB above of the clause for rst-order values
would incorrectly equate M1 and M». The evaluation of Afl; 1% yg adds to the dynamic
environment the formal sum

|0_ 1 .IO_

;1 = true ;19= 1; true + 3;1 = false ;1°=1; false
(the values produced are also placed in the locatiom).

Now, in one case the evaluation ofBlf|i|°;<;yg adds to the dynamic environment a
column of boolean values identical to the column produced above (becauslﬁlf';'():x;yg
emits the value stored inl, which is identical to the value produced by the evaluation of
Af|;|°:x;yg). This means that we end up with an environment formal sum in which the
relevant columns are
; true ; true (8.5)
5, false ; false

NI

N

In contrast, when evaluating Bzf|?|°:x;yg each possible world is split into two, in each
of which true and false have probability % Thus the relevant columns of the nal
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environment formal sum are
true ; true

; true ; false
; false ; true
. false ; false

FNEY NN N YN

In each of these columns, the probabilities fortrue and false are the same as in the
columns of {8.5), as required by [(2B.

However the terms are not contextual equivalent. They are separated by a context
that evaluates B;fl;!%;yg only if the outcome of the evaluation of Afli1%;yg is true .
Thus the overall probability of obtaining true at the end is % in one case, and%1 in the
other. Similarly the terms are distinguished in our bisimulation, reasoning along the lines

of Example[8.45.

The de nition of ffg-simulation is the same as the de nition ofng-bisimH,lation, Qyt for
the rst clause on environment formal sums with stores, which becomes: ; p; R

We let . % denote f Bg-similarity.

The basic properties and de nitions for environmental (bi)simulations in pure call-by-
value remain valid, with the due adjustments. In some cases, however, some subtleties
arise.

It can be easily proved that, for any setffy, f fy-bisimilarity and ffg-similarity are an
equivalence and a preorder relation respectively. For proving transitivity, in particular, the
restriction to parametrized relations, rather than to arbitrary relations, is fundamental.
Analogously, we have that f fg-(bi)simulations are closed under union, and thus relations

% and . T8 are respectively the largestf &-bisimulation and f &-simulation.

In nite-step simulation, clauses and are modi ed so to make sure that only a
nite number of reductions are performed on the challenger side. No modi cation is made
to the clauses (1), [2¢), [2d), [2¢) and for locations, constants, and tuples, because
there is no evaluation of terms involved.

The de nition of extended environment formal sum and of the multi-step reduction
from extended environment formal sums to environrpent formal sums is adapted to the
imperative case as expected, by assuming that when , p;;s;; %;M; Z) Y there is only
a nite number of bhs; ; Mji that actually perform some reduction steps.

De nition 8.47. A PE relation is a nite-step ffg-simulation if it satis es the same

clauses [(1), [2), [2f), [2d), [2€) and [(Zf) of (the simulation version of) De nition B.41];
and, in place of clauses[(2b) and[(Zg) we have:

P P o
@ pisi®Re gt W implies:

(b) for all r, if (%) = xM ; and (Wj)r = x:N j then
fopall (fTigiifUg) 2 (FE1 ®igii fE2i Wy gy)”,
it pisi @ MifTixg2) Y then Yiift (Re) | q:Wv Jny; NjfUigik;
P P
@ if  p;si;®;EZ) YthenYlift (Re) ;q;W Jy;Eik

We write . frfg for nite-step f®y-similarity. We prove that f®y-similarity and nite-step
f fg-similarity coincide by exploiting the saturation by approximants and the saturation by
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suprema off fg-simulations and nite-step f fg-simulations, respectively. Since only clauses
(2b) and (2g) are modi ed, we can proceed as in the proofs for the pure calculi.

Theorem 8.48. . = '®
Precongruence is derived for the nite-step similarity using "up-to lifting and envi-
ronment' techniques, and then transported to similarity, from which it is transported to
bisimilarity using the characterization of bisimilarity as the equivalence induced by the

simulation preorder.

The up-to lifting and environment technique is de ned analogously to the probabilistic
all-by-value casg, The environment preorder is as follows: Y(;Z)  env (Y (F’DZ% if Y =
Pisi®Z = gt Wowith jY j=jZjand Y0= T pisii80z0= gt
with j Y %j=j Z%j and for every indexr in j Y j there is an indexr®in j Y °j such that for

all izj, (8)r = (%90 and (), = (WYro.

De nition 8.49. A PE relation is a nite-step ffg-simulation up-to lifting and environ-
ment if:

1. bs; MiRht; Ni implies dom(s) = dom(t)

ffgand 1;s,fRwn ) Lit; 85

P P
2. ;p;si;% Re j q;tj;Wj implies:
P P
@ ip i G
(b) for all r,if (%) = xM ; and (Wj)r = x:N j then
fopall (1Tigi:fU;g) 2 (fEx; ®igi; B2 W )P, P
if . piisi;®;MifTixgZ) YthenYlift ( env (RE)) jq;fNj Jhj 5 N fUixgikK;
(c) forall r,if (%), = I; and (Wj)r = k; then
for all (FTigi;fU;q) 2 (FE1; g fE2 W, g )P,
PSSt (e (RE) 5 gt Wit (k)
sl b TRt (en (RE) gtk ! YLy
(d) for any (fsigi;ft;g;)-fresh locations (fligi;fkjg;),
and for all (fTigi;fUjg) 2 (fE1; g fE2; W g)®,

Pipi;Si[li! Ti]; ;1 lift (env(RE))ij;tj[kj! UL Wik

(e) forall r, if (%) = ¢ and (Wj)r = ¢ then all constants in the two columns are
the same (i.e., there isca with ¢ = ¢ = ¢4 for all i;j );

(f) forall r,if (&)r =(Vi1;:5;Vin) and (Wj)r = (Wij;1; 5 Wi ) then
P _ P
PSR Vi Vi lift (env (RE) Gty WG Wy s W
P . P .
@ pis;®:EE) YithenYlift ( env(Re) q:0v Iy, Eik

Theorem 8.50. If R is a nite-step f®fy-simulation up-to lifting and environment then
ffy
R ...
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The soundness of the up-to lifting and environment technique follows as in call-by-
value (Lemma). Given a gite-step f fg-simulation up-to lifting and environment R,
we prove that S= Pairs (R)[ g lift ( env (Rg)) is @ nite-step ffy-simulation.

We rst prove congruence of nite-step ffy-similarity for contexts with locations in
ffy, and then we show how to derive congruence for general contexts. The proofs of these
results are reported in Sectior] 8.5. The proof structure for Theorenj 8.51 is as in call-by-
value; we de ne the context closure of a nite-step f fy-simulation and we prove that it is
a nite-step ffy-simulation up-to lifting and environment.

Theorem 8.51. Finite-step ffy-similarity is a precongruence for contexts with locations
in f8y: if hs; Mi. "PH; Ni thenbhs; C[MJi. "®rt; C[N]i, for every C with Loc(C) f R.

Then we derive precongruence for general contexts by showing how to move from
relations parametrized by a setf &y to relations parametrized by f £y, for f £ a set including
ffy.

Theorem 8.52. Let = £ %nd let $°= ¢ ;¥%be a sequence of values whose types are
consistent with those off, and with locations in ff. Let C be a context with locations in
t. If ks; Mi. "1t Ni then:

hs[® ©%; cM]i. "Pon[@a €%f; C[NJi ;
h®1 @0 ciMIi. 'PoP1 0 C[NJi:

8.4.2 Contextual equivalence

We seths; Mi+= weight (Js; MiK. Contextual equivalence and the contextual preorder
are de ned by quantifying over all stores and contexts.

De nition 8.53. M and N are in the contextual preorder, written M ¢« N, (resp.
contextually equivalent written M =, N), if, for any store s and context C such that
hs; C[M]i and hs; C[N]i are well-formed,s; C[M]i+ h s; C[N]i+ (resp.hs; C[M]i+ =
hs; C[NJi+).

Theorem 8.54 (Completeness) Let Loc(M) [ Loc(N) f ®. If M o« N then =
¢:Mi. = ¢:Ni, for any ¥ whose types and locations are consistent witR

Proof. We prove that the relation

R =f(f=¥¢; lyli;Haz ?_; Ni)j N||> ax N~ fRy= Loc(M) [ Loc(N)g][
FAMINDS sV Vas o Qi Wi isWa) f M e N
A9 C; ¥ such that (JFE: % ; C[M]i K=" ipissi; xixV {:V,
N OP= 8 CINTIK= | gty xixW 1w
with Loc(C)[ Loc(M)[ Loc(N) f &
N they are rst-order consistent )g

is a ffg-simulation. The full proof is in Section . 2
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We can now derive full abstraction for the simulation preorder and bisimilarity. Con-
textual equivalence and preorder are de ned on terms, while bisimilarity and the simula-
tion preorder are de ned over con gurations of a term and a store. In the full abstraction
result we show that congruence on terms corresponds to bisimilarity when an arbitrary
store is considered.

Theorem 8.55 (Full abstraction) . Let ffy be the set of locations that occur inM or N.
We have, for any'® whose types and locations are consistent with

M o N ifand only if = ¢ ;Mi. "B H=9¢;Ni;
M =c N if and only if €= ¢;Mi fRHE=¢;Ni:

Proof. Theorem proves completeness. For soundness, suppose théit ¢ ; Mi . 7%
H = ¢:Ni for some¥ consistent with € Let s be a store andC a context such
that hs; C[M]i and hs; C[N]i are well-formed. We want to prove that hs; C[M]i +
hs; C[N]Ji+.

By well-formedness, we know thats = ;[®! €9, for some® such that = € #%and for
some consistent®? and that C has locations inf®y. By = ¢ ; Mi . = ¢: Ni we
havetf= ¢ Mi. fr?gH?: € ; Ni and by Theorem|8.52 we derivedf®= €% C[M]i. f:gkﬁ):
€% C[NJi. Then = €% C[M]i+ h = €0 C[N]i+.

2

The universal quanti cation over stores in the full abstraction is outside, and not
inside, the double implication, i.e., we do not prove

M o N if and only if for all consistent ¥ ;= ¢ ; Mi. = ¢; Ni
but rather
for all consistent¥; M ¢« N if and only if = ¢ ; Mi . = ¢: Ni.

The former statement implies the latter one, since the latter allows us to only consider
one store. The reason why we can use the latter one, and thereby consider an arbitrary
store, is that the de nition of simulation and bisimulation already includes the universal
guanti cation over di erent assignments of the locations in £ since the locations are in the
dynamic environment and we can apply the second item of claus¢ (Bc), as we have seen in
the proof of Theorem[8.55.

8.5 Proofs

Proof of Lemma 811 ]

1. The proof of (1) follows from the de nition of JM Kas the supremum of the set
fY jM Z) Ygwith respect tothe apx preorder. Let R be a simulation and letS
be its saturation by approximants.

If M SN then IMKS.n ) INK since apx is re exive and IM KRy )y INK If
Y Smn) Z then there is aYOsuch that Y o Y%and YOR(yn ) Z. We have
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that weight (Y)  weight (Y9, by the de nition of approximant, and weight (Y9
weight (JZK), since R is a simulation.
SupposeY + Y%= YO Then, for any context C,

¥ CIMIK axJY C[MIK+ I¥? C[MIK= J¥° CMIKRwn)JZ CIN]K
which implies JY C[M]KSyn)JZ CIN]K

S . . . .
2. Let S = | R" be the saturation by suprema of a nite-step simulation R. The
clause on -terms is immediate, sinceM SN and M Z) Y implies Y R(M N) IN K

(by the de nition of nite-step simulation), which in turn implies that JM KR (1M N)
JN K(since JM K= supfY jM Z) Yg and thus we can nd an ordered sequence of
formal sums that satis es the condition for R?1).

For the clause on formal sums, the crux is proving the following lemma.

P P
Lemma 8.56. If ;pi; xM i RE ;g; x:Nj then:
P P

@ _ipi i G
P . . P 5
(b)  pi;MifPxg2) Y impliesY RE ;g IN;fQxgK for all P;Q2E”.

Proof. The proof is by induction on n.
For the casen = 0, the two properties above are immediate consequences of the
de nition of R.

For the inductive case, ifY R E‘,\;lN )Z then either Y R ?M N )Z, and the result follows

by the inductive hypothesis, orY =sup S for S = f Yygk ¢ a set of formal sums such
that Yy R ?M N )Z for all k and Yy apx Yk+1- As a coq§equence there is a sequence
Y2 such that Yo = YQand ¥ = Yiet Yo . ie,Ye= 4 (Y2 Hence, it follows
fromY =supSthat Y = |, ;Y2

The rst item follows by the inductive hypothesis, since Y is the supremum ofS and
Yy 2 S implies weight (Yx) weight (2). p

As to the second item, we t?@ve thaty C[M]=supfYy C[M]g= ono C[M].
We want to prove that if |, Y2 C[M] Z) X for some formal sumX then
X B (win)Z CINIK

It 0Yk0 C[M]2Z) X then, by the de nition of the multi-step reduction relation
(which guarantees that only a nite nlymber of terms are evaluated in the formal
sum), there is anm O such that , , ,,Y° C[M] 2 X%and X = X%+
val ( om Y2 CIM]).

For any m® 0 we have that

P 0 o P o
0ok memo Yk CIMIZ) XP+val () ¢ memoYe CIMI)

SlnceP 0 k memoYX= Ymemoand Ym+m°|:ig(|v|N)Z by the inductive hypothesis we
have  §  memo YR C[M]Z) X% val (o « memoYl CIM]) implies

X%+ val (" m ok memoYd CIMD) Ry 32 CINIK

n+1

Hence, by the de nition of R . )

and by

P
X :Supro+ val ( m K m+m0Yk0 CIM] 9mo o
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we derive that X R ?,\le yJZ CINIK

P P
Then the result follows sigceY = 5 pi; XM § S jG; xNj = Z |mpI|esY REZ
for somen, and we have  p; ;g (by the rst |tem of Lemma 8.56), and

P P
(P IMifPxgK=supfY j pi;MifPxg2Z) YgRE" jq;\]Nij;(gK

for all P; Q 2 E? (by the second item of Lemmg 8.5b and by the de nition of relation
R™1), which implies R S .

Proof of Lemma 8[18]
Let R be a nite-step simulation saturated by approximants and let

S=f(CIMJ;CIN]) j M RNg[f ((CIMLCIND;Y;Z) j Y Siyny 29

ith
" SO=f((M;N);1; xC YM];1; x:C IN))jM R Ng
[f (M;N);Y;Z)jY Ry Z9
[f (M;N);;;Z)]j for someM;N;Z g

We rst prove the following result:
Lemma 8.57. Forany contextC,if M R N andC[M]2Z) Y thenY lift (S(M N ))JC[N]K:

Proof. We prove by induction on the length n of the reductionthat M RN andC[M ] Z) ,
Y imply Y lift (S(M N) YJC[NIK If Y = ; then the result follows by the third set of S°

Suppose thatY 6 ; If n = 0 then we have two cases:

=[]and M is avalue. ThenM Z) Y and sinceR is a nite- step simulation we

have that Y R (u;n )JN K= JC[N ]K which implies that they are in S(M Ny s well.

C= xCOQ ThenY =1; xC qM] S(MN) 1; x:C YN] = JC[N]K by the rst set of
SO
Suppose now thatC[M] Z) n+1 Y.

=[]and M Z) n+1 Y. The result follows from the fact that R is a nite-step
simulation, as in the rst case of n = 0.

C=C Cyand C[M] ! 2,Cl[M]+ 1-C;[M]12) Y. Then Cl[M] Z) n, Y1,
C2[M]2) n, Y2andY = 3; Y1+ 3; Y2, We haveJC[N]K= 1;IC1[N]K+ 3; IC,[N JKand
it follows from the induct|ve hypothesis on n; and n; that Y lift (S(M N )) JC1[N K
and Y- lift (S(,\,I N )) JC,[N]K Hence,Y lift (S(,\,I N )) JCINIK

C = C1Cy. Then C[M] Zb n+1 Y implies that C[M] =) ,, YiCo[M] 2Z) 4, Y,

where C1[M] Z) n, Y1 = ;pi; x:Pj. Sincen; n(by Y 6 ;), we can ap-
Bly the inductive hypothe]s_;s and derive that Y lift (S(M N ))Jcl[N]K i.e., Y1 =
i1 Y2 and JC4[NIK = rj 22 for Y° S(OMN) z0. Hence, YiC2[M] 2) n, Y
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o . P P
implies Y8 C2[M] ZQ) g Y% with jlgjo =npandY = ri Y,%0 and JC[N]K=
JCINJKCoNTK= J ;1 ZPCoINTK= " | rj JZOCINIK= rJ ,JZ CoINK
Since lift (lift (R)) = lift (R) for any relation R, the result foIIows if we can
prove that for every j it holds that Y;%C2[M ] 2) o Y°°|mplles Y, ift (S(MN ))JZJ-O
C2INJK If Y,°S§ N ) Z? then either YO— ; and the result tr|V|aIIy follows or one of

the foIIowmg cases hold

{ on: 1; x:C YM]and ZjO: 1; x:C qN]. Hence, eitherYjOO: - in which case the
result follows by the third set of S or Y,%Co[M] ! 1;CqM]f C2[M kg 2) e
Y2 with n® n. Terms CqM Jf C2[M kg and CINJf C2[N kg are respectively
of the form C%fM] and C°{N], so we can apply the inductive hypothesis to
derive that Y,%ift (S(MN))Z-0 CoN].

