T. Abboud and H. Ammari, Diffraction at a Curved Grating: TM and TE Cases, Homogenization, Journal of Mathematical Analysis and Applications, vol.202, issue.3, pp.995-1026, 1996.
DOI : 10.1006/jmaa.1996.0357

URL : https://doi.org/10.1006/jmaa.1996.0357

H. Ammari, E. Beretta, E. Francini, H. Kang, and M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case, Journal de Math??matiques Pures et Appliqu??es, vol.94, issue.3, pp.322-339, 2010.
DOI : 10.1016/j.matpur.2010.02.001

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee et al., Mathematical Methods in Elasticity Imaging, 2015.
DOI : 10.2307/j.ctt1287kr2

URL : https://hal.archives-ouvertes.fr/hal-01174118

H. Ammari and J. C. Nédélec, Time-Harmonic Electromagnetic Fields in Thin Chiral Curved Layers, SIAM Journal on Mathematical Analysis, vol.29, issue.2, pp.395-423, 1998.
DOI : 10.1137/S0036141096305504

URL : ftp://barbes.polytechnique.fr/pub/RI/1996/ammari_nedelec_348.jun.ps.gz

P. Angot, A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions, Comptes Rendus Mathematique, vol.348, issue.11-12, pp.11-12697, 2010.
DOI : 10.1016/j.crma.2010.04.022

URL : https://hal.archives-ouvertes.fr/hal-00476369

P. Angot, On the well-posed coupling between free fluid and porous viscous flows, Applied Mathematics Letters, vol.24, issue.6, pp.803-810, 2011.
DOI : 10.1016/j.aml.2010.07.008

URL : https://hal.archives-ouvertes.fr/hal-00476386

P. Angot, G. Carbou, and V. Péron, Asymptotic study for Stokes???Brinkman model with jump embedded transmission conditions, Asymptotic Analysis, vol.368, issue.2, pp.3-4223, 2016.
DOI : 10.1016/j.jmaa.2010.02.022

URL : https://hal.archives-ouvertes.fr/hal-01184429

H. Antoine, L. Barucq, and . Vernhet, High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions, Asymptot. Anal, vol.26, pp.3-4257, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00347873

H. Barucq, R. Djellouli, and E. Estecahandy, Efficient DG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, International Journal for Numerical Methods in Engineering, vol.62, issue.6, pp.98747-780, 2014.
DOI : 10.1121/1.381680

URL : https://hal.archives-ouvertes.fr/hal-00931852

H. Barucq, R. Djellouli, and E. Estecahandy, On the existence and the uniqueness of the solution of a fluid???structure interaction scattering problem, Journal of Mathematical Analysis and Applications, vol.412, issue.2, pp.571-588, 2014.
DOI : 10.1016/j.jmaa.2013.10.081

URL : https://hal.archives-ouvertes.fr/hal-00903365

H. Barucq, A. Erdozain, and V. Péron, Impedance Transmission Conditions for the Electric Potential across a Highly Conductive Casing, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403347

H. Barucq, T. Frelet-chaumont, J. Diaz, and V. Péron, Upscaling for the Laplace problem using a discontinuous Galerkin method, Journal of Computational and Applied Mathematics, vol.240, pp.192-203, 2013.
DOI : 10.1016/j.cam.2012.05.025

URL : https://hal.archives-ouvertes.fr/hal-00757098

H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the basis of Maxwell's Equations, 1915.

A. Bendali and K. Lemrabet, The Effect of a Thin Coating on the Scattering of a Time-Harmonic Wave for the Helmholtz Equation, SIAM Journal on Applied Mathematics, vol.56, issue.6, pp.1664-1693, 1996.
DOI : 10.1137/S0036139995281822

O. Biro, K. Preis, K. R. Richter, R. Heller, P. Komarek et al., FEM calculation of eddy current losses and forces in thin conducting sheets of test facilities for fusion reactor components, IEEE Transactions on Magnetics, vol.28, issue.2, pp.1509-1512, 1992.
DOI : 10.1109/20.123983

M. Bonnet, A. Burel, M. Duruflé, and P. Joly, Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model, ESAIM: Mathematical Modelling and Numerical Analysis, vol.50, issue.1, pp.43-75, 2016.
DOI : 10.1049/PBEW041E

URL : https://hal.archives-ouvertes.fr/hal-00937962

A. Bostrom, Review of hypersingular integral equation method for crack scattering and application to modeling of ultrasonic nondestructive evaluation, Applied Mechanics Reviews, vol.97, issue.4, pp.383-406, 2003.
DOI : 10.1115/1.3564739

D. Braess, Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn, Measurement Science and Technology, vol.13, issue.9, 2007.
DOI : 10.1088/0957-0233/13/9/704

J. P. Breslin and P. Andersen, Hydrodynamics of ship propellers, volume 3 of Cambridge Ocean Technology Series, 1994.

C. Bruneau and I. Mortazavi, Contrôle passif d'´ ecoulements incompressibles autour d'obstaclesàobstacles`obstaclesà l'aide de milieux poreux, Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics, pp.517-521, 2001.

F. Buret, M. Dauge, P. Dular, L. Krähenbühl, V. Péron et al., Eddy Currents and Corner Singularities, IEEE Transactions on Magnetics, vol.48, issue.2, pp.679-682, 2012.
DOI : 10.1109/TMAG.2011.2175378

URL : https://hal.archives-ouvertes.fr/inria-00614033

G. Caloz, M. Dauge, E. Faou, and V. Péron, On the influence of the geometry on skin effect in electromagnetism, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.9-12, pp.9-121053, 2011.
DOI : 10.1016/j.cma.2010.11.011

URL : https://hal.archives-ouvertes.fr/hal-00503170

G. Caloz, M. Dauge, and V. Péron, Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism, Journal of Mathematical Analysis and Applications, vol.370, issue.2, pp.555-572, 2010.
DOI : 10.1016/j.jmaa.2010.04.060

URL : https://hal.archives-ouvertes.fr/hal-00422315

G. Carbou, Penalization method for viscous incompressible flow around a porous thin layer, Nonlinear Analysis: Real World Applications, vol.5, issue.5, pp.815-855, 2004.
DOI : 10.1016/j.nonrwa.2004.02.003

G. Carbou, Brinkmann Model and Double Penalization Method for the Flow Around a Porous Thin Layer, Journal of Mathematical Fluid Mechanics, vol.10, issue.1, pp.126-158, 2008.
DOI : 10.1007/s00021-006-0221-y

URL : https://hal.archives-ouvertes.fr/hal-00268116

G. Carbou and P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Adv. Differential Equations, vol.8, issue.12, pp.1453-1480, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00295077

M. Castro, J. Diaz, and V. Péron, Equivalent absorbing boundary conditions for heterogeneous acoustic media, pp.301-310, 2014.

J. Chabassier, M. Duruflé, and V. Péron, Equivalent boundary conditions for acoustic media with exponential densities. Application to the atmosphere in helioseismology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371580

N. Chen, M. Gunzburger, and X. Wang, Asymptotic analysis of the differences between the Stokes???Darcy system with different interface conditions and the Stokes???Brinkman system, Journal of Mathematical Analysis and Applications, vol.368, issue.2, pp.658-676, 2010.
DOI : 10.1016/j.jmaa.2010.02.022

Z. S. Chen, G. Hofstetter, and H. A. Mang, A Galerkin-type BE-FE formulation for elasto-acoustic coupling, Computer Methods in Applied Mechanics and Engineering, vol.152, issue.1-2, pp.147-155, 1998.
DOI : 10.1016/S0045-7825(97)00187-4

E. Christodoulou, C. Elliotis, C. Xenophontos, and G. C. Georgiou, The singular function boundary integral method for 3-D Laplacian problems with a boundary straight edge singularity, Applied Mathematics and Computation, vol.219, issue.3, pp.1073-1081, 2012.
DOI : 10.1016/j.amc.2012.07.013

S. Chun, H. Haddar, and J. S. Hesthaven, High-order accurate thin layer approximations for time-domain electromagnetics, Part II: Transmission layers, Journal of Computational and Applied Mathematics, vol.234, issue.8, pp.2587-2608, 2010.
DOI : 10.1016/j.cam.2010.03.022

URL : https://hal.archives-ouvertes.fr/hal-00739326

G. Cohen and M. Duruflé, Non spurious spectral-like element methods for Maxwell's equations, J. Comput. Math, vol.25, pp.282-304, 2007.

M. Costabel and M. Dauge, Construction of Corner Singularities for Agmon-Douglis-Nirenberg Elliptic Systems, Mathematische Nachrichten, vol.24, issue.3, pp.209-237, 1993.
DOI : 10.1215/S0012-7094-57-02408-0

M. Costabel, M. Dauge, and R. Duduchava, Asymptotics Without Logarithmic Terms for Crack Problems???, Communications in Partial Differential Equations, vol.34, issue.5-6, pp.5-6869, 2003.
DOI : 10.1007/BF02384079

URL : http://www.maths.univ-rennes1.fr/~dauge/publis/CoDaDuLog.ps

M. Costabel, M. Dauge, and S. Nicaise, Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains
URL : https://hal.archives-ouvertes.fr/hal-00453934

M. Costabel, M. Dauge, and Z. Yosibash, A Quasi-Dual Function Method for Extracting Edge Stress Intensity Functions, SIAM Journal on Mathematical Analysis, vol.35, issue.5, pp.1177-1202, 2004.
DOI : 10.1137/S0036141002404863

URL : http://www.bgu.ac.il/~zohary/papers/SIMA_04.pdf

B. Cotterell and J. R. Rice, Slightly curved or kinked cracks, International Journal of Fracture, vol.2, issue.2, pp.155-169, 1980.
DOI : 10.1007/BF00012619

M. Dauge, Elliptic Boundary Value Problems in Corner Domains ? Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, vol.1341, 1988.

M. Dauge, P. Dular, L. Krähenbühl, V. Péron, R. Perrussel et al., Corner asymptotics of the magnetic potential in the eddy-current model, Mathematical Methods in the Applied Sciences, vol.162, issue.5, pp.1924-1955, 2014.
DOI : 10.1002/mana.19931620117

URL : https://hal.archives-ouvertes.fr/hal-00931735

M. Dauge, E. Faou, and V. Péron, Comportement asymptotique ?? haute conductivit?? de l'??paisseur de peau en ??lectromagn??tisme, Comptes Rendus Mathematique, vol.348, issue.7-8, pp.385-390, 2010.
DOI : 10.1016/j.crma.2010.01.002

M. Dauge, S. Nicaise, M. Bourlard, and J. M. Lubuma, Coefficients des singularit??s pour des probl??mes aux limites elliptiques sur un domaine ?? points coniques. II : Quelques op??rateurs particuliers, ESAIM: Mathematical Modelling and Numerical Analysis, vol.24, issue.3, pp.343-367, 1990.
DOI : 10.1051/m2an/1990240303431

A. M. Davis and R. J. Nagem, Effect of viscosity on acoustic diffraction by a circular disk, The Journal of the Acoustical Society of America, vol.115, issue.6, pp.2738-2748, 2004.
DOI : 10.1121/1.1736650

A. M. Davis and S. G. Smith, Tangential oscillations of a circular disk in a viscous stratified fluid, Journal of Fluid Mechanics, vol.13, pp.342-359, 2010.
DOI : 10.1017/S0022112072002575

E. M. Deeley, Surface impedance near edges and corners in three-dimensional media, IEEE Transactions on Magnetics, vol.26, issue.2, pp.712-714, 1990.
DOI : 10.1109/20.106417

DOI : 10.1002/mma.1670020103

URL : https://hal.archives-ouvertes.fr/hal-00682357

J. Diaz and V. Péron, Equivalent Conditions for Elasto-Acoustics, Waves 2013: The 11th International Conference on Mathematical and Numerical Aspects of Waves, pp.345-346, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00842571

J. Diaz and V. Péron, Equivalent Robin boundary conditions for acoustic and elastic media, Mathematical Models and Methods in Applied Sciences, vol.414, issue.08, pp.1531-1566, 2016.
DOI : 10.1049/PBEW041E

URL : https://hal.archives-ouvertes.fr/hal-01254194

D. G. Duffy, Mixed boundary value problems, 2008.
DOI : 10.1201/9781420010947

P. Dular, V. Péron, L. Krähenbühl, and C. Geuzaine, Progressive eddy current modeling via a finite element subproblem method, International Journal of Applied Electromagnetics and Mechanics, vol.46, issue.2, pp.341-348, 2014.
DOI : 10.1108/compel-10-2014-0279

URL : https://hal.archives-ouvertes.fr/hal-00917282

P. Dular, V. Péron, L. Krähenbühl, and C. Geuzaine, Subproblem Finite-Element Refinement of Inductors From Wire to Static and Dynamic Volume Models, IEEE Transactions on Magnetics, vol.51, issue.3, pp.1-4, 2015.
DOI : 10.1109/TMAG.2014.2360232

URL : https://hal.archives-ouvertes.fr/hal-00959756

P. Dular, V. Péron, R. Perrussel, L. Krähenbühl, and C. Geuzaine, Perfect Conductor and Impedance Boundary Condition Corrections via a Finite Element Subproblem Method, IEEE Transactions on Magnetics, vol.50, issue.2, p.7000504, 2014.
DOI : 10.1109/TMAG.2013.2284338

URL : https://hal.archives-ouvertes.fr/hal-00807078

M. Durán and J. Nédélec, Unprobì eme spectral issu d'un couplagé elasto-acoustique

M. Duruflé, V. Péron, and C. Poignard, Abstract, Waves 2011: The 10th International Conference on Mathematical and Numerical Aspects of Waves, pp.687-690, 2011.
DOI : 10.1088/0031-9155/46/1/315

M. Duruflé, V. Péron, and C. Poignard, TIME-HARMONIC MAXWELL EQUATIONS IN BIOLOGICAL CELLS ??? THE DIFFERENTIAL FORM FORMALISM TO TREAT THE THIN LAYER, Confluentes Mathematici, vol.10, issue.02, pp.325-357, 2011.
DOI : 10.1163/156939396X00504

M. Duruflé, V. Péron, and C. Poignard, Abstract, Communications in Computational Physics, vol.144, issue.01, pp.213-238, 2014.
DOI : 10.1088/0031-9155/46/1/315

B. Dutta and S. Banerjea, Solution of a hypersingular integral equation in two disjoint intervals, Applied Mathematics Letters, vol.22, issue.8, pp.1281-1285, 2009.
DOI : 10.1016/j.aml.2009.01.043

A. Kacimi and O. Laghrouche, Numerical modelling of elastic wave scattering in frequency domain by the partition of unity finite element method, International Journal for Numerical Methods in Engineering, vol.362, issue.22, pp.1646-1669, 2009.
DOI : 10.1108/eb023658

B. Engquist and J. C. Nédélec, Effective boundary condition for acoustic and electromagnetic scattering in thin layers, 1993.

A. Erdozain, Fast inversion of 3D Borehole Resistivity Measurements using Model Reduction Techniques based on 1D Semi-Analytical Solutions, 2016.

V. J. Ervin and E. P. Stephan, Collocation with Chebyshev polynomials for a hypersingular integral equation on an interval, Journal of Computational and Applied Mathematics, vol.43, issue.1-2, pp.221-229, 1992.
DOI : 10.1016/0377-0427(92)90267-2

E. Estecahandy, Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00880628

L. Farina, M. Ferreira, and V. Péron, The airfoil equation on near disjoint intervals: Approximate models and polynomial solutions, Journal of Computational and Applied Mathematics, vol.298, pp.97-104, 2016.
DOI : 10.1016/j.cam.2015.11.024

URL : https://hal.archives-ouvertes.fr/hal-01253227

L. Farina and P. A. Martin, Scattering of water waves by a submerged disc using a hypersingular integral equation Applied ocean research, pp.121-134, 1998.

L. Farina, P. A. Martin, and V. Péron, Hypersingular integral equations over a disc: Convergence of a spectral method and connection with Tranter???s method, Journal of Computational and Applied Mathematics, vol.269, pp.118-131, 2014.
DOI : 10.1016/j.cam.2014.03.014

L. Farina and J. S. , Solutions of hypersingular integral equations over circular domains by a spectral method, Applications of Mathematics, pp.52-66, 2013.

M. Fischer and L. Gaul, Fast BEM-FEM mortar coupling for acoustic-structure interaction, International Journal for Numerical Methods in Engineering, vol.3, issue.12, pp.1677-1690, 2005.
DOI : 10.1007/978-3-662-05136-8

L. Gaul, D. Brunner, and M. Junge, Simulation of Elastic Scattering with a Coupled FMBE-FE Approach, Recent Advances in Boundary Element Methods, pp.131-145, 2009.
DOI : 10.1007/978-1-4020-9710-2_10

C. Geuzaine, P. Dular, and W. Legros, Dual formulations for the modeling of thin electromagnetic shells using edge elements, IEEE Transactions on Magnetics, vol.36, issue.4, pp.799-803, 2000.
DOI : 10.1109/20.877566

M. A. Golberg, The convergence of several algorithms for solving integral equations with finite part integrals. II, Applied Mathematics and Computation, vol.21, issue.4, pp.329-340, 1983.
DOI : 10.1016/0096-3003(87)90017-8

M. A. Golberg, C. Chen, and J. A. Fromme, Discrete projection methods for integral equations, APPLIED MECHANICS REVIEWS, vol.50, pp.75-75, 1997.

P. Grisvard, Boundary Value Problems in Non-Smooth Domains, 1985.

H. Haddar, P. Joly, and H. Nguyen, GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING PROBLEMS FROM STRONGLY ABSORBING OBSTACLES: THE CASE OF MAXWELL'S EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.2, issue.10, pp.1787-1827, 2008.
DOI : 10.1002/mma.1670030137

T. Hagstrom, M. L. De-castro, D. Givoli, and D. Tzemach, LOCAL HIGH-ORDER ABSORBING BOUNDARY CONDITIONS FOR TIME-DEPENDENT WAVES IN GUIDES, Journal of Computational Acoustics, vol.195, issue.01, pp.1-22, 2007.
DOI : 10.1007/s00158-002-0221-3

T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems, Wave Motion, vol.39, issue.4, pp.327-338, 2004.
DOI : 10.1016/j.wavemoti.2003.12.007

T. Hargