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Avant exercé depuis un an au Centre de Vision Numérique (CVN), CentraleSupélec,
comme enseignant-chercheuse, j’ai travaillé comme associé de recherche a I'Université de
Pennsylvanie, Etats-Unis (2005 - 2009), aux départements de physique médicale, Université
de Patras (UPatras), Grece (2009 - 2012) et de génie informatique, UPatras (2012-2015). J'ai
recu une bourse d’études doctorales (pour 3 années) de la Fondation des Bourses de I'Etat Grec
(IKY), et une bourse Marie Curie IRG pour poursuivre des recherches postdoctorales (aussi
pour 3 années).

Ces onze derniéres années j’ai enseigné de nombreux cours en combinant la theorie et le
travail pratique. Actuellement j’enseigne le cours Bases d” Apprentissage Statistique (Master,
CentraleSupélec, 3h/semaine) et pendant 2009-2015 j'ai enseigné a " Institut de Technologie
de la Grece Occidentale (TEI) (12h/semaine total en moyenne): Vision par Ordinateur et
l'Infographie, Programmation d'Ordinateurs (Pascal, QBasic, Fortran), Systemes d’Exploitation
et des Logiciels, Circuits Electriques, Mesures Electriques. Au cours de cette période, j'ai aussi
eu la chance de co-encadrer six doctorants, qui ont produit des résultats publiés dans des
articles scientifiques et conférences internationales d’excellence. Ms. Angeliki Skoura a
soutenu sa these en 2014, M. Vasileios Kanas a soumis sa these (date prévue de soutenance:
Janvier 2017 ), M. Evgenios Kornaropoulos a commencé la rédaction de sa thése, tandis que
trois doctorants sont en cours (Evangelia Pippa, Alexia Tzalavra, Guillaume Chassagnon).

Les recherches que je mene sont dans le domaine de 1" analyse d’images biomédicales
ou des biosignaux, un domaine qui a des liens étroits avec les mathématiques appliquées,
I'informatique et la technologie biomédicale. J'ai co-rédigé en collaboration plus de 70 pub-
lications scientifiques (h-index = 15, g-index = 29). Je suis membre du comité de rédaction
de I’ International Journal of Radiology et de Dataset Papers in Science journal, tandis que j'ai
été rédacteur en chef adjoint de la revue scientifique Medical Physics.

Au cours de mes recherches, les méthodes d’extraction de données ont été explorées et
validées par des études de cas réels y compris une variété de données biomédicales, parmi
lesquels des biosignaux (tels que les EEG, ECG), des images spatiotemporelles (CT, IRM,
dynamique améliorée IRM), ainsi que des structures moléculaires (genes et protéines). Les
contributions de recherche comprennent

e l'avancement des algorithmes d’analyse d’image en utilisant les données acquises
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dans la pratique clinique qui est généralement de grande dimension, rares, et tres
variable, et

e l'application de techniques d’apprentissage statistique pour l'extraction de biomar-
queurs en ce qui concerne les résultats cliniques ou la prédiction de la maladie.

Les travaux de recherche peuvent se résumer en deux parties, (i) la découverte de connais-
sances dans les milieux non supervisés ou semi-supervisés ol1 I’apprentissage est possible
en observant des populations et (ii) 'exploration de données en milieu supervisé ot les
modeles sont apprises afin de relier les variables cibles (tels que le type de maladie) avec
les données cliniques disponibles et de trouver ainsi des relations qui font progresser notre
compréhension. Celle-ci conduit généralement a la construction de modeles personnalisés
formés pour des applications cliniques particulieres. Un défi majeur dans la création de
modeles statistiques a partir des populations de sujets est la standardisation (normalisation)
des données dans un espace de référence commun. Surtout en ce qui concerne les données
d’imagerie de différents sujets avec une progression de la maladie, la normalisation spatiale
est généralement un probleme mal défini, donc des efforts considérables ont été déployés a
cette direction de recherche.

Les cadres informatiques ont été principalement développés pour I’analyse des données
présentant des troubles neurologiques, tels que les tumeurs cérébrales, la sclérose en plaques,
les maladies cérébro-vasculaires, et de I'épilepsie.

En proposant ma candidature pour la qualification au Poste de Professeur des Univer-
sités, j'espere développer davantage mes activités d’enseignement et de recherche.
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Abstract

Over the last decades the use of artificial intelligence techniques for mining biomedical data has
been incredibly popular and has opened numerous opportunities to improve medical diagnosis.
In the current thesis foundational data mining methodologies are explored and validated through
real case studies capturing a variety of biomedical data, from one-dimensional biosignals (such
as EEG, ECG), to spatiotemporal images (CT, MRI, dynamic-enhanced MRI), as well as molec-
ular structures (genes and proteins). Research contributions include (i) the advancement of im-
age analysis algorithms using data acquired in clinical practice that usually are high-dimensional,
sparse, and highly variable, and (ii) the application of machine learning techniques for extraction
of biomarkers in respect to clinical outcome or disease prediction. The work can be summarized
into two parts, (i) knowledge discovery in unsupervised or semi-supervised settings where learning
is possible by observing group populations and (ii) data mining in supervised settings where mod-
els are learnt in order to link the target variables (such as disease annotations) with the available
clinical data and thus find relationships that advance our understanding. The latter leads usually
to the construction of personalized models trained for specific clinical applications. The two parts
are interconnected since knowledge extracted from group populations can be subsequently used
as prior distributions to guide and regularize the solutions in personalized data-driven scenarios.

A major challenge in the creation of statistical models from populations of subjects is the
standardization (normalization) of the data in a common reference space. Especially in respect
to imaging data from different subjects with disease progression, spatial normalization is usually
an ill-defined problem, thus a significant amount of work is devoted to this research direction. In
respect to supervised learning, the standard data mining pipeline is followed which includes the
data representation phase where features are extracted or data are transformed into a new (more
compact) space, and the learning phase where a model is learnt aiming to reproduce the available
data or find correlations between the patient’s profile and the underlying clinical condition.

The computational frameworks were mostly developed for the analysis of data with neurolog-
ical disorders, such as brain tumors, multiple sclerosis, cerebrovascular disease, and epilepsy.
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Chapter 1: Background

1.1 Introduction

Among the most important objectives of biology and medicine today is the detection of associa-
tions between phenotype and genotype using multilevel analysis. Also, the discovery of patterns
and associations between morphology and function (normal or pathological) of different organs
and the effect of genes and proteins is an ongoing research problem. The biomedical variables that
are analyzed by researchers nowadays, originate from various levels beginning from cellular and
molecular level and going up to the level of organism. As a result, processes such as medical diag-
nosis, prognosis and treatment have started to be based on a combination of such variables. Taking
into account the main types of biomedical data, such as biosignals, medical images, and molec-
ular data, the aim of my research was to contribute to the development of innovative algorithmic
methodologies targeting the discovery of new biomedical knowledge. The planning of experi-
ments or clinical trials and related questions, such as sample size determination for randomized
designs, was not part of this research and thus is not covered in this thesis.

Given a large number of parameters observed in various experiments, the developed tools may
assist researchers in biology and medicine to focus on important regions of images and sequences
or on the differences, similarities and associations among the experimental parameters. In biology,
the research outcomes may result in a better comprehension of structure and function of biolog-
ical sequences, expression and function of genes and possibly discovery of biomarkers, proteins
responsible for diseases, etc. In medicine, a more complete analysis of patterns and associations
among morphology and function or pathology can contribute to a better understanding of normal
and disease states or response to treatment. Moreover, the application of the developed data min-
ing tools on the nervous system contributes to a better understanding of various neurodegenerative
diseases. Finally, apart from the expected benefits in biology and medicine, our research may be
useful in other scientific fields where image mining takes place, such as computer vision.

In the next sections, first some background aspects are presented in respect to the com-
putational analysis of biomedical data, which are categorized according to data type into one-
dimensional biosignals, spatiotemporal images and molecular data. Then, a summary of the per-
sonal contributions of the applied research projects will follow. Although each individual research
project was studied separately, the performed research led to the creation of a complete array of
computational methods unifying the extracted characteristics of the different biomedical data with
a common aim, i.e. the extraction of biomarkers for disease characterization and clinical decision
support.
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Figure 1.1: Multi-modal biomedical data analysis .

1.2 Biomedical Data

Biosignals

The biosignals are space-time recordings that measure body activity, such as heart rate, neural
activity, blood pressure, respiration, blood glucose, and so forth. Biosignals are often examined
for recognizable patterns that indicate change in pathology or underlying physiology and hence
aid diagnosis [1]. The use of raw measurements for discriminating changes in underlying physiol-
ogy is rarely efficient, thus signal analysis is usually performed aiming to represent the measured
signals along a set of orthogonal basis functions (Fourier, wavelet, or principal components) for
noise removal, pattern extraction, source separation (independent components), etc. Dimension-
ality reduction techniques are also applied aiming to find an appropriate representation of the data
with reduced size for efficient storage, querying, streaming, and overall management [2].

The research work on biosignal analysis presented in this thesis focuses on the management
and analysis of multimodal data from brain and body activities of epileptic patients and controls,
such as multichannel Electroencephalography (EEG), Electrocardiogram (ECG), Electromyogra-
phy (EMG). The aim was to design a personalized, medically efficient and economical monitoring
system of patients with epilepsy. Due to its multifactorial causes and paroxysmal nature, epilepsy
needs multi-parametric monitoring for purposes of accurate diagnosis, prediction, alerting and
prevention, treatment follow-up and presurgical evaluation. Epileptic seizures differ with respect
to motor, cognitive, affective and autonomic and EEG manifestations, thus their recognition and
full understanding is the basis for the optimal management (including additional diagnostic tests
and genetics) and treatment.



Medical Images

Medical imaging, like conventional magnetic resonance imaging (MRI), computerized tomogra-
phy (CT), and functional MRI (fMRI) are commonly utilized in clinical practice and provide non-
invasive representations of anatomy and function of living tissues. Prior to the search of imaging
biomarkers that carry prognostic information on disease or therapy, certain computational steps
might be necessary, such as image registration, segmentation, or modeling. The main part of the
research presented in this thesis involves the development and application of such computational
methods on medical imaging data, and is described analytically in the next chapters.

Briefly, image registration deals with the problem of morphological variability among sub-
jects, motion and tissue deformation within the same subject (in different time points), or (multi-
modal) information fusion. The aim is to calculate a mapping between homologous anatomical
regions in two images (source and template); by applying this transformation on the source image,
it becomes directly comparable to the template, making feasible any further (statistical) analysis.
Image registration involves mainly three aspects: the choice of the transformation (global or lo-
cal), the definition of a metric function (unimodal or multi-modal), and the optimization strategy
to recover the parameters, i.e. by greedy or exhaustive search, or through estimation (discrete
optimization, evolutionary computational methods).

Image segmentation deals with the problem of delineation of the boundary of certain struc-
tures, regions of interest, or the characterization of tissue. Often in the context of medical imaging,
it combines prior knowledge (learnt geometric manifolds) with visual appearance. Data terms of-
ten exploit intensity homogeneity (acting either on the observation space, or a space derived from
it), boundary discontinuities and more recently non-linear hypothesis separation.

Modeling anatomical and functional variability in medical images is achieved either using un-
supervised or supervised methods. Unsupervised methods employ conventional dimensionality
reduction techniques (PCA, ICA) or more recent embedding methods (LLE, ISOMAP, etc). In
such a context, separation is achieved by looking into linear or non linear separation of the obser-
vations. Methods that have been used to classify and detect anomalies in medical images include
among others wavelet transformation, fractal theory and statistical methods. In addition, methods
have been proposed based on fuzzy set theory, Markov models and neural networks. Despite the
significant advances in medical image analysis, the extraction of valuable biomarkers from medi-
cal images still remains an inexhaustible research field, as the methods have to be highly accurate
and reproducible because they inherit high risk for people’s health.

Molecular Data

The molecular data include the genetic expression profile, gene and protein sequences, proteomic
structure and function. Our related research focused on the analysis of gene expression maps and
classification protein structures. Previous work in the field of gene expression maps provides im-
portant insights on gene networks in unicellular systems using high-throughput multiplex gene
expression methodologies, including microarrays, gene chips and serial analysis of gene expres-
sion. Although sophisticated techniques, such as voxelation, have been used in combination with
microarrays for acquisition of genome-wide atlases of expression patterns (for the mouse brain),
little has been done to take into account the location information of a gene’s expression in brain.



Motivated by this idea, we analyzed gene expression maps, acquired by the technique of voxela-
tion, using an atlas-based framework and employed the extracted spatial information to organize
genes in significant clusters. Gene function enrichment analysis of clusters enabled exploration of
the relationships among brain regions, gene expression and gene function.

Meanwhile, research in metagenomics, the field which combines the study of nucleotide se-
quences with their structure, regulation, and function, has been very productive the last years.
While the number of newly discovered, but possibly redundant, protein sequences rapidly in-
creases, experimentally verified functional annotation of whole genomes remains limited. Protein
structure, i.e. the three-dimensional (3D) configuration of the chain of amino acids, is a very good
predictor of protein function, and in fact a more reliable predictor than protein sequence. This
is mainly because the chemistry required for the functionality of protein active sites arises from
their 3D structure. Thus, as sequences diverge, only those residues required for the chemistry of
the protein activity will be absolutely conserved whose 3D structure should also be conserved [3].
However, although the function of proteins is determined by their structure, external factors such
as temperature increase or exposure to chemical denaturants might disrupt (unfold) the structure
and cause loss of protein’s activity [4]. These factors impose difficulties in the prediction of pro-
tein’s function. By now, the number of proteins with functional annotation and experimentally
predicted structure of their native state (e.g. by NMR spectroscopy or X-ray crystallography) is
adequately large to allow learning training models that will be able to perform automatic functional
annotation of unannotated proteins. Also, as the number of protein sequences rapidly grows, the
overwhelming majority of proteins can only be annotated computationally, and this task was one
of our latest research goals.

1.3 Information fusion

Although much progress has been achieved in acquisition of multimodal biological and medical
data, most researchers still treat each modality separately, and integrate the results at the applica-
tion stage. One reason for this is that the roles of multiple modalities and their interplay remain to
be quantified and scientifically understood. Additionally, many open issues remain in processing
each modality individually. Data fusion is a common technique that combines information from
multiple sources in order to achieve more efficient and more accurate inferences than using a sin-
gle source, for improving the quality of raw data (in pre-processing) or of the extracted knowledge
and for handling data uncertainty and inconsistency [5]. There are two main approaches for fusing
data from different modalities: feature level fusion and decision level fusion. In the decision level,
features are classified for each modality by its local classifier and the results from these local clas-
sifiers are later fused in the decision layer. Characteristic examples of fusion based on integration
of classifiers are the boosting and bagging techniques. In feature level fusion, the data is fused
directly after feature extraction and classified by one global classifier [6].

Fusion of biosignals, or so-called multi-sensor data fusion, targets the combination of data
collected by multiple sensors. From the neuroimaging point of view, the effective integration of
data from different neuroimaging modalities, such as EEG, and fMRI, is currently considered to be
an essential task in modeling human brain activity, aiming to achieve more accurate spatiotemporal
patterns than is possible with any of the modalities alone. EEG has high temporal resolution
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but limited spatial resolution unless the conductivity profile of each individual subject is known
with high precision, a difficult and rather impractical task for routine applications. On the other
hand, fMRI provides very good spatial but relatively poor temporal resolution. Several efforts
recently attempted a full integration, often referred to as fusion, by inverting a generative model
that explains all types of data. Such a model relates the same hypothetical neural causes to all types
of data. In these approaches conflicting requirements must be resolved most notably between detail
of the model and simplicity. On the one hand the model must accurately describe both the details
that influence the diverse data recorded and the ones that the modeler is specifically interested
in. On the other hand the model must be simple enough to avoid overfitting a large number of
parameters and provide through the results a transparent view of the underlying system.

In the field of medical image fusion, the fusion of anatomical and functional information ac-
quired by various modalities such as CT, MRI, digital subtraction radiography, positron emission
tomography (PET), and single-photon emission computerized tomography (SPECT), has been
proposed using anatomical atlases and warping models. A review summarizing the works in med-
ical image fusion based on the applied fusion algorithm, imaging modalities, and regions (organs)
of interest, can be found in [7]. The main challenge in image information fusion is the requirement
of prior alignment of the data in the same space (more details on image registration in chapter 2).
Recent works take advantage of the increase of data availability which can be used for training and
propose decision level fusion frameworks that fuse local learners to completely bypass the need
for accurate, yet computationally expensive, atlas-target registrations [8].

1.4 Machine learning and knowledge discovery

In the early nineties, biomedical knowledge discovery was mainly based on deductive, rule-based
(expert) systems, as well as traditional statistical analysis. With increasing availability of data and
advances in hardware and software, machine learning and artificial intelligence methods start to
provide computer-assisted solutions for pattern discovery in complex data and unbiased inference.
The most common techniques applied in biomedical research include artificial neural network
(ANNSs), Support Vector Machines (SVMs), Hidden Markov Models, and Bayesian approaches.
Fig.1.2 (reproduced from [9]) shows the number of recent papers in PubMed which apply these
supervised learning techniques in the biomedical domain [9].

In the recent years, there has been a drastic development of large-scale databases (genomics,
proteomics, imaging) and of computational tools for analyzing large sets of data, and powerful
methods for characterizing patients. This progress has opened new opportunities for biomarker
identification and drug discovery. Moreover, the massive accumulation of data has given the op-
portunity to apply deep learning techniques, such as deep neural networks and deep belief net-
works. Particularly in computer vision, convolutional neural networks (CNN) have rapidly be-
come the tool of choice for the analysis of images. Their still limited, use in biomedical research
[10][11] has also shown very promising results.
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Figure 1.2: Popular machine learning techniques in biomedical research in the years 2011-2015
(from [9]).

1.5 Personal contributions

The main goal of the works presented in this thesis was to develop or apply computational methods
for the analysis of biomedical data, and mainly medical images, in order to extract biomarkers of
disease. This thesis is organized thematically rather than according to the temporal evolution of the
research. Most of work was performed within small groups consisting of engineers or computer
scientists and medical experts. In this thesis emphasis is given on research mostly leaded by myself
in respect to the technical achievements. The clinical contribution including data annotation and
clinical interpretation is attributed to our medical partners. Whenever my personal involvement
was limited (usually reflected in publications where I am not within the first two authors or last
author), I clarify my contribution at the end of the corresponding section.

The significance of work can be attributed to either technical contributions or novel (by the
time of investigation) applications of computational methods aiming to solve specific biomedical
problems. The key points are summarized next (including some representative references). More
details are provided in the following chapters along with the rest of the studies not described here.

Technical contributions

Statistical modeling of high-dimensional data The aims of our work in [12][13][14][15] was
to estimate the statistical variation of a normative set of volumetric images from healthy individ-
uals, and then identify morphological or structural abnormalities as deviations from normality. A
major issue during synthesizing valid images is the significantly larger dimensionality (number
of voxels) compared to the usually available number of training data (images). Most anomaly
detection methods in image processing extract only a few discriminatory features from regions
of interest assuming data stationarity, thus do not suffer from the curse of dimensionality. Our
purpose in this work was not develop an application-specific detector by modeling intensity-based
or deformation-based class distributions, but to develop a general method of learning appearance
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models in an unsupervised fashion. In order to deal with the large dimensionality, the method
was based on partitioning the images into subspaces, i.e., locally coherent overlapping blocks. It
was assumed that for each location the subspaces were generated from a Gaussian distribution
and located in a tight cluster. As suggested also in other studies, high-dimensional data exhibit
distributions that are highly sparse and can be represented by lower dimensional manifolds.

Under this scope, two fundamental contributions in discovering abnormality were made. In
[12][15] the proposed method iteratively samples a large number of lower dimensional subspaces
that capture image characteristics ranging from fine and localized to coarser and relatively more
global. The marginal probability density functions pertaining to the selected features was esti-
mated through a principal component analysis (PCA) model, in conjunction with an estimability
criterion that limits the dimensionality of the estimated probability densities according to the avail-
able sample size and the underlying anatomy variation. A test sample is iteratively projected to
the subspaces of these marginals as determined by the PCA models, and its trajectory until con-
vergence delineates potential abnormalities (deviations from the normative database). Also, a
target-specific feature selection strategy was introduced within each subspace to further reduce
the dimensionality, by considering only imaging characteristics that are present in a test subject’s
image, rather than all possible characteristics found in the entire population [15].

A similar objective function for each local subspace was used in [13][14]. The main contri-
bution in this work is that the local subspace estimates are fused into a globally optimal estimate
that satisfies coupling constraints. Specifically, the maximum likelihood estimation problem was
solved in a distributed setting using dual decomposition based on an algorithm developed for solv-
ing large-scale problems.

Registration of topologically non-equivalent images Most of the available registration meth-
ods in neuroimaging are designed to register a normal atlas with generally normal neuroanatomies.
However there are many applications requiring the spatial normalization of images with pathol-
ogy, such as brain images with tumors. Spatial normalization of such images could help to build
statistical models of disease evolution, which could further guide neurosurgical treatment plan-
ning. Registration of images with tumors is especially challenging because some fundamental
assumptions in image registration are violated: (i) the topological equivalence between the atlas
and the patient’s image, which is almost ubiquitous in deformable registration methods, is violated
due to the anatomical changes caused by tissue death and tumor emergence, (ii) the confounding
effects of edema and tumor infiltration cause changes in the image intensities and render the task
of finding correspondences very difficult, and (iii) the large distortions caused by the mass effect
of a growing tumor violate the usual assumption of deformation field smoothness. The developed
methodology was based on the idea of first creating a topologically equivalent atlas image by re-
placing part of the healthy tissue with a tumor seed and then decoupling the total deformation
(between atlas and patient’s image) into two components, i.e., the deformation caused by the tu-
mor mass effect and the deformation due to the inter-subject differences. We started with more
simplified approaches (spherical tumors, homogeneous material, uniform deformation strategy)
and gradually built into more elaborated frameworks (tumor seeds of arbitrary shape, optimized
parameters) [16][17][18][19][20][21][22]. Overall the contributions of these methods involve (i)
the estimation of the tumor-induced deformation by collecting statistics obtained from mass effect
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simulations, (ii) the optimization of the tumor simulation parameters through coupling of mass
effect models with registration, (iii) the formulation of an appropriate energy function for regis-
tration under the presence of uncertainties (i.e. around the tumor), and (iv) the acceleration of
computations through asynchronous parallel pattern search.

High-order graphical models for image registration In the recent years, graphical models [23]
have witnessed an enormous progress due to the development of efficient optimization/inference
methods coupled with advanced machine learning techniques. In our works in [24][25][26][27]
image registration was considered as a (undirected) graph optimization problem based on a Markov
Random Fields (MRF) formulation in a discrete context. The aim in [25] was to solve jointly multi-
atlas registration and segmentation. The agreement of the deformed segmentation masks with the
underlying estimated segmentation was taken into account during the estimation of the deforma-
tion fields, leading to more accurate correspondences and consequently, improved segmentation.
Furthermore, we aimed to improve the final segmentation by taking into account class specific
appearance priors. The motivation behind incorporating prior segmentation probabilities lies in
the fact that image registration is often trapped in local minima when trying to match areas of high
anatomical variability (e.g., brain cortex). In such a setting, appearance information constitutes
an alternative, more reliable, cue that can robustly guide segmentation. My personal involvement
to these contributions (in [25]) was associated mainly to the overview of the method. Much more
pronounced was my involvement in the works [26][27], which included the model formulation,
energy cost definition and method evaluation. The aim in [26][27] was to co-register a group
of images having intensity changes related to some tissue properties. The idea was to develop a
group-wise registration method that incorporates a physiological model (reflecting the intensity
change over time) as part of the image similarity definition [26]. Additionally, based on the as-
sumption that the underlying parameter causing the spatial variation in intensity change should be
spatially smooth itself, in [27] we introduced a high-order MRF model that simultaneously cal-
culates the set of deformation fields and imposes spatial constraints on this parameter. Similarly
to the joint registration-segmentation problem, our basic premise here was that by allowing the
unknown variables (deformation and intensity) to interact, the produced representations become
anatomically more meaningful.

Application-specific achievements

Extraction of imaging biomarkers for brain tumor assessment Infiltrative brain tumors, par-
ticularly high grade gliomas, have extremely poor prognosis, largely due to the fact that the neo-
plastic tissue has typically infiltrated beyond the treated tumor mass, without necessarily signif-
icantly changing imaging characteristics that are conventionally used to outline the tumor. Our
work has explored multiparametric MRI, using an extensive protocol including conventional se-
quences in addition to perfusion and diffusion tensor imaging (DTI). We evaluated multiparamet-
ric voxel-wise imaging signatures that help to identify neoplastic and edematous tissue [28] or
potentially predict future tumor recurrence [29], as well as more global-scale imaging character-
istics of the tumors, captured by tumor shape and multi-scale texture properties, which differen-
tiate between different tumor types [30][31] or predict the patient’s survival [32]. The developed



computer-assisted tumor classification framework [31] could achieve higher accuracy than most
reported studies using MRI; also, by exploring attribute selection jointly with classification, it in-
vestigated the diagnostic value of each image sequence. Moreover, the calculated prediction mod-
els based on data-mining algorithms in [32] could provide a more accurate predictor of prognosis
in malignant gliomas than histopathologic classification (used in clinical practice as reference
standard for tumor assessment).

Pattern recognition in biosignals As part of the ARMOR project [33] we have addressed the
needs of epileptic patients and healthcare professionals, aiming at the design and development
of a non-intrusive personal health system for the monitoring and analysis of epilepsy-relevant
multi-parametric data, (i.e. EEG, ECG, EMG, skin conductance data) and the documentation of
the epilepsy related symptoms. The similar seizure-like reactions of epileptic and non-epileptic
events, such as psychogenic non-epileptic seizures and vasovagal syncopal attacks, make their
diagnosis a difficult task. In clinical practice, the diagnosis is based on historical information
assisted by specific tests. We performed online and offline analysis of data with the help of medical
databases and the patient’s medical file for the purpose of seizure detection/prediction [34][35][36]
and differentiation between epileptic and non-epileptic events [37][38][39][40][41] for prevention
and remote management. The processing and interpretation of the extracted patterns were used
for accurate alerting and signaling of risks and for supporting healthcare professionals in their
decision making [42][43].

Moreover, we studied the EEG brain activity during whole night sleep, since sleep is rec-
ognized as a major precipitator of epileptic activity and in many types of randomly occurring
seizures, sleep EEG can be very revealing regarding the epileptic focus. In [44][45] a method for
detecting spikes (epileptiform discharges) in interictal sleep EEG was developed, whereas in [46]
an automatic scheme was proposed for the detection of a specific brain waveform, the K-complex,
which is engaged in information processing, sleep protection, and memory consolidation.

Deep learning for protein structure classification In the past few years, data-driven deep learn-
ing models have become very popular because they tend to be domain agnostic and attempt to
learn additional feature bases that cannot be represented through any handcrafted features. Build-
ing upon our recent work [47], we currently exploit experimentally acquired structural information
of enzymes through deep learning techniques in order to produce models that predict enzymatic
function based on structure [48]. The novelty of the proposed method lies first in the represen-
tation of the 3D structure as a bag of atoms (amino acids) which are characterized by geometric
properties, and secondly in the exploitation of the extracted feature maps by deep convolutional
neural networks. We hypothesize that by combining amino acid specific descriptors with the re-
cent advances in deep learning we can boost model performance. Although assessed for enzymatic
function prediction, the method is not based on enzyme-specific properties and therefore can be
extended to other 3D molecular structures, thus providing a useful tool for automatic large-scale
annotation.



Outline

Chapter 2 presents contributions in specific problems of medical image registration based on con-
tinuous or discrete optimization strategies. Chapter 3 addresses the problem of compact represen-
tation of high-dimensional biomedical data through feature extraction and embedding. Chapter 4
presents methods for abnormality segmentation in medical images, pattern similarity in biosignals
and (co)-clustering in molecular data using unsupervised, or semi-supervised learning techniques,
whereas Chapter 5 focuses on discriminative methods applied in a supervised fashion for detection
and classification. Finally in chapter 6 ongoing research directions are discussed with the main
interest in deep learning for tissue characterization and protein structure classification.
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Chapter 2: Spatial alignment

2.1 Introduction to temporal and spatial alignment

In biomedical research it is often required to combine data obtained (i) from different subjects
in order to perform population analysis or statistical inference, (ii) from different time points or
therapy stages for longitudinal analysis or treatment assessment, or (iii) from various modalities or
sensors for information fusion. This process of data integration and comparison requires the data
to be in the same domain, which is performed by (i) time synchronization in the case of biosignals
[1][2], (ii) sequence alignment in the case of molecular structures, and spatial (or spatiotemporal)
alignment in the case of volumetric (or dynamic) images.

Time synchronization of signals: The requirement for time synchronization is more common
in sensory networks [3] where sensor nodes need to coordinate their operations and collaborate to
achieve a complex sensing task, or after power-saving modes, when the nodes should sleep and
wake up at coordinated times. Also, time synchronization might be required between different
medical devices that interoperate with each other [2], or to improve body sensor networks energy
efficiency, such as by exploiting physiological rhythm (e.g. heartbeat) information, instead of
using periodic synchronization beacons [1]. Time synchronization is not required in offline ex-
ploration of biosignals since the data are temporally aligned during acquisition based on the time
stamps of their frames. Thus time synchronization methods are not discussed in this thesis.

Sequence alignment: Sequence alignment is performed to identify similar regions between dif-
ferent DNA, RNA, or protein sequences that may be a consequence of functional, structural, or
evolutionary relationships between the sequences [4]. Sequences can be aligned in a pairwise
fashion to find homologues in databases, or they can be multiply aligned to visualize the effect of
evolution across a whole protein family [5]. The pairwise alignment method can be based on sim-
ilarity across the full extent of the sequences providing a “global” alignment, or it can focus only
on the regions where the similarity is present in some regions of the sequences providing a “’lo-
cal alignment”. Global alignment is useful for evolutionary comparisons whereas local alignment
helps in structural predictions, or comparison of sequences that share similarity only in a part of
the sequence. Multiple alignments constitute an extremely powerful means of revealing the con-
straints imposed by structure and function on the evolution of a protein family. In our studies we
performed local pairwise alignment of protein sequences for similarity assessment using standard
algorithms. Since no contribution was made on the alignment algorithm itself, we don’t elaborate

15



more on this subject, but refer to [5] for a discussion on the potential strengths and weaknesses of
the most widely used multiple alignment packages and to [1] for a more recent review of sequence
alignment algorithms for next-generation sequencing.

Spatial alignment of images: The image alignment consists of establishing spatial correspon-
dences between different images acquired by the same or different subjects, and is referred to as
image registration. Image registration of different subjects in a common domain is also called spa-
tial normalization. During the past two decades, much of the research in medical image analysis
was devoted to image registration [6][7], producing a large number of free software solutions [8].
The goal of registration is to estimate the optimal transformation that maximizes an energy of the
form
Sim(Ip,Is o D)+ R(D)

where Sim is the similarity (matching) criterion that quantifies the level of alignment between

a target image I and a source image [g using transformation D, and R is a regularization term
that aims to favor any specific properties in the solution that the user requires, and seeks to tackle
the difficulty associated with the ill-posedness of the problem. Regularization and deformation
models are closely related. Thus, an image registration algorithm involves three main compo-
nents: a deformation model, an energy function, and an optimization method [6]. The rest of this
chapter will focus on deformable image registration in which a nonlinear dense transformation is
sought, as opposed to linear or global, which is parametrized by a small number of variables and
is inherently smooth. The need for deformable models is due to the fact that almost all anatomical
parts, or organs of the human body are deformable structures. In deformable registration, where
the number of variables is enormous, the solution space is usually reduced by evaluating the en-
ergy function over a set of control points, which might be defined on a regular grid or on salient
locations. These points are moved in the direction that minimizes the energy cost, defining local
deformations. Transformation between control points is propagated by interpolation. The energy
cost is then minimized by an optimization method, which can be continuous or discrete, based on
the nature of the variables used for inference. In continuous optimization problems the variables
assume real values, whereas in discrete optimization problems the variables take values from a
discrete set. Both classes of methods are constrained with respect to the nature of the objective
function as well as the structure to be optimized. Heuristic and metaheuristic methods, on the
contrary, can handle a wide range of problems and explore large solution spaces. However, they
do not possess theoretical guarantees regarding the optimality of the solution.

This chapter continues first with our work on spatial normalization of medical images using
deformation variables that take real values. Optimization was performed in a heuristic greedy
strategy in which the locally optimal choice is made at each step. Being gradient free and intu-
itive, it was applied to tackle the problem of feature-driven image registration. The registration
framework was developed with the ultimate goal of constructing statistical models of brain tumor
evolution [9][10]. Statistical atlases have been used in a variety of studies of normal brain devel-
opment and aging, as well as of brain diseases [11], but they have rarely been used in studies of
brain cancer. Most of the available registration methods in neuroimaging [12] were designed to
register a normal atlas with generally normal neuroanatomies. Direct application of these methods
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to images of tumor patients can lead to poor registration around the tumor region, due to large
deformations and lack of clear definition of anatomical detail in a patient’s images.

Subsequently, the chapter continues with our work on image registration based on discrete
optimization (section 2.3). The developed methods are based on a Markov Random Fields (MRF)
formulation, where inference is expressed as a (undirected) graph optimization problem acting on
a predefined graph structure (fixed number of nodes and connectivity) associated with a discrete
number of variables. Two main directions are presented: (i) a generic method that integrates
multi-atlas registration and segmentation [13], and (ii) a joint deformable registration and diffusion
modeling approach aiming to improve estimation of the apparent diffusion coefficient (ADC) in
diffusion-weighted MRI (DW-MRI) [14][15].

2.2 Image registration using continuous models

Deformable registration has been an active topic of research for over a decade. Its clinical ap-
plications are numerous. In particular, it is used for spatial normalization of functional images,
group analysis, and statistical parametric mapping. It is also used in computational anatomy as a
means for measuring structures, by adapting an anatomical template to individual anatomies, or
as a means for image data mining in lesion-deficit studies, as well as in stereotaxic neurosurgery
for mapping anatomical atlases to patient images. Many image analysis methodologies have been
developed to tackle this issue [6], which fall in two general categories. The first family of methods
involves feature-based matching, i.e., transformations that are calculated based on a number of
anatomical correspondences established manually, semiautomatically, or fully automatically on a
number of distinct anatomical features, such as distinct landmark points or curves and surfaces.
The second family of methods is based on volumetric transformations, which seek to maximize
the (voxel-wise) similarity between a source image and a template.

Our work builds upon the hierarchical attribute matching mechanism for elastic registration
(HAMMER) [16] aiming to account for non homologous mappings, as in the case of images with
pathology. HAMMER performs three-dimensional (3D) warping of brain images using feature-
based similarity. It focused on minimizing the effect of local minima of the energy function being
optimized, and on determining anatomically meaningful image correspondence. The presence of
local minima is due primarily to three reasons: 1) the very high dimensionality of the space formed
by the coordinates of all voxels in a volumetric image; 2) ambiguities inherent in the matching
function being maximized and related to the practically uniform image intensities within each
tissue type throughout the brain; and 3) the complex nature of brain anatomy. Let us assume that
Ip(x) is the intensity of the voxel x € V7 in the template image, and Is(y) is the intensity of the
voxel y € Vg in the individual’s image. The displacement field d(z) defines the mapping from
the coordinate system of the template I7 to the subject Ig, thus quantifies amount of movement,
while the deformation field D(z) = x + d(z) defines the mapping that transforms the template I
into the shape of the subject Ig, i.e. stores the new point locations. HAMMER uses a sequence of
lower dimensional energy functions to ultimately approximate the following multivariate energy
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function to be minimized:
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The first energy term quantifies the dissimilarity of features (attributes) extracted from the
template image and subject’s image (a7 and ag respectively) during the transformation D(-) from
the template to the subject. For each template voxel z, the similarity of the attribute vectors is
calculated in a spherical neighborhood n(x), rather than on individual voxels, with each voxel z in
the neighborhood contributing according to the weight e(-), which depends on the distinctiveness
of the voxel, as will be described later. The second energy term is similar to the first, but it is
defined in the subject domain and used to constrain the inverse transformation D~!(-), from the
subject to the template. The third term is a smoothness constraint on the displacement field d(-)
used for regularization. The parameter A controls the smoothness of the deformation field.

Registration of images with pathology

Building statistical models of the evolution of a disease, such as brain tumors, can help gain
insight into the underlying physiological mechanisms. For example, population-based statistical
atlases can potentially indicate whether a multi-parametric imaging, or proximity to certain fiber
tracts, profile suggests higher likelihood of tumor progression in a particular direction. Moreover,
augmenting these models with parameters related to the disease, such as tumor size and location
relative to brain structures, could further improve predictive accuracy. The construction of such
statistical models requires the integration of a variety of patient data, such as conventional MRI,
perfusion, and DTI of a large number of patients, into the same space and also requires the linking
of all these data to outcome measures. For this purpose, a registration method is needed that
can map all the imaging data to a common space (normal atlas). Besides their potential value
in predicting tumor progression, anatomical and functional statistical atlases or models are also
useful in neurosurgical treatment planning, since they can integrate diverse information about
anatomical and functional variability, thereby helping design treatment plans that minimize the
risk for significant functional impairment of the patient or facilitate safe dose escalation. Here
again, a method that can register a statistical atlas (image without disease) to the patient-specific
brain tumor image, is required.

While the problem of co-registering brain images of healthy subjects has been addressed often
in the literature, the normalization of tumor diseased images into a common template space, is
still a very challenging problem that has motivated our work [17][18][9][19][20][10][21]. Most
of the available registration methods in neuroimaging [12] are designed to register a normal atlas
with generally normal neuroanatomies. In the images with tumor, the fundamental assumption
of topological equivalence between the atlas and the patient’s image, which is almost ubiquitous
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in deformable registration methods, is violated due to the anatomical changes caused by tissue
death and tumor emergence. Moreover, the confounding effects of edema and tumor infiltration,
which cause changes in the image intensities, render the task of finding correspondences very
difficult. Finally, the large distortions caused by the mass effect of a growing tumor violate the
usual assumption of deformation field smoothness.

The framework we followed to facilitate the registration process was based on the creation of
an atlas image that is as similar as possible to the patient’s image, i.e. it contains a tumor and mass
effect similar to those in the patient’s image. The idea was to first create a topologically equivalent
atlas image by replacing part of the healthy tissue with a tumor seed and then decoupling the total
deformation (between atlas and patient’s image) into two components, i.e., the deformation caused
by the tumor mass effect and the deformation due to the inter-subject differences. The tumor-
induced deformation can be calculated by a biomechanical model of soft tissue deformation [22],
whereas the inter-subject deformation can be calculated by a deformable registration method. In
other words, the tumor modeling component aims to resolve both the geometric discrepancies from
the physiologic process of tumor growth and the image differences from the tumor emergence. The
registration component is then based on the assumption that (i) there is equivalent image content
between the atlas with simulated tumor and the patient’s image, and (ii) the deformation between
the tumor-bearing images is smooth, similar to normal image registration. Similar approaches of
brain tumor image registration had already been proposed. However the approaches on that time
were based on oversimplified assumptions, such as (i) tumor growth can be simply modeled as
a radial expansion process, (ii) the tumor seed can be simply estimated by calculating the mass
center of tumor or shrinking the tumor, or (iii) the morphological variability across individuals
can be captured by an affine transformation. The work presented in [17][9][20][10][21], addresses
all of these three issues, but special emphasis is given to the last two, since the first issue was
addressed in previous work [22].

A first approach of our group for registering brain tumor images to a normal atlas, which avoids
the previous simplifications, has been presented in [18]. We proposed a maximum likelihood
framework for estimating the tumor model parameters by collecting statistics obtained from mass
effect simulations. Briefly, statistical properties of the sought deformation map from the atlas
to the image of a tumor patient were first obtained through tumor mass-effect simulations on
normal brain images. This map was decomposed into the sum of two components in orthogonal
subspaces, one representing inter-individual differences in brain shape, and the other representing
tumor-induced deformation. For a new tumor case, a partial observation of the sought deformation
map was obtained via deformable image registration and was decomposed into the aforementioned
spaces in order to estimate the mass-effect model parameters. Using this estimate, a simulation of
tumor mass-effect was performed on the atlas image in order to generate an image that is similar
to tumor patient’s image, thereby facilitating the atlas registration process.

Although this method reported promising results for small quasi spherical tumors, more ex-
periments on different kind of tumors revealed some limitations, which motivated us to examine
alternative methodologies. Firstly, in this method normal-to-normal registration was applied, as
part of both the model parameters estimation and the final warping of the tumor-bearing images,
whereas newer approaches [9][10] used a registration method developed for brain images under
the presence of tumors (in corresponding or close locations to each other). Also, the method in [18]
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was a statistical approach; it did not apply optimization and therefore did not provide any mea-
sure of confidence on the final solution (optimality criterion). Additionally, it retrieved the tumor
model parameters based only on the tumor-induced deformation. Especially under the assumption
of the brain being a homogenous material, that is, having the same material properties for white
and gray matter, local information is lost. As an improvement, in [9][10], additionally to the in-
formation from the tumor-induced deformation fields, we incorporated local information from the
image content, thus increasing the sensitivity of the optimization procedure. Finally, perhaps most
importantly, the statistically-based method of [18] required a very large number of simulations of
tumor growth, in order for shape statistics to be gathered. This renders this approach quite limiting
in many practical situations.

Registration framework

Built upon the idea of HAMMER registration algorithm developed for normal brain registration
[16], in [9][17] we present a framework for Optimization (of tumor model parameters) and Reg-
istration of Brain Images with Tumors, referred as ORBIT. The main advantages of the ORBIT
algorithm are (i) the incorporation of a similarity criterion that uses two kinds of information,
namely tissue properties and spatial location relative to tumor, and (ii) the development of a defor-
mation strategy that is robust to unreliable matches caused by the presence of tumor. Moreover,
one of the novelties of the proposed framework is the estimation of the optimal tumor-related pa-
rameters (including the origin of the tumor and the amount of tissue death), via optimization of a
criterion reflecting the elastic stretching energy and the image similarity. Robustness is achieved
by applying the optimization in a multi-resolution scheme. Also, efficiency is achieved by replac-
ing the expensive non-linear biomechanical model with a PCA-based model of tumor growth, as
well as by refining the warping throughout the optimization only in the regions of low confidence.

The basic components of ORBIT include: (i) a simulation model for tumor growth and mass
effect, (i1) deformable registration for tumor-bearing images, and (iii) optimization/estimation of
the parameters of the tumor growth and mass effect model. Fig.2.1 summarizes a closed-loop
process for registering a normal brain atlas to a tumor-bearing image, using all three components.
The illustrated mapping is useful for transferring information from the atlas to the patient’s space.
The normalization of the patient’s image into a common atlas space can be performed by the
reverse mapping.

The elastic deformation field is calculated according to the hierarchical approximation of an
energy function, which consists of the similarity matching criterion defined in the template space,
a constraint on the inverse matching, and smoothness constraints on the displacement field, fol-
lowing the general framework of the HAMMER algorithm. Critical parts of our formulation of
the registration of tumor-bearing images are (i) the definition of the similarity criterion, (ii) the
deformation mechanism, and (iii) the mechanism for improving the robustness of the method to
slightly inaccurate estimates of the tumor simulation parameters.

Similarity function The deformation field that spatially warps the template to the patient’s im-
age was calculated by maximizing an attribute-based similarity criterion. The similarity of two
voxels x and y was defined as the weighted summation of a similarity criterion matching the brain
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Figure 2.1: The ORBIT framework for registration of a normal brain atlas with an image with
tumor. The total deformation is the composition of deformation caused by tumor growth and the
deformation due to inter-subject variability.

structures, Simp, and a similarity criterion matching the tumor geometry, Simr, as given below:

where w(z, y) is a weighting factor which decreases with the distance of 2 or y from the tumor. If
at least one of the two images is normal (without tumor), w becomes zero and the similarity crite-
rion matches only the brain structures, similar to HAMMER. The use of spatially adapted weights
ensures that the identification of corresponding points is driven mainly by one of the two matching
criteria, whereas the spatially smooth decrease of w makes the total similarity smooth. The two
similarity criteria, Simp and Simr, reflected distance of attribute vectors defined for each voxel
in the image. Simp was designed to match the brain structures by capturing the anatomical con-
text around each voxel. It used edge type and tissue type information, as well as shape information
based on geometric moment invariants (zero-order regular moments) from all tissue types. The
tissue types include white matter (WM), gray matter (GM), ventricular cerebrospinal fluid (CSF),
and cortical CSF. Simp quantified matching accuracy between the tumor in the patient’s image
and the simulated tumor in the atlas, and used as attributes the signed distance from the tumor
boundary and the angular location with respect to the tumor center. Fig.2.2 demonstrates how
such a similarity criterion can distinguish between different parts of a tumor-bearing brain image,
which might otherwise be indistinguishable. Thus maximization of this similarity criterion would
lead to the identification of correct anatomical correspondences.

Moreover, the optimal correspondence of a voxel is not determined by the similarity of only
one voxel, but by integrating the similarity of all voxels within a small spherical neighborhood
around this voxel. It is reasonable to expect that deforming larger regions of the image would
result in more robust deformation schemes. This is especially important in medical image regis-
tration due to the highly nonconvex nature of the underlying energy functions resulting from the
complex nature of anatomy and inter-individual differences. In fact, similarity matching is even
more difficult when there are fundamental morphological differences between source and tem-
plate image. In such cases where no good matches are found, the algorithm is designed to relax
the matching forces, and the deformation is driven primarily by the deformations of the control
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Figure 2.2: Distinctiveness of attribute vectors capturing anatomical and shape information in
brain tumor images. The attribute-based similarity between the voxel indicated by a cross in left
figure and every other voxel in the 3D data, is shown in right figure in color scale with white
reflecting high similarity. For simplicity of illustration, edge type information is not included in
the similarity calculation. The crosses correspond to the same coordinates in the two images.

points in the neighboring structures. Thus in order for a match to be enforced, high similarity of
the attribute vectors must be present.

Image deformation mechanism The geometric transformation in the whole image domain was
derived from interpolation theory, rather than by a physical model, such as elastic body, viscous
fluid flow, diffusion, or curvature [23]. In interpolation theory, displacements considered known
in a restricted set of locations in the image, are interpolated in the rest of the image domain. These
models are rich enough to describe local displacements, while having low degrees of freedom,
thus facilitating the inference of parameters. In ORBIT, similarly to HAMMER, Gaussian radial
basis functions ¢ were used to find the displacement at an interpolation point x from the known
displacements at points p;:

d(z) = Z ¢(llz — pill)d(pi)

The points p; that drive the deformation (control points) are not predefined (e.g. on a regular
grid) but are selected hierarchically according to the distinctiveness of their attributes in order
to reduce ambiguity in finding correspondence. Distinctive points lie for example on the roots
of sulci, crowns of gyri, and strong isolated edges. The registration process starts by registering
voxels with the most salient features and as the registration process proceeds, additional control
points are selected to increase local accuracy. Especially for the tumor area, the selection of
control points is not only based on the saliency of features, but also depends on the necessity of
warping of the tumor volumes. When registration is used as part of the estimation process of the
tumor model parameters, control points are selected on the tumor boundaries in order to facilitate
the warping of the tumor volumes. Upon parameters estimation and tumor growth simulation, the
registration is performed by relaxing all forces that prioritize the matching of the tumor boundaries.
The reason is that the final registration should not be affected by (i) not accurately determined
tumor boundaries and (ii) the residual variability in the tumor vicinity which is primarily due to
fundamental differences in the growth process between a real and a simulated tumor.

The displacement of control points is interpolated in the neighborhood via a Gaussian kernel
function. Upon interpolation of the displacement everywhere, a Laplacian-based smoothing is ap-
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plied to ensure locally smooth displacement fields. The smoothing reduces with time, as the level
of confidence in estimating the tumor model parameters increases. Also, registration is performed
in a coarse to fine resolution scheme in order to speed up the algorithm, reduce susceptibility to
local minima in both registration and estimation of tumor model parameters, and achieve robust-
ness.

Learning a PCA-based model for tumor mass effect simulation The simulation of tumor
mass effect is based on the application of a statistical model that describes the variation in de-
formability of the atlas brain due to different tumor model parameters. One way of modeling
tumor growth and mass effect is via biomechanical simulators. Two examples of such simula-
tors are based on (i) finite element models of nonlinear elasticity [22] and (ii) incremental linear
elasticity models on regular grids [24]. However, incorporating such biomechanical models (es-
pecially the first one) into an iterative registration procedure could be computationally prohibitive.
In [9], we have circumvented this limitation by using the mass effect model of [22] to train a PCA-
based mass effect model and then using it in the registration framework. It is worth noting that the
PCA-based tumor growth and mass effect simulation is extremely fast, since it can be achieved via
linear combination of a relatively small number of principal components (deformations), thereby
leaving the burden of simulation to off-line training using the costly biomechanical model. Our
experiments have showed that this approach leads to very efficient approximation of the types of
deformations caused by tumor growth, especially in view of the very approximating nature of any
such modeling method.

In detail, consider the displacement maps u;(x), i = 1, ..., N, at the 3D Cartesian coordinates
x due to the tumor mass effect, simulated by a biomechanical model with parameters 6; (such as
tumor seed location and size) in the atlas image. The displacement maps are first defined in a
coordinate system z’, centered at each tumor center, in order to make the domain of all the maps
the same and allow point-to-point comparison and collection of statistics. The domain is restricted
inside a region around each tumor center, where non-zero displacement due to mass effect is
expected. Under the assumption of a Gaussian distribution, each u;(z’) can be represented as

w; = pp+ Vg,

where 1 the mean of the displacement at each voxel location, V' the matrix containing the eigen-
vectors of the covariance matrix that correspond to the M largest eigenvalues, and z; the vector
with the M coefficients. The statistical parameters p and V' are determined from the training
set. Then, for any new 6 the displacement map (z’) can be calculated as & = p + V2, if 2 is
known. If assume that the coefficients change smoothly for small variations of €, we can approxi-
mate each coefficient in Z by interpolating between the corresponding coefficients of the training
samples in #-space. This makes it possible to produce an estimator with continuous values of
the model parameters. For this purpose, two scattered interpolation methods (based on either dis-
tance weighting or local fitting) were implemented and compared. The inverse distance weighting
interpolation achieved the smallest reconstruction error and thus was chosen. Finally, the tumor-
induced deformation map 4 (x) was calculated by re-centering the displacements at the original
coordinate system.
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Estimation of the tumor model parameters § The optimal set of tumor growth parameters
is not known for a particular patient; it must be estimated from the patient’s image. The pattern of
deformation around the tumor can be indicative of the accuracy in estimating 6. If the estimation
of 6 is wrong and thus the tumor is incorrectly simulated in the atlas, unrealistic and severe defor-
mations are expected around the tumor region, when trying to match the atlas with the patient’s
image. Conversely, if tumor location and mass effect in the atlas are estimated in agreement with
those in the patient, a relatively smooth deformation can be obtained. Additionally, due to the
smoothness constraints applied during registration, the similarity of the two co-registered images
is expected to be low around the tumor if the estimation of 6 is inaccurate. Accordingly, we use
the characteristics of the deformation field and the anatomical characteristics of the co-registered
atlas and patient’s images around the tumor to define an optimality criterion, F, for estimating 6.
Specifically F is defined as the combination of three normalized measures: (i) the residual volume
of overlap of the co-registered atlas and patient’s images (), (ii) the distance of attribute vectors
(E5), and (iii) the Laplacian of the deformation field that reflects smoothness properties of the
deformation field (£'3), as mathematically given below.

3
0 = argmin cphp(x)Ey(x; 0
gl YN crhi(z)Bila; 0)

k=1x2€Qg

The constants ¢ are used to assign different weights on different measures, and hy(x) is used to
assign different weights according to the voxel’s location x. The constants c; and the weighting
functions hy(x) are learned by a heuristic strategy based on sensitivity criteria and confidence
measures [9].

Application example An example of spatial normalization performed by ORBIT is shown in
Fig.2.3. The tumor consists of an enhancing and a non-enhancing region, as illustrated by the T1-
weighted image with contrast-enhancement. The non-enhancing region indicates the presence of
edema or tumor infiltration. The patient’s image is warped to the normal atlas space by reversing
the deformation field produced by ORBIT. This warping causes relaxation of the mass effect and
correction of the inter-subject differences facilitating the detection of the two tumorous regions:
(i) the initial seed (as estimated by ORBIT) showing the tissue that is replaced by tumor, and (ii)
the surrounding region that is infiltrated by tumor or edema.

Improving tumor simulation performance and estimation speed

In order to achieve equivalent image content between atlas and patient’s image, tumor growth
was simulated in the atlas image using subject-specific PCA models in the ORBIT registration
framework [9]. This reduced the high computational cost of the finite element based biomechani-
cal models for tumor growth simulation leaving the burden of simulations to off-line training. For
same reasons a statistical approach for tumor growth simulation was also chosen in [18]. Statistical
models, however, are not very accurate and also are limited by the parameters used during train-
ing. For example, training a model for irregularly shaped seeds would require an inhibitive large
number of training cases. During that period, Hogea et al. [25] proposed a biomechanical model
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Figure 2.3: Spatial normalization example using ORBIT. The top row shows the T1-weighted
patient’s image (a) with and (b) without contrast-enhancement rigidly registered to the atlas in (d).
The image in (b) after deformable registration to the normal atlas is shown in (c). The initial tumor
seed representing tissue death is shown with gray color in (c¢) and indicates the location of initial
tumor appearance, as defined in the atlas. The surrounding peri-tumor edema or infiltration, as
mapped in the normal atlas, is also visible.

Figure 2.4: Atlas-based segmentation of brain images with tumor using the method in [10]. Con-
tours of the thalamus, caudate nuclei, and ventricles, shown with lila, green, and pink, respectively,
are registered and superimposed from the normal atlas (top row) to two patient’s images (middle
and bottom row). Each row shows the axial, sagittal and coronal view, as well as a zoomed snap-
shot of the coronal view.
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developed in an Eulerian formulation and solved using regular grids, which is significantly faster
than common finite element models. Thus, in [20][10] we employed this new tumor growth model
within a model-based registration framework that simulates tumor emergence and tumor growth,
and also simplistically differentiates between tumor mass effect and tumor infiltration. Also, we
focused on increasing the speed of the estimation of the tumor model parameters by optimizing
the objective function with the parallel optimization method, APPSPACK (Asynchronous Parallel
Pattern Search) [26]. In detail, the new framework [10] added to our previous work [18][17][9],
in the following aspects:

1. Tumor simulation: The new framework [10] uses a piecewise linear elasticity model and
regular grids (PLE simulator), versus a finite element model of nonlinear elasticity and un-
structured meshes in [18] and a local-PCA based model in [9]. PCA-based tumor growth
simulations are extremely fast, since they are achieved via linear combination of principal
components (deformations), thereby leaving the burden of simulations to off-line training
using costly biomechanical models. However PCA-based simulations are not very accurate,
since the expansion coefficients are not known in advance and can only be approximated.
Moreover, PCA-based models are not flexible, since they can only reproduce deformations
in the range of parameters used during training. On the other hand, nonlinear biomechani-
cal simulators are flexible and more accurate, but also computationally very expensive. As
shown in [19], the use of the robust and computationally efficient PLE simulator did not
significantly affect the final registration accuracy in comparison to nonlinear biomechanical
simulators. Therefore the PLE simulator seems to provide the best trade off between ac-
curacy, flexibility and computational cost and was therefore chosen here. It should also be
noted that the PLE simulator, is a stand-alone program which does not require the use of
commercial packages, such as ABAQUS.

2. Optimization of the tumor model parameters: It applies the APPSPACK optimization pack-
age for parallel optimization (using mpi) of 5 tumor-related parameters, versus the Downhill
Simplex method in [9] for serial optimization of 4 parameters, and a statistical approach in
[18], not based on optimization, applied for a different sets of parameters (including edema).
This allowed us to search over a large range of parameters in a computationally efficient way.

3. Definition of the tumor model parameters: It applies irregular shaped seeds, versus spherical
seeds in [18]. The use of irregular seeds allows the creation of an atlas with tumor that is
more similar to the subject’s image.

4. Registration method: It maximizes a similarity criterion that matches both the brain struc-
tures and the tumor geometry using locally adapted weights, as in [9], versus the regular
HAMMER registration algorithm developed for normal brains in [18]. Since the tumor in
atlas and patient’s image might be in non corresponding anatomical locations (e.g. if the
estimate of the tumor location is inaccurate), it is not guaranteed that a diffeomorphic defor-
mation field, that maps one image to the other, will exist. Therefore, the registration method
in [10] and in [9], applies different deformation strategy close and far from the tumor, in
order to maintain robust registration of the healthy part of the brain.
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Figure 2.5: Mass effect estimation by the Jacobian determinant. A slice of the 3D volumetric data
is illustrated for the (a) template image, (b) patient’s image, (c) atlas-to-subject displacement field,
(d) normalized Jacobian determinant (standard score).
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Mass effect characterization A clinical application of this registration framework involves the
quantitative characterization of the tumor mass effect [10]. The tumor mass effect has been used
as a descriptor for classifying gliomas according to their clinical grade [27] or as an indepen-
dent predictor of survival [28] and is therefore an important factor in the characterization of brain
tumors. In this study, we investigate how well the estimated parameters (tumor seed and defor-
mation field) help predicting the mass effect. In order to obtain an indicator of mass effect based
on the proposed registration method, we evaluated how much the calculated deformation fields
deviated from the range observed in a normal population. Specifically we calculated the Jacobian
determinant of the deformation fields that spatially warp the atlas (used in this study) to the brain
tumor images, as well as to a population of healthy subjects (60 individuals with age less than 68
years). All Jacobian images were smoothed with a Gaussian filter to reduce the noise and small
mis-registration effects, and the voxel-wise standard score was calculated, in order to normalize
the amount of deformation at each brain location, since the tumors appear in different locations in
the brain for different subjects. The sum of the standard scores over the tumor seed defined in the
common atlas space is a quantity that represents the distance between the total deformation and
the population mean, and was used as an indicator of mass effect. The analysis was performed for
21 subjects and results were compared against visual ratings provided by two expert neuroradiolo-
gists. The correlation between our scores estimating tumor mass effect and the visual ratings, used
as gold standard, was 0.763 and 0.618 for each of the two raters respectively, and 0.744 for the
average ratings, whereas the correlation between the two visual ratings was 0.679. The relatively
high correlation between the two measurements (through our modeling framework or by expert
ratings) indicates that the measurements are consistent and therefore acts as a means of validation
of our registration/estimation framework, which can be used to study the tumor growth process
among populations of subjects based on reproducible and rater independent techniques.

2.3 Image registration based on discrete (graphical) models

In the recent years, graphical models [29] have witnessed an enormous progress due to the devel-
opment of efficient optimization/inference methods coupled with machine learning algorithms and
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the availability of large scale training data. While probabilistic graphical models have a variety of
useful variants, here we will focus on a MRF formulation, where inference is often expressed as
a graph optimization problem acting on a predefined graph structure (fixed number of nodes and
connectivity) associated with a discrete number of variables [30].

A wide variety of tasks in medical image analysis can be formulated as discrete labeling prob-
lems. In very simple terms, a discrete optimization problem can be stated as follows: we are given
a discrete set of variables V, all of which are vertices in a graph G. The edges of this graph (de-
noted by &) encode the variables’ relationships. We are also given as input a discrete set of labels
L. We must then assign one label from £ to each variable in . However, each time we choose
to assign a label, say, [, to a variable p;, we are forced to pay a price according to the so-called
singleton potential function (unary) g,(l,), while each time we choose to assign a pair of labels,
say, lp, and [, to two interrelated variables p; and po (two nodes that are connected by an edge
in the graph G), we are also forced to pay another price, which is now determined by the so called
pairwise potential function f,, (1, , [, ). Both the singleton and pairwise potential functions are
problem specific and are thus assumed to be provided as input. Our goal is then to choose a la-
beling which will allow us to pay the smallest total price. In other words, based on what we have
mentioned above, we want to choose a labeling that minimizes the sum of all the MRF potentials,
or equivalently the MRF energy. This amounts to solving the following optimization problem:

arg I{nln Elg, f) = Z gp(ly Z Foupe (Upy s Upy)- (2.2)
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The use of such a model can describe a number of challenging problems in medical image analysis.
However these simplistic models can only account for simple interactions between variables, a
rather constrained scenario for high-level medical imaging perception tasks. One can augment the
expressive power of this model through higher order interactions between variables, or a number
of cliques {Cj,4 € [1,n] = {{p;1,--- ,p;ic; } } of order |C;| that will augment the definition of V
and will introduce hyper-vertices:

argr{mng 9, f) = ng + Z SorpeUpy s Ip,) + Z fp1-..pn(lpi1"'-»lpi\ci\)' 2.3)
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where fp1~--Pi| al is the price to pay for associating the labels (lpi1 yeees l,,i‘ ol ) to the nodes (py, . . .,
Pp;ic;1). Parameter inference, addressed by minimizing the problem above, is the most critical as-
pect in computational medicine and efficient optimization algorithms are to be evaluated both in
terms of computational complexity as well as of inference performance. State of the art meth-
ods include deterministic and non-deterministic annealing, genetic algorithms, max-flow/min-cut
techniques and relaxation. These methods offer certain strengths while exhibiting certain limita-
tions, mostly related to the amount of interactions which can be tolerated among neighborhood
nodes. In the area of medical imaging where domain knowledge is quite strong, one would expect
that such interactions should be enforced at the largest scale possible.

The remainder of this chapter focuses on graph-based medical image registration/segmentation
problems with personal involvement. A broader review on graphical models in biomedical image
analysis can be found in [30].
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Integrated multi-atlas registration and segmentation

Segmentation, or the process of assigning voxels to distinct anatomical regions or tissue types,
is a fundamental task in medical image analysis. The accurate delineation of anatomical struc-
tures is the cornerstone of quantitative analysis that aims, among other, to understand normal and
diseased anatomical variability. Important research efforts have been focused on developing au-
tomatic segmentation algorithms. Among the wealth of the developed techniques, segmentation
via registration [31] stands as a unique example in medical image processing. Registration is
used to map the grayscale image of an atlas to the query image, while the estimated deformation
is subsequently used to propagate the available labels and provide an estimate of the segmenta-
tion. However, a single atlas is limited with respect to its ability to capture the variability of the
population.

Extending registration-based segmentation by incorporating multiple atlases has thus emerged
as a natural extension towards tackling the aforementioned limitation [32]. Multi-atlas segmenta-
tion, fueled by the maturity of the available registration techniques and advancements in computer
hardware that partly alleviate its high computational cost, has gained significant popularity and
found numerous applications in medical image analysis [33]. In multi-atlas segmentation, multi-
ple atlas images are registered to the query image and their labels are propagate and fused, e.g.
by majority voting, to produce the final labeling of the query image. A common principle behind
most approaches is that registering the atlas images to produce candidate solutions and segment-
ing the query image are treated separately, in two independent steps. However, registration could
benefit from taking into account the underlying segmentation towards establishing more accurate
correspondences. Thus, approaches that treat registration and segmentation through fusion as an
inter-weaved process have recently appeared.

In [13], we build upon the work presented in [34] by extending the formulation, providing a
more detailed description of the method and reporting a more extensive validation setting. Specif-
ically, in previous work [34] a discrete formulation based on Markov Random Field theory was
introduced for integrated registration and label fusion segmentation. Latent variables included the
displacements of the grid nodes of a B-Spline transformation model as well as voxel segmentation
variables. Segmentation additionally took into account class likelihoods produced by a discrim-
inatively trained classifier. Constraints were imposed by taking into account how congruent the
proposed segmentations were with respect to the proposals of the rest of the atlases as well as the
classifier produced likelihoods. Registration and segmentation variables were coupled by using an
appearance-based weighting similar to the one used in local fusion strategies. As a consequence,
as votes are weighted, atlases that do not match well locally would have a minor contribution to
the inferred segmentation mask, resulting in a local ”’soft” atlas selection scheme.

In [13], we estimate membership fields by additionally introducing a local atlas selection
scheme. This scheme, explicitly models variables for selecting parts of each atlas labeling by
comparing them directly to the estimated underlying segmentation. As a consequence, member-
ship field images are directly produced by optimizing the model. The fact that the atlas selection
is achieved by comparing segmentations, facilitates the use of images of different modalities to be
part of the dataset.
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Problem Formulation We consider a dataset of N annotated images A = {Ay,..., An_1}.
Each image comes with a corresponding segmentation mask where the anatomical regions of
interest have been annotated, forming the set S = {Sy, ..., Sy_1}. Each voxel in the segmen-
tation image is assigned to a segmentation label corresponding to one of M anatomical classes,
Si(x) € {0,...,M — 1}. In this paper, we refer to an arlas as the aggregation of an intensity
image A; and its corresponding segmentation mask .S;.

Moreover, we consider that a (target or query) image I is given as input to be segmented into
anatomical regions. The output of the proposed algorithms comprises: i) a set of membership
field images F = {Fp, ..., Fn_1}, Fi(x) € {0,1} denoting if an atlas influences a point x in the
query image; ii) the segmentation mask S; corresponding to the target image; and iii) a set of
deformation fields D = {Dy, ..., Dy_1}, where D; denotes the deformation field mapping of A;
to I.

The goal of the proposed method is to simultaneously solve for the parameters of the final
segmentation Sy of the query image and the set of deformation fields D. Hence, the agreement
of the deformed segmentation masks with the underlying estimated segmentation may be taken
into account during the estimation of the deformation fields, leading to more accurate correspon-
dences and consequently, improved segmentation. Our basic premise is that by allowing the two
problems to interact, the quality of the respective solutions will rise due to the additional available
information.

Furthermore, we aim to improve the final segmentation S by taking into account class specific
appearance priors. The motivation behind incorporating prior segmentation probabilities lies in the
fact that image registration is often trapped in local minima when trying to match areas of high
anatomical variability (e.g., brain cortex). In such a setting, appearance information constitutes an
alternative, more reliable cue that can robustly guide segmentation [35].

Energy Function We formulate the problem as an energy minimization one. The proposed
energy consists of three components: i) a registration component comprising a similarity matching
term (Sim), that quantifies the level of alignment between each atlas and the query image, and a
regularization term (1) that enforces the smoothness of the deformation field; ii) a segmentation
component comprising an appearance prior term (Sp), that measures the log-likelihood of the
segmentation with respect to the probabilities (1) learned during a training phase. iii) a coupling
term (C') that takes into account the labeling that is proposed by the atlases, over the domain
indicated by F, and encourages their agreement with the estimated segmentation .S7. Finally, a
regularization term (/2) is imposed on the membership fields allowing the atlases to influence the
derived segmentation in a smooth spatially varying fashion.
The continuous energy has the following form:

E(D,A,S,S;) = Sim(D,A,I)+ Ry(D)+ Sp(Sr,m) +C(D,F,I,S,S[)+Rf(F) 2.4)

~
Registration Segmentation Coupling

The first two energy terms correspond to the standard energy that is commonly minimized in multi-
atlas segmentation frameworks, while the third term is common in segmentation frameworks. The
fourth term introduces the main novelty of this work, i.e. the coupling between the segmentation
and the multi-atlas registration. Let us now detail each term of the previous energy.
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MRF Graph Structure We use Markov Random Field (MRF) theory to formulate the above
minimization problem in a discrete context. The constructed graph encode the multi-atlas reg-
istration, the segmentation and the constraints that integrate the two problems. The problem is
represented by a graph G = (V, £), where V denotes the set of nodes that encode the latent vari-
ables, and £ the set of edges that encode the interactions between the variables.

o Multi-Atlas Registration: The deformation model is parametrized by N deformation grids.
This is encoded in the MRF graph G by a set of N isomorphic grid graphs Gp = {Gp,, - - -,
Gpy_, }- For every control point in the deformation grid that is superimposed onto image
Aj;, there is a node p; € Vp, that represents its displacement. Since grids are isomorphic,
p indexes a common control point position, while ¢ indexes the grid. The edge system of
each grid £p, is created by assuming a regular 6-connectivity scheme. The label set L for
this set of variables is a quantized version of the displacement space. A label assignment
lgi € Lp (with p; € Vp,) is equivalent to displacing the control point p; by displacement
dp,.

e Segmentation: An additional graph Gs = (Vs) is employed to model segmentation. A node
ps € Vg encodes a random variable and corresponds to a voxel in the target image whose
position is indexed by the subscript s. We should also emphasize the fact that the nodes that
form the segmentation graph are not connected to one another. The set of possible solutions
Lg represents the set of anatomical regions augmented by the background label. We refer
to a potential anatomical label in Lg by [°.

e Coupling: Integrating segmentation and multi-atlas registration is achieved by coupling seg-
mentation and deformation graphs. The set of edges £- connects nodes of Vg with nodes of
Vp. In order to create the coupling edge system, we connect every node p € Vp with nodes
of Vg that correspond to voxels that are influenced by a displacement of p.

e Local Atlas Selection: We parametrize membership fields by taking into account the spatial
support of the deformation nodes. Voxels within the support of a control point share the
same membership state ([0, 1]). To model this, we augment the label set of the deformation
nodes by considering the Cartesian product between the deformation label set Lp and a
binary selection label set £z = {0, 1}. Thus, for a node p a label I indexes a pair (dp, %),

where eg € Lg. A node p is selected when eg = 1, otherwise it is deselected. 1f p

is deselected, it will not penalize inconsistent candidate segmentations and it will not be

influenced by them.

MREF Energy The continuous energy in Eq. 2.4 is mapped to a discrete MRF energy of the form
in Eq. 2.2. In short, we map i) the matching term Si¢m to the unary potentials of the deforma-
tion variables (Eq. 2.5), ii) the deformation smoothness penalty term R, to pairwise potentials
between deformation variables (Eq. 2.6), iii) the segmentation prior Sp to the unary potential of
the segmentation variables (Eq.2.7), iv) the coupling penalty C to one pairwise potential between
registration and segmentation variables and one unary potential over deformation variables (first
and second part of the right hand side of Eq. 2.9, correspondingly), and finally v) the membership
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field smoothness penalty term Ry to an additional pairwise potential between deformation nodes
(Eq. 2.10).

o Multi-Atlas Registration: Multi-atlas registration is performed by registering in a pairwise
fashion all atlases to the target image. Formulating pairwise registration in a discrete setting
has been shown in [36]. For completeness reasons, we briefly discuss here how the match-
ing term M and the regularization term R of Eq. 2.4 are mapped to unary and pairwise
potentials.

Concerning the matching term, we are interested in quantifying how well the assignment of
a displacement label lgi € Lp toanode p; € Vp, aligns atlas A; to the target image. This
is measured by the following unary potential:

gyl (15) = /Q Op, (2)p(A; © Dy, I(x))dz. 2.5)

D, is the transformation induced by the movement of the control point p in the i-th defor-
mation grid by the displacement lgi. The weighting function w),, determines the contribution
of the point z to the unary potential of the control point p.

Regarding the regularization term, [36] shows that it can be efficiently modeled by pairwise
potentials. A discrete approximation of the gradient of the spatial transformation can be
computed by taking the vector difference between the displacements of neighboring nodes
that belong to the same deformation grid:

R 1) = ||dy, — dg, ], (2.6)

Pigi \"pi’ g
where d,,, is the displacement applied to node p in the i-th deformation grid, indexed by lgr

o Segmentation: In order to assign a class label to every voxel of the target image, we take
into account learned appearance model for every class. The appearance model is encoded
in the form of a probability distribution 7r(/) and can be naturally incorporated in the MRF
model by setting the unary potentials of the segmentation grid for every label to the negative
log-probability of the respective class:

gSP(12.) = ~log(m(E2,)). @)

o [ntegrated Segmentation and Multi-Atlas Registration: We want to encourage the agreement
between the estimated segmentation and the warped segmentation masks. Thus, we penalize
control point displacements of grid Gp, that result in warping the segmentation mask of the
corresponding atlas ¢ in a fashion that does not agree with our final segmentation:

£ W15 ) = Gy, () - Ind(S; o Dy,(s),15,), (2.8)
where p; belongs to the grid Gp,, ¢g belongs to Gg and Ind(z,y) equals 0 if x = v,
otherwise it equals 1.
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Due to the sparse way we model selection variables, any candidate deformation d,, corre-
sponds to a segmentation mask that agrees at a certain percentage to the segmentation vari-
ables within the support of p. In order to model local atlas selection, we need to determine a
set of such percentages below which a candidate segmentation is unacceptably incongruent
with the consensus segmentation, and thus should lead to a node being deselected. We call
these percentages agreement percentages and index them with a,,. Note that the agreement
percentage does not depend on the grid index ¢ but only on the inter-grid control point in-
dex p. Agreement percentages are estimated by locally comparing each segmentation mask
with an estimate of the consensus segmentation, followed by a clustering scheme to arrive
at robust per control point estimates (more details in [13]). Given an agreement percentage
ap, atlas selection may be enforced by introducing an additional unary cost for deformation
nodes. Thus the total coupling cost becomes

fzégs(lgi’ lgs) - egi ’ fZgQS (lgi7125> +(1- egi) (1 —ap), 2.9)

d
2

which the (pairwise) segmentation cost € is very high when warping an atlas 4, are disabled
for this atlas. When a node p; is disabled the cost to be paid is 1 — a,, regardless of the level
of disagreement of the deformation with its corresponding segmentation nodes. Thus, a
disabled deformation node will not affect segmentation variables and conversely will not be
affected by them.

where e; is equal to 1 when p; is enabled, and 0 otherwise. As a consequence, nodes for

Furthermore, membership fields are encoded over deformation nodes. We want to enforce
smoothness over the fields to achieve concise regions of influence for every atlas:

S (yd d d d

i (Upis 1g,) = Ind(ep,,, eq,)- (2.10)
To conclude the outline of the discrete energy, we summarize the terms along with the parameters
controlling each term’s weight:

EMRF(I) = glj?\;[(lgi) + )‘flfq@' (lgi’ lgi) + Ug(f;)(l;s) + Oéf];?gs (lgi’ l;S) + ’8f5i7‘1i(lgi’ lflli)’

A controls the deformation field smoothness, o encodes the prior likelihood weight, « specifies
how much registration influences segmentation and reversely how much segmentation affects reg-
istration, and 3 regulates the smoothness of membership fields.

MRF Optimization through Dual Decomposition DD-MRF [37] has been introduced as a
framework for MRF optimization, offering global optimality guarantees. Its flexibility in terms of
possible energy types, its ability to report the quality of the final solution as well as its optimality
guarantees are the merits we considered in opting for its use. DD-MRF works by receiving as
input a decomposition of the initial graph (primal problem) into subgraphs (dual problems). It
initializes the costs of the dual problems using the costs of the primal problem. It then proceeds
by iteratively finding a global optimum for each subproblem, compare the subproblem solutions
and update their costs.
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In short, at each iteration: i) dual subproblems are solved in an optimal fashion (usually by
dynamic programming); ii) the dual energy, defined as the sum of the energies of the optimal
dual solutions, is computed; iii) a solution to the primal is inferred by the multitude of, possibly
conflicting, dual solutions; iv) the difference between the energy of the primal and the sum of
the duals is computed (referred to as primal-dual gap); v) the primal dual gap is used to update
subproblem costs. This way agreement is induced between the next subproblem solutions leading
iteratively to a coherent, globally optimal solution. The way dual costs are updated guarantees
that the euclidean distance of the current solution to the set of the globally optimum solutions will
decrease monotonically.

Validation We have validated our method using leave-one-out cross-correlation over publicly
data available on the Internet Brain Segmentation Repository (IBSR). We specifically used the
skull stripped version of the dataset provided in [38] after linearly registering images and masks.
Assessment was based on labels of 14 symmetric and 3 non-symmetric brain structures that
were annotated in more than half of the images of the dataset. The method was compared
against: i) pairwise registration fused using majority voting , ii) pairwise registration fused us-
ing appearance-based locally (over a patch) weighted fusion, and iii) the previous approach [34],
which coupled registration and segmentation through the use of appearance-based local soft selec-
tion. The proposed approach outperformed all other three methods in terms of Dice coefficient and
Symmetric Mean Surface Distance (SMSD). More details on the implementation and the quality
of the obtained results can be found in [13].

Spatiotemporal MRF-based deformable registration

In the previous section a solution to the joint problem of multi-atlas registration and segmenta-
tion was proposed. In this section we study the special case in which the multiple images are
from the same subject but acquired over different time points by varying some imaging parame-
ters. Additionally to possible subject motion or organ deformation due to physiological processes
(respiration or cardiac pulse), the change of imaging parameters causes an alteration in image
intensities that is different in healthy and diseased tissue. The intensity change can often be de-
scribed by a physiological or temporal model applied on a voxel-wise basis in the group of images.
However the voxel correspondences are unknown, imposing the need for a group-wise deformable
registration coupled with the computation of the model parameters. As an application paradigm,
the registration of diffusion-weighted magnetic resonance (DW-MR) images can be chosen, which
is performed by scanning the patient with different b-values (a parameter determining the strength
and duration of the diffusion gradients). The apparent diffusion coefficient (ADC), which reflects
the gradient of water diffusivity in the body, can be subsequently computed at each voxel and dis-
played as a parametric map. ADC has been examined not only for the characterization and staging
of lesions but also for the response to treatment [39]. The calculation of ADC was performed
without motion or artifact correction in the previous studies. It is reported though that ADC is a
parameter susceptible to artifacts, the most frequent of all being patient’s motion and breathing,
resulting in misregistration of the images obtained with different b-values [40], [41]. Therefore,
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in order to correctly visualize diffusion in biological tissues, image registration (non-linear due to
organ movement) should precede the ADC calculation.

Two approaches were implemented for this purpose. First we proposed a group-wise regis-
tration method that incorporates a temporal model (reflecting diffusion) within the similarity term
(data cost) [15]. Subsequently, in order to accurately quantify the diffusion process during image
acquisition, we introduced a high-order MRF model that jointly registers the DW-MR images and
models the spatiotemporal diffusion [14]. Spatial smoothness on the estimated diffusion variables,
as well as spatiotemporal deformation smoothness, are imposed towards producing anatomically
meaningful representations.

Let us consider a sequence of m DW-MR images, each one described by intensity values
s¢(z),t = 1,....,m, with z € Q;, Q; € R>. On top of that, let’s consider an extra image z(x)
with = € ), which represents the ADC template corresponding to the previous image sequence.
This ADC template is regarded as the reference frame of an optimal alignment among the DW-
MR images. We therefore seck for a set of displacement fields d;, t = {1,...,m} which map
mutually corresponding points from the m-image spaces to the same point of the reference frame
Q).. Having acquired the images with large b-values (> 50s/mm?), we can use the exponential
diffusion model proposed in [42] to express the relation between the ADC image (referred to with
the letter z) and the DW image s acquired with b-value b; :

St = sge 7 (2.11)

where sg the DW image for b = 0. Denoting with y; the natural logarithm of the image vector s,
and by assuming also the presence of noise 1, the relation between image intensities and ADC is
expressed as:

Yr = —biz +yo + 1y (2.12)

If all m DW-MR images are perfectly aligned, the standard way of estimating ADC is by linear
regression against the b-values:

Doy (b — 5)(9} -9)
Sty (b —b)2

2= Jo=02+7 (2.13)

where b denotes the mean b-value and % the mean of the logarithmic images.

This model is incorporated in two different ways. In both methods [15][14] the registration
approach we propose aims at (i) correcting deformations due to (local) organ deformations or mo-
tion, (ii) ensure temporal consistency across the deformations, and (iii) impose spatial consistency
on the deformation fields. However in [14], additionally to the previous criteria, we aim at a joint
mapping and ADC refinement in terms of spatial consistency and smoothness. Specifically we
model the ADC values as additional variables and impose spatial consistency on the derived ADC
map. The diffusion model used for the calculation of the ADC, as well as the deformation model,
are jointly optimized to define the reference pose. The main differences in energy cost formulation
between the two approaches are described next. An illustrative example is shown in Fig.2.6.
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(d)

Figure 2.6: An axial slice of the DWI volume acquired with b-values (a) 50, (b) 400, (c) 800
s/ mm?. The estimated ADC map is shown in (d). The red contour in image (a) denotes the tumor
boundary.

Group-wise registration using a model of intensity change

In [15], we propose a computationally efficient group-wise registration scheme that does not re-
quire choosing a reference template. The latent variables of the model are m deformation fields
(B-spline polynomials), { D1, - - - , Dy, }, which are obtained using the discrete formulation intro-
duced in [43]. The deformation variables are connected with the observations towards ensuring
meaningful temporal correspondence among the DW images. They are also inter-connected in
order to decrease the cost of pairwise comparisons between individual images. This is expressed
by the following energy function that maximize a similarity function Sim and some regularization
functions that enforce smoothness between neighboring nodes in space ([2;) and in time (2 ¢41).

~ ~

D, - Dy, = argmazxp,.... p,,{Sim(s1 0 D1, -+ ,8m 0 Dp,)
M M—1
(2.14)
+) Ry(D¢)+ Y Ryp1(Dy, Deyr)}
=1 t=1

Linear programming and duality [44] are used to determine the optimal solution of the prob-
lem. Our work was inspired by the approach of [45]. The main difference between the two
approaches is found in the encoding of the global similarity of the population. A statistical com-
pactness criterion has been used in [45], whereas we incorporate within the registration process the
physiological model of Eq.2.11 representing the temporal intensity change. This intensity model-
ing step removes the ambiguity during the search of anatomic correspondences and thus increases
the mapping accuracy. Specifically, the similarity term Sim uses some interpolation functions
and a matching criterion p similarly to Eq. 2.5. Here it is expected that as the images are jointly
aligned, the derived optimal pose would express more accurately the diffusion process, thus p is
defined as the regression error over all images:

p(s1, -, 8m) =Y (st — §) (2.15)
t=1

where §; = e¥0 %% is calculated by substituting Eq.2.13.
It is obvious that this matching criterion requires the joint registration of all images s;. We
approximate the group-wise registration solution by formulating a deformation mechanism based
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on two terms: a global unary term and a inter-image pair-wise term. The global unary term repre-
sents a global cost for the deformations by assuming that for each node p of a given deformation
field/image ¢, the rest of the images do not get deformed within the current iteration. This assump-
tion is considered for all nodes and for all deformation fields within a given iteration, an assump-
tion that is common in minimizing graphical models through expansion moves. local pair-wise
comparisons between members of the population are examined too. The inter-image pair-wise
term is assessed between each pair of images by allowing them to be deformed, while keeping the
rest m — 2 images static within the current iteration. These inter-image pair-wise comparisons are
performed only between the immediate neighbors (¢, £ 4 1) in the temporal domain. More details
on the registration mechanism, the regularization cost and the optimization method, can be found
in [15].

Joint deformable registration and diffusion modeling

In the work described above the aim was to calculate a set of deformation fields by minimizing
the regression error, while z and yo were derived by acquired solution (Eq.2.13). Regression is
performed on a voxel-wise basis, thus interactions among neighboring ADC values are not taken
into account. In [14] we use some priors on context dependencies for z and yg and solve the joint
problem:

2, 9o, ﬁl, e Dy = argma:vzyo’pl’ Dm{Sim(z Yo,810Dq, -+ ,8m o Dp,)
+ ZRt Dy) + Z Risy1(Dyg, Dyyq) (2.16)
t=1

+ Rz(Z) + Ry (yo) }

where R, Ry, express the spatial regularization (smoothness) of z and yg, respectively. The
energy terms can be derived by the Maximum a Posteriori (MAP) technique. If we assume that
the noise is zero mean i.i.d., the multivariate pdf of n is given by:

1
N

1
) Fon e:cp{ nt nt} 2.17)

P(n) =

where N the size of the linearized noise vector and 2 denotes the variance of the noise process.
Therefore from equations 2.17 and 2.12 we get

lye + bz — yon)
202

P(ys, - Ym | 2,90) ~ Y (- (2.18)
t=1

This equation is true if there is no deformation between the images y¢. Assuming now that some
motion has occurred during the acquisition process of the DW-MR images, Eq. 2.12 takes the
form:

Yyt o Dy = —biz + yo + 1y (2.19)

37



Figure 2.7: The node and the edge system of all the connected graphs. With green, blue and brown
color the relationship within the grid nodes belonging to z (ADC), yg, and each of the deformation
fields, respectively. These connections ensure smoothness within each grid. The black dotted edge
represents a third-order dependency among deformation field and diffusion model (required in the
data term), whereas pink edges denote the temporal relationship between successive (in time)
deformation fields.

The joint posterior probability for the diffusion model parameters and the deformation fields can
be calculated from Bayes’ rule:

P(zyyOaDla"' ’Dm | yl»"'vym) -
P(ylv'” y Ym ‘ z7y07D17”' 7Dm)P(zay07D17'” 7Dm)
P(y:l?"' 7ym)

(2.20)

By ignoring the denominator since it is not a function of the variables to be estimated, and assum-
ing that the random fields Dy, z and yq are statistically independent, we can arrive at the MAP
solution by updating Eq. 2.18 using Eq. 2.19 and introducing it into Eq. 2.20:

m
L . A A lys 0 Dt + bez — yol|?
Z,yo,D]_,"' 7D = argmalz yo,D1, - ,Dm -

m Z,Y0 1 {;( 20% ) (221)

+lOgP(Z)+lOgP(y0)+10gP(D1, 7Dm)}

The priors on the diffusion model variables, P(z) and P(yg), correspond to the regularization
terms R, and Ry, in Eq. 2.16, whereas the prior on the deformation variables, P(D1,- - - , Dp,),
models deformation dependencies in space (1%;) and in time (f2; 41).

MRF Formulation of Joint Problem We formulate our joint problem of DW-MRI registration
and ADC smoothness using Markov Random Fields (MRF). The joint model is parameterized by a
set of m + 2 isomorphic grid graphs G = {G1, ..., G2}, each of the first m superimposed onto
the corresponding DW-MR image, whereas the last two grid graphs are superimposed onto the
ADC map that we want to compute and the yg image vector respectively. To this end, we define
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three sets of labels, a quantized version of the displacement space, and quantized versions of the
z and yg values, respectively. Every node in each grid represents either a displacement if the grid
is a deformation grid or the ADC or the yo value in case of the last two grids, respectively. The
nodes in the graph are also connected with a set of edges £ that encode the interactions between
the deformation and diffusion model variables, as illustrated in Fig.2.7.

Perspectives of graphical models

During the past decade the mainstream effort was dedicated to the development of efficient infer-
ence methods for low-rank (pair-wise) user-defined application-driven graphical models involving
limited interactions between the nodes of the graphical models. Such models have been very pow-
erful in addressing a number of low and mid-level computational perception problems but failed
to cope with high-level tasks. One can claim that this was due to:

e constraints being imposed by the low-rank connections between graph nodes (pair-wise
models offer limited interaction between variables) that was mostly the outcome of lacking
efficient optimization methods to address higher order interactions.

e absence of leveraging large scale manually annotated data towards defining the optimal in-
ference problem. Obviously recovering the optimal solution of an arbitrary objective func-
tion that does not correspond to the one that should be used towards getting the optimal
visual perception answer is not that useful.

e absence of introducing high-level knowledge on the structure of the considered graphs to-
wards facilitating the process of describing the space of solutions and making inference
feasible at reasonable computational time with strong optimality guarantees.

An interesting future perspective will be to introduce a novel discrete, data-driven, higher order,
structured computational framework to address visual perception and its applications in large scale
modeling and biomedical image analysis. Medicine is a field where human understandable predic-
tions could have a much stronger adoption rate from the clinical experts. Therefore coupling the
advances of machine learning able to provide quite powerful individual predictions (like for ex-
ample deep learning), with human understandable structured representations (graphs learned from
examples, tree structures being the derivation of structured models like for example grammars) and
efficient distributed optimization methods could be a major breakthrough towards reproducing or
even surpassing human intelligence.

Personal contribution

My contribution in the work presented in section 2.2 was major and involved the formulation and
implementation of the registration method designed for brain images with pathology, as well as
the integration with the tumor growth model, whereas the actual modeling of the biomechanics
due to tumor growth (i.e. the PLE simulator or the finite element model) was not part of my work.
In the presented framework the two problems of registration and tissue characterization were cou-
pled together and solved in an iterative brute-force type approach [9][10]. A framework for joint
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segmentation-registration was later proposed in [46]. In respect to section 2.3 , the methods in the
area of discrete optimization and inference algorithms are mainly attributed to co-authors, while
my personal contribution relied mostly in the MRF model formulation and energy cost definition
(first step in the implementation framework). Specifically, given an interpretation objective, the
first step consists in describing the space of solutions through a parametric mathematical model.
The parameters of this model are then associated with the measurements through the definition of
an objective cost function, expressed as the MRF energy in our graphical models formulation. My
overview was deeper concerning the work described in section 2.3 and involved the Maximum a
Posteriori (MAP) solution and joint graph formulation.
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Chapter 3: Data representation and dimension-
ality reduction

One the fundamental problems in machine learning and pattern recognition is to discover compact
representations of high-dimensional data. Medical data is typically sparse, high-dimensional (es-
pecially the 3D or 4D imaging data) and noisy. Also, very often the number of observations (avail-
able subjects) is low whereas data variability (e.g. across subjects) is high. All these challenges
make inference especially hard imposing the need for dimensionality reduction. One way of mak-
ing the data more compact is to extract features related to repeated patterns or signal/image prop-
erties that are usually encoded within the data. Dimensionality reduction can overall be achieved
either by selecting a subset of the original features (variable selection) or by mapping through
linear and/or nonlinear transformation (embedding methods) the original data or extracted fea-
tures onto a new, lower-dimension space with the aim of eliminating irrelevant and redundant fea-
tures, which is a key component for both supervised and unsupervised classification or regression
problems. Embedding methods explore local data structure which is a very important property,
especially when the data lie on non-linear manifolds. However, a disadvantage of data transfor-
mation over simple variable selection is that the generation of new features makes the original
variables uninterpretable, and information about how much each original variable contributes is
often lost. Additionally, the above feature reduction methods are not always capable of handling
all types of variables, such as categorical variables. Moreover, dimensionality reduction through
data transformation can be applied only under certain conditions. The following sections sum-
marize our work in respect to feature extraction and embedding methods for representation and
analysis of biosignals, medical images and molecular data dedicated to the clinical applications
we have studied.

3.1 Feature extraction and fusion

Analysis of biosignals

Common problem in signal processing, and more specifically in neuroinformatics, is how to mon-
itor for anomalies, detect signals beyond the limits, discover typical patterns of activity followed
by a pathological event, such as a seizure, predict atypical patterns before they occur, etc. The
subjective evaluation of biosignals makes automatically extracted parameters (computer-based)
highly useful for diagnostics. The research performed under this scope aimed particularly at the
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development of a system for monitoring of epileptic patients based on single or multi-channel
biosignals, such as EEG and ECG.

Seizure detection Over the last decade clues to the unknown process that produces seizure have
began to emerge from quantitative analysis of the electroencephalogram (EEG). In most of the
parametric approaches found in the literature the analysis is based on the estimation of the EEG
channels’ spectral magnitude [1][2]. Other EEG features that have been reported are the autore-
gressive filter coefficients, the continuous and discrete wavelet transform, as well as energy per
brain wave (delta, theta, alpha, beta, gamma) bands [1][2]. Furthermore, time domain features
have been proposed, such as zero-crossing rate and statistics of the EEG samples per channel.
Additionally to the EEG signals, it has been shown that seizures are often associated with cardio-
vascular and respiratory alterations [1][3]. Specifically, the study of electrocardiographic (ECG)
signals can offer valuable information related to the seizure discharges [1]. Due to the difficulty
of visual assessment of multiparametric recordings (in this case time-synchronous EEG and ECG)
and in combination with the progress of signal processing and pattern recognition technology,
approaches for automatic detection of seizures have been proposed in the literature. The ECG
features are mainly based on the heart rate estimation (based on R-R intervals) and statistics of it,
i.e. heart rate variability, as well as morphological features of the ECG signal [2][3].

In our work [4][5][6] we performed a large scale evaluation of time-domain and frequency do-
main features of EEG and ECG signals for offline analysis and online monitoring. Assuming that
the data recorded by the sensors have been synchronized and transmitted as streams of multidi-
mensional signals, frame blocking of the incoming streams to epochs of constant length is applied,
and features are extracted from each epoch separately for each of the n = 21 EEG channels and
ECG channel. In particular, each of the channels was parameterized using the following features:

1. EEG time-domain features: minimum value, maximum value, mean, variance, standard
deviation, percentiles (25%, 50%-median and 75%), interquartile range, mean absolute de-
viation, range, skewness, kyrtosis, energy, Shannon’s entropy, logarithmic energy entropy,
number of positive and negative peaks, zero-crossing rate, and

2. EEG frequency-domain features: 6-th order autoregressive-filter (AR) coefficients, power
spectral density, frequency with maximum and minimum amplitude, spectral entropy, delta-
theta-alpha-beta-gamma band energy, discrete wavelet transform coefficients with mother
wavelet function Daubechies 16 and decomposition level equal to 8.

3. ECG-based heart rate statistics: absolute value, minimum value, maximum value, mean,
variance, standard deviation, percentiles (25%, 50% and 75%), interquartile range, mean
absolute deviation, range. The heart rate estimation was based on Shannon energy envelope
estimation for R-peak detection algorithm, implemented as in [7].

Feature extraction resulted to a feature vector of dimensionality equal to 55 for each of the 21
EEG channels and 12 for the ECG channel. The concatenated feature vectors were used to train
seizure detection models. In a further step, the discriminative ability of the extracted features was
examined. For the estimation of the importance of each feature in terms of their binary classifi-
cation ability, the ReliefF algorithm [8] was used. ReliefF is one of the commonly used feature
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Figure 3.1: Block diagram of the seizure detection architecture based on time and frequency
domain EEG and ECG features.

ranking algorithms due to its simplicity and effectiveness [9][10] (only linear time in the number
of given features and training samples is required), noise tolerance and robustness in detecting
relevant features effectively, even when these features are highly dependent on other features [9].
The cumulative evaluation results across the 21+1 electrodes revealed as most discriminative fea-
tures the logarithmic energy entropy, the 2nd 3rd and 7th AR coefficients, the zero-crossing rate
and the standard deviation. These features were ranked within the 10-best for all three evaluated
subjects. For two of the subjects the median value of the ECG signal (i.e. the 50% percentile) was
evaluated within the 20-best ranked features, indicating the existence of underlying information,
related to seizure characteristics, within electrocardiographic signal, which is in agreement with
previous studies [1][3]. For all examined subjects the use of subset of features reduced the pre-
cision of the seizure detector. However, the exclusion of the approximately 30% worst features
still offered performance comparable to the best achieved and in combination with the reduction
of the computational load of the detection architecture (both in the feature extraction stage and the
classification stage) could be a valuable solution for online scenarios.

Classification of episodes of paroxysmal loss of consciousness The common causes of episodes
of paroxysmal loss of consciousness are mainly that of epileptic seizures, commonly manifested
by generalized spike wave discharges (GSW) [11], possible psychogenic non-epileptic seizures
(PNES) [12] and vasovagal syncopal attacks (VVS) [13]. The similar seizure-like reactions of
both epileptic and non-epileptic events make their diagnosis a difficult task. In clinical practice,
the diagnosis is based on historical information assisted by specific tests. An example of the dif-
ferent EEG manifestations of epileptic and non-epileptic events is shown in Fig.3.2. Only a few
studies have been proposed in the literature for automated classification between epileptic and non-
epileptic pathological events from EEG. Poulos et al. [14] proposed an algorithm which estimates
a number of auto-correlated coefficients extracted from an appropriately selected epileptic EEG
segment and examines whether these coefficients are correlated with the coefficients of the un-
known EEG segments in order to classify the latest into epileptic or non-epileptic. Papavlasopou-
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Figure 3.2: EEG recordings during epileptic and non-epileptic events. Left: epileptic seizure
(GSW); middle: psychogenic non-epileptic seizure (PNES); right: vasovagal syncopal attack
(VVS). The left and right marker in each figure indicate the onset and offset of the event, re-
spectively.

los et al. [15] trained a LVQ1 neural network on an appropriately extracted set of auto-correlation
coefficients (codebook) and used the resulting model to classify the corresponding feature vectors
of the unknown EEG segments.

We used the same feature set extracted for seizure detection from temporal and spectral anal-
ysis over multiple EEG channels but this time trained classification models for epileptic and non-
epileptic events [16][17]. Due to large number of features, feature ranking and selection was
performed prior to classification using the ReliefF ranking algorithm within two different voting
strategies. The classification models using feature subsets, achieved higher accuracy compared to
the models using all features, as well as to methods of others [16].

Decision level fusion Spatiotemporal analysis of EEG is commonly used for detection or classi-
fication of EEG events in a multi-channel setting since it allows capturing dependencies across the
EEG channels. However the significant increase of dimensionality, when features from different
sensors are combined into a single feature vector, makes learning of classification models difficult,
especially when using only a small number of samples usually available in clinical studies [4][16].
In [18], we investigated the classification of epileptic and non-epileptic events from multi-channel
EEG data through the application of three different schemes for fusing information across EEG
channels. We compare the common feature level fusion - which leads to the highest dimensionality
of the feature vector and aims to capture the total spatiotemporal context prior to the classification
step - with two decision fusion schemes performing per channel classification when: (i) the tempo-
ral context varies significantly across channels, thus local (sensor-dependent) training models are
required, and (ii) the spatial variations are negligible in comparison to the inter-subject variation,
thus only the temporal variation is modeled using a single global (sensor-independent) classifier.
The three schemes are illustrated in Fig.3.3. The framework is applied on events that manifest
across most EEG channels, as in the case of generalized epilepsy, PNES and VVS. Evaluation of
the three classification architectures on EEG epochs from 11 subjects in an inter-subject cross-
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Figure 3.3: Different pattern analysis schemes. Left: Fusion of features, known as early integration
(ED), Middle/Right: Fusion of classifier decisions, known as late integration (LI), using sensor-
specific (LI Local) training models (middle) or a sensor-independent (LI global) model (right).

validation setting showed that the fusion in the decision level with a global (sensor-independent)
classification model outperformed the other two schemes.

Fusion in the decision level was also performed in [19] for sleep spindle detection. Sleep
spindles are characteristic transient oscillations that appear on the EEG during non-rapid eye
movement (non-REM) sleep. The amount and the distribution of the sleep spindles is essential
for describing the morphology of the sleep EEG, thus the assessment of the distribution of sleep
spindles over a whole sleep cycle is needed. The low amplitude of some spindles, compared to the
background EEG activity, renders the detection of sleep spindles difficult even for sleep experts.
Visual detection and manual annotation of spindle occurrences for a whole sleep cycle recording
is time consuming and affected by the subjectivity and degree of experience of the sleep techni-
cian. Therefore, automatic detection of sleep spindles is essential for reducing the workload and
allowing the processing of large enough amount of data. In [19] we present a scheme for the
automatic detection of sleep spindles, which is based on the combination of discriminative and
statistical machine learning methods. The sequence of computed feature vectors was used as input
for both a discriminative SVM model and a statistical hidden Markov model (HMM). Each of the
two models estimates whether the i-th incoming feature vector corresponds to sleep spindle or not,
i.e. providing binary classification results with the corresponding recognition score for each of
the two classes. The second stage of the sleep spindle detection scheme exploits the SVM-based
and the HMM-based predictions estimated at the first stage, in order to combine them and provide
a final decision for each frame of the EEG signal. The fusion model was implemented with the
SVM algorithm.

Analysis of 3D volumetric images

In [20][21] conventional MRI and perfusion MRI were integrated via a pattern classification tech-
nique into a multi-parametric imaging profile and used for differential diagnosis of brain neo-
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plasms. Tumor characterization is difficult, because neoplastic tissue is often heterogeneous in
spatial and imaging profiles, and for some imaging techniques often overlaps with normal tis-
sue (especially the infiltrating part) [22]. Gliomas might show mixed characteristics, for example
demonstrating both low and high grade features. The reference standard for characterizing brain
neoplasms is currently based on histopathologic analysis following surgical biopsy or resection,
but this is an invasive procedure which also has limitations including sampling error and variabil-
ity in interpretation. In [20], we explore the heterogeneous regions of brain tumors by combining
imaging features from several sequences and extract morphological and texture characteristics.
Our analysis requires 3 regions of interest (ROIs), which define the neoplastic and necrotic region
on contrast enhanced T1-weighted MRI (T1), and edematous region on Fluid-Attenuated Inversion
Recovery (FLAIR) image.

The images were preprocessed following a number of steps including noise reduction, bias-
field correction, and rigid intra-subject registration using the public software package FSL [23].
Co-registration of all sequences (T1, contrast enhanced T1-weighted images (T1ce), T2, FLAIR,
relative cerebral blood volume (rCBV) maps calculated from the perfusion sequence), required
in order to extract features from the ROIs, was performed with the rigid registration algorithm
FLIRT [24] from FSL. The intensity levels were made comparable across subjects by histogram
matching. For this purpose skull stripping was first performed using BET [25] to generate a brain
tissue mask from the T1 image which was then used to extract the brain region from all other
co-registered sequences. A linear transformation of the intensities (translation and scaling) was
applied in order to minimize the L2-norm of the histogram difference between each subject and a
template image. Histogram matching was not applied to the rCBV maps.

We chose a large number of features for investigation which included age, tumor shape char-
acteristics, image intensity characteristics within some of the ROIs and Gabor texture features.

o Shape and statistical characteristics of tumor: Five shape features of the total tumor
area were investigated, i.e. the tumor circularity, irregularity, rectangularity, the entropy
of radial length distribution of the boundary voxels, and the surface-to-volume ratio. Also
three statistical features were calculated, i.e. the ratio of enhancing, necrotic, and edematous
tumor volume versus total (enhancing and non-enhancing) tumor volume.

¢ Image intensity characteristics: The mean and variance of image intensities of T1, Tlce,
T2 are calculated in the central and marginal area of the different ROIs under certain condi-
tions taking into account uncertainty due to possible neoplastic infiltration (we refer to [20]
for more details).

e Gabor texture: The voxel-wise texture features of image I(x,y, z) are extracted at each
tomographic slice of the 3D ROI by convoluting with 2D Gabor filters [26][27] and averag-
ing inside the ROL The 2D Gabor filters are mathematically described at location (z, y, z)

as
2 2,2
Ty + 77y, 27
Ir0.00(T,y) = exp <—02029> cos <)\$9 + ¢>
where g = xcos(0)+ysin(0), yg = —xsin(0)+ycos(0), A = 1/ f is the wavelength, 6 the
orientation, 7y the spatial aspect ratio which determines the eccentricity of the convolution
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Figure 3.4: Examples of Gabor filters for same frequency in five different orientations (a) and five
extracted rotation-invariant filters (b) displayed in color scale (c).

(@) (b) c)

Figure 3.5: MR images of different of brain tumor types and an example of a texture pattern
extracted from FLAIR in the edematous area. From left to right: meningioma, glioma grade II,
grade III, grade IV and metastasis. 1st row: Tlce image with the tumoral ROIL. 2nd row: FLAIR
image (zoomed in the tumor region) overlaid with one of the textural patterns (A = 8). The average
texture values (calculated before FFT) proved to be significant in discrimination of meningiomas.

kernel, and v the phase offset which determines the symmetry of the Gabor function, and
the ratio o/ the spatial frequency bandwidth. The texture was calculated by combining
the output of a symmetric and anti-symmetric gabor kernel using the L2-norm. Then, in
order to make the average Gabor features rotation invariant, for each radial frequency f Fast
Fourier Transform (FFT) was performed across orientation # [26] and the unique coefficients
for each frequency were retained. Further details on the calculation of texture features are
provided in [20].

Fig.3.4 illustrates in the first row the Gabor filter for a single frequency across the first 5 (out
of 8) orientations and in the 2nd row the rotation-invariant filters after FFT for the same frequency.
Fig.3.5 illustrates an example for each brain tumor type and a texture pattern extracted from the
edematous area from FLAIR. The illustration shows the voxel-wise texture before averaging over
the area of interest. The features were normalized to have zero mean and unit variance and then
feature selection was applied to select a small set of effective features for classification in or-
der to improve the generalization ability and the performance of the subsequent classifier. An

intensity-based tissue profile was also used to produce healthy and neoplastic tissue probability
maps and maps for tumor recurrence [27][28]. The purpose was to quantify the multiparamet-
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Figure 3.6: Tissue characterization based on multiparametric MRI. The analysis framework in-
cluding preprocessing, fusion of multiple sequences and supervised (Bayesian or SVM) classifi-
cation is illustrated on the left and some segmentation results on the right. GAD: gadolinium-
enhanced T1-weighted image (same as T1ce).

ric imaging profile of neoplasms by integrating structural MRI (BO, FLAIR, T1, and Tlce) and
Diffusion Tensor Imaging (DTI) metrics, such as Fractional Anisotropy (FA) and Apparent Dif-
fusion Coefficient (ADC), via statistical image analysis methods to potentially capture complex
and subtle tissue characteristics that are not obvious from any individual image or parameter. Re-
sults demonstrated that this multiparametric tissue characterization helps to better differentiate
among neoplasm, edema, and healthy tissue (3.6), and to identify tissue that is likely to progress
to neoplasm in the future.

Furthermore, in [29] we examined whether there are any correlations between FA, ADC and
regional tumor blood volume (rTBV) values within the enhanced lesion in T1ce imaging. A neg-
ative correlation between normalized values of TBV and FA (p < 0.05, Spearman’s test) was
observed for the examined data.

Analysis of 4D spatiotemporal images

As example of spatiotemporal imaging data we will use the Dynamic contrast-enhanced MR imag-
ing (DCE-MRI) applied for the characterization of breast cancer. DCE-MRI involves administra-
tion of a gadolinium-based contrast agent, followed by the acquisition of a temporal sequence of
MR images of the breast under investigation. High permeability of tumor capillaries allows the
contrast agent to diffuse faster in a tumor, leading to better enhancement of a tumor relative to
the surrounding breast tissue. In the DCE-MRI image, malignant and benign tumors have been
found to exhibit major types of spatiotemporal difference. Various features have been proposed in
literature [30]. However, their use is mostly limited in practice because either they describe only
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one type of difference (capturing dynamics or morphology) or they are too coarse to contain rich
information on the tumor. In [30], we describe the spatiotemporal enhancement pattern (STEP) as
a comprehensive set of these features. By viewing serial contrast-enhanced MR images as a single
spatiotemporal image, we formulated the STEP as a combination of (1) dynamic enhancement
and architectural features of a tumor, and (2) the spatial variations of pixelwise temporal enhance-
ments. Although the latter has been widely used by radiologists for diagnostic purposes, it has
rarely been employed for computer-aided diagnosis. The main contribution of this work in re-
spect to data representation is that the STEP features are introduced to capture jointly the temporal
enhancement and its spatial variations. This is essentially carried out through Fourier transforma-
tion and pharmacokinetic modeling of various temporal enhancement features, followed by the
calculation of moment invariants and Gabor texture features.

We first modeled the temporal enhancement curves of breast tissues by Fourier transform. A
pixelwise 1D discrete Fourier transform (DFT) was performed on the enhancement curve of each
pixel p,

I(pvt) — I(pv 0)
I(p,0)
where I (p, t) denotes the intensity of p at a scanning time ¢ and 7" is the total number of time sec-
tions. Thus we obtained 7" — 1 DFT coefficients for each pixel p. Consequently, for a given tumor,
each DFT coefficient yields a distinctive temporal enhancement map, which collectively repre-
sents the frequency content of the corresponding temporal enhancements. In practice, we select
Ny enhancement maps corresponding to the lower order DFT coefficients. Once the tumor dynam-
ics are modeled and the temporal enhancement maps are constructed, they are utilized to capture
the spatial variations within a tumor. Since the orientation of a tumor sample is not related to its
type, the features representing morphological and spatial structure should be rotation invariant.
Accordingly, we employed rotation-invariant moment features [31] to capture the global structure,
and Gabor rotation-invariant texture to capture the local spatial behavior. For the extraction of
the gabor texture features a similar procedure as the one described in section 3.1 was followed.
Image moments are computed as the particular weighted averages of pixel intensities to explain
some global spatial distribution of image intensities. Hu’s seven moment invariants [31] are, for
instance, defined as a polynomial equation of some scale-normalized centralized moments. With
regard to our work, the two-dimensional centralized moments of an M x /N temporal enhancement

map, denoted as f(z,y), (z,y) € , are defined as

N M
mag =y > (@ =2y —5) f(z,y),

C(p,t) = , (t=1,..,T-1),

r=1y=1
where
SN (e fay)
NN )
and
S (v )
Yy = .

Z;]nvzl 2;\421 f(l‘, y)
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The two-dimensional scale-normalized centralized moment is defined as 7,3 = mqa3/m,, where
v = (a+p)/2+1,Y(a+ ) > 2. This readily leads to H,,, = 7 moment invariants for each of the
Ny temporal enhancement maps. Consequently, each tumor sample was represented by H,,, x N,
moment-invariant features. By including both moment invariants and Gabor texture features (H,),
we obtain a total of (H,, + H,) x N; features for characterizing the spatiotemporal profile of
dynamic contrast-enhanced images.

More recently we investigated the application of decomposition for characterization of the spa-
tial variation of temporal enhancement in DCE-MRI [32]. Multiresolution analysis has emerged a
useful framework for many image analysis tasks in which the discrete wavelet transform (DWT)
played a major role [33]. However, a drawback of the DWT is that it is not shift invariant. The
stationary wavelet transform (SWT) [34] is a wavelet transform algorithm designed to overcome
the lack of shift invariance of the DWT. More specifically, the DWT of a signal is defined as its
inner product with a family of functions, which form an orthonormal set of vectors, a combination
of which can completely define the signal. For the implementation of the DWT, only the coef-
ficients of a low-pass and a high-pass half-band filter are required. SWT is similar to the DWT,
but no downsampling is performed. Instead, upsampling of the low-pass and high-pass filters is
carried out. For 2D images, the 2D SWT can be used which consists of a SWT on the rows of the
image and a SWT on the columns of the resulting image. The decomposition of the image yields
four subimages (one approximation and three detail images) for every level of decomposition. The
detail subimages contain the textural information in horizontal, vertical, and diagonal orientations.
We used as texture features the mean and entropy of the absolute value of the detail subimages.
The approximation subimages were not used for texture analysis because they are rough estimates
of the original image.

Analysis of molecular structures

Research in metagenomics, the field which combines the study of nucleotide sequences with their
structure, regulation, and function, has been very productive the last years. While the number
of newly discovered, but possibly redundant, protein sequences rapidly increases, experimentally
verified functional annotation of whole genomes remains limited. Protein structure, i.e. the 3D
configuration of the chain of amino acids, is a very good predictor of protein function, and in fact
a more reliable predictor than protein sequence. This is mainly because the chemistry required for
the functionality of protein active sites arises from their 3D structure. Thus, as sequences diverge,
only those residues required for the chemistry of the protein activity will be absolutely conserved
whose 3D structure should also be conserved [35]. By now, the number of proteins with functional
annotation and experimentally predicted structure of their native state (e.g. by NMR spectroscopy
or X-ray crystallography) is adequately large to allow learning training models that will be able to
perform automatic functional annotation of unannotated proteins.

The building blocks of proteins are amino acids which are linked together by peptide bonds
into a chain. The polypeptide folds into a specific conformation depending on the interactions
between its amino acid side chains which have different chemistries. Many conformations of this
chain are possible due to the rotation of the chain about each carbon (Ca)) atom. The main type
of protein structure representation we used was the shape of the protein backbone. The utilized
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geometric descriptors are invariant to global translation and rotation of the protein, therefore pre-
vious protein alignment was not required. In [36][37] we also extracted sequence-based features,
whereas in [38] the aim was to explore only structure, thus instead of sequence, pairwise amino
acid distances were examined.

o Torsion angles density: The shape of the protein backbone was expressed by the two tor-
sion angles of the polypeptide chain which describe the rotations of the polypeptide back-
bone around the bonds between N-Ca (angle ¢) and Ca-C (angle ¥). The probability den-
sity of the torsion angles ¢ and (€ [—180, 180]) was estimated based on the 2D sample
histogram of the angles (also known as Ramachandran diagram). An example is shown in
Fig.3.7 In [36][37] the torsion angles density was extracted for the whole protein, whereas
in [38] feature maps were extracted separately for every amino acid type in the protein
(therefore characterizing local interactions) and then stacked as a multi-dimensional array.
Smoothness in the density function was achieved by moving average filtering, i.e. by con-
voluting the density map with a 2D gaussian kernel.

e Density of amino acid distances: All pairwise distances between each amino acid type
(including standard and ambiguous) in the protein were calculated based on the coordinates
of the Ca atoms for the residues and stored as an array. Since the size of the proteins
varies significantly, the length of this array is different across proteins, thus not directly
comparable. In order to standardize measurements, the sample histogram of these pairwise
distances was extracted and smoothed by convolution with a 1D gaussian kernel.

e Sequence-based features: The similarity of each pair of sequences and can be quantified
using the scoring matrix that is produced by a sequence alignment algorithm. The Smith-
Waterman sequence alignment algorithm [39] has been preferred over the Needleman-Wunsch
algorithm [40] due to the assessment of sequence similarity based on local alignment, which
allows to take into consideration mutations that might have happened in amino acid se-
quences. The highest score in the previous matrix, which reflects the success of alignment
of two sequences, is used as similarity criterion. The class probabilities for a given protein
are expressed as the maximum similarity across all training samples within class, normal-
ized over the sum of maximum similarities for all classes.

Both structural and amino acid sequence (AA) information are related to the enzymatic activ-
ity. In order to take into consideration these two properties, fusion of information was performed
in both feature level and decision level. Assessment on single-labeled and multi-labeled enzymes
showed that decision fusion outperformed feature fusion [37].

3.2 Embedding methods

Large feature sets, some of which may be irrelevant or even misleading, slow the machine learning
algorithms down and make finding global optima difficult. In special cases, high-dimensional data
set may contain many features that are all measurements of the same underlying cause, so are
closely related. Revealing the low-dimensional representation of such high-dimensional data sets
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Figure 3.7: The 3D model of a protein structure (1A4l) and its corresponding torsion angles
density map.

(manifold learning) not only leads to a more compact description of the data, but also enhances our
understanding of the intrinsic data structure [41]. Many manifold learning techniques have been
proposed, such as Isomap [42], Locally Linear Embedding (LLE) [43], and Laplacian Eigenmaps
[44]. They have outperformed classical methods like Principal Component Analysis (PCA) and
Multi-Dimensional Scaling (MDS) [45] in harnessing non-linear data structures [46]. However,
their high time and memory complexity impose severe limitations on their scalability [47].

Locality preserving projections for representation of waveforms

In [48][49] we compared several manifold learning techniques for compact representation of a
specific EEG pattern, the interictal spike. The detection of epileptiform discharges (spikes) in
interictal EEG is important for diagnosis of epilepsy. We proposed a methodology that increases
specificity in a two stages process incorporating pattern classification. Similarly to most pattern
detection methods in signal processing, the amount of data processed is reduced by first extracting
candidate waveforms based on low level detection analysis (by feature extraction), while subse-
quently classification is performed to maximize specificity of the overall method [50]. Specifically,
the proposed method first detects candidate spikes by breaking down the EEG signal around major
peaks into half-waves and extracting distinctive attributes of the waveforms, such as height and du-
ration, mimicking the criteria used by the neurophysiologists. If the raw signal (waveform around
the primary vertex) is used as representation for the candidate spikes, classification is deemed to
fail due to the high dimensionality of the input pattern. When the number of parameters increases,
the volume of the space grows so fast that the concept of similarity, distance or nearest neigh-
bor may not even be qualitatively meaningful, thus impeding clustering or classification. Thus
classification of the detected waveforms is performed after embedding them in a low dimensional
space.

We used the Locality Preserving Projections (LPP) [51] to embed the data in a low dimen-
sional space. LPP is a linear approximation of the nonlinear Laplacian Eigenmap [52]. It finds
a transformation matrix A that maps a set of points z; € R%, (i = 1,...,m) into a set of points
y; € R, y; = ATx; such that | < d. LPP is designed to preserve local structure, thus it is likely
that a nearest neighbor search in the low dimensional space will yield similar results to that in
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the high dimensional space. The intrinsic dimensionality (/) of the transients is unknown but we
used the maximum likelihood estimation (MLE) method to obtain an estimated value. The MLE
method gives a good estimate of the unknown parameters by maximizing the likelihood of the data
we observe. It is a widely used estimation method showing essential properties with increasing
number of samples, such as consistency, efficiency and asymptotic normality. In details, the LPP
algorithm is as follows. Let X be the d x m matrix including the m waveforms. The samples
constitute the nodes of a graph connected with edges having weights that depend on the samples’
distance. If W is the m x m weighting matrix and D is a diagonal matrix whose entries are col-
umn sums of W, the eigenvectors o, and eigenvalues A, (k = 0, ...,] — 1) are computed for the
generalized eigenvector problem :

XLXT oy = M XDXT oy,

where L = D — W is the Laplacian matrix. The n x [ transformation matrix A is formed by the !
column vectors ay, ordered according to the corresponding eigenvalues.

The transformation matrix A was calculated by first concatenating training and test data in
order to ensure that the extracted manifold will encompass also the test data. However since LPP
supports exact out-of-sample extension, the matrix A could also be calculated by using the training
data alone and then used to transform any new data set.

The method was assessed on 9 hours recordings including 101 marked spikes. The LPP
method has been compared against other dimensionality reduction techniques [41]. The Linear
Local Tangent Space Alignment (LLTSA) [53] performed slightly better in respect to ' — score
but we chose LPP due to its highest sensitivity which is more important given the small value
of false positive rate. The Neighborhood Preserving Embedding (NPE) [54], PCA, Maximally
Collapsing Metric Learning (MCML) [55], Stochastic Proximity Embedding (SPE) [56] and Dif-
fusion Maps [57] also had high sensitivity with increased however false positive rate.

Tensor decomposition of spatiotemporal signals

Raw EEG signals are naturally born with more than two modes (dimensions) of time and space
and represented by a multi-way array (tensor). In addition, the process of feature extraction pro-
duces structured high-order multi-way arrays that are usually very high dimensional, with large
amount of redundancy, while occupying only a subspace of the input space. However, most pre-
vious research works in epileptic and non-epileptic events classification treated EEG features as
concatenated vectors (i.e. matrix representation with observations in the rows and features in the
columns) in a very high-dimensional space neglecting the inherent structure and correlation in the
original feature space. Although matrix representation is suitable for many datasets, it is not al-
ways a natural representation because it assumes the existence of a single target variable and lacks
a means of modeling dependencies between other features [58][59].

Motivated by the above, in [60], we compare the commonly used matrix representation in
which features are concatenated from all channels in order to capture the total spatiotemporal
context with a tensor-based scheme which extracts signature features to feed the classification
models. TUCKER decomposition [24] is applied to learn the essence of original, high-dimensional
domain of feature space and extract a multi-linear discriminative subspace. The proposed scheme

57



reduced dramatically the computational complexity of the subsequent classification step, which
now was performed efficiently in a lower dimensional feature space. The advantage in terms of
computational cost relied on the notion that once the mapping (from the original feature space
to a reduced space) was learned, its application to unknown EEG segments would only require a
few matrix multiplications. The block diagram of the proposed tensor-based scheme is shown in
Fig.3.8.

The parameterization of the brain signals was based on the temporal and spectral information
in the EEG channels derived from linear and nonlinear signal analysis [4]. Then TUCKER-2
was applied to extract the discriminative multi-linear subspace. Given a third order tensor Fy, €
RMx@xK where M denotes the number of channels, () the number of extracted (temporal and
spectral) EEG features for each of the M channels and K the total number of windowed frames
(epochs), its TUCKER-2 model, expressed as a decomposition into two basis factors and a core
tensor, is defined as:

FV =Gx 1AX2B

with the symbol X, denoting the n-mode product of a tensor with a matrix along the mode-
n (i.e. tensor unfolding in the direction of the n-th dimension) [59]. A € RM*R1 and B €
RO*Ez are the basis factors (projection filters) and G € R *F2xK the core tensor. R; and
Ry are the number of selected components (set to two in our experiments). The core tensor GG
consists of signature features of Fy  projected onto the factor subspace spanned by A and B.
This low-dimensional tensor was matricized and used to train the classification model. We used
Tucker decomposition instead of canonical polyadic decomposition (CPD) [61] due to its superior
flexibility. Tucker model enables all the components of each mode (dimension) to interact with
each other through the mean of the core tensor, whereas in CPD a component in a certain mode
can be linked to only a single component in another mode.

Locally linear embedding of imaging profiles

In [62], we proposed a novel framework which extends manifold learning techniques to help dis-
criminate brain lesions from various normal tissue image profiles established as patterns of normal
appearances in healthy subjects. The method used locally linear embedding (LLE) [43] to create
normality distributions in different locations of the brain where the distances of new mapped im-
ages are considered as deviations from healthy areas. To select the K-closest neighbor for each
image patch, we adopted an approach similar to a fuzzy block matching approach which avoids
the constraint of a strict one-to-one pairing [63]. A smooth mapping function estimating the rela-
tionship between ambient and manifold spaces was calculated as a joint distribution to map unseen
test images. Towards this end, densities were replaced by kernel functions using Nadaraya-Watson
kernel regression, under a conditional expectation setting [64]. From the intrinsic coordinates of
the new point, we approximated it’s deviation from the healthy distribution by calculating the
geodesic distance based on the shortest path to the tangent plane of the manifold medoid point
(center of the manifold). The originality of our method resides on the training using only healthy
tissue images, which allows to detect the presence of brain abnormalities, such as white matter
lesions (WMLs) in test images, and the definition of physiological difference from normal images
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Figure 3.8: Tensor decomposition for EEG-based classification of episodes of transient loss of
consciousness.

within manifold space. We presented WML detection results on FLAIR MRI scans of elderly
patients with diabetes obtained in a clinical study.

3.3 Integration of clinical, morphological and imaging
characteristics

One main challenge researchers in biomedical data mining face is the heterogeneity of the data
suggested over different studies as relevant for a specific diagnostic task. The difficulty relies not
only in the collection of all possible data, but also in their analysis since many of the standard data
mining techniques are not capable of handling all types of variables, such as categorical variables.
In the following, two studies [65][66] are presented in which different type of information is
integrated for computer-assisted diagnosis of high grade gliomas.

The prediction of prognosis in high grade gliomas is poor in the majority of patients. In
[65] our aim was to test whether multivariate prediction models constructed by machine-learning
methods provide a more accurate predictor of prognosis in high grade gliomas than histopatho-
logic classification. We calculated and analyzed the relationship of 55 categorical or continuous
variables, which included clinical findings and tumor pathology descriptors obtained by visual in-
spection of conventional MR imaging and also imaging characteristics calculated from DTI and
rCBV maps. Typical variables that have been used by others include localization, mass effect, T1
contrast enhancement, T2, diffusion, and perfusion signal intensity. We have combined such nom-
inal variables ranked by an expert with attributes extracted automatically from ROIs, to achieve a
more complete representation. The scoring pattern of the selected variables is described in [65].
A variable selection method was applied to identify the overall most important variables. These
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Figure 3.9: Diagram of the computer-based methodology for prediction of survival (long/short =
more/less than 18 months). Conventional MR imaging was used to visually rank 11 variables char-
acterizing the tumor, whereas DTI and rCBV were used to extract ROI-based imaging attributes.

variables were then used to construct a prediction model based on a decision tree algorithm. De-
cision trees provide a good solution for heterogeneous data integration due to their flexibility in
handling both numerical and categorical data. Data analysis was performed in several stages, as
shown in Fig.3.9.

We tested several variable selection algorithms and selected the one with overall best classifi-
cation performance. The selected method searched over the variables following the scatter search
algorithm [67] and defined the predictive value of each subset of variables by using a wrapper
approach[68]. Scatter search operates on a group of subsets of variables, which constitute good
solutions, in respect to special criteria such as diversity. The subsets are linearly combined, and a
local search procedure is applied to update the initial group and incorporate good solutions. On
each subset of variables, the wrapper builds a classifier by applying an induction learning algo-
rithm. The variables subset with the highest classification accuracy, estimated by cross-validation,
is selected. These steps are repeated until a stopping condition is met. Kaplan-Meier survival
curves on 74 high grade gliomas showed that the constructed prediction model classified malig-
nant gliomas in a manner that better correlates with clinical outcome than standard histopathology.

Moreover, in [66], a retrospective analysis of MR images from glioblastoma (GBM) patients
was conducted aiming to assess the ability of quantitative and qualitative imaging features in pre-
dicting the O6-methylguanine-DNA-methyltransferase gene (MGMT) methylation status nonin-
vasively. The MGMT methylation status has been shown to be associated with improved outcomes
in patients with GBM and may be a predictive marker of sensitivity to chemotherapy. However,
determination of the MGMT promoter methylation status requires tissue obtained via surgical
resection or biopsy. A noninvasive and reliable surrogate method of determining MGMT status
could serve as an alternative (or a complement) to biopsy. There has been only one report on
predicting MGMT methylation status in GBM patients from MRI data by space-frequency analy-
sis [69]. In that study, signal intensities and mean spectra from MR images were used to predict
MGMT methylation status with a maximum accuracy of 71%. To the best of our knowledge, that
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Figure 3.10: Dimensionality reduction techniques used in our recent work [66]. Isomap, isometric
feature mapping; LLE, locally linear embedding, LE, Laplacian eigenmaps; LDA, linear discrimi-
nant analysis; FA, factor analysis; PCA, principal components analysis; SPE, stochastic proximity
embedding.

was the first investigation of the potential of MR 3D volumetrics to predict MGMT methylation
status. In clinical practice, volumetric analysis remains a difficult task, and clinically relevant MRI
features are typically assessed qualitatively. In [66], we hypothesized that certain features derived
from standard MRI sequences reflect differences in MGMT promoter methylation status in GBM
patients.

For each patient, three board-certified neuroradiologists independently reviewed T1 and T1ce
images as well as FLAIR images and categorized 24 qualitative variables for qualitative imaging
features (based on the VASARI feature set for GBM) describing the size, location, and morphol-
ogy of the tumoral region. Quantitative image analysis was performed with image segmentation
and registration software (semi-automated process), instead of explicit manual tumor delineation,
using the open-source 3D Slicer package (slicer.org). Hence, we were able to evaluate subtleties
in a consistent manner and reduce the potential for intra- and inter-rater bias, increasing the like-
lihood of accurate noninvasive prediction of MGMT status. The T1ce image was registered and
rigidly aligned with the FLAIR image, followed by resampling when the voxel sizes of the FLAIR
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and T1ce images were different. Three distinct regions (edema/invasion, tumor enhancement, and
necrosis) were automatically segmented based on relevant MRI sequences and subsequently re-
viewed by trained neuroradiologists until consensus was reached. Then, volumetric analysis was
performed by measuring the volume of each of the three abnormal regions. Ten quantitative fea-
tures (additional to the 24 qualitative features described in the previous section) were calculated
from the volumes. The lengths of the major and minor axes of the tumor were also measured.
We used different feature reduction methods to separately process numerical (quantitative) and
categorical (qualitative) MRI variables as illustrated in Fig.3.10. The feature reduction methods
were assessed by extensive computational tests of the accuracy of classification of GBM tumors
by MGMT methylation status.

Personal contribution

In respect to biosignal analysis, my personal contribution was less significant in the works [19][70][71],
in which I developed tools for data processing and pattern discovery mostly for offline analysis,
whereas my involvement in the data stream management systems for online monitoring was re-
duced. The application of manifold learning techniques for compact representation of EEG pattern
within a supervised classification framework [49] was fully my contribution from computational
point of view, since data selection and annotation was performed by medical experts. In respect
to medical image analysis, I mainly leaded the studies for brain tumor analysis [27][20][21][65].
More work on brain tumor classification using imaging features and machine learning algorithms
[72] will be presented in Chapter 5. In [62] I contributed mostly in data preprocessing and in
the semi-supervised framework formulation (where data only from healthy subjects are used for
training) in which my main goal was to segment the pathological region rather than classify whole
image patches into healthy or abnormal. More relevant personal work will be presented in chapter
4. For the analysis of spatiotemporal imaging data [30], I did not contribute to the graph-cut based
tumor segmentation refinement algorithm and therefore I don’t present it in this thesis. I only built
upon the methods related to feature extraction, feature selection and classification, which I later
also extended and applied for brain tumor classification [20]. In respect to molecular data analysis
I was leading the studies [36][37] and presented my personal work in [38].
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Chapter 4: Unsupervised and semi-supervised
learning

Generally, the problems of machine learning is based on the extraction of important patterns and
trends and aims at function estimation for classification, prediction or modeling. The process of
learning from data can be unsupervised, supervised, or semi-supervised. In unsupervised learning
the goal is to describe the associations and patterns among a set of input measures. Based on the
problem (clustering or prediction) and the background knowledge of the space sampled, various
methods can be used, such as density estimation (to estimate some underlying probability den-
sity function for prediction), k-means clustering (to group unlabeled real valued data), k-modes
clustering (to group unlabeled categorical data), and others. In supervised learning, the goal is to
predict the value of an outcome measure, that could be categorical (in classification) or quantitative
(in regression), based on a set of input variables (features). The prediction model is trained using
a set of annotated examples (feature/label pairs). A very popular supervised learning technique is
the Support Vector Machine (SVM). Since labeled data require human effort and are often difficult
or costly to generate, whereas unlabeled data are abundant, semi-supervised learning, a technique
that lies in between unsupervised and semi-supervised, is often the only feasible solution. Semi-
supervised learning uses a large amount of unlabeled data, together with a few labeled data, to
build better classifiers. Although convenient because it needs less labeled data, it requires a good
matching of problem structure with model assumption to account for the lack of training data.

This chapter focuses in applications using unsupervised, or semi-supervised learning, whereas
in the next chapter supervised learning techniques are applied for pattern detection and classifi-
cation, as well as segmentation of regions of interest. In the following, two methodologies are
presented that aim to segment pathological regions in brain images without the use of disease
annotations. The method learns the probability density function (pdf) of normal imaging pheno-
types (images without disease) in an unsupervised fashion and identifies abnormalities as devia-
tions from normality. Two approaches are described that handle the high-dimensionality of the
data. Then, in the next sections, clustering and pattern similarity applications are presented using
biosignals, medical images, gene expression data or biological networks.

4.1 Statistical modeling of imaging phenotypes

We have developed a method for capturing the statistical variation of normal imaging phenotypes,
with emphasis on brain structure [1][2]. The method aims to estimate the statistical variation of
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a normative set of images from healthy individuals, and identify abnormalities as deviations from
normality. The present approach goes beyond the standard anomaly detection techniques in that
it not only characterizes the data vector as normal or abnormal, but also locates which part of the
vector includes the anomaly. It is used in a scenario where data vary in their biggest part according
to an expected or predictable distribution that can be statistically modeled from a set of normal
data and also vary in small abnormal areas that cannot be explained by the same statistical model.
Such abnormalities might be due to structural or morphological differences beyond the expected
morphological variability and might indicate damage, disease, or any kind of artifacts.

A direct estimation of the statistical variation of the entire volumetric image is challenged
by the high-dimensionality of images relative to the typically much smaller sample sizes. To
overcome this limitation, the proposed method iteratively samples a large number of lower dimen-
sional subspaces that capture image characteristics ranging from fine and localized to coarser and
relatively more global. The marginal probability density functions pertaining to the selected fea-
tures is estimated through a PCA model, in conjunction with an “estimability” criterion that limits
the dimensionality of the estimated probability densities according to the available sample size
and the underlying anatomy variation. A test sample is iteratively projected to the subspaces of
these marginals as determined by the PCA models, and its trajectory until convergence delineates
potential abnormalities (deviations from the normative database). The method is applied to the
segmentation of various types of brain lesions, and to simulated data on which the superiority of
the iterative method over straight PCA is demonstrated. In [2] a “target-specific” feature selection
strategy was introduced within each subspace to further reduce the dimensionality, by considering
only imaging characteristics that are present in a test subject’s image, rather than all possible char-
acteristics found in the entire population. The method is described with more details next.

Consider n medical images of a normative population coregistered to a common domain {2 as real-
izations of a d-dimensional random vector /, consisting of d scalar random variables [z;, x2, .. ., 4]
corresponding to image voxels. The joint pdf of I,

o(I) = d(x1, 22, ..., 2q)

describes the relative likelihood for I to be observed. Images for which ¢(/) > ¢ lie in a hy-
pervolume, which (for the purposes of this paper in which we consider anatomical brain images)
we call the subspace of normal anatomy, in the d dimensional space. If we can estimate ¢(Z?),
for any given test image Z* to be compared with the normative population, the likelihood of being
abnormal can be calculated for this new image. Also, if Z is abnormal, Z*, the most similar image
to Z! that is within normal variation, can be obtained by projecting Z' to this hypervolume. The
difference between Z! and Z* provides an image of the abnormality patterns in Z¢. In most practi-
cal applications, however, ¢(/) is unknown, while only a small set of n << d training samples is
available for estimating it.

Estimating ¢([) is a challenging problem, particularly when d is very high. Furthermore, the
underlying distribution of the data is generally unknown. Previous studies have shown that images
of complex objects, e.g. faces, brains, lie on a lower dimensional nonlinear submanifold embedded
in the high dimensional space. Many manifold learning methods have been proposed to capture
the low dimensional manifold structure from the data samples in the high dimensional space [3],
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[4]. They have also been used for representing brain images based on diffeomorphic deformations
[5][6]. However, nonlinear models are difficult to estimate, and require a large number of samples
for learning the underlying manifold structure. For this reason, we take a different approach,
motivated by our primary aim being to detect abnormalities in a test image. In particular, we
sample from the image domain a large number of lower-dimensional subspaces, and estimate the
distribution of the data by estimating pdfs of each subspace using a linear model, assuming that
regional imaging statistics can be approximated to a large extent by Gaussian distributions. The
likelihood of a new image is evaluated by testing the likelihoods of its projections to the smaller
subspaces in order to detect patterns of abnormality on it. An image of potential abnormalities is
formed by an iterative procedure that finds a path from Z* to the normal hypervolume.

While ¢(I) cannot be estimated accurately from a limited number of training images, if a
subspace is small enough, the pdf of the image projection on it can be estimated more reliably.
If the projection is selection of certain voxels, effectively, this would estimate the marginal pdf
involving those voxels. Assume that a large number of partially overlapping subspaces S =
{w1, ..., w, } are sampled from €2, where

0 = le,Z S {1,..,7’},

with a high degree of redundancy, i.e., each voxel is included in many w;’s.

The likelihood of a new test image’s projection Z!, to a subspace w € S can be calculated by
estimating the pdf ¢(I!) using the set of n training samples. This estimation is defined according
to the statistical modeling approach used herein. From Z?, an image without abnormalities (i.e. an
image that represents the closest point in the hypervolume of normals according to the estimated
subspace models) can be reconstructed by minimizing the following energy function:

T
B(T*) = | T}, + a3 L(T;,) @)
i=1

The data term reflects the image dissimilarity, computed as the /s-norm of the difference be-
tween the test image and the reconstructed image. The model term reflects the likelihood of being
abnormal according to the subspace model and is defined as the Mahalanobis distance exceeding
a predefined threshold (¢) for normality [2].

For solving eq. 4.1, we use an iterative strategy employing a block-coordinate descent tech-
nique, where in order to minimize a multivariable function, optimization with respect to different
(smaller) subsets of variables is iteratively achieved. We solve the optimization problem for one
image subspace w; at a time by calculating the optimal reconstruction of Z* within w; (Fig.4.1),
and iterate over a large number of subspaces. The motivation for selecting an iterative approach is
two-fold: first we do not partition the image domain into a pre-defined number of disjoint blocks,
as done in block-PCA [7], 2D PCA [8], or the spectral graph partitioning based approach used
in [9]. Instead, in order to capture image characteristics in different scales and locations, a large
number of possibly overlapping image patches are sampled from €2 in a random fashion, which
makes an iterative approach more appropriate. Second, we assume that if a solution is within
normal range from the perspective of a sufficiently high number of marginals, it is likely to be
within normal range with respect to the overarching high dimensional pdf. Convergence of this
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Figure 4.1: Illustration of the reconstruction of an image patch.

process can be monitored, and the process can be terminated when convergence has been achieved,
without a priori knowledge of which and how many subspaces need to be used.

Subspace Representation S may be obtained in various ways. Generally speaking, an image
subspace may consist of any subset of arbitrary image voxels or set of values derived from image
voxels. Here we limit ourselves to rectangular image patches of varying sizes, which correspond
to local neighborhoods around voxels in different spatial positions. Neighboring voxels are highly
correlated in natural images, and the intrinsic dimensionality of image patches are generally much
lower than their actual dimensionality, which makes them more reliably estimable.

An image patch consists of voxels in a rectangular block of size s; € R3 around a selected
seed voxel p; € R3. At each iteration 4, a patch is drawn from € by random selection of the seed
location and patch size. An edge detector [10] is first applied on Z? to restrict the set of all possible
seed points, P, to voxels with relatively richer information content. To make sure that the space
is well sampled, a weighted random selection strategy is used. A weight value is assigned to each
p € P, and the selection is done such that p has a probability of being selected proportional to
its weight. Initially, an equal weight value is assigned to each p. At the end of each iteration, the
weights of all p € P that are within the selected image patch are decreased by a constant factor,
so that these points will have a lower probability of being selected in subsequent iterations, to
encourage this process to sample the entire domain fairly evenly.

Block size s; varies randomly in an interval bounded by predefined minimum and maximum
values. In that way, the set of all subspaces capture image characteristics ranging from fine and
localized to coarser and relatively more global at different spatial locations of the image domain.

Target Specific Feature Selection We use a target-specific feature selection strategy, i.e. a
strategy that aims to estimate from the training set only those imaging aspects that are necessary
to process the test image (i.e. the target). The feature selection method first expands the test image
patch in a basis that better allows us to determine the important components of it, and then selects
an estimable subset of these components for statistical group analysis. Feature selection is based
on wavelet transform. A detailed exposition of wavelet based compression techniques is avail-
able in [11]. A wavelet transform produces as many coefficients as there are voxels in the image.
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However, it provides a more compact representation, such that most of the information is concen-
trated in a small fraction of the coefficients. Also, wavelet coefficients with larger magnitude are
correlated with salient features in the image data. The compression is performed by applying a
thresholding operator to the coefficients in order to select a subset of coefficients with the largest
values.

Let d! be a vector of voxel intensities extracted from image patch w on Z?, and d"%" i €
{1,..,n} be the voxels from the same patch on each training image. By applying a wavelet trans-
form, d* may be represented as a linear combination of m predefined wavelet basis functions v,
where m is the dimensionality of d’ (the number of voxels in the image patch). If we choose the
p basis functions with largest coefficients (p < m), d’ is expressed as

p
d' =) a;p; + R (4.2)
j=1

where a; are wavelet coefficients sorted in descending order of absolute value and R is the resid-
ual. The feature vector a’ = {a; }§:1 can be used to reconstruct the image after wavelet threshold-
ing. In our application, we apply an iterative algorithm for determining p: starting from p = m,
the value of p is decreased gradually until the selected coefficients satisfy the estimability criteria
(discussed in a subsequent section), which reflect whether the corresponding pdf of these coef-
ficients can be estimated from the training normal data. In this way we select the largest set of
coefficients whose pdf is estimable. p takes different values for different image patches, but it
always satisfies m > p > n.

Note that the basis wavelets {v); }§=1 are selected based on the target data only. Each training

image patch dz-Tmm is projected to the selected basis to obtain the training feature matrix A €
R™*P which has, in each row, p wavelet coefficients from each training image patch.

Statistical Model Constrained Reconstruction Within a Subspace Various modeling approaches
may be used for estimating the pdf of the selected coefficients within an image patch. We applied
PCA, where a number of principal components that account for as much of the variability in the
data as possible are calculated, based on the assumption that the data follow a Gaussian distri-
bution. One of our assumptions here is that regional statistics can be approximated by Gaussian
distributions, even if the distribution of the entire image is highly non-Gaussian.

Let A € R™*P be the data matrix, consisting of feature vectors obtained from 7 training
samples and @ € R!*P the mean of the rows of A. Let C be the sample covariance matrix of
the mean-centered data matrix. An eigenvalue decomposition is applied to calculate A, the vector
of n — 1 non-zero eigenvalues of C, sorted in descending order, and Q € RP*("~1) the n — 1
eigenvectors of C. When projected to the space spanned by Q, a data vector a’ € R'*P, which
consists of the coefficients selected from the target image, can be represented by its projection
vector (or feature vector) v:

v=Ql(a' —a). (4.3)
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As the application of PCA diagonalizes the covariance matrix C, the pdf of al can be calcu-

lated by
n—1,_2

p(@a’) = p(v) = ¢ exp{—% Z :j]} , 4.4)

j=1

where c is the normalization coefficient, and v; and \; are the j th elements of v and X respectively.
Consequently, an image patch that has a low likelihood can be constrained to have a desired
likelihood ¢ on the PCA subspace by scaling down its projection coefficients by a scalar factor ¢

vi=gqv st. ¢(v) =1t 4.5)

The reconstructed coefficients a* can be obtained by projecting v* back to the original space:
a*=(Qv)T +a. (4.6)

Estimability of a Subspace We aim to select features whose respective pdf’s are reliably es-
timable from the limited set of training data. We consider that the pdf of the coefficient vector
derived from a subspace is estimable if a significant fraction -, of the overall variance of the data
can be explained by a small fraction v, of eigenvectors. The thresholds -y, and . are parameters
to be chosen based on the particular application. Normalized eigenvalues

n—1
A=2/)"N (4.7)
j=1

represent the fraction of variance contributed by each eigenvector. We calculate

&= argmin Z Nip > Yo | /(n—1) 4.8)
ze{l,...,n—1} j=1

A feature vector is considered estimable if £ < ..

Generation of Voxelwise Abnormality Maps Training and testing images are first registered
to a common template using a non-linear registration algorithm that is robust to the presence of
abnormalities, since it uses the concept of attribute vectors [12]. A histogram matching method is
used to eliminate intensity variations due to scanner differences. The overall procedure for min-
imizing the energy function defined in eq. 4.1 is applied on each test image Z', and the closest
image being part of normal variation without pathology, Z*, is obtained.

An intensity abnormality map, Z%", is computed as the voxelwise difference between Z* and
T*. Voxel values on Z%" reflect the amount of abnormality, measured as the difference between
observed signal intensity and the estimated normal intensity according to the method. Since dif-
ferent brain regions display different levels of image variations, we adaptively normalized the
abnormality map for the test sample at each voxel using abnormality values obtained from the
training samples. Specifically, for each training image an abnormality map is computed using the
proposed approach with leave-one-out cross validation. At each voxel, the mean and standard
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Figure 4.2: Segmentation of abnormalities on a sample image with cortical infarcts, periventricular
lesions and atrophy. Positive (red) and negative (blue) normalized abnormality maps overlaid
on the image. Positive abnormality map is thresholded at ¢ > 3.1 (calculated through cross-
validation), and negative map at ¢t > 3.5.

deviation of the abnormality values from all training samples is calculated. Z%*" is normalized by
calculating the standard (z) score of the raw abnormality score at each voxel, with respect to the
distribution estimated from the training data.

The method is applied on the whole MR scans for segmenting a set of common abnormalities
of the brain, which may be the result of different brain diseases, such as multiple sclerosis and
cerebrovascular disease, or may appear due to normal aging. We were specifically interested in
segmenting white matter lesions (WMLs), large cortical infarcts, and periventricular atrophy. On
FLAIR images WMLs show up as hyperintensities with respect to surrounding healthy white mat-
ter tissue. Cortical infarcts have a necrotic part (with intensity similar to the cerebrospinal fluid) in
the cortex surrounded by a hyperintense rim. The periventricular atrophy is the enlargement of the
ventricles as a result of the atrophy in surrounding brain tissue. Fig.4.2 shows segmented abnor-
malities on a test sample with cortical infarcts and periventricular ischemic lesions. Thresholded
abnormality maps are overlaid on the original FLAIR image for the visualization of segmented
abnormalities on the image. We observe that the method successfully segments brain pathologies
of various types.

Learning using distributed estimation

Similarly to the previous section, the aim of the work in [13][14] is to introduce a novel unsuper-
vised scheme for abnormality detection and segmentation in medical images. In order to tackle
the high-dimensionality problem, we treat every image as a network of locally coherent image
partitions (overlapping blocks). While in [1][2] optimization is performed locally, in [13][14] we
formulate and maximize a strictly concave likelihood function estimating abnormality for each
partition and fuse the local estimates into a globally optimal estimate that satisfies the consistency
constraints, based on a distributed estimation algorithm. The likelihood function, /(x), consists
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given initial price vector v that satisfies ETv = 0 (e.g. v = 0)
repeat

Optimize blocks (separately) to obtain (s{,y;) for each block i
x; = (s7,¥7) = argmaxs, 5, (L:(s5, ) — vl y;)

Compute average of public variables over each net.
2 :=(ETE)'ETy"

Update the dual variables
vi=v—a(EZ—y*)

Figure 4.3: Algorithm solving the maximum likelihood estimation problem in a distributed setting
using a subgradient method.

of three term and is formulated as a quadratic programming problem. The first two terms statis-
tically model normality and are used to make the image look like if abnormality were removed.
The first term maximizes the probability density function (e.g. assuming a multivariate Gaussian
distribution) of the lower dimensional representation in a basis W. The second term reduces the
solution space by constraining the solution to remain close to the subspace spanned by W, i.e. it
minimizes the residual error. The third term is used to constrain the reconstructed image to be as
similar as possible to the original image based on the assumption that the majority of the voxels
in the test image are normal. Since this method is unsupervised for the abnormal class and aims
to generalize for any kind of abnormality, we do not incorporate any prior for the abnormal areas.
However, we focus on the normal class and introduce a confidence measure on the estimation
ability of the calculated statistical model. Regions with large variability are much more difficult
to model than uniform areas. A confidence map or vector shows the degree of certainty we have
on the reconstruction of each parameter (voxel intensity). Parameters with high uncertainty in
estimation should not deviate significantly from their original values. This is achieved by penal-
izing any change on those parameters more than on other parameters. The uncertainty vector is
calculated as the average reconstruction error at each location over all training images obtained by
leave-one-out cross validation.

Optimization The maximum likelihood estimation problem in a distributed setting is solved
using dual decomposition based on the algorithm presented in [15] and also described here briefly
for completeness. Let’s assume that k£ blocks (partitions) are extracted from an image and that
the k blocks are coupled through 7. consistency constraints that require the image intensities in
overlapping voxels to be equal. The variables that are constraint to be equal across different blocks
are denoted as public variables. The variables that are local to each block and are not common in
other blocks are denoted as private variables. Let’s assume that s; and y; are the unknown private
and public variables (image intensities) of block i, respectively. If we concatenate s; and y;, we
get the vector x;, indicating all variables (private and public) in block ¢. For each block a local
(strictly) concave log-likelihood function, I;(x;) or l;(s;, y;) , is maximized. The public variables
for all blocks are collected together into one vector y = (y1, ..., yx) € R?, where p = p1 + ...pg,
is the total number of public variables. A vector z € R is introduced to give the common values
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Figure 4.4: Segmentation of white matter lesions on a diabetes patient. Top row from left to right:
FLAIR image, expert-defined lesion mask (in red) overlaid on the FLAIR image, and reconstructed
image without abnormalities by the proposed method. Botfom row: calculated abnormality score
map in color scale, segmentation mask (in dark red) after thresholding the abnormality score map.

of the public variables in each consistency constraint. The constraints are expressed as y = Ez,
where E € Rp x n. specifies the set of coupling constraints for the given block interaction,

1 if (y); is in constraintj
Eij = (y)i J (4.9)
0 otherwise

Lagrange multipliers, v € Re?, are introduced for the coupling constraints and a projected
subgradient method is used to solve the dual master problem. Using these dual variables, opti-
mization is independently performed in each block, and later on, the net variables are updated
using the optimal values of the public variables of the blocks adjacent to that net. The dual vari-
ables are then updated, in a way that brings the local copies of public variables into consistency.
The algorithm is summarized in Fig.4.3. A measure of the inconsistency of the current values of
the public variables (consistency constraint residual) is given by the norm of the vector computed
in the last step, |FZ — y*|.

The method is applied for automatically segmenting brain pathologies, such as simulated brain
infarction and dysplasia, as well as real lesions in diabetes patients. The data preprocessing steps
include image smoothing, skull-stripping to extract the brain region [18], inhomogeneity correc-
tion [19], intensity normalization based on histogram matching, and deformable registration to a
common space (template image). An example of lesion segmentation in an elderly individual with
diabetes is shown in Fig.5.5.

Learning using Manifold Regularization

While tissue characterization has mainly been employed for separation of classes (healthy versus
diseased), it is expected that it may also help in quantifying the deviation of tissue from healthiness
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Figure 4.5: Distribution of samples that vary on a smooth manifold encompassing the normal
cluster at one end to the abnormal cluster at the other.

and provide the degree of abnormality. In [16], we consider tissue abnormality characterization
as a regression problem. We assume that there is a smooth manifold encompassing normal and
lesion tissue with normal appearing abnormal tissue lying on this manifold. Furthermore, abnor-
mality score should be continuous and smooth on manifold and spatially on the image. However,
there are some issues to be addressed: first, conventional regression methods like Support Vector
Regression (SVR) does not provide leverage to control the smoothness; second, abnormality in
the absence of consistent ground truth may be easier to be characterized using combination of MR
protocols rather than a single one. We have some samples from healthy brain and some samples
from lesion part of diseased brain as labeled training samples. Voxels of the brain which are to
be tested are considered as unlabeled samples. Taking advantage of Laplacian Regularized Least
Square (LapRLS)[17] formulation as a semi-supervised regression method, we associate a contin-
uous abnormality score pertaining to each voxel of the brain implemented as an embedding graph
consisting of labeled and unlabeled voxels. Training samples and unlabeled voxels set up vertices
of an embedding graph. Associations between neighborhood voxels are taken care of by using a
proper edge weighting scheme between vertices of embedding graph. Since a smoothness con-
straint is imposed on the cost function of regression, the result of such a functional optimization
could be treated as a qualifier of tissue which provides the abnormality characterization. Em-
ploying LapRLS, we propose a method which can handle both the criteria (spatial and manifold
smoothness) in one framework, so that a continuous abnormality score is obtained. The frame-
work is applied to multi-parametric data acquired on MS patients with the idea of characterizing
not only the lesions diseased or healthy tissue, but also the WM that is progressing to abnormality
based on the stage of the disease.

Laplacian Regularized Least Square Given a set of labeled example (z;,y;), ¢ = 1,...,1, (in
our case, x;’s are voxels with multi-parametric intensities that have been labeled (y;) as diseased
or healthy), our aim is to find an (abnormality) function f, which satisfies the following condition:

l
f* = argmingey, 7Y Clayi )+ Ak [l + Mar I1F13, (4.10)
=1
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where H, is a Reproducing Kernel Hilbert Space of functions. The first term, C(z;, y;, f), penal-
izes the error for labeled samples, y;, which, in the case of regression, could be the square loss
function C'(z;,yi, f) = (yi — f(x:))?. The second term, \p HfH%{, and third term, \j; HfH?\/[’
together impose different smoothness conditions on the abnormality function. First one imposes
smoothness such that normal and lesion samples would not be mixed together. The latter one takes
care of smoothness of abnormality score between labeled and unlabeled samples. In accordance,
the weighting factors Ap and Aj; control the complexity of the function in the ambient space and
intrinsic geometry, respectively. f* is the abnormality score derived from minimization of Eq.4.10
in which f* > 0 indicates abnormal and f* < 0 indicates normal. With some reasonable math-
ematical assumptions described in [17] the last term, || f ”?\4 can be approximated by the graph
Laplacian which is constructed based on labeled and unlabeled samples. The optimized function
becomes:

I
* . 1 A U
f* = argmin;ep, o > Clai,yi /) + ArllfI% + ﬁfTLf (4.11)
=1

where f is a vector containing outcome (class label) for labeled and unlabeled samples. Since
we do not have outcome for unlabeled samples, corresponding elements in f will be zeros. The
matrix L = D — W is the graph Laplacian matrix, W is a matrix containing edge weights of the
embedding graph and D is a diagonal matrix with elements equal to the sum of columns of W. As
itis shown in [17], the decision function can be expressed in the form of f(x) = ijll o, K (z, x).
In this study, we have used the RBF kernel.

As the square loss function, (y; — f(x;))?, has been used, the resulting optimization problem
corresponds to the Laplacian Regularized Least squared (LapRLS) which is a type of regression

problem. In that case, the optimal solution for «; can be derived from the following linear system:

a* = (JK + Mgl + w)\JFMll)zLK)lY (4.12)
where Y is a vector containing the labels for training samples (+1,-1,0 for lesion, healthy and
unlabeled samples respectively). J = diag(y1,y2, ---, 41, 0,0, ..., 0) is a diagonal matrix holding
labels for labeled samples and zero for unlabeled samples on diagonal elements and I is an identity
matrix.

Moreover, in [16] prior knowledge was incorporated in terms of weights between samples.
Specifically, edge weights were assigned using an additive weighting scheme imposing spatial
and feature space smoothness.

4.2 Fuzzy clustering or random walks

Modified fuzzy c-means with spatial priors

In [18], we present a semi-supervised segmentation methodology that detects and classifies cere-
brovascular disease in multi-channel magnetic resonance (MR) images. The method combines
intensity based fuzzy c-means (FCM) segmentation with spatial probability maps calculated from
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a normative set of images from healthy individuals. Unlike common FCM-based methods which
segment only healthy tissue, we have extended the fuzzy segmentation to include patient-specific
spatial priors for both pathological conditions (lesions and infarcts). These priors are calculated
by estimating the statistical voxel-wise variation of the healthy anatomy, and identifying abnor-
malities as deviations from normality. False detections are reduced by knowledge-based rules.

The FCM algorithm [19] is based on minimizing an objective function with respect to a fuzzy
membership U and set of cluster centroids V. Let z; € R" be the feature representation (e.g.
multi-channel intensities with n = 2) of voxel j € ). FCM clusters the data by computing
the fuzzy membership u;; C U at each voxel j to the i-th class, such that u;; € [0,1] and
ZZ‘C:1 u;; = 1, V7 € €. The number of classes C'is assumed to be known. In the conventional
approach the objective function expresses the degree of intensity based dissimilarity between the
data values x; and the cluster centroids, v; € V. In this modified approach the objective function
Jm includes an additional term reflecting the distance between the fuzzy membership u;; and prior
tissue probability, p;; at each voxel j, which is calculated as described in the previous section.
Thus J,, is expressed as follows:

c
I (U, V) = Z Z [t (zj, vi) + wi(uij — pij)?] (4.13)

jeQ i=1

where d,, is a distance function, m € (1, 00) is a weighting exponent on each fuzzy membership
controlling the degree of fuzziness and w;, ¢ = 1, ..., C' is a normalization weight controlling the
contribution of each distance term per cluster. The use of different weights w; allows controlling
the penalty on dissimilarity for each class. For unbiased results w; can take the default value
of 1, as performed in this study. For the two terms in the objective function to be comparable
(intensity dissimilarity and spatial inconsistency) the intensity values x are scaled in the range
[0, 1], similarly to the probability range. The constrained optimization of .J,,, is expressed using
Lagrange multipliers and u;; and v; are determined by setting the derivative of .J,,, to zero. For
m = 2 (as usually chosen in image segmentation), the fuzzy membership and the cluster center
are calculated as follows:

2
v; = ] vl (4.14)
Zj Uy
wipiiGii — 1

where ¢;; = . The algorithm iteratively optimizes the objective function in Eq. 4.13

1
with the continuous update of w;; and v;, until convergence is reached. The prior tissue proba-
bility maps are utilized as the membership at first iteration. In regular FCM, d,, is the Euclidean
distance. In order not to restrict the detection to data classes with hyper-spherical shape, we used

the Mahalanobis distance.

Construction of patient-specific spatial priors The methodology for calculating prior tissue
probability at each voxel is illustrated in Fig.4.6 and can be separated into two branches, the con-
struction of spatial priors for normal classes and abnormal classes. The spatial priors for abnormal
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Figure 4.6: Methodology of the calculation of spatial priors for normal tissue (WM, GM and CSF),
and abnormal tissue (IL and IN).

classes (hyperintense infarct lesions (IL) and infarct necrosis (IN)) are constructed following an
outlier detection approach. Assuming that voxel intensities are statistically independent and follow
a multivariate normal distribution we build a statistical atlas from a training set of healthy subjects.
The healthy tissue priors are calculated by segmenting the patient’s image into white matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF) using the k-means algorithm. Since abnormalities
are present, the algorithm is not randomly initialized because abnormal tissue might influence the
cluster center estimation of healthy tissue. The estimation is thus guided by the healthy training
data. Specifically, the healthy images are segmented by k-means, one by one, updating each time
the estimate of the clusters centers location. The average (over all subjects) center location for
WM, GM and CSF clusters is finally used as initial estimate in the segmentation process of the
patient’s image. Therefore, the effect of the presence of abnormalities is reduced. More details on
the construction of the patient-specific spatial priors for normal classes and abnormal classes can
be found in [18].

Graph-based image segmentation

Based on similar ideas, in [20][21] we exploit conventional MR modalities in order to segment
brain images with neoplasms using a nearly unsupervised learning strategy. Healthy tissue clus-
tering, outlier detection and geometric and spatial constraints are applied to perform a first seg-
mentation using global features and then the segmentation boundaries are locally refined by a
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modified 3D Random Walker segmentation algorithm [22]. In our preliminary work [20], we in-
tegrated graph-based segmentation with intensity modeling in order to characterize brain tissue in
2D MR images, whereas in [21] we expand the analysis into 3D and improve the methodology to
achieve more accurate segmentation, applicable to enhancing masses. In [21] the method segments
normal and abnormal tissues, including WM, GM, CSF, non-necrotic enhancing neoplastic tissue
(ET) and non-enhancing tissue (non-enhancing neoplastic, edema and necrosis) (EDM/NET), in a
multiclass tissue characterization problem.

We classify the method as nearly unsupervised because it only requires to depict from the
test patient some image slices including only healthy tissue. There is no requirement for precise
tissue annotation on the voxel level. These image slices are used to learn the (patient-specific)
intensity distribution of healthy tissue. The FCM algorithm was applied to differentiate between
healthy tissue types based on the T1 and T2 sequences. The Mahalanobis distance (M D) to the
distribution of T1ce and FLAIR intensities was used to express the probability of each voxel to
be an outlier (neoplastic tissue) in respect to each healthy tissue class [; € {WM,GM,CSF}.
Abnormalities were detected by sampling the overlap of high confidence regions of the three M D
maps, i.e. regions for which M D2 > thr, where thr is a density threshold above which a region
is considered abnormal. In [21] the threshold value thr was determined by selecting the 35%
highest probability. Based on experimental results the segmentation process was not too sensitive
to the choice of this value.

Furthermore, some intensity constraints were enforced followed by connected-component
analysis to reduce false positives. Enhancing neoplastic tissue is identified as the cluster (based
on FCM clustering) with the highest average T1ce value while the remaining voxels are labeled as
EDM/NET. Finally, all image voxels corresponding to the abnormal and healthy tissue clusters are
used as pre-labeled seeds for the modified 3D Random Walker. The whole framework is illustrated
in Fig.4.7.

Random Walker algorithm The Random Walker algorithm is a graph-based image segmenta-
tion technique, used in combination with user-defined seeds. Assuming that the image is a given
graph G = (V, E), each voxel in the image represents a vertex v € V/, which is connected with
neighboring voxels through an edge e € E, representing the relationship of these voxels. In a
weighted graph, a weight r;;, €  is assigned between the nodes j, k& € V, based on imaging
features. The random walk method consists of computing the probability, that a “random walker”,
starting at an arbitrary node, first reaches a pre-assigned node with a particular label [22]. In im-
age segmentation problems, given a subset of pre-defined marked vertices V7, a graph-theoretic
Random Walker optimization labeling problem is defined and solved by

. 1 .
Topt = argmin | 5 Z 'r]k( i _ xi)z (4.16)
r ejkeE
where zi indicates the probability of vertex v to belong to a specific class ;, (i € [1,C]), where
C is the number of classes (here C' = 6 including the background). Consequently, the solution

Zopt 18 @ V' x C matrix containing the class probabilities of all vertices. Eq.4.16 is solved through
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Figure 4.7: The framework for neoplastic and healthy brain tissue segmentation in [21].

a sparse linear system. In order to acquire the final undirected labeled (i.e. segmented) graph, the
label with the highest probability is assigned to each vertex.

In [21], we adapt the original 2D Random Walker algorithm to 3D MR images in order to
capture also relations across axial slices in brain structure. A 6-neighbor connectivity was used
to handle the volumetric datasets. A Gaussian weighting function was utilized to connect the
feature vectors h; and hj, of voxels voxel j and voxel k, defined as r;, = e Ahi—hel® where
A is a constant penalizing dissimilarity (the only free parameter in the algorithm). Low edge
weights indicate high probabilities of region margin evidence between two neighboring voxels
thus prevent a Random Walker crossing these boundaries. In our analysis, the intensities of T1ce,
T1 and FLAIR sequences were used as 3-dimensional feature vectors. The low computational cost,
the automated nature of the proposed method and the requirement of only routine MRI (advanced
imaging techniques have inherently low signal-to-noise ratio and also are not performed in clinical
routine) can be considered as the main strengths of the method. The main limitations of the method
are that it is not appropriate for non-enhancing tumors and also necrosis is included in the same
class with the non-enhancing tissue.
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4.3 Spectral clustering of waveforms

Analysis of biosignals, such as EEG, has been widely performed as a diagnostic method in sleep
studies or studies of disorders since it provides the means for the identification of conspicuous
and quite repeated individual brain waves and rhythms. Due to the extreme size (duration) of this
data, visual recognition of the sought waveforms is almost prohibitive in a routine setting, thus
the necessity of an automatic detection method becomes apparent. Apart from labor-intensive,
visual marking is also highly scorer dependent mainly due to high intra- and inter-subject vari-
ability and variation in human perception. In [23][24] we propose a two-step methodology for
detection of transient waveforms, such as K-complexes, in sleep EEG. The method first identifies
all possible candidates according to pre-defined expert-based rules using multi-channel informa-
tion and then reduces false detections by applying semi-supervised classification. The novelty of
the method mainly relies on the classification step which (i) exploits both the time-varying signal
and the spectral content of it, (ii) applies a novel outlier detection methodology based on graph
partitioning by spectral clustering, and (iii) uses time-frequency (TF) representations that describe
the spatiotemporal characteristics of the waveform via their time-varying spectral content.

The detection of candidate waves using empirical rules and fundamental features is described
in details in [23]. Since these knowledge-based rules define only basic patterns, one-class clas-
sification is performed to distinguish between subtle morphological characteristics. First each
extracted EEG segment is represented by two temporal patterns: (i) the amplitude change over
time (signal representation) and (ii) the frequency content over time, which is calculated as the
power spectral density (TF representation) integrated in the frequency range of the target wave-
form (e.g. 0.5 — 5Hz for K-complexes). Then we learn the distribution of these features vectors
from a set of annotated samples and calculate the probability of the test sample to be an inlier in
the distribution.

Training phase: Since different patterns of morphology exist for each transient type, the distri-
bution of the training vectors in space is not expected to be around a unique center and neither have
a known shape (that for example could be modeled by a Gaussian distribution). We only assume
that enough examples exist from each pattern of the same class and that these examples lie closer
to each other in space than examples from different classes. In order to detect these patterns, we
apply a graph partitioning technique, known as spectral clustering [25], to partition the training
set into a set of clusters. Spectral clustering divides graph nodes into groups so that connectivity
is maximized between nodes in the same cluster and the connectivity is minimized between nodes
in different clusters. Connectivity is measured by some affinity (similarity) measure. We define as
affinity measure between sample ¢ and j, the quantity

Aij = exp(—53) (4.17)
where D;; is the distance of sample 7 and j (we use the Euclidean distance) and o some normaliza-
tion constant. Examples of the cluster averages are illustrated in Fig.4.8. For each training cluster
¢, c = 1,...,N., where N, is the number of clusters, the cumulative histogram of all pairwise
affinities is calculated, p.(A), as a probability measure of a sample with affinity value A to be an
inlier of the distribution. Linear interpolation is used to calculate the probability at intermediate
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Figure 4.8: Training patterns for K-complexes calculated by spectral clustering. The amplitude
and power of signal over time are averaged over all samples per cluster and illustrated in 1st and
2nd row, respectively. The titles show the number of samples per cluster (N, = 11).

values (not present in the training set). The higher p., the smaller the significance (p-value) and
thus the possibility of the sample to be an outlier (false positive detection).

Testing phase: For each test vector ¢, we calculate its distance to each training cluster c as the
distance to the closest sample in cluster ¢ and calculate the affinity A;. according to Eq.4.18:
Di;)?

(argmmge cluster c

Ajc = exp(— 5,2

) (4.18)

The probability p;.(A;.) of the sample to belong to cluster ¢ is then calculated based on the pdf
estimated in the training phase, whereas the total probability to be an inlier (e.g. a true K-complex)
is calculated as the maximum probability across all clusters:

p; = argmax pic(Aic) (4.19)
C

The estimation of the pdf is performed independently for each set of feature vectors, 2 and
xf, representing signal and frequency content, respectively. The two probabilities, let’s denote
them as p! and p{ , for sample ¢ are fused and thresholded to reach the final decision. Fusion is
performed by Fisher’s method [26] which combines p-values from several independent tests into
one test statistic that has a chi-squared distribution:

pi = Fopin(—2(In(1 — p) + In(1 — p!)) (4.20)

where p; is the total probability combing signal and frequency content and Fp,;o is the cumulative
distribution function evaluated at the test statistic.

4.4 Pattern similarity in biognals and molecular data

Similarity search in biosignals

In [27] we study the general problem of similarity search in databases of time series, such as
biosignals, and we propose a novel multiresolution indexing (i.e., representation) and retrieval
method for time series similarity search. Our approach is motivated by the idea that if we examine
a time series at different resolution levels, we could possibly acquire further insights about the data.
The proposed algorithm adopts a combined, two-step pruning (filtering) strategy to further reduce
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data dimensionality by discarding irrelevant time series (i.e., false alarms). At a first level, the time
series are represented by line segments and filtered by the triangular inequality property. Then, a
Vector Quantization like scheme is applied to encode data and thus to reduce dimensionality.

MultiResolution Piecewise Vector Quantization (MR-PV(Q) Our MR-PVQ method [27], ex-
tends the Piecewise Vector Quantized Approximation (PVQA) dimensionality reduction technique
presented previously [28], in multiple resolutions. The lower the resolution level is, less number
of segments are used to encode time series data. To achieve this, we propose to use a two-level
pruning (filtering) strategy in order to decrease the number of objects that will be encoded dur-
ing the next step. In each level of this strategy, we use an approximation function for the time
series. The first filter applies a property that all the indexing schemes require to hold, triangular
inequality discarding the non-qualifying objects. Here, the time series data are approximated with
first degree polynomials. The second filtering level is based on the lower bounding lemma of the
Generic Multimedia Indexing (GEMINI) algorithm [29] and a vector quantization technique [30]
is used to encode the testing set. Our work is motivated by the observation that although global
information of a time series is kept after the encoding by PVQA in one resolution, important local
information of the time series is lost. The idea of using multiple resolution levels, gives us the op-
portunity to retain both global and local information. Combining this fact with the representation
of the time series using polynomials and the application of the previously described filters that
enhance the pruning power of the algorithm, can improve substantially the performance of sim-
ilarity search in time series databases. The outline of the MR-PVQ method is described as follows.

For each resolution level i:
1. Split the time series into [ segments.
2. Represent each segment with a first degree polynomial.
3. Discard the time series that are not close to the query using the above representation
(first level pruning).
4. Encode the remaining time series using PVQA.
5. Discard the time series that correspond to false alarms (second level pruning).
6. Move on to the next resolution level and repeat steps 1-6.

We tested and demonstrated the performance of the proposed method, analyzing EEG time
series data for retrieval of one of the constituent brain waveforms in EEG recordings, the K-
complex, but the method can as well be applied for retrieval of other patterns of interest in time
series analysis. The automatic detection and categorization of the EEG patterns can facilitate
the correlation analysis of large amounts of data, and help towards the differential diagnosis of
epilepsy or related disorders, as well as treatment evaluation.

My personal contribution in this work [27] related mostly to the data representation, clinical
application and overall overview.
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Biological networks

It has been observed that similar gene expression patterns among patients with regard to known
gene markers cannot guarantee similar phenotype (i.e. disease outcome). Late studies implicated
that alterations in gene expression might perturb the higher-level organization of the interactome,
affecting so the disease outcome [31]. To investigate this hypothesis, we explored how the tempo-
ral dynamics of transcriptional behavior in a specific treatment scheme reforms the protein interac-
tome. Our target was to reveal how interactome ’areas’, in the form of modules/sub-networks, are
perturbed in response to drug over time. To achieve this goal, we integrated gene expression and
protein-protein interaction (PPI) data, a strategy recently established as fruitful in providing infor-
mation of specific genes/proteins on disease-specific pathophysiology. Towards this orientation,
many studies have combined multiple data types [32][33] or scored pathways based on the simi-
larity of the expression values of the participating pathway genes [34]. For example, interesting
studies like [35] detected sub-networks of highly co-expressed genes on the protein graph by start-
ing from a random gene with the use of a greedy algorithm, which cannot guarantee completeness.
Other studies like [36] integrated gene expression, PPI and phenotype data to identify dense mod-
ules with the provision of incorporating additional constraints from a variety of datasets. However,
this approach is primarily designed for finding protein complexes from protein interaction data, is
sensitive to gene expression noise and promotes the detection of dense modules.

In this work [37], we have illustrated the efficacy of our integrative methodology [38] in captur-
ing the dynamic modular transitions in response to tamoxifen. To achieve this goal, we reinforced
the protein graph structure, via weighting scheme, with time series microarray data descending
from an in vivo study [39]. Next, the Detect Module from Seed Protein (DMSP) algorithm de-
fined modules on the composite protein network starting from specific ’seed’ proteins. An im-
portant feature of this algorithm is that the overlaid gene expression information, in the form of
weight, reassures the entrance of certain interactions into the modules, even if they are not favored
by the topology. Also, DMSP saves many interactions among proteins that interact closely (e.g.
complexes) even if they show dissimilar or inverse expression trends, through the rest weighted
neighbors of such an interaction. Our time-evolving modules report that the response to tamoxifen
is a highly dynamic process and raise several biological questions regarding the recruitment of
several known pathways. Finally, our findings corroborate towards the integration of heteroge-
neous data and the detection of discriminative temporal sub-networks that serve as hallmarks of
disease-specific states.

My personal contribution in the analysis of biological networks [37] related to the processing
of the datasets. Specifically, the datasets (estradiol and estradiol plus tamoxifen treatment) were
normalized after background correction with loess normalization approach with the use of limma
package in Bioconductor [40]. The expression value of each gene was computed by taking the
average of the corresponding probe sets and all values were normalized with respect to the first
day. A set of proteins (n = 883) related to breast cancer were selected from G2SBC and dbDEPC
databases and mapped to our final gene list. This subset defined the ’seed’ list that was used
as input to the DMSP algorithm. The protein interaction network was weighted with the gene
expression values from all time points. The initial step of the weighting scheme includes clustering
of the temporal expression profiles of both datasets. Clustering was performed by the K-means
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algorithm which was able to process fast and transparently the datasets.

Co-clustering of gene expression and function

About 40% of the proteins encoded in eukaryotic genomes are proteins of unknown function.
Thus an important bioinformatics problem is to associate gene expression with gene function in-
formation, which will allow to reveal the function of unannotated genes [41]. The methodologies
for the analysis of Gene Expression Maps (GEMs) involve the application of feature extraction
techniques combined with data mining methods such as clustering, classification and similarity
search. Furthermore, gene information from other sources, such as Gene Ontology, is usually
employed to validate biological hypothesis or to strengthen the fidelity of research outcomes. In
order to explore gene function and gene expressions differences with regard to brain regions, in
[42][43] we propose an anatomy-oriented framework for the analysis of GEMs obtained by voxe-
lation. The voxelation technique allows acquisition of expression images in parallel, simplifying
cross-analysis of multiple genes and also is less expensive and faster than traditional approaches.
Voxelation data however have much lower resolution (e.g. 1mm?) than single cell resolution
data, and thus suffer from partial volume effect in which the acquired expression values repre-
sent an average over the gene expression of all cells in each voxel. Firstly, we examine if the
down-weighting of inconsistent measurements, such as in voxels with high partial volume effects
helps generate more informative clusters relevant to function categories. Afterwards, we identify
clusters containing genes whose expressions display similar anatomical distribution in respect to
specific brain regions such as white matter, gray matter and the hippocampal region. We then
investigate the hypothesis whether gene clusters with similar expression patterns have also similar
gene function. A summarized illustration of the analysis steps is shown in Fig.4.9.

Definition of gene expression and gene function similarity The gene expression maps sim-
ilarity between two genes is defined as the squared weighted Euclidean distance function. The
weight vector is used to emphasize dissimilarity on selective spatial locations. The first case sce-
nario allows investigating whether by down-weighting the measurements on locations with high
uncertainty a more informative similarity measure is formed that is not affected by partial volume
(PV) and artifacts due to ventricles. This is tested by using the confidence map as weight vector
and the method is then denoted as global approach with PV correction. The second case scenario
allows investigating whether gene function correlates with gene expression in specific anatomic
locations. Here we investigate whether genes with similar expression in some anatomic locations
have similar gene functions. Similarity of expression in a group of genes is defined as the average
similarity of all genes in the group to the group center.

The gene function similarity between two functions is calculated using Lin’s method [44]
to evaluate function distance in Gene Ontology structure. This method applies an information
theoretic definition of similarity as long as there is a probabilistic model. The similarity values
are publicly available and obtained within each of the three categories of Gene Ontology that refer
to Cellular Component, Molecular Function and Biological Process. The values are based on
frequencies from the Mouse Genome Informatics annotation dataset. The function similarity in a
group of genes is calculated as average pairwise similarity.
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Figure 4.9: illustration of the analysis steps in [42]. When we use spatial maps to investigate local
regions in the brain, the method is denoted as local-GM, local-WM and local-HR, respectively.

Clustering analysis is performed in order to classify the genes into clusters that have both
similar GEMs and similar gene functions using tests of significance (p-value) and a hierarchical
k-means algorithm [45]. Our investigation concluded that clusters of genes with similar localized
expression patterns display function similarity. The results indicated that our work has the po-
tential to create comprehensive atlases of gene expression in the mammalian brain and to provide
insight into the identification of unannotated genes based on the analysis of their GEMs.
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Chapter 5: Supervised learning

In supervised learning a set of input and output variables are given and used to learn a function
(often called model) that predicts the output based on the input features. When the response
variables are quantitative the prediction task is called regression, whereas when they are qualitative
(descriptive labels) the prediction task is called classification. Our work focuses mainly on pattern
detection and classification problems and is divided according to the medical application into
methods developed for the analysis of biosignals, medical images and molecular structures.

5.1 Pattern detection and classification in biosignals

Visual analysis of biosignals is rater-dependent and time consuming, especially for long-term
recordings, while computerized methods can provide efficiency in reviewing long recordings, such
as EEG. In this section we will present several supervised classification techniques that have been
applied for detection of patterns in EEG, such as epileptic spikes and spindles, as well as pattern
classification, e.g. epileptic or non-epileptic.

Support vector machines for spike detection In [1][2] a method is presented for spike detec-
tion incorporating pattern classification. Similarly to most pattern detection methods in signal
processing, the amount of data processed is reduced by first extracting candidate waveforms based
on low level detection analysis (by feature extraction), while subsequently classification is per-
formed to maximize specificity of the overall method. Specifically, the proposed method first
models coarsely the shape of the spike by breaking down the signal around major peaks into half-
waves. Thresholding of shape characteristics extracted from the half-waves, such as amplitude
and duration, is applied to generate a number of candidate spike locations. Subsequently, the
method classifies the candidate spikes by embedding the data in a low dimensional space using
the locality preserving projections (LPP) algorithm [3] and applying supervised classification in
the embedding space.

The whole framework is illustrated in 5.1. Details on the application of LPP are provided
in section 3.2. After embedding, the mapped data are introduced to a support vector machines
(SVM) classifier [4]. SVM is an extremely popular algorithm that captures complex relationships
between the data points and finds an optimal boundary between the class outputs. Although SVMs
can be said to have started when statistical learning theory began with Vapnik and Chervonenkis
(1974), the algorithm for optimal margin classifiers was introduced in [5]. The key point of the
algorithm is that it finds a decision boundary that maximizes the (geometric) margin, based on

93



Average spike

EEG signal :> |:> Spike detectionby | -
shape analysis o [

@ndidate spikes\

W

+ Spike classification
True spikes \
/ - o Estimation of intrinsic dimensionality by
b 'Uw' Al AN || maximum likelihood estimation (MLE)
NN <
B “m“ Manifold learning and dimensionality
+ reduction by Locality Preserving
Non-spikes Projections (LPP)
J AT B <
n] al, f "
R Classification of the mapped data into
Kﬁz”/ VAN ”{.-\ spikes and non-spikes using SVMs /

Figure 5.1: Spike detection framework. The 1st step of the method detects spike-like waveforms
by extracting the two half-waves. The half-waves are defined between the negative peak (marked
with a red circle) and the two positive peaks (marked with green stars) and are characterized by
the amplitude difference (A1, As) and duration (D1, D2). The 2nd step of the method classifies
the detected waveforms into spikes and non-spikes by dimensionality reduction and supervised
classification.

the idea that points near the decision surface represent very uncertain classification decisions. To
make the algorithm less sensitive to outliers and appropriate for non-linearly separable datasets,
the optimization problem is formulated such that it permits a few mistakes (samples inside or
on the wrong side of the margin) by paying a misclassification cost. The second contribution of
SVMs is that they extend to patterns that are non-linearly separable in the original feature space
by mapping them to some higher-dimensional space (using a kernel function) where the training
set is separable.

In our implementation we used a gaussian radial basis function as kernel to perform non-linear
classification. The C' and y parameters, controlling the misclassification penalty and kernel size,
respectively, were adjusted to account for unbalanced data. Since the sample size is rather small
to produce balanced classes by subsampling the largest class, we used a weighted SVM and set
the ratio of penalties for the two classes, C; and Cs, equal to the inverse ratio of the training class
sizes. Thus we avoided bias toward the class with the largest training size. We defined ~y to be
adaptive to the dimensionality /, using the equation

1

T 1 1og(1))2 G

where k is a constant determined such that the fraction of the training samples contained in the
kernel is approximately 20%.
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The method [2] achieved high sensitivity with low false positive rate and outperformed the
majority of the other approaches used for comparison. The contribution of the method is that (i)
it is fully automated, i.e. no user interaction or manual intervention is required, (ii) it is template-
free, thus it generalizes to any morphological patterns and shapes and can easily be applied for
detection of other waveforms as long as some training patterns have been defined, (iii) it applies to
all stages of sleep, therefore is appropriate for sleep monitoring, and (iv) it achieves high sensitivity
with low false positive rate.

Hidden Markov Models and SVM for spindle detection Over the last decades sleep medicine
is studying sleep for the purpose of sleep disorders treatment. The analysis of brain signals and
the detection of specific patterns offers information related to sleep disorders. One such pattern is
the sleep spindle. For the detection of sleep spindles we relied on the combination of discrimina-
tive and statistical models [6]. Specifically, the support vector machines and the hidden Markov
models (HMMs) [7] were selected due to their advantageous performance in similar signal pro-
cessing tasks. HMMs provide a conceptual toolkit for representing probability distributions over
sequences of observations. They assume that (i) the observation at a given time was generated by
some process whose state is hidden from the observer, (ii) the state of this hidden process satisfies
the Markov property and (iii) the hidden state variable is discrete. The HMMs are useful for mod-
eling time series data, such as biosignals, where an event can cause another event in the future, but
not vice-versa.

The method for sleep spindle detection includes two stages. In the first stage the signal is
pre-processed, parameterized and processed independently from the discriminative (SVMs) and
the statistical (HMMs) models. In the second stage the output recognition results from each model
are combined by a fusion method in order to provide the final sleep spindle detection results. For
the HMM spindle models, we used a 3-state fully connected HMM model architecture, the states
of which were modeled by a mixture of eight continuous gaussian distributions. HMM parameters
were estimated using the Baum-Welch algorithm [8]. For the implementation we relied on the
HTK software toolkit [9].

BayesNet and decision trees for seizure classification Correctly diagnosing generalized epilep-
tic from non-epileptic episodes, such as psychogenic non epileptic seizures (PNES) and vasovagal
or vasodepressor syncope (VVS), is rarely tackled in the literature despite its importance for the
administration of appropriate treatment, life improvement of the patient, and cost reduction for pa-
tient and healthcare system. Usually clinicians differentiate between generalized epileptic seizures
and PNES based on clinical features and video-EEG. In [10][11][12], we investigate the use of ma-
chine learning techniques for automatic detection and classification of generalized epileptic and
non-epileptic events based only on multi-channel EEG data. Several classification algorithms are
explored and evaluated on EEG epochs in an inter-subject cross-validation setting. The examined
classification algorithms include BayesNet [13], Random Committee, Random Forest [14], IBk
[15] and SMO [16] with RBF kernel, and were implemented by the WEKA machine learning
toolkit [17]. The classifiers were selected in an attempt to evaluate representative algorithms for
each one of the main categories of machine learning classification methods including probabilistic
networks (BayesNet), decision trees (Random Forest), support vector machines (SMO), ensemble
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classifiers (Random Committee and Random Forest), but also simple methods such as k-nearest
neighbors (IBk). Due to large number of features feature ranking and selection is performed prior
to classification using the ReliefF ranking algorithm [18] within two different voting strategies.
The features introduced to the classifiers include signal characteristics in time and frequency do-
main. Features were combined across channels in order to characterize the spatio-temporal man-
ifestation of seizures. More background on this clinical problem and details on representation of
biosignals are provided in section 3.1.

5.2 Segmentation and classification in medical images

Image segmentation using Naive Bayes and SVM

The quantification and spatial localization of neoplastic tissue are of greatest importance for diag-
nosis, treatment planning and therapeutic monitoring. Brain lesion or tumor detection and tissue
characterization is usually based on MRI which provides a great means for assessing the dis-
ease evolution and efficacy of therapy. Tissue classification generally requires information of
several MR protocols and contrasts, as the axial 3D T1-weighted (T1) and T2-weighted (T2),
Fluid Attenuated Inversion Recovery (FLAIR), axial 3D contrast enhanced T1 contrast-enhanced
(T1ce) images. As an example, Fig.5.2 illustrates the multivariate image intensity of Tlce, T2
and FLAIR MR sequences of normal and abnormal tissue samples extracted from expert-defined
regions of several patients. As shown, there is a distinction between healthy tissue and abnor-
malities, however not without overlap, making thresholding techniques not sufficient for accurate
segmentation. There have been considerable efforts to develop automated or minimally interac-
tive computer-based approaches for segmenting different tissue types in human brain using MRI
data. Clustering algorithms, atlas-based methods, deformable models and (semi)supervised clas-
sification techniques are used in literature for brain tumor segmentation. A review of pattern
recognition methods for (semi)automatic brain tumor segmentation based on human brain mag-
netic resonance images can be found in [19] and in [20]. Also in order to compare the different
automated brain tumor segmentation methods the Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) challenge was organized in conjunction with the international conference on
Medical Image Computing and Computer Assisted Interventions (MICCAI) [21].

Our work on brain tumor segmentation is much earlier [23][24]. It incorporated high-dimensional
intensity features created from multiple MRI acquisition protocols (structural MRI as well as DTI)
into a pattern classification framework, to obtain a voxel-wise probabilistic spatial map. Moreover,
guided by the follow-up scans, the likelihood of a region presenting tumor recurrence after treat-
ment was determined. This study was one of the first to investigate integration of multiple MRI
parameters via sophisticated nonlinear pattern classification methods to obtain a better characteri-
zation of the tumor and the surrounding tissue, as well as to investigate imaging profiles of tissue
that are relatively more likely to present tumor recurrence in follow-up scans. We constructed
two kinds of classifiers using two different nonlinear classification strategies optimized for the
respective application: 1) intrapatient classifier: Bayesian classifiers [25] trained using a few ex-
pert defined training samples from within a single patient; and 2) interpatient classifier: SVM
classifiers trained by combining tissue samples from several patients.
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Figure 5.2: Multivariate intensity distributions using T1CE, FLAIR and T2 sequences for healthy
tissue (WM, GM, CSF), non-enhancing or edematous tissue (EDM/NET) and enhancing tumor
(ET) (from our work in [22]).

For intrapatient classification, we assumed multivariate Gaussian distribution for the features
and used a Bayesian approach to design discriminant functions [25] for each of the six tissue
classes. Different discriminant functions designed for each of the six tissue classes (i.e., ET, NET,
ED, WM, GM, and CSF), evaluated at each voxel, provide the estimate of the probability of that
voxel belonging to the respective class, and produce a three-dimensional voxel-wise probability
map. This method of tissue classification is optimal when training samples are available for the
patient whose tissue needs to be characterized. It effectively replicates the experts samples to iden-
tify regions that are similar. However, only tissue classes (ET, ED, NET) identified by the expert
can be characterized for that patient, and because of the conservative nature of sample selection,
expert identification may not be provided for all alternate tissue types. This requires pooling
samples from several patients and, because of the high variability across individuals, Bayesian
classification with its multinomial Gaussian assumption does not provide adequate classification.

For interpatient classification we combined training samples from across patients, to obtain
more generalized tissue classification using SVM. Since SVMs are inherently two-class classi-
fiers, a common strategy to do multiclass classification with SVMs is to build N one-versus-rest
classifiers, where NV is the number of classes (6 in our case), and to choose the class which clas-
sifies the data with greatest margin. Another way is to build a set of N(N — 1)/2 one-versus-one
classifiers, and to choose the class that is selected by the most classifiers. We chose the one-versus-
rest strategy and converted the decision score for each class c returned by each binary classifier to
a pseudo-probability score (p;latt) using Platt’s method [16]. Then the pseudo-probability values

were normalized so that they sum up to 1 for all classes: p, . .. . = p;l att/ fo:l plc)l att- These
voxel-wise pseudo-probability scores form the tissue abnormality map pertaining to that classi-
fier. Image segmentation was performed by assigning labels according to the maximum tissue
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probability (after normalization).

More recently, in [26][22], we proposed a computationally efficient and (almost fully) auto-
mated method for segmenting neoplastic and healthy brain tissue using conventional multipara-
metric MRI. We did not use advanced MRI, such as DTI, because such advanced imaging tech-
niques have inherently low signal-to-noise ratio compared to conventional MR modalities and, in
addition, such acquisitions are not performed in clinical routine, especially during regular follow-
up. Tissue segmentation was performed by combining a non-parametric intensity-based outlier
detection scheme with the 3D Random Walker algorithm, and did not require expert-defined brain
tissue samples in MR images. Due to its nearly unsupervised learning strategy, the method was
presented in chapter 4.

Image-based disease classification

The malignancy of brain neoplasms is measured by the tumor grade which is determined by visu-
ally examining tissue sections (biopsies), based on guidelines determined by the World Health Or-
ganization (WHO). The classification of brain neoplasms is of critical clinical importance in mak-
ing decisions regarding initial and evolving treatment strategies, for example high-grade gliomas
are usually treated with adjuvant radioor chemotherapy after resection, whereas low-grade gliomas
are not. The objective of our studies [27][28][29] was to provide an automated tool that integrates
advanced MR with conventional MR imaging findings in order to assist in the radiological di-
agnosis of brain neoplasms by determining the glioma grade and differentiating between types,
such as primary neoplasms (gliomas) from secondary neoplasms (metastases). Automated tools,
if proven accurate, can ultimately be applied to (i) provide more reliable differentiation, especially
when the neoplasm is heterogeneous and therefore cannot be adequately sampled by localized
needle biopsy, (ii) circumvent invasive procedures such as biopsy, especially in cases where the
risks outweigh the benefits, (iii) expedite or anticipate the diagnosis (histological examination is
usually time consuming), and (iv) avoid the inter and intra observer variability observed when
pathologists give different relative importance to each of the grading criteria. We explore the
heterogeneous regions of brain tumors by combining imaging attributes from several sequences,
extract morphological characteristics, and assess the significance of each attribute in classification.
This approach incorporates imaging data which are acquired in a routine clinical protocol, such
as multi-parametric conventional MRI and perfusion. The methods were was applied for pairwise
classification, but also the multi-class classification problem was investigated for differentiating
between the most common brain tumors: metastasis, meningioma (usually grade 1), and gliomas
(grade II, III, and IV) histopathologically diagnosed and graded according to the WHO system.
The investigated imaging attributes were similar in the two works [27][29] and included shape
and multi-parametric intensity and texture characteristics over several regions of interest. How-
ever, experiments showed in [29] that accuracy did not significantly improve when textural char-
acteristics were used, as in [27]. Thus, classification in [29] was finally based only on shape and
intensity characteristics. In [27] we first reduced the number of features by eliminating the less
relevant features using a forward selection method based on a ranking criterion, and then applied
backward feature elimination using a feature subset selection method, such as the support vector
machine recursive feature elimination (SVM-RFE) algorithm. Classification was performed by
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starting with the more discriminative features and gradually adding less discriminative features,
until classification performance no longer improved. Different pattern classification methods were
investigated for comparison in both studies [27][29].

Attribute selection The attribute selection is a widely known process, during which a subset of
the most informative attributes is chosen, so that the highest accuracy is achieved using the least
number of variables. Attribute selection involves searching through all possible combinations of
attributes in the data to find which subset of them works best for prediction. In [27] we first ranked
and reduced the features based on the #-statistics, and then applied the support vector machine
recursive feature elimination (SVM-RFE) algorithm for backward feature elimination. The goal
of SVM-RFE is to find a subset of features that optimize the performance of the classifier. This
algorithm determines the ranking of the features based on a backward sequential selection method
that removes one feature at a time. At each time, the removed feature makes the variation of SVM-
based leave-one-out error bound smallest, compared to removing other features. We applied the
zero-order method for identifying the variable that produces the smallest value of the ranking
criterion when removed, and used the weight magnitude ||w(®) | as ranking criterion, defined as

N N |
[0 @17 = 373" ooy KO e 2) (5.2)
j=1 k=1

where K ) (2, x;) is the Gram matrix for two feature vectors x;, and x; when the variable 1 is
removed and a(?) is the corresponding solution of the SVM classifier.

For the purpose of comparison, we also evaluated the performance of constrained Linear Dis-
criminant Analysis (CLDA) algorithm [30]. CLDA maximizes the discriminant capability be-
tween classes without transforming the original features, as done by traditional LDA or PCA.

The attribute selection algorithms are characterized by two components (i) the algorithm used
to define the predictive value of each subset of attributes, denoted as feature evaluator, and (ii)
the method determining the search over the attributes, denoted as search method. In [29], three
evaluators were implemented in the WEKA platform [17]:

e a correlation-based feature selection (CFS) method [31], which evaluates the worth or merit
of a subset of attributes by considering the individual predictive ability of each attribute
along with the degree of redundancy between them.

e amethod evaluating consistency in the class values [32] which evaluates the predictive value
of a subset of attributes by the level of consistency in the class values when the training
instances are projected onto the subset of attributes. The consistency of any subset can
never be lower than that of the full set of attributes.

e an approach based on wrappers [33] in which an induction learning algorithm is applied
repeatedly on a distinct portion of the dataset using various feature subsets. A classifier is
built on each feature subset using a set aside distinct portion of the dataset, and the feature
subset with the highest performance (measured by some criterion) is used as the final set.

Also, three search methods were examined:
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o The Best First [34] searches the space of attribute subsets by greedy hill climbing augmented
with a backtracking facility. It starts with the empty set of attributes and searches forward.

e Greedy Stepwise [35] method performs a greedy forward or backward search through the
space of attribute subsets. It starts with a population of many significant and diverse subsets
and stops when the accuracy is higher than a given threshold or there is not more improve-
ment.

e Scatter Search [36] is an evolutionary method that combines solution vectors by linear com-
binations to produce new ones through successive generations.

Classification algorithms In [27] three pattern classification methods were implemented for
comparison: LDA with Fisher’s discriminant rule [37], k-nearest neighbor (kNN) [38], and nonlin-
ear SVMs. In LDA, a transformation function is sought that maximizes the ratio of between-class
variance to within-class variance. Since usually there is no transformation that provides complete
separation, the goal is to find the transformation that minimizes the overlap of the transformed
distributions. The kNN algorithm [38] finds the nearest (most similar) training samples to the test
sample. The class label in majority among the k-nearest neighbors is assigned to the new sample.

In [29], a different set of classifiers was examined and compared against the SVM-based cri-
teria used in [27] aiming to improve classification accuracy. The investigated classifiers were the
kNN [38] (as in [27] but combined with different feature selection techniques), J48 tree [39], VFI
[40] and Nave Bayes [41]. The classification algorithms are briefly described next.

e J48 [39] is an implementation of C4.5 algorithm that produces decision trees from a set of
labeled training data using the concept of information entropy. It examines the normalized
information gain (difference in entropy) that results from choosing an attribute for splitting
the data into smaller subsets. To make the decision, the attribute with the highest normalized
information gain is used.

e [earning in the VFI algorithm [40] is achieved by constructing feature intervals around each
class for each attribute (basically discretization) on each feature dimension. Class counts
are recorded for each interval on each attribute and classification is performed by a voting
scheme.

e The Nave Bayesian Classifier [41] assumes that features are independent. Given the ob-
served feature values for an instance and the prior probabilities of classes, the a posteriori
probability that an instance belongs to a class, is estimated. The class prediction is the class
with the highest estimated probability. The SVMs have been described in section 5.1.

Overall, the highest accuracy was achieved by the wrapper evaluator in combination with the
Best First search method for both pairwise problems (low versus high-grade gliomas and gliomas
versus metastases) and multiclass problems. The classifier achieving the highest accuracy was the
kNN(k=3) or the VFI depending on the classification problem, but the kNN was preferred due to
its simplicity and overall more stable performance. When the attribute selection methods presented
in [29] were used in combination with an SVM classifier, the results were similar or worse than
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Figure 5.3: Kaplan-Meier survival curves of patients with 56 gliomas of grade 4 and 18 anaplas-
tic gliomas of grade 3 [43]. Survival curves were plotted according to classifications based on
either traditional histopathology (dashed line, grade 3; solid line, grade 4) or the class prediction
model (dashed line, predicted survival time > 18 months; solid line, predicted survival time < 18
months).

those in previous work [27] using weighted SVMs [42]; however the accuracy increased when
a VFI or kNN(k=3) classifier was applied instead of the SVMs. The good performance of the
kNN classifier in [29] might be attributed to the significantly small number of retained attributes
(N = 2.4 and N = 2.7 on the average for all pairwise classification problems when the Best First
and the Greedy Stepwise search algorithms were used, respectively).

Prediction of survival by decision trees The prediction of prognosis in high-grade gliomas is
poor in the majority of patients. In [43] our aim was to test whether multivariate prediction mod-
els constructed by machine-learning methods provide a more accurate predictor of prognosis in
high-grade gliomas than histopathologic classification. The prediction of survival was based on
the integration of clinical, morphological and imaging characteristics from DTI and rCBV mea-
surements as an adjunct to conventional imaging. Overall survival was evaluated from the baseline
to death or, for cases that were not followed until death (e.g. living patients) from the baseline to
the time of last available follow-up. A time threshold of 18 months was defined to differentiate the
patients into 2 groups, those with short- or long-term survival. We tested several variable selection
algorithms and selected the one with overall best classification performance. The selected method
searched over the variables following the scatter search algorithm [36] and defined the predictive
value of each subset of variables by using a wrapper approach [33]. Classification of the datasets
into short- and long-term survivors was performed with a J48 classification tree [39]. The vari-
ables selected as the most discriminative were the extent of resection, mass effect, volume (in cubic
millimeters) of enhancing tissue, maximum B0 (baseline T2-weighted image) intensity in the re-
gion of non-enhancing tissue, and the mean trace intensity in non-enhancing tissue. Kaplan-Meier
curves showed that when tumors were classified according to histopathology (grade 3 versus grade
4), the survival of patients was not significantly different (P = 0.17), whereas class distinctions
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according to the calculated prediction model were significantly associated with survival outcome
(P < 0.00001) (Fig.5.3).

Estimation of disease progression

Brain lesions, especially White Matter Lesions (WMLs), are associated with cardiac and vascu-
lar disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is
becoming more and more important. Because of the decreased contrast between WM and GM
in MRI in elderly, techniques that require the segmentation of WM and GM for the extraction
of the WMLs perform moderately well when applied to geriatric patients, especially when they
were originally designed and trained to extract lesions in MS patients. Only a few methods have
combined space and time into the lesion characterization process [8,9]. These approaches focused
primarily on quantifying the temporal variations of multiple sclerosis lesions, important in differ-
entiating active from chronic lesions. In contrast to the complicated MRI dynamics of lesions in
multiple sclerosis, the monitoring of WMLs does not require spatiotemporal modeling, since the
effects in WMLs are irreversible.

In [44], we present a computer-assisted WML segmentation approach that has been designed
to process longitudinal MR scans of elderly diabetes patients [45]. Image intensities from multiple
MR acquisition protocols, after co-registration, are used to form a voxel-wise feature vector that
helps to discriminate lesion from various normal tissue image profiles. First, we jointly preprocess
baseline and follow-up data. The preprocessing step includes co-registration of different MR
modalities of the same patient, intra-modal registration of follow-up to baseline, skull-stripping,
intensity normalization, as well as inhomogeneity correction. Then a supervised classification
model is built via SVM and the AdaBoost algorithm [46] using training samples delineated by an
expert reader on the baseline images. This model is then used in the testing stage to perform voxel-
wise segmentation of the longitudinal images of a new subject. The key points of this approach
[44] include the (i) histogram normalization based on temporal variance reduction, (ii) training
via Adaboost to reduce the effect of unbalanced classes and (iii) false positive elimination via
thresholding of feature vector distance in Hilbert space.

o Histogram normalization: A fundamentally important step in supervised classification is
the standardization of features, such as image intensities. To this end, it is common to
linearly align histograms to a template histogram. In order to achieve high temporal sta-
bility, we aligned follow-up histograms to their respective - standardized to the template -
baselines, a problem that is relatively easy to solve, since baseline and follow-up images
belong to the same individual. Thus, histograms between images of the same subject were
aligned consistently, and the temporal variance was reduced. We referred to this as temporal
variance reduction (TVR) approach, as opposed to the standard approach aligning baseline
and follow-up images independently to the template histogram. The latter aims at reduc-
ing the inter-subject variance and was referred to as /VR. Since the inter-subject variability
(between subject and template) is much larger than the intra-subject temporal variability, a
global histogram matching based on /VR tends to produce more inconsistencies in temporal
WML segmentation.
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Figure 5.4: False positive reduction by combination of two solution spaces (shown as red area),
from intra-class distances and linear SVM.

e Training via AdaBoost: Because the number of normal tissue voxels is far larger than the
number of lesion voxels, it is essential to select only a representative set of normal tissue
voxels comparable to the number of lesion voxels. This selection is not random, but it is
rather guided by the classification results themselves, using the AdaBoost algorithm [46].
This approach is based on a sequence of classifiers that rely increasingly on misclassified
voxels, since those are presumably the voxels on which the classifier must focus. During this
adaptive boosting procedure, each sample receives a weight that determines its probability
of being selected in a training set for the next iteration. If a training sample is accurately
classified, then its likelihood of being used again in subsequent iterations is reduced; con-
versely, if a training sample is inaccurately classified, then its likelihood of being used again
is increased.

e Constraining SVM solution space: Normal tissue is a heterogeneous class and therefore the
multi-parametric features exhibit a large variability. The sampling process during training of
the SVM model causes a significant under-representation of normal tissue with rare intensity
profile. This type of tissue is far away from both normal and lesion tissue classes and often is
classified as lesions by the linear SVM model. In order to eliminate these false positives, we
learn the intra-class distances of the training samples and accordingly constrain the solution
space of the SVM model. Fig.5.4 illustrates this concept.

It should be noted that all steps in the WML segmentation procedure are automated and the
same parameters are used for all subjects. Only one parameter has been shown to be important
and vary across subjects, which is the threshold for binarizing the abnormality map generated by
the SVM classifier. This threshold is optimized for each subject in the training set by maximizing
the Jaccard score. The average threshold maximizing the Jaccard score is then used as the default
value for segmenting new data. Fig.5.5 shows the WML segmentation in baseline (top row) and
follow-up (bottom row) images of an elderly subject. It can be noticed that the utilized segmen-
tation algorithm [44] has high sensitivity and specificity. Moreover, lesion volume measurements
showed that the proposed TVR approach for jointly normalizing the histograms of baseline and
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Figure 5.5: Identification of WM lesion progression in an elderly subject. Top row: The automatic
WML segmentation (red) in baseline is very similar to the expert-defined WML (green). Bottom
row: Segmentation in the follow-up image using two histogram equalization approaches, i.e. the
proposed TVR (left) and the standard /VR (right).

follow-up images leaded to increasing lesion volume for all subjects. Since only disease progres-
sion is expected, the results confirmed that the 7VR approach is more appropriate for measuring
temporal WML change.

Note: In respect to personal implementation of computational algorithms, methods published
more or less before 2010 were re-implemented (in C programming language or Matlab), such as
the Adaboost algorithm [44] or the SVM-RFE [27], whereas the availability of WEKA platform
after 2010 facilitated the analysis significantly and allowed large scale comparisons of feature
selection and classification algorithms [29][43].

5.3 Single- and multi-label classification of molecular structures

The number of protein structures in the PDB database increased more than fifteen-fold since 1999.
The creation of computational models predicting enzymatic function is of major importance since
such models provide the means to better understand the behavior of newly-discovered enzymes
when catalyzing chemical reactions. Until now, single-label classification has been widely per-
formed for predicting enzymatic function limiting the application to enzymes performing unique
reactions and introducing errors when multi-functional enzymes were examined. Indeed, some
enzymes may be performing different reactions and can hence be directly associated with multiple
enzymatic functions. Building upon our first work on single-label enzymatic function predic-
tion [47], we developed a multi-label classification scheme that combines structural and amino
acid sequence information [48]. The methodology was evaluated for general enzymatic function
prediction indicated by the first digit of the Enzyme Commission (EC) code (6 main classes) on
40,034 enzymes from the PDB database.

The proteins were represented by structural descriptors capturing the shape of the protein
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backbone and sequence-based features reflecting the success of local alignment of two sequences.
Details on the utilized features are provided in section 3.1. Two classification techniques were
investigated, the nearest neighbor (NN) and SVM. The classifiers were trained using a number of
annotated examples and then tested on novel enzymes. Two types of classification models were
produced: single-label models for enzymes performing unique reactions and multi-label models
for the multi-functional enzymes. Fusion of structural and amino acid sequence information was
performed in two different ways, i.e. in the feature level and in the decision level. The decision-
level fusion approach associates class probabilities for structural information (fs;) obtained by
SVM or NN, with class probabilities for amino acid sequence (f44) through a heuristic fusion
rule. The applied fusion rule performs weighted averaging of class probabilities, resulting to fused
class probability (1 — «)(fsr) + a(faa). The value of o was estimated for each classification
method by minimizing the empirical error [47]. In the single-label classification, class assignment
was based on the maximum a posteriori probability. This decision rule was not appropriate for
the multi-label scenario. In the latter case, the class probabilities (based on fused features) were
introduced into a multi-label SVM or multi-label NN classifier, which computed a 6-dimensional
vector with binary values indicating if the test sample belongs to each class or not [48]. When both
single- and multi-label enzymes were mixed during training, a slight improvement in prediction
accuracy was observed.

Furthermore, we investigated techniques for learning from imbalanced classes and specifi-
cally, we tested an adaptive synthetic sampling approach (ADASYN) [49], in which a weighted
distribution for the minority class examples is used. Results based on ADASYN didn’t show any
significant change in classification accuracy on the enzyme dataset.
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Chapter 6: Ongoing and future research

6.1 Development of new quantitative imaging biomarkers for
obstructive and interstitial lung diseases

Diagnosis and staging of chronic lung diseases is a major challenge for both patient care and ap-
proval of new treatments. Among imaging techniques, computed tomography (CT) is the gold
standard for in vivo morphological assessment of lung parenchyma currently offering the highest
spatial resolution in chronic lung diseases. Although CT is widely used its optimal use in clinical
practice and as an endpoint in clinical trials remains controversial. The goal of this thesis is to
develop quantitative imaging biomarkers allowing (i) severity assessment (based on the correla-
tion to functional and clinical data) and (ii) monitoring the disease progression. In the current
analysis we focus on scleroderma and cystic fibrosis (CF) as models for restrictive and obstructive
lung disease, respectively. Two different approaches will be investigated: disease assessment by
histogram or texture analysis and assessment of the regional lung elasticity through deformable
registration.

Histogram and texture analysis Although morphological changes on CT have shown to be
correlated with clinical endpoints such as survival, quality of life and exacerbation rate, CT re-
mains unapproved by both European Medicines Agency (EMA) and Food and Drug Administra-
tion (FDA) as a secondary endpoint. Main drawbacks to its use are the radiation dose and the
limitations of CT visual scoring methods. The development of automated scoring could solve
the issues encountered with visual methods such as questionable repeatability, difficulty of use
and time-consuming scoring and training, preventing their use in clinical practice. To date, no
automated scoring method has been proposed. We have recently introduced an automated density-
based scoring method to quantify CF-related lung disease.

Indeed, most morphological changes related to CF show attenuation values higher than that of
the normal lung, and we hypothesized that an automated quantification of high attenuating struc-
tures in CF could reflect disease severity (Fig.6.1). The developed CT-Density score correlated
well to the percentage of predicted forced expiratory volume in 1 second (FEV1) and to its evolu-
tion, and was only slightly inferior to visual scoring. However, our automated score is much faster
(Iess than 2 minutes per CT) than to visual scoring, highly repeatable and does not require com-
plex training. We validated the good correlation to FEV1 in two independent cohorts of adults CF
patients. These first results have been submitted for publication [1]. My personal involvement on
this analysis was reduced but I am very active in the extension of this work involving mainly (i) the
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Figure 6.1: Automated CT scoring in patients of the validation cohort with various disease sever-
ity. (A) Axial CT image in a patient with mild lung disease (FEV1=77%). Bronchiectasis and
bronchial wall thickening are seen in the posterior segment of the right upper lobe (white arrow).
(B) Scoring with Mode+300 HU results in a CT-Density score of 4.4. (C) Axial CT image in a
patient with moderate disease (FEV1=56%) shows bilateral mucus plugging (yellow arrowheads).
(D) CT-Density score is 9.8. (E) Axial CT image in a patient with severe disease (FEV1=31%)
shows diffuse bronchial bronchiectasis and bronchial wall thickening (yellow arrows). (F) CT-
Density score is 14.5.

automated extraction of features, (ii) statistical analysis by advanced methods, and (iii) correlation
to other (than FEV1) clinical scores.

Assessment of lung elasticity through deformable registration Fibrosis results in increased
lung stiffness that induces a restrictive lung disease with decreased lung volumes on pulmonary
function testing (PFT). We hypothesize that the assessment of lung elasticity will allow differenti-
ation between fibrotic and healthy lung parenchyma.

Lung function depends on lung expansion and contraction during the respiratory cycle. In or-
der to locally estimate regional lung volume change, respiratory-gated CT imaging and 3D image
registration can be performed. The work in [2] aimed to assess lung function through registration
of volumetric images obtained at inspiration and expiration, and specifically to classify the lung
tissue which is abnormal as having air trapping only without emphysema, or as having emphy-
sema. Also in [3][4] follow-up and baseline lung CT images were coregistered in order to obtain
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an estimation of regional destruction of lung tissue for subjects with a significant difference in in-
spiration level between CT scans. To account for differences in lung intensity owing to differences
in the inspiration level in the two scans rather than disease progression, they adjusted the density
of lung tissue with respect to local expansion or compression such that the total weight of the lungs
is preserved during deformation. In [5], the authors examine the reproducibility of Jacobian-based
measures of lung tissue expansion in two repeat 4DCT acquisitions of mechanically ventilated
sheep and free-breathing humans. The (voxel-wise) determinant of the Jacobian matrix of the
deformation field (computed by deformable registration) provides a measure of local lung tissue
expansion and contraction. The (per voxel) Jacobian values were calculated between end inspi-
ration and end exhalation images. The reproducibility of the Jacobian values was found to be
strongly dependent on the reproducibility of the subject’s respiratory effort and breathing pattern.
Global linear normalization was applied to globally compensate for breathing effort differences.
Such a homogeneous scaling does not account for differences in regional lung expansion rates.
Ding et al. [6] derived and compared three different registration based measures of regional lung
mechanics: the specific air volume change calculated from the Jacobian, the specific air volume
change calculated by the corrected Jacobian (SACJ), and the specific air volume change by inten-
sity change. All three ventilation measures were evaluated by comparing to Xe-CT estimates of
regional ventilation. Significant differences between the three measures were found with the SACJ
providing better correlations with Xe-CT based sV than the other two measures, thus providing an
improved.

The framework we propose is very similar to the one in [5]. Instead of using the nonrigid reg-
istration algorithm proposed in [7], we will apply the DROP algorithm [8], which uses graphical
models and discrete optimization, and can be adapted to geometric (landmark based) or iconic (in-
tensity based) matching criteria. Graphical models are powerful formalisms that allow us to model
most vision problems in a scalable and modular way. As representation of lung tissue expansion
and contraction we will examine the several proposed surrogates for regional ventilation based on
the determinant of the Jacobian of the deformation field [6]. For each patient, registration will
be applied between serial CT examinations (baseline and follow-up) avoiding the need to acquire
expiratory CT images (the clinical protocol does not allow the acquisition of both inspiratory and
expiratoty CT due to increased irradiation). The developed tools will be evaluated on data from
Cochin hospital.

6.2 Deep learning for image segmentation

Disease assessment through tissue characterization is very common in medical image analysis.
Several intensity or texture-based descriptors have been proposed, as well as subsequent classifiers
to perform a voxel-wise characterization of the tissue. The latter usually apply machine learning
techniques, in which a number of previously annotated samples (voxels) is used in order to train
models that can subsequently classify new samples, e.g. as healthy or diseased. Most frame-
works are application-specific and might not perform well under different conditions (patients’
characteristics, image acquisition protocol or scanner used, noise level, preprocessing, etc).

In the past few years, deep learning techniques, and particularly Convolutional Neural Net-
works (CNN), have rapidly become the tool of choice for tackling many challenging computer
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vision tasks, such as image classification [9], object detection, texture recognition and object
semantic segmentation [10]. The main advantage of deep learning techniques is the automatic
exploitation of features and tuning of performance in a seamless fashion, that simplifies the con-
ventional image analysis pipelines. Deep belief networks and a convolutional neural networks
were recently used for lung nodule classification in CT images [11][12][13]. In [14] a method
is presented to classify imaging patterns on CT images with interstitial lung diseases. Six lung
tissue types were considered: normal , emphysema, ground glass, fibrosis, micronodules, consol-
idation. Different from [15][16][17], their CNN based method is formulated as a holistic image
recognition task that is also considered as a weakly supervised learning problem. In [18] em-
physema classification is performed by employing an automatic feature extractor based on CNNS.
High-resolution CT was used to classify lung tissue into normal, centrilobular emphysema and
paraseptal emphysema.

We plan to apply a deep learning framework for segmentation of fibrotic tissue in scleroderma
patients. Most of scleroderma-related interstitial lung disease (76%) typically manifests on CT as
reticulations, ground-glass opacities and traction bronchiectasis with basal and peripheral predom-
inance [19]. Unlike previous CNN-based methods, the model we propose performs convolution in
3D and does not require any alignment or registration steps at testing time. A previous method [20]
was implemented in our group, which combined the output of a 2D CNN with a Markov Random
Field in order to impose spatial (volumetric) homogeneity. It was applied for sub-cortical brain
structure segmentation and showed very promising results on two different brain MRI datasets.

6.3 Deep learning for protein structure classification

There have been plenty machine learning approaches in the literature for automatic enzyme anno-
tation. A systematic review on the utility and inference of various computational methods for func-
tional characterization is presented in [21], while a comparison of machine learning approaches
can be found in [22]. There has been little work in the literature on automatic enzyme annotation
based only on structural information. In the past few years, data-driven CNN models have be-
come very popular because they tend to be domain agnostic and attempt to learn additional feature
bases that cannot be represented through any handcrafted features. CNNs have recently been used
for protein secondary structure prediction [23][24]. In [23] prediction was based on the position-
specific scoring matrix profile (generated by PSI-BLAST), whereas in [24] 1D convolution was
applied on features related to the amino acid sequence. Also a deep CNN architecture was pro-
posed in [25] to predict protein properties. This architecture used a multilayer shift-and-stitch
technique to generate fully dense per-position predictions on protein sequences. To the best of our
knowledge, deep CNNs have not been used for prediction of protein function so far.

In our current work (submitted for publication [26]) we exploit experimentally acquired struc-
tural information of enzymes through deep learning techniques in order to produce models that
predict enzymatic function based on structure. The novelty of the proposed method lies first in the
representation of the 3D structure as a bag of atoms (amino acids) which are characterized by ge-
ometric properties, and secondly in the exploitation of the extracted feature maps by deep CNN's.
We hypothesize that by combining amino acid specific descriptors with the recent advances in deep
learning we can boost model performance. Although assessed for enzymatic function prediction,
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Figure 6.2: The deep CNN ensemble for protein classification. In this architecture each multi-
channel feature set is introduced to a CNN and results are combined by kNN or SVM classification.

the method is not based on enzyme-specific properties and therefore can be extended to other 3D
molecular structures, thus providing a useful tool for automatic large-scale annotation. The main
advantage of our method is that it exploits complementarity in both data representation phase and
learning phase. Regarding the former, the method uses an enriched geometric descriptor that com-
bines local shape features with features characterizing the interaction of amino acids on this 3D
spatial model. Shape representation is encoded by the local (per amino acid type) distribution of
torsion angles [27]. Amino acid interactions are encoded by the distribution of pairwise amino
acid distances. While the torsion angles and distance maps are usually calculated and plotted for
the whole protein [27], in our approach they are extracted for each amino acid type separately,
therefore characterizing local interactions. More details were provided in section 3.1. Thus, the
protein structure is represented as a set of multi-channel images which can be introduced into any
machine learning scheme designed for fusing multiple 2D feature maps.

Our method constructs an ensemble of deep CNN models that are complementary to each
other. The deep network outputs are combined and introduced into a correlation-based k-nearest
neighbor (kNN) classifier for function prediction. For comparison purposes, SVM were also im-
plemented for final classification. Two system architectures were investigated in which the mul-
tiple image channels are considered jointly or independently, as will be described next. Both
architectures use the same CNN structure which is illustrated in Fig.6.2.

Classification by deep CNNs

The CNN architecture employs three computational blocks of consecutive convolutional, batch
normalization, rectified linear unit (ReLU) activation, dropout (optionally) and pooling layers,
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and a final fully-connected layer. The convolutional layer computes the output of neurons that are
connected to local regions in the input in order to extract local features. It applies a 2D convolution
between each of the input channels and a set of filters. The 2D activation maps are calculated by
summing the results over all channels and then stacking the output of each filter to produce the
output 3D volume. The convolutional layer used neurons with receptive field size 5 for the first
two layers and 2 for the third layer. The stride (specifying the sliding of the filter) was always 1.
The number of filters was 20, 50 and 500 for the three layers, respectively. Batch normalization
normalizes each channel of the feature map by averaging over spatial locations and batch instances.
The ReLLU layer applies an element-wise activation function, such as the max (0, z) thresholding at
zero. The dropout layer (applied at only one of the two feature sets) is used to randomly drop units
from the CNN during training and reduce overfitting. The pooling layer performs a downsampling
operation along the spatial dimensions (by [2 x 2] in our implementation); it is used to capture the
most relevant global features with fixed length. The last layer is fully-connected and represents
the class scores.

The output of each CNN is a vector of probabilities, one for each of the possible enzymatic
functions. We can measure the CNN performance by a loss function which assigns a penalty to
classification errors. The CNN parameters are learned to minimize this loss averaged over the
annotated (training) dataset. The ’softmaxloss’ function (i.e. the ’softmax’ operator followed by
the logistic loss) is applied to predict the probability distribution over categories. Optimization
was based on an implementation of stochastic gradient descent. At the testing stage the features
after ’softmax’ normalization are used as class probabilities.

Fusion of CNN outputs

Two system architectures were implemented. In the first architecture the two feature sets based on
torsion angles and amino acid distances (see section 3.1) are each introduced into a CNN, which
performs convolution at all channels, and then the class probabilities produced for each set are
combined into a feature vector. In the second architecture, each one of the channels of each feature
set is introduced separately into a CNN and the obtained class probabilities for each channel are
concatenated into a vector. Then the produced vectors for each feature representation are further
combined into a single vector. For both architectures, kNN classification was applied for final
class prediction using as distance metric between two feature vectors x; and xo the metric 1 —
cor(x1,x2), where cor is the sample Spearman’s rank correlation. The obtained results were also
compared with linear SVM classification [28]. The code was developed in MATLAB environment
and the implementation of CNNs was based on MatConvNet.

The method has been applied for the prediction of the primary EC number and achieved 90.1%
accuracy, which is a considerable improvement over the accuracy achieved in our previous work
[29] when only structural information was incorporated. Overall, our approach can provide quick
protein function predictions on extensive datasets opening the path for relevant applications, such
as pharmacological target identification. Moreover, the investigation of protein function based
only on structure can reveal relationships hidden at the sequence level and provide the foundation
to build a better understanding of the molecular basis of biological complexity.

114



Bibliography

(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

G. Chassagnon, C. Martin, P.-R. Burgel, D. Hubert, 1. Fajac, N. Paragios, E. Zacharaki, P.
Legmann, J. Coste, and M.-P. Revel, “Structural abnormalities in the cystic fibrosis lung:
An automated computed tomography score”, American Journal of Respiratory and Critical
Care Medicine, vol. submitted, 2017.

Y. Yin, P. Raffy, and S. A. Wood, Visualization and quantification of lung disease utilizing
image registration, US Patent 20,150,332,454, Nov. 2015.

V. Gorbunova, P. Lo, H. Ashraf, A. Dirksen, M. Nielsen, and M. de Bruijne, “Weight pre-
serving image registration for monitoring disease progression in lung ct”, in International
Conference on Medical Image Computing and Computer-Assisted Intervention, Springer,

2008, pp. 863-870.

V. Gorbunova, “Image registration of lung ct scans for monitoring disease progression”,
PhD thesis, Kgbenhavns UniversitetKgbenhavns Universitet, Det Natur-og Biovidenska-
belige FakultetFaculty of Science, Datalogisk InstitutDepartment of Computer Science,
2010.

K. Du, J. E. Bayouth, K. Cao, G. E. Christensen, K. Ding, and J. M. Reinhardt, “Repro-
ducibility of registration-based measures of lung tissue expansion”, Medical physics, vol.
39, no. 3, pp. 1595-1608, 2012.

K. Ding, K. Cao, M. K. Fuld, K. Du, G. E. Christensen, E. A. Hoffman, and J. M. Rein-
hardt, “Comparison of image registration based measures of regional lung ventilation from
dynamic spiral ct with xe-ct”, Medical physics, vol. 39, no. 8, pp. 5084-5098, 2012.

K. Cao, K. Ding, G. E. Christensen, and J. M. Reinhardt, “Tissue volume and vesselness
measure preserving nonrigid registration of lung ct images”, in SPIE Medical Imaging,
International Society for Optics and Photonics, 2010, pp. 762 309-762 309.

B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and N. Paragios, “Dense image registra-
tion through mrfs and efficient linear programming”, Medical image analysis, vol. 12, no.
6, pp. 731-741, 2008.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks”, in Advances in neural information processing systems, 2012,

pp- 1097-1105.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs”, ArXiv preprint arXiv:1606.00915, 2016.

K.-L. Hua, C.-H. Hsu, S. C. Hidayati, W.-H. Cheng, and Y.-J. Chen, “Computer-aided clas-
sification of lung nodules on computed tomography images via deep learning technique”,
OncoTlargets and therapy, vol. 8, pp. 2015-2022, 2015.

D. Kumar, A. Wong, and D. A. Clausi, “Lung nodule classification using deep features in
ct images”, in Computer and Robot Vision (CRV), 2015 12th Conference on, IEEE, 2015,
pp. 133-138.

115



[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

W. Shen, M. Zhou, F. Yang, C. Yang, and J. Tian, “Multi-scale convolutional neural net-
works for lung nodule classification”, in International Conference on Information Process-
ing in Medical Imaging, Springer, 2015, pp. 588-599.

M. Gao, U. Bagci, L. Lu, A. Wu, M. Buty, H.-C. Shin, H. Roth, G. Z. Papadakis, A. De-
peursinge, R. M. Summers, et al., “Holistic classification of ct attenuation patterns for
interstitial lung diseases via deep convolutional neural networks”, Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1-6, 2016.

Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification
with convolutional neural network™, in Control Automation Robotics & Vision (ICARCYV),
2014 13th International Conference on, IEEE, 2014, pp. 844-848.

Y. Song, W. Cai, Y. Zhou, and D. D. Feng, “Feature-based image patch approximation for
lung tissue classification”, IEEE transactions on medical imaging, vol. 32, no. 4, pp. 797-
808, 2013.

Y. Song, W. Cai, H. Huang, Y. Zhou, D. D. Feng, Y. Wang, M. J. Fulham, and M. Chen,
“Large margin local estimate with applications to medical image classification”, IEEE
transactions on medical imaging, vol. 34, no. 6, pp. 1362-1377, 2015.

X. Pei, “Emphysema classification using convolutional neural networks”, in International
Conference on Intelligent Robotics and Applications, Springer, 2015, pp. 455-461.

G. Bussone and L. Mouthon, “Interstitial lung disease in systemic sclerosis”, Autoimmunity
reviews, vol. 10, no. 5, pp. 248-255, 2011.

M. Shakeri, S. Tsogkas, E. Ferrante, S. Lippe, S. Kadoury, N. Paragios, and I. Kokkinos,

“Sub-cortical brain structure segmentation using f-cnn’s”, in 13th International Symposium
on Biomedical Imaging (ISBI), IEEE, 2016.

M. Sharma and P. Garg, “Computational approaches for enzyme functional class prediction:
A review”, Current Proteomics, vol. 11, no. 1, pp. 17-22, 2014.

S. K. Yadav and A. K. Tiwari, “Classification of enzymes using machine learning based
approaches: A review”’, Machine Learning and Applications: An International Journal
(MLALJ), vol. 2, no. 3/4, 2015.

M. Spencer, J. Eickholt, and J. Cheng, “A deep learning network approach to ab initio
protein secondary structure prediction”, IEEE/ACM Trans. on Computational Biology and
Bioinformatics (TCBB), vol. 12, no. 1, pp. 103-112, 2015.

Y. Li and T. Shibuya, “Malphite: A convolutional neural network and ensemble learning
based protein secondary structure predictor”, in IEEE Int. Conf. on Bioinformatics and
Biomedicine (BIBM), 2015, pp. 1260-1266.

Z. Lin, J. Lanchantin, and Y. Qi, “Must-cnn: A multilayer shift-and-stitch deep convolu-
tional architecture for sequence-based protein structure prediction”, in 30th AAAI Confer-
ence on Artificial Intelligence, 2016.

E. I. Zacharaki, “Prediction of protein function using a deep convolutional neural network
ensemble”, PeerJ Computer Science, submitted, 2016.

116



[27] G. A. Bermejo, G. M. Clore, and C. D. Schwieters, “Smooth statistical torsion angle po-
tential derived from a large conformational database via adaptive kernel density estimation
improves the quality of nmr protein structures”, Protein Science, vol. 21, no. 12, pp. 1824—
1836, 2012.

[28] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines”, ACM Trans-
actions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[29] A. Amidi, S. Amidi, D. Vlachakis, N. Paragios, and E. I. Zacharaki, “A machine learn-
ing methodology for enzyme functional classification combining structural and protein se-
quence descriptors”, in Bioinformatics and Biomedical Engineering, Springer, 2016, pp. 728—
738.

117



118



Chapter 7: Curriculum Vitae

I. EDUCATION

Nov'99 — Ph. D., Electrical and Computer Engineering

May'04 School of Electrical and Computer Engineering (ECE), National Technical University
of Athens (NTUA), Greece. Dissertation: Development of algorithms for medical
image registration and computer simulation of tumor evolution aiming at
supporting clinical decisions in radiooncology.

Sep'94 — Diploma in Electrical and Computer Engineering

Jun’99

ECE, NTUA, Greece. Diploma Thesis: Simulation of tumor progress and response to
radiotherapeutic schemes using Monte Carlo and control theory methods (7,68/10).

1l. ACADEMIC ACTIVITY

Research Associate:

09/2015 - : Center for Visual Computing, Department of Applied Mathematics,
CentraleSupélec, France, and Equipe GALEN, INRIA Saclay, Orsay, France

04/2009 — 08/2015 : University of Patras (UPatras), Greece
Department of Computer Engineering and Informatics (04/2012 - 08/2015)
Department of Medical Physics, School of Medicine (04/2009 - 03/2012)

02/2005 - 03/2009: Section of Biomedical Image Analysis (SBIA), Department of Radiology,
School of Medicine, University of Pennsylvania (UPenn), USA.

Teaching Experience

After PhD:

e Lecturer of the course “Foundations of Machine Learning (theory and laboratory)” of the
Master’s Program “Data Sciences Business Analytics”, CentraleSupélec, Paris Saclay for the
(winter semester 2016/2017).

e Lecturer in T.E.L. of Western Greece (former T.E.l. of Patras), for the acad. years 2009-2015
(on the average 12h/week). Laboratory courses: Electrical Circuits |, Electrical Circuits I,
Electrical Measurements, Computer Programming (Pascal, QBasic, Fortran), Introduction
to operating systems and software.

119



Lecturer of the course «Biosignal Processing and Medical Imaging» of the Master’s Program
“Informatics in Life Sciences (direction: Medical Informatics)” UPatras (summer semester
2010/2011, winter semester 2013/2014).

Lecturer of the course «Digital signal and image processing for the combined study of the
anatomy and function of the human brain» of the Master's Program “Informatics in Life
Sciences (direction: Neuroinformatics)” UPatras (summer semesters 2009/2010,
2010/2011 and 2011/2012).

Ass. Professor under 407/1980 contract, Dep.of Computer Engineering and Informatics,
UPatras. Course: Computer Vision and Graphics (winter semesters 2009/2010 and
2010/2011).

Lecturer of the course «Basics of Biomedical Instrumentation» of the Master’s Program
“Basic Medical Sciences”, UPatras (May 2009).

During PhD:

Lecturer, College of Pedagogic and Technological Education (ASPAITE), Athens, Oct'01 -
Jun’04. Courses: Electrical Circuits (theory and laboratory), Automatic Control Systems,
Electrical Measurements, Digital Systems Laboratory.

Teaching Assistant, Biomedical Engineering Lab, School of Electrical and Computer
Engineering, NTUA, spring semester (01/09/2001 - 31/08/2003).

Student Co-supervision

Phd students:

Evgenios Kornaropoulos (2015-, 75%), CentraleSupélec, Advisor: Nikos Paragios.
Topic: Deformable image registration and diffusion estimation in MRI.

Guillaume Chassagnon (2016-, 25%), CentraleSupélec/Cochin, Advisor: Nikos Paragios.
Topic: Development of new quantitative imaging biomarkers for obstructive and interstitial
lung diseases.

Angeliki Skoura (2012-2014, 40%), University of Patras, Advisor: V. Megalooikonomou.
Topic: Data mining system for tree and network structures in medical images.

Vasileios Kanas (2012-2016, 70%), University of Patras, Advisor: K. Sgarbas.

Topic: Development and implementation of machine learning techniques for brain data
analysis.

Evangelia Pippa (2014-, 60%), University of Patras, Advisor: V. Megalooikonomou.
Topic: Data mining techniques for multi-dimensional time series

Alexia Tzalavra (2013-, 50%), National Technical University of Athens, Advisor: K. Nikita.
Topic: Disease classification in spatio-temporal data.

Master students:

Afshine Amidi (2015-, 100%), CentraleSupélec, Advisor: Nikos Paragios.
Topic: Fast similarity searches over large databases.

Shervine Amidi (2015-, 100%), CentraleSupélec, Advisor: Nikos Paragios.
Topic: Fast similarity searches over large databases.

120



III. WORK AND RESEARCH EXPERIENCE

Senior Research Associate in the Center for Visual Computing, Department of Applied
Mathematics, CentraleSupélec, France, and Equipe GALEN, INRIA Saclay, Orsay, France
(Supervising Professor: Nikos Paragios).

e 1/9/2011-31/8/2016 1/4/2012-30/9/2015, ERC-STG-259112 "Discrete bioimaging perception
for longitudinal organ modelling and computer-aided diagnosiS (Diocles)"

Consultanting services in research programs of Section of Biomedical Image Analysis, UPenn,
USA (01/04/2009-31/12/2011 and 01/08/2012-01/03/2013).

Research Associate in the Multidimensional Data Analysis and Knowledge Management
Laboratory, Department of Computer Engineering and Informatics, UPatras, Greece (Supervising
Professor: Vasileios Megalooikonomou).

e 1/4/2012-30/9/2015, Thalis-UPatras “Mining Biomedical Data And Images: Development Of
Algorithms And Applications (BIOMEDMINE)”,

. 1/7/2012-31/12/2013, FP7-ICT-2011-7 “Advanced multi-paRametric Monitoring and analysis
for diagnosis and Optimal management of epilepsy and Related brain disorders (ARMOR)”

Research Associate and main (single) investigator in Biosignal Processing Group, School of

Medicine, UPatras (Supervising Professor: Anastasios Bezerianos)

e 4/1/2009-4/1/2012, FP7-PEOPLE-IRG-2008, Proposal N°239247 “Detection of Brain
Abnormality (DeBrA)”

Research Associate in the Section of Biomedical Image Analysis (Feb’05 — Mar'09), Department
of Radiology, University of Pennsylvania School of Medicine, Philadelphia, USA (Supervising
Professor: Christos Davatzikos).

. 1/2/2005, NIH (RO1 NS042645) “Modeling/estimating deformation in tumor patients”,

. 01/10/2004-30/9/2012, NIH/NIA (RO1) “Early Markers of Alzheimer’s Disease in Selected
Baltimore Longitudinal Study of Aging Participants”,

o 01/07/2003-30/04/2010 NIH (NO1) “Accord-Mind MRI Sub Study”,
. 30/9/2005- 30/06/2008 (RO1 AG0O10785) “Age, Lead Exposure and Neurobehavioral Decline”
Research Engineer in ECE, NTUA (Nov'99 - Sep’04) in the following research projects funded by

the Institute of Communication and Computer Systems (ICCS)/NTUA or the Greek General
Secretariat of Research and Technology (GSRT).

e 1/5/2000-30/4/2002, ICCS/ARCHIMEDES “Development of a 4D simulation model of in vivo
tumor growth and response to radiation therapy”, Principal Investigator: Myrsini Makropoulou

e 1/1/2000-30/6/2001, GSRT/PENED 99ED124 “Experienced system supporting diagnosis of
psychopathological entities and assessment of therapy interventions”, Principal Investigator:
Haralambos Papageorgiou

e 1/5/1999-31/4/2001, GSRT/EPET2 “Development of Virtual Simulation and Treatment
Planning in Radiation Oncology (GALENOS)”, Principal Investigator: Konstadina Nikita

IV. PROFESSIONAL ACTIVITIES

Editorial Board Member
¢ International Journal of Radiology (since 2014)

121



Dataset Papers in Science (Radiology) (since 2013)

Associate Editor

Medical Physics (guest editor, 2016)

Occasional Reviewer

Medical Image Analysis (since 2016)

IEEE Transactions on Medical Imaging (since 2006)

Neuroimage (since 2009)

International Journal of Image and Graphics (since 2009)

IEEE Transactions on Information Technology in BioMedicine (from 2010 to 2013)
Artificial Intelligence in Medicine (since 2010)

International Journal of Computer Assisted Radiology and Surgery (since 2010)
IEEE Transactions on Biomedical Engineering (since 2011)

Magnetic Resonance in Medicine (since 2011)

International Journal for Numerical Methods in Biomedical Engineering (since 2011)
Medical Engineering & Physics (ané 2012)

Biomedical Signal Processing and Control (since 2012)

Computer Methods and Programs in Biomedicine (since 2013)

International Journal on Artificial Intelligence Tools (since 2013)

Kuwait Journal of Science and Engineering (since 2013)

Connection Science (since 2013)

Journal of Biomedical and Health Informatics (since 2014)

American Journal of Neuroradiology (since 2014)

Expert Systems with Applications (since 2015)

International Journal of Biomedical Imaging (since 2015)

Session chair in conferences

6" IEEE International Symposium on Biomedical Imaging (ISBI 2009)
10™ International Workshop on Biomedical Engineering, (Bioeng 2011)

Organizing committee member

5" Int. Summer School on Emerging Technologies in Biomedicine, “High Throughput
Communication between Brain and Machines”, Patras, Greece, Sep 26 - Oct 1, 2010.

1* Int. Advanced Research Workshop on In Silico Oncology: Advances and Challenges,
Sparta, Greece, Sep 9-11, 2004.

Presenter in scientific conferences/meetings

10 oral talks (2 times invited speaker) and 3 poster presentations in international scientific
conferences

Invited speaker in universities (University of Pennsylvania 11/2004, Ecole Centrale de
Paris 11/2009) and in companies (iCAD Inc. Beavercreek OH 45431 USA, 11/2007).

Participant in scientific seminars/summer schools

[ ]

Seminar (36 hours duration) by Hewlett Packard — IFS Hellas AE on «Parallel programming of
Supercomputers with the use of MPI».

Summer school (12 days duration) by the Advanced Study Institute (ASI) on «Multisensor
and Sensor Data Fusion», organized by NATO, June 25 -Jul 7, 2000, Pitlochry, Scotland.

122



Symposium on «Consciousness and its Measures», organized by COST (European
Cooperation in the field of Scientific and Technical Research), 29/11/2009-1/12/2009,
Limassol, Cyprus.

Seminar and Practice on the Analysis of EEG and MEG entitled «Foundation Themes for
Advanced EEG/MEG Source Analysis: Theory and Demonstrations via Hands-on Examples»,
2/12/2009-4/12/2009, Nicosia, Cyprus.

5" Int. Summer School on Emerging Technologies in Biomedicine, “High Throughput
Communication between Brain and Machines”, Sep 26 - Oct 1, 2010, Patras, Greece.

V. AWARDS- SCHOLARSHIPS

e Three year scholarship on Biomedical Engineering from Greek State Scholarship’s Foundation

(IKY) for Phd position in ECE, NTUA.

e Awards from Thomaidio Foundation for 4 scientific publications in the years 2000, 2002,

2003.

e Three year Marie Curie IRG fellowship (FP7-PEOPLE-IRG-2008) for postdoctoral research in

UPatras.

VI. PUBLICATIONS

Dissertations

Al.

Doctoral Thesis: “Development of algorithms for medical image registration and computer
simulation of tumor behavior aiming at supporting clinical decisions in radiooncology (in
greek)”, ECE, NTUA, 2004.

A2. Diploma Thesis: “ Simulation of tumor progress and response to radiotherapeutic schemes

using Monte Carlo and control theory methods (in greek)”, ECE, NTUA, 1999.

Journal Papers

J1.

J2.

J3.

J4.

Jb.

E. Pippa, E.I. Zacharaki, M. Koutroumanidis, V. Megalooikonomou, "Data fusion for
paroxysmal events' classification from EEG," Journal of Neuroscience Methods, in press
(Impact Factor = 2.053).

E. Pippa, V.G. Kanas, E.I. Zacharaki, V. Tsirka, M. Koutroumanidis, V. Megalooikonomou,
“EEG-based classification of epileptic and non-epileptic events using multi-array
decomposition,” International Journal of Monitoring and Surveillance Technologies Research
(IJMSTR), in press, 2016.

N. Paragios, E. Ferrante, B. Glocker, N. Komodakis, S. Parisot, E.I. Zacharaki, “(Hyper)-
Graphical Models in Biomedical Image Analysis,” Medical Image Analysis, vol. 33, pp. 102-
106, 2016. (Impact Factor = 4.565

S. Alchatzidis, A. Sotiras, E.I. Zacharaki, N. Paragios, “A discrete MRF framework for
integrated multi-atlas registration and segmentation," International Journal of Computer
Vision, pp 1-13, 2016. (Impact Factor = 4.270)

E.l. Zacharaki, I. Mporas, K. Garganis, V. Megalooikonomou, "Spike pattern recognition by
supervised classification in low dimensional embedding space," Brain Informatics, vol. 3,
no. 2, pp 73-83, 2016. (Impact Factor =1.959)

123



J6.

J7.

J8.

J9.

J10.

J11.

J12.

J13.

J14.

J15.

J16.

J17.

J18.

E. Pippa, E.I. Zacharaki, I. Mporas, V. Tsirka, M. Richardson, M. Koutroumanidis and V.
Megalooikonomou, " Improving classification of epileptic and non-epileptic EEG events by
feature selection," Neurocomputing, vol.171, pp. 576-585, 2016. (Impact Factor = 2.005)

V.G. Kanas, E.I. Zacharaki, C. Davatzikos, K.N. Sgarbas, V. Megalooikonomou, "A low cost
approach for neoplastic and healthy brain tissue segmentation based on intensity
modeling and 3D random walker," Biomedical Signal Processing and Control, vol.22, pp.19-
30, 2015. (Impact Factor = 1.532)

I. Mporas, V. Tsirka, E.I. Zacharaki, M. Koutroumanidis, M. Richardson, V.
Megalooikonomou, "Seizure Detection using EEG and ECG Signals for Computer-based
Monitoring, Analysis and Management of Epileptic Patients," Expert Systems With
Applications, vol.40, pp.3227-3222, 2015. (Impact Factor = 1.965)

G. Erus, E.I. Zacharaki, C. Davatzikos, “Individualized Statistical Learning from Medical
Image Databases: Application to Identification of Brain Lesions, ” Medical Image Analysis,
vol. 18, pp.542-554, 2014. (Impact Factor = 4.565)

E.l. Zacharaki, N. Morita, P. Bhatt, D.M. O'Rourke, E.R. Melhem, C. Davatzikos, “Survival
analysis of patients with high grade gliomas based on data mining of imaging variables,”
American Journal of Neuroradiology, vol. 33, no. 6, pp.1065-71, 2012. (Impact Factor =
3.675)

E.I. Zacharaki, A. Bezerianos, “Abnormality segmentation in brain images via distributed
estimation,” IEEE Transaction on Information Technology in Biomedicine, vol. 16, no. 3, pp.
330-338, 2012. (Impact Factor = 2.072)

E.l. Zacharaki, V.G. Kanas, C. Davatzikos, "Investigating machine learning techniques for
MRI-based classification of brain neoplasms," International Journal of Computer Assisted
Radiology and Surgery, vol.6, pp.821-828, 2011. (Impact Factor = 1.659)

E.I. Zacharaki, S. Wang, S. Chawla, D.S. Yoo, R. Wolf, E.R. Melhem, C. Davatzikos,
"Classification of brain tumor type and grade using MRI texture and shape in a machine
learning scheme," Magnetic Resonance in Medicine, vol. 62, pp. 1609-18, 2009. (Impact
Factor = 3.398)

Y. Zheng, S. Englander, S. Baloch, E.I. Zacharaki, Y. Fan, M.D. Schnall, D. Shen, “STEP:
Spatio-Temporal Enhancement Pattern for MR-based Breast Tumor Diagnosis,” Medical
Physics, vol. 36, no. 7, pp. 3192-3204, 2009. (Impact Factor = 3.012)

E.I. Zacharaki, C.S. Hogea, D. Shen, G. Biros, C. Davatzikos, “Non-diffeomorphic
registration of brain tumor images by simulating tissue loss and tumor growth,”
Neuroimage, vol.46, no. 3, pp. 762-774, 2009. (Impact Factor = 6.132)

R. Verma, E.I. Zacharaki, Y. Ou, H. Cai, S. Chawla, R. Wolf, S.-K. Lee, E.R. Melhem, C.
Davatzikos, “Multi-parametric tissue characterization of brain neoplasms and their
recurrence using pattern classification of MR images,” Academic Radiology, vol.15, pp.
966-977, 2008. (Impact Factor = 2.077)

E.I. Zacharaki, D. Shen, S.-K. Lee and C. Davatzikos, “ORBIT: A Multiresolution
Framework for Deformable Registration of Brain Tumor Images,” IEEE Trans. Medical
Imaging, vol. 27, no. 8, pp. 1003-1017, 2008. (Impact Factor = 3.799)

E.I. Zacharaki, C.S. Hogea, G. Biros and C. Davatzikos, “A comparative study of
biomechanical simulators in deformable registration of brain tumor images,” IEEE Trans.
Biomedical Engineering, vol.55, no.3, pp1233-1236, 2008. (Impact Factor = 2.233)

124



J19.

J20.

J21.

J22.

J23.

J24.

J25.

J26.

A. Mohamed, E.I. Zacharaki, D. Shen, C. Davatzikos, “Deformable Registration of Brain
Tumor Images via a Statistical Model of Tumor-Induced Deformation,” Medical Image
Analysis (Special Issue), vol.10, pp.752-763, 2006 (invited paper). (Impact Factor = 4.565)

E. Ntasis, M. Gletsos, N.A. Mouravliansky, E.I. Zacharaki, C. Vasios, S. Golemati, T.A.
Maniatis and K.S. Nikita, “Telematics Enabled Virtual Simulation System for Radiation
Treatment Planning,” Computers in Biology and Medicine, vol. 35, no. 9, pp.765-781, 2005.
(Impact Factor = 1.240)

E.I. Zacharaki, G.S. Stamatakos, K.S. Nikita and N.K. Uzunoglu, “Simulating growth
dynamics and radiation response of avascular tumour spheroids — Model validation in the
case of an EMT6/Ro multicellular spheroid,” Computer Methods and Programs in
Biomedicine, vol.76, no.3, pp.193-206, 2004. (Impact Factor = 1.897)

E.I. Zacharaki, G.K. Matsopoulos, P.A. Asvestas, K.S. Nikita, K. Grondahl, H.-G. Grondahl,
“A digital subtraction radiography scheme based on automatic multiresolution
registration,” Dentomaxillofacial Radiology, vol.33, no.6, pp.379-390, 2004. (Impact Factor
=1.271)

G.S. Stamatakos, D.D. Dionysiou, E.I. Zacharaki, N.A. Mouravliansky, K.S. Nikita, and N.
Uzunoglu, “In Silico Radiation Oncology: Combining Novel Simulation Algorithms with
Current Visualization Techniques,” Proceedings of the IEEE, vol.90, no.11, pp.1764-1777,
2002 (invited paper). (Impact Factor = 5.4606)

G.S. Stamatakos, E.I. Zacharaki, M.I. Makropoulou, N.A. Mouravliansky, A. Marsh, K.S.
Nikita, N. Uzunoglu, “Modeling Tumor Growth and Irradiation Response in Vitro: a
Combination of High Performance Computing and Web Based Technologies Including
VRML Visualization,” IEEE Trans. Inform. Technol. Biomed, vol.5, no.4, pp.279-289, 2001.
(Impact Factor = 2.072)

G.S. Stamatakos, E.I. Zacharaki, N.K. Uzunoglu, K.S. Nikita, “Tumor Growth and Response
to Irradiation in Vitro: a Technologically Advanced Simulation Model,” Int. J. Oncol. Biol.
Phys. vol.51, Suppl.1, pp.240-241, 2001. (Impact Factor = 4.258)

G.S. Stamatakos, E.I. Zacharaki, M. Makropoulou, N. Mouravliansky, K.S. Nikita, N.
Uzunoglu, “Tumour growth in vitro and tumour response to irradiation schemes: a
simulation model and virtual reality visualization,” Radiotherapy and Oncology, vol.56,
Suppl.1, pp.179-180, Elsevier, 2000. (Impact Factor = 4.857)

Book chapters

B1.

B2.

V. Megalooikonomou, D. Triantafyllopoulos, E.l. Zacharaki, I. Mporas, "Offline Analysis
Server and Offline algorithms," N.S. Voros, C.P. Antonopoulos (eds.), Cyberphysical Systems
for Epilepsy and Related Brain Disorders, 2015, pp.239-254, Springer International
Publishing Switzerland (ISBN 978-3-319-20048-4).

V. Megalooikonomou, D. Triantafyllopoulos, E.I. Zacharaki, I. Mporas, "DSMS and Online
Algorithms," N.S. Voros, C.P. Antonopoulos (eds.), Cyberphysical Systems for Epilepsy and
Related Brain Disorders, 2015, pp.271-279, Springer International Publishing Switzerland
(ISBN 978-3-319-20048-4).

Conference Proceedings

High rank conferences and conferences publishing chapters in books

Cl.

A. Amidi, S. Amidi, D. Vlachakis, N. Paragios, E.I. Zacharaki, "A machine learning
methodology for enzyme functional classification combining structural and protein

125



C2.

C3.

C4.

C5.

C6.

C7.

C8.

Co.

Cl1o0.

Cl11.

Cl2.

C13.

sequence descriptors," Bioinformatics and Biomedical Engineering, 2016, pp.728-738,
Springer International Publishing.

A. Tzalavra, K. Dalakleidi, E.I. Zacharaki, N. Tsiaparas, F. Constantinidis, K.S. Nikita,
Comparison of Multi-resolution Analysis Patterns for Texture Classification of Breast
Tumors Based On DCE-MRI, 7th Int. Workshop on Machine Learning in Medical Imaging
(MICCAI workshop), October 17-18, 2016, Athens, Greece.

E.N. Kornaropoulos, E.I. Zacharaki, P. Zerbib, C. Lin, A. Rahmouni, N. Paragios,
"Deformable group-wise registration using a physiological model: application to diffusion-
weighted MRI," IEEE Int. Conf. on Image Processing (ICIP), September 25-28, 2016, Phoenix,
USA.

E.N. Kornaropoulos, E.I. Zacharaki, P. Zerbib, C. Lin, A. Rahmouni, N. Paragios, "Optimal
estimation of diffusion in DW-MRI by high-order MRF-based joint deformable registration
and diffusion modeling," 7th Int. Workshop on Biomedical Image Registration (WBIR), in
conjunction with CVPR, July 1, 2016, Las Vegas, USA.

V.G. Kanas, E.I. Zacharaki, E. Pippa, V. Tsirka, M. Koutroumanidis, V. Megalooikonomou,
“Classification of Epileptic and Non-epileptic Events using Tensor Decomposition,” IEEE
15th Int. Conf. on Bioinformatics and Bioengineering (BIBE 2015), Nov. 2-4, 2015, Belgrade,
Serbia.

I. Mporas, V. Tsirka, E.I. Zacharaki, M. Koutroumanidis, V. Megalooikonomou, "Online
Seizure Detection from EEG and ECG signals for Monitoring of Epileptic Patients," Artificial
Intelligence: Methods and Applications, Lecture Notes in Computer Science, vol. 8445, 2014,
pp- 442-447, Springer.

A.G. Tzalavra, E.I. Zacharaki, N.N.Tsiaparas, F. Constantinidis, K.S.Nikita, "A
Multiresolution Analysis Framework For Breast Tumor Classification Based On DCE-MRI,"
IEEE Int. Conf. on Imaging Systems & Techniques (IST 2014), October 14-17, 2014,
Santorini, Greece.

E.l. Zacharaki, K. Garganis, I. Mporas, V. Megalooikonomou, "Spike detection in EEG by
LPP and SVM ", IEEE EMBS Int. Conf. on Biomedical and Health Informatics (BHI'2014),
pp.668-671, 1-4 June, 2014, Valencia, Spain.

Mporas, P. Korvesis, E.I. Zacharaki, V. Megalooikonomou "Sleep Spindle Detection in EEG
Signals combining HMMs and SVMs,” Engineering Applications of Neural Networks (EANN],
vol. 384, 2013, pp 138-145, Springer.

E.l. Zacharaki, E. Pippa, A. Koupparis, V. Kokkinos, G. Kostopoulos, V. Megalooikonomou,
"One-class classification of temporal EEG patterns for K-complex extraction,” 35" Int.
Conf.of the IEEE Engineering in Medicine and Biology Society (EMBC ’13), July 3-7, 2013,
Osaka, Japan.

E.lI. Zacharaki, A. Skoura, L. An, D. Smith, V. Megalooikonomou, “Using an atlas-based
approach in the analysis of gene expression maps obtained by voxelation,” Artificial
Intelligence Applications and Innovations, IFIP Advances in Information and Communication
Technology, vol. 382, 2012, pp. 566-575, Springer.

V.G. Kanas, E.I. Zacharaki, E. Dermatas, A. Bezerianos, K.Sgarbas, C. Davatzikos,
“Combining outlier detection with random walker for automatic brain tumor
segmentation," Artificial Intelligence Applications and Innovations, IFIP Advances in
Information and Communication Technology, vol. 382 , 2012, pp. 26-35, Springer.

E.lI. Zacharaki, G. Erus, A. Bezerianos, C. Davatzikos, “Fuzzy multi-channel clustering
with individualized spatial priors for segmenting brain lesions and infarcts," Artificial

126



C14.

C15.

Cle.

C17.

C18.

C19.

C20.

C21.

C22.

C23.

C24.

C25.

Intelligence Applications and Innovations, IFIP Advances in Information and Communication
Technology, vol. 382, 2012, pp 76-85, Springer.

E.l. Zacharaki, A. Skoura, L. An, D.J. Smith, S. H. Faro, V. Megalooikonomou, “Combining
gene expression and function in a spatially localized approach,” 2012 IEEE Int. Conf.on
Bioinformatics and Biomedicine (BIBM), October 4-7, 2012, Philadelphia, PA, USA.

K. Dimitrakopoulou, G. Dimitrakopoulos, E.I. Zacharaki. [.A. Maraziotis, K. Sgarbas, A.
Bezerianos, “Revealing the dynamic modularity of composite biological networks in breast
cancer treatment,” 34 Int. Conf.of the IEEE Engineering in Medicine and Biology Society
(EMBC ’12), Aug 28- Sep 1, 2012, San Diego, USA.

S. Kadoury, G. Erus, E.I. Zacharaki, N. Paragios, C. Davatzikos, “Manifold-constrained
embeddings for the detection of white matter lesions in brain MRI,” 9" IEEE International
Symposium on Biomedical Imaging (ISBI 2012), Barcelona, 2-5 May 2012.

C. Davatzikos, E.I. Zacharaki, A. Gooya, V. Clark, "Multi-parametric Analysis and
Registration of Brain Tumors: Constructing Statistical Atlases And Diagnostic Tools of
Predictive Value," 33™ Int. Conf.of the IEEE Engineering in Medicine and Biology Society
(EMBC '11), Boston, MA, Aug 30- Sept 3, 2011, pp. 6979-81 (invited paper).

G. Erus, E.I. Zacharaki, R.N. Bryan, C. Davatzikos, “Learning high-dimensional image
statistics for abnormality detection on medical images,” IEEE Computer Society Workshop
on Mathematical Methods in Biomedical Image Analysis (MMBIA10), San Francisco, CA,
June 14, 2010.

E.I. Zacharaki, S. Wang, S. Chawla, D.S. Yoo, R. Wolf, E.R. Melhem, C. Davatzikos, “MRI-
based classification of brain tumor type and grade using SVM-RFE,” 6" IEEE International
Symposium on Biomedical Imaging (ISBI 2009), Boston, Massachusetts, USA, June 28- July
1, 2009.

E.I. Zacharaki, C.S. Hogea, D. Shen, G. Biros, C. Davatzikos, “Parallel optimization of
tumor model parameters for fast registration of brain tumor images,” SPIE Medical Imaging
2008: Image Processing, ed. J.M. Reinhardt, J.P.W. Pluim, vol. 6914, Issue 1, article OK,
pp. 1-10, 2008.

E.I. Zacharaki, S. Kanterakis, R.N. Bryan, C. Davatzikos, “Measuring brain lesion
progression with a supervised tissue classification system,” Medical Image Computing and
Computer Assisted Intervention, Lecture Notes in Computer Science, vol. 5241, 2008, pp.
620-627, Springer.

N. Batmanghelich, X. Wu, E.I. Zacharaki, C.E. Markowitz, C. Davatzikos, R. Verma,
“Multiparametric Tissue Abnormality Characterization using Manifold Regularization,”
SPIE Medical Imaging 2008: Computer-Aided Diagnosis, ed. M.L. Giger, N. Karssemeijer, vol.
6915, Issue 1, article 16, pp. 1-6, 2008.

E.I. Zacharaki, R. Verma, S. Chawla, E.R. Melhem, R. Wolf, C. Davatzikos, “Towards
predicting neoplastic recurrence with multi-parametric MR,” ISMRM 16" Annual Meeting
and Exhibition, May 3-6, 2008, Toronto, Canada.

E.I. Zacharaki, D. Shen, A. Mohamed, C. Davatzikos, “Registration of brain images with
tumors: Towards the construction of statistical atlases for therapy planning,” 3™ IEEE
International Symposium on Biomedical Imaging (ISBI 2006), Arlington, Virginia, USA, April
6-9, 2006.

E.l. Zacharaki, G.S. Stamatakos, N.K. Uzunoglu, K.S. Nikita, “Stochastic modeling and
validation of growth saturation and radiotherapeutic response of multicellular tumor

127



C26.

C27.

C28.

C29.

C30.

C31.

C32.

C33.

C34.

C35.

C36.

spheroids,” 26™ Annual Int. Conf.of the IEEE Engineering in Medicine and Biology Society,
pp-3039-3042, San Francisco, California, September 1-5, 2004

.E.I. Zacharaki, G.K. Matsopoulos, K.S. Nikita, G.S. Stamatakos, “An application of
multimodal image registration and fusion in a 3D tumor simulation model,” 25" Annual
Int. Conf.of the IEEE Engineering in Medicine and Biology Society, pp.686-689, Cancun,
Mexiko, September 17-21, 2003.

E.I. Zacharaki, G.K. Matsopoulos, K.S. Nikita, G.S. Stamatakos, “3D image registration
and fusion tools in simulating tumor evolution,” 3™ IASTED Int. Conf.on Visualization,
Imaging, and Image Processing, pp.307-311, Benalmadena, Spain, September 8-10, 2003.

N. Mouravliansky, E.I. Zacharaki, P. Asvestas, G. Matsopoulos, K. Delibasis, K.S. Nikita,
“Image registration based on lifting process and genetic optimization: an application to
dental imaging,” 3™ IASTED Int. Conf. on Visualization, Imaging, and Image Processing,
pp-312-316, Benalmadena, Spain, September 8-10, 2003.

N. Mouravliansky, G. Matsopoulos, K. Delibasis, E.I. Zacharaki, P. Asvestas, K.S. Nikita,
“Image Registration Based on Lifting Process: an Application to Dental Imaging,”> 2™
European Medical & Biological Engineering Conference, pp.852-853, Vienna, December4-8,
2002.

E.l. Zacharaki, P. Asvestas, G.K. Matsopoulos, K.K. Delibasis, and K.S. Nikita, “An
automatic registration scheme based on similarity measures: an application to dental
imaging, » 23™ Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society,
vol.3, pp.2429-2432, Istanbul, Turkey, October 25-28, 2001.

G. Stamatakos, E. Zacharaki, N. Mouravliansky, K. Delibassis, K. Nikita, N. Uzunoglu and
A.Marsh, “Using Web technologies and meta-computing to visualize a simplified simulation
model of tumor growth in vitro,” IEEE EMBS Int. Conf. on Information Technology
Applications in Biomedicine, ITIS-ITAB '99, pp.31-32, 1999.

Ordinary conferences/workshops

E. Pippa, E. I. Zacharaki, I. Mporas,V. Tsirka, M. Richardson, M. Koutroumanidis, V.
Megalooikonomou, "Classification of Epileptic and Non-Epileptic EEG Events", 4" Int. Con/.
on Wireless Mobile Communication and Healthcare (MOBIHEALTH 2014), November 3-5,
2014, Athens, Greece.

Mporas, V. Tsirka, E.I. Zacharaki, M. Koutroumanidis, V. Megalooikonomou, "Evaluation of
Time and Frequency Domain Features for Seizure Detection from Combined EEG and ECG
signals," 7th Int. Conf. on PErvasive Technologies Related to Assistive Environments (PETRA
2014).

Charisi, F.D. Malliaros, E.I. Zacharaki, V. Megalooikonomou, "Multiresolution Similarity
Search in Time Series Data: An Application to EEG Signals," 6th Int. Conf. on PErvasive
Technologies Related to Assistive Environments (PETRA 2013), May 29-31, 2013, Rhodes
Island, Greece.

E.I. Zacharaki, A. Bezerianos, “Segmentation of pathology by statistical modeling and
distributed estimation,” 10" International Workshop on Biomedical Engineering, October 5-
7, 2011, Kos, Greece.

N. Morita, M. Harada, E. Zacharaki, P.Bhatt, S. Chawla, E.R. Melhem, H.Nishitani,
“Correlation between Diffusion Tensor and Perfusion Imaging in segmented enhancing
lesion with high grade glioma,” Joint Annual Meeting ISMRM-ESMRMB, Stockholm, Sweden,
May 1-7, 2010

128



C37.

C38.

S. Magnitsky, E.I. Zacharaki, R. Verma, R.M. Walton, J.H. Wolfe and H. Poptani,
“Longitudinal Detection of Neuronal Stem Cells Labeled with Types of Iron Oxide Particles,”
Joint Annual Meeting ISMRM-ESMRMB, May 19-25, 2007.

E.I. Zacharaki, G.S. Stamatakos, N.K. Uzunoglu, “Computer simulation of tumour
spheroid behaviour as a platform for understanding cancer in silico,” 1* International
Advanced Research Workshop on In Silico Oncology: Advances and Challenges, pp.54-55,
Sparta, Greece, September 9-11, 2004 (invited speaker).

National journal and conference publications (in greek)

Gl1.

G2.

G3.

G4.

G5.

K.S. Nikita, T.A. Maniatis, E. Ntasis, M. Gletsos, N. Mouravliansky, C. Vasios, E._
Zacharaki, “The Virtual Simulation System «Galenos» (To Mpdypappa EtkovikAg
E€opoiwong «raAnvéc»),” Oncological Review (OykoAoytkri Evnuépwon), vol.3, no.3,
pp.180-186, 2001.

E.I. Zacharaki, E. Pippa, A. Koupparis, G.K. Kostopoulos, V. Megalooikonomou,
"Classification of EEG waveforms by spectral clustering," 5" Panhellenic Conference on
Biomedical Technology, pp. 93-94, Athens, April 4-6, 2013 (paper in english).

E. Zacharaki, “Computer simulation of tumor growth and response to irradiation,”
6"Panhellenic Conference on Radiotherapeutic Oncology, pp.135-137, Paros, September 27-
30, 2001 (invited speaker).

K.S. Nikita, T.A. Maniatis, E. Ntasis, M. Gletsos, N. Mouravliansky, C. Vasios, E.
Zacharaki, “The Virtual Simulation System «Galenos»,” 10" Panhellenic Conference of
Clinical Oncology, Athens, March 29-31, 2001.

G.S. Stamatakos, E. Zacharaki, N. Mouravliansky, M. Makropoulou, K. Nikita, N.
Uzunoglu, “Simulation of in vitro tumor response to radiotherapeutic schemes,” 2™
Panhellenic Conference on Biomedical Technology, pp.136-141, Athens, November 5-6,
1999.

Submitted Papers (under review)

Z1.

Z2.

Z3.

z4.

G. Chassagnon, C. Martin, P-R Burgel, D. Hubert, 1. Fajac, N. Paragios, E.I. Zacharaki, P.
Legmann, J. Coste, M-P Revel, “Structural abnormalities in the Cystic Fibrosis lung: an
automated Computed Tomography score”, European Respiratory Journal, submitted
(Impact Factor = 8.332).

E.I. Zacharaki, “Prediction of protein function using a deep convolutional neural network
ensemble” Peerd Computer Science, under revision (Impact Factor = 2.1).

A. Amidi, S. Amidi, D. Vlachakis, N. Paragios, E.I. Zacharaki, "Automatic single- and multi-
label enzymatic function prediction by machine learning," IEEE/ACM Trans. Computational
Biology and Bioinformatics, under revision. (Impact Factor = 1.609)

V.G. Kanas, E.I. Zacharaki, G.A. Thomas, P.O. Zinn, V. Megalooikonomou, R.R. Colen,
“Learning MRI-based classification models for MGMT methylation status prediction in
glioblastoma,” Computer Methods and Programs in Biomedicine, under revision. (Impact
Factor = 1.897)

VII. LANGUAGES

e Greek (native language)
e English (First Certificate in English and 4.5 years residency in USA)
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