{ YR (N2 It |s easy to checkthatY,"C2[M ] Z) Y,°4 Y,°%%C;[M]2) Y,%%or
someY 000" - ox 6 Since R is nite- step simulation saturated by apprOX|mants
we have thatY;°?°C,[M]2) Y,%%mplies Y°R (mn)JZ? Cz[N]K and the result
follows from R Ny lift (S(M N ))

2

We derive from Lemma[8.57 thatS is a nite-step simulation up-to lifting as follows:

Let CIM] S C[N] with M RN. If CIM] Z) Y then by Lemma |8.57 we have

Yift (S9. ,) ICINIK Therefore, Y lift  (Sicpmycny) ICINIK

Let1; x:C M1 Scmpcng L x:C IN]with M R N. Then for any C%there is a con-
text C%%uch that 1; x:C YM] CC[M]]=1; CfM]and 1; x:C IN] CC[N]] =
1;CO9N]. Itis easy to check that 1;P Z) Y i P Z) Y and that JI;PK= JPK
for any term P. Therefore, by Lemma[8.57 we derive that 1C%M ] Z) Y implies
Y lift (S 1) IL COfMIK which implies that Y lift  (Scpuycg) 31 COMM IK

Let YR ¢cmmpcwiZ€ With Y R wn)Z. Then by the fact that R is a nite-step
simulation it holds that for any C% Y CAC[M]] Z) YCimplies Y°R (u.n)JZ
CYCINTIK which in turn implies Y°Scpyycng JZ  CICIN]IK

Let ;R cmycniZ- Then for any P we have that; P Z) Y impliesY = ; and we
stay in the third set.

Proof of Lemma 824 ]
Let R be a nite-step simulation up-to lifting and context. We prove that

% pairs (R)

[f (M;N);1; xxC[M];1; xxC[N])jMRNg
[f (M;N);Y;2) ) YOR (un)Z and Y ap YO for someY %
[f (M;N);;;Z)] forsomeM;N;Z g

RO

is a nite-step simulation up-to Iifting, from which the result follows by R R ©

Note that the relation lift (R (M:N ) ) is saturated by approximants, i.e., the following
property holds: if Y gpx v Olift (R(M N ))Z then Y lift (R(,\,I N ))Z. We rst prove the
following result:
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Lemma 8.58. For any contextC,if M R N andC[M]Z) Y thenY lift (R(M N ))JC[N]K

Proof. We prove by induction on the number of small-step reductionsn that M R N and
CIM]2) nY imply Y lift (R(M N ))JC[N]K If Y = ; then the result holds by the last

set of R® Suppose thatY 6 ;. If n =0 then we have two cases:

C=[]and M is avalue. ThenM Z) Y and we have thatY lift (RN )) INK=
JCINIK

C= xC % ThenY . 1;x:C qM]dirac (M;N)?)1; x:C IN] = JC[NIK

Suppose now thatC[M] Z) n+1 Y.

=[]and M Z) n:+1 Y. The result follows from the fact that R is a nite-step
simulation up-to lifting and context, as in the rst case of n =0.

C=C; CrandC[M]! %;Cl[M]+ 1:CaN12) n Y. Then C1[M] 2) n, Y1,

C2IN] 2) n, Yz with n1+ n, nandY = 3;Y1+ Y., We have JC[NIK =

%;JCl[N]K+ ; JC2[N]K and it follows from the inductive hypothesis on n; and
n, that Y1Iift (R(,\,IN ))JC1[N]Kand Y, lift (R(MN ))JCZ[N]K Hence, we derive
Y lift (R(MN))JC[N]K

C = C1Cy. Then C[M] Zb n+1 Y implies that C[M] =) ,, YiCo[M] 2Z) 4, Y,
where C1[M] 2) n, Y1 = ;pi; x:Pj. Sincen; n(ky Y 6 ;) we can ap-
Bly the inductive hypotheF§|s and derive that Y lift (S(M N ))Jcl[N]K i.e., Y1 =

i Y,2and ICi[NJK= " ;1 zp for Y, R A 122 Henlge Y1Co[M] ) 1, Y im-

(MiN )
plies Y;%Co[M] 2) o Y,% Wlth ;nd=nyand Y = r Y,% and JC[N]K =
JI[NJKC[N K= T rj OCZ[N]K= i T JZjOCZ[N]Kz rJ ,JZ0 CaINIK
Sincelift  (lit (R)) = Iift (R) for any relation R, the result foIIows if we can

prove that for every j it holds that Y;C2[M ] 2) o YOOimplles Y;%ift (R(,\,I N ))JZJ-O
Co[NIK If YOR(,\,I N) z? then one of the foIIowmg cases hold:

{ Y°=1; xC qM] and Z? = 1; x:C IN]. Hence, eitherY,°°= ;, in which case
the result follows by the last set of R, or Y,Co[M] ! 1;CIM ]f C2M Ixg 2) e
Y, with X n. Terms CqM Jf C2[M }xg and CAN ]f C2[N kg are respectively
of the form C%fM ] and C°IN] and we can apply the inductive hypothesis to
derive that Y, ift (R(M " ))JZ-O C,[NIK

{Y° ax X R(MN)ZJO If Y%C2[M] =) Y,®then there is a X° such that
XC2[M] Z) no X%and Y, 4 X for some n’® nf. Itis easy to check
that there is exists a X 00such that X Co[M]Z) noooX 00and X0 apx X 99 for

somen& n 09 SinceX R (. )Zp, there are two cases:

X CZ[M] =) FandZ® CaIN] ) G with Flift (dirac (M:N)?) G.

Hence, F 2) r]ooooXOO(\Nlth X 00 ox X% for some nJ0000 n%< n. We

can apply the mductlve hypotheS|s to the pairs in (M;N )? whose projec-
tions respectively composeF and G through the lifting, and derive that
X OOfift  (lift (R(M ~))) JGK It follows from Y,%0 apx X %%hat

Y%t (R{yn ) IGK= JZP CyINK:
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X %ift  (dirac (M;N)?)[R (un)) JZ° C2NIK
Since Y,%° 4« X% this allows us to derive that Y,%ift (RY. ) JZ°

C2[N K since lift (RE’M;N )) is saturated by approximants.

{ the result is immediate if Y,°= ;.

Then we derive from Lemma/8.58 thatRCis a nite-step simulation up-to lifting:

1. ifM RN thenM R N, and M Z) Y implies Y lift (R(m;n)) INK by the de ni-
tion of R. Then the result follows by R R ©

2. ifY RO

(M:N ) Z then:

if Y apx YOR(m:n ) Z then for all P;Q 2 (M;N)? we have two cases:
{ YO P=) FandZ Q=) Gwith Flift (dirac ((M;N )?)) G.
If Y P 2Z) Y%then there is aY%®uch that YO P =) F Z) Y%%nd
Y aox YOIt follows from F lift  (dirac (M;N)?)) G and from Lemma
that F 2) Y%mplies Y%t (lift (R?M;N })) JGK which is equiv-
alent to saying that Y %fift (R?M;N )JZ QK Since FOO apx Y0%nd
lift (R?M;N ) is saturated by approximants we deriveY %fit (R?M;N ) IZ
QK
{ YO PZ) X andX lift (dirac (M;N)?)[R (wn))IZ QK
IfY P 2Z) Y%henthereisaY®uchthat YO P Z) YO YOO& X and,
by the de nition of R, Y%+ Y%fft (dirac (M;N)?)[R mn))JIZ QK
which implies Y %% Y 0t (R?M;N )JZ QK SinceY %0 4ok Y %% Y %00we
have Y%ift (RQyn)JZ QK
ifY =1; xxC [M]andZ =1; x:C [N]with M R N thenforall P;Q2 (M;N )~
we haveY P =1;CIM]andZ Q=1; CIN] for someC® Then by Lemma
we have thatY P Z) YC%implies Y Clift (R?M;N )JZ QK
if Y = ; then the simulation clause holds and we stay in the last set oR°

Proof of Lemma 8[28 ]

Let ?!denote the transitive closure of ?,i.e.,P 7' POifthereareP = Pq;Py; i Py =
PO9such that for every 1 i<k there are a contextC; and tuples I&; fDiowith Pi = Ci[B]
and Pi+1 = G; [bﬂ = Civ1[P+1]and B b.o

De ne the following term relation

def t t
Ran) = (P (MiNDPY [ (P T y)

Let liftd () denote lift (dirac ()).
Lemma 8.59. We prove that
t

* P 7'POandP 2) , Y imply P°2) oYOwithn nlandYliftd ( %) apx Y

) P( "(M;N)’)QandP &) Y imply Ydisliftd (Rn)) apx JOK
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Proof. We rst prove (*). Let P = Py;P,; Py = P%be such that for everyi, for1 i<
k, there are a contextC; and tupleslﬂ;fDiOWith Pi = Cij[B]andPjs+; = C; [fDi(] = Ci+1[B+1]
and B fDiO. Suppose thatP Z) , Y. We prove by induction on k that for every i such
that1 i<k we haveP 2) m, Vi andm; mi and Yiliftd  ( P')  apx Yiss.

The result is trivial for k = 1. Suppose that k = k%+ 1. The result follows from the
inductive hypothesis and from

Yiitd (%) ap YOftd  ( P')  apx Yimplies Y liftd (%) apx YO

if we can prove that for any C and B;®%such that 8 B°we haveC[®] Z) ,, Y implies
CIPYZ) moYOwith m mlandYliftd ( %) apx Y© This is proved by induction on
m. If m =0then Y = Y%and the result follows. SupposeC[] Z) m+1 Y. We have three
cases:

if C =[] then the result immediately follows by B = P P%= B0

C=0C; Ca,
Then there are Y3; Y, such that Y = ;Y1 + ;Y and Ci[®] =) m, Yi for i =1;2
and m; <m + 1. The result follows from the inductive hypothesis

C= C]_Cz.
If C1[P] is a value then, by the de nition of , C1[PY is exactly the same value.

Then the terms resulting after the -reduction are in Bt, and we conclude by the
inductive hypothesis.

If C1[P]Z) m, Y1 then we can apply the inductive hypothesis tom; and the result
follows.

We can now prove (**) by showing by induction on n that P( ?* (M;N)?)Q and

P Z) n Y imply Ydisliftd (R(u.n)) apx JOK
LetP PO PO=C[M]andQ=C[N]. Ifn=0and Y 6 ; then P is avalue,Y =1; P
and by (*) P%is a value too, with P ' PO We have two cases:

C =[], with P°= M avalue, andQ = N.

By the de rt1ition of Timn ) we havet 1P0%= IM Kdisliftd (Tim:n y)IN Kand it follows

from P ® POthat Ydisliftd ( ® Tjun))JIQK

PO= x:C gM]Jand Q = x:C qN].

Then Ydisliftd (P (M:N )?)JQK

If P Z) ns1 Y then by (*) we have that P°Z) m YOwith m  n+land Y liftd ( P') apx
Y Suppose thatY®6 ;. We have three cases:

C=[] 1M ZE) nYhenY? 5 MKisliftd (Tju:n))INK which implies
Ydisliftd  (Tm:n))  apx INK

by apx disliftd  (Tmn)) apx  disliftd  (Tjmny)  apx- Since for any S; S° we
have liftd (S)disliftd (SS9 disliftd (SS9, we derive

vdisliftd (" Toun))  ape INK:
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C = Cy1+ C,. Thenthere areY1; Yo such that YO= ;v + Y, and GiM] =) 1, Y,
fori =1;2andm; n. By the inductive hypothesis, we have that

YOiftd  (dislift  (Rguny)  ape JQK:

Hence, since for any pari of relationsS; S°we haveliftd  (disliftd  ()) = disliftd (),
and liftd (S)disliftd  (S9 disliftd (SSY, andby ' ?'= 7' we derive

Ydislift  (Rgun))  apx JQK:

C = C1C,. We consider two cases:

{ C4fM]=M andM = xM %and N = x:N %are values.
Then M Ty ) N and we haveMC,[M]Z) m Y0 MFCoMkg=] F 2) o
YO with m%< m n+1and INC,NJK= INFC2[NkgK = IJGK where
Fdisliftd ( '-’T(?M;N ))G (note that here the determinism of the reduction to
F is used in order to guarantee thatF Z) o Y%and that m°<m n+1).
Hence, we haveY dislift  (f (V;; Z;)gi)JGK with either Y;dirac ( bT(KA;N ))Zi
(which implies Yidirac (RN ))Zi) or Mj Z) m; Yi and JNjK= Z; for M; ?
(M:N)?Nj and m; m%< n +1, and by applying the inductive hypoth-
esis we deriveYidisliftd (Rw.n)) apx Zi. Therefore, Y liftd ( N apx
Y Hisliftd (Rminy)  apx JQK and the result follows.

{ CiM]= xC JM]and Ci[N]= x:C JN].
We can apply the inductive hypothesis to CIM ]f C2[IM g Z) 1,0 Y to derive

YUisliftd  (Rmny)  apx JCINTF C2INIxgk

then we haveY liftd () aox YWisliftd  (Rgu:n))  apx JCIN]F CalNIxgK
which implies the result.
2

We can now derive that the relation
S=f(M;N)g[f (M;N);LVILW) |V Rwny Wg[f (M;N);;:Z)] forany Zg
is a nite-step simulation up-to distribution and lifting:
sinceM ( ** (M;N)?)N, by Lemma[8.59(**) we have that if M Z) Y then
Ydisliftd  (Rgun))Y? apx INK

which implies Ydislift ~ (Syu.n ))JIN K(using the last set of relation Sy, y to elimi-
nate the approximation preorder apy).

the weight of the formal sums is the same.

if 1V Spuny LW and V ' \/qM; N )PW then for any (P; Q) 2 (M;N )? we have
that VP 7' VP (M:N )?WQ. Then clause (2b) of nite-step simulation holds by
Lemma[8.59(**).
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AV VOTmn) W then for any (P;Q) 2 (M;N)? we have thatVP ' V%P,
Hence,V P 2) Y implies by Lemma[8.59(*) that VP 2) YOwith Y liftd ( )
YO By the de nition of Tm:ny and by the fact that =5‘ is deterministic, we de-
rive from V® 2) Y%and from Lemma[8.59(**) that Y%isliftd (Rqwn))  apx

JW QK (see the proof of Lemmd 8.59(**), application case, for more details). Then
Ydisliftd  (Rgvn))  apx IWQK which implies Ydisliftd  (Spun 1) IW QK

Proof of Theorem 8.61 1

Let R be a nite-step ffy-simulation saturated by approximants. We rst de ne,
for any pair of terms (M;N ), the preorder .cev:n) (context closure of environments)
Bn pairs of environment formal sums with store: { ;Z cce(M:N ) (YO,gC) if Y =

ipsi®Z= g:t;W with jy j=jZzjand Y%= " . p;s;8%20= i q;tj;WjO
with j Y9 = j z% and
for every indexr in j Y j there is an indexr®in j Y%j such that Y ; = Y?,0 and
Z,=2%
for every indexr® j Y 9j there is a location-free value-contextC such that for every
i;j it holds that rq®9 = C[M; @] and rqW9 = C[N; W;] (e, (Y°0;Z%0) 2
(F(M; %gi: fN; W g)P).
For any indexed relation R(y.y y on environment formal sums, we writeRf,‘\’ﬁN) for
relation  ccemin) (Rmin ), 1€,

RN )= f(Y;2)j9Y%Z%such that (Y%Z9 ccemny (YiZ) A YORwn) Z%

Note that we can add to a nite-step ffg-simulation R saturated by approximants the
set
f((M;N);;;Y) ] Y is an environment formal sung

for any (M;N), and we still have that R is a nite-step f®y-simulation saturated by
approximants, since the presence of the empty formal sum on the left is irrelevant and
trivially satis es the simulation clauses. Hence, we assume that nite-step simulations
have this property, that we refer to as R is saturated by ;.

The following result is used in the proof of Lemmg 8.6]L (in Lemma4 8.60 anf 8.61, the

set of locations parametrizing the relations is not relevant, hence we omit it).
Lemma 8.60. Let R be a nite-step simulation and let
Y = Pipi;si;ﬂ RGN ) Pj g:t: W =2
Let (f x:P igi;f x:Q jg) 2 (FM; %gi; TN; Wg)? and (FTigi; U g) 2 (FM; B TN; W g )P
Then one of the following holds:
(fPif Tigg ; f Qi fUixgg ) 2 (FM; %gii fN; Wig)?
for every W , P i pi;si;@; xP i;PifTisgZ) W implies

P
Witt (R )T gt Wy xQ @ Uisgk
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Proof. We have three cases:

if x:P;= x:CIM;®]and xQ ; = x:C IN; W;] for some location-free contextC®,
then there is a location-free contextC%such that

P P
piPisi G PETxg= " piisii%; COM; @]
gt W Qi fUsg = gt g COPN; I ]

and the rst item holds.
if there is an r such that x:P ; = (9, and xQ = (\(/Vj()r for some
P P
Y 0= ipi;Si;VioR(M;N) j q;tj;WjOZ z°

such that (Y ¢ z9 g (MN ) (Y ; Z), then it follows from the fact that R is a nite-
step simulation that = ; pi;si; 8% Pif Txg 2) W Cimplies

. P
WOlift  (Reuny)d gty W0 Qf Uisgk
. P ) L
Since ipi;si;Vi; x:P i;Pif TisgZ) W implies
P P
(WO;J i Gt ;quijU,-:Xg@ cce(miny (W5 i Gt v X:Q j;ijUJ:(glg;

we derive =
Wit (Riwin ) d G5t i xQ Q) fUixgK

if x;Pj=M and x:Q; = N then M and N are values and by clause (2g) applied
to Rm:n ) We have

P P
iPi5sii oM R ,-q;tj;fNjO.N
P <.ecP . v : -
for some ( pi,Fs)i,Vi SN j() ccemiN ) (Y;Z). By clause (2b) applied to
Rv:n ) we have | pi;si; 84 M;PifTixgZ) W Cimplies
P
Wit (Rouny)d | gt WON;Qf Usgk:

Since by assumption x:P ; = M and x:Q ; = N, there are already columns in the
dynamic environments of Y and Z composed byM and N respectively, and thus

P P
(WQ,J jq;tj;WjO,N;ijqug& cce(M;N ) env (W ;J jq;tj;wj;ijUi;(glg;

from which the result follows.
2

In what follows, we sometimes use relations i and ji#  eny, de ned as follows:

P
(Y;2) s f(Y g:Zg)gq if there are probability values pg such that Y = gPg Yo
andZ = pg Zg;
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P
(Y;2Z) it penv f(Y g;Zg)gg if there are probability values pg such that Y = pg
YgandZ ="  pg Zgwith (Y§Z3) env (Y q;Zg) for every g.

The notation, as for relations  eny and  cce(m:n ), IS €Xtended to environment formal sums
with running terms by requiring the running term to be the same everywhere.

Lemma 8.61. Suppose thatR .y ) is @ nite-step simulation saturated by approximants
(only de ned on formal sums).  For any location-free context C if Y Rf,‘\’,l‘fN) Z and
Y;C[M;Y]Z) W thenW lift ( enV(R(C,‘\’,ﬁN))) JZ;CIN; Z]K
Proof. S h Y—P st Recce P "'fN'_Z ith YO_P 50
roof. quoset atY = ipisi¥% Ry, Gt W = Z, wit = i PiSih Y
and 2%= | q;t;; WP related by Ry ) and such that (Y829 ccemny (Y3 2).

We prove by induction on n and then by induction on the structure of C that
P o : P

i Piisi; %, CIM; ] Z) o W implies W it ( env (RN ) I P gt W N I K

(In the proof we sometimes assume tha® = €% %%and W; = W, W This does not
a ect the results since the context closure of environments allows to permute the columns
in the formal sums.)

If W = ; then the result follows by the fact that R is saturated by ;. Suppose that
W 6 ; and n = 0. We have one of the following cases:

C=[]pand M is a value. Then
P P
P80 (LihsiiM) it (Rouw ) ] q:WjO Jit; s NiK
and we derive

P P
P0G (L iM)(Gift (RERG ) g W I s NiK

C 6[ ]1 and for everyi;j, C[M; %] and C|N; W,-] are values. Then it follows from
the de nition of  ce(m;n ) that

= P P
W =" pisii S CIM IR ) gt W CINg W 1= 30 gty s e v Ik
P
Suppose now that ; pi;si; %;C[M; %] Z) n+1 W, with W & ;. We have the follow-
ing cases:

C =[]1 and M is not a value. Then the result follows analogously to then = 0
case.

P
C=0C;y Cy Wehavethat ;pi;si;¥%;(Ci Cp)[M;®]Z) W implies

P P P
s (Ce CIM; R L ipisi B CuM; @1+ 3 pissis @ ColM; 8]

P

andW = 2 Wi+ 3 Wy with | pi;si;@;Ch[M; 8]12) n, Wp, for h=1;2 and

Ny Nn. Since

JPJ- G:t; W (C1 Co)IN; vy K=
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P P
33 gt cN ke 303 gt el I K
we can apply the inductive hypothesis ton; and n, and derive
. . P
Wit (lift ( env (REEEN)D I 63t W5 (C CoING I IK
The result follows from lift (lift (R)) = lift (R).

C = C4Co.

Suppose that there exists some such that C1[M; %] are not values and they perform
some small steps in the reduction leading tow . Hence, there is a set © | such
that

P P

i21 pi;si; @; CiM; BICo[M; @] =) n, i210 Ik Pik;Sik; % Vik Co[M; Bl Z) n, W
with ny > 1 and

P P
i21 PiSis @ CaM; BT 2) ) o0k Pk Siks B Vi

We have that

P P

I 520Gt Wi CaN; W ICRING Wy 1K= 37 550 5 Gin s tin s W55 Wi CoIN; TV K

P P
forJ 55 G:t; ;Wj ; C1IN; fNj 1K= 2500 Gin i tin ;fN,- ; Wj:h . Then we can apply the
inductive hypothesis to n; and derive that
P _ P
i210k Pik s Sik AR Vi lift ( env (Rf&e;N ))) j23oh Gih stk ;W' ;Wj;h
which is equivalent to saying that

P P
( i2|0;kpi;k;3i;k;9';vi;k; jZJO;hq;h;tj;h;W';Wj;h) lift envf(Yg;Zg)gg R ?,?Ae;N)

; — P 0 . "I — P o . W
g there is a context Cy such that for all i;k 2 I and for all j;h 2 Jg we have
VigeCa[M; % 1= Cq[M; @] and Wi, CoN; W 1= CgIN; Wi 1.
If 810 Ik Pik ; Sik; & Vik C2[M; ¥]1 Z) , W then E)r every g there is aW 4 such

that = 5, P ; Sik s Bk Cg[M; ¥ ] Z) ng Wgand  ;ng = n, and

P
(W33 5550t W CaN; W 1CaIN; 1K
P 0
it env F(Wgid jn2, G tin ;Wi ; CoIN; Win 19 gg
By the inductive hypothesis on each of theng we derive that
P .
FWgid n2g, Ginitin Wi CoIN; Win19gg it ( en (R )

from which the result follows by lift ( env (lift ( env (R)))) = lift ( env (R)).
We now consider the case when n€1[M; %] contributes to the multi-step reduction
to W. If there exist somei such that C;[M; %] contributes to the multi-step
reduction to W , then we can derive the result using the same reasoning as above.
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Otherwise, there is a setl® | such that C;[M; €] and C,[M; ®] are values for
everyi 2 19 and

P P
i210Pi5Si; %5 C1[M; B 1Co[M; ] = i2|0%;3i;9i;(X:Pi)C2[M;V|]
=) ny ip0Pi;Si; B Pif CoM: ¥ilxg
Z) n2W

with ni n+landn, n.
Suppose that for allj we have that C1[N; fN,-] = x:Q j is a value andC3[N; fN,-] is
a value. Then, =
VSR ;W CaIN; W ICoIN; I K=
JPj q;tj;Wj; x:Q ng[N;Wj]Kz
J g:t; W, ;ijcz[N;WJ]:ng
SinceR is saturated by approximants,

P P

210P s B R gt W

which implies by Lemmal[8.60 that one of the following holds:

{ there is a context C°such that

P P

and

P j q;tj;Wj;ijcz[N:Wib(g: Pj G ;tj;fN-;CO[N;fNj]:
Then we can apply the inductive hypothesis on the reduction
Pizwpi;si;V-;C(IM:ﬂ]Z) n, W
and derive the result.
{ forany WO if P o10pi; s B xiP i PifCaIM; Blg 2) W Othen
WOlift  (R{iey ))JP [ Gt Wi x0 j;ijcz[N;Wj gk
Then we have
(W ;JP Gt W 1 Q; f CaIN; Wi kg
env (W“,JP ot W xiQ 5 Qyf CalN; Wikkgyy
and the result follows by ¢ny lift (R) it ( env (R)).

It remains to consider the case wherC;|[N; Wj] or C3[N; W,-] are not values for some
j. If C1IN; fN,-] is not a value for somej then C; =[ ]1 and N is not a value. Suppose
C2[N; fN,-] is a value for allj. Then we have

P

35 i29 gt Wi NCoIN; W K=

JP i230 3h Gh o tih ;Wi x:Q i CaIN; 1K=
I 250 3n Ghitin: W, ; Qjn f CaIN: W g
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P P . . . .
forJ .5 Gt v N K= i23%h Gih s Lih W xQ ih- SinceR is a nite-step sim-
ulation saturated by approximants, by clause (2g) we derive

P ) P
21003580 XPilift (Raun)) 200 G tin s W0 xQ jn
which implies
P Y- T : cce P . W . .
Then
P = RS P . W . v . cce
C i200Pisii s XP s o500 Ginstin s Wi xQ ) e F(Y9iZg)dg R (v
P P
with Yg= " 5 phsi; % xPisand Zg = 55, Gt ;Wi x:Q jn such that
for every g we have that
P
i21, P si; B XP iy xP i Co[M; @]

and =

in 235 O tin s Wit xiQ s x:Q i CaIN; W]
satisfy the premjises of Lemmd 8.60. Then we can proceed as in the previous case
and derive that = ;5 p%si; 8 x:P i;Pif C2[M: ¥ilxg 2) W 4 implies
. P :
Wglift  (env (RGN I jhag, §nitin: Wi xQ i s Qun FCalN: Wik

from which the result follows.

Finally, if there are are somej such that C,[N; fN,-] is not a value then we can proceed
as in the previous case, exploiting clause (2g) oR .y y in order to evaluate N in
argument position as well.

caseC =!1C°

The interesting case is when for every we have that CYM; %] does not contribute
to the reduction (otherwise, we can apply the inductive hypothesis analogously to
the application case), i.e., there is a subset® | such that

P P P
opoP S B ICIM Bl = 0PSB =) ner iop0Pi SRS Si(l)

. . , P 0 P 0
SinceR is saturated by approximants, ,,0pi;Si; %R ) P Gt ;fNj.

Since contexts are location-free, there are two cases:
{ CIM; %12 €% Then CIN; W;]= 1?2 W, and by clause (2c) onR we have
P ) P
210k s RO s it (Reuny) 6t WA (19)
and the result follows from

P p
J q;tj;fNjO,!IjOK: j q;tj;fNjO,ti(Ijo)
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{ C=[lrand M = 1.
Suppose thatN = 1% Then by clause (2g) we have

P
210015, €M Roun ) jq;tj;WjO;N
and by clause (2¢)
P
o 1opiSis 8O M; si(1) lift (R(MN)) PGt WAN; (19
Then
P cce P 0
2i0Ps B s it (e (REEG)) Gt Wy (19)

The case whenN is not a value follows analogously.

C= C]_ = Cz.
Again, the interesting case is when for evenyi neither C,[M; %] nor C,[M; %] con-
tributes to the reduction, i.e., there is a subsetl | %such that

P

~proPiSi B CalM; 9] = Co[M; 9]
- |2|<19|,S.,9,,|, = T
Z) nv1 jpopisilli!t Tl ®;?

. . : P 0 P 0
As above, sinceR is saturated by approximants, 500 % Rminy | Gt ;f/vj
and, since contexts are location-free, there are two cases:
{ C1M; %12 ®° Then Cq[N; W;]1=1°2 W2 Suppose thatCoIN; ;] = U is

a value for everyj. Then (fTigi;fUjg) 2 (fM; €%;; fN; fNjOgj )? and by clause
(2c) on R we have

P . P
2opisilli b TR0t (R ) gt 001 Ul W

and the result follows.
If C5[N; W;] is not a value for somej then C,[M; ¢ 1= M and C2[N; t;]= N
Then we derive from clause (29g) that

P P P
i2|opi;S|,9- M R(MN)J i G tJ,WjO,NK: ih Gih s tih s W » Uih

and we can derive, as in the previous case, that
P . P
2opisilli !l MECOMItt (Rowny) g G0 Upn 1 W2 U

from which the result follows.

{ C=[LhandM = 1.
Suppose thatN = 19 and C2[N;Wj] = U; is a value for everyj. Then
(fTigi;fUg) 2 (FM; €% fN; f/\/jogj)l?. Then by clause (2g) we have

P P
i210P1;Si; 8% M RN jq;tj;WjO;N
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and by clause (2¢) onR we have
P _ P
2opisil L TLESMIIft (Rany) g:t000 UL WAN

and the result follows.

If N or Cy[N; Wj] are not values then we proceed analogously to the previous
cases, by proving that we can add to the environment the values they evaluate
to while staying in relation R .y ).

C=( x:=Cp)Cy, with C, a context with free variable x.
We consider the case when

Pp.opi;si;ﬂ;( x :=Cy[M; ] Ca[M; ¥ ]
= izpopi;si;ﬁ;( x:=T;)Co[M; ¥]

=) o igrobisilli! Til 5 CoM; B ]flixg
Z) ., W

and C1[M; %] = U; is a value for everyj, thus

JP pq?tjiwj:( x := C1[N; v, ) CaIN; T 1K
=J Gtk ! Ui 1; W ; CoN; W 1F ki gk

for (fTigi;fUjg) 2 (fM; €%i; fN; fNjogj )P and for locations (flig;; fkjgj) which are
(fsigi; ftj;g)-fresh. By clauses (2d) and (2c) we have

P P
2ropnsili !l TLeSHE Ry gtk b ULk
which implies that

P
i2|0pii33i[|i! Ti]; % 1i; Co[M; R 1flixg
REPL) 1Atk ! UL Wik CalN; W If kixg:

Then the result follows from the inductive hypothesis onn,.

caseC = if C; then C, else Cgz and caseC = op(Cy;:::;Cm).
The result follows from the fact that REEy | satis es clause (2e) for constants and
then from the inductive hypothesis.

C=(Cy;::5;Cm).

Since the multi-step reduction to W has length strictly greater than one, there is
somez such that 1 z m and somei such that C,[M; %] contributes to the
multi-step reduction to W . Then we can apply the inductive hypothesis on the
contexts to C, and derive that:

P P
i210Pi:Si; Wi C2[M; BT Z) no 5 0 Pik; Sik s 5 Vik

for n® n+1 implies

P ) P
i210k Piks Si;k;‘gi;vi;k lift  ( env (R?E/?;N ))) j%)]o;h Gih s tih ;wj » Win
=J gt W CIN; I K
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i.e.,

P P

(200K Piks S 5 Vi j200n G tins Wi Win) i e F(Y g1 Zg)gg R N )
. P 0 P 0

with Yg = 45, Pk Sik; ks and Zg = 235 %h s tih ;Wj;h and for every g

there is a context Cy such that for every i;k 2 14 and j;h 2 Jg:

C[M; @ 1f Vik=C,[M; ®1g = Cy[M; @]
CIN; f; 1t Win=c,[N: ;g = CgIN; W ]

(where the substitution only concerns the speci c instance ofC,[M; &] in C;[M; %]
that occurs as the z-th element of the tuple C[M; €], and the same forC,[N; W;]).
Finally, we derive the result by applying the inductive hypothesis on the number of
reductions from p

ik 214 Pk Sk Bk s ColM; B ]
C =# ,(C9.
We consider the case wher€qM; &1= (Vi 1;:::; Vim ) is a value for everyi and
i i21 PSS #(CIM B L W = i i21 Pik s Si; ¥ Via
We have three cases:
{ CIM; 1= (Vi Vim) 2 82
Then CIN; W;]= (Uj1:::5 Upm ) 2 W and we have by clause (2f) orR that
i iP5 s 8O Vi1 Vim ift (Rven )) i Gt ,W U, 1 5 Upm
Therefore,

P
(W35 a3t W # (U s Yim )R
env( |plis|lvll\/| ll\/lma ]q tjiw Uj 1,Ujm)2 Ilft (RcceN))

{ CIM; &]=(CaM; &]; 5 Cn[M; B]).
Then CAN; W] = (C4[N; W;1;::;;Cm[N; W, ]) and the result directly follows
from the de nition of the preorder  ccemin )-
{ CO=[ .
The result follows from clauses (2g) and (2f) forR.
2

Lemma 8.62. Suppose thatR .\ ) is a nite-step fRy-simulation saturated by approxi-
mants (only de ned on formal sums), and that C is a context with locations in f&. The
following relation satis es the clauses on formal sums for nite-step simulations up-to
lifting and environment:

S=f((CIMICIND;Y;2) j Y REFN ) Z9
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Proof. We can assume that the relationR (y.y ) is closed byffy, i.e., each locationl 2 f fy
occurs in corresponding columns in the dynamic environment of the formal sums (formally:
for any Y ; Z in the relation and for every | 2 f fy there is an indexr, forl r j Y j, such
that both Y  and Z ; are tuples composed by locationl). This assumption simpli es
our proof, while not a ecting the results. Indeed, we can eliminate all the pairs that do
not satisfy the requirement of ffy-closure and we still have a nite-step ffg-simulation
saturated by approximants.

The proof exploits the fact that if Ry.y) is closed byffy then Sf,f,ﬁN) is closed
by ff and, for any C such that Loc(C) f f, if ;pi;si; % Rf,‘\jle;N) P Gt ;Wj and

(fTigi;fU ) 2 (FCIM]; %ai; fCINT; W, g)P then (fTigiifU;g) 2 (FM; %igii fN; W g)®,
since the locations inffy are guaranteed to occur at corresponding columns iffi % g; and
g and then C can be turned into a location-free context.
The condition (2a) on the weights is immediately satis ed by the de nition of R?,‘\’AE;N )

sinceR is a simulation.
Then we prove that the conditions from (2b) to (2g) of nite—steg simulation up-to lift-
||Qg and environment are satis ed by S. Suplgose thatY = iPissi; % Sicmicing

(Gt W= Zwith YO= 7 piisii€%2%= | gty W0 related by Ry ) and such
that (Y %29 cce(MiN ) (Y5 2).

for all r, if (&) = xM ; and (W)); = x:N j then
forall (fTigi;fUjg) 2 (fCM]; % gi;fCINT v, g)®,
if . pi;si;®;MifTixgZ) W then

| P U
Wit ( env (Sempewy) G W I 5 NjfUigik

Proof. We have three cases:

{ if(®)r = x:C IM; ¢%and (W;), = x:C IN; W for some location-free context
COthen, sinceR .y ) is closed with respect tof, there is a location-free context
C%such that

P P
pi pi;si; & Mif Tixg = F-,IOi;Si;Vi;COTM; \d
Gt W N P Usg = gty 5 CON; ]
and we derive the result by Lemma[8.6]L.
{ if (%) = (890 and (W), = (f/\/ﬁro for somer® then, since R(y.y ) is closed
with respect to £, there is a location-free contextC%such that
P P
s @MifTxg = pirsic @ M COIM; 8%
P |
cast N FUsg = gty I FCOIN: Wik
SinceR vy ) is @ nite-step simulation,

P
piisi; BOMfCOIM B gZ) W

P
implies W lift  (Rmn)J | gty; W0 Ny FCON; W3gK which in turn implies
the result analogously to Lemma[ 8.6D.
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{ if (&) = M and (Wj)r = N then M and N are values and by clause (29)
applied to RN )y we have

P . P
s BOAMift (Rauny) 5 Gt AN
Hence, by clause (2b) applied toR (y.n y we have
P
piisi; €OM M FCOM; BOgZ) W

P
implies W lift  (Rqun))Jd Gt ;\‘/vj‘l, N ; N; f UigK which in turn implies the
result (see the proof of Lemmd 8.60).
2

@d) for all r, if (&), = I; and (f/vj)r = kj then

P _ P
{  ipisi®si)lift (Scmpieny) Gt vt k)
{ forall (fTigi;fU;g) 2 (fC[M];@.gi;fC[N];TNj gj)'? we have
P P
ipissilli! TiL% Scmiewy itk ! SARE

Proof. Since contexts used in ce(m;n ) are location-free andR .y ) is closed with

respect to the locations in £ (and thereby the locations in C[M]; C[N] are in the
dynamic environment of the formal sums inR .y y in corresponding columns), there

is an r%such that (%9,0= I; and (\‘Nﬁ,o = k;j, then:
P _ P
{  ipis®0si() it (Rouny) Gt ;fNjO, tj (kj) and we have
P _ P
s Basi()ilift (REsey ) ot Wit ()

from which the result follows.
{ by (FTigi:fUg) 2 (FM; 8% TN; )P we derive

P P
posillit TRy gtk UL
which implies

P P
sl b TL® Semremy it YLty

(2d) for any (fsigi;ft;gj)-fresh locations (ligi;fkjg;),

and for all (fTigi;fUjg) 2 (fCIM]; %gi;fCINL Wi g)®,

P P
ipissillit TiL® i Scemiewy Gtk ! ULk

Proof. The result follows from (fTigi;fU;gj) 2 (fM; €% fN; Wjogj )? as in the pre-
vious clause, by exploiting clause[(2H) orR. 2
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[@€) for all r, if (%) = ¢ and (fNj )r = G then all constants in the two columns are the
same (i.e., there iscy with ¢ = ¢ = ¢4 for all i;j ).

Proof. For every r, there are three cases: eithe ; = Y% oand Z ; = Z°,0 for
somer? in which case both columns are composed by the same constant, sinée
is a nite-step simulation; or the value-context is a constantandY , = Z ( = ¢c; or
the constants are respectivelyM and N, in which case

P . P
s BOMift (Rawny) 5 Gt AN

(by clause (29g)) and thus they have to be the same constant, otherwis® would not
respect condition (2e). 2

@ for all r, if (&)r = (Vi1;:1 Vin) and (Wj)r = (W, 1; 5 Wi ) then
P , P
i PSS Vi i Vi it (Sempeny) Gt W 1w

Proof. If Y ;= Y%, candZ , = Z° 0 for somer®then it follows from the de nition
of R that
P _ P
(PS8 Vin i Vi Bift (Seyey) Gt Wi Wi Wi
Otherwise, for 1 h  n we have that (fVingi;fUpng) 2 (FM; %i; fN; Wjogj)b,
which implies that
P P
(YSZY  cceqminy C i pissii®i Vi o Vi PGt SV W W )

i.e., the formal sums are in relation lift  (Scmycng) -

Finall¥, if (%) =M and (Wj )r = N,then the clause follows as in the previous cases
from = pi;si; €OM it (Rmn ) [ Gt ;fNjO,N, by clause ). 2

P o P -
@9 P ¥ Jsi; CIMIiKift (Scmyeny)  G:W I ; CINTK.

Proof. Since R(u:n ) is closed with respect tof there is a location-free contextC°

such that
Y:C[M]=Y:CIM: Y]
Z;C[N1= Z;CIN; 7]
and the result follows from Lemma[8.61. 2

2

We can now derive from Lemmag 8.6R the congruence result. LeC be a context such
that Loc(C) f fy. Let R be a nite-step ffg-simulation such that hs; Mi R ht; Ni.
Then the relation

f(hs; CMTisht; CINT)g[f ((CIMLCIND;Y;2)§ Y RSy, Y

is a nite step simulation up-to lifting and environment, since:
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clause (1) on terms follows sinca.oc(C) f fy and by clause (1) forR we have that
LsELERD 2R MmNy R Giinys

the clauses for formal sums follow by Lemma 8.62.

Proof of Theorem 8.62 ]

Let = BF%nd let %= ¢;¥%be a sequence of values whose types are consistent
with those of ® and with locations in f&. Let C be a context with locations in f & and let
R be a nite-step ffy-simulation (saturated by approximants) relating hs; Mi and it ; Ni.
Then 1;s;R u.n ) 1:t; Fand by repeatedly applying clause ) we derive that

LslP% WELEPR Ny LitPY WP

for a consistent sequence of valuebv . (Note that we cannot guarantee by just using
clause ) that the tuple of values'®%is assigned tof®? since locations inf°might occur
in any value in ¥°% Hence, we rst have to put all the locations in 9 in the dynamic
environment.) Then by repeatedly applying clause ) we derive

Ls[f @R Lt €%

It is easy to see that if we restrict R,y ) to those pairs of formal sums whose dynamic

environments begin with the sequence® of locations then the clauses of nite-stepf fg-
simulation are satis ed. Let R?M;N ) be such a restriction of R .y ). Then we can apply

Lemma[863 (see the proof of Theoren 8.51) and derive that relation
S= f((CIMI;CIND;Y;2) j Y R%un ) Z9
is a nite-step ffYy-simulation (up-to lifting and environment). Since

(1;5[1‘:'00! ‘90?;150; 1;t[f‘oo! ‘90?;":% 2 R?M;N) R O(:l(\:IIE;N) = S(C[M];C[N])

we concludehs[P% ©%; C[M]i. ffgh[ﬁ)o! ¢%%: C[NJi.
Finally, by repeatedly applying clause ) to locationsfin the pair

1,3[1':90' 90?!@S(C[M],C[N]) 1,'[[@0' VO?,F'O

we derive
H_ gl .0_ gl
1,P=¢°®Scmcny 1P= ¢%F

which in turn implies = €%, C[M]i. frfogﬂg’z €% CINJi.

Proof of Theorem 8.64 ]
We prove that the relation

R =f(f=¢; l}{li;iﬁz 9_; Ni)j 'V||> ax N~ fRy= Loc(M) [ Loc(N)g][
FAMIND i pssi VsV Gt W Wa) | M e N
A9 C: ¢ such that (JtE: % C[MIi K=" ipiisi; xxV iV,
N OP= 8 CINTIK= gty xixW 1w
with Loc(C) f ®g= Loc(M)[ Loc(N)
N they are rst-order consistent )g
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satis es the clauses off fg-simulation. Let £ = I3;:::l, = Loc(M) [ Loc(N) and I =
¥;MiRhf= ¥;Ni. Hence, M x N and clause @.) holds since, using context
C = xxxl 12l (with no holes) we derive fromM o N that 1; = @;l; 1, RN
1:6= 911000,

To prove that R satis es the clauses of simulation for formal sums, we rst show the
following lemma.

Lemma 8.63. If Y Ryy.n) Z then for any C with Loc(C) Loc(M)[ Loc(N):
If JY ;C[M; Y ]Kand JZ;C|N; Z]Kare rst-order consistent then

JY ;CIM; Y KR Ny 325 CIN; ZIK

If JY ;C[M; Y ]Kand JZ;C[N; Z]Kare not rst-order consistent then

JY ;CIM; Y IKiift  (R(m:ny) IZ; C[N; Z]IK

Proof. If Y = P|pI;S|;V]:;::"V. RN ) ij-t,;wl;::--wl = Z then they are rst-
Brder consistent environment formal sums, and there areC;s such that Js; C[M]iK=
PPisi; XXV {Vy and Jis; CINJIK = g5ty xixW Iimwi and Loc(C) f R =

Loc(M) [ Loc(N).
Let C%be any context with Loc(C) f fg= Loc(M)[ Loc(N) and let

Pm:co= X 1;:5 Xn:( Z; XiXX 1:::xnz)C0[M;x1;:::;xn]

and Py.co the same term with M substituted to N. It follows from M ¢ N that
C[M]F’M;C0 ctx C[N]PN;CO-
We have that:

JkS;C[M]PM;COiK— g‘s C[M]INDM(;OK

P|p|,S|,(PMCOV1 V)K
=3 iPssii(ZixxV | Vaz)CIM; V4 i Vi TK
= |kp|k Sik; (Z; XXV:L VVlk)

P . P
for I pi;si;CIM; V{1 VK= ik Pik;Sik; Vik and analogously forN:
P . .
Js; CINIPNcol K= ) Ginstin s XiXW 1 WA Wi
PN W - Wik T o

If 3 . pi;si;CIM; VJ; = ViKand J G ;CIN; W!;:wilKare rst order consistent,
then we can conclude, by the de nition of R, that

P ) ) . .

i piinP§313in1' Jhsi; CIM; VvV 2 ValiK
RNy G ;Wi;:::;er1 Jntj ; CON; W ;i wiliK
P ) . P ) .

If 3 pi;si; CIM; Vi VilKand J P Gt ; CIN; W1 ;s Wi ]Kare not rst order consis-
tent, which means that the dynamic environment is composed of di erent constants, then

for any constant ¢ we can use the term

Pum:coc= X 1;:5Xni( Z; XIXX 111X 2Z) if CO[M;xl;:::;xn] = c then c else
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to derive, analogously as above, that
P Y TR P R Y P
fik jVig = cg Pk s Sitk V1 Ve Vik Rowen fj:h W =cg Gih Lin s W15 Wa s Wi

and thus
P P . .
YICIMIYT= ¢ fimjvig = g Pik s Sigk s V15 55 Vi Vi
gt (R y) , ,
¢ fihiwg, =cg Gin i Gin s W15 W Wi = Z5CIN; Z]
2
P . . P i i _
LetY =, pi;si;Vi;on W, RN ] q;tj;W{;:::;WA): Z be _rst-order consistent
environment formal_sums and letC;s be such that Jbs; CIM]iK= =, p;;si; x:xV {1V,

and Jrs; C[NJiK= " g;t;; x:xW {:::er]. We can now prove that R satis es the simu-
lation clauses on formal sums.

[@a) It follows from the de nition of ¢« that M ¢x N impliesC[M] ¢ C[N], which
implies weight (Y ) = weight (Jrs; C[M]iK  weight (Js; C[N]iK = weight (Z).

Let V! = xM ; and w! = xN i. The result follows from Lemma, using
context C =[ Jr+1 C© for any value context C°.

@) Let V! = I; and W/ = Kj. The result follows from Lemma, respectively using
contexts C; = ![ Jr+1 and Co =[ ]r+1 := CC for any value context C° In the latter
case, since the formal sums are rst-order consistent we can use directly relation
R(m:n ), Without the lifting construction (by the rst item of Lemma 863).|

The result follows from the rst item of Lemma using context C = ( x:=Cy)Co,
for C; a value context and C, a context with free variable x.

(d) The result directly follows from the de nition of R.

@ For all r, if V' = (Vi1;:3 Vin) and W/} = (W 1;::5 Wi ) then the result follows by
iteratively applying Lemma B.63| using contextsCq =# 1([ J;41),» Cn =# n([ I141)-

The result follows from Lemma[8.63, using contextC = [ .
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Conclusions

9.1 Additional related works

We discuss here some additional works on probabilistic calculi based on di erent notions
of bisimulations (with respect to applicative or environmental) or di erent techniques for
proving contextual equivalence.

In [DLSA14] and [CD14] probabilistic applicative bisimulations for pure call-by-name
and call-by-value -calculi are shown to be congruences. Completeness however only holds
in call-by-value, while it fails in call-by-name. In call-by-name, completeness is obtained
using coupled logical bisimulation a probabilistic version of the logical bisimilarity for de-
terministic languages [SKSO07]. While applicative bisimulation requires two functions to
be related whenever they take as input the same argument, logical bisimulation requires
two functions to be related whenever they take as input terms in the contextual closure
of the relation itself. Since the contextual closure of a relation includes identity, the set
of terms with which related functions are tested is enlarged with respect to applicative
bisimilarity. This makes the congruence proof easier by allowing a direct use of the induc-
tive hypothesis, thereby removing the need for Howe's technique. Drawbacks of all forms
of logical bisimilarity are a non-monotone functional (which makes it harder to prove that
bisimilarity is the largest bisimulation) and a con nement to pure -calculi. Further, up-
to techniques may be di cult in logical bisimilarity. For instance, Example §.25 fcannot
be proved with the techniques in [DLSA14]: the equality fails for applicative bisimilarity,
and the up-to context technique provided for logical bisimilarity is not powerful enough
(the paper shows a similar example, akin to Exampld 8]5, where however the functions
employed immediately throw away their input, and this is essential for the proof).

An alternative bisimulation for enriched calculi is normal form (or open) bisimulation
[San94; SLOY; LLOY; JPRO9]. This is complete (with respect to contextual equivalence)
only in certain extensions of the -calculus (e.g., call-by-value with both state and callcc),
and would be incomplete in other languages (such as-calculus without state or/and
callcc, and languages with constants or types).

Another approach to contextual equivalence in higher-order languages is via logical
relations (see, e.g., [Mit96, Chapter 8] and|[Pit05]). This technique has been applied to
probabilistic typed higher-order languages by Bizjak and Birkedal [BB15]. Their prob-
abilistic logical relation uses biorthogonality, and is de ned on terms, rather than on
distributions. These features introduce some universal quanti cation (e.g., on evaluation

171
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contexts) which makes it di cult to prove examples such as [8.43, as discussed in [Biz16,
Section 1.5]. Proof techniques combining features of bisimulations and logical relations in
the non-probabilistic case are studied in|[HDNV12; Nei+15;| JT15].

In denotational semantics, fully abstract models for probabilistic PCF have been stud-
ied in [GL15] using domain theory and adding statistical termination testers, and in
[ETP14] using probabilistic coherence spaces| [DH02] provides a fully abstract game se-
mantics for probabilistic Algol, using a quotienting step.

Finally, in this work we have only considered exact behavioral equivalences, as op-
posed to approximate behavioral equivalences (allowing the programs to dier up to a
certain probability value p) or metrics (measuring the distance between the behaviors of
probabilistic programs) [DLT08; DJGPO02]. Bisimulation metrics for an a ne probabilistic
pure -calculus have been recently proposed in [CD15]. Applicative bisimulation metric is
proved to be sound with respect to the contextual distance, and a metric for an extensions
of the language with tuples is de ned. In order to be sound with respect to the contextual
metric, the tuple distance is endowed with a notion of environment.

9.2 Conclusions and future work

In probabilistic -calculi, even in cases where applicative bisimilarity is fully abstract for
contextual equivalence, the corresponding simulation may not be fully abstract for the
contextual preorder. Pure call-by-value is such an example. We have seen in Chapter
[7 that extending the probabilistic call-by-value -calculus with a parallel disjunction op-
erator allows us to recover full abstraction with respect to the contextual preorder. The
soundness proof is carried out throught Howe's technique enriched with non-trivial "dis-
entangling' properties for sets of real numbers; the completeness proof is based on the
encoding of \logical" tests characterizing probabilistic simulation on RPLTSs.

In Chapter Bl we have studied fully abstract environmental bisimulations for proba-
bilistic pure call-by-name and call-by-value -calculi, and for a probabilistic -calculus
with higher-order, local references. In all the considered calculi, full abstraction for envi-
ronmental bisimilarity carries over to the corresponding simulation, with a similar proof.
This shows a further di erence between applicative and environmental (bi)simulations in
the probabilistic setting.

While we have tried to respect the general schema of environmental bisimulations, our
de nitions and results present noticeable technical di erences. Some di erences, such as
the appeal to formal sums, are speci c to probabilities. Other di erences, however, may
be seen as insights into environmental bisimulations that were suggested by the study of
probabilities. An example is the distinction between a static and a dynamic environment,
which re ects the copying facilities of the language on the terms of the environment. This
distinction yields sharper congruence results, which show up well in the imperative -
calculus: with ordinary environmental bisimulations, bisimilarity is fully substitutive only
for values, since for general terms substitutivity holds only for evaluation contexts (see
Example [8.42)3 The example in Section|8.2.4 shows that static environments can also
be useful in context closures of "up-to context' techniques.

12As a consequence, in ordinary bisimulation, we can prove that terms M and N are contextually
equivalent by showing that :M and :N are bisimilar [SKS11].
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To understand environmental bisimulations for call-by-value calculi, we have found
important the study of the imperative extension. Only in the richer language do vari-
ous aspects of our de nitions nd a justi cation: the use of formal sums (Example );
dynamic environments as formal sums of tuples of values, as opposite to, e.g., tuples of for-
mal sums (Example]8.44); the lifting construct to handle rst-order values (Example([8.48).
The pure call-by-value calculus has allowed us to present the concepts in a simpler set-
ting, as a stepping stone towards the imperative extension, but seems a rather peculiar
language, one in which a number of variations of the de nitions collapse.

The dynamic environments are used only for the call-by-value calculi. In general, the
form of the bisimulation clauses depends on the features of the calculus. It would be
interesting to investigate an abstract formulation of bisimulation, of which the concrete
de nitions presented in Chapter [8would be instances. Possible bases for such a framework
could be coalgebras [RJ12] or bigraphs [Mil06].

Related to the problems with congruence of applicative bisimulations are also the
di culties with \up-to context" techniques (the usefulness of these techniques in higher-
order languages and its problems with applicative bisimulations have been studied by
Lassen |[Las98]; see also [San97; KWO06b; PS12b]). Enhancements of the bisimulation
proof method, as up-to techniques, are particularly useful for environmental bisimulations
[SKS11] because of the quanti cation over contexts that appear in the de nition and that
can make bisimulation proofs tedious. We have explored some basic enhancements, mainly
in call-by-name, including new forms of up-to techniques speci ¢ to probabilities such as
‘up-to lifting'. The study of powerful enhancements goes beyond the scopes of this work.
It could be pursued in a number of directions, for instance investigating other forms of
up-to and strengthening the “up-to context' enhancements.

Another interesting direction for future work is the addition of concurrency. A major
consequence of this could be the move to semantics that combine probabilities with non-
determinism.
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