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Chapter 1

Introduction

1.1 Context

Server virtualization enables on-demand allocation of computational resources (e.g. CPU
and RAM) according to the pay-as-you-go model, a business model where users (referred
to as tenants) are charged only for as much as they have used. One of the main cloud
models that has gained signi cant attention over the past few years is thelnfrastructure as

a Service model where compute, storage, and network resources are provided to tenants
in the form of virtual machines (VMs) and virtual networks. Organizations outsource
part of their information systems to virtual infrastructures (composed of VMs and virtual
networks) hosted on the physical infrastructure of the cloud provider. The terms that
regulate the resource allocation are declared in a contract signed by the tenants and
the cloud provider, the Service Level Agreement (SLA)[4]. Few of the main bene ts of
the laaS cloud include: exibility in resource allocation, illusion of unlimited capacity of
computational and network resources and automated administration of complex virtualized
information systems.

Although shifting to the cloud might provide signi cant cost and e ciency gains, secu-
rity continues to remain one of the main concerns in the adoption of the cloud model]5].
Multi-tenancy, one of the key characteristics of a cloud infrastructure, creates the possi-
bility of legitimate VMs being colocated with malicious, attacker-controlled VMs. Con-
sequently, attacks towards cloud infrastructures may originate from inside as well as the
outside of the cloud environment [6]. A successful attack could allow attackers to gain
access and manipulate cloud-hosted data including legitimate user's account credentials
or even gain complete control of the cloud infrastructure and turn it into a malicious
entity [7]. Although traditional security techniques such as tra c ltering or tra c in-
spection can provide a certain level of protection against attackers, they are not enough
to tackle sophisticated threats that target virtual infrastructures. In order to provide a
security solution for cloud environments, an automated self-contained security architecture
that integrates heterogeneous security and monitoring tools is required.

1.2 Motivation

In a typical laaS cloud environment, the provider is responsible for the management and
maintenance of the physical infrastructure while tenants are only responsible for managing
their own virtualized information system. Tenants can make decisions regarding VM life-
cycle and deploy di erent types of applications on their provisioned VMs. Since deployed
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applications may have access to sensitive information or perform critical operations, ten-
ants are concerned with the security monitoring of their virtualized infrastructure. These
concerns can be expressed in the form of monitoring requirements against speci ¢ types of
threats. Security monitoring solutions for cloud environments are typically managed by
the cloud provider and are composed of heterogeneous tools for which manual con gura-
tion is required. In order to provide successful detection results, monitoring solutions need
to take into account the pro le of tenant-deployed applications as well as speci ¢ tenant
security requirements.

A cloud environment exhibits a very dynamic behavior with changes that occur at
di erent levels of the cloud infrastructure. Unfortunately, these changes a ect the ability
of a cloud security monitoring framework to successfully detect attacks and preserve the
integrity of the cloud infrastructure [8]. Existing cloud security monitoring solutions fail to
address changes and take necessary decisions regarding the recon guration of the security
devices. As a result, new entry points for malicious attackers are created which may lead
to a compromise of the whole cloud infrastructure. To our knowledge, there still does
not exist a security monitoring framework that is able to adapt its components based on
di erent changes that occur in a cloud environment.

The goal of this thesis is to design and implement a self-adaptable security monitoring
framework that is able to react to dynamic events that occur in a cloud infrastructure and
adapt its components in order to guarantee that an adequate level of security monitoring
for tenant's virtual infrastructures is achieved.

1.3 Objectives

After presenting the context and motivation for this thesis we now de ne a set of objectives
for a self-adaptable security monitoring framework.

1.3.1 Self-Adaptation

A self-adaptable security monitoring framework should be able to adapt its components
based on dierent types of dynamic events that occur in a cloud infrastructure. The
framework should perceive these events as sources of adaptation and take subsequent
actions that a ect its components. The adaptation process may alter the con guration of
existing monitoring devices or instantiate new ones. The framework may decide to alter
the computational resources available to a monitoring device (or a subset of monitoring
devices) in order to maintain an adequate level of monitoring. Adaptation of the amount of
computational resources should also be performed in order to free under-utilized resources.
The framework should make adaptation decisions in order to guarantee that a balanced
trade-o between security, performance and cost is maintained at any given moment.
Adaptation actions can a ect di erent components and the framework should be able to
perform these actions in parallel.

1.3.2 Tenant-Driven Customization

Tenant requirements regarding speci ¢ monitoring cases should be taken into account from
a self-adaptable security monitoring framework. The framework should be able to guaran-
tee that adequate monitoring for speci ¢ tenant-requested types of threats will be provided.
The monitoring request could refer to a tenant's whole virtual infrastructure or to a spe-
ci ¢ subset of VMs. The framework should provide the requested type of monitoring until
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the tenant requests otherwise or the subset of VMs that the monitoring type is applied
to no longer exists. Furthermore, the framework should take into account tenant-de ned
(through speci ¢ SLAs) thresholds that refer to the quality of the monitoring service or
to the performance of speci ¢ types of monitoring devices.

1.3.3 Security and Correctness

Deploying a self-adaptable security monitoring framework should not add new vulnera-
bilities in the monitored virtual infrastructure or in the provider's infrastructure. The
adaptation process and the input sources required should not create new entry points for
an attacker. Furthermore, a self-adaptable security monitoring framework should be able
to guarantee that an adequate level of monitoring is maintained throughout the adaptation
process. The adaptation process should not intervene with the ability of the framework
to correctly detect threats.

1.3.4 Cost Minimization

Deploying a self-adaptable security monitoring framework should not signi cantly impact
the trade-o between security and cost for both tenants and the provider. On the ten-
ant's side a self-adaptable security monitoring framework should not signi cantly impact
performance of the applications that are hosted in the virtual infrastructure regardless of
the application pro le (compute- or network-intensive). On the provider's side, the abil-
ity to generate prot by leasing it's computational resources should not be signi cantly
a ected by the framework. Deploying such a framework should not impose a signi cant
penalty in normal cloud operations (e.g. VM migration, creation, etc). Furthermore, the
amount of computational resources dedicated to the self-adaptable framework's compo-
nents should re ect an agreement between tenants and the provider for the distribution
of computational resources.

1.4 Contributions

In order to achieve the objectives presented in the previous section, we design a self-
adaptable security monitoring that is able to address limitations in existing monitoring
frameworks and tackle dynamic events that occur in a cloud infrastructure. In this thesis
we detail how we designed, implemented, and evaluated our contributions: a generic self-
adaptable security monitoring framework and two instantiations with intrusion detection
systems and rewalls.

1.4.1 A Self-Adaptable Security Monitoring Framework

Our rst contribution is the design of a self-adaptable security monitoring framework that

is able to alter the con guration of its components and adapt the amount of computational
resources available to them depending on the type of dynamic event that occurs in a cloud
infrastructure. Our framework achieves self-adaptation and tenant-driven customization
while providing an adequate level of security monitoring through the adaptation process.

1.4.2 SAIDS

Our second contribution constitutes the rst instantiation of our framework focusing on
network-based intrusion detection systems (NIDS). NIDSs are key components of a security
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monitoring infrastructure. SAIDS achieves the core framework’s objectives while providing
a scalable solution for serving parallel adaptation requests. Our solution is able to scale
depending on the load of monitored tra ¢ and the size of the virtual infrastructure. SAIDS
maintains an adequate level of detection while minimizing the cost in terms of resource
consumption and deployed application performance.

1.43 AL-SAFE

Our third contribution constitutes the second instantiation of our framework focusing on
application-level rewalls. AL-SAFE uses virtual machine introspection in order to create
a secure application-level rewall that operates outside the monitored VM but retains
inside-the-VM visibility. The rewall's enforced rulesets are adapted based on dynamic
events that occur in a virtual infrastructure. AL-SAFE o ers a balanced trade-o between
security, performance and cost.

1.5 Thesis Outline

This thesis is organized as follows:

Chapter[Jreviews the state of the art while making important observations in the area
of cloud computing security focusing on both industrial and academic solutions. We start
by providing the context in which the contributions of this thesis were developed while
describing fundamental concepts of autonomic and cloud computing. Security threats for
traditional information systems as well as information systems outsourced in cloud infras-
tructures are presented. We then present the notion of traditional security monitoring
along with key components and their functionality. Finally, security monitoring solutions
for cloud environments are presented focusing on two di erent types of components, in-
trusion detection systems and rewalls.

Chapter [3 presents the design of our self-adaptable security monitoring framework
that is the core of this thesis. The objectives that this framework needs to address are
discussed in detail. Fundamental components and their interaction are presented in detail
along with a rst high-level overview of the adaptation process. This chapter concludes
with important implementation aspects of two generic components of our framework.

Chapter[4 presents the rst instantiation of our security monitoring framework which
addresses network-based intrusion detection systems. This chapter details how the objec-
tives set at the beginning are translated in design principles for a self-adaptable network-
based IDS. This rst instantiation, named SAIDS, is able to adapt the con guration of
a network-based IDS upon the occurrence of dierent types of dynamic events in the
cloud infrastructure. After presenting SAIDS design and main components we describe
the adaptation process and how our design choices do not add new security vulnerabilities
to the cloud engine. Finally, we evaluate SAIDS performance, scalability and correctness
in experimental scenarios that resemble production environments.

Chapter [§ presents the second instantiation of the security monitoring framework,
which focuses on a di erent type of security component, the rewall. This chapter maps
the objectives of the security monitoring framework in the area of application-level re-
walls proposing a new design for addressing inherent security vulnerabilities of this type
of security device. This second instantiation, named AL-SAFE, brings self-adaptation to
rewalls. We present in detail the adaptation process for addressing dynamic events and
justify the correctness of our design choices. Finally, this chapter concludes with an ex-
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perimental evaluation of our prototype that explores the trade-o between performance,
cost and security both from the provider and the tenant's perspectives.

Chapter[g concludes this thesis with a nal analysis of the contributions presented and
the objectives that were set in the beginning. We demonstrate how our framework's design
and the two subsequent instantiations satisfy the objectives presented in this chapter. We
then present perspectives to improve performance aspects of our two prototypes, SAIDS
and AL-SAFE, along with ideas to expand this work organised in short, mid and long
terms goals.
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Chapter 2

State of the Art

In this thesis we propose a design for a self-adaptable security monitoring framework for
laaS cloud environments. In order to provide the necessary background for our work, we
present the state of the art around several concepts that are involved in our design. We
rst present the basic notions around autonomic computing along with its main charac-
teristics. Second we give a de nition of a cloud environment and an detailed description of
dynamic events that occur in a cloud infrastructure. Third we discuss server and network
virtualization. Furthermore we provide a description of security threats against traditional
information systems and cloud environments. Concepts around security monitoring and
security monitoring solutions tailored for cloud environments follow.

2.1 Autonomic Computing

This section presents a brief introduction to autonomic computing. We start with a short
historical background while we introduce the basic self-management properties of every
autonomous system. Finally, we describe the role of the adaptation manager, a core
component that is responsible for the enforcement and realisation of the self-management
properties.

2.1.1 What is Autonomic Computing?

The notion of autonomic computing was rst introduced by IBM in 2001 [9] in order to
describe a system that is able to manage itself based on a set of high-level objectives
de ned by administrators. Autonomic computing comes as an answer to the increasing
complexity of today's large scale distributed systems. As a result the ability of a sys-
tem's administrator to deploy, con gure and maintain such systems is a ected. The term
autonomic computing carries a biological connotation as it is inspired from the human
nervous system and its ability to autonomously control and adapt the human body to its
environment without requiring any conscious e ort. For example, our nervous system au-
tomatically regulates our body temperature and heartbeat rate. Likewise, an autonomic
system is able to maintain and adjust it's components to external conditions.

2.1.2 Characteristics

According to [9] the corner stone of each autonomic system is self-management. The
system is able to seamlessly monitor its own use and upgrade its components when it

17
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deems necessary requiring no human intervention. The authors identify four main aspects
of self-management.

2.1.2.1 Self-con guration

An autonomic system is able to con gure its components automatically in accordance

with a set of high-level objectives that specify the desired outcome. Seamless integration
of new components demands that the system adapts to their presence, similarly to how
the human body adapts to the creation of new cells. When a new component is introduced
two steps are necessary:

1. Acquiring the necessary knowledge for the system's composition and con guration.

2. Registering itself with the system so that other components can take advantage of
its capabilities and modify their behavior accordingly.

2.1.2.2 Self-optimization

One of the main obstacles when deploying complex middleware (e.g. database systems) is
the plethora of tunable performance parameters. To this end, self-optimization refers to
the ability of the system to continuously monitor and con gure its parameters, learn from
past experience and take decisions in order to achieve certain high-level objectives.

2.1.2.3 Self-healing

Dealing with components failure in large-scale computer systems often requires devoting a
substantial amount of time in debugging and identifying the root cause of a failure. Self-
healing refers to the ability of the system to detect, diagnose and repair problems that arise
due to software or hardware failures. In the most straightforward example, an autonomous
system could detect a failure due to a software bug, download an appropriate patch and
then apply it. Another example consists of pro-active measures against externally-caused
failures (a redundant power generator in the event of a power outage).

2.1.2.4 Self-protection

Although dedicated technologies that guarantee secure data transfer and network commu-
nication (e.g. rewalls, intrusion detection systems) exist, maintenance and con guration
of such devices continue to be a demanding error-prone task. Self-protection refers to
the ability of the system to defend itself against malicious activities that include external
attacks or internal failures.

2.1.3 The Role of the Manager

In every autonomic system the Autonomic Managers (AMs) are software elements respon-
sible for the enforcement of the previously described properties. AMs are responsible for
managing hardware or software components that are known as Managed Resources (MRS).
An AM can be embedded in a MR or run externally. An AM is able to collect the detalils it
needs from the system, analyze them in order to determine if a change is required, create
a sequence of actions (plan) that details the necessary changes and nally, apply those
actions. This sequence of automated actions is known as the MAPE_[10] control loop. A
control loop has four distinct components that continuously share information:
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Monitor function : collects, aggregates and Iters all information collected from an
MR. This information may refer to topology, metrics or con guration properties that
can either vary continuously through time or be static.

Analyse function: provides the ability to learn about the environment and determines
whether a change is necessary, for example when a policy is being violated.

Plan function: details steps that are required in order to achieve goals and objectives
according to de ned policies. Once the appropriate plan is generated it is passed to
the execute function.

Execute function: schedules and performs the necessary changes to the system.

A representation of the MAPE loop is shown in Figure[2.1.

Figure 2.1 { The MAPE control loop

2.2 Cloud Computing

This section brie y introduces the basic notions behind cloud computing, a computing
paradigm that extends the ideas of autonomic computing and pairs them with a business
model that allows users to provision resources depending on their demands. First the
main principles behind cloud computing are outlined. A description of the cloud main
characteristics and the available service models follows.

2.2.1 What is Cloud Computing?

Cloud computing emerged as the new paradigm which shifts the location of a comput-
ing infrastructure to the network, aiming to reduce hardware and software management
costs [11].

The entity that provides users with on-demand resources is known aservice provider.
Many de nitions have emerged over the years, however until today no standard de nitions
exist. In this thesis we rely on the NIST de nition presented in [12]:

De nition 1 Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of con gurable computing resources (e.g. networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management e ort or service provider interaction.

In order to regulate the terms of providing access to cloud resources, the concept of Service
Level Agreement between the provider and the customers was introduced][4]. In the
context of cloud computing customers are referred to as tenants.
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De nition 2 A Service Level Agreement (SLA) is a contract that species the
service guarantees expected by the tenants, the payment to the provider, and potential
penalties when the guarantees are not met.

2.2.2 Characteristics

According to [12] the main characteristics of cloud computing are:broad network ac-
cess, on demand self-service , resource pooling , elasticity and measured service .

Broad network access Cloud services are usually available through the Internet or
a local area network and thus can be accessed from any device with access to the
network (e.g. smartphones, tablets, laptops, etc).

On-demand self-service Tenants can provision resources automatically without the
need for a personal negotiation of the terms with the cloud provider. Providers o er
dedicated APIs in order to serve this purpose.

Resource pooling Computing resources can serve multiple tenants simultaneously
with di erent physical and virtual demands adopting a multi-tenant model. In this
model, tenants are oblivious about the exact location in which the provisioned re-
sources are located.

Elasticity : Tenants can automatically provision or release new resources depending
on computational demand. Theoretically, the resources that a tenant can provision
are unlimited.

Measured service Tenants and the provider can monitor and control resource usage
through dedicated mechanisms. The same mechanisms can be used by the tenants
in order to check whether the terms de ned in the SLA are respected.

2.2.3 Service Models

According to [13] the services that are available in cloud computing are categorized in
three models: Infrastructure as a Service (laaS) , Platform as a Service (PaaS)
and Software as a Service (SaaS) . The contributions presented in this thesis were
developed on a cloud infrastructure using the laaS service model.

2.2.3.1 laaS

laaS o ers tenants the capability to provision virtual resources (e.g. processing in the form
of virtual machines, storage, networks) without worrying about the underlying physical
infrastructure. Although the laaS cloud model essentially o ers the provisioning of a
node-based infrastructure, the authors in [14] de ne two di erent layers of abstraction
in the laaS cloud model: Hardware as a Service (HWaaS)and Operating System as a
Service (OSaaS) In HWaaS the tenant is free to install arbitrary software, including
the OS, while he is responsible for managing the whole software stack. In HWaaS the
provider is only accountable for providing the hardware resources. In OSaaS the tenants
are o ered a fully managed OS including the underlying hardware resources (essentially
the whole environment is perceived as a single compute node). Tenants can deploy their
application through the interplay of OS processes. The contributions presented in this
thesis target both HWaaS and OSaaS laaS clouds. Known examples of laaS HWaaS
public clouds include: Amazon Elastic Cloud (EC2) [15], Google Compute Engine [16]
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and OVH public cloud [17]. VMware vCloud [18] is a known example of laaS HWaaS
private cloud. Furthermore, a number of open source cloud management systems have
been developed over the course of the last few years in order to enable the creation of
private clouds (described later in Sectior] 2.2.4). Prominent examples in this category are:
Eucalyptus [19], Nimbus [20], OpenNebulall2l1] and OpenStack22].

2.2.3.2 PaaS

PaaS o ers tenants the capability to deploy their own applications as long as they were
created using programming languages and libraries supported by the provider. This model
allows tenants to focus on application development instead of other time consuming tasks
such as managing, deploying and scaling their run-time environment, depending on compu-
tational load. Major PaaS systems include Google App Enginel[23], Microsoft Azure [24]
and Amazon Web Services[[15] which are suitable for developing and deploying web ap-
plications.

2.2.3.3 SaaS

SaasS o ers tenants the capability of using the provider's cloud hosted applications through
dedicated APIs. The applications are managed and con gured by the provider although
tenants might have access to limited user-related con guration settings. Prominent exam-
ples in this category include: Gmail [25], Google calendai_[25] and iCloud]26].

2.2.3.4 Main laaS Systems

A lot of work in the past was focused on designing and implementing laaS cloud systems.
Tenants are provided with virtualized resources (in the form of Virtual Machines VMs

{ or containers) and a management system that allows them to manage their resources
virtualization technologies like KVM [27], Xen [28] and VMware ESX/ESXi [29] are the
building blocks that facilitate server virtualization and e cient resource utilisation. Lately,

a trend towards containerization of laaS cloud systems (e.g. Google Kubernetes [30]) has
been observed.

As stated in [31] the core of an laaS cloud management system is the so calletbud-
OS. The cloud OS is responsible for managing the provisioning of the virtual resources
according to the need of the tenant services that are hosted in the cloud. As an example
of a cloud OS, we present OpenStack [32], a mainstream laaS management system that
we used in order to develop our prototype.

OpenStack is an open source cloud management system that allows tenants to pro-
vision resources within speci c limits set by the cloud administrator. Tenants can view,
create and manage their resources either by a dedicated web graphical interface (Hori-
zon) or through command line clients that interact with each one of OpenStack's services.
OpenStack operates in a fully centralized manner with one node acting as a controller.
The controller accepts user VM life cycle commands and delegates them to a pool of
compute nodes. Upon receiving a command from the cloud controller, a compute node
enforces it by interacting with the hypervisor. The controller node hosts a plethora of
the main services delivered by OpenStack such as: Nova (manager of the VMs lifecycle),
Neutron (network connectivity manager), Glance (VM disk image manager) and Keystone
(mapping of tenants to services that they can access). Nova and Neutron are also installed
on each compute node in order to provide VM interconnectivity and enforce user decision
regarding VMs lifecycle. Compute nodes periodically report back to the cloud controller
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their available resources (processing, memory, storage) and the state of the deployed VMs
(e.g. network connectivity, lifecycle events). OpenStack o ers a limited set of integra-
tion tools for other public APIs (namely Amazon EC2 and Google Compute Engine). A
representation of OpenStack's modular architecture can be found in Figur¢ 2]2.

Figure 2.2 { The OpenStack architecture

2.2.4 Deployment Models

There are four distinguishable cloud deployment modelsPrivate , Public , Community
and Hybrid clouds.

Private cloud: The cloud infrastructure is deployed on compute, storage and network
systems that belong to a single organization. A private cloud can be managed either
by the organization or a third party entity and its usage does not exceed the scope
of the organization.

Public cloud: The cloud infrastructure is available for provisioning for everyone on
the Internet. It is typically owned and managed by a cloud provider that allows
customers (tenants) to request resources without having to deal with the burden of
managing them. As a result tenants are only charged for what they use, in accordance
with the pay-as-you-go model.

Community cloud: The cloud infrastructure is dedicated to a speci ¢ community
or organizations that share a set of policies (i.e. security concerns, mission, and
compliance requirements). Community cloud comes as a solution for distributing
costs between di erent organizations in contrast to each organization maintaining
its own private cloud (e.g. scientists from di erent organizations that work on the
same project can use the same community cloud). In contrast to public clouds access
to community clouds is restricted only to members of the community or organization.
They can be managed by one or several organizations of the community. Community
clouds can be perceived as a speci ¢ category of private clouds.
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Hybrid cloud: The cloud infrastructure is a combination of two or more separate
cloud infrastructures (private, public or community) that remain individual entities.
The entities are bound together by a standardized agreement that allows data and
application sharing.

In this thesis we developed a prototype considering a private cloud although the pro-
posed framework can be integrated in both public and community clouds as well.

2.2.5 Dynamic Events in laas Clouds and Cloud Adaptation

Cloud environments are based on an elastic, highly scalable model that allows tenants to
provision resources (e.g. VMs) with unprecedented ease. Furthermore tenants can choose
to deploy di erent services inside their provisioned VMs and expose them to other users
through the Internet, generating network tra c towards and from the cloud infrastructure.

As a result, cloud environments become very dynamic, with frequent changes occuring at
di erent levels of the infrastructure. In this section we categorize the observed changes in
three categories: service-related, topology-related and tra c-related events.

2.25.1 Service-related Events

Service-related dynamic events include all changes in the applications deployed in the VMs
of a single tenant. These changes can refer to addition (i.e. installation) of a new applica-
tion or the removal of an existing one inside an already deployed VM. A recon guration of
an existing application resulting in additional features is also considered a service-related
dynamic event.

2.2.5.2 Topology-related Events

Topology-related events include all changes in the topology of a tenant's virtual infras-
tructure. The three main commands in a VM life cycle that constitute topology related
dynamic events are: VM creation, VM deletion and VM migration (seamlessly moving a
VM between two physical nodes over local or wide area network). VM migration can be
interpreted as a combination of creation and deletion as when a VM is migrated between
two nodes a new copy of the VM is created in the destination node, while the old copy
of the VM is deleted from the source node. Public cloud providers o er the possibility
of auto-scaling to their tenants in order to automate management of their application's
computational load. Scaling decisions generate topology-related changes either by adding
new virtual machines (scaling out) or by deleting existing ones when the application's
load decreases (scaling in). Network recon guration events (e.g. changing a subnet's ad-
dress range, moving VMs between di erent subnets or creating/deleting subnets) are also
considered topology-related changes.

2.2.5.3 Trac-related Events

Often tenants deploy network-oriented applications in their cloud infrastructure. Depend-
ing on the load of the deployed applications, di erent levels of network tra c are generated
towards and from the virtual infrastructure. Any change in the tenant's virtual infrastruc-
ture incoming or outgoing tra ¢ load is considered a tra c-related dynamic event. Public
cloud providers o er load-balancing solutions in order to handle the dynamic network load
and evenly distribute it to available resources. Load balancing decisions can also lead to
topology-related changes when new VMs are started or shutdown.
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2.2.5.4 Summary

In this section, we described the three main categories of dynamic events that occur in a
cloud infrastructure. The security monitoring framework designed in this thesis addresses
the need for recon guration of monitoring devices in all three event categories. We now
continue with a description of virtualization technologies as the building block that enables
cloud-computing.

2.3 Virtualization

This section gives a brief overview of infrastructure virtualization. Infrastructure virtu-
alization can be decomposed in server virtualization and network virtualization. We rst
present the main server virtualization components followed by the four dominant server
virtualization techniques. Finally, this section concludes with a description of network
virtualization.

The rst ones to de ne the notion of server virtualization where Popek and Goldberg
in their paper "Formal requirements for virtualizable third generation architectures” [33].
According to [33], virtualization is a mechanism permitting the creation of Virtual Ma-
chines which are essentiallye cient, isolated duplicates of real machines.

2.3.1 Server Virtualization Components

In an laaS infrastructure there are three main architectural layers: physical, hypervisor
and virtual machine. We brie y describe each one:

Physical: The physical machine provides the computational resources that are di-
vided between virtual machines (VMs). Computational resources include CPUs,
memory and devices (e.g. disk, NIC).

Hypervisor: Originally known as the Virtual Machine Monitor, this component is
responsible for mediating the sharing of physical resources (e.g. CPU, memory) be-
tween di erent co-located VMs that operate concurrently. The hypervisor is respon-
sible for ensuring isolation between di erent VMs providing a dedicated environment
for each one without impacting the others.

Virtual Machine : A VM or guest is the workload running on top of the hypervisor.
The VM is responsible for executing user applications and virtual appliances. Each
VM is under the illusion that it is an autonomous unit with its own dedicated physical
resources. The VM is oblivious about the existence of multiple other consolidated
VMs on top of the hypervisor of the same physical machine.

The security monitoring framework designed in this thesis targets the virtual machine
layer. For extracting key information regarding the services hosted inside the monitored
VMs the hypervisor is leveraged.

2.3.2 Server Virtualization

There are di erent mechanisms that enable the creation of virtual machines each one pro-
viding di erent features. Here we detail the four main ones: emulation, full virtualization,
paravirtualization and OS-level virtualization. The contributions presented in this thesis
apply to full virtualization and paravirtualization.
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2.3.2.1 Machine-Level Virtualization

2.3.2.1.1 Emulation Emulation is the rst proposed technique to allow the system to
run a software that mimics a speci c set of physical resources. This mechanism was used
to enable the usage of console video games on personal desktop machines. In emulation,
the assembly code of the guest is translated into host instructions, a technique known as
binary translation. A dedicated component, the emulator is responsible for performing
the translation and providing isolation between di erent guests. There are two di erent
translation techniques: static and dynamic. Static binary translation requires translating

all of the guest code into host code without executing it. Dynamic binary translation on the
other hand o ers at runtime emulation where emulators fetch, decode and execute guest
instructions in a loop. The main advantage of dynamic binary translation is that since
the translation is happening on the vy, it can deal with self-modifying code. Although the
performance cost is evident, emulation is very exible as any hardware can be emulated
for a guest's OS. Popular emulators include Bochs[134] and Qemi[35], which support a
wide number of guest architectures (x86, x8664, MIPS, ARM, SPARC).

2.3.2.1.2 Rull Virtualization Full system-wide virtualization delivers a virtual ma-
chine with dedicated virtual devices, virtual processors and virtual memory. In full vir-
tualization the hypervisor is responsible for providing isolation between VMs as well as
multiplexing on the hardware resources. This technique enables running VMs on top of
physical hosts without the need to perform any alterations on the VM or the host OS
kernel. In [33] the authors formalize the full-virtualization challenge as de ning a virtual
machine monitor satisfying the following properties:

Equivalence: The VM should be indistinguishable from the underlying hardware.
Resource control: The VM should be in complete control of any virtualized resources.

E ciency: Most VM instructions should be executed directly on the underlying CPU
without involving the hypervisor.

The two methods that make full virtualization possible are: binary translation and
hardware acceleration. We discuss both of them.

Binary translation: This technique uses the native OS 1/O device support while
o0 ering close to native CPU performance by executing as many CPU instructions as pos-
sible on bare hardware [[36]. When installed, a driver is loaded in the host OS kernel in
order to allow it's user space component to gain access to the physical hardware when
required. The same driver is responsible for improving network performance for the vir-
tualized guest.Non-virtualized instructions are detected using binary translation and are
replaced with new instructions that have the desired e ect on the virtualized hardware.
The main argument behind virtualization through binary translation is that no modi -
cations of either the guest or the host OS are required. Unfortunately, a non-negligible
performance penalty is applied due to the need of performing binary translation and em-
ulation of privileged CPU instructions. Full virtualization with binary translation can be
interpreted as a hybrid technique between emulation and virtualization. In contrast to em-
ulation where each CPU instruction is emulated, full virtualization with binary translation
allows for some CPU instructions to run directly on the hosts CPU. The most popular fully
virtualized solutions using binary translation are: Qemu [35], VirtualBox [37], VMware
Fusion and Workstation [38] [39].
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Hardware acceleration: In order to cope with the performance overhead intro-
duced by binary translation and enable virtualization of physical hardware, Intel (resp.
AMD) came up with the VT-x technology [40] (resp. AMD-V). With VT-x a new root
mode of operation is allowed in the CPU. Two new transitions are enabled: from the VMM
to a guest a root to non-root transition (called VMEntry) and from the guest to VMM
a non-root to root transition (called VMEXit). Intel uses a new data structure to store
and manage information regarding when these transitions should be triggered, the virtual
machine control structure (VMCS). Typically a VMEXit occurs when the VM attempts
to run a subset of privileged instructions. The VMCS data structure stores all necessary
information (instruction name, exit reason). This information is later used by the VMM
for executing the privileged instruction. The most popular solutions using hardware as-
sisted virtualization are: KVM [27], VMware ESXi [29], Microsoft Hyper-V [41] and Xen
Hardware Virtual Machine [42].

2.3.2.1.3 Paravirtualization In contrast to full virtualization which advocates for
no modi cations in the guest OS, paravirtualization requires the guest OS kernel to be
modi ed in order to replace non-virtualized instructions with hypercalls that communi-
cate directly with the hypervisor. The hypervisor is responsible for exporting hypercall
interfaces for other sensitive kernel operations such as memory management and inter-
rupt handling. Xen Project [28] has been the most prominent paravirualization solution.
In Xen the processor and memory are virtualised using a modi ed Linux kernel. The
modi ed kernel is actually an administrative VM (called dom0) responsible for providing
isolation between VMs, handling network, I/O and memory management for the guest
VMs (domU). DomO is also in control of the guest VMs lifecycle and bares the responsi-
bility for executing privileged instructions on behalf of the guest OS. The later is done by
issuing hypercalls DomO traps the latter and executes them either by translating them
to native hardware instructions or using emulation. Xen operates based on &plit driver
model where the actual device drivers, called backend drivers, are located inside DomO
and each DomU implements an emulated device, called frontend driver. Every time a
DomU issues a call to a driver the emulated part transfers the call to the actual driver in
DomO0 { hence the two drivers complementary operate as one. Although Xen is a promising
solution for near native performance, its application is limited to open source OSes like
Linux or proprietary solutions which o er a customized Xen-compatible version.

2.3.2.1.4 Hypervisor Practices Emulation, full virtualization and paravirtualiza-
tion can be combined. Typically, devices are fully emulated (for maintaining the use of
legacy drivers) or paravirtulized (for e cient multiplexing access on these devices from
di erent VMs) while the CPU is fully virtualized. Modern hypervisors that adopt this
technique are: KVM [27], Xen [28] and VMware Workstation [39].

2.3.2.2 0OS-level Virtualization

Another solution, known as lightweight or OS-level virtualization [43], allows the OS kernel
to perform virtualization at the system call interface, and create isolated environments that
share the same kernel. These exible, user-oriented isolated environments are known as
containers. Containers have their own resources (e.g. le system, network connectivity,
rewall, users, applications) that are managed by the shared OS kernel (responsible for
providing isolation). Since they all share the same kernel the performance overhead is
minimal to none. Furthermore, a container can be migrated in the same way as a VM.
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Unfortunately, the main issue behind OS-level virtualization is that all containers in a
single physical machine are limited to the kernel of the host OS. This limits the number of
OSes to only the ones supported by the host's kernel. LXC[44] and Docker [45] are some
of the most prominent solutions in this category.

2.3.3 Network Virtualization and Network Management in laaS Clouds

Network virtualization is one of the key aspects in an laaS cloud environment. Assigning
IP addresses to VMs, communication between VMs that belong to the same or di erent

tenants and nally communication between VMs and the outside world are some of the

issues that need to be addressed from the network virtualization component of the laaS
cloud management system. In this section we rst present the mechanisms that materialize
network virtualization and we continue with a discussion about network management in

laaS clouds focusing on OpenStack.

2.3.3.1 Network Virtualization

There are dierent solutions that enable network virtualization. Multi-protocol Label
Switching [46] uses a "label" appended to a packet in order to transport data instead
of using addresses. MPLS allows switches and other network devices to route packets
based on a simpli ed label (as opposed to a long IP address)Hard VLANs allow a single
physical network to be broken to multiple segments. By grouping hosts that are likely to
communicate with each other to the same VLAN, one can reduce the amount of tra ¢ that
needs to be routed. Flat networking relies on the ethernet adapter of each compute node
(which is con gured as a bridge) in order to communicate with other hosts. With VLAN
tagging each packet belonging to a speci ¢ VLAN is assigned the same VLAN ID while
with GRE encapsulation tra ¢ is encapsulated with a unique tunnel ID per network (the
tunnel ID is used in order to di erentiate between networks). VLAN tagging and GRE
encapsulation both require a virtual switch in order to perform the tagging (respectively
encapsulation) while at networking does not require a virtual switch.

However these solutions lack a single unifying abstraction that can be leveraged to
con gure the network in a global manner. A solution to this empedement that pro-
vides dynamic centrally-controlled network management is software de ned networking
(SDN) [@7]). In this section we mainly focus on SDN.

Software de ned networking [47] emerged as a paradigm in an e ort to break the
vertical integration of the control and the data plane in a network. It separates a network's
control logic from the underlying physical routers and switches which are now simple
forwarding devices. The control logic is implemented in a centralized controller allowing
for a more simpli ed policy enforcement and network recon guration. Although SDNs are
logically centralized, the need for a scalable, reliable solution that guarantees adequate
performance does not allow for a physically centralized approach. The separation between
the control and the data plane is feasible by creating a strictly de ned programmable
interface (API) between the switches and the SDN controller. The most notable example
of such API is OpenFlow [48]. In each OpenFlow switch ow tables of packet-handling
rules are stored. Each rule matches a subset of the tra c and performs certain actions
(dropping, forwarding, modifying) on the matched subset. The rules are installed on the
switches by the controller and depending on their content a switch can behave like a router,
switch, rewall or in general a middlebox. A switch can communicate with the controller
through a secure channel using the OpenFlow protocol which de nes the set of messages
that can be exchanged between these two entities. Tra ¢ handling rules can be installed
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on the switches either proactively or reactively, when a packet arrives. A representation
of the SDN architecture can be found in Figur¢2.3.

Figure 2.3 { The SDN architecture

Although OpenFlow is the most widely accepted and deployed API for SDNs there
are several other solutions such as ForCES [49] and POFE_[60]. The controller provides a
programmatic interface to the network that can be used to execute management tasks as
well as o er new functionalities. It essentially enables the SDN model to be applied on a
wide range of hardware devices (e.g. wireless, wired). A wide range of available controllers
exist such as Nox[[51], OpenDaylight[[52] and Floodlight[[53].

Making network virtualization a consolidated technology requires multiple logical net-
works to be able to share the same OpenFlow networking infrastructure. FlowVisor[[54]
was one of the early solutions towards that direction. It enables slicing a data plane based
on o -the-shelf OpenFlow compatible switches, making the coexistence of multiple net-
works possible. The authors propose ve slicing dimensions: bandwidth, topology, tra c,
forwarding tables and device CPU. Each slice can have its own controller allowing multiple
controllers to inhabit the same physical infrastructure. Each controller can only operate
on its own slice and gets its own ow tables in the switches.

FlowN [55] o ers a solution analogous to container virtualization (i.e. a lightweight
virtualization approach). In contrast with FlowVisor [54]] it deploys a unique shared
controller platform that can be used to manage multiple domains in a cloud environment.
A single shared controller platform enables management of di erent network domains. It
o0 ers complete control over a virtual network to each tenant and it allows them to develop
any application on top of the shared controller.

Network virtualization platform (NVP) from VMware (as part of the NSX [56] prod-
uct) provides the necessary abstractions for the creation of independent networks (each
one with di erent service model and topology). No knowledge about the underlying net-
work topology or state of the forwarding devices is required as tenants simply provide
their desired network con guration (e.g. addressing architecture). NVP is responsible
for translating tenant requirements to low-level instruction sets that are later on installed
on the forwarding devices. A cluster of SDN controllers is used in order to modify the
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ow tables on the switches. NVP was designed to address challenges in large-scale multi-
tenant environments that are not supported by the previously described solutions (e.g.
migrating an information system to the cloud without the need of modifying the network
con guration). A similar solution is SDN VE [57] from IBM based on OpenDaylight.

2.3.3.2 Network Management in laas Clouds

Network virtualization delivers compute-related options (create, delete) to network man-
agement. Network objects (networks, subnets, ports, routers, etc) can be created, deleted
and recon gured programmatically without the need of recon guring the underlying hard-
ware infrastructure. The underlying hardware infrastructure is treated as a pool of trans-
port resources that can be consumed on demand. Tenants can create private networks
(i.e. tenant networks) and choose their own IP address scheme, which can overlap with
IP addresses chosen by other tenants. Depending on the type of the tenant network ( at,
VLAN, GRE) di erent communication capabilities are o ered to the instances attached

to these networks.

The networking component of an laaS cloud management system is responsible for
mapping tenant-de ned network concepts to existing physical networks in a data cen-
ter. Essentially the network component performs the following functionalities: assign IP
addresses to VMs, facilitating communication between VMs that belong to the same or
di erent tenants and nally providing VMs with outside-world connectivity.

In OpenStack, Neutron is responsible for managing di erent tenant networks and o er-
ing a full set of networking services (routing, switching, load-balancing, etc) to provisioned
VMs. Neutron is composed of agents (e.g. DHCP agent, L3 routing agent, etc) that pro-
vide dierent types of networking services to provisioned VMs. Neutron creates three
di erent networks in a standard cloud deployment:

1. Management network: used for communication between the OpenStack components.
This network is only reached from within the datacenter.

2. Tenant networks: used for communication between VMs in the cloud. The con g-
uration of these networks depends on the networking choices made by the di erent
tenants.

3. External network: used to provide internet connectivity to VMs hosted in the cloud.

On each compute node a virtual bridge is created by a dedicated Neutron plugin (called
ML2 plugin) which is locally installed on each node. VMs are connected to networks
through virtual ports on the ML2-created bridge. The ML2 plugin is also responsible for

segregating network tra c between VMs on a per tenant basis. This can be achieved
either through VLAN tagging (all VMs that belong to the same network are assigned the

same tag) or GRE encapsulation.

2.4 Security Threats

In this section we detail some of the known attacks against information systems and cloud
environments.
2.4.1 Security Threats in Information Systems

Although one of the most common ways of executing cyber attacks is through the network
(i.e. either the Internet or a local area network), the attackers often target di erent areas
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in an information system. Here we list the most common threats depending on their target
level. Before presenting each threat category in detail, we present a high level overview
of the vulnerability classes that attackers can exploit. In general, missing validation of
inputs in an application can create an entry point for attacks (listed below). Furthermore,
lack of access control (i.e. through authentication mechanisms) can allow an attacker to
gain unauthorized privileged access.

2.4.1.1 Application Level

Application-level threats are abilities of an attacker to exploit vulnerabilities in the soft-
ware of one or more applications running in an information system.

One of the most common application-level attack is SQL injection[[58] against Database
Management Systems (DBMS). An SQL injection attack occurs when a malicious entity
on the client side manages to insert an SQL query via input data to the application. This
is usually possible due to lacks of input validation. The impact of the injection may vary
depending on the skills and imagination of the attacker. Usually, through an SQL exploit
the attacker can gain access to sensitive data inside the database, modify them (insert or
delete or update) or even retrieve the contents of a le present in the system. He can also
shutdown the DBMS by issuing administrative commands and sometimes even execute
commands outside the DBMS.

Another type of an injection attack is cross-site scripting (XSS) [59] when the attacker
manages to insert malicious code in a trusted website. Cross-site scripting exploits the
absence of validation of user input. The malicious code could be in the form of a JavaScript
segment or any other code that the browser can execute. When a di erent user accesses
this website she will execute the script thinking that it comes from a trusted source, giving
the attacker access to cookies, session tokens or other sensitive information retrieved by
the browser on behalf of the infected website. In a more severe scenario the attacker might
even redirect the end user to web content under his control. An XSS attack can either
be stored (the malicious script permanently resides on the target server) or re ected (the
script is re ected o the web server { for example in an error message).

A bu er over ow [60]] generally occurs when an application attempts to store data
in a bu er and the stored data exceeds the bu er's limits. Bu er over ows are possible
because of badly validated input on the application's side. Writing in an unauthorized
part of the memory might lead to corrupted data, application crashes or even malicious
code execution. Bu er over ows are often used as entry points for the attacker in order
to inject malicious code segment into the host's memory and then execute it by jumping
to the right memory address. Another alternative for malicious code injection is format
string attacks [61]. Format String Attacks (FSA) are used in order to leak information
such as pointer addresses. After a successful FSA, normally a return oriented programming
exploit is used. Return oriented programming allows the attacker to use short sequences of
instructions that already exist in a target program in order to introduce arbitrary behavior.

2.4.1.2 Network Level

In the network-level threat category we describe attacks that target communications of
layer 3 and above in an information system.

Network-level impersonation occurs when an attacker masks his true identity or tries
to impersonate another computer in network communications. Operating systems use the
IP address of a packet to validate its source. An attacker can create an IP packet with
a header that contains a false sender's address, a technique known as IP spoo rig [62].
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This technique, combined with TCP protocol speci cations (i.e. the sequence and ac-
knowledgement numbers included in a TCP header) can lead to session hijacking. The
attacker predicts the sequence number and creates a false session with the victim who in
turn thinks that he is communicating with the legitimate host.

Denial of Service (DoS) attacks aim at exhausting the computing and network resources
of an information system. The way these attacks operate is by sending a victim a stream
of packets that swamps its network or processing capacity, denying access to its normal
clients. One of the methods employed is SYN ooding[[63], in which the attacker sends
client requests to the victim's server. SYN ooding attacks target hosts that run TCP
server processes and exploit the state retention of the TCP protocol after a SYN packet has
been received. Their goal is to overload the server with half-established connections and
disturb normal operations. Both IP spoo ng and SYN ooding are common techniques for
launching a denial of service attack and preventing users from accessing a network service.
In the event of a server being protected against SYN ood attacks, a denial of service can
still be possible if the server in question is too slow in serving ooding requests (the attacker
simply overloads the server). Finally, as the name indicates, a man-in-the-middle attack
refers to a state where the attacker is able to actively monitor, capture and control the
network packets exchanged between two communicating entities. Sophisticated versions
of man-in-the-middle attacks include attempts against TLS-based communications where
the attackers are able to falsely impersonate legitimate users [64].

Domain Name Servers (DNS) are essential parts of the network infrastructure that map
domain names to IP addresses redirecting requests to the appropriate location. Attackers
target DNS systems in their e ort to redirect legitimate requests to malicious websites
under their control. One of the most common techniques to achieve that is DNS cache
poisoning. DNS cache poisoning exploits a vulnerability in the DNS protocol([65] in order
to replace legitimate resolution results with awed ones that include the attacker's website.

Depending on the type of services hosted in an information system attackers use dif-
ferent exploitation techniques. Identi cation of the type of hosted services is a necessary
preliminary step in most exploitation attempts. A common way for an attacker to identify
network services hosted in an information system or probe a speci ¢ server for open ports,
is port scanning [66]. The standard way to perform a port scan is to launch a process that
sends client requests to a range of ports in a particular server (vertical port scan) or to a
speci c port on several hosts (horizontal port scan). Depending on the type of the request
there are di erent port scan categories at the TCP level. Application ngerprinting, where
an attacker looks for a reply that matches a particular vulnerable version of an application
is also a common technique used to identify the type of hosted service.

2.4.1.3 Operating System Level

All user applications in an information system rely on the integrity of the kernel and core
system utilities. Therefore, a possible compromise of any of these two parts can result
in a complete lack of trust in the system as a whole. One of the most common attacks
against a system's kernel is a rootkit installation. Rootkits are pieces of software that allow
attackers to modify a host's software, usually causing it to hide their presence from the
host's legitimate administrators. A sophisticated rootkit is often able to alter the kernel's
functionality so that no user applications that run in the infected system can be trusted

to produce accurate results (including rootkit detectors). Rootkits usually come with a
dedicated backdoor so the attacker can gain and maintain access to the compromised host.
Backdoors usually create secure SSH connections such that the communication between
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the attacker and the compromised machine cannot be analysed by Intrusion Detection
Systems or other network monitoring tools.

2.4.1.4 Summary

In this section we have described security threats targeting traditional information systems.
The described attacks could also target applications running inside virtual machines in an
outsourced infrastructure. We continue with a description of cloud speci ¢ security threats

and a classi cation based on their target.

2.4.2 Security Threats in Cloud Environments

In a cloud environment security concerns two di erent actors. First, tenants are concerned

with the security of their outsourced assets, especially if they are exposed to the Internet.
Second, the provider is also concerned about the security of the underlying infrastructure
especially when he has no insight regarding the hosted applications and their workload. In
this section we focus on security threats originating from corrupted tenants against other
legitimate tenants and their resources, threats against the provider's infrastructure and

their origin as well as threats towards the provider's API.

2.4.2.1 Threats against tenants and based on shared resources

One of the key elements of a cloud infrastructure is multi-tenancy (i.e. multiplexing virtual
machines that belong to di erent tenants on the same physical hardware). Although this
maximizes e ciency for the cloud provider's resources, it also o ers the possibility that
a tenant's VM can be located in the same physical machine as a malicious VM. This in
turn engenders a new threat: breaking the resource isolation provided by the hypervisor
and the hardware and gaining access to unauthorized data or disturbing the operation of
legitimate VMs.

One of the most prominent attacks that illustrates this threat is the side channel attack
where an adversary with a colocated VM gains access to information belonging to other
VMs (e.g. passwords, cryptographic keys). In[[6]7] the attackers used shared CPU caches
as side channels in order to extract sensitive infomation from a colocated VM.

Another technique that exploits VM colocation is DoS attacks against shared resources.
A malicious VM is excessively consuming shared computing resources (CPU time, memory,
I/0 bandwidth) disallowing legitimate VMs from completing their tasks.

2.4.2.2 Provider Infrastructure

In an laaS cloud environment{2.2.3.1 each VM is under the illusion that it runs on its own
hardware (i.e. CPU, memory, NIC, storage). This illusion is created by the hypervisor,
which is responsible for allocating resources for each VM, handling sensitive instructions
issued by VMs and nally managing VM lifecycle 2.3. In this section we discuss security
threats targeting the hypervisor, as a core component of the provider's infrastructure.

An attacker targeting the hypervisor might be able to execute malware from di erent
runtime spaces inside the cloud infrastructure. Each runtime space comes with di erent
privileges. We list the runtime spaces in increasing order of privilege level (also the order
in di culty to exploit).

Guest VM User-Space: This runtime space is the easiest one to obtain especially
in an laaS environment. Although, attempts to run privileged instructions could
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lead to an exception, an attacker can run any type of exploit. In [68] the attacker
manages to break out from a guest by exploiting a missing check in the QEMU-KVM
user-space driver.

Guest VM Kernel-Space: Since in an laaS cloud environment tenants can run an OS
of their choice, an attacker can provision some VMs, run an already tampered OS
and use the malicious guest's kernel to launch an attack to the hypervisor. In [[69]
an attack to the hypervisor implements a malicious para-virtualized front-end driver
and exploits a vulnerability in the back-end driver.

Hypervisor Host OS: One of the most desirable runtime spaces for an attacker is the
one of the host OS as the privileges granted are very high. For example, KVM as a
part of the Linux kernel, provides an entry point for attackers that have local user
access to the host machine, exploiting a aw in KVM.

Customers in public clouds manage their resources through dedicated web control in-
terfaces. Moreover, cloud providers also manage the operation of the cloud system through
dedicated interfaces that are often accessible through the Internet. A successful attack on
a control interface could grant the attacker complete access to a victim's account along
with all the data stored in it, or even worse to the whole cloud infrastructure when the
provider's interface is compromised. In[[70] attacks towards cloud management interfaces
are considered extremely high risk and in[[711] the authors prove that the web interfaces of
two known public and private cloud systems (Amazon's EC2 and Eucalyptus) are suscepti-
ble to signature wrapping attacks. In a signature wrapping attack, the attacker can modify
a message signed by a legitimate signature, and trick the web service into processing its
message as if it was legitimate.

2.4.3 Summary

In summary, traditional information systems as well as cloud environments face multiple
security threats originating from di erent privilege levels in the infrastructure. In an laaS
cloud environment the attack surface is expanded with the addition of the hypervisor,
as the building block of a cloud infrastructure, as well as the web-exposed management
API. In order to successfully detect attacks a security monitoring framework is needed.
We continue our discussion with a detailed description of security monitoring frameworks
both for traditional information systems and cloud environments.

2.5 Security Monitoring

Information systems face continuous threats at di erent levels of their infrastructure. An
attacker can gain access to the system by exploiting a software vulnerability and thus be
able to modify both the OS kernel and critical system utilities. In order to detect such
activities, a security monitoring framework is necessary. A security monitoring framework
consists of the appropriate detection mechanisms required to diagnose when an information
system has been compromised and inform the administrator in the form of specialised
messages (called alerts).

2.5.1 What is Security Monitoring?
According to [72]:
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De nition 3 Security Monitoring is the collection, analysis, and escalation of indica-
tions and warnings to detect and respond to intrusions.

Due to the diverse nature of applications hosted in an information system, a security mon-
itoring framework requires multiple components that monitor di erent parts of the system
in order to maintain situational awareness of all hosted applications. Figurd 2.4 depicts an
information system with di erent security devices: rewalls, antiviruses, network-based
IDS.

Figure 2.4 { Information system with di erent security devices contributing to security
monitoring

In the following sections we discuss some of the core components embedded in modern
security monitoring frameworks focusing primarily on Intrusion Detection Systems (IDS)
and Firewalls as the contributions presented in this thesis focus on these two components.

2.5.1.1 Main Components

Several tools are available for mitigating malware threats in an information system. We
list the most common ones along with their typical features.

Antivirus:  Most antivirus solutions provide capabilities such as scanning critical

system components (startup les, boot records), real-time scanning of les that are

downloaded, opened or executed, sandboxed dynamic monitoring of running appli-
cations and identifying common types of malware (viruses, worms, backdoors, etc).
Commercial solutions include Kaspersky Security Scari [73], AVG antivirus[[74] and
Panda Protection [75].

Router: Typically a router uses a set of trac management rules that is known
as anaccess control list Routers are normally deployed in front and at the core of
an information system's rewall and perform some tra ¢ mitigation such as ingress
and egress ltering. Commercial solutions include: Cisco ASR 1000 Series [76] and
Juniper MX Series [77].

Access Control Systems:  Normally access control systems are concerned with
regulating the users attempts to access speci ¢ resources in an information system.
Information systems apply access controls at di erent levels of their infrastructure

(e.g. an OS regulating access to les, or an authentication server described below).

Virtual Private Network (VPN): VPN allows users to access an organization's
private network remotely. It o ers tra ¢ encryption between two connection points
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through a variety of supported protocols (TLS [78], IPsec[[79], DTLS[[80]). Examples
of VPN service providers include: VPN Express[81] and VyPR VPN [82]

Authentication Server: A server that is used to authenticate users or applications
through the network using a set of credentials (e.g. username and password). Au-
thentication servers support a variety of protocols. Notable example of this category
is the LDAP protocol [83] and Kerberos [84] protocol.

Log Collectors: In order to facilitate the collection and analysis of events of inter-
est, log collectors are necessary for every information system. Depending on the level
of desired system-wide visibility, di erent time intervals for the collection of logs can
be de ned. Due to high diversity between event sources (i.e. applications, system,
security devices) most software solutions are able to gather and unify information
from di erent sources and di erent formats. In a cloud environment log collection
is of critical importance as it allows tenants to gain insight into resources utiliza-
tion, application performance, security and operational health. Major public clouds
0 er customisable logging services such as CloudWatch [85] and Log Analytics [86].
In traditional information systems a variety of log collection solutions exists (e.qg.
rsyslog [87], LogStash(]88]).

2.5.1.2 Intrusion Detection Systems

Intrusion detection systems are usually at the core of a security monitoring framework.
Their main purpose is to detect security breaches in an information system before they
inict widespread damage. An IDS is composed of three main stages: data collection,
processing and reporting. The core detection feature is implemented in the processing
stage.

2.5.1.3 What is an IDS?
According to [89]:

De nition 4  Intrusion detection is the process of monitoring the events occurring in
a computer system or network and analyzing them for signs of possible incidents, which
are violations or imminent threats of violation of computer security policies, acceptable use
policies, or standard security practices.

Consequently, an Intrusion Detection System is software that automates the intrusion
detection process.

In the following section we describe the dierent types of IDSs according to their
detection technique and we follow with a classi cation based on the embedded technology.

2.5.1.4 Types of IDSs

Most of the IDS technologies are based on one of the two following detection tech-
niques [90], [91]. We describe each one along with observed advantages and pitfalls.

Signature-based : Signhature-based IDSs compare observed events against a list of
a priori known signatures in order to identify possible security breaches. A signa-
ture is generally a pattern that corresponds to a registered attack. Signature-based
detection is very e ective at identifying known threats and is the simplest form of
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detection. A signature-based IDS compares the current unit of activity (e.g. net-
work packet, le content) to the list of signatures using string comparison. Unfortu-
nately, signature-based detection is largely ine ective when dealing with previously
unknown attacks, attacks that are composed by multiple events or attacks that use
evasion techniques[[92]. Known examples of signature based IDSs include Snartl[93],
Suricata [94] and Sagan([95].

Anomaly-based: Anomaly-based IDSs compare a pro le of activity that has been
established as normal with observed events and attempt to identify signi cant de-
viations. Each deviation is considered an anomaly. A normal pro le is created by
observing the monitored system for a period of time-calledraining period (e.g. for

a given network http activity composes 15% of the observed trac) and can be
static (the pro le remains unchanged) or dynamic (the pro le is updated at spe-
ci c time intervals). Depending on the methodology used to create the normal
pro le anomaly-based IDSs are either statistical-, knowledge- or machine-learning-
based [92]. Statistical-based IDSs represent the behavior of the analysed system
from a random view point, while knowledge-based IDSs try to capture the system's
behavior based on system data. Finally machine learning-based IDSs establish a
model that allows for pattern categorization.

One of the main advantages of an anomaly-based IDS is that it can be very e ective
when dealing with previously unknown attacks. Unfortunately, anomaly-based IDSs
su er from many false positives when benign activity, that deviates signi cantly from
the normal pro le, is considered an anomaly. This phenomenon is ampli ed when the
monitored information system is very dynamic. Known examples of anomaly-based
IDSs include Bro [96], Stealthwatch [97] and Cisco NGIPS[98].

According to [99] IDS technologies are divided in two categories depending on the type

of events that they monitor and the ways in which they are deployed:

Network-based (NIDS): NIDSs monitor network tra c (i.e. packets) for a par-
ticular network or segments of a network and analyze network protocol activity or
packet payload in order to detect suspicious events or attacks. The most common
approach for deploying an NIDS is at a boundary between networks, in proximity
to border rewalls or other security devices. A speci c category of NIDS is wireless
IDSs, which monitor only wireless network tra ¢ and analyze wireless network pro-
tocols for identifying suspicious activity. In contrast to other NIDS which focus on
packet payload analysis, wireless NIDSs focus on anomalies in wireless protocols.

Host-based (HIDS): HIDSs monitor the events occurring in a single host for sus-
picious activity. An HIDS can monitor network tra ¢, system logs, application ac-
tivity, process list and le access in a particular host. HIDSs are typically deployed
on critical hosts that contain sensitive information.

We have described the main IDS categories based on the mechanism used for detection

and the way they are deployed. The work done in this thesis focuses on network-based
IDSs. We now discuss the second main security component that has been addressed in
this thesis: the rewall.

2.5.1.5 Firewalls

This section focuses on a di erent security component, the rewall.
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2.5.1.5.1 What is a Firewall? According to [100]:

Denition 5 A rewall is a collection of components, interposed between two networks,
that lters tra ¢ between them according to some security policy.

Firewalls are devices that provide the most obvious mechanism for enforcing network
security policies. When deploying legacy applications and networks, rewalls are excellent
in providing a rst-level barrier to potential intruders. The most common rewall con-
guration comprises two packet ltering routers that create a restricted-access network
(called Demilitarized Zone or DMZ, see Figurd 2.5).

Figure 2.5 { A DMZ example

According to [101] rewalls have three main goals:
1. Protect hosts inside the DMZ from outside attacks,

2. Allow tra ¢ from the outside world to reach hosts inside the DMZ in order to provide
network services,

3. Enforce organizational security policies that might include restrictions that are not
strictly security related (e.g. access to speci ¢ websites).
2.5.1.5.2 Firewall Features We now discuss available rewall features and the ca-
pabilities of each one as in[[102].

Packet Itering: The most basic feature of a rewall is the ltering of packets.
When we refer to packet Itering we are not concerned with the payload of the
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network packets but with the information stored in their headers. The mechanism
of packet ltering is controlled by a set of directives which is known asruleset The

simplest form of a packet ltering device is a network router equipped with access
control lists.

Stateful inspection: This functionality essentially improves packet lItering by
maintaining a table of connections state and blocking packets that deviate from the
expected state according to a given protocol.

Application-level: In order to extend and improve stateful inspection, stateful

protocol analysis was created. With this mechanism a basic intrusion detection
engine is added in order to analyse protocols at the application layer. The IDS
engine compares observed tra ¢ with vendor-created benign pro les and is able to
allow or deny access based on how an application is behaving over the network.

Application-proxy gateways: A rewall which acts as an application-proxy gate-
way contains a proxy agent that acts as an intermediary between di erent hosts
that want to communicate with each other. If the communication is allowed then
two separate connections are created (client-to-proxy and proxy-to-server) while the
proxy remains transparent to both hosts. Much like an application-level rewall the
proxy can inspect and lter the content of tra c.

Virtual private networking (VPN): A common requirement for rewalls is to
encrypt and decrypt network tra ¢ between the protected network (DMZ) and the
outside world. This is done by adding a VPN functionality to the rewall. As with
other advanced rewall functionalities (besides simple header-based packet ltering)
a trade-o between the functionality and the cost in terms of computational re-
sources (CPU, memory) depending on the tra ¢ volume and the type of requested
encryption, is introduced.

Network access control:  Another functionality for modern rewalls is controlling
incoming connections based on the result of health checks performed on the computer
of a remote user. This requires an agent that is controlled by the rewall to be
installed in the user's machine. This mechanism is typically used for authenticating
users before granting them access to the network.

Uni ed threat management: The combination of multiple features into a single
rewall is done with the purpose of merging multiple security objectives into a single
system. This usually involves o ering malware detection and eradication, suspicious
probe identi cation and blocking along with traditional rewall capabilities. Unfor-
tunately, the system's requirements in terms of memory and CPU are signi cantly
increased.

In this thesis, we address application-level rewalls and rewalls that provide stateful
tra c inspection capabilities.

2.5.2 Security Monitoring in Cloud Environments

After presenting di erent components of a security monitoring framework we zoom in secu-
rity monitoring frameworks tailored for cloud environments. As explained in Section[2.2.%
cloud environments experience dynamic events in di erent levels of the infrastructure.
Naturally, the occurring events engender changes for the security monitoring framework
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that requires its components to be automatically adapted to the new state. For example,
when a VM is migrated from one compute node to another, the NIDS that is responsible
for monitoring the tra ¢ on the destination compute node needs to be recon gured in
order to monitor the tra c for speci ¢ attacks against the services hosted in the migrated
VM. Without recon guration, an attack could pass undetected, creating an entry point
for the attacker and allowing him to compromise the cloud-hosted information system.

In this section we discuss cloud security monitoring solutions targeting either to the
provider infrastructure and its most critical components (e.g. hypervisor, host OS kernel)
or to the tenant information system.

2.5.2.1 Provider Infrastructure Monitoring

This section presents security solutions that target the cloud provider's infrastructure fo-
cusing on the hypervisor and host OS kernel. The frameworks described in both categories
could be considered as hypervisor or kernel IDS systems. The relationship between the
hypervisor and the host OS kernel is depicted in Figurg 2J6. In this picture the hypervisor
runs as a kernel module while the VMs run in user space. Their virtual address space is
mapped through the hypervisor to the host's physical address space.

Figure 2.6 { Hypervisor and host OS kernel

2.5.2.1.1 Hypervisor Integrity Checking Frameworks One of the trends in se-
curing the hypervisor involves reducing the Trusted Code Base (TCB)[[103] in many of
the commercial hypervisors. Although, such a solution would limit the attack surface it
would not completely guarantee the integrity of all hypervisor components. To address
this challenge, the authors in [104] have created HyperCheck, a hardware assisted intru-
sion detection framework, that aims at hardening the TCB. Their framework uses the
CPU System Management Mode (SMM, a built-in feature in all x86 models) for taking a
shapshot of the current state of the CPU and memory and transmits it to a secure remote
server for analysis. The remote server is capable of determining whether the analysed hy-
pervisor has been compromised by comparing the newly received snapshot with one taken
when the machine was initialized. HyperCheck operates in the BIOS level thus its only
requirement is that the attacker does not gain physical access to the machine for altering
the SMM during runtime. In order to secure HyperCheck against attacks that simulate
hardware resets, a machine with a trusted boot can be used. The authors of HyperCheck
implemented a prototype on QEMU which is able to create and send a snapshot of the
protected system in approximately 40ms.

In a similar approach the authors of HyperSentry [105] also used a shapshot taken by
the SMM to perform integrity checking. The fundamental di erence between these two
frameworks is that in the case of HyperSentry the request for the snapshot is issued by
a stealthy out-of-band channel, typically the Intelligent Platform Management Interface,
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that is out of the control of the CPU. Thus an attacker who has obtained the highest level
of privileges in the system still cannot call HyperSentry. Performance wise, a periodic
invocation of HyperSentry (integrity checks every 16 seconds) would result in an 1.3 % of
overhead for the hypervisor, while a full snapshot requires 35ms.

In contrast to the aforementioned hardware assisted solutions, HyperSafe [106] is a
software solution that is centered around enforcing hypervisor integrity rather than verify-
ing it. The authors use two software techniques, callechon-bypassable memory lockdown
and restricted pointer indexing, to guarantee integrity of the hypervisor's code in addition
to control ow integrity. Non bypassable memory lockdown write-protects the memory
pages that include the hypervisor code along with their attributes so that a change during
runtime is prevented. By leveraging non-bypassable memory lockdown the framework is
able to expand write-protection to control data. In order to deal with the dynamic nature
of control data (like stack return addresses) the authors compute a control graph and
restrict the control data to conform with the results of the graph. The induced overhead
by running HyperSafe for tenant applications is less than 5%.

2.5.2.1.2 Kernel Protection Frameworks In contrast to hypervisor integrity frame-

works which are only concerned with protecting the code base and data of the hypervisor,
kernel protection frameworks aim at securing the code integrity of the kernel. The frame-
works described below provide tampering detection for rootkits, a subcategory of malware.

One of the most pivotal works in kernel integrity checking is Copilot [107]. Copilot is
able to access a system's memory without relying on the kernel and without modifying
the OS of the host. The framework is based on a special PCI add-on card that is able to
check the monitored kernel for malicious modi cations periodically. The host's memory
is retrieved through DMA techniques and sent to a remote admin station for inspection
through a dedicated secure communication channel (much like the HyperCheck approach).
With an inspection window of 30 seconds Copilot's overhead to system performance is
approximately 1%.

HookSafe [[108] follows the same philosophy as HyperSafe by write-protecting kernel
hooks in order to guarantee control data integrity. The authors base their approach on
the observation that kernel hooks rarely change their value once initialised, thus making
it possible to relocate them in a page-aligned memory space with regulated access. The
performance overhead to real-world applications (e.g. Apache web server) is 6%.

Gibraltal [L09], installed in a dedicated machine called theobserver obtains a snapshot
of the kernel's memory through a PCI card. It observes kernel execution over a certain
period of time (training phase) and creates hypothetic invariants about key kernel data
structures. An example of an invariant could be that "the values of elements of the system
call table are constant". Gibraltal then periodically checks whether the invariants are
violated and if so an administrator is noti ed for the presence of a rootkit. The frame-
work produces a very low false positive rate (0.65%) while maintaining a low performance
overhead (less than 0.5%).

A common observation for the frameworks described in both kernel and hypervisor
intrusion detection solutions is that the incorporated detection mechanism cannot be
adapted depending on changes on the applications hosted in the monitored system (virtu-
alised or not). Furthermore, in the case of hypervisor integrity frameworks, the solutions
do not address changes in the virtual topology or the load of network tra c.

After describing the di erent approaches to secure the hypervisor, one of the most
critical parts of the provider's infrastructure, we now shift our focus to security monitoring
frameworks for tenant infrastructures.
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2.5.2.2 Tenant Information System Monitoring

In this section we focus on tenant security monitoring frameworks with two main com-
ponents: intrusion detection systems and rewalls. Before that we present an important
concept in tenant infrastructure monitoring called virtual machine introspection.

After reviewing threats against cloud hosted information systems it is clear that at-
tacks towards virtual machines often target on-line applications and the underlying OS.
Therefore acquiring real-time information about the list of running processes and the OS
state in the deployed VMs has become a necessity. Virtual machine introspection is able
to provide this information in an agentless manner guaranteeing minimal intrusiveness.

2.5.2.2.1 Virtual Machine Introspection After reviewing threats against cloud
hosted information systems it is clear that attacks towards virtual machines often tar-
get on-line applications and the underlying OS. Therefore acquiring real-time information
about the list of running processes and the OS state in the deployed VMs has become a
necessity. Virtual machine introspection is able to provide this information in an agentless
manner guaranteeing minimal intrusiveness. Security solutions that employ virtual ma-
chine introspection move monitoring and protection below the level of the untrusted OS
and as such can detect sophisticated kernel-level malware that runs inside the deployed
VMs.

What is Virtual Machine Introspection? The concept of introspection was in-
troduced by Gar nkel et al. in [2]. In general terms

De nition 6  virtual machine introspection is inspecting a virtual machine from the
outside for the purpose of analyzing the software running inside it.

The advantages of using VMI as a security solution are two-fold:

1. As the analysis runs underneath the virtual machine (at the hypervisor level) it is
able to analyze even the most privileged attacks in the VM kernel

2. As the analysis is performed externally it becomes increasingly di cult for the at-
tacker to subvert the monitoring system and tamper with the results. As such a high
con dence barrier is introduced between the monitoring system and the attacker's
malicious code.

Unfortunately, as the monitoring system runs in a completely di erent hardware do-
main than the untrusted VM it can only access, with the help of the hypervisor, hardware-
level events (e.g. interrupts and memory accesses) along with state-related information
(i.e. physical memory pages and registers). The system then has to use detailed knowledge
of the operating system's algorithms and kernel data structures in order to rebuild higher
OS-level information such as the list of running processes, open les, network sockets, etc.
The issue of extracting high-level semantic information from low-level hardware data is
known as the semantic gap

In order to bridge the semantic gap, the monitoring system must rely on a set of data
structures, which can be used as templates in order to translate hypervisor-level observa-
tions to OS-level semantics. As such, the monitoring system is required to keep up-to-date
detailed information about the internals of di erent commodity operating systems, thus
making the widespread deployment of introspection-based security solutions unfeasible.
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Virtuoso [110] attempts to overcome this challenge. Virtuoso is a framework that can au-
tomatically extract security-relevant information from outside the virtual machine. Virtu-
0s0 analyzes dynamic traces of in-guest programs that compute the introspection-required
information. Then it automatically produces programs that retrieve the same information
from outside the virtual machine. Although Virtuoso is a rst step towards automatic
bridging of the semantic gap it is limited only to information that can be extracted via
an in-guest API call (such as getpid() in Linux OS). Moreover, Virtuoso does not address
the main problem regarding VMI-aware malware: the fact that an attacker might a ect
the introspection result by altering kernel data structures and algorithms. An example of
such malware is DKSM [111].

The de facto standard in performing virtual machine introspection is XenAccess[112].
The authors de ne a set of requirements for performing e cient memory introspection:

1. No super uous modi cations of the hypervisor's code
2. No modi cations to the target VM,

3. Minimal performance impact,

4. Fast development of new monitors

5. Ability to have a full view of the target OSand

6. Target OS cannot tamper with monitors.

These requirements are met in XenAccess which provides also low-level disk trac in-
formation in addition to memory introspection. XenAccess utilises Xen's native function
xc_map_foreign_range() that maps the memory of one VM to another (in this case from
DomU to DomO, see Sectiorj 2.3.2.1]3), in order to access the monitored guest's memory
which is then treated as local memory, providing fast monitoring results. For gathering
the necessary information about the guest's OS a call to the XenStore database is made.
XenAccess is a library that allows security monitoring frameworks to perform virtual ma-
chine introspection and is not a standalone monitoring framework. As such it does not
incorporate any detection or prevention techniques.

LibVmi [113] is the evolution of XenAccess which extends introspection capabilities to
other virtualization platforms like KVM. Besides extending XenAcess to other virtualiza-
tion platforms, LibVmi o ers signi cant performance improvements by utilizing a caching
mechanism for requested memory pages. We use LibVmi in the implementation of the
contribution of this thesis presented in Chapter|§.

Virtual machine introspection solutions can be classied into two main categories:
passive and active monitoring, depending on whether the security framework performs
monitoring activities by external scanning or not.

2.5.2.2.2 Cloud-Tailored IDSs The complexity and heterogeneity of a cloud envi-

ronment combined with the dynamic nature of its infrastructure (see Section[2.2.5) make
the design of a cloud-tailored IDS a challenging task. The problem is augmented when tak-
ing into account the security requirements of di erent tenants whose information systems

often require customised security monitoring solutions that do not align with each other

(i.e. dierent types of security threats, level of desired information, etc). The approaches

described below detail IDS solutions that aim at addressing those challenges.
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Roschke et al.[1] propose an IDS framework (see Figu@.?) which consists of di erent
IDS sensors deployed at di erent points of the virtual infrastructure. Each virtual compo-
nent (e.g. virtual machine) is monitored by a dedicated sensor. All sensors are controlled
by a central management unit which is also accountable for unifying and correlating the
alerts produced by the di erent types of sensors.

The central management unit has four core componentsEvent Gatherer, Event Database
Analysis Controller and IDS Remote Controller. The Event Gatherer is responsible for

Figure 2.7 { The Cloud IDS architecture as in [1]

receiving and standardising alerts from the deployed sensors which are then stored in the
Event Database. Alerts are then accessed by the Analysis component which performs cor-
relation for the detection of multi-event complex attack scenarios. Finally the IDS Remote
Controller is responsible for the lifecycle (start, stop, shutdown) and con guration of each
IDS sensor.

Although the approach presented in the paper enables the use of dierent types of
IDS sensors (host-based, network based) it does not account for the dynamic nature of
the virtual infrastructure. For example, it is not clear whether the dedicated sensor is
migrated along with the virtual machine in case of a VM migration. Furthermore, the
recon guration of the IDS sensors is not automated (e.g. in the case where a new service
is added in the deployed VMs). Finally, component sharing is not enabled even within the
same virtual infrastructure.

In an attack-speci c approach the authors of [114] try to tackle the threat of a Denial-
of-Service event by deploying network-based IDS sensors next to each compute node of an
laaS cloud infrastructure. The proposed solution attempts to monitor each compute node
by a separate IDS instance and then perform alert correlation in a central point. Although
this approach clearly addresses the scalability issue of monitoring the whole trac at a
central point (e.g. one IDS instance attached to the network controller), there are several
issues that remain unsolved. For example there is no mention of IDS recon guration in
case of a changed set of services on the deployed VMs that are hosted in a particular
compute node. Although the authors advocate for a distributed approach that will result
to a better performing IDS sensor (in terms of packet drop rate) they do not address the
case where an unexpected tra c spike occurs. The described framework only includes
network-based IDSs, as opposed ta [1] which includes di erent types of IDSs.

In an e ort to address security in federated clouds as well as to tackle large-scale
distributed attacks that target multiple clouds, the authors of [115] propose a layered
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intrusion detection architecture. The framework performs intrusion detection in three
di erent layers: Customer Layer (tenant virtual infrastructure), Provider Layer (provider
physical infrastructure) and Cloud Federation Layer. Each layer is equipped with probes
which perform the actual detection functionality, agentswhich are responsible for gathering
and normalizing the alerts generated by di erent types of probes, and nally security
enginesthat perform the actual decision making by correlating the received alerts. The
security engines are responsible for deciding whether di erent security events represent a
potential distributed attack and for forwarding the results to a higher layer. The security
engine in the cloud provider layer is able to detect whether parts of its cloud infrastructure
have been compromised based on data that it receives from the security engines of di erent
customers (i.e. tenants). Although the authors attempt to combine the results of security
monitoring of the tenants and the provider, they do not address cases where recon guration
of the monitoring probes is required (i.e. when dynamic events occur). Moreover it is not
clear whether di erent security probes can be shared between tenants.

Livewire [2] was the pioneering work in creating an intrusion detection system that
applies VMI techniques. Livewire works o ine and passively. The authors use three main
properties of the hypervisor (isolation, inspection and interposition) in order to create
an IDS that retains the visibility of a host-based IDS while providing strong isolation
between the IDS and a malicious attacker. A view of Livewire's architecture can be found
in Figure2.8. The main components of the VMI-based IDS are:

Figure 2.8 { The Livewire architecture as in [Z]

OS interface library: responsible for providing an OS-view of the monitored guest by
translating hardware events to higher OS level structures. The OS interface library

is responsible for bridging the semantic gap (see Sectign 2.5.2.2.1)

Policy Engine: responsible for deciding if the system has been compromised or not.
Di erent detection techniques (e.g. anomaly detection) can be supported by the
policy engine in the form of policy modules.

The authors implemented their prototype on VMware workstation. As the rst step
towards using introspection in security monitoring, Livewire has some limitations. First,

it does not address dynamic events in a cloud infrastructure, as it remains unclear if the
dedicated IDS follows the VM in the event of a migration. Second the policy modules do
not account for tenant security requirements and cannot be adapted in case a new service
is added in the introspected VM. Finally, component sharing is not enabled as the design
limits an IDS to a single VM.
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HyperSpector [116] secures legacy IDSs by placing them inside isolated virtual machines
while allowing them to keep an inside-the-guest view of the monitored system through
virtual machine introspection. The authors use three mechanisms to achieve inside-the-
guest visibility:

Software port mirroring: the tra ¢ from and to the monitored VM is copied to the
isolated VM where the legacy IDS is running.

inter-VM disk mounting: the le system of the monitored VM is mounted in the
dedicated VM as a local disk, thus enabling integrity checks.

inter-VM process mapping: the processes running inside the monitored VM are
mapped to the isolated VM in the form of shadow processes with local identi ers.
A dedicated function called process mapperrunning in the hypervisor is responsible
for translating the local identi ers of the shadow processes to actual process identi-
ers in the monitored VM. The process mapperonly provides reading access to the
registers and memory of the shadow processes thus preventing a subverted IDS from
interposing the monitored VMs functionality. Inter-VM process mapping is used for
extracting information regarding the list of processes running inside the monitored
VM.

Although HyperSpector secures legacy IDSs through virtual machine introspection, it
su ers from the same limitations as Livewire.

Lares [117] attempts a hybrid approach in security monitoring through virtual machine
introspection by attempting to do active monitoring while still maintaining increased iso-
lation between the untrusted VM and the monitoring framework. The authors propose to
install protected hooks in arbitrary locations of the untrusted VM's kernel. The purpose
of the hook is to initiate a diversion of the control ow to the monitoring framework.
Once a hook is triggered, for example in the event of a new process, then the execution
in the untrusted guest is trapped and the control automatically passes in the monitor-
ing software which resides in an isolated VM. The hooks along with thetrampoline that
transfers control to the monitoring software are write protected by a special mechanism
in the hypervisor called write protector. The trampoline is also responsible for executing
commands issued by the monitoring software and does not rely on any kernel functions of
the untrusted VM.

Although Lares combines the bene ts of isolation along with the ability to interpose
on events inside the untrusted VM, it has some limitations that prevent its adoption in
a cloud environment. First, the security VM cannot monitor more than one guest. This
implies that for every VM spawned in a compute node, a corresponding security VM needs
to be started as well, reducing the node's capacity for tenant VMs by half. Second, in the
event of a VM migration, the tied monitoring VM needs to be moved as well, imposing
additional load to the network. Finally, the list of monitored events is static, since the
addition of a new event would require the placement of a new hook inside the untrusted
VM.

CloudSec [3] attempts to provide active monitoring without placing any sensitive code
inside the untrusted VM. The authors use VMI to construct changing guest kernel data
structures in order to detect the presence of kernel data rootkits (e.g. kernel object hook-
ing rootkits). The proposed framework is able to provide active concurrent monitoring for
multiple colocated VMs. CloudSec does not directly access the memory pages of the un-
trusted VM. Instead, it interacts with the hypervisor for obtaining the corresponding pages
which are stored in a dedicated memory page bu er (MPB). CloudSec uses a dedicated
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module (KDS) in order to load information regarding kernel data structures of monitored
VM's OS. Using the information from the KDS the Semantic Gap Builder (SGB) attempts
to solve the semantic gap and build a pro le of the monitored VM. Finally the pro le is fed
to the Defence Modules which perform the actual detection. An overview of the CloudSec
architecture is shown in Figuré2.9.

Figure 2.9 { CloudSec architecture as in [[3]

Although CloudSec enables active monitoring for multiple VMs concurrently, the per-
formance overhead of the solution in a multi-tenant environment has not been investigated.
Furthermore, the active monitoring capabilities are limited to switching o an infected VM.
CloudSec does not address dynamic events and is limited to VMware ESXi hypervisor.

KvmSec [118] is a KVM extension that enables active monitoring for untrusted guests
from the host machine. While KvmSec is composed of multiple modules that reside in
the host and in the untrusted guests, the authors place the core detection modules on
the host side in order to provide tamper-resistant monitoring. Communication between
the guest and host modules is enabled through a secure channel that enables information
exchange. The guest module consists of a kernel daemon that creates and manages the
secure communication channel and a second daemon that collects, analyses and acts upon
received messages. The secure communication channel is created in shared memory with
synchronised access through mutextes. Upon detection of a malicious event KvmSec is able
to freeze or shutdown the monitored guest. Currently no other sanitization mechanisms are
supported. KvmSec is able to extract the list of running processes inside the untrusted
guest but no other detection modules are supported. Although theoretically, KvmSec
might be able to monitor multiple consolidated VMs by enabling a shared memory region
for each VM, the performance overhead of this approach remains unexplored.

The last ve discussed solutions include passive and active monitoring frameworks
that incorporate virtual machine introspection. Although passive monitoring is clearly
a less invasive approach that favors stealthy monitoring (as there is no need for placing
additional code in the untrusted guest), it lacks the ability to interpose on guest events.
On the other hand, active monitoring enables the security monitoring framework to act
on suspicious events but it requires hooks to be placed inside the untrusted VM, making
it a more invasive solution. Passive monitoring solutions can be performed only at specic
time intervals (known as introspection frequency), as opposed to active solutions that
are triggered only when a suspicious event, like a memory region being accessed, occurs.
Furthermore, although the discussed solutions in both categories provide some form of
protection mechanisms (e.g. write protected memory regions) there is still a chance that
an attacker can disable the hooks and render the result of introspection invalid.
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In the contribution of this thesis presented in Chapter [4, we adapt NIDSs to dynamic
changes that occur in a cloud environment in order to provide adequate monitoring of
the network tra c that ows towards and from the cloud-hosted information system.
Our contribution addresses the adaptation issues that are not taken into account in the
previously-presented solutions.

2.5.2.2.3 Cloud Firewalls This section presents rewall solutions tailored for cloud
environments. We focus on industrial solutions since there substantial e ort is put on
designing new cloud rewall solutions or adding new features to existing ones. We focus
on two rewall categories: next-generation rewalls and application-level rewalls

Next-Generation Firewalls Nowadays large scale distributed attacks generate mul-
tiple security events at di erent levels of a cloud infrastructure and are considered amongst
the most impactful cyber threats for a cloud environment. One solution in tackling these
types of attacks is embedding a next-generation rewall in the cloud infrastructure. Next-
generation rewalls are devices that are able to combine multiple functionalities in one:
application-oriented access to the Internet, deep analysis of the network tra c (e.g. deep
packet inspection), and nally a user-oriented access policy for on-line applications. In
this section we discuss next-generation rewall solutions for cloud environments o ered by
major industry players.

A joint solution between VMware and PaloAltoNetworks [L19] introduces the VM-
Series next-generation rewall which is able to provide application-driven access control
(in contrast to traditional rewalls that o er a port and IP address control policy). The
proposed solution is able to dynamically adapt the enforced security policy when topology
events (e.g. VM migration) occur. Their approach introduces a new feature calledag
for VM identi cation. Each VM can have multiple tags that represent di erent features
such as IP address, OS, etc. The user is allowed to create security rules based on tags
instead of static VM objects. VM-Series is fully integrated in the NSX security suite (see
Section[2.5.2.2.B) in order to gain access to the network tra ¢ and topology information of
the infrastructure. Unfortunately, VM-Series does not take into account speci ¢ tenant-
security demands (e.g. protection against specic types of threats) and does not o er
component sharing capabilities between di erent tenants. The VM-Series solution is also
integrated in Amazon EC2 [15].

Application-level Firewalls In order to gain insight on which applications are
generating network tra c, application-level rewalls rose as a solution. Application-level
rewalls lter network packets based on a set of rules which refer to protocols and states
of the involved applications. When this solution is applied to web applications hosted in
a cloud environment it can o er protection against known application-level attacks (such
as SQL injection or cross-site scripting, see Secti.l).

The Amazon Web Application Firewall (WAF) [120] allows tenants to create their
own security rules depending on the type of applications that are hosted in their virtual
infrastructure. Tenants can gain visibility into speci c types of requests by setting a
dedicated lter through the WAF API or create access control lists if they require limited
access to their applications. Once created, the rules are installed in a front facing load
balancer. Although the WAF solutions o er substantial freedom to tenants, by allowing
them to fully customize the deployed ruleset, it does not account for dynamic events
(topology- or tra c-related events). Furthermore it is unclear if component sharing is
enabled by installing rules of di erent tenants.
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A distributed web application rewall is introduced by Brocade (former SteelApp) [121]
that o ers automatic rule generation based on application behavior. The in-learning capa-
bility of the solution is able to observe on-line applications for a period of time and create
access control rules. Brocade WAF has three major components that resemble an SDN ar-
chitecture model: the Enforcer, the Decider and nally the Administration Interface . The
Enforcer is responsible for enforcing the security rules and inspecting the network tra c.

If a packet that does not match the existing rules arrives then the Enforcer sends it to
the Decider which decides whether to allow or block the connection. Then, the Decider
generates a rule and sends it back to the Enforcer. As the rule generator, the Decider is
the most computing-intensive part of the application and its load depends on the trac

of the application. The Decider is also responsible for auto-scaling in case of increased
demand. Finally the Administration Interface is responsible for managing the WAF and
inserting high-level policy rules that are then translated by the Decider to rewall rules.
Although the solution is capable of autoscaling it is unclear what is the CPU penalty on
colocated VMs.

In order to build a tamper-resistant, application-aware rewall that combines in-guest
visibility with the isolation of a VMI monitoring framework, the authors of [122]Icreated
VMwall. Using XenAccess [112] VMwall is able to correlate processes running inside the
untrusted guest with network ows. VMwall maintains a white list of processes that are
allowed to make connections and compares the white list to the introspection-generated
list. If a match is found a rule allowing the connection is inserted in a dedicated lItering
module in DomO.

Although VMwall is the pioneering work in creating introspection-based rewalls, it
faces some limitations. First the white list of processes is statically de ned and thus does
not take into account the dynamic nature of a VM where services are continuously added
or removed by tenants. Second, it does not address dynamic topology related events (e.g.
VM migration) that occur in a cloud environment. For example, there is no mention of a
prioritisation strategy when a migration event occurring in the middle of an introspection
action. Finally, it is unclear whether the kernel Itering module can be shared between
multiple VMs thus enabling sharing of the rewall component.

X lter [123]lis a self-protection mechanism that Iters outgoing packets in the hyper-
visor, based on information obtained through introspection. X Iter was designed as an
active defence mechanism against compromised VMs that are used as stepping stones to
target hosts outside the cloud infrastructure. The framework operates in two phasesDe-
tection and Inspection. During the detection phase X Iter only inspects the packet header.
Once an attack is detected it automatically passes to thelnspection phase where addi-
tional information for the packet is extracted through introspection (process name and ID
that initiated the transfer, port number, destination IP, etc). Then a rule is automatically
generated that blocks all packets with that particular set of characteristics. Due to its
design, Xlter is limited in Itering only outgoing connections, thus unable to address
all security cases that are covered by a traditional rewall. As such it is an inadequate
general-purpose tra c Itering option.

The introspection-based rewall solutions presented are unable to adapt their compo-
nents based on the dynamic events that occur in a cloud infrastructure. The contribution
of this thesis presented in Chapter[ 5 addresses dynamic events in virtual infrastructure
and adapts its components automatically.

In this thesis we focus on application-level rewalls that adapt their components based
on the list of services that are hosted in the cloud infrastructure.
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2.5.2.2.4 VESPA: A Policy-Based Self-Protection Framework In this section,
we present VESPA [124], a self-protection framework that addresses self-adaptation of
security devices as a reaction to detected attacks.

VESPA was designed in order to tackle the heterogeneous nature of an laaS cloud
environment and provide lighter administration of the security devices, combined with
lower response time (i.e. when a threat is detected) along with lower error rate (e.g. false
positives/negatives). The four main design principles of VESPA are:

1. Policy based self-protection  : The framework's design is based on a set of security
policies that address the security objectives of the di erent stakeholders (i.e. tenants
and the provider).

2. Cross-layer self-defence : Based on the fact that a cloud environment is composed
of di erent software layers, the framework's response to an attack is not limited to
a single layer and can involve protection as well as detection functions (as opposed
to [1] where the framework's core functionality is detection).

3. Multiple self-protection loops . The framework o ers the ability to select among
di erent reaction paths in case of an attack. The security administrator can select
between loops that o er di erent trade-0 s between reaction time and accuracy.

4. Open architecture : The framework is able to integrate di erent o -the-self security
components.

The authors created a four-layer framework that implements their four design principles.
The rst layer, called Resource planeconsists of the cloud resources that need to be
monitored (i.e. VMs, tenant networks, etc). The second layer, theSecurity plane includes
all o -the-shelf security components that can be detection devices (e.g. IDSs) or protection
devices (e.g. rewalls). The Agent planeis used as a mediator between the heterogeneous
security devices and the actual decision making process. The agents that are part of the
agent planeact as collectors and aggregators for the di erent logs produced by the devices
in the security plane Finally, the last layer, called the Orchestration plane, is responsible
for making the reaction decision when an attack towards the monitored infrastructure
occurs.

Although VESPA is a security framework that tries to address self-adaptation of the se-
curity monitoring devices, the authors consider only security incidents as potential sources
of adaptation. Other types of dynamic events (see Sectio.5) are not considered, conse-
guently no reaction mechanisms for these events are implemented. Furthermore, VESPA
does not include tenant-related security requirements in the de nition of the reaction poli-
cies. Finally, although VESPA aims at including commodity security monitoring devices
into the security plane modi cations on their source code are required in order to enable
compatibility with the framework.

The contributions presented in this thesis adapt the security monitoring framework
based on environmental changes (topology-, service- and tra c-related) as opposed to
VESPA which addresses security incident-oriented adaptation. Furthermore, our contri-
butions are able to respect tenant-de ned security requirements in the adaptation process.
Finally, our contributions do not require modi cations on the detection components.

2.5.2.3 Security as A Service Frameworks (SecaaS)

Most cloud providers follow a shared-responsibility security model when it comes to cloud
infrastructures: tenants are responsible for securing anything that they deploy or connect
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to the cloud. In order to facilitate the security monitoring of a tenant's virtual infrastruc-
ture cloud providers o er complete monitoring frameworks in the form of products. In this
section we discuss some of these products along with the list of services that they o er.
Each provider o ers Identity and Access Management solutions for regulating resource
access (Amazon:[J125], Google [126], Microsoff: [127]).

Amazon : Besides the AWS WAF that we discussed in Sectiof 2.5.2.2/3, we focus on
security monitoring components such as Shield [128] which is an Intrusion Detection
component tailored towards DDoS attacks. Tenants can create their own rules to
monitor tra ¢ against speci c types of DoS attacks like HTTP or DNS oods. Shield
also provides mitigation techniques like rerouting and can be used in combination
with WAF for setting proactive Itering against application-level attacks. Other
available services include Certi cate Manager for deploying SSL certi cates. A full
list of services can be found in[[129].

Google : Google Security scanner[[130] is a proactive tool, which automatically
scans web applications for known vulnerabilities (Flash or SQL injections, outdated
libraries, etc). Tenants can use the results in order to generate tra c ltering rules

that proactively block speci c types of requests. The Resource Manager [131] reg-
ulates access to resources. Interconnected resources are represented hierarchically
and users can set access rights to a group of resources simply by con guring a parent
node.

VMware : NSX, the network virtualization platform o ers a variety of security tools
including traditional edge rewalls that are exclusively managed by the tenant [29]
or anti-spoo ng mechanisms [132] that allow users to restrict access to a set of IP
addresses that are determined to be spoofed. VMware also provides integrated third
party security solutions like TrustPoint [133] which automatically detects network
resources that are not yet con gured by performing partial scans of the network.
Trustpoint also o ers remediation options such as automatically quarantining ma-
chines or uninstalling infected applications.

Microsoft : Advanced threat analytics [134] is a specialised tool for detecting dis-
tributed attacks that generate seemingly unrelated events. The tool ags incidents

that deviate from a previously established normal application behavior. Cloud App

Security |135] is another solution for identifying applications that use the network,

creating and enforcing customised ltering rules. This product targets SaaS cloud
infrastructures.

This thesis proposes a design for a self-adaptable security monitoring framework with
two separate instantiations (one for NIDSs and one for rewalls). Our approach borrows
elements from Security as a Service frameworks (e.g. integration of tenant security re-
quirements and trac Itering based on the type of hosted applications) but does not
o er a full set of security services like industrial Secaa$S solutions.

2.6 Summary

This chapter gave an overview of the state of the art for this thesis. We started with
a description of autonomic computing along with its key characteristics. Then the con-
cept of cloud computing was introduced. Together these two complementary computing
paradigms form the context in which the contributions of this thesis were developed. We
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then focused on describing the laaS cloud management system that was used in the de-
ployment of our prototype, OpenStack. A description of network virtualization techniques
and network management in OpenStack followed. Afterwards, we turned our attention
to security threats in traditional information systems and cloud environments. We then
presented an overview of the main components of a security monitoring frameworks fo-
cusing on two security components: Intrusion Detection Systems and Firewalls. The key
observations from this chapter are:

laaS cloud environments are very dynamic. We have identi ed three main change
categories: Topology-related Tra c-related and Service-related changes. Despite the
numerous available cloud security monitoring frameworks there are no solutions that
address all three types of dynamic events. VESPA, a policy-based self-protection
framework, addresses adaptation of the security monitoring framework but focusing
on security events as the main source of adaptation (instead of the three types
mentioned before).

Although some of the industrial solutions discussed (e.g. Amazon web application
rewall) include the option of integrating tenant-speci ¢ security requirements in the
form of ltering rules, the rule generation is not automatic, forcing the tenants to
write and install the rules themselves.

Component sharing between tenants is essential in a cloud environment where mul-
tiple VMs are deployed in the same physical host. Although the described solutions
recognize the necessity of a multi-tenant monitoring framework, it still remains a
design requirement that has not been implemented to the best of our knowledge.

Security monitoring for tenant virtualized infrastructures has yet to receive signi cant
attention in the cloud community. Although e orts aimed at including quality of service
guarantees for di erent services in a cloud environment have been madeé [136], security
monitoring requirements are still not included in cloud SLAs. To our knowledge a self-
adaptable security monitoring framework that is able to adapt to the dynamic events of
a cloud environment, allow tenant-driven recon guration of the monitoring devices and
enable component sharing in order to minimise costs has yet to be implemented. The
goal of this thesis is to design a framework that is able to address the main limitations of
current solutions discussed in the state of the art. In the following Chapter{3 we present
the high-level design of our framework. Our framework's two instantiations incorporate
di erent concepts presented in the state of the art, namely intrusion detection systems
and application-level rewalls. Our rst instantiation, presented in 4, ]is a self-adaptable
intrusion detection system tailored for cloud environments. In our second instantiation,
presented in Chapter{5, we propose a novel design for securing an application-level rewall
using virtual machine introspection. Our rewall is able to automatically recon gure the
enforced ruleset based on the type of services that run in the deployed VMs. To our
knowledge none of the rewall solutions discussed are able to achieve this.
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Chapter 3

A Self-Adaptable Security
Monitoring Framework for laaS
Clouds

3.1 Introduction

In the previous chapter we presented the state of the art in security monitoring for laaS
cloud infrastructures. Our analysis has shown that the existing solutions fail to address all
three categories of dynamic events in a cloud infrastructure (topology, monitoring load and
service-related changes) while at the same time integrating monitoring requirements from
di erent tenants. To address this limitation we have designed a self-adaptable security
monitoring framework for laaS cloud environments that is able to:

1. Take into account the various kinds of dynamic events in a cloud infrastructure and
adapt its components automatically.

2. Take into account tenant-speci ¢ security requirements and recon gure the security
devices in such manner that the resulting con guration respects these requirements.

3. Provide accurate security monitoring results without introducing new vulnerabilities
to the monitored infrastructure.

4. Minimise costs for both tenants and the provider in terms of resource consumption.

In order to illustrate the practical functionality of our framework, we use a simplied
example of a cloud-hosted information system. We use the same example in the whole
thesis in order to provide consistency for the reader.

This chapter presents the design and implementation of our framework. It is struc-
tured as follows: Sectiond 3R andl 3|3 present the system and threat model under which
we designed our framework. Sectiof 3]4 details the objectives of our framework while
Section[3.5 presents our simpli ed example. Sectiof 3]6 details the high-level design of the
adaptation process when a dynamic event occurs. The main components of our framework
along with key implementation details are presented in Section$ 3]7 anfd 38 respectively.
Finally, Section [3.9 summarises our rst contribution.

53
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3.2 System Model

We consider an laaS cloud system with a cloud controller that has a global overview of the
system. Tenants pay for resources that are part of a multi-tenant environment based on
a Service Level Agreement (SLA). Each tenant is in control of an interconnected group of
VMs that hosts various services. No restrictions about the type of deployed applications
are imposed on tenants. The VMs are placed on available physical servers that are shared
between multiple VMs that may belong to di erent tenants. The cloud provider is respon-
sible for the management and recon guration of the monitoring framework's components
and tenants can express speci ¢ monitoring requirements through the SLA or a dedicated
API that is part of the monitoring infrastructure. A tenant's monitoring requirements
include: 1. Security monitoring for speci ¢ types of threats (e.g. SQL injection attempt,
worms, etc), at di erent levels of the virtual infrastructure (application, system, network)
and 2. Performance-related speci cations in the form of acceptable values (thresholds) for
monitoring metrics. An example of a tenant-speci ed threshold could be: the maximum
accepted value for the packet drop rate of a network intrusion detection system. The
tenant speci cations may lead to the recon guration of security monitoring devices that
are shared between tenants or between tenants and the provider.

The cloud controller is responsible for providing networking capabilities to the deployed
VMs. Two types of networks are constructed: an internal one between VMs that belong
to the same tenant and an external one that is accessible from outside the infrastructure.
Each deployed VM is assigned two IP addresses and two domain names: an internal private
address and domain name and an external IPv4 address and domain name. Within a
tenant's virtual infrastructure, both domain names resolve to the private IP address while
outside the external domain is mapped to the external IP address.

3.3 Threat Model

We consider software attacks only, that originate from inside or outside the cloud infras-
tructure. We assume that like any legitimate tenant, an attacker can run and control many
VMs in the cloud system. Due to multiplexing of the physical infrastructure, these VMs
can reside in the same physical machine as potential target VMs. In our model an at-
tacker can attempt a direct compromise of a victim's infrastructure by launching a remote
exploitation of the software running on the deployed VM. This exploitation might target

di erent levels in the victims infrastructure (system, network, applications). We consider
all threats described in Section[2.4.]1 to be applicable on a victim's VMs. Upon successful
exploitation, the attacker can gain full control of the victim's VM and perform actions
that require full system privileges such as driver or kernel module installation. Malicious
code may be executed at both user and kernel levels. The attacker is also in position of
using the network. We consider all attacker-generated tra c to be unencrypted.

In this work we consider the provider and its infrastructure to be trusted. This means
that we do not consider attacks that subvert the cloud's administrative functions via vul-
nerabilities in the cloud management system and its components (i.e. hypervisor, virtual
switch, etc). Malicious code cannot be injected in any part in the provider's infrastructure
and we consider the provider's infrastructure to be physically secure.
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3.4 Objectives

The goal of this thesis is to design a self-adaptable security monitoring framework that
detects attacks towards tenant's virtualised information systems. We have de ned four key
properties that our framework needs to ful ll: self-adaptation, tenant-driven customiza-
tion, security and correctness and nally, cost minimization. In this section we detail each
of them.

3.4.1 Self Adaptation

Our framework should be able to automatically adapt its components based on dynamic
events that occur in a cloud infrastructure. Consequently, the framework should be able to
alter the existing con guration of its monitoring components, instantiate new ones, scale

up or down the computational resources available to monitoring components and nally,

shut down monitoring components. We distinguish three adaptation categories depending
on their source:

Service-based adaptation:  In this category the framework's components need to
be adapted due to a change in the list of services that are hosted in the virtual
infrastructure. Addition or removal of existing services could impact the monitoring
requirements, thus require the instantiation of new monitoring devices or recon gu-
ration of existing ones.

Topology-based adaptation: In this category, the source of adaptation lies in
changes in the virtual infrastructure topology. Sources of these changes include
tenant decisions regarding VM lifecycle (i.e. creation, deletion) and provider deci-
sions regarding VM placement (i.e. migration). The security monitoring framework
should be able to adapt it's components in order to guarantee an adequate level of
monitoring despite the new virtual infrastructure topology.

Monitoring load-based adaptation: In this category, the framework needs to
react to changes in the monitoring load. In the case of network tra ¢ monitoring,
an increase in the trac owing towards and from applications hosted in the vir-
tual infrastructure would trigger an adaptation decision that would guarantee that
enough processing power and network bandwidth (if the monitoring device is ana-
lyzing network tra c) is provided to the monitoring components. An adaptation
decision could also involve the instantiation of a new monitoring probe that will be
responsible for a particular tra ¢ segment. In the case of VM activity monitoring,

a sudden increase in inside-the-VM activity (i.e. running processes, open les, etc)
could lead to altering the computational resources available to the security probe
monitoring that particular VM.

3.4.2 Tenant-Driven Customization

Our framework should be able to take into account tenant-speci ¢ security requirements.
These requirements include application-speci ¢ monitoring requests (i.e. requests for de-
tecting speci c types of attacks depending on the application pro le) and monitoring met-
rics requests (i.e. detection metrics or performance metrics for the monitoring devices).
The framework should be able to consider a given tenant's requirements in recon guration
decisions and enforce these requirements on the a ected monitoring devices.
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3.4.3 Security and Correctness

Our framework should be able to guarantee that the adaptation process does not introduce
any novel security vulnerabilities in the provider's infrastructure. The recon guration
decisions should not introduce any aws in the monitoring devices and should not a ect
the framework's ability to maintain an adequate level of detection. The monitoring devices
should remain fully operational during the recon guration process.

3.4.4 Cost Minimization

Our framework should minimise costs in terms of resource consumption for both tenants
and the provider. Deploying our framework should minimally a ect the provider's ca-
pacity to generate prot by multiplexing its physical resources. The distribution of com-
putational resources dedicated to monitoring devices should re ect a tenant-acceptable
trade-o between computational resources available for monitoring and computational re-
sources available for VMs. The performance overhead imposed by our framework to tenant
applications that are deployed inside the monitored VMs should be kept at a minimal level.

3.5 Example Scenario

Our simpli ed example of a cloud hosted information system is depicted in Figurg 3.1L. In

Figure 3.1 { An example of a cloud hosted information system

our example, two di erent VMs that belong to di erent tenants (depicted with red and
green) are deployed on di erent compute nodes. The rst VM with ID 27 is deployed on
node parapide-18 and hosts two services: arSQL-backed apache serveand an ssh server
The public IP of the VM is 172.10.24.195 and the private IP is 192.168.1.5 The VM
is plugged on the virtual switch of the compute node with a port namedqgvol1432 The
second VM with ID 29 is deployed on nodeparapide-32 and hosts only one service, arssh
server. The public IP of the VM is 172.10.29.82 and the private IP is 192.168.1.5 (the
private IPs of VMs that belong to di erent tenants can overlap).
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In this simpli ed example, we include only two types of monitoring devices: network-
based IDSs and rewalls. The tra ¢ owing towards and from the VM on node parapide-18
is monitored by a network-based IDS namedsuricata79 residing on a separate node with
IP 172.16.99.38 while the tra c owing towards and from the VM on node parapide-32
is monitored by another network-based IDS namedsuricata65 residing on the same node.
Each compute node has a rewall at the level of the virtual switch (namedf-parapidel18 for
the compute nodeparapide18 and f-parapide32 for the compute nodeparapide32). Finally,
an edge rewall namedf-extl is responsible for Itering the tra c that ows towards and
from the cloud infrastructure to the outside world.

3.6 Adaptation Process

After de ning the four main objectives of our monitoring framework, we now describe the
three levels of the adaptation process. The process begins from the adaptation sources, that
can either be dynamic events or changes in the cloud infrastructure (topology-, service- or
monitoring load-related) or evolving tenant security requirements. It continues with our
framework's decision making. Finally, the adaptation decision is enforced by recon guring
the a ected security devices.

First, the adaptation process is triggered by either a change in the cloud infras-
tructure (i.e. service, topology or monitoring-load related) or a tenant speci ¢ security
requirement. All necessary information is extracted and forwarded to the adaptation
framework. Depending on the type of change di erent information is propagated to the
framework:

Service-related change:type of service and technical speci cations (e.g. port num-
bers or range, protocol, authorized connections/users, etc).

Topology-related change:ID of the a ected VM along with network information (e.g.
internal/external IP, port on the virtual switch, etc) and the physical node hosting
the VM.

Monitoring load-related change: device-speci ¢ metrics that demonstrate the e ect
of the monitoring load uctuation on the monitoring functionality (e.g. packet drop
rate, memory consumption, etc).

The information extracted from a tenant security requirement includes: specic security
events (e.g. attack classes or speci ¢ threats) and monitoring metrics (e.g. packet drop
rate). The propagated information is extracted from di erent sources (i.e. the cloud
engine, monitoring devices, SLA, etc).

Once the adaptation framework receives the propagated information, it starts making
the adaptation decisions. The rst step in the decision making process is identifying the
monitoring devices a ected by the adaptation. The adaptation framework is able to extract
the list of the devices based on the VMs involved in the dynamic events. Depending on the
monitoring strategy selected, the group of VMs assigned to a speci ¢ monitoring device
could be determined based on their physical location (e.g. an NIDS monitoring the tra c
that ows towards and from all VMs that are deployed on a particular compute node).
The framework has full access to topology and networking information for each monitoring
device. This information includes: 1. name and IP address of the physical node hosting the
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device (e.g. if a device is running in a container), 2. IP address of the device if applicable,
3. list of other co-located devices and nally 4. list of computational resources available
on the node hosting the device (e.g. CPU, memory, etc).

After the adaptation framework has identi ed the list of a ected monitoring devices,
it makes the adaptation decision. The adaptation decision can imply the recon guration
of the monitoring devices so that monitoring for speci c types of threats is included or
removed. It can also imply the instantiation of a new monitoring device. The framework
can also decide to assign more computational resources to a group of monitoring devices
in order to be able to better manage their computational load. After the decision has been
made, it is translated to device speci c recon guration parameters by dedicated framework
components.

The nal stage of the adaptation process is executed at the level of the monitoring
devices. The device-speci ¢ recon guration parameters are taken into account and the
monitoring devices are adapted accordingly. The adaptation framework is able to maintain
an adequate monitoring level even during the recon guration phase either by using live
recon guration capabilities of the devices (when applicable) or by incorporating other
strategies, which enable later inspection of activity (e.g. temporary clone of an HIDS,
storing tra c for later inspection in the case of an NIDS). After the adaptation process is
complete the a ected monitoring devices are fully operational.

Although we consider network recon guration events such as network migrations part
of topology-related changes, our framework does not handle network recon guration events
at this stage.

3.7 Architecture

This section presents the architecture of our self-adaptable security monitoring framework.
First a high-level overview of the system is presented followed by the description and
functionality of each component.

3.7.1 High-Level Overview

The high-level overview of our framework's architecture is shown in Figur¢ 3]2. The gure
depicts an laaS cloud with one controller and two compute nodes on which the tenant's
virtualised infrastructure is deployed. Di erent components of our self-adaptable security
monitoring framework are included in the gure. A dedicated node is used for hosting
di erent network IDS while an edge rewall ltering the tra ¢ between the outside world

and the cloud is deployed on a standalone host. Firewalls are also included at the level of
the local switches on the compute nodes. Finally, a log aggregator collects and uni es the
events produced by the di erent types of security devices.

Our framework is composed of three di erent levels: tenant, adaptation and monitoring
devices. The monitoring devices level consists of probes (NIDS and rewalls in Figure 3.2)
as well as log collectors and aggregators.

The adaptation level consists of all the framework's components that are responsible
for designing and enforcing the adaptation process. A dedicated Adaptation Manager,
which can be located in the cloud controller, acts as a decision maker. Dedicated com-
ponents named Master Adaptation Drivers (MAD), located in the nodes that host the
monitoring devices, are responsible for translating the manager's decision to component-
speci ¢ con guration parameters are also part of this level. A MAD can be responsible
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Figure 3.2 { The framework's architecture

for multiple security devices. Depending on the number of security devices it is up to the
manager to decide how many MADs are instantiated. A dependency database, also located
in the cloud controller, that keeps updated information regarding dependencies between
monitoring devices (i.e. di erent types of monitoring devices that monitor the same VM)

is also part of the adaptation level. A lower level agent called Adaptation Workers (AW),

is tasked with enforcing the actual recon guration parameters on each monitoring device
and guaranteeing continuous operation through the adaptation process. Our framework
features one Adaptation Worker per monitoring device. Finally, the Infrastructure Mon-
itoring Probes (IMPs), which are located inside core modules of the cloud engine, are
responsible for detecting topology-related changes.

The third level of our framework’s architecture includes the tenant API. All available
monitoring options are accessible through the dedicated API. A representation of the three
di erent levels can be found in Figure[3.3.

After presenting a high-level overview of our framework's architecture we now describe
each component in detalil.

3.7.2 Tenant-API

One of our framework's core objectives is integration of tenant-speci ¢ security monitoring
requirements. Tenants can request monitoring against specic attack classes depending
on the pro le of their deployed applications (e.g. for a DBMS-backed web application
a tenant can request monitoring for SQL injection attempts). Furthermore, tenants may
have speci c requests regarding the quality of monitoring in terms of device-speci ¢ metrics
(e.g. a tenant can request a lower threshold for the packet drop rate of a NIDS system).
In order to facilitate tenant requirement integration, our framework provides a dedicated
API that is exposed to the tenants and allows them to express monitoring speci cations
in a high level manner.

Essentially, the API performs a translation between the tenants monitoring objectives,
which are expressed in a high-level language, and our framework-speci ¢ input sources.
Our monitoring framework then takes into account the outcome of the translation for
making an adaptation decision. We now describe the API design.
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Figure 3.3 { The framework's di erent levels

3.7.2.1 API Design

The design of our API is organised in three distinct parts. We detail each one. In order
to simplify authentication we have made the design choice to integrate our API into the
provider's APl and make it available through the web.

3.7.2.1.1 Tenant-exposed part: The rst part of our API is directly exposed to
the tenants. Each tenant uses its unique identi er in order to access the tenant-exposed
part through the web. After successful authentication, the tenant has access to the list
of monitoring services that are activated in its virtual infrastructure along with detailed
record about each service. The information available about each monitoring service are:
attack/threat classes (e.g. SQL injection, cross site scripting, etc), list of VMs that are
under this monitoring service and nally, a time eld that speci es when this option was
activated.

A tenant can add a new monitoring service or remove an existing one through a ded-
icated add/delete option in the API. In the event of a new monitoring service addition,
the tenant is given the option to select a monitoring service only amongst the ones that
are available/supported by the self-adaptable monitoring framework.

After selecting the monitoring service the tenant adds the IDs of the VMs that it wants
this service to be applied on. A second option available for tenants is tuning of SLA-de ned
monitoring metrics. Each tenant has access to a list of SLA-de ned monitoring metrics
and can increase or decrease their value.

Finally, a list of the applications that are deployed on its provisioned VMs is provided
by each tenant. The information available for each application is:

its name.
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connectivity record. In the connectivity record the tenant speci es network-related
information about the service. This information includes list of ports that the service
is expected to use and the list of restricted IPs that are allowed to interact with the
application (if applicable).

VM ID that the service is running on.

3.7.2.1.2 Translation part: The translation part of our API lies one level lower than
the tenant-exposed part and is actually performing the translation between the high-level
description of tenant requirements to framework-speci ¢ information. The translation part
parses the tenant-generated input and performs two functionalities for each monitoring
service: 1. mapping of the high-level service name to framework-speci c service name (if
required), and 2. mapping of the instances names to VM cloud-engine IDs. Furthermore
the translation part extracts the names of the applications along with the number of ports
and the list of allowed IPs (if applicable). The extracted information forms the necessary
records required by our framework in order to make an adaptation decision.

Finally, in order to allow our framework to make adaptation decisions on a VM basis,
the information is grouped in a VM-based manner (cloud engine ID of the VM, list of
running processes and network connectivity, monitoring services). As a last step the
translation part generates a framework-readable le with a specic format (e.g. XML
format) with the VM-based information and the tenant-de ned values of the SLA-speci ed
monitoring metrics. The generated le is unique per tenant. The le depicting the types of
services along with speci ¢ monitoring requirements for the VM with ID 27 of the example
in Section[3.5 can be found in Listing 3.1.

Listing 3.1 { SLA information le

1 <Tenant |d="74cf5749 570">
2 <vm id="27" >

3 <services authorised.destination_IPs="192.168.1.5"
authorised_source_IPs="192.168.1.2, 192.168.1.3" dport="22"
name="ssh" proto="tcp" role="server" sport="0.0.0.0" >

4 </services>

5 <services authorised.destination_IPs="172.10.24.195"

authorised_source_IPs="all" dport="80" name="apache2" proto="
tcp" role="server" sport="0.0.0.0" >

6 </services>

7 <services> name="sql" </services>
g </vm>

9 <IDS>

10 <additional _-monitoring="worm" >

11 <drop.rate> accepted=5 </drop _rate>
12 </IDS>

13 </Tenant >

In the example of Section 3.5, the tenant with ID 74cf5749-570, has provisioned only one
VM on which it deployed an ssh server and an SQL-backed web server. It requested
additional monitoring against worms and it accepts a drop rate (for an NIDS) that does
not exceed 5%. Each time a tenant expresses a new monitoring requirement the le is
regenerated. After describing the dierent parts of our tenant-exposed API and their
functionalities we continue in detailing another type of components of our framework, the
security devices.
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3.7.3 Security Devices

Security devices include all devices and processes that perform the actual monitoring
functionality. The type of devices included are: intrusion detection systems (network or
host based), rewalls, vulnerability scanners, antiviruses, etc. The monitoring devices can
be installed at any point in the cloud infrastructure and can monitor part of the tenants
or the provider infrastructure.

Although the monitoring devices perform di erent types of monitoring under di erent
con gurations, the common denominator between all types of devices is the production of
detailed log les. In order to e ciently manage and unify logs originating from the security
devices we include log collectors and aggregators in this category (although they do not
perform actual monitoring tasks). Log collectors can be co-located with one or multiple
monitoring instances and can perform local or remote collection of logs. Aggregators are
responsible for looking for specic patterns, de ned by the framework's administrator,
inside the log les and summarizing events.

3.7.4 Adaptation Manager

The Adaptation Manager (AM) is one of our framework's core components. It is responsi-
ble for making the adaptation decisions that a ect the monitoring devices of the monitoring
framework. The AM is able to handle dynamic events inside the cloud infrastructure and
guarantees that an adequate level of monitoring is maintained. The Adaptation Manager
has a complete overview of the state of the monitoring framework which is comprised by
the following information:

topological overview: list of monitoring devices and their location (hodes on which
they are deployed and IP addresses of the nodes),

functional overview: a mapping between VMs and monitoring devices. One de-
vice can be mapped to multiple VMs and vice versa. The functional overview of
the system provides the necessary information regarding which monitoring device is
monitoring which subset of the deployed VMs. Depending on the monitoring strat-
egy selected, a monitoring device can be responsible for all the VMs that are hosted
in a particular location (e.g. an NIDS monitoring the tra c that ows towards and
from all the VMs deployed on a speci c compute node).

Upon the occurrence of a dynamic event (e.g. VM migration) the AM performs the
actions presented in Algorithm[J in order to make an adaptation decision:

Algorithm 1 The adaptation decision algorithm

1: function adaptation (dynamic_event)

2: list of services map(dynamic_event.VM_id, vm_information _le )
3 a ected devices, agents map(dynamic_event.VM_id)

4: for iin aected devices do

5 recon guration required  decide (i, list of services)

6

propagate decision (agents, recon guration required)

Map the ID of the VM a ected by the change to the list of services running inside
the VM (line 2 in Algorithm This is done by parsing the information provided
by the API-generated le ( slaLinfo.xml in Listing B.1).
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Identify the monitoring devices responsible for the a ected VM (line 3 in Algo-
rithm L}. These are the monitoring devices that will be adapted. This is done by
using information that is provided by the Component Dependency Database (see
Section). The information regarding the list of running services and the list of
monitoring devices that are going to be adapted are combined in a single le called
vm_information le. The resulting le for the example information system described

in Section[3.5, can be found in Listing[3.2. In the example of Sectiop 3|5, three ser-
vices are deployed on that particular VM with ID 27 (ssh server, apache web server
and an SQL database) while the VM is monitored by a signature-based IDS named
suricata65.

Listing 3.2 { VM information le

1 <vm id="27" >

2 <services authorised.destination _IPs="192.168.1.4"
authorised_source_IPs="192.168.1.2, 192.168.1.3" dport="
22" name="ssh" proto="tcp" role="server" sport="all" >

3 </services>

4 <services authorised.destination_IPs="172.10.124.195"
authorised_source_IPs="all" dport="80" name="apache2"
proto="tcp" role="server" sport="all" >

5 </services>

6 <services name="sql">

7 <currentlIDS host_ip="172.16.99.38" name="suricata79" type="
signature_based" additional _-monitoring="worm" drop _rate=
"5" > < /newIDS>

Decide on the type of recon guration required (line 5 in Algorithm [). Depending
on the type of monitoring devices and the event category di erent recon guration
types might be necessary (e.g. rule addition or removal, module activation, white
list creation, new probe instantiation, computational resource redistribution, etc).

Propagate the recon guration parameters to the agents responsible for enforcing the
adaptation decision (line 6 in Algorithm [1).

In case of a topology-related dynamic event all steps are performed while in the case
of a service- or monitoring load-related change or a tenant-speci ¢ changed monitoring
requirement only steps 3 to 6 are performed.

The AM is also responsible for handling performance degradation of the monitoring
probes. The AM sets prede ned thresholds for a set of device speci ¢ performance metrics
and then allows each monitoring device to raise an alert in case one of the prede ned
thresholds is violated. The AM then decides if a new probe is necessary. If a new probe
is instantiated the AM propagates the necessary information regarding monitoring load
redistribution to the lower level agents.

In a cloud environment often dynamic events occur simultaneously. In order to handle
the adaptations of the security devices that originate from these events, the AM can
handle multiple adaptation events simultaneously. In the event of two di erent adaptation
decisions a ecting the same existing monitoring device, we distinguish three outcomes
depending on the arguments of the adaptation decisions:

The adaptation decisions contain di erent adaptation arguments: In this case there
is no con ict between the decisions and the recon gurations can proceed.
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The adaptation decisions contain the same arguments or there is a partial match
between the two argument sets: In this case depending on the nature of the adapta-
tion decisions (activation or deactivation of monitoring parameters) we can foresee
two outcomes:

1. Both decisions lead to activation or deactivation of monitoring parameters: In
this case there is no con ict and the recon gurations can proceed.

2. One decision leads to activation of monitoring parameters while the other to
deactivation: In this case there is a conict between the recon gurations. In
order to guarantee an adequate level of detection, our framework adopts the
strategy of keeping the matching arguments activated.

3.7.5 Infrastructure Monitoring Probes

The Infrastructure Monitoring Probes (IMPs) are located inside di erent core modules
(networking, compute) of the cloud engine and are responsible for detecting topology re-
lated changes. The detected changes include VM lifecycle (e.g. start, stop) and placement
(i.e. migration) changes. Once a topology-related change occurs an IMP intercepts the dy-
namic event and extracts all the necessary VM-related information from the cloud engine.
The information includes: networking records (external and internal IP address, network
port on the virtual switch) and compute records (VM ID, source and destination node
{ in case of a migration{, tenant ID) of the a ected instance. Then the IMP forwards
this information to the Adaptation Manager in order to make the adaptation decision. Al-
though located inside the cloud engine IMPs do not preempt hormal cloud operations (e.g.
VM-lifecycle decisions or network-related recon gurations) during the recon guration of
monitoring devices.

3.7.6 Component Dependency Database

In complex security monitoring frameworks that consist of di erent components, inter-
dependencies between security devices can lead to troublesome security issues. Recon-
guration of a single monitoring component can create the need for recon guring a set
of secondary monitoring devices. In the case of our framework, an adaptation decision
that was triggered by a dynamic event (e.g. a service stop inside a monitored guest)
can a ect separate security devices: an active monitoring device (e.g. a rewall) and a
passive monitoring device (e.g. an IDS). In both devices recon guration is necessary in
order to re ect a change in the monitoring process that was caused by the dynamic event
(e.g. delete rules that lter tra c for the stopped service for the rewall and de-activate
the rules that monitor tra c for the stopped service in the IDS). In order to facilitate
identi cation of all a ected devices when making an adaptation decision, we introduce the
Dependency Database. The Dependency Database is located inside the cloud controller
and is responsible for storing security device information for each monitored VM.

Our dependency database consists of two separate tables\dvl _info table and a De-
vice_info table that provide respectively the functional and topological views to the Adap-
tation Manager. The columns in theVM _info consist of the names of all security devices
involved in the monitoring of a particular VM (identi ed with its ID, placing one VM
per line). Using the VM ID as a primary key, the Adaptation Manager can extract the
list of monitoring devices that are responsible for this VM. These are the devices that
are a ected by an adaptation decision caused by a dynamic event involving that VM. The
VM _info table for the VMs of the example of Sectior{ 3.5 can be found in Tablg 3]1. In this
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Table 3.1 { The VM _info table

VM ID | Network IDS || Host IDS | External- rewall || Switch- rewall
27 suricata79 ossecl f-extl f-parapide-18
29 suricata65 ossec4 f-extl f-parapide-32

example we see that for the VM with ID 27 there is a network IDS namedsuricata79, a
host IDS namedossecland two di erent rewalls, one edge, named f-extl, and one inside
the local switch, namedf-parapide-18 A single VM can be monitored by di erent types
of IDS (host- and network-based).

The Device.info table is used to store device specic information. The Adaptation
Manager uses each device name in order to extract the following information: location of
the device (IP address of the physical node hosting the device) and type of the device The
Device.info table for suricata65 IDS can be found in Table[3.2. In this example we see

Table 3.2 { The Device.info table

Device Name | Location Type of device
suricata65 172.16.99.38| signature based

that the suricata65 network IDS is located on a node with IP address 172.16.99.38 and
is a signature-based NIDS. When a dynamic event occurs, the AM uses the information
available in the Dependency Database to identify the full list of a ected devices. Each

time a new monitoring device is instantiated a corresponding entry with all the necessary
information is added by the AM in the two tables.

3.8 Implementation

We have developed a prototype for our framework from scratch in Python. We used Open-
Stack (version Mitaka) [32] as the cloud management system. In order to enable network
tra ¢ mirroring we used Open vSwitch (OvS) [137] as a multilayer virtual switch. OvS

is only compatible with later versions of OpenStack that use Neutron for providing net-
working services for deployed VMs. Consequently, version Mitaka was selected. We used
Libvirt [138] for interacting with the underlying hypervisor. This section presents a few
important implementation aspects. Namely, we focus on the details of two of our frame-
work's main components: the Adaptation Manager and the Infrastructure Monitoring
Probe.

3.8.1 Adaptation Manager

In order for the manager to be able to handle multiple adaptation events in parallel, a
multi-threaded model approach was adopted. A master thread is responsible for receiv-
ing noti cations regarding topology-related changes from the Infrastructure Monitoring
Probes. The noti cation mechanism currently supports two versions: creating and listen-
ing to a dedicated socket, or placing a noti cation adapter (using the inotify [139] Linux
utility) in a speci c directory for tracking events ( modify, closewrite) on the directory's
les. Once the AM receives an event, the AM performs the steps described in Algorithnj :

1. A worker thread is spawned for handling the considered adaptation event. In or-
der to retrieve the information about the VM involved in the topology change,
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Algorithm 2 Adaptation when A VM migration occurs

1: function adaptation (VM _network info)

2:
3:
4.

N o g

spawn adaptation thread
list of services information parser (VM _network.info.VM _id, vm_information _le)
a ected devices, locations information parser (VM _network_.info.VM _id,

VM _network_info.source_node,

VM _network_.info.destination_node,

topology.txt)
for i, j in aected devices, locationsdo

args.txt  decide (list of services, i)
ids_conn (j, args.txt, +/-)

the thread parses thevm_information _le.xml (in Listing using the informa-
tion_parser function. Using the VM ID as an identi er, the function extracts the list
of services running inside the a ected guest and the tenant-speci ¢ security require-
ments.

. The AM makes the adaptation decision and the parameters (e.g. in case an NIDS

is involved, which types of rules will be activated/deactivated, what is the tenant
acceptable drop rate) are written to a dedicated le named args.txt. In order to
extract the names, types and location of the a ected security probes the worker
parses a separate le {opology.txt) containing the topological and functional views
necessary for the AM. Thetopology.txt le containing the topological and functional
views for the information system described in Sectiof 315 can be found in Listing 3| 3.

Listing 3.3 { topology and functional information le

1 Compute Node I[P IDS IDS Node

2 parapide 18.rennes.grid5000.fr 172.16.98.18 suricata79
172.16.99.38

3 parapide 32.rennes.grid5000.fr 172.16.98.32 suricata65s
172.16.99.38

In the example of Section 3.5, the monitoring strategy described includes one NIDS
per compute node. All NIDSs are deployed on the same node. Once a VM mi-
gration occurs, for example for the VM with ID 27, the master thread receives
the network-related information from the IMP (public IP = 172.10.24.195, private
IP = 192.168.1.5, source = parapide-18.rennes.grid5000.fr, destination = parapide-
32.rennes.grid5000.fr, port name on the virtual switch of the destination node=
gvb1572). Once it receives this information the worker thread parses them_information
_le.xml and the topology.txt les and it extracts the list of services running in the
migrated VM (sshd, apache2, sqld), the additional tenant-de ned monitoring re-
quirements (worm), the tenant speci c monitoring metrics (drop rate threshold of
5%) and nally the names of the NIDS that are responsible for monitoring the tra c

in the source and destination nodes guricata79 and suricata65 respectively) along
with their host IP address (172.16.99.38). These NIDSs are the two devices that need
to be adapted. The worker thread then writes the adaptation arguments toadapta-
tion_args.txt. The result for the NIDS monitoring the tra c towards and from the
destination node (suricata65 in the example of Sectior| 3.5) is shown in Listing 3 4.

Listing 3.4 { The le containing the adaptation arguments for an NIDS
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signature_based

suricata65

apache?2

sql

ssh 192.168.1.2, 192.168.1.3

worm
5
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3. The worker thread sends the dedicated le through a secure connection (using a
dedicated function called ids_conn) to a MAD located in the node(s) hosting the
a ected security devices. The ids_conn function uses the IP address of the node
hosting the device, and the name of the security device in order to establish the
connection

4. A dedicated operator (e.g. + or -), that is decided by the AM is sent together
with the le containing the adaptation arguments, indicates whether the adaptation
requires an activation or deactivation of monitoring parameters. In our example,
the operator sent with the le in Listing 3.4jis a + indicating that the monitoring
parameters need to be activated. In case of an adaptation decision that a ects
multiple security components in di erent locations, a separate thread per component
is created in order to facilitate the parallel transmission of the adaptation le.

3.8.2 Infrastructure Monitoring Probe
3.9 Summary

In this chapter we have described the design of a self-adaptable security monitoring frame-
work. Our framework was designed in order to address the four main objectives: self-
adaptation, tenant-driven customization, security and cost minimization. In this chapter
we described how the core component of our framework, the Adaptation Manager, or-
chestrates the adaptation decisions in order to meet the self-adaptation and tenant-driven
customization objectives.

A detailed description of the adaptation process, from the dynamic event that triggers
the adaptation to the actual recon guration of the security probes was presented. During
the process, we have demonstrated that the Adaptation Manager respects tenant-de ned
monitoring metrics by including them in the adaptation parameters. The AM is able to
make the adaptation decisions independently from the type of security device. Conse-
quently, our framework is able to integrate di erent types of security monitoring devices.
The Master Adaptation Drivers (described in more detail in the following chapter) are
responsible for translating the adaptation decision to device-speci ¢ parameters. The re-
maining two objectives (security and cost minimization) are discussed in the following
chapters. Furthermore, we described remaining individual components of our framework
and their functionality: the Adaptation Manager, which is the core of our framework,
making all the adaptation decisions, the tenant-API, which allows tenants to express their
monitoring requirements and translates them to AM-readable information, the Infrastruc-
ture Monitoring Probes, which are responsible for detecting dynamic-related events and
notifying the AM and the Dependency Database which holds all necessary information
regarding interdependent security devices. Each component's functionality contributes to
an accurate adaptation decision.
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Selected implementation details of two of our framework's components (the Adaptation
Manager and the Infrastructure Monitoring Probes) were presented. In order to facilitate
multiple adaptation decisions in parallel, the AM was implemented using a multi-threaded
approach. Instead of using traditional network-based communication between di erent
components, we opted for a faster le-based approach using thénotify Linux utility. In
order to obtain accurate and up-to-date VM-related information we made the design choice
of placing the IMPs inside core modules of the cloud engine.

Two separate instantiations of our framework are discussed in the following chap-
ters. The proposed instantiations focus on the adaptation of two di erent types of secu-
rity devices. The rst instantiation presents a self-adaptable network intrusion detection
system called SAIDS, while the second instantiation presents a secure application-level
introspection-based rewall called AL-SAFE.



Chapter 4

SAIDS: A Self-Adaptable
Intrusion Detection System for
laaS Cloud Environments

In this chapter we present SAIDS the rst instantiation of our security monitoring frame-
work. SAIDS is a self-adaptable network intrusion detection system designed for laaS
cloud environments. A preliminary version of this contribution was published in [140]. We
begin with a description of SAIDS objectives in Sectiorj 4.]L, followed by the presentation of
individual SAIDS components in Section[4.2. Security threats are discussed in Sectién 4.3.
The adaptation process along with events that trigger the adaptation are featured in Sec-
tion .4l Implementation details and our detailed evaluation plan along with obtained
results are described in Sectionf 45 and 4.6 respectively. Finally, Secti¢n 4.7 summarises
this chapter and presents key observations.

4.1 Objectives
In this section we discuss in detail the objectives that SAIDS should meet.

Self-Adaptation : SAIDS should react to dynamic events that occur in a cloud
environment and adapt the network intrusion detection devices accordingly. These
events refer to topology-related changes in the virtual or hardware infrastructure and
service-related changes. Virtual infrastructure changes are caused by tenant decisions
regarding VM-lifecycle (i.e. creation, deletion) or provider decisions regarding VM
placement (i.e. migration). Changes in the hardware infrastructure refer to addition
or removal of servers. Service related changes refer to the addition or removal of
services in the deployed VMs.

Customization : based on the type of services that are hosted on the deployed VMs
SAIDS should allow tenants to customise the events that are being detected. Tenants
can request monitoring against speci c types of threats that refer to di erent levels
of their infrastructure (i.e. application, system or network level). Common threats
(e.g. worms, SQL injection attempts) can be detected using generic rules out of
public or commercial rule repositories[[1411]. SAIDS should provide tenants with the
ability to use custom rules (i.e. tailored for their deployed systems) for common
threats in order to improve detection quality. Furthermore, tenants should be able

69
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to write and include their own customised IDS rules against more speci c types of
threats that target their deployed services.

Scalability : the number of deployed SAIDS IDSs should adjust to varying con-
ditions: load of the network tra ¢ monitored, number of physical servers in the
datacenter, number of VMs in the virtual infrastructure. SAIDS should be able to
alter the resources available to its IDSs in the event of a degradation in the quality
of detection. Dierent metrics are used in order to estimate the quality of detec-
tion for which SAIDS takes into account tenant-de ned thresholds. SAIDS uses the
following metrics: packet drop rate (the value of this metric can be improved by al-
tering the computational resources available to the SAIDS IDSs), detection rate (the
value of this metric is related to SAIDS IDSs packet drop since it also demonstrates
the ability of an IDS to process the input stream without dropping packets, thus
can indirectly be improved by altering the computational resources available to the
SAIDS IDSs) and false positive rate.

Security and Correctness : SAIDS should guarantee that an adequate level of
detection is maintained during the adaptation of the SAIDS IDSs. The adaptation
of the SAIDS IDSs should not allow attacks that otherwise would have been de-
tected to remain undetected. Furthermore SAIDS should not create new security
vulnerabilities in the provider's infrastructure.

4.2 Models and Architecture

In this section we present the system and threat model used in SAIDS along with a detailed
description of SAIDS architecture and individual components.

We adopt the same system and threat model as the ones described in Chaptgf 3,
Sections[3.2 and 3.B.

4.2.1 Architecture

This section describes SAIDS architecture. We rst present a high level overview of SAIDS
and then we focus on describing the functionality of each individual component.

SAIDS consists of four major components as depicted in Figure 4.1: the Local Intrusion
Detection Sensors (LIDS), the Adaptation Worker (AW), the Master Adaptation Driver
(MAD) and the Mirror Worker (MW). The LIDSs are deployed on dedicated nodes and
our framework features one AW per LIDS (the AW is installed inside the LIDS). SAIDS
features one MAD per dedicated node. Finally, we include one Mirror Worker per compute
node.

4.2.1.1 Component Description

This section focuses on the description of each individual component's functionality. The
components are run by the cloud provider.

4.2.1.1.1 Local Intrusion Detection Sensors: LIDS are used for collecting and
analyzing network packets that are owing through subsets of virtual switches. The de-
tection technique that is used can either be signature- or anomaly-based. A signature-
based technique has high true positive rate in detecting known attacks as opposed to an
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Figure 4.1 { SAIDS architecture

anomaly-based technique which is more e ective in detecting unknown attacks. Further-
more, a signature-based LIDS requires zero training time making it a suitable choice for
immediate e ciency in contrast with an anomaly-based LIDS which requires a training
period. SAIDS supports both types of detection techniques allowing tenants to select their
preferred trade-o . In a signature-based LIDS the packets are decoded and preprocessed
in order to check their payload for suspicious patterns by comparing it with a preloaded
set of rules. If a match is found the packet is logged and an alert is generated. The rules
can match either service, network or system level threats. LIDSs organize rules in distinct
sets named rule categories. Rules against variants of the same threat are organized in the
same rule category. Once the category is included in the con guration le of a signature-
based LIDS all the subsequent rules of that category are activated. All the logs from LIDS
instances that are located on a given node are collected by a local log collector instance
running on the same node.

4,2.1.1.2 Adaptation Worker: The AW is located inside the LIDS and has several
roles: First, it is responsible for recon guring the enforced ruleset by reloading the new
con guration le that was created by the MAD. Second, the AW can detect if the de-
tection process has failed and restart it if necessary. Third, the AW periodically reports
LIDS-speci ¢ monitoring metrics (e.g. packet drop rate) back to the MAD and ensures
that during the recon guration process the LIDS continues to operate seamlessly, so an
adequate level of detection is maintained. Finally, once the recon guration process has
been completed successfully, the AW reports back to the MAD.

4.2.1.1.3 Master Adaptation Driver: A MAD is responsible for the recon gura-
tion and lifecycle of a group of LIDSs on a given node. In order to satisfy the scalability
objective of SAIDS the MAD was designed for handling multiple recon guration requests
in parallel. When a dynamic event occurs, the adaptation parameters are sent by the AM
to the MAD. The MAD translates them to LIDS-speci c rules and creates a new con g-
uration le that contains the rules that need to be activated in the a ected LIDS. In the
event of a new LIDS is instantiated the MAD is responsible for creating an endpoint for
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that LIDS on the local switch and recon guring the tra ¢ distribution between LIDSs on
the local switch.

The MAD periodically communicates with di erent AW instances in order to gain ac-
cess to LIDS-speci ¢ performance metrics. In case of a performance degradation the MAD
is responsible for deciding between instantiating a new probe or assigning more compu-
tational resources to an existing one. Finally, the MAD can periodically obtain resource
utilization information about each LIDS. The time between two consecutive resource uti-
lization queries can be de ned by the tenant.

42.1.1.4 Mirror Worker: The MW has two di erent roles: First, it is responsible
for checking whether the tra c that ows to and from a group of VMs that are hosted in a
particular compute node is correctly mirrored to the corresponding LIDS node(s). Second
if a mirroring endpoint does not exist the mirror worker creates it on the underlying local
switch.

4.2.1.1.5 Safety Mechanism: SAIDS features a safety mechanism inside each com-
pute node that guarantees that the VM participating in a dynamic event (e.g. a migrated
VM) does not enter an active state before the corresponding LIDS has been successfully
recon gured. The AM noti es the safety mechanism that the LIDS recon guration has
been completed successfully. Although SAIDS has this mechanism enabled by default,
in our design we allow tenants to choose whether to disable it or not. The choice be-
tween enabling the safety mechanism or not demonstrates a trade-o between security
and performance. Consequently, enabling the mechanism could impact the performance
of network-critical applications that run inside the a ected VM.

After presenting SAIDS individual components we now discuss potential security threats
against SAIDS.

4.3 Security Threats

In this section we describe the potential vulnerabilities in SAIDS design and potential
vulnerabilities added by SAIDS in the provider's infrastructure. We present our design
choices for addressing each one.

4.3.1 SAIDS Con guration Files

The rst type of input that is required for the adaptation of the LIDSs is a set of con-
guration les that are used for translating the adaptation arguments (which include any
tenant-de ned monitoring requests) to rule category names. The rst le contains the
adaptation arguments while the second le provides a mapping between speci ¢ types of
tenant-deployed services and rule category names. An attacker could alter the contents
of the les and create false adaptation arguments that would result in the activation of
incorrect rule categories or deactivation of correct ones. These les are simple text or
XML les for which SAIDS features robust parsers. The input le is pre-processed using a
SAIDS-speci ¢ lter that veri es that only SAIDS-speci ¢ elements and printable ASCII
strings without special characters are present in the les. Furthermore the value of each
entry (i.e. monitoring request) partially matches the rule name (exact de nition in Sec-
tion §.4.2), so any complex interpretation is avoided. Following up on the list of deployed
services in the example of Sectiof 3|5, the le containing the adaptation arguments after
the adaptation decision can be found in Listing[4.]:
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Listing 4.1 { The adaptation_args le

sighature_based

suricata65s

sshd 192.168.1.2, 192.168.1.3
apache?2

sqld

worm

5
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The format of the le is as follows: The rst two lines are reserved for the LIDS type
and the name of the LIDS while the last line is reserved for comma-separated numeric
values of LIDS-speci ¢ metrics. In the simpli ed example of Section[3.5, the tenant has
only one VM with three processes running (an ssh daemon and a SQL-backed Apache
server) while he requests additional monitoring for worms and accepts a drop rate of 5%
from the LIDS.

4.3.2 LIDS Rules

The result of the above translation leads to enabling speci c rule categories in the LIDS.
Since the rules are LIDS native, they are considered safe.

4.3.3 SAIDS Adaptation Sources

The adaptation process in SAIDS is based on speci ¢ arguments that describe dynamic
events (e.g. for a VM migration SAIDS needs the VM ID, VM IP public and private
addresses, source and destination node, etc). Since the arguments are extracted through
the IMPs from inside the cloud engine and we assume that the provider's infrastructure is
safe, we consider them safe.

4.3.4 Connection Between SAIDS Components

The Master Adaptation Driver de nes the recon guration parameters based on adaptation
arguments that it receives from the Adaptation Manager in a dedicated le. Interception
of this le by an attacker could lead to false recon guration decisions. We establish and
maintain a secure connection between the AM and the MAD. The secure connection is
established through a secure protocol [142] which provides authentication of the AM and
guarantees the integrity of the data transferred.

4.3.5 External Trac

As all network-based intrusion detection systems, LIDSs can be corrupted by malicious
production tra c that they analyze. SAIDS introduces a barrier between a potentially
corrupted LIDS and the node hosting it by placing the LIDS in an isolated environment
(e.g. aLinux container). Communication between LIDS and the local log collector instance
is facilitated through shared volumes. Although this communication is not exposed to
the network, a potentially corrupted LIDS can still produce malicious logs which could
corrupt the local log collector instance and ultimately lead to false logs being transmitted
to tenants. To contain the propagation of corruptions of the local log collector, we also
place it in an isolated environment. In the event of a corrupted log collector instance,
malicious input could be introduced in the log le of the LIDS. However, since the LIDS
itself does not need to read log les, this is not a security issue for the LIDS.
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4.4 Adaptation process

In this section we describe the events that trigger the adaptation of the LIDSs and the
di erent steps of the adaptation process.

4.4.1 Events Triggering Adaptation

SAIDS adapts its components based on dynamic events that refer to three main categories:

1. Virtual infrastructure topology-related changes . this category includes tenant-
driven (i.e. VM creation, deletion) or provider-driven (i.e. VM migration) changes.

2. Hardware infrastructure topology-related changes . addition or removal of
physical servers. The changes in this category are exclusively provider-driven.

3. Service-related changes : addition or removal of services on the monitored VMs.

4. Performance-related changes : e ects in the quality of detection or optimization
decisions regarding computational resource utilization. The e ects in the detection
guality are detected through LIDS-speci ¢ detection quality metrics.

In Table f.1] we classify these events based on their origin and subsequent adaptation
action. The adaptation action varies depending on the current state of the monitoring

Table 4.1 { Events that trigger adaptation

Part A Part B
Change category Event Origin Adaptation action
Virtual VM creation Tenant frule update, new LIDSg
infrastructure VM destruction Tenant frule updateg
topology VM migration Provider frule update, new LIDSg
Performance % Packet drop Tra c load fnew LIDSg

Latency fnew LIDSg

% unused resources f destroy LIDSg
Service Service addition Tenant frule updateg

Service removal frule updateg
Hardware infrastructure | Server addition Provider frule update, new LIDSg
topology Server removal frule update, destroy LIDSg

framework. For example, if a topology related change occurs (e.g. VM migration) SAIDS
will check if a LIDS monitoring the tra ¢ owing towards and from the new VM location
exists. If a LIDS exists SAIDS simply recon gures the enforced ruleset (i.e. rule update
action). If a LIDS does not exist then SAIDS instantiates a new LIDS. When a performance
degradation occurs, SAIDS opts for a new LIDS instantiation.

4.4.2 Adaptation Process

We now describe the adaptation process for each one of the dynamic events described in the
previous section. We focus only on the SAIDS-speci c components and we omit the rst
stage of the adaptation that includes the noti cation from the Infrastructure Monitoring
Probes and the adaptation decision from the Adaptation Manager. The actions performed
by SAIDS during the adaptation process were designed in order to satisfy SAIDS self-
adaptation and customization objectives. Throughout this section we use the adaptation
le presented in Listing (the adaptation le resulting from the simplied example
scenario presented in Sectiof 3]5).
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4.4.3 Topology-Related Change

Once the Master Adaptation Driver (MAD) receives the adaptation parameters from the
Adaptation Manager two steps are performed:

1. It checks whether the a ected LIDS is running or not. If it is not running then the
MAD starts a new LIDS and recon gures the tra c distribution on the local switch
of the node hosting the LIDS in order for the newly instantiated sensor to access the
tra ¢ owing towards and from the a ected VM.

2. The MAD translates the adaptation parameters to LIDS-speci ¢ con guration pa-
rameters and creates a new LIDS-speci c con guration le. The con guration le
contains the list of rule categories that need to be activated in the LIDS in order to
successfully monitor the list of services running inside the a ected VM. In our exam-
ple the MAD patrtially matches the adaptation argument to the rule category name
in order to nd the right rule categories that need to be activated. A partial match
is found when the adaptation argument is contained in the rule category name (e.g.
worm in emerging-worm.rules. Consequently, for the worm adaptation argument
the emerging-worm.rules category will be activated while for the sqld argument the
emerging-sql.ruleswill be activated. In case a partial match is not found, MAD uses
the second le from SAIDS input set (see Sectior] 4.8), which is a LIDS-specic le,
located in the MAD node, to translate the adaptation argument to rule category
names. The le only features rule categories that can not be partially matched to
the adaptation argument (e.g. apache2or ssh). A snippet of this le can be found

in Listing £.2]

Listing 4.2 { The userservice.conf le

1 mail emerging pop3.rules ,emerging smtp.rules

2 apache2,nginx http events.rules ,emerging web_server.rules ,emerging
web_specific_apps.rules

3 sshd emerging shellcode .rules ,emerging telnet.rules

In the newly created suricata con guration le the following rule categories will be
activated: (a) http-events.rules, emerging-welserver.rules,
emerging-webspeci c _apps.rules for the web server, (b) emerging-shellcode.rules,
emerging-telnet.rules for the ssh daemon and nally, (c) emerging-sql.rulesfor the
SQL database. A part of the resulting LIDS con guration le can be found in List-

ing[4.3:

Listing 4.3 { The suricata.yaml le

1 #RULE BLOCK

2 # decoder events.rules # available in suricata sources under rules
dir

3 # stream events.rules # available in suricata sources under rules
dir

4 http events.rules # available in suricata sources under rules
dir

5 # smtp events.rules # available in suricata sources under rules
dir

6 # dns events.rules # available in suricata sources under rules
dir

7 # tls events.rules # available in suricata sources under rules
dir

8 # emerging user_agents.rules
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9 # emerging voip.rules

10 # emerging web_client.rules

11 # tor.rules

12 emerging web_server.rules

13 emerging web_specific_apps.rules
14 emerging worm. rules

15 emerging shellcode.rules

16 emerging telnet.rules

17 emerging sql.rules

3. As a last step, the MAD noti es the AW, which is locally installed inside the LIDS,
that a new con guration le exists and the IDS needs to be recon gured. Upon
receiving the noti cation, the AW checks whether the detection process is running
and initialises a reload of the newly created con guration le. Once the reload
is complete (i.e. the LIDS has been adapted) the AW noti es the MAD that the
adaptation process was completed successfully. In case the AW noti es the MAD that
the adaptation process failed, for example due to a crash of the detection process
or an unsuccessful reload of the enforced ruleset, the MAD propagates the event
to the AM which then noti es the safety mechanism that the VM should not yet
be resumed in the new location. Depending on the type of failure the following
strategy is adopted: rst, the AW will try to restart the detection process (or reload
the enforced ruleset in the event of a reload failure). If it fails, it propagates the
information to the MAD, which in turn instantiates a new LIDS, recon gures tra c
distribution appropriately and destroys the failed LIDS instance. The number of tries
that the AW will execute before a new LIDS needs to be instantiated are decided by
the MAD. The AW guarantees that during the recon guration phase, the LIDS will
continue to operate seamlessly, thus no tra ¢ remains uninspected.

4. Finally, the MAD noti es the Adaptation Manager that the adaptation request was
served. The AM in turn noti es the safety mechanism that the VM can be safely
resumed.

4.4.4 Trac-Related Change

In order to detect degradation in the performance of an LIDS the MAD periodically
queries the AW for LIDS-speci ¢ performance metrics (e.g. packet drop rate). Once the
performance metric exceeds a prede ned threshold, the MAD instantiates a new LIDS,
with identical con guration parameters, and recon gures the tra c distribution on the
local switch so that the load is balanced between the two LIDSs. Currently the MAD
can redistribute tra c load only on a VM basis (i.e. send all the trac from and to a
particular VM to a speci ¢ LIDS).

4.4.5 Service-Related Change

The adaptation process is the same as a topology related change. Since SAIDS does
not feature any mechanism for automatic discovery of new services in the deployed VMs,
we rely on the tenants in order to notify SAIDS for service-related events (through our
framework's dedicated API).

So far the description of the adaptation process focuses on the side of the monitoring
probes. Although LIDS recon guration is essential for preserving an adequate level of
detection in the virtual infrastructure, gaining access to the right portion of the trac is
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also required. Each time a topology-related change occurs (e.g. VM creation or migration),
the Mirror Worker is responsible for checking whether a tra ¢ endpoint from the local
switch on the compute node to the local switch of the 1IDS node exists, and if not creates
it. This strategy applies to hardware-related changes as well.

4.5 Implementation

We have implemented a prototype of SAIDS from scratch using the KVM [27] hypervisor
on a private cloud. Our cloud was deployed on OpenStack[32] and we used Open vSwitch
(OvS) [137] as a multilayer virtual switch. To segregate VMs that belong to di erent
tenant networks we utilised Generic Routing Encapsulation (GRE) tunnels. A span tunnel
endpoint was created for mirroring tra ¢ in the virtual switches to the LIDSs node. In
this section we discuss the main implementation aspects of each SAIDS component.

Local Intrusion Detection Sensors . we deploy each LIDS inside a dedicated
Docker [45] container. Since the LIDS only runs the detection process and does not
require a full operating system, we opt for containers in order to achieve minimal start
time. Containers are also a suitable lightweight solution for achieving isolation between
di erent detection processes. Currently our prototype features 2 di erent legacy network
IDSs: Snort [93] and Suricata [[94]. Each container hosts an IDS process and an Adapta-
tion Worker responsible for managing that process. For providing access to the mirrored
tra c for the LIDSs we use the ovs-docker utility. Ovs-docker allows docker containers
to be plugged on OvS-created bridges. It interacts with the virtual switch on the node
hosting the LIDSs and creates one network tap per container. We select signature-based
LIDSs as they are the ones requiring zero training time. We utilise OpenFlow([48] rules for
distributing tra ¢ between LIDSs. Depending on the monitoring strategy selected (e.g.
one LIDS monitoring the tra c that ows towards and from a particular compute node),
the tra c is distributed based on the tunnel source address of the GRE tunnel transferring
the monitored tra c.

Adaptation Worker : We have created a unied version of the AW that is able
to handle the signature-based LIDSs that are supported in our prototype (i.e. Suricata
and Snort). The AW communicates with the Master Adaptation Driver for receiving
recon guration requests and reporting back on the recon guration status using a shared
folder. The AW places the shared folder under surveillance for speci c events ( le creation
and modi cation) using the Inotify Linux utility [139]] a tool for detecting changes in
lesystems and reporting them back to applications. Once the event is triggered the
AW loads this new con guration le (so the new ruleset can be enforced) and calls the
live_rule_swap functionality available in both Suricata and Snort IDSs in order to live
update (i.e. without having to restart the LIDS) the enforced ruleset. The live_rule_swap
operation allows a user to update the enforced ruleset without stopping the IDS itself (a
SIGUSR?2 is sent to the detection process). MAD relies on this functionality, consequently
the LIDS remains operational even during the actual recon guration. The AW ensures that
the new ruleset has been loaded by continuously monitoring the log le for a log indicating
that the new ruleset has been reloaded. Once the reload is complete the AW noti es the
MAD by creating a dedicated le in the shared folder. The AW was implemented in
Python.

Master Adaptation Driver . For enabling managing the lifecycle and recon guration
of multiple LIDSs MAD was implemented using a multithreaded approach. MAD creates
a unique folder per LIDS and uses a dedicated thread to watch this folder for changes
(again using the inotify utility). Once an adaptation request arrives from the AM (i.e.
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a le containing the adaptation parameters is created in the watched folder) the thread
starts the recon guration process. The MAD features IDS speci c con guration les for
translating the adaptation parameters to rule categories. If the LIDS is not started yet,
the thread starts it, creates a port for it on the virtual switch using the add-port command
from ovs-dockerand nally redirects the appropriate mirrored tra ¢ to the created port.
The last part is done by creating a dedicated OpenFlow rule that redirects the tra ¢ from
the GRE tunnel endpoint to the LIDS port.

For tracking the resource consumption of each LIDS sensor the MAD features a special
function called docker stats. monitor. First, it obtains the container's ID. Then it periodi-
cally queries thecgroup of that particular ID for di erent runtime metrics: CPU, I/O and
Resident Set Size memory. The MAD also inspects externally the packet drop rate for a
particular LIDS container by collecting interface level packet drop count from inside the
container namespace. The MAD was implemented in Python.

Mirror Worker : It checks whether a GRE tunnel for mirroring the trac owing
towards and from a group of VMs to the corresponding LIDS exists. If not the MW creates
it. The IP of the LIDS along with the VMs IDs and the port name of the VM on the
destination node are sent by the Adaptation Manager. Once the AW receives the OvS
port name, it uses thelist_interface OvS command giving the port name as input in order
to extract the port's id. The MW was implemented in Python.

Safety Mechanism : we implement the safety mechanism by placing a dedicated hook
inside the plug.vifs Nova function which is executed on compute nodes. Theplug.vifs
function is responsible for creating the virtual interface for the VM on the OvS bridge
of the destination node. The hook halts the virtual interface creation until the LIDS
recon guration has been completed. By placing the hook inside the function we make
sure that network connectivity for the VM is not enabled until the adaptation is complete.
We select theplug.vifs function because it is executed in both VM creation and migration
events. The safety mechanism was implemented in Python.

4.6 Evaluation

After presenting the most important implementation aspects of SAIDS we now present
the evaluation of our prototype. We rst detail the objectives of our evaluation plan along
with our experimentation methodology. Finally, we discuss the obtained results along with
limitations.

4.6.1 Objectives of the Evaluation

The main goal of SAIDS is to adapt the LIDSs while guaranteeing an adequate level
of security, combined with adequate performance (in terms of reaction time for a full
adaptation loop) and minimised cost both for tenants and the provider. We now detail

the factors that a ect each objective.

4.6.1.1 Performance

The performance objective refers to two di erent aspects: adaptation speed and scalability.
4.6.1.1.1 Adaptation Speed: Here we refer to the time required for SAIDS to per-
form a full adaptation loop, from the moment a dynamic event occurs until all involved

LIDSs are successfully recon gured. In order to have an exact calculation of the overall
time we need to answer the following questions:
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1. What are the di erent SAIDS components that are involved in each adaptation loop?
Five SAIDS components are mandatorily involved in each adaptation loop: the
Adaptation Manager, the Master Adaptation Driver, the Adaptation Worker, the
Mirror Worker and the safety mechanism. Obviously, the overall time depends on
the di erent tasks that each component has to complete.

2. What are the tasks performed by each component?

Adaptation Manager: makes the adaptation decision and sends the adaptation
arguments to the Master Adaptation Driver.

Master Adaptation Driver: checks if the LIDS container is running and depend-
ing on the outcome, directly proceeds in generating the adapted con guration
le or rst starts a new LIDS container and con gures tra c distribution.

Adaptation Worker: conducts the live rule update in the LIDS container.

Mirror Worker: checks whether a tra ¢ endpoint from the compute node host-
ing the VM to the node hosting the LIDSs exists and if not creates it.

Safety Mechanism: guarantees that in the case of a VM creation or migration
the VM does not enter an active state until the recon guration of the LIDS has
been completed successfully.

Di erent factors a ect the completion time of each task, which leads us to the next
question:

3. Which factors a ect the execution time of each task?

Adaptation Manager: the number of the adaptation arguments a ects the size
of the le and consequently the time required to send it to the MAD on the
LIDS node. The number of the adaptation arguments depends on the number
of services running inside the monitored VMs and the number of additional
monitoring rules that the tenant has requested.

Master Adaptation Driver: the number of rules that need to be activated/de-
activated a ects the time required to regenerate the LIDS con guration le.
The time required for the remaining tasks is not a ected by the adaptation
arguments.

Adaptation Worker: the number of rules that are added a ects the overall time
required to reload the enforced ruleset.

Mirror Worker: since the MW needs to create a single tunnelling endpoint
(which translates to executing two OvS commands, one for identifying the port
number of the VM's port and one for creating the tunnel itself) the MW exe-
cution time is expected to be constant.

Safety Mechanism: the waiting time introduced by the safety mechanism in
resuming the VM is equal to the time remaining to complete the adaptation
process when the Nova functiomplug.vifs is called on the VM destination node.
Consequently, the factors that a ect the completion time of the four other
SAIDS components indirectly a ect the execution time of the safety mechanism.

We now present the second performance objective.
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4.6.1.1.2 Scalability: We want to evaluate how many adaptation requests SAIDS can
successfully serve in parallel. In order to achieve this we need to answer the two following
questions:

1. How many full adaptation loops can SAIDS handle in parallel? Each loop is com-
posed of three dierent levels: The Adaptation Manager, the Master Adaptation
Driver and nally the Adaptation Worker with the LIDS (the level of the AW does
not scale since the design pairs a single AW with a single LIDS). The evaluation of
the overall scalability of SAIDS should be composed of the scalability evaluation of
each one of the adaptation levels. Consequently, we need to calculate: (Bjow many
MADs can the Adaptation Manager handle in parallel? This is the scalability result
of the rst level of adaptation (from the AM to di erent MADs). To achieve this we
calculate the maximum number of MADs that the AM can handle in parallel. For
this phase we only vary the number of MADs. (b) How many LIDSs can a MAD
handle in parallel? This is the scalability result of the second level of the adaptation
(from a MAD to the LIDSs). To achieve this we need to consider the case where
the number of tasks that a MAD needs to perform per LIDS is maximized. This
case essentially requires the MAD to spawn a new LIDS and con gure the trac
distribution on the local switch, for each adaptation request. We examine only this
case as the one requiring the maximum e ort on the MAD side. Since the focus
of the experiment is on creating new LIDSs, rather than recon guring the enforced
ruleset of existing ones, we only activate one rule category per IDS. The number of
rule categories that are activated does not change the size of the LIDS con guration
le (see example in Listing ) thus the time required for the MAD to generate it
is not impacted. Moreover, since the MAD operations are asynchronous, the time
required to load the rules in each LIDS does not a ect the MAD scalability. For this
phase of the experiment we only vary the number of LIDSs.

2. What is the overhead imposed by the multiple parallel requests in the execution time
of each adaptation loop?We would like to identify the impact of parallelism on the
time required to complete each adaptation loop. The reaction time of two SAIDS
components (i.e. Adaptation Manager and Master Adaptation Driver) is directly
a ected by the number of parallel requests. We compute the overhead (in seconds)
in the reaction time of the two components.

46.1.2 Cost

We examine the associated penalties on deploying SAIDS both from the tenants and the
provider's objective. From the provider's perspective we calculate the overhead imposed by
SAIDS to normal cloud operations (e.g. VM migration) while for the tenants we examine
if SAIDS imposes any overhead in the performance of tenant applications.

Provider-side cost : namely, What is the overhead (in seconds) introduced by
SAIDS to a normal cloud operation like a VM migration?

Tenant-side cost : since SAIDS monitoring is performed by network based IDSs
that work on mirrored tra c, SAIDS deployment does not directly a ect tenant
applications regardless of their pro le (no latency is induced in the production net-
work). The tra ¢ mirroring itself can indirectly a ect the applications running on
the SAIDS-monitored node due to CPU consumption and physical network band-
width usage (although this penalty is inherent of the mirroring technique and not
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SAIDS itself). The only SAIDS related cost on individual tenant applications is
related to the VM downtime when normal cloud operations occur.

4.6.1.3 Security and Correctness

Since one of the main SAIDS objectives is to guarantee an adequate level of detection
during the adaptation time, it is clear that we need to examine whether malicious tra c is
successfully identi ed even when the LIDSs are being recon gured. Furthermore, we need
to certify that SAIDS does not a ect the detection capabilities of the adapted LIDSs and
that the adaptation result is correct. We focus on the following questions:

Are the added rules correct and operational?
Are there any packets dropped during the adaptation time?
Can SAIDS detect an attack that occurs during the adaptation time?

Does SAIDS add any security aw in the adaptation process itself or in the provider's
infrastructure? in Section[4.3 we have already justi ed why our design choices do
not add any aws in the adaptation process and in the provider's infrastructure.

After presenting the objectives of our evaluation process, we now detail the experimental
scenarios used to perform the evaluation of our SAIDS prototype.

4.6.2 Experimentation Methodology

This section describes in detail the experimental scenarios used in order to evaluate SAIDS
prototype. The scenarios were designed for addressing multiple evaluation objectives si-
multaneously. We select VM migration as a representative cloud operation that includes
VM creation and deletion. For examining the security and correctness of SAIDS, we select
a web server as use case.

4.6.2.1 VM Migration

The VM migration scenario simultaneously addresses the performance and cost objectives
(only the provider-associated cost of deploying SAIDS). We aim at calculating the over-
head imposed by deploying SAIDS in a VM migration. In this scenario we calculate the
migration time of a monitored VM under two di erent workload cases: 1. an idle VM,
no workload running in the migrated VM (idle VM) and 2. a memory-intensive workload
running in the migrated VM. The overall migration time depends on two factors: the
memory size of the migrated VM and the workload running inside the migrated VM. The
workload cases represent two di erent situations, the rst one (i.e. idle VM), with mini-
mum migration time, consequently any overhead imposed by SAIDS is maximised while
the second one (i.e. memory intensive workload), with maximum migration time, hence
any overhead imposed by SAIDS is minimised. In both cases we examine all possible
adaptation options:

a corresponding LIDS already exists and is running on a dedicated node, thus SAIDS
only needs to recon gure the enforced ruleset.

SAIDS needs to start the corresponding LIDS, create a port for it on the virtual
switch, and redirect the mirrored tra ¢ coming from the destination node of the
VM to the LIDS port. Furthermore, SAIDS needs to check whether a tunnel for the



82CHAPTER 4. SAIDS: A SELF-ADAPTABLE INTRUSION DETECTION SYSTEM FOR IAAS CLOUD ENVIR

mirrored tra ¢ from the destination node of the VM to the LIDS node exists and if
not create it.

In each option we calculate the reaction time of each SAIDS component.

4.6.2.2 Multiple LIDSs and Multiple MADs

This scenario focuses on the scalability objective of our evaluation plan. The multiple
LIDSs and multiple MADs scenario examines the ability of SAIDS to handle multiple
adaptation requests in parallel. SAIDS's scalability is examined at two di erent levels:
the Master Adaptation Driver and the Adaptation Manager. At the Master Adaptation
Driver level, we calculate the total reaction time as well as the reaction time of each phase
(ruleset con guration, LIDS creation, tra c distribution). We compare the results with

the adaptation of a single LIDS and calculate the scalability overhead. The only varying
parameter in this experiment is the number of LIDS.

For the Adaptation Manager level we calculate how many di erent Master Adaptation
Drivers (each one with maximized load) an can AM handle in parallel. Each MAD resides
in a di erent node and requires a dedicated secure connection in order to transmit the
adaptation arguments. We calculate the mean reaction time of the AM and we compare
it with a single MAD approach in order to calculate the scalability overhead.

For the evaluation, we simulate a large number of nodes using containers and we place
each MAD in a separate container with a dedicated IP address. All containers are placed
on the same physical node. Since each container is a completely isolated environment, the
AM perceives it as a dedicated node and still needs to create a dedicated secure connection
per MAD. Due to memory restrictions (our node has 24GB of memory) no LIDS is run
inside the containers. Since the MAD operations are asynchronous the fact that no LIDS
is run does not a ect the result.

In SAIDS, an adaptation request concerning a single LIDS is represented by a le
containing the adaptation arguments (one le per LIDS is sent from the AM to the MAD
responsible for the adapted LIDS). Consequently, in order to simulate the maximum num-
ber of adaptation requests per MAD, we take the results from the rst phase of the
experiment (i.e. the maximum number of LIDSs that a single MAD can handle) and we
send the same number of les containing adaptation arguments to each MAD. The varying
parameter in this experiment is the number of MADSs.

4.6.2.3 Web Server

In this scenario we examine SAIDS ability to guarantee an adequate level of detection even
during the adaptation process. For this purpose we migrate a web server and we launch
multiple SQL injection attacks during the migration period. In the set up created for this
scenario we have two di erent LIDSs (one monitoring the tra c in the source node and
one monitoring the tra c in the destination node). The rst LIDS is already con gured
to detect SQL injection attacks while the second one is not. We expect that the second
LIDS will be able to detect the attacks after SAIDS adapts it. Depending on when in the
migration phase the attack packets reach the victim VM we expect di erent outcomes.
Before presenting the di erent outcomes we brie y discuss the migration aspect that
a ects the connectivity of the migrated VM. In each live migration the dirty memory pages
of the migrated VM are copied from the source to the destination node until a specic
threshold is reached, when the VM is momentarily paused the remaining memory pages
are copied and then the VM is resumed at the destination node. Until this threshold
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is reached the VM continues to be active on the source node, thus the virtual interface
accepting VM-related tra c is the one on the source node (consequently in our case it will
be monitored by the rst LIDS). In parallel with the memory pages copy, a new virtual
interface for the VM is created on the destination node. After the interface is created and
the copy of the pages reaches the threshold, the VM is activated on the destination node,
thus the tra c is now redirected on the new virtual interface (consequently in our case it
is monitored by the new LIDS).

We now list the three di erent outcomes:

1. Attack packets reach the VM before the virtual interface has been created at the
destination node. Consequently, the packets will be inspected by the rst LIDS. We
expect the attack to be detected since the LIDS is already con gured.

2. Attack packets reach the VM after the virtual interface has been created at the
destination node and SAIDS has successfully recon gured the second LIDS. We
expect the attack to be detected since the second LIDS is already recon gured.

3. Attack packets reach the VM after the virtual interface has been created at the
destination node and SAIDS recon guration is on-going on the second LIDS. Since
SAIDS utilises the live_rule_swapfunctionality of a LIDS we expect the second LIDS
to analyze the attack packets as soon as the new ruleset has been reloaded (the alert
will be generated once the new ruleset is enforced and the attack packets reach the
second LIDS).

SAIDS features a safety mechanism that does not allow the VM to enter an active state
after migration (i.e. on the destination node) before the LIDS recon guration has been
completed. The safety mechanism guarantees that no packets will reach the VM before
the new LIDS is successfully recon gured.

Furthermore, for checking whether SAIDS causes the LIDS to drop packets during the
adaptation process, we compare the number of packets reaching the virtual interface of
the LIDS with the number of packets that the LIDS reports as captured.

4.6.3 Result Analysis

After presenting our evaluation scenarios and the objectives that they serve we now analyze
the obtained results.

4.6.3.1 Experimental Setup

To do our experiments, we deployed a data center on the Grid5000 experimentation plat-
form. Our datacenter has 5 physical nodes: one controller, one network node, two com-
pute nodes and one separate node for hosting the LIDSs. Each physical node has 24GB of
RAM and features two AMD Opteron processors (1.7Ghz, 4 cores each). The nodes run an
Ubuntu Server 14.04 operating system and are interconnected through a 1Gb/s network.
The LIDSs gain access to the monitored tra ¢ through mirror ports and GRE tunnels.
The LIDSs in all experiments run a Suricata NIDS process. All the VMs deployed on the
physical nodes run an Ubuntu server 14.04 Operating System with 2 CPUs and 4 GB of
RAM. We perform 10 executions per experiment.
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4.6.3.2 VM Migration

To generate the memory-intensive workload we utilisedow.memwr from the LMBench

benchmark suite [143] with a 1024MB working set. The working set is allocated, zeroed
and then written as a series of 4 byte integers. In each adaptation we only add two new rule
categories that correspond to ssh tra ¢ (emerging-shellcode.rules, emerging-telnet.rulgs

Since the VM is not executing a workload that generates tra ¢ no other rules are neces-
sary. In this scenario we aim at proving that SAIDS imposes negligible overhead in the
VM migration. The results are shown in Figure[4.2. The imposed overhead in both cases

Figure 4.2 { Migration time with and without SAIDS

(idle VM and VM with memory intensive workload) is 0.0s which validates our initial
hypothesis that SAIDS imposes negligible overhead on typical cloud operations. A per
phase breakdown of the two di erent adaptation cases (i.e. ruleset recon guration only
and new LIDS with tra ¢ distribution) is shown in Figures 4[3 4nd In both cases

Figure 4.3 { Adaptation time breakdown when SAIDS only recon gures the enforced
ruleset inside the LIDS

the safety mechanism is enabled but the LIDS recon guration is completed much earlier
than when the plug.vifs is called (4.14s and 0.97s respectively while thplug_vifs function
is called always after the 10th second). Consequently no waiting time for resuming the



4.6. EVALUATION 85

Figure 4.4 { Adaptation time breakdown when SAIDS has to start a new LIDS, distribute
tra c and create a mirroring tunnel

VM is introduced. In the rst case, where only a recon guration of the enforced ruleset is
required, the time until the new ruleset is loaded is 4.14s (the MAD starts the recon gu-
ration process as soon as it receives the adaptation arguments). The AM uses the existing
connection in order to send the le with the adaptation arguments thus we include only
the time to send the le in the overhead analysis. In the second case, where a new LIDS
needs to be instantiated, the time required until it gains access to the tra c is 0.97s (time
for the MAD to start the LIDS and recon gure tra c: 0.82s + time for the AM to send

the adaptation arguments: 0.15s { connection establishment + le transmission time).
The creation of the tunnel endpoint in the VM destination node takes 0.19s (including the
time required for the AM to send the information to the AW which contains connection
establishment and le transmission time). The overall time required for SAIDS to per-
form a full adaptation loop in both cases, is much smaller than the overall migration time
(13.9s for an idle VM and 38.2s for a VM with a memory intensive workload). Further-
more, recon guring an existing IDS is a much heavier operation than starting a new one.
This is due to the fact that during the recon guration process the AW needs to wait until
the live_rule_swapis complete, which, depending on the number of newly added rules and
potential LIDS delay in ushing its logs, can be time consuming.

4.6.3.3 Multiple MADs and Multiple LIDSs

In order to create multiple adaptation events in parallel, we wrote a dedicated script
that simulates migration events by generating the same arguments that are sent to the
Adaptation Manager by the Infrastructure Monitoring Probe in case of a VM migration
(VM public IP, VM private IP, source and destination node, port on the virtual switch of
the destination node).

4.6.3.3.1 MAD Scalability { Multiple LIDSs: During the rst phase of our ex-
periment we focus only on a single Master Adaptation Driver and compute the maximum
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number of LIDSs that it can handle in parallel. The setup of a single MAD instance
handling multiple LIDS is depicted in Figure 4.5

Figure 4.5 { MAD scalability setup

Our results show that a single MAD instance located in a dedicated node with 24GB
of RAM can handle up to 50 LIDS (each LIDS requires 460.1MB of RAM consequently 50
is the maximum number of LIDS that the physical node of our testbed can handle before
it's memory capacity is reached). The average response time of the MAD agent under
di erent LIDS load is shown in Figure £.6]

Figure 4.6 { MAD response time

From the obtained results we identify that the task of spawning a new LIDS container,
which implies interacting with the Docker daemon, is the most time consuming task.
Even with 50 parallel LIDS spawning requests, which represent the maximum number of
Suricata containers that our physical nhode can accommodate, the mean overall reaction
time for SAIDS under maximum load is 9.41s, which is still signi cantly lower than the
13.9s average migration time for an idle VM (see experiment Described in Secti.Z).
Consequently, even if one of the 50 LIDS that are adapted is responsible for monitoring the
tra ¢ owing towards and from the migrated VM, still no overhead will be introduced in
the VM migration (the LIDS will be instantiated before the migration is completed). Note
that in the breakdown of the MAD phases, we did not include the time required for the
MAD to produce the new LIDS con guration le and check whether a new LIDS is running,
since their e ect in the overall time is negligible (see explanation in Sectior 4.6.2]2).
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In a production environment, a usual deployment scenario includes assigning one core
per LIDS in order to maintain an adequate performance level (in terms of packet loss) for
the detection process. For simulating a production setup we tested SAIDS with 8 parallel
adaptation requests (our machine has 8 cores). The mean overall time for MAD was 2.08s
with individual breakdown of: LIDS creation 1.72s, switch port creation 0.32s and tra c
redirection 0.01s.

4.6.3.3.2 Scalability of the AM { Multiple MADs: After obtaining the maximum
number of LIDSs that a single MAD instance can handle in parallel in our testbed (50
LIDS { 460.1 MB of RAM per LIDS in a node with 24GB of RAM) we now study the
scalability in the response time of the Adaptation Manager. In our experiment, each AM
worker thread needs to adapt all the LIDS belonging to a single MAD (50 LIDS). We
instantiate up to 100 AM worker threads. The setup of a single AM instance handling
multiple MADs is depicted in Figure

Figure 4.7 { AM scalability setup

In this scenario, the monitoring strategy selected assigns a single LIDS for monitoring
the tra ¢ owing towards and from a single VM (although this strategy is not optimal in
terms of provider-side costs we apply it for the scalability study). Consequently, in order
to generate the adaptation requests for the 50 LIDS of each thread, we use our script
to simulate 50 dynamic events (e.g. VM migrations) for 50 di erent VMs. In order to
target the LIDS that belong to the same MAD instance that a worker thread is handling,
all the VMs of a worker thread are migrated to the same destination node. In order to
extract the arguments for each one of the 50 VMs that it is handling the worker thread
needs to parse the le where all the VM-related information is stored ¢/m_info.xml). For
generating enough tasks for the worker threads the minimum number of VM entries in this
le is computed as follows: maximum number of AM worker threads number of VMs
per thread. In this scenario we instantiate up to 100 AM worker threads consequently the
minimum number of entries in the vm_info.xml: 100 50 = 5000. The arguments for
the adaptation of each LIDS are written to a separate le (see an example in Listin,
adaptation_args.txt). Each le has a size of 219 bytes.

Then, the worker thread opens a single secure connection and sends all 50 les (one
per LIDS) to the MAD responsible for the 50 LIDS. Finally, the worker thread opens a
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secure connection with the destination node of the migrated VMs and sends the necessary
information in a le to the MW. Note that since in our simulation all VMs of a single
worker thread are migrated to the same compute node, only one le is needed. Indeed,
the target of this experiment is not to evaluate the scalability of the AM with respect to
the number of compute nodes. This optimization allows us to gain a better insight in the
scalability of the AM with respect to the number of MADs.

The results are presented in Figurg 48. As the results demonstrate, the phase that

Figure 4.8 { AM response time

is most a ected by increasing the load of the MADs for the AM is the establishment of
the secure connection. That is due to the fact that each MAD is located in a di erent
container with a di erent IP address consequently a separate secure connection is necessary
(multiplexing is not possible). We measure the time to send the adaptation arguments (i.e.
essentially the time required to send the 50 adaptation les) on the AM side. Since we
do not wait for con rmation from each MAD instance that it received the les, no delay
due to network contention is observed in the result. However, since all MAD instances are
essentially run on di erent containers on the same node, some delay in the ssh connection
establishment due to the number of processes running on the node could be observed. The
latter makes the result of our experiment a pessimistic outcome compared to a real world
scenario where each MAD instance would be run in a separate less loaded node. Since
the VM-related information for all the VMs is located in a single le the multi-threading
approach does not signi cantly decrease the adaptation decision time (as opposed to the
case of one le per VM, where each worker thread needs to parse a le with only one entry
instead of 5000).

Our results demonstrate that a single AM instance can handle up to 5000 LIDS in-
stances while the per-thread response time remains under 1s. The limit in the number
of LIDS instances results only from the memory capacity of the testbed used to conduct
our experiments. The number of instances could be increased, if SAIDS is deployed in a
di erent setup where the memory capacity of production nodes is signi cantly larger than
24 GB of RAM per node.

For computing the resource consumption of an AM in terms of CPU and memory
handling multiple MADs we used the pidstat tool from the sysstat suite [144], a tool
used for monitoring the resource consumption of a specic task running in an OS. In
each experiment we ask the rst worker thread to launch pidstat immediately after it
receives the adaptation arguments and we terminate the monitoring after the last worker
thread has completed its tasks. With this strategy we make sure that we only compute
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the resource consumption of all the worker threads during the actual adaptation process.
Since all the adaptation tasks in each adaptation request are performed by the worker
thread responsible for that adaptation request, no other SAIDS-related process consumes
resources. We set the monitoring interval at 1s. The results are shown in Tablg 4].2.

Table 4.2 { Resource consumption of the AM component

Number of MADs || Usr% | Sys% | CPU% | Memory (MB)
10 17.19| 2.29 | 19.57 188.88
20 23.20 | 3.26 | 26.46 188.81
40 25.0 | 3.60 | 29.40 188.69
50 26.93 | 3.76 | 30.69 188.31
100 28.4 | 3.97 | 3243 188.93

The increase in the CPU usage when the number of AM worker threads increases is
due to the fact that starting a new ssh session imposes an one-time CPU penalty (during
the connection establishment due to the cryptographic key exchange). Our measurements
compute the worst-case scenario for each worker thread which is to establish a new con-
nection. The CPU usage is expected to decrease in average-case scenarios where SAIDS
needs to recon gure an existing LIDS, thus it can use an already established connection
for sending the le containing the adaptation arguments.

4.6.3.4 Correctness Analysis

For the web server scenario we installed WordPress on the target VM and we used Metas-
ploit suite [145] for launching SQL injection attacks. We have created our own custom
SQL injection rule which is included in the local.rules le (this le stores the user-de ned
rules in both Snort and Suricata LIDS). A snipet of the le can be found in Listing

Listing 4.4 { The local.rules le

1 alert tcp any any > $HOME NET any (msg:"WP Sql Injection Attack";content
"INSERT INTO wp _users"; sid: 1000017; rev:1;)

The rst LIDS, which monitors the tra ¢ owing towards and from the source compute
node is con gured to detect SQL injection attempts (the custom rule is activated), while
the second LIDS, which monitors the tra ¢ that ows towards and from the destination
node, is not con gured (the custom rule is deactivated). In order to cover all three pos-
sibilities for the arrival time of the attack packet (before the virtual interface migration

{ attack packets are processed by the old LIDS, after the virtual interface migration but
before the new LIDS recon guration and nally after the virtual interface migration and
after the LIDS recon guration) we launch 10 consecutive attacks at the beginning of the
VM migration.

4.6.3.4.1 Attack packets arrive before the creation of the virtual interface of
the target VM on the destination node: In this case the tra c is processed by the
rst LIDS, so the attack is detected and an alert is generated.

4.6.3.4.2 Attack packets arrive after the creation of the virtual interface of
the target VM on the destination node and after the second LIDS has been
successfully recon gured by SAIDS: In this case the enforced ruleset in the second
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LIDS is already recon gured to include the custom SQL injection signature, so the attack
is detected and an alert is generated.

4.6.3.4.3 Attack packets arrive after the creation of the virtual interface of the
target VM on the destination node but before the second LIDS has been suc-
cessfully recon gured by SAIDS: In our strategy, the LIDS recon guration starts
immediately after the migration command is received by the cloud APl and is executed
in parallel with the migration. A full adaptation cycle from SAIDS requires either 4.14
(existing LIDS recon guration) or 0.97s (new LIDS deployment) while the migration of
the target VM requires in the best case scenario (idle VM) 13.9s (see experiment described
in Section[4.6.3.2). In this case the migration of the virtual interface of the target VM
(executed by the plug.vifs function) occurs always after the 10th second in the migration
cycle. As a result, the second LIDS recon guration has been completed before the migra-
tion of the virtual interface of the target VM occurs. Consequently, the SAIDS adaptation
cycle has already been completed and the LIDS has already been recon gured. Indeed,
attack packets never reach the new virtual interface on the destination node before SAIDS
recon guration is complete.

For the two cases that refer to the second LIDS (see Sections 4.6.3.4.2 and 4.6.3(4.3),
the number of packets that arrive in the virtual interface of the LIDS container is identical
to the number of packets reported by the Suricata process as captured, consequently no
packets are dropped during the recon guration phase. We chose to compare the number of
packets reported by the Suricata process with the number of packets received by the LIDS
container as comparison of the number of packets reported in any previous stage (e.qg.
with the number of packets copied to the mirror interface) may have included non-SAIDS-
related packet loss. After analyzing our obtained results we now discuss the limitations of
SAIDS.

4.6.3.5 Limitations

SAIDS uses signature-based network IDSs and as such su ers from the inherent limitations
of this type of intrusion detection. Therefore, SAIDS cannot detect unknown attacks for
which a corresponding signature (i.e. rule) does not exist. Furthermore, since SAIDS
works on a copy of the tra c, an additional mirror-induced delay is imposed between the
time an attack reaches the target VM and the time when the alert is raised from the LIDS.

Regarding the connection between di erent SAIDS components, according to our scal-
ability study, a secure connection per MAD is required. This could lead to network con-
tention in a real production environment where thousands of MAD nodes are deployed.

In the scenario described in Sectiof 4.6.3]2 we saw that SAIDS imposes negligible over-
head for average-sized VMs (4GB and higher). Since the LIDS recon guration is completed
before the VM migration is completed in the destination node, the safety mechanism does
not have to halt the VM from resuming. However, SAIDS could impose some overhead in
migration operations in cases of very light workload where the overall migration time is
less than 4.14s (i.e. the time required for SAIDS to recon gure an existing LIDS).

4.7 Summary

In this chapter we presented SAIDS, the rst instantiation of our self-adaptable security
monitoring framework. SAIDS is a self-adaptable network intrusion detection system that
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satis es four main objectives: 1. self-adaptation, 2. tenant-driven customization, 3. scala-
bility and 4. security. SAIDS is able to adapt its components based on di erent types of
dynamic events in the cloud infrastructure. Depending on the type of the event SAIDS
can alter the con guration parameters of existing security probes or instantiate new ones.
A detailed description of the adaptation process along with the role of each SAIDS com-
ponent was presented.

We evaluated SAIDS under di erent scenarios in order to calculate the overhead of our
approach in normal cloud operations, such as VM migration and we prove that SAIDS
imposes negligible overhead in a VM migration. Furthermore, we evaluated the scalability
and security/correctness of our approach with dedicated simulation scenarios. Scalability
was evaluated in two di erent levels (from AM to multiple MADs and from a MAD to
multiple LIDSs). Due to memory size restrictions imposed by our testbed the maximum
number of LIDS that a single MAD can handle in parallel is 50 while the maximum number
of MADs that a single AM can handle is 100. Overall SAIDS can handle up to 5000 LIDS
in our current testbed, while this number could be increased making our solution suitable
for a large scale cloud infrastructure. We have shown that SAIDS is able to detect attacks
while handling dynamic events (e.g. VM migration) and is able to remain operational even
during the adaptation process.

The contribution presented in this chapter was focused on intrusion detection. The
next chapter presents the second instantiation of our security monitoring framework, AL-
SAFE and is focused on intrusion prevention.
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Chapter 5

AL-SAFE: A Secure
Self-Adaptable Application-Level
Firewall for laaS Clouds

In this chapter we present the second instantiation of our framework which focuses on a
di erent type of security component, the rewall. AL-SAFE is a secure application-level
introspection-based rewall designed to cope with the dynamic nature of an laaS cloud
infrastructure. This contribution was published in [L[46]. In Section we motivate the
need for securing application-level rewalls and we present a justi cation of our design
choices regarding AL-SAFE. The system and threat models that we adopted along with
individual component description are presented in Sectiorj 5]2. Sectioh 5.3 presents the
adaptation process while implementation details are discussed in Sectidn 5.4. Our evalua-
tion strategy along with obtained results are presented in Sectior 5J5. Finally Sectiof 5|7
concludes this chapter by listing key observations.

5.1 Requirements

Application-level rewalls are an important part of cloud-hosted information systems since
they provide tra ¢ ltering based on the type of applications deployed in a virtual infras-
tructure. However, they are subject to attacks originating both from inside and outside
the cloud infrastructure. In this thesis, we aim at designing a secure application-level re-
wall for cloud-hosted information systems. In a cloud infrastructure, two security domains
exists: One is concerned with tra c that ows between VMs inside the virtual infrastruc-
ture (that might belong to the same or di erent tenants) while the other is concerned with
tra c that ows between the outside world and the virtual infrastructure. Consequently,
an application-level rewall should address both domains.

Furthermore, a cloud-tailored application-level rewall should take into account tenant-
speci c tra ¢ ltering requirements and self-adapt its ruleset based on dynamic events that
occur in a cloud infrastructure. In this section we elaborate on the need for securing a
cloud-tailored application-level rewall and we justify how AL-SAFE's design addresses
this need. Furthermore, we detail the design principles of AL-SAFE and how they relate
to the objectives of our self-adaptable security monitoring framework.

93
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5.1.1 Why Should we Secure an Application-level Firewall

In contrast to typical host- or network-level rewalls which Iter network tra ¢ based on

a list of rules that use IP addresses and ports, application-level rewalls operate based on
a white list of processes that are allowed to access the network. This ne-grained lter-
ing is achievable because application-level rewalls run inside the host operating system,
and thus have a complete overview of the running applications and associated processes.
Unfortunately, in the conventional design of application-level rewalls, isolation between
the rewall and vulnerable applications is provided by the OS kernel, whose large attack
surface makes attacks disabling the rewall probable. Hence, we address the following
challenge: Can we keep the same level of visibility while limiting the attack surface be-
tween infected applications and a trusted, application-level rewall? In order to answer
this question, we designed AL-SAFE. In the following section we present in detail how
AL-SAFE's design addresses this impediment.

5.1.2 Security and Visibility

In order to address the issue of limiting the attack surface between the security device (i.e.
the rewall) and a potentially compromised VM, we designed AL-SAFE to operate outside
of the virtual machine it is monitoring, in a completely separate domain. Leveraging virtual
machine introspection[2.5.2.2.]L we retain the same level of "inside-the-host" visibility while
introducing a high-con dence barrier between the rewall and the attacker's malicious
code. As we discussed in Section 2.5.2.2.3 rewalls in laaS clouds are managed by the
cloud provider. A successful rewall solution should be able to take into account the
type of services deployed in the virtual infrastructure as well as the di erent dynamic
events that occur in a cloud environment. Consequently, a cloud-tailored rewall should
be able to allow customization of the ltering rules in a per-tenant basis (service-based
customization), and also adaptation of the enforced ruleset upon the occurrence of dynamic
events (self-adaptation). In the following section we detail AL-SAFE's design principles.

5.1.3 Self-Adaptable Application-Level Firewall

In AL-SAFE we enabled automatic recon guration of the enforced ruleset based on changes
in the virtual infrastructure topology (virtual machine migration, creation, deletion) and in
the list of services running inside the deployed VMs. To address the need of ltering intra-
and inter-cloud attacks, AL-SAFE provides ltering at distinct infrastructure locations:
at the edge of the cloud infrastructure ( Itering network tra ¢ between the outside world
and the cloud infrastructure) and at the level of the local-switch inside each physical host
(ltering inter-VM tra c). In this way AL-SAFE prevents attacks that originate both
from outside and inside the cloud.

We now present a list of all the design principles of AL-SAFE :

Self-adaptation : AL-SAFE's enforced ruleset should be con gured with respect to
dynamic changes that occur in a cloud environment, especially changes that refer
to the virtual infrastructure topology. The source of these changes can be tenant
decisions regarding the VM lifecycle (i.e. creation, deletion) or provider decisions
regarding VM placement (i.e. migration).

Service-based customization : the enforced ruleset should be con gurable to only
allow network tra ¢ that ows towards and from tenant-approved services that are
hosted in the deployed VMs. Addition or removal of legitimate tenant-approved
services should lead to recon guration of AL-SAFE's ruleset.
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Tamper resistance : AL-SAFE should continue to operate reliably even if an at-
tacker gains control of a monitored VM. In particular, the recon guration of the
enforced ruleset should not explicitly rely on information originating from compo-
nents installed inside the monitored guest.

Cost minimization : the overall cost in terms of resource consumption must be kept
at a minimal level both for the tenants and the provider. AL-SAFE should impose
a minimal overhead on tenant applications deployed inside the AL-SAFE-protected
VMs.

5.2 Models and Architecture

We adopt the same system and threat models as the ones described in Chap@r 3 (Sec-

tions [3.2,[3.3).
We now present an overview of the events that trigger the adaptation process followed
by AL-SAFE's design along with the presentation of key components.

5.2.1 Events that Trigger Adaptation

In order to satisfy the self-adaptation and service-based customization objectives, AL-
SAFE is able to automatically con gure the enforced rulesets on both Itering levels based
on two categories of dynamic events:topology- and service- related changes. We list the
events in each category along with their source in Tablé¢ 5]1:

Table 5.1 { Events that trigger adaptation

Change category Event Origin Adaptation action
Virtual VM creation Tenant fadd rulesy
infrastructure VM destruction | Tenant, Provider || f delete ruleg
topology VM migration Provider fadd & delete ruleg
Service list Service addition | Tenant fadd rulegy

Service list Service removal | Tenant f delete ruleg

As listed in the table, virtual infrastructure topology-related changes include VM cre-
ation, migration and deletion while service list related changes include addition of new or
removal of existing services on the deployed VMs. All dynamic events listed require either
addition or removal of existing rules in AL-SAFE.

5.2.2 Component Description

AL-SAFE consists of ve main components depicted in Figure[5.1: the edge rewall (EF),
that lters network tra ¢ between the outside world and the cloud infrastructure, a local
switch-level rewall (SLF), that Iters tra c in the local switch of each physical host, the
Introspection component (VMI), the Information Extraction Agent (IEA), and the Rule
Generators (RG), one for each rewall. All components are run by the cloud provider.
AL-SAFE components are integrated in our self-adaptable security monitoring framework
by interacting with the Adaptation Manager (located inside the cloud controller) and the
Infrastructure Monitoring Probes (located in the cloud controller as well).

The IEA takes as a parameter a tenant-de ned white list of processes that are allowed
to access the network (hite-list thereafter). Sharing the white-list with the provider es-
sentially implies disclosing a list of processes that are approved for using the network.
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Figure 5.1 { The AL-SAFE architecture with the Adaptation Manager

AL-SAFE, as an application-level rewall requires this list in order to di erentiate be-
tween connections that originate from tenant-approved services and potentially malicious
connections. The white-list is updated each time a tenant adds a new approved process
or removes an existing one. The white-list for the VM with ID 27 of the example in Sec-
tion (containing only the services that are expected to use the network) can be found

in Listing: 5.1}

Listing 5.1 { White-list example with three tenant-approved services

1 <?xml version ="1.0" encoding="UTF 8"?>
2

3 <firewallRules xmlns:xsi="http:/Mmww.w3.0rg/2001/XMLSchema instance"
xsi:noNamespaceSchemalLocation="language . xsd>

4 <application name="apache2" >

5 <port nun="80" proto="tcp" >

6 <input action="ACCEPT" conntrack="NEW/ESTABLISHED" >

7 <linput >

8 <output action="ACCEPT" conntrack="ESTABLISHED" >

9 </output >

10 </port >

11 </application >
12 <application name="sshd" >

13 <port num="22" proto="tcp" >

14 <input action="ACCEPT" conntrack="NEW/ESTABLISHED" >
15 <ip value="192.168.1.2" />

16 <ip value="192.168.1.3" / >

17 </input >

18 <output action="ACCEPT" conntrack="ESTABLISHED" >

19 </output >

20 </port >

21 </application >
22 </firewallRules >

In the white-list each tenant-approved network-oriented process is represented by aappli-
cation entry in the XML le. The application entry has di erent elds: port and protocol
that the process is expected to use and a list of IP address (public or private) that are al-
lowed to connect to the process. In our example there are three processes that are allowed
to use the network: anapache serverand ssh daemon Both the apache serverand the
ssh daemonhave restrictions as to which IP addresses are allowed to interact with.

We now describe the individual AL-SAFE components along with their functionality.
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5.2.2.1 VM Introspection

The VMI component is responsible for introspecting the memory of the monitored guest.
VMI is able to coherently access the VM's physical memory and uses a pro le of the
VM's operating system's kernel to interpret its data structures. Thus VMI rst extracts

the list of running processes, and then iterates over this list to check if a network socket
gures in the per-process list of le descriptors. For each network socket found, VMI
extracts the process name, the pid as well as source and destination ports, IP address and
communication protocol. The VMI-created list is named connection list.

5.2.2.2 Information Extraction Agent

The IEA compares the connection list thereafter resulting from the VMI with the tenant-
de ned white-list of processes. The Adaptation Manager is responsible for sharing the
white-list with the Information Extraction Agent through a secure channel. The AM is also
responsible for sharing updated versions of the white-list (e.g. when a new tenant-approved
service is added). The IEA assigns arallow tag on connections from the connection list
that gure in the white-list and a block tag on all other connections. The IEA propagates
the connection information together with an ALLOW or BLOCK instruction to the next
component, the Rule Generators. Furthermore the IEA component keeps a record of the
rules used for each VM deployed on the compute node on which it runs.

5.2.2.3 Rule Generators

Due to the dierent types of Itering rules, AL-SAFE features one rule generator per
type of rewall (one for the switch-level rewall and one for the edge rewall). Each
RG creates the corresponding rules using all propagated information such as source port,
source IP address, destination port, destination IP address and protocol. In the case of
the switch-level rewall, the rules are grouped by VM with one rule table per VM. Each
set of generated rules is then injected in its respective rewall.

5.2.2.4 Edge Firewall

The Edge rewall is located at the edge of the virtual infrastructure in a separate net-
work device and is responsible for external tra ¢ directed towards and from the virtual
infrastructure.

5.2.2.5 Switch-Level Firewall

The Switch-level rewall is responsible for ltering network packets in the local switch
using a list of ALLOW and BLOCK rules.

5.3 Adaptation Process

AL-SAFE automatically adapts the enforced ruleset based on changes in the topology
of the virtual infrastructure and the list of services running in the deployed VMs. We
present a high-level overview of the adaptation process in each one of these two cases. The
adaptation steps (from introspection of the AL-SAFE-protected VM until the injection of

the rules in the two rewalls) are demonstrated in Figure 5.2,
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Figure 5.2 { Steps of the AL-SAFE adaptation

5.3.0.1 Service-Related Changes

First, the VMI periodically introspects the memory of the monitored guest to obtain the
list of processes attempting to access the network. The time between two consecutive
introspections is known as theintrospection period and it de ned in the SLA. Second, the
IEA extracts the necessary information for generating ltering rules and propagates it to
the two Rule Generators. Finally the RGs create the switch-level and edge rewall rules
and inject them in the rewalls.

5.3.0.2 Topology-Related Changes

Depending on the type of topology-related change (VM creation, deletion or migration)
di erent steps are followed:

VM deletion : In this case no introspection of the deleted VM is required and no
new rules are generated, thus the IEA is responsible for deleting the rules that Iter the
tra c towards and from the deleted VM.

VM creation : In this case once the VM is set to an active state on the host node the
process of service-related changes is followed. AL-SAFE currently supports two di erent
security policies that can be applied to VM creation: proactive and reactive rule generation.

In the case of aproactive rule generation, a preliminary phase is executed before the
VM enters an active state on the host node: rules that lter the tra c for the white-listed
services are generated by the two RGs and inserted in the two rewalls. The proactive
policy enables network connectivity for the white-listed services even before the VMI
component introspects the memory of the deployed guest, thus preventing any performance
degradation of the network-critical tenant applications. Unfortunately, it also generates
Itering rules for services that might not yet be activated thus creating a potential entry
point for the attacker (i.e. the attacker might identify the list of open ports and start
sending malicious tra ¢ towards the monitored guest through these ports).

In the reactive security policy, no preliminary phase is executed and all tra ¢ directed
towards and from the newly created VM is blocked until introspection nishes and the
rules are generated and inserted in the two rewalls.

VM migration : In the case of a VM migration only the rulesets of the switch-
level rewalls at the source and destination nodes need to be adapted. Indeed, a VM
migration should be transparent for the edge rewall. Since AL-SAFE follows a periodic
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introspection strategy, the arrival of the migration request in an introspection period is

critical. Let us de ne ty as the introspection period andt, as the time between the last
start of an introspection and the moment when the migration command arrives at the
source node of the deployed VM. Depending on the arrival time of the migration request
we de ne two di erent cases:

1. The migration command arrives between two consecutive introspection actions. The
remaining time until the next introspection (ty ty) is recorded and is sent as a
parameter to the destination node along with the last valid introspection generated
ruleset of the source node. The VM is resumed and the next introspection occurs
after ty ty. Since the VM migration command arrived between two introspections,
the only way to respect the introspection period (that is not allow more time than
ty to pass between to consecutive introspections) is to introspect aftety ty time.
Our strategy is depicted in Figure[5.3.

Figure 5.3 { The migration request arrives between two introspections

2. The migration command arrives during an on-going introspection. In this case the
current introspection action is terminated and the result from the last valid intro-
spection is sent to the destination node. A new introspection begins as soon as the
VM is resumed in the destination node. Since the last introspection was killed it is
important to obtain a valid introspection result as soon as possible (in order not to
impose any performance penalty in new tenant-approved services that might have
started right before the last killed introspection), consequently introspection starts
immediately after the VM is resumed. Our strategy is depicted in Figure[5.4.

Figure 5.4 { The migration request arrives during an introspection

In a migration event the proactive policy is enforced where the last valid ruleset is injected
in the switch-level rewall of the destination node before the VM is resumed.
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5.3.1 Security Threats

We now present the security threats against speci ¢ AL-SAFE components and how they
can be exploited from an attacker. We discuss our design choices for securing AL-SAFE
from these attacks.

5.3.1.1 AL-SAFE Input Sources

AL-SAFE operates based on a tenant-de ned white-list of processes that are authorized
to use the network. An attacker could taint the contents of the white-list and allow
illegitimate processes to use the network. The API-generated white-list is expressed in
a simple XML format for which the parser is easy to make robust. The input le is
pre-processed using a AL-SAFE-specic Iter that veri es that only AL-SAFE-specic
elements and printable ASCII strings without special characters are present in the le.
Moreover, no complex interpretation is required since the values of each entry match elds
of the rewall rules.

5.3.1.2 AL-SAFE Adaptation Arguments

AL-SAFE adapts the enforced rulesets in the two level- rewall based on topology or ser-
vice related changes in the virtual infrastructure. Theoretically, an attacker could bypass
the adaptation process or initiate an unnecessary one by tampering with the arguments of
existing topology-related changes. AL-SAFE relies on the IMPs, which are located inside
the cloud engine, in order to access all VM-related information (i.e. VM id, external/in-
ternal IP addresses, tap on the virtual switch, etc). The IMPs are hooks placed inside the
cloud engine which copy information from the data structures used by the cloud engine
in order to store network-related information regarding the VMs. Since the cloud engine
and the information it stores, are considered to be tamper-proof the information extracted
from the IMPs is considered accurate.

Regarding service-related changes, an attacker could tamper with the adaptation pro-
cess in various ways. First, by tainting the arguments of a service (i.e. process name,
port, protocol, etc) in order to force AL-SAFE to allow tra c towards and from attacker-
preferred ports. AL-SAFE relies on VM introspection in order to detect service-related
changes. Introspection parses kernel data structures in the VMs in order to extract the list
of active network sockets together with their owner process name. Consequently, the only
way for an attacker to tamper with the service arguments is by controlling the VM kernel
this is an inherent limitation of all introspection-based solutions and we address it along
with possible solutions in Sectionteflim. Second, the attacker could force the introspection
component to crash or exploit a software vulnerability in the component itself. The parsing
phase relies on commodity tools that may be vulnerable to out-of-bound memory accesses
and reference loops in the parsed structures. Out-of-bound accesses are avoided since the
commodity tool that we use (i.e. Volatility, presented later in Section [5.4) is in Python
which features automatic array boundaries check. To protect against reference loops, as
a last option a timeout could be used to stop introspecting. The extracted information is
only compared to the white-list of process names or inserted as port numbers (resp. IP
addresses) in the lItering rules. It is thus su cient to check that extracted values are 16
bits integers (resp. valid IP addresses).
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5.3.1.3 Transfer of Recon guration Parameters

In AL-SAFE the tenant-de ned white-list is sent from the AM located inside the cloud
controller to the node hosting the monitored VM. An attacker could perform a "Man in
the middle" attack during the sending phase and alter the content of the white-list. In our
approach, we maintain a secure connection open at all times between the cloud controller
and the compute nodes. The authentication protocol used[[142] provides authentication
of the AM and guarantees the integrity of the data transferred. Hence, an attacker has no
way of intercepting or altering any part of the communication between the cloud controller
and the compute nodes.

5.3.1.4 Firewall Rules

In AL-SAFE network packets are processed by the OpenFlow tables inserted in the local
switch, and by the rules inserted in the edge rewall. Assuming that both Itering engines
are robust, the added rules can be considered safe since the only actions allowed are to
allow or drop tra c.

5.4 Implementation

We created a prototype of AL-SAFE from scratch using the KVM [27] hypervisor on a
private cloud. Our cloud was deployed on OpenStack[[32] and we used Open vSwitch
(OvS) [137] as a multilayer virtual switch. In this section we present key implementation
details of each component.

5.4.1 Edge Firewall

For the edge rewall we rely on the Nftables [147] stateful packet Itering framework which
is deployed in a standalone Linux host.

5.4.2 Switch-Level Firewall

For the switch-level rewall our prototype features two versions. The rst version uses
the stateless ltering capabilities o ered by Open vSwitch (i.e. essentially two rules per
service are required, one for incoming and one for outgoing tra c). In the second version,
AL-SAFE supports stateful Itering. The stateful Itering uses the OvS built-in feature

of connection tracking conn_state in order to generate rules that keep track of open con-
nections. Each open connection corresponds to an entry in theonntrack table. When
a packet that is not part of any connection arrives, our prototype creates a new entry
in the conntrack table and marks the connection as tracked. Mr Fergal Martin Tricot
implemented the second version of the switch-level rewall during his 3 month Master
linternship that | co-supervised. The rules are grouped by VM (that is by switch port),
with one OpenFlow table for each VM located on the compute node. The evaluation of
AL-SAFE was conducted using the rst version of the prototype.

543 VMI

In order to introspect the memory of a running VM we used LibVMI [L13] combined
with Volatility Memory Forensics Framework [148]. LibVMI [113] as the evolution of
XenAccess, is a C library with Python bindings that facilitates the monitoring of low-
level details (memory, registers, etc) of a running virtual machine. Since KVM does not
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contain APIs that enable the access to the memory of a running VM a custom patch was
applied that uses a dedicated Unix socket for memory access. The patch uses libvirt[138]
in order to gain control over the running VM (i.e. pause, resume). Although LibVMI

is not itself an introspection framework, it provides a useful API for reading from and
writing to a VM's memory. LibVMI integration with Volatility [148]iS done through a
dedicated Python wrapper (PyVMI) that contains a semantic equivalence for each of the
LibVMI's API functions. Figure 5.5 5hows the full software stack from the patched KVM

to Volatility.

Figure 5.5 { LibvMI stack

Volatility can support any kernel version provided that a pro le with the kernel symbols
and data structures is created. The cloud provider would have to maintain a pro le for
each OS version deployed on the monitored VMs. As a modular framework, it provides
di erent functionalities that are implemented by plugins. Each plugin performs a certain
task such as identifying the list of running processes or the list of processes that have
opened sockets (like the Linuxnetstat command). Volatility provides support to di erent
processor architectures through the use ofddress spaces An address spacefacilitates
random memory access to a memory image by a plugin. A validddress spacef a memory
image is derived automatically by Volatility and is then used for satisfying memory read
requests by each plugin. Unfortunately, Volatility was not designed in order to derive
address spacedrom memory images of running VMs which change constantly. In order
to overcome this impediment we take a snapshot of the VMs memory (using LibVMI's
built-in function vmi_snapshotcreate) before each introspection. The overall ow of the
VMI component actions is depicted in the chart shown in Figure[5.6.

The technique for obtaining the snapshot of the running VM's memory, calledstop-and-
copy, copies the whole memory of the VM to a temporary le. During this time the VM
is paused and cannot make forward progress. Evidently, since snhapshotting a VM implies
copying a signi cant amount of memory, the time required is not negligible. Since our VMI
component performs periodic introspections, it is necessary, for a successful introspection,
that the introspection period (i.e. the time between two consecutive introspections) is
larger than the time required to obtain a snapshot. The relation between the time required
to obtain a snapshot and the introspection period is demonstrated in the Figure[ 5.]7.
Three scenarios are represented: introspection period larger than the time required to
obtain the snapshot and introspect the snapshotted le, introspection period larger than
the time required to obtain the snapshot but shorter than the time required to snapshot
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and introspect the snapshotted le and nally introspection period shorter than the time
required to obtain the snapshot. We observe that de ning an introspection period that
is shorter than the actual time required to obtain a snapshot will result to a crash of the
whole process.

Figure 5.7 { Snapshot-Introspection relationship

For enabling periodic introspection we implemented a Python wrapper that creates a
volatility object and performs plugin actions on that object at speci c time intervals (i.e.
introspection period). Our wrapper is also able to adapt the introspection period on the
y based on instructions received by the Adaptation Manager.

To enable VMI on dynamic infrastructure changes (e.g. VM migration), noti er hooks
were placed inside the Nova functionplug.vifs() that is executed on compute nodes and is
responsible for creating the virtual interface(s) for the VM. The hooks pass all necessary
information to VMI (VM name, id, version of running OS, etc) and start VMI immediately
after the VM is resumed.

5.4.4 Information Extraction Agent

First, the IEA detects the di erences between the last two consecutive introspections
results and extracts the necessary information for rule generation (source and destination
IPs, ports and protocol). Before propagating the information to the two parallel rule
generators, a dedicated thread issues commands to the underlying OvS daemon (through
the list_interface OvS command) and obtains the ID of the OvS port that corresponds to
the introspected VM. Then it checks whether an OpenFlow table with Itering rules for
that port exists and if not creates it. The IEA stores the table number along with the
VM ID in a dedicated le ( table.info.txt) for later use (e.g. in case the VM is deleted,
the IEA extracts the table number from the le and issues a delete command for all the
rules in that table to the underlying OvS daemon). The table number along with the port
ID and the necessary rule information are passed to the rule generator of the switch-level
rewall. An example of the information passed to the switch-level rule generator, for the
ssh process belonging in the white-list of Listing 5./L can be found in Listing 5]2.
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Listing 5.2 { Information passed at the switch-level rewall

1 Rule_info (table = 28, ovs _port = 4, proto = TCP, port = 22, ips =
[192.168.1.2, 192.168.1.3], action = ALLOW)

In this example, the IEA has cross-checked the introspection result with the white-list
(found in Listing and has found that the ssh process on port 22 is allowed to use the
network. Then, it acquires the OvS port number (4) for that particular VM (through the
list_interface OvS command ) and the number for the OpenFlow table (28) where all the
rules for that particular VM should be stored (stored in table.info.txt ). Consequently he
propagates the necessary information to the SLF rule generator.

5.4.5 Rule Generators

We implemented a separate rule generator for each rewall. The edge rewall rule gener-
ator produces Nftables-compatible rules while the switch-level rewall generator produces
OvS compatible rules. To minimize the adaptation time, both rule generators are executed
in parallel.

5.5 Evaluation Methodology

In this section we present our evaluation of AL-SAFE. We rst present the objectives
of our evaluation plan followed by our experimentation methodology. We performed the
evaluation on the rst version of our prototype, where the switch-level rewall is stateless
(i.e. two rules per service are required one for incoming and one for outgoing tra c).
The evaluation concludes with the correctness analysis and limitations of AL-SAFE in
Section[5.6.3.

5.5.1 Objectives of the Evaluation

The main goal of AL-SAFE is to guarantee an equilibrium of a three-dimensional trade-o
betweenperformance , security and cost In a cloud infrastructure di erent stakeholders
are involved (i.e. tenants and the provider), consequently the trade-o s should be explored
from each stakeholder's perspective. We rst discuss our approach for evaluating AL-
SAFE's performance, followed by the security and cost aspects.

5.5.1.1 Performance

The aspect of performance refers to the time required for AL-SAFE to complete a full
adaptation loop (i.e. from the moment a dynamic event occurs until both rewalls are
successfully recon gured). In order to get an estimation of the overall time (i.e. latency)
we need to answer the following questions:

1. What is the overall time (in seconds) needed until both rewalls are successfully re-
con gured? The adaptation process consists of four phases: sharing of the white-list,
snapshotting-introspection, rule generation and rule insertion. The overall latency
is the sum of each phase's individual latency, which naturally leads us to a second
question:

2. What is the time (in seconds) required to complete each phase®epending on the
tasks performed by each phase there are di erent components involved. Di erent
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factors, related to each component's functionality, a ect it's individual completion
time. Consequently, a third question arises:

3. What factors a ect the execution time of each component? We discuss the factors
per component:

Adaptation Manager : It is responsible for sharing the tenant-generated
white-list with nodes that host the monitored VMs. The number of entries

in the list impacts the size of the le thus the time required for sending it to

the corresponding nodes.

Rule Generators : They are responsible for generating the two separate rule
categories and inserting them in the rewalls. The overall execution time for
these components depends on the number of generated rules and the time re-
guired to insert them. Respectively, the number of generated rules is related to
the number and type of services running inside a monitored VM and the tenant-
de ned white-list. Regarding the rule insertion time, for the switch level- rewall

the number of rules a ects the insertion time, while for the edge rewall the
rules are written to a le, the le is then sent to the rewall host and nally

the rules are inserted.

Introspection : The VMI component performs two functionalities: snapshot-
ting and introspecting. Since the technique employed for snapshotting the mon-
itored VM is stop-and-copy the only factor that a ects the snapshotting time is
the size of the monitored VM's memory. Introspection time depends on di erent
factors as follows:

{ Number of running processes,
{ Number of created sockets,
{ Size of the introspected le (snapshot).

5.5.1.2 Security and Correctness

From a tenant's perspective, AL-SAFE is an application-level introspection-based rewall.

AL-SAFE needs to allow only tenant-authorized services to use the network while blocking
all other malicious network activity, even when the monitored VM is compromised. From

the provider's perspective, AL-SAFE needs to guarantee that no security vulnerabilities
are added in the provider's infrastructure by deploying AL-SAFE.

55.1.3 Cost

Cost minimization is one of AL-SAFE's core objectives. Thus, the associated overheads
both from a tenant's and the provider's perspectives need to be examined. For the
provider-associated cost we calculate the performance overhead imposed by AL-SAFE
in normal cloud operations (e.g. VM migration) and the system resources consumed by
AL-SAFE's components. Respectively, for tenant-associated cost we calculate the perfor-
mance overhead imposed by AL-SAFE on tenant applications running inside monitored

VMs.

Provider-associated cost : What is the latency (in seconds) introduced by AL-
SAFE to a normal cloud operation such as VM migration? and What is the cost of
deploying AL-SAFE's components in a compute node in terms of CPU and RAM?
All of the resources consumed by AL-SAFE are resources that cannot be assigned to
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virtual machines (hence cannot generate prot for the provider). Consequently an
exact computation for the CPU percentage and memory consumption is required.

Tenant-associated cost : What is the cost of deploying AL-SAFE as perceived
by tenant applications? In order to identify the quantitative cost induced by AL-
SAFE we examine two di erent kinds of applications: process-intensive and network-
intensive. We select these application pro les for simultaneously examining the
main factors a ecting each AL-SAFE component under di erent workloads. For the
process-intensive application we identify the associated cost as the additional time
required to perform a speci c task. For the network-intensive application we identify
the cost as the overhead induced in network throughput, application throughput and
latency in connection establishment.

5.5.2 Experimentation Methodology

We now present the detailed scenarios that we used in order to perform the actual evalua-
tion. It is worth mentioning that the scenarios were designed in order to address multiple
evaluation objectives simultaneously. We select a Linux kernel build as a process intensive
application and a web server and Iperf as network intensive applications. For a typical
cloud operation we select a VM migration as a super case that includes VM creation (in
the destination node) and VM deletion (in the source node). Each application is tested
under di erent workload and introspection period parameters.

5.5.2.1 VM Migration

The VM migration scenario focuses on the provider-associated cost of deploying AL-SAFE.
We aim at providing the reader with a ne-grained view of how intrusive a full adaptation
loop is to VM migration. Although it can also provide an accurate estimation of the
time (latency in seconds) required to perform each phase in the adaptation this is not
the focus of this experiment. We compute the overall migration time of a monitored VM
in seconds. The scenario has two options: no workload running in the migrated VM
(idle) and a memory intensive workload running in the migrated VM. In the rst case
migration time is minimum (hence adaptation penalty is maximised) while in the second
case the migration time is signi cantly larger (hence adaptation penalty is minimal). In
this scenario the adaptation process only a ects the switch-level rewall.

5.5.2.2 Linux kernel Build

In the Linux Kernel bulid scenario we compile a Linux kernel inside the untrusted VM and
we vary the introspection period. The scenario serves a dual purpose as it addresses both
the performance and cost objectives of our evaluation plan. Depending on the objective
we compute di erent metrics:

1. Performance of AL-SAFE : We record the time required for each of AL-SAFE
components to complete its functionality. The component that dominates the over-
all latency of a full self-adaptation loop in this particular scenario should be the
introspection component. Since the scenario features a process-intensive application
with no network activity, no rules are generated or inserted in the two rewalls. As
discussed in Sectiorf 5.5.1]1, due to the snapshot technique selected, the memory
size is the only parameter that in uences the time required to obtain the snapshot.
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Regarding the introspection time and with respect to the application pro le we iden-
tify the number of processes and the size of the introspected le (i.e. snapshot) as
in uencing factors.

2. Tenant-associated cost : We measure the elapsed build time in seconds. Whether
parallel compilation is enabled or not and the number of virtual CPUs in the virtual
machine are expected to in uence the result (due to the change in the number of
processes). We also consider the time between two consecutive introspections to
be an in uencing parameter for the overall build time. Each introspection requires
a snapshot of the monitored VM which freezes the VM during the snapshot time
(due to the stop-and-copy technique), consequently the overhead increases with the
introspection frequency.

5.5.2.3 Apache Web Server

In this scenario we install a web server on the monitored VM for serving new client requests.
The scenario serves a dual purpose with regards to the evaluation objectives:

1. it quantitatively estimates AL-SAFE's performance
2. it calculates tenant and provider associated cost of deploying AL-SAFE
Depending on the evaluation objective we compute di erent metrics:

1. Performance of AL-SAFE : We record the time required for each AL-SAFE com-
ponent to complete its functionality. We investigate the individual latency of each
component: Introspection (VMI), Information Extraction Agent (IEA), rule gen-
erators (RGs) and rule insertion. As discussed in Sectiof 5.5.1.1 the factors that
a ect the introspection time are: (a) size of the introspected le (i.e. snapshot),
(b) number of processes and (c) number of sockets. Two of the factors (process and
socket numbers) can be indirectly in uenced through variation of the requests/sec-
ond workload parameter (i.e. more requests/second imply more open sockets). The
size of the introspected le can be in uenced through assigning di erent memory
values to the monitored VM. Regarding rule creation and insertion we recall that for
the edge rewall a secure connection is required in order to inject the rules. Con-
sequently, the in uencing factors are the number of rules and the time required to
establish a secure connection. In this case a variation in the number of requests can
also indirectly in uence the rule creation and insertion times. An example would be
a scenario where the requests come from di erent client IP addresses and a list-based
tenant security policy (detailed explanation below) is applied.

2. Tenant-associated cost : for calculating the tenant-associated cost of deploying
AL-SAFE we compute the mean of the following values: latency induced in the re-
sponse time for each new connection and service throughput. For the new connection
response time di erent setups are examined depending on: the location of the client,
the security policy enforced and the time of the request's arrival with respect to the
introspection period. We detail each one:

Location of the client:

(@) The client is located in a virtual machine belonging to the same tenant:
only the switch-level rewall needs to be recon gured.
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(b)

The client is located outside the cloud infrastructure: both the edge rewall
and the switch-level rewall need to be recon gured.

(c) The client is located inside the cloud infrastructure but in a virtual ma-

chine that belongs to a di erent tenant. In our setup the edge rewall is
located on the gateway connecting the cloud infrastructure with the outside
world. When a client request from a VM belonging to tenant T1 is issued
to tenant's T2 web server VM (public_ip: 80) it rst reaches the Neutron
controller and then is redirected to the host executing the web server (es-
sentially the request never leaves the cloud). Similarly to the rst type of
request, only the switch level rewall needs to be recon gured.

Tenant-de ned security policy:

(a) Policy allow all: Allow every request on port 80. This policy requires only

(b)

()

one rule in each rewall thus the number of requests does not induce any
additional latency.

Policy allow only white-listed IPs: In this case only requests from a tenant-
de ned address list are allowed.The latency depends on the number of IPs
in the list. Since our switch-level rewall is stateless, we generate two rules
per IP one for incoming and one for outgoing tra ¢ while for the edge-
rewall (stateful) only one is enough (since the conntracking feature allows
to use a general rule for established connections).

Policy block black-listed IPs Reasoning is similar to theallow only white-
listed IPs policy. Every request is allowed besides the ones originating from
blacklisted IPs. Again the latency depends on the length of the list. This
policy can be combined with the allow all policy (i.e. allow connections
from all IPs except the blacklisted ones).

Arrival of the request time in the introspection cycle: Depending on when the
connection request arrives and what is the timeout period for the TCP connec-
tion, we foresee the following outcomes:

(@)

The request arrives before the introspection has been completed. That
is: arrival_of_request + timeout < introspection_complete. In this case the
connection fails.

(b) The request arrives after the introspection has nished but before the

adaptation of the two rewalls has been completed. That is: introspec-
tion _complete< arrival _of_request + timeout < adaptation_complete. Again
the connection fails.

(c) The request arrives before the adaptation of the two rewalls has been

completed but the timeout is enough for the connection to wait until
the completion of the adaptation. That is: introspection_complete < ar-
rival _of_request + timeout  adaptation_complete and arrival_of_request +
timeout > adaptation_complete. In this case the connection succeeds(the
port will be open).

(d) The request arrives after the adaptation of the two rewalls has been com-

pleted. In this case the connection succeeds.

After de ning the metrics used in this scenario we now focus on the varying parame-
ter in the di erent workloads that we use, that is the number of requests per second.
The web server spawns new sockets in order to serve the requests. In this case we
expect an increment in the introspection time. Regarding memory size, we test with
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2048MB memory for the VM and two virtual CPUs. The memory size represents
average workload use-cases (medium tra ¢ websites, small databases, etc) as stated
in [15]. The memory size is expected to be the only factor a ecting the snapshotting
time.

3. Provider-associated cost : we calculate AL-SAFE resource utilization in terms of
CPU percentage and memory consumption.

This scenario refers to measuring the performance impact of a full adaptation loop for a
server that is accepting incoming connections. For evaluating the impact of a full adapta-
tion on a client located inside the virtual infrastructure (in an AL-SAFE-protected VM)
attempting to connect to a web server located outside the virtual infrastructure (hence
adaptation of both rewalls is required in order to allow the client tra ¢ to pass unim-
peded), we calculate the latency induced in the response time for each new connection.
In this case we execute a full adaptation loop only on the client's side. Unfortunately, in
contrast to the server side where the connection port is known a priori (port 80 or port
443 for https requests), the client case comes with one impediment: the port number is
unknown until the client attempts to make a new connection (hence a rule that allows
the connection cannot be inserted proactively in the two rewalls rulesets). In order to
overcome this impediment we include two security policies:

1. Proactive security policy : allow all tra c directed towards the server's IP and
port 80. With this option all tra c towards the web server is allowed regardless of
the source port.

2. Reactive security policy : wait until introspection detects the source port of the
white-listed process and then insert the rule that allows tra ¢ for that particular
port only.

The proactive option clearly favors performance as it o ers minimal service disturbance
but it also introduces security vulnerabilities (since no control is performed on the source
process of the connection) as a potentially malicious process executing on the monitored
client can gain access to the legitimate web server.

5.5.2.4 Iperf

This scenario is used to evaluate the e ect of the introspection phase on the network
throughput. We install Iperf [149] in the VM which acts as a server and we use a separate
node outside the cloud infrastructure as a client. Iperf measures the maximum available
bandwidth on an IP network. The selected scenario focuses on the cost objective of our
evaluation plan. The computed metrics are:

1. Tenant-associated cost : we measure the network throughput in sending/receiving
a TCP stream. As in the kernel compilation scenario, each time the VM is intro-
spected a snapshot is taken, which freezes the VM during the snapshot time (due to
the stop-and-copy technique), consequently the overhead increases with introspection
frequency.

2. Provider-associated cost : we calculate AL-SAFE resource utilization in terms of
CPU percentage and memory consumption.

We compare the Iperf results with and without introspection.
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5.5.2.5 Microbenchmarks

In the previous scenarios we described our methodology for measuring the overhead of
a full adaptation loop on network- and process-intensive tenant applications. This sec-
tion focuses on a ne-grained view of the cost for a full adaptation loop particularly on
individual connection establishment.

5.5.2.5.1 TCP connection establishment time: We wrote a client/server TCP
program and measure the TCP connection setup time for a single connection to a node
outside the virtual infrastructure. We address both cases where either the server or the
client are executed inside the monitored VM. We compare the results obtained without
adaptation to the ones with the adaptation of the two rewalls.

Server inside the AL-SAFE-protected VM: The setup of this case is depicted in

Figure [5.8.

Figure 5.8 { TCP server setup

In this case a client located outside the cloud infrastructure is trying to connect to
a tcp server on port 80 running inside an AL-SAFE-protected VM. The VM with

ID:25 hasport_id:4 and OF _table:16 on the virtual switch of the compute node. The
white-list of this scenario is shown in Listing[5.3. The white-list states that the
process namedcp_server is allowed to accept incoming connections.
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Listing 5.3 { VM 25 white-list

1 <?2xml version ="1.0" encoding="UTF 8"?>

2

3 <firewallRules xmlns:xsi="http:/Amww.w3.0rg/2001/XMLSchema instance"
xsi:noNamespaceSchemalocation="language . xsd'>

4 <application name="tcp _server">

5 <port num="80" proto="tcp" >

6 <input action="ACCEPT" conntrack="NEW/ESTABLISHED" >
7 </input >

8 </port >

9 </application >

10 <application name="tcp _client">

11 <port num="0" proto="tcp" >

12 <output action="ACCEPT" conntrack=NBWESTABLISHED" >
13 </output >

14 </port >

15 </application >
16 <application name="udp _r">

17 <port num="68" proto="udp" >
18 <input action="ACCEPT"/ >
19 </port >

20 </application >
21 </firewallRules >

Consequently the rules that are inserted in the two rewalls after the adaptation
loop is complete are:

Switch-level rewall: table=16, priority =10, tcp, tp _dst=80, in_port=4,
actions=ALLOW  for incoming trac , table=16, priority =10, tcp, tp _src=80,
out_port=4, actions=ALLOW for outgoing tra c (since the evaluation is conducted
on the rst version of our prototype two rules are required for the SLF).

Edge rewall : The rule added in the input chain is: tcp dport 80 counter accept
The rewall already contains a rule for established connections thus the reply from
the server will be allowed.

Client inside the AL-SAFE-protected VM: The setup of this case is depicted in

Figure [5.9.

Figure 5.9 { TCP client setup
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In this case a client inside the AL-SAFE-protected VM (same VM as in the previous
example) is trying to connect to a tcp server located outside the cloud infrastructure.
Since the procesdcp_client is allowed to initiate connections (white-list in Listing
the rules for the two rewalls after the adaptation loop (and after the port used by the
tcp_client has been discovered by the introspection) are:

Switch-level rewall: table=16, priority =10, tcp, tp _src=1451, out_port=4,
actions=ALLOW for outgoingtrac, table=16, priority =10, tcp, tp _dst=1451, in_port=4,
actions=ALLOW for the incoming reply.

Edge rewall : The rule added in the output chain is: tcp sport 1451 counter accept
The rewall already contains a rule for established connections thus the reply from the
server will be allowed.

5.5.2.5.2 UDP round trip time: for evaluating a UDP stream setup cost we wrote

a small client/server program that transmits a block of data and receives an echo reply.
We measure the round trip time with and without the adaptation of the two rewalls. The
setup of this case is depicted in Figurd 5.70. In this case the receiver of the message is

Figure 5.10 { UDP setup

located in the AL-SAFE-protected VM (same VM as in previous examples). The process
udp.r is allowed to use the network (white-list in Listing . Consequently the rules
added in the two rewalls after the adaptation loop are:

Switch-level rewall: table=16, priority =10, tcp, tp _dst=68, in_port=4,
actions=ALLOW for the incoming block , table=16, priority =10, tcp, tp _src=68, out_port=4,
actions=ALLOW for the reply.

Edge rewall: The rule added in the input chain is: udp dport 68 counter accept
The rewall already contains a rule for established connections thus the reply from the
server will be allowed. In both micro-benchmarks the memory of the VM, the number of
processes and the number of sockets are constant. The only in uencing parameter is the
time of the request's arrival in the introspection period (as discussed in the web-server
scenario described in Sectiof 5.5.2.3).
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5.6 Evaluation Results

After describing our evaluation scenarios and the underlying rationale, we present the
results obtained from the di erent experiments. Section[5.6.] presents the results from
the performance evaluation of AL-SAFE while Section5.6.P discusses correctness aspects
of our approach. Finally AL-SAFE limitations are detailed in Section 5.6.3.

5.6.1 Performance and Cost Analysis

To do our experiments we deployed a datacenter with three physical hosts: one cloud
controller and two compute nodes. Each physical host has 48GB RAM and runs a 64bit
Linux Ubuntu 14.04 distribution. The machines are interconnected with a 1Gb/s network.
All the VMs deployed on the compute nodes run a 64bit Linux Ubuntu 13.10 distribution
with 2 cores and 2GB RAM. We also deployed the Nftables rewall in a fourth physical
host with the same hardware as our cloud nodes. All reported results are compared to a
baseline value obtained without AL-SAFE.

Before running our experiments we conducted a preliminary set of tests to calculate
the time for a full snapshot of a 2GB VM's memory. We calculated the mean snapshot
time to 1.5 seconds over 10 repetitions (standard deviation 0.05). Since the technique used
copies the whole memory of the VM into a dedicated le the size of the VM is the only
factor a ecting the snapshot time.

5.6.1.1 VM Migration

To generate the memory-intensive workload we usew.memwr from the LMBench bench-
mark [143] suite with a 1024MB working set. The working set is allocated, zeroed and
then written as a series of 4 byte integers. In this scenario we aim at proving that the time
required to recon gure the switch-level rewall is independent from the VM workload. We
executed 10 repetitions of each case. The results are presented in Figyre §.11. In the

Figure 5.11 { Migration time with and without adaptation

gure, the migration time with and without AL-SAFE for both cases (idle and memory
intensive workload) is depicted. The imposed overhead in the migration operation is the
same in both cases (4.95s), which validates our hypothesis that the cost of adapting the
rewall ruleset is independent from the VM workload. A per-phase breakdown is shown in
Figure . We insert two rules per service in the switch-level rewall (one for ingress and
one for egress tra ¢) and only one rule in the edge rewall. The relatively high amount of
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Figure 5.12 { Breakdown of each phase in seconds

time (3.84 seconds) required for the Adaptation Manager to notify the Introspection agent
of the source node, in order to interrupt the introspection and send the last valid results,
is mostly due to a defect in the DNS con guration resulting in a slow SSH connection
establishment.

5.6.1.2 Linux Kernel

We compiled a Linux kernel inside the VM and we varied the introspection period. The
kernel was compiled with a con guration including only the modules loaded by the running
kernel of the VM, using gcc 4.8.4 with a degree of parallelism of 3. We used theme
command line utility for measuring the overall execution time. The VM is not expected
to start services that use the network during the execution time of the experiment thus
no adaptation of the rewalls is required.

Before presenting the results, we discuss a model that estimates the minimum overhead
value on the kernel compilation time. Let us de ne: x the time overhead introduced in
the kernel compilation time, as the mean value of the time required to take a snapshot
and n the number of introspections performed during the experiment. Since in each
introspection a snapshot of the AL-SAFE-protected VM is taken, a temporary freeze of
the VM is performed. Consequently, the minimum overhead should be the result of the
number of introspections times the snapshot time. That ismin (x) = n

The mean value over ve repetitions is shown in Figure[5.1B. The results clearly

Figure 5.13 { Impact of the introspection period on kernel compilation time

demonstrate a dependency between the period of introspections and execution time. The
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highest overhead (12%) is observed when the introspection period is 60 seconds. Indeed the
observed overhead (184.2s) conforms with our overhead model as our computed value is 28

1.5 =42 and 1842 >> 42. Each introspection requires a snapshot of the running VM
which freezes the VM for a short period of time. Obviously, more introspections requires
more freezing time for the VM, which translates to a higher execution time. The lowest
overhead (14.4s) is observed when the introspection is performed every 5 minutes. Again
the result conforms with our overhead model (minimum overhead is computed at 9s). The
results suggest that there are additional factors, besides the freezing time resulting from
the snapshot, that contribute to the overall overhead value.

5.6.1.3 Apache Web Server

For a network intensive application, we installed the Apache Web server[[150] and we
used ApacheBench[[151] to generate di erent workloads. In this scenario we examine
two aspects of our design: rst the dependency between the introspection period and the
Web server throughput and second the dependency between the arrival of the connection
request in the introspection period and the Web server latency. The second aspect shows
the impact of using periodic introspection on the availability of a new Web server instance,
like in a cloud scale-up operation. For both aspects the client is located outside the
virtual infrastructure. We choose to test with an outside client as in the second aspect,
recon guration of both rewalls is required and a comprehensive insight into AL-SAFE's
overhead is provided.

For the rst aspect no adaptation of the rewalls is required (a preliminary phase to
allow the connection between the server and the client is executed), while the only varying
parameter is the introspection period. We run the experiment for 3 minutes and record
the results over ve repetitions. The workload consists of 750,000 requests from 1000
concurrent clients. The results shown in Figure[5.1§ validate our previous observation

Figure 5.14 { Impact of the introspection period on server throughput

regarding introspection period and performance degradation. In this scenario, the highest
number of introspections (20 for the 15 seconds period) imposes the highest cost in the
server's throughput (12%).

For the second aspect we x the introspection period at 30 seconds and we start the
Web server at port 80 between two introspections. Thus an adaptation of both rewalls
is required in order to allow the connections from the client to pass unimpeded. In this
experiment we vary the arrival time of the connection request (right before snapshot, in
the middle of introspection, at the end of introspection and after introspection). The
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workload consists of 50,000 requests from 1000 concurrent clients. The results over ve
repetitions are shown on Figure[5.1p.

Figure 5.15 { Request service time for di erent times in the introspection cycle

Figure 5.16 { Cases of request arrival time with respect to the introspection cycle

The largest impact on the web server latency (blue dotted curve) is when the client
requests are issued right before the introspection takes place. Indeed, in order to establish
the connection, the client application has to wait for the introspection to be completed,
the rules to be generated by the two separate rule generators and then injected in the two
rewalls (two rules per service for the switch-level rewall and one for the edge rewall).
This translates to a minimum connection time of 13.38s (1.5s for the snapshot of the
AL-SAFE-protected VM + 10.28s for the introspection + 1.60s for rule generation and
insertion).

A per-phase breakdown of the produced overhead is shown in Figufe 5]16.

When the requests are issued at the end of introspection in the cyan dotted curve, we
observe that the curve is much closer to the corner of the graph. This observation holds for
all curves (cyan dotted and purple dotted) that represent low latency cases (requests are
issued either at the end or after introspection). The produced overhead (in the minimum
connection time) results from the time required to recon gure the two rewalls. The time
required to recon gure the edge rewall is signi cantly larger than the one for the switch-
level rewall due to the establishment of a secure connection between the node that hosts
the VM and the rewall node.

5.6.1.4 Iperf

For the Iperf experiment we use the standard TCP.STREAM test with a 64KB socket
stream and 8KB message size. We run the experiment for 300 seconds and record the result.
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Before the experiment is executed we run a preliminary phase that con gures both rewalls
to allow the connection, such that no adaptation is taking place during the experiment.
The mean results over ve repetitions are shown in Figure[5.17. The graph shows the

Figure 5.17 { Impact of the introspection period on network throughput

network throughput value for increasing introspection periods. The results con rm our
previous observation regarding introspection period and performance overhead. Indeed
a shorter introspection period results in more snapshots that obviously result to more
downtime for the VM. In this case the highest overhead (5.75%) is observed in the 15
seconds case (20 snapshots).

5.6.1.5 Micro-Benchmarks

Before presenting the individual results of each micro-benchmark we present a model for
estimating the overhead of the adaptation loop on individual connection establishment.
Let us de ne: x the overhead in terms of seconds for a full adaptation loop, the time
required to obtain a snapshot of the monitored VM, the time required to perform the
actual introspection process, as the time required for the rewall recon guration and as
the introspection period (i.e. the time between two consecutive introspections). Depending
on when in the adaptation loop the connection request is issued and whether it is a client
or a server which is hosted in the AL-SAFE-protected VM, we de ne di erent values for
X.

5.6.1.5.1 Adaptation on the Server Side { TCP: In this case we install a server
in the AL-SAFE-protected VM and we issue a connection request from a client located
outside the cloud infrastructure. Consequently both rewalls need to be recon gured in
order for the connection to be established.

Request issued right before introspectionx = + + . That is the request has to
wait for each phase to be completed before it reaches its destination.

Request issued in the middle of introspection:x = 5 + . The request has to wait
until the introspection nishes and the two rewalls are successfully recon gured
before it reaches its destination.

Request issued at the end of introspectionx = . The request has to wait only for
the two rewalls to be recon gured in order to reach its destination.
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5.6.1.5.2 Adaptation on the Client Side { TCP: In this case we install a client
inside the AL-SAFE-protected VM and we issue connection request to a server located
outside the cloud infrastructure. Consequently both rewalls need to be recon gured in
order to establish the connection.

Request issued right before introspectionx = + + . That is the request has to
wait for each phase to be completed before it can leave the cloud infrastructure.

Request issued in the middle of introspection: x = ( )+ + + . Since
the introspection is performed on a snapshot of the AL-SAFE-protected VM, which
was taken before the client was started, the client process does not appear in the
introspection result (i.e. because the client process was not started at the moment
the snapshot was taken). Consequently, the connection request needs to wait until
the next snapshot, introspection and adaptation in order to leave the cloud infras-
tructure.

Request issued at the end of introspection:x = ( )+ + o+ 1 x =
+ + . The request needs to wait until the next introspection and subsequent
rewall recon guration.

5.6.1.5.3 Adaptation on the Receiver Side { UDP: This case follows the same
overhead estimation as the adaptation on the server side for a TCP connection.

5.6.1.5.4 Adaptation Latencies: The dierent arrival times with respect to the
adaptation phase are presented in Figurd 5.18. The gure also shows the mean values
for the di erent phases of the adaptation, snapshot, introspection, rule creation, rule in-
sertion. These are the values used for computing the estimated overhead in each case
according to our overhead model.

Figure 5.18 { Cases of request arrival time with respect to the introspection cycle

Since the introspection time only depends on the number of running processes (and
open sockets) and in the micro-benchmark experiments we create only one new process
in order to handle the connection, we can assume that the same value for the mean
introspection time can be applied to both TCP and UDP scenarios. Furthermore, in
both cases 2 rewall rules are inserted in the switch-level rewall (because we perform the
evaluation on the rst, stateless, version of our prototype) and only one rule in the edge
rewall. Consequently, the same mean value for rule creation and insertion can also be
applied to both scenarios.

5.6.1.5.5 Inbound TCP Connection: This experiment computes the overhead of
the adaptation when the server is located inside the cloud infrastructure and the connec-
tion request comes from a machine outside the cloud infrastructure (i.e. both rewalls need
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Figure 5.19 { Inbound TCP connection establishment time

to be recon gured). Figure shows the connection establishment times when the con-
nection requests are issued at di erent times during the introspection process(beginning,
middle, end, after). The case with the smallest overhead (1.57s) is when the request is
issued at the end of introspection. Indeed the request only has to wait for the rewall re-
con guration in order to reach the server. According to our model, the observed overhead
should be 1.61s which is indeed the case. We observe again a relatively high time required
for the secure connection establishment (1.60s), which is due to the already discussed DNS
defect when establishing a secure SSH connection.

The case that demonstrates the highest overhead is the one when the request is issued
right before the snapshot. That is because, the request has to wait until the snapshot is
taken, the introspection is complete and the rules are generated and injected in the two
rewalls. According to our model the estimated overhead in this caseis: + + =1.5s
+ 9.0s + 1.61s = 12.11s. The observed overhead is 11.89s. The 0.22s (1.68%) deviation
between the estimated overhead value and the observed overhead is attributed to the fact
that the estimated overhead was computed based on mean values for each phase.

The results demonstrate that the arrival of requests in the introspection cycle plays a
major role in the connection establishment time. For a client attempting to connect to
an AL-SAFE-protected server the best case scenario is issuing a request at the end of the
introspection cycle.

5.6.1.5.6 Outbound TCP Connection: In this experiment the TCP client is in-
stalled in the AL-SAFE-protected VM inside the cloud infrastructure issuing connection
reguests to a server located outside the cloud infrastructure. Consequently, both rewalls
need to be recon gured in order for the client request to pass unimpeded. In contrast with
an inbound TCP connection where the connection port is known a priori (e.g. port 80), an
outbound TCP connection faces the limitation of an unknown port number. The overhead
in connection establishment times, when issuing the request at di erent times during the
introspection process, is shown in Figurg 5.20. Initiating a request right before introspec-
tion is now the best case scenario with the smallest overhead. Indeed the open socket will
be included in the new introspection result (since the client process is not started in the
AL-SAFE-protected VM when the snapshot of the rst introspection was taken detailed
presentation in Section[5.6.1.5). According to our model the estimated overhead is: +

+ =155+ 9s + 1.6s = 12.11s. The observed overhead is : 12.03s which validates
our initial hypothesis about the cost of issuing the request right before the introspection
of the AL-SAFE-protected VM. In all other cases the time period between the time of
the request and the next introspection has to be added to the connection establishment
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Figure 5.20 { Outbound TCP connection establishment time

time. For example, in the case where the request is issued at the middle of introspection
the added time is 10.5s (the introspection period was de ned at = 15s and the request
was issued at the middle of the introspection process af; = 4.5s consequently the waiting
time amounts at 10.5s). In this case the estimated overhead should be: 5+ + +

= 10.5s + 1.5s + 9s + 1.61s = 22.61s. The actual overhead is 23.15s (we again observe
a deviation of 0.54s or 2.37% between estimated and observed overhead due to the mean
values used for calculating the estimated overhead).

The case of a client located inside the AL-SAFE-protected VM is the exact opposite

of the server case (presented in Sectign 5.6.1.5.5). The best case scenario now is when the
connection request is issued at the beginning of the introspection.

5.6.1.5.7 UDP Round Trip Time: In the UDP round trip time experiment we
install the process receiving the ECHO request inside a monitored VM located inside
the cloud infrastructure. Consequently, both rewalls need to be recon gured in order
for the message to complete its roundtrip. Figure[5.2]L shows the overhead in connection
establishment times when the message is send at di erent times in the introspection period.
The observed overhead follows a similar pattern with the one imposed on the inbound

Figure 5.21 { Inbound UDP round trip time

TCP connections (see Sectiori 5.6.1.5/5). The best case scenario is when the message is
sent at the end of the introspection process (i.e. it has to wait only for rule creation

an recon guration). Indeed the observed overhead conforms with our estimation: 2.08s
and 1.61s respectively the deviation is once more attributed to the mean values used for
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calculating the estimated overhead. The worst case scenario is when the message is sent
right before introspection. Indeed the message has to wait until the introspection process
nishes and the two rewalls are successfully recon gured. According to our model the
overhead is estimated as: + + =1.5s+ 9.0s+ 1.61s = 12.11s. Again the observed
overhead conforms with our model. In UDP communications, much like TCP connections,
when the request arrives in the introspection cycle (beginning, middle, end) highly a ects
the produced overhead. The case where the request is issued at the end of the introspection
is the one with the smallest overhead.

5.6.1.6 Resource Consumption

In this section we discuss the cost of AL-SAFE in terms of CPU consumption and RAM.
We focus our analysis on the Introspection component (VMI) as it is the one expected
to consume the most resources. Since the introspection mechanism extracts the necessary
information about network sockets by iterating on the process list of the running VM it is
obvious that the number of processes a ects both the execution time of the VMI and the
required resources.

We calculate the CPU and RAM utilization of the introspection process in our Web
server scenario (Sectiof 5.6.1]3), with a generated workload of 750,000 requests from 1000
concurrent clients, over ten executions. Since our Web server is con gured with an event-
based module, it is expected to generate many child processes, each one handling a pre-
speci ed number of threads. We compare the result with the resources consumed by
the VMI in the Iperf scenario (Section [5.6.1.4) where only a single process is created to
handle the connection socket. The results are shown in Tablge 5.2. The table lists average
CPU usage and memory consumption along with the overall execution time of the VMI
component (real) and the times spent in user @sr) and kernel (sys) modes.

The high cost of introspection in terms of memory is because Volatility loads the whole
shapshot le (in both cases 2 GB) into memory. The number of generated processes inside
the monitored VM increases the CPU consumption of the VMI component.

Table 5.2 { Resource consumption of the introspection component

Application || Real (s) | Usr (s) | Sys (s) | CPU% | Memory (MB)
Apache 13.6 5.04 2.21 53.6 2193
Iperf 11.9 3.75 1.60 45 2193

5.6.2 Correctness Analysis

In this section we justify the security and correctness aspects of AL-SAFE. We focus on
the functionality of AL-SAFE as a rewall as well as the contribution of the AL-SAFE
approach in addressing inherent design limitations of application-level rewalls.

Since AL-SAFE is an application-level rewall one of its main security goals is to
successfully block unauthorized connections. We have validated the correctness of our
generated rules both for inbound and outbound connections. For intra-cloud connection
attempts the switch-level component of AL-SAFE successfully intercepted all packets from
processes that were not in the white-list. For extra-cloud inbound connections the packets
were stopped by the edge rewall. In both cases no unauthorized packets reached the VM
or left the compute node.

In a typical system, software exploits can directly a ect the execution of an application-
level rewall. Exploits combine network activity from a user-level component along with a
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kernel-level module that hides the user-level component from the view of the application-
level rewall. The malicious exploit likely obtains full-system privileges and can thus halt
the execution of the rewall. The malicious kernel-level module can alter the hooks used
by the in-kernel module of the application-level rewall so that the rewall is simply never
invoked as data passes through the network. Conventional application-level rewalls fail
under these types of attacks. AL-SAFE withstands attacks from these types of exploits.
However, AL-SAFE can still retrieve a maliciously crafted connection list and allow con-
nections for malicious applications that impersonate legitimate white-listed applications.
Compared to a traditional application-level rewall which operates inside the host and if
compromised can open any port regardless if it is in the white-list or not, AL-SAFE does
not open any not white-listed port.

AL-SAFE denies all unknown connections by default. In a production system where
services have su ciently long life-times, this tackles the case of an attacker timing the
introspection period and attempting to use the network between two consecutive intro-
spections. The performance overhead of this choice on each connection is outlined in
Section[5.6.1.5.

Finally we analyze the potential vulnerabilities added by AL-SAFE to the provider
infrastructure. AL-SAFE's components are exposed to three kinds of potentially malicious
input. First, the white-list of processes, second the added rules and third the introspection
results. The design choices for the three items (as presented in Sectipn 5.3.1) address the
issue of malicious input.

We now discuss AL-SAFE's limitations and our suggested approach for handling them.

5.6.3 Limitations

AL-SAFE as an application-level rewall located outside the monitored VM, is able to

provide, through virtual machine introspection, the same degree of visibility as an inside
the host solution. However, AL-SAFE su ers from some limitations. We detail these
limitations based on their category:

Performance : AL-SAFE performs introspection periodically, which delays the net-

work connectivity of newly started services and clients. To reduce this overhead,
AL-SAFE could introspect on watchpoints, e.g. on listen() and connect() syscalls

on TCP sockets.

Security : As all introspection-based security solutions AL-SAFE is vulnerable to
kernel data structure manipulation. An attacker who fully controls the VM can
also tamper with kernel data structures to control introspection results. To counter
such attacks we could use approaches to check the VM's kernel integrity [109]. Fur-
thermore, an additional security impediment would be a previous legitimate process
that has turned malicious. An attacker can hijack a connection after it has been
established and veri ed by AL-SAFE as legitimate. It can use a software exploit to
take control of a particular process bound to the port or use a kernel module to alter
packets before they are sent out to the local switch network interface. To counter
this issue we could place dedicated Intrusion Detection Systems in the infrastructure,
using the approach of SAIDS.
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5.7 Summary

In this chapter we presented AL-SAFE, the second instantiation of our security monitoring
framework which focuses on rewalls. AL-SAFE is a secure application-level introspection-
based rewall that is able to adapt the enforced ruleset based on changes in the virtual
infrastructure topology and the list of services running in the monitored VMs. AL-SAFE's
design addresses the inherent design limitation of application level- rewalls that run inside
the monitored VMs. Hence, they can be compromised by malicious kernel-level code that
is executed inside the monitored host. Using virtual machine introspection AL-SAFE
pulls the rewall outside the untrusted VM while maintaining an inside-the-VM visibility.
AL-SAFE lters tra ¢ at two distinct points in the virtual infrastructure regulating the

load imposed on other security devices, which are part of our framework such as intrusion
detection systems.

We have conducted a thorough evaluation of our approach examining both performance
and correctness aspects. We have shown that the overhead in cloud operations such as
VM migration is independent from the VM workload. This overhead is lower than the
migration time. Our results show a dependency between the introspection period and the
generated overhead for tenant applications running inside the untrusted VM. Increasing the
introspection period depending on the type of activity inside the VM (fewer introspections
for compute-intensive applications that do not use the network) could signi cantly decrease
the overhead. Our prototype already features a dedicated mechanism for adapting the
introspection period on the .

Finally, we have shown that AL-SAFE correctly blocks unauthorized connections while
allowing all tenant-approved connections to pass unimpeded. The design choices made for
AL-SAFE's components do not add any security vulnerabilities in the provider's infras-
tructure. AL-SAFE's limitations both from a security (kernel data structure manipula-
tion) and performance aspects (delay of network connectivity) were presented along with
suggestions on how they can be addressed.



Chapter 6

Conclusion

This chapter summarizes our contributions and details how these contributions ful | the
objectives presented in Sectiorj 1]3. The contributions along with their assessment are
listed in Section[6.3 while suggestions for future research work are presented in Section6.2.

6.1 Contributions

In this thesis we designed a self-adaptable security monitoring framework that is able
to adapt its components based on dynamic events that occur in a cloud infrastructure.
Four main objectives were de ned: self-adaptation, tenant-driven customization, security
and cost minimization. Our framework achieves these objectives and constitutes a exible
monitoring solution for virtualized infrastructures that is able to integrate di erent types of
monitoring devices. Two di erent instantiations of our framework, SAIDS and AL-SAFE
were presented in detail.

SAIDS, a self-adaptable network intrusion detection system uses Local Intrusion Detec-
tion Sensors (LIDS) in order to monitor tra ¢ towards and from the cloud infrastructure.
SAIDS reaction to di erent types of dynamic events was presented and justi ed in order to
provide the reader with a clear overview of the adaptation process. The rst instantiation
of our framework is a scalable solution that can alter the existing con guration and the
computational resources available to a set of LIDSs depending on the load of monitored
tra ¢ while maintaining an adequate level of detection. SAIDS prototype was developed
using di erent cloud technologies (e.g. OpenStack[[32], Open vSwitch [137]). Our evalua-
tion under di erent scenarios that resemble production environments allowed us to assess
SAIDS performance, scalability, and correctness. Our results showed that SAIDS is able
to handle 5000 LIDS (evaluation performed on 8 core machines with 24GB of RAM each
{ our testbed's machines memory capacity imposed a limitation on the number of LIDSs
that our prototype can handle in parallel) while imposing negligible overhead to cloud
operations.

AL-SAFE is the second instantiation of our security monitoring framework which fo-
cuses on an active monitoring component, the rewall. AL-SAFE is executed outside the
monitored VMs and lters tra ¢ at distinct points of the virtual infrastructure combin-
ing an edge rewall, located at the interface between the cloud network and the external
network, with a switch-level rewall. We proved that our design is able to address the
inherent design limitation of application-level rewalls (malicious code exposure due to
inside-the-host execution) and at the same time maintain an inside-the-host level of vis-
ibility through virtual machine introspection. The adaptation of AL-SAFE's enforced
ruleset for di erent types of dynamic events was thoroughly detailed, followed by a jus-
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ti cation of subsequent actions. Finally, our evaluation presented a comprehensive study
of the trade-o s between the security, adaptation bene ts of deploying AL-SAFEand the
performance overhead imposed on cloud operations and tenant applications hosted in the
virtual infrastructure. Our results have shown that the overhead imposed by AL-SAFE
on new sockets of network-oriented tenant applications highly depends on the arrival time
of the connection request in the introspection period.

We now discuss how our work addresses the four objectives that were de ned in the
introduction of this thesis.

Self-adaptation:  Our framework is able to adapt its components based on three types
of dynamic events that occur in a cloud infrastructure: topology-related service-related
and monitoring load-related events. Our framework's core component, the Adaptation
Manager, is able to make adaptation decisions based on the type of event and act as a
coordinator of the adaptation process synchronizing the di erent components involved.
The AM as a high-level component guarantees that the adaptation decision remains ab-
stracted from the type of the monitoring device, providing our framework with another
level of genericness. Both SAIDS and AL-SAFE adapt their enforced rulesets upon receiv-
ing the adaptation arguments from the AM. In order to guarantee the accurate translation
of the adaptation arguments to device-speci ¢ con guration parameters both SAIDS and
AL-SAFE feature dedicated components that interact with the actual monitoring devices.
In both SAIDS and AL-SAFE prototypes we integrate di erent o -the-self components (2
NIDSs and 2 rewalls) with no modi cations in their code.

Tenant-driven customization: Our framework takes into account tenant-de ned
monitoring requirements as they are expressed through a dedicated API. These require-
ments may refer to monitoring tailored for speci c services that are deployed in the virtual
infrastructure or to performance-related metrics. The Adaptation Manager guarantees
that the tenant requests will be taken into account in the adaptation decision and will be
propagated to lower level agents, the Master Adaptation Drivers (MADSs), that will trans-
late them to device-speci ¢ con guration parameters. Our framework supports dedicated
actions in case a tenant-de ned requirement is violated (e.g. altering the computational
resources available to a monitoring device in case a performance-related metric exceeds a
tenant-de ned threshold).

Security:  Our framework is able to guarantee that the adaptation process will not add
any security aw in the monitoring device itself or in the provider's infrastructure. Our
design choices have proven that the di erent elements that participate in the adaptation of
a monitoring device (i.e adaptation sources, input les, etc) do not add any new security
aws and do not create any potential entry point for the attacker. Furthermore, in both
of our frameworks instantiations we have experimentally validated the correctness of the
adaptation result. The monitoring devices continue to remain operational during the
adaptation process, guaranteeing that an adequate level of detection is maintained.

Cost minimization: Our framework is able to guarantee that the cost for both ten-
ants and the provider in terms of application performance and computational resources is
kept at a minimal level. SAIDS evaluation results showed that our framework’s instanti-
ation imposes negligible overhead in normal cloud operations. Regarding computational
resources (CPU and RAM) deploying SAIDS bears minimal cost. As a passive monitor-
ing solution, SAIDS does not directly a ect the performance of network-oriented cloud
applications. AL-SAFE's overhead in normal cloud operations does not depend on the
VM workload while the CPU and memory cost is tolerable. AL-SAFE follows a time-
based introspection model and as such the overhead for new sockets of network-oriented
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tenant applications highly depends on the arrival time of the connection request in the
introspection period.

The work presented in this thesis was able to address the gap in existing cloud security
monitoring frameworks regarding reaction to dynamic events. Existing solutions only
partially address the de ned objectives (as described in Sectioh 1]3) while our framework is
able to combine self-adaptation based on dynamic events with accurate security monitoring
results.

This thesis presented the design of a self-adaptable security monitoring framework that
is able to adapt its components based on di erent types of dynamic events that occur in a
cloud infrastructure. SAIDS and AL-SAFE the framework's two instantiations, addressed
self-adaptation for two di erent types of security devices, intrusion detection systems and

rewalls. Naturally, the work done in this thesis can be extended. We have identi ed
several directions of improvement that would lead to a complete self-contained monitoring
infrastructure. We discuss these directions in the next section.

6.2 Future Work

Our future work is organized in three categories depending on feasibility and time required

to complete the described improvements. In Sectiorj 6.2]1 we present a few short term
goals that constitute performance and design improvements of our existing instantiations.
Section[6.2.2 focuses on other components of our framework while Sectipn 6]2.3 concludes
this chapter with our vision regarding a self-contained security monitoring framework.

6.2.1 Short-Term Goals

Di erent design and performance improvements regarding SAIDS and AL-SAFE proto-
types could be realised.

SAIDS: Currently SAIDS does not feature a mechanism for automatic discovery of
new services that are deployed in the monitored VMs. The only way for SAIDS to become
aware of a change in the list of running services (and subsequently recon gure the involved
LIDSs) is through our framework's dedicated APl needing the tenant to declare that a
service was started or stopped. A solution for automatic service discovery would be for
SAIDS to use AL-SAFE's periodic introspection results. Each time a new legitimate
service is detected in a VM by introspection, the Adaptation Manager could trigger an
adaptation of the enforced ruleset of the LIDS responsible for monitoring the tra ¢ that
ows towards and from that particular VM. The addition of automatic service discovery
does not require a signi cant change in the existing SAIDS design since the Adaptation
Manager is currently shared between the two instantiations.

AL-SAFE: As demonstrated by the performance evaluation of AL-SAFE, periodic
introspection imposes unnecessary overhead to applications that are not network-intensive
(see the kernel-build results). A solution would be to correlate the type of application activ-
ity with the introspection period for example computation-intensive applications can have
a larger introspection period than network-intensive applications. Furthermore, instead of
a periodic introspection period AL-SAFE could adopt a watchpoint-based introspection
model in which the VMI component could introspect every time a speci ¢ event occurs (e.g.
a listen syscall on a TCP socket). Finally, our results have shown that the response time
of the introspection component is not negligible. In order to improve the response time of
this component and subsequently decrease the overhead imposed by the adaptation loop
on new connections, introspection could be optimized by introspecting directly on LibVMI
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rather than a combination of LibVMI and Volatility. This change implies implementing a
version of the netstat command using the VM's memory pages exported by LibVMI and
necessary information regarding kernel data structures. Introspecting directly on LibVMI
holds an additional advantage, the removal of the snapshotting phase, that was necessary
for providing a coherent address space to volatility. This improvement will signi cantly
reduce the memory consumption of the VMI component.

Dependency Database: Currently all the necessary information for the monitoring
devices involved in the monitoring of a particular VM is contained in simple text les.
Although in Chapter B]we de ned that this information should be stored in the Depen-
dency Databasewe did not have time to implement this component. Including a relational
database (e.g. MySQL [[15P]) for storing this information in the existing framework im-
plementation should require minimal changes to the the Adaptation Manager component.
These changes are necessary in order to facilitate connection with the database as well as
exchange of information for the latter a message protocol could be used like for example
RabbitMQ [I53].

Tenant API:  Currently, the tenant API as de ned in Chapter 3 ]has not yet been
implemented. A simple Restful interface can be used in order to provide the transla-
tion between high-level tenant monitoring requirements and Adaptation Manager-readable
adaptation arguments.

6.2.2 Mid-Term Goals

This section focuses on expansion of our framework to other types of security devices as
well as addressing aspects like multitenancy and combining security monitoring for tenants
and the provider.

Other types of security devices: In order to extend the monitoring capabilities
of our framework to other types of monitoring (e.g. inside-the-host activity monitoring,
network ow analysis) other types of monitoring devices need to be included. Currently,
our self-adaptable security monitoring framework includes only network-based intrusion
detection systems and rewalls. A possible improvement would be to include host-based
IDSs or network analyzers like Bro [154]. Since we plan to include other types of IDSs the
changes required would primarily refer to SAIDS. Many host-based IDSs operate based on
agents that are installed locally inside the monitored VM and perform di erent types of
monitoring (e.g le integrity checking, rootkit detection, etc). These agents communicate
with a central manager and periodically report ndings. In order to support this model,
the design changes required for SAIDS are two fold. First, at the level of the Master
Adaptation Driver. Instead of being responsible for regenerating the actual con guration
le for the IDS (like in the LIDS case) the MAD could simply forward relevant monitoring
parameters to the appropriate Adaptation Worker (AW). Depending on the number of
agents reporting to each AW the MAD could also adapt the portion of computational
resources available to each AW in order to perform load balancing. Second, at the level
of the Adaptation Worker, instead of having one AW per detection process, a single AW
instance could be responsible for all detection agents running inside a group of VMs (e.g.
all the VMs residing in the same compute node). Since most detection agents support
remote con guration through a secure connection, the AW could be located in a separate
domain, introducing another security layer between a potentially compromised detection
agent and the SAIDS component.

Other types of security devices that could be included are log collectors and aggrega-
tors. In order to satisfy the cost minimization objective, a log collector instance would be



6.2. FUTURE WORK 129

responsible for gathering and unifying the logs produced by a subset of monitoring devices
(e.g. all the devices that monitor VMs that reside on the same compute node). Regarding
the tenant-driven customization objective, the collector would apply special lters to the
collected logs (e.g. if a speci c attack for which tenants have requested additional monitor-
ing has been detected or if the number of attacks in a speci ¢ time window has exceeded
a certain threshold) and propagate the results to an aggregator instance. Tenants could
access the aggregated logs through a dedicated mechanism that guarantees authentication
and data integrity, satisfying the correctness objective. Di erent policies, designed to cope
with the scale of the system and adapt the number of collectors and aggregators, could be
de ned in order to address the self-adaptation objective.

Multi-tenancy:  The current version of our security monitoring framework does not
address implications that arise in multi-tenant environments. In order to enable security
monitoring for di erent tenants, we need to consider the sharing of the monitoring de-
vices between tenants. Component sharing between tenants can also be perceived as an
additional aspect of cost minimization. We now discuss the necessary changes in our two
instantiations SAIDS and AL-SAFE in order to enable component sharing.

Since each tenant has its own network, and legacy network intrusion detection systems
do not support monitoring two di erent networks with the same NIDS instance, SAIDS will
have to assign separate LIDSs to di erent tenants. However, the remaining components
(Adaptation Manager and Master Adaptation Driver) can still be shared between tenants.
In order to dierentiate between LIDS that belong to dierent tenants, an extra eld
indicating the ID of the tenant that this device is assigned to can be added in the set
of information stored for each LIDS probe. Each MAD could maintain a per-tenant list
with all the LIDS names that are under its control. Our evaluation results have shown
that both the MAD and the AM can handle multiple adaptation requests in parallel, thus
enabling parallel adaptation of LIDS that belong to di erent tenants.

For AL-SAFE device sharing implies using the same rewall (either switch-level or
edge) for ltering tra ¢ towards and from VMs that belong to di erent tenants. Since
the ltering is performed by dedicated rules, installing rules for di erent VMs in the same
rewall device is straightforward. In order to address simultaneous dynamic events that
concern di erent tenants, parallel generation of Itering rules that concern di erent VMs
is necessary. Unfortunately, in the current version of AL-SAFE parallel rule generation
is only supported for VMs that reside in di erent compute nodes. For enabling parallel
generation of rules for VMs that reside in the same compute node, parallel introspection of
those VMs is needed. Unfortunately, in the current implementation the VMI component
does not support parallel introspection of collocated VMs (because it is single-threaded).
Consequently, the core change for AL-SAFE supporting multi-tenancy requires making
VMI multithreaded. A multi-threaded VMI component that introspects directly on Lib-
VMI will also impose a signi cantly lower memory overhead.

Combining the security monitoring of tenants and the provider: In a cloud
environment the provider could assume the role of a super-tenant. This is essentially trans-
lated to a tenant with increased privileges who also requires adequate security monitoring
of its infrastructure and adaptation of the security devices in case of dynamic events.
The existence of a super-tenant raises two research questions: rst, the necessary design
changes for our security monitoring framework in order to support the di erent roles. In
the case of SAIDS this would imply a number of dedicated LIDS instances that moni-
tor the provider's tra c and are possibly located in an isolated node without any other
tenant-LIDS. For AL-SAFE this would imply that provider-related rules are injected and
enforced in the two types of rewalls. Second, an agreement for a fair sharing of moni-



130 CHAPTER 6. CONCLUSION

toring resources between the tenants and the super-tenant (i.e. the provider) needs to be
de ned in order to guarantee that the monitoring devices dedicated to tenants will always
have access to the necessary computational resources. An adaptable threshold regarding
the percentage of monitoring resources dedicated to the provider should be agreed be-
tween tenants and the provider and included in the SLA. Furthermore, a framework for
translating the threshold value to speci ¢ monitoring parameters (e.g. how many rules in

a shared rewall can the provider install) needs to be realized. This research question is
closely related to another PhD thesis in Myriads team entitled De nition and enforcement

of service level agreements for cloud security Monitoring

Integration of SAIDS in a large-scale system: Qirinus [155], a start-up that
specializes in automatic deployment of security monitoring infrastructures for cloud envi-
ronments, plans to integrate SAIDS in their system. The integration would allow tenants to
use the Qirinus API in order to provide a high-level description of their system along with
speci ¢ security requirements which will then be translated to SAIDS-speci ¢ arguments.
The Qirinus system will also be responsible for automating the deployment of SAIDS
individual components in the virtual infrastructure in such way that the tenant-de ned
requirements are respected. Integrating SAIDS with Qirinus will enable the transfer of
SAIDS technology to real world large-scale scenarios.

Handling network recon guration events: Currently our self-adaptable security
monitoring framework does not handle network recon guration events although they are
considered topology-related changes. Indeed, these types of events, for example migrating
a VM between networks, bare some resemblances with events that refer to the placement
of VMs (in this case with a VM migration). These resemblances allow us to consider
that signi cant similarities will occur between the adaptation process that follows a VM-
placement event and the adaptation process that follows a network-recon guration event.
For example, in SAIDS and AL-SAFE, the di erence between the necessary recon gu-
rations in a VM-placement dynamic event and a network recon guration dynamic event
would consist in changing the IP addresses (internal and external) in the rules related to
the VMs.

6.2.3 Long-Term Goals

As a long-term research direction, we consider the design of a fully autonomous self-
adaptable security monitoring framework. A fully autonomous monitoring framework
should be able to react to security events and take subsequent actions in order to isolate
potentially infected VMs and stop attackers from gaining control of the virtual infrastruc-
ture. Reaction is essentially based on the ability of the framework to translate security
monitoring ndings (e.g. IDS alerts) to adaptation decisions that a ect the con guration
of the monitoring devices. In the context of this thesis, such an ability is linked to includ-
ing security events to the set of possible adaptation sources. Currently our self-adaptable
security monitoring framework supports adaptation of the security devices based on three
di erent types of dynamic events: topology-, service- and monitoring load-related events.
Security events (i.e. attacks) as a potential adaptation source were not considered.

In our framework a reaction mechanism could operate by transferring SAIDS-generated
alerts to AL-SAFE and translating them to lItering rules. The primary functionality of
this mechanism would be to extract all related information from the alert (IP address,
protocol, port, etc) and propagate it through a secure channel to AL-SAFE's Information
Extraction Agent. The main challenge behind this mechanism is the determination of the
correct Information Extraction Agent (since in our cloud environment one IEA is installed
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in each compute node). In order to determine the right IEA host, the mechanism needs
to obtain a partial topological and functional overview of the monitoring framework. We
de ne as partial overview the topological and functional information that refers only to a
subset of security devices, for example all the monitoring devices that are under the control
of a speci ¢ Master Adaptation Driver instance (as opposed to a complete overview where
the functional and topological overview refer to system-wide information).

Adding security to the set of possible adaptation sources opens a convergence area with
the VESPA architecture [124] and will allow us to create a fully autonomous self-adaptable
security monitoring framework that considers security- as well as infrastructure-related
dynamic events.
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Annexe A

Resune en frarcais

A.1 Contexte

La virtualisation des serveurs permet une epartitiona la demande de ressources informa-
tiques (par exemple, CPU et RAM) selon le moctle paiementa l'usage , un moctle
economique au les clients ne sont factues que pour le temps et la quantie des ressources
utilisees. L'un des principaux moctles de cloud qui a attie une attention particulere au
cours des derneres anrees est le mocelénfrastructure as a Service (IaaS) ai les ressources
de calcul, de stockage et de eseau sont fournies aux clients sous la forme de machines vir-
tuelles (VM) et de eseaux virtuels. Les organisations externalisent une partie de leurs
sysemes d'information sur des infrastructures virtuelles (composes de VM et de eseaux
virtuels) kebergees sur l'infrastructure physique du fournisseur de cloud. Les termes qui
eglementent l'allocation des ressources sont ceclaes dans un contrat sigre par les clients
et le fournisseur de cloud, appek contrat de niveau de serviceService Level Agreemeniou
SLA). Les principaux avantages des clouds laaS incluent : la exibilie dans l'allocation
des ressources, l'illusion d'une capacit illimiee de ressources informatiques et eseau et
I'administration automatise de sysemes d'information virtualises complexes.

Bien que le passage au cloud puisse gererer d'importants gains en termes de coults et
d'e cacik, la ®curit continue de rester I'une des principales peoccupations dans I'adop-
tion du mocktle de cloud. La cohabitation de plusieurs clients, I'une des caractristiques ces
d'une infrastructure de cloud, cee la possibilie que des machines virtuelles egitimes soient
co-localiees avec des machines virtuelles controkes par des attaquants. Par congquent, les
attaques contre des infrastructures en cloud peuvent provenir de l'inerieur et de I'exerieur
de l'environnement de cloud. Une attaque eussie pourrait permettre aux attaquants
d'aceder et de manipuler les donrees tebergees par un cloud, y compris les informations
d'identi cation kgitimes du compte utilisateur, ou méme d'obtenir un contréle complet
de l'infrastructure de cloud et de la transformer en une entie malveillante. Bien que les
techniques de curie traditionnelles telles que le ltrage du tra ¢ ou l'inspection du tra c
puissent fournir un certain niveau de protection contre les attaquants, elles ne su sent pas
a contrer les menaces sophistiquees qui ciblent les infrastructures virtuelles. A n de four-
nir une solution de curie pour les environnements en cloud, une architecture de scurie
autonome automatise qui inegre des outils de scurie et de supervision reerogenes est
requise.
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A.2 Motivation

Dans un environnement de cloud laaS typique, le fournisseur est responsable de la gestion
et de la maintenance de l'infrastructure physique, alors que les clients ne sont responsables
gue de la gestion de leur propre syseme d'information virtuali®. Les clients peuvent
prendre des cecisions concernant le cycle de vie des VMs et deployer dierents types
d'applications sur les VMs fournies. Etant donre que les applications ceployees peuvent
avoir aces a des informations sensibles ou e ectuer des operations critiques, les clients
s'occupent de superviser la fcurie de leur infrastructure virtualise. Ces peoccupations
peuvent s'exprimer sous la forme d'exigences relativesa la surpervision de scurie, c'est-
a-dire la surveillance d'actions de types speci ques de menaces dans l'infrastructure vir-
tualisee. Les solutions de supervision de curie pour les environnements en clouds sont
cgereralement geees par le fournisseur du cloud et sont constitiees d'outils reerogenes
pour lesquels une con guration manuelle est requise. An de fournir des esultats de
cktection corrects, les solutions de surpervision doivent tenir compte du pro | des ap-
plications ceployees par le client ainsi que des exigences speci ques de scurie des clients.

Un environnement en cloud pesente un comportement tes dynamique avec des chan-
gements qui se produisenta dierents niveaux de l'infrastructure de cloud. Malheureuse-
ment, ces changements a ectent la capacie d'un syseme de supervision de curie du
clouda cetecter avec suces les attaques eta peserver l'inegrie de l'infrastructure en
cloud. Les solutions existantes de supervision de fcurie des clouds ne permettent pas de
prendre en compte les changements et de prendre les cecisions recessaires concernant la
recon guration des dispositifs de scurie. En congquence, de nouveaux points d'entee
pour les attaquants sont cees, ce qui peut entramer une compromission de l'infrastructure
entere du cloud. A notre connaissance, il n'‘existe toujours pas de syseme de supervision
de scurie capable d'adapter ses composants en fonction des dierents changements qui
se produisent dans un environnement de cloud.

L'objectif de cette these est de concevoir et mettre en uvre un syseme de supervision
de scurie auto-adaptatif capable de eagir auxevenements dynamiques qui se produisent
dans une infrastructure en cloud et d'adapter ses composants a n de garantir un niveau
acequat de supervision de curie pour les infrastructures virtuelles des clients.

A.3 Objectifs

Apes avoir pesent le contexte et la motivation de cette threse, hous proposons maintenant
un ensemble d'objectifs pour un syseme de supervision de ®curie auto-adaptatif.

A.3.1 Auto-adaptation

Un syseme de supervision de scurie auto-adaptatif devrait pouvoir adapter ses compo-
sants en fonction de dierents types devenements dynamiques qui se produisent dans une
infrastructure de cloud. Le syseme devrait consicerer cesevenements comme des sources
d'adaptation et prendre en conequence des mesures qui recon gurent ses composants. Le
processus d'adaptation peut modi er la con guration des dispositifs de supervision exis-
tants ou en ceer d'autres. Le syseme peut cecider de modi er les quanties de ressources
informatiques disponibles pour un dispositif de supervision (ou un sous-ensemble de dis-
positifs de supervision) a n de maintenir un niveau de supervision acequat. L'adaptation

de la quantie de ressources informatiques devraitegalement &tre e ectiee a n de likerer
des ressources sous-utiliees. Le syseme devrait prendre des cecisions d'adaptation an
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de garantir unequilibre entre curie, performance et colita tout moment. Les actions
d'adaptation peuvent a ecter dierents composants et le syseme devrait pouvoir e ectuer
ces actions en paralkle.

A.3.2 Personnalisation

Les exigences relatives aux clients et concernant les cas de surpervision sgeci ques de-
vraient &tre prises en compte dans un syseme de supervision de curie auto-adaptatif. Le
syseme devrait &tre en mesure de garantir une supervision acequate des types speci ques
de menaces demanckes par le client. Une demande de supervision pourrait se egrera l'in-
frastructure virtuelle compekte d'un client oua un sous-ensemble speci que de machines
virtuelles. Le syseme devrait fournir le type de supervision demanck jusqua ce que la
demande du client change ou que les machines virtuelles auxquelles le type de supervision
est applige n'existent plus. En outre, le syseme devrait prendre en compte les seuils
k nis par le clients (par des SLA speci ques) qui font eErencea la qualie du service de
supervision oua la performance de types speci ques de dispositifs de supervision.

A.3.3 Securie et correction

Le ceploiement d'un syseme de supervision de scurie auto-adaptatif ne devrait pas
ajouter de nouvelles vulrerabilies dans l'infrastructure virtuelle supervise ou dans l'in-
frastructure du fournisseur. Le processus d'adaptation et les entees qu'il requiert ne de-
vraient pas ceer de nouveaux points d'entee pour un attaquant. En outre, un syseme de
supervision de curie auto-adaptatif devrait pouvoir garantir qu'un niveau de supervision
acequat soit maintenu tout au long du processus d'adaptation. Le processus d'adaptation
ne devrait pas intererer avec la capacie du sysemea cetecter correctement les menaces.

A.3.4 Minimisation des cotts

Le ceploiement d'un syseme de supervision de scurie auto-adaptatif ne devrait pas
avoir d'impact signi catif sur le compromis entre scurie et codt pour les clients et le
fournisseur. Du coe du client, un syseme de supervision de curie auto-adaptatif ne
devrait pas in uer de maneére signi cative sur les performances des applications rebergees
dans l'infrastructure virtuelle, quel que soit le pro | de I'application (utilisant beaucoup les
CPUs ou beaucoup le eseau). Du cot du fournisseur, la capacit de gererer des pro ts en
louant ses ressources informatiques ne devrait pas étre a ecee de manere signi cative par
le syseme. Le deploiement d'un tel syseme ne devrait pas imposer de nalie importante
dans les operations normales du cloud (par exemple, migration de VM, ceation, etc.). En
outre, la proportion des ressources informatiques dedees aux composants du syseme auto-
adaptatif devrait reeter un accord entre les clients et le fournisseur pour la distribution
des ressources informatiques.

A.4 Contributions

A n d'atteindre les objectifs pesenes dans la section peedente, nous concevons un
syseme de supervision de wcurie auto-adaptatif capable de depasser les limites des
sysemes de supervision existants et de grer lesexenements dynamiques qui se produisent
dans une infrastructure en cloud. Dans cette these, nous cetaillons comment nous avons
corcu, mis en uvre etevallte nos contributions : un syseme grerique de supervision de
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fcurie auto-adaptatif et deux instanciations avec des sysemes de cetection d'intrusion
et des pare-feu.

A.4.1 Un syseme de supervision de fcurie auto-adaptatif

Notre premére contribution est la conception d'un syseme de supervision de fcurie auto-
adaptatif capable de modi er la con guration de ses composants et d'adapter la quantie de
ressources informatiques disponibles selon le type devenement dynamique qui se produit
dans une infrastructure de cloud. Notre syseme ealise I'adaptation automatique et la per-
sonnalisation en fonction des clients tout en fournissant un niveau adcequat de supervision
de la ®curie grace au processus d'adaptation. Notre syseme comprend les composants
suivants : le gestionnaire d'adaptation (ouAdaptation Manager), les sondes de supervision
d'infrastructure (ou Infrastructure Monitoring Probes ), la base de donrees de cependances
(ou Dependency Databasg I'API cot client et en n les dispositifs de ®curie. Le gestion-
naire d'adaptation est au c ur de notre syseme et est charge de prendre les decisions
d'adaptation lorsque desevenements dynamiques se produisent. Les sondes de supervision
d'infrastructure sont capables de cetecter des exenements dynamiques les a la topolo-
gie et de transmettre toutes les informations recessaires au gestionnaire d'adaptation. La
base de donrees de tependances est utiliee a n de stocker des informations importantes
concernant les dispositifs de ®curige, tandis que, via I'API coe client, les clients peuvent
exprimer leurs propres exigences de supervision de scurie. En n, les dispositifs de scurie
assurent dierentes fonctionnalies de supervision de scurie.

A.4.2 SAIDS

Notre deuxeme contribution constitue la premere instanciation de notre syseme et est
aee sur les sysemes de cktection d'intrusion en eseau (NIDS). Les NIDS sont des
ebments cks d'une infrastructure de supervision de scurie. SAIDS atteint les objectifs au

c ur de notre syseme tout en fournissant une solution passanta lechelle pour epondre
aux recessies d'adaptation paraleles. Notre solution est capable de passera lechelle en
fonction de la charge du tra c surveile et de la taille de linfrastructure virtuelle. Les
composants principaux de SAIDS sont : le pilote d'adaptation matre (ou Master Adap-
tation Driver ), le travailleur d'adaptation (ou Adaptation Worker) et les capteurs locaux
de cetection d'intrusion (LIDS). Le Master Adaptation Driver est charge de la traduction
des arguments d'adaptation en des paranetres de con guration pour les LIDSs alors que
le travailleur d'adaptation est charge d'e ectuer la recon guration en tant que telle des
LIDSs. Les capteurs locaux de cetection d'intrusion sont les dispositifs de scurie qui
e ectuent la cetection eelle desewnements de fcurie. SAIDS maintient un niveau de
cetection acequat tout en minimisant le codt en termes de consommation de ressources
et de performance des applications ceployees. Nous avonsevalle la capacie de SAIDSa
obtenir un compromis entre les performances, les colts et la scurie. Notre evaluation
consiste en dierents s@narios qui repesentent des environnements de production. Les
esultats obtenus cemontrent que notre prototype passea lechelle et peut gerer plusieurs
capteurs de detection d'intrusion eseau en paralele. SAIDS impose des colts addition-
nels regligeables pour les applications des clients ainsi que pour des operations de cloud
typiques telles que la migration de VM. En outre, nous avons proue que SAIDS maintient
un niveau de cetection adequat au cours du processus d'adaptation.
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A.4.3 AL-SAFE

Notre troiseme contribution constitue la deuxeme instanciation de notre syseme et est
axee sur les pare-feu applicatifs. AL-SAFE utilise l'introspection de machine virtuelle an
de ceer un pare-feu fcuri® qui fonctionne a I'exerieur de la machine virtuelle sur-
veilee mais conserve la visibilie intra-VM. AL-SAFE suit une strakgie d'introspection
periodique et permet au client de speci er la periode d'introspection. Les jeux de egles
appligles par le pare-feu sont adapes en fonction desevenements dynamiques qui se pro-
duisent dans une infrastructure virtuelle. Les composants principaux d'AL-SAFE sont :
l'agent d'extraction d'informations (ou Information Extraction Agent ), le composant d'in-
trospection de machine virtuelle (ou Virtual Machine Introspection ), les gererateurs de
egles (ou Rule Generators) et deux pare-feu distincts. L'agent d'extraction d'informa-
tions est charge d'identi er les processus autories a etablir des connexions alors que
le composant Virtual Machine Introspection e ectue l'introspection en tant que telle de
la VM superviee. Les gererateurs de egles sont utiliees pour produire les egles pour
les deux pare-feux. Nous avonsevalle la capacie d'’AL-SAFE a proposer un compromis
equilibe entre scurie, performance et colt. Notre processus dévaluation se compose de
dierents s@narios qui repesentent des environnements de production. Les esultats obte-
nus cemontrent que AL-SAFE est capable de bloquer toutes les connexions non autoriees
et que les egles esultant du processus d'adaptation sont correctes et ogerationnelles. Les
colts additionnels d'AL-SAFE pour les operations typiques du cloud, comme la migration
de VM, sont incependants de l'intensie de Il'activie de la VM, tandis que les colts ad-
ditionnels pour les applications des clients cependent de la periode d'introspection et du
pro | d'application (eseau ou calcul).

A.5 Perspectives

Nous avons identie plusieurs axes de recherche pour les travaux futurs. Nous les organisons
sur des objectifsa court, moyen et long terme.

A.5.1 Perspectivesa court terme

Nos objectifsa court terme se concentrent sur les aneliorations de conception et de mise
en uvre des versions actuelles de nos prototypes ainsi que sur la mise en uvre de deux
des composants de notre syseme que nous n'avons pas eu le temps de mettre en uvre.
Dans SAIDS, nous souhaitons ajouter des decouvertes automatiques de service a n que les
egles de cketection lees aux services execues, et appligiees dans les LIDSs a ecks, soient
automatiguement adaptes. Le necanisme d'introspection d'AL-SAFE pourrait étre utiliee
comme outil de decouverte automatique des services. Dans AL-SAFE, nous souhaitons
remplacer le mocele d'introspection periodique par un mocele d'introspection ceclenchee
par desewnements, de sorte que les colts additionnels dans les applications des clients
soient eduits. En n, nous souhaitons mettre en uvre deux autres composants de notre
syseme, la base de donrees de dependances et I'API coe client.

A.5.2 Perspectivesa moyen terme

Nos objectifsa mi-parcours visenta aborder des probemes plus complexes qui sont in-

tringeques aux environnements de cloud, comme la cohabition des clients. La version ac-
tuelle de notre syseme de supervision de ®curit ne traite pas des probemes qui se posent
dans les environnements multi-clients. A n de permettre la supervision de la ®curie pour
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dierents clients, nous devons consicerer le partage des dispositifs de supervision entre les
clients. Le partage de dispositifs entre les clients peutegalement étre pelcu comme un
aspect suppkementaire de la eduction des codts. Nous souhaitonsetudier les changements
recessaires tant dans SAIDS que dans AL-SAFE an d'atteindre cet objectif. En outre,
nous souhaitons inclure d'autres types de LIDS comme les sysemes de detection d'intru-
sion hote et les analyseurs de eseau dans le prototype SAIDS. Les autres perspectives de
recherchea moyen terme incluent la combinaison de la supervision de la scurie des clients
et du fournisseur ainsi que l'inegration de SAIDS dans un sysemea grandeechelle, grace

a une collaboration avec la startup Qirinus.

A.5.3 Perspectivesa long terme

Dans une perspectivea long terme, nous nous ineressonsa la conception d'un syseme de
supervision de fcurie auto-adaptatif enterement autonome. Un syseme de supervision
enterement autonome devrait pouvoir eagir auxewenements de curite et prendre des
mesures en conquence an d'isoler les machines virtuelles potentiellement infecees et
empécher les attaquants de prendre le controle de l'infrastructure virtuelle. La eaction
repose essentiellement sur la capacie du sysemea traduire les esultats de la supervision
de scurie (par exemple, les alertes des sysemes de cetection d'intrusion) en des cecisions
d'adaptation qui recon gurent des dispositifs de supervision. Dans le contexte de cette
trese, une telle capacie est lee a l'inclusion devenements de scurie dans I'ensemble
des sources d'adaptation possibles. Actuellement, notre syseme de supervision de scurie
auto-adaptatif prend en charge I'adaptation des dispositifs de scurie en fonction de trois
types devenements dynamiques : ceux lesa la topologie, aux services ceployes, eta la
charge de travail en analyse. Lesevenements de curie (c'esta-dire les attaques) en tant
que source d'adaptation potentielle n'ont paseg pris en compte.






Résumé

Les principales caractéristiques des clouds d'infrastructure
(laaS), comme [I'élasticité instantanée et la mise a disposition
automatique de ressources virtuelles, rendent ces clouds trés
dynamiques. Cette nature dynamique se traduit par de
différents niveaux de

fréquents changements aux

linfrastructure virtuelle. Etant données la criticité et parfois la

Abstract

Rapid elasticity and automatic provisioning of virtual resources
are some of the main characteristics of laaS clouds. The
dynamic nature of laaS clouds is translated to frequent changes
that refer to different levels of the virtual infrastructure. Due to
the critical and sometimes private information hosted in tenant
virtual infrastructures, security monitoring is of great concern for

FRQ¢GHQWLDOLWpPp GHV LQIRUPDWLRQV WUD buthp HahanG D&y tleH Yrovider! U DnovtibiaXely W ¥é&) Hdynamic

virtuelles des clients, la supervision de sécurité est une
préoccupation importante pour les clients comme pour le
fournisseur de cloud. Malheureusement, les changements
dynamiques altérent la capacité du systeme de supervision de
sécuritt a détecter avec succes les attaques ciblant les
infrastructures virtuelles. Dans cette thése, nous avons congu
un systéeme de supervision de sécurité auto-adaptatif pour les
clouds laaS. Ce systtme est concu pour adapter ses
composants en fonction des différents changements pouvant se
produire dans une infrastructure de cloud. Notre systéeme est
instancié sous deux formes ciblant des équipements de sécurité
différents :
TXL SDVVH |j OfpFKHOOH
sur lintrospection. Nous avons évalué notre prototype sous

SAIDS, un systeme de détection d'intrusion réseau

'angle de la performance, du codt, et de la sécurité pour les
clients comme pour le fournisseur. Nos résultats montrent que
notre prototype impose un co(t additionnel tolérable tout en
fournissant une bonne qualité de détection.

HW $/ 6%)( XQ

FKDQJHV DIIHFW WKH DELOLW\ RI D VHFXULW\
VXFFHVVIXOO\ GHWHFW DWWDFNV WKDW WD
LQIUDVWUXFWXUHV ,Q WKLV WKHVLV ZH KDYH
VHFXULW\ PRQLWRULQJ IUDPHZRUN IRU ,DD6 F
is designed to adapt its components based on different changes
WKDW RFFXU LQ D YLUWXDO LQIUDVWUXFWXU|
instantiations focused on different security devices: SAIDS, a
VFDODEOH QHWZRUN LQWUXVLRQ GHWHFWLRQ
LOQOWURVSHFWLRQ EDVHG DSSOLFDWLRQ OHYHO
evaluated our prototype focusing on performance, cost and
security for both tenants and the provider. Our results
demonstrate that our prototype imposes a tolerable overhead

¢ UHKIDDHD SDBSOGERWDIFRRQDWH GHWHFWLRQ UHVXO
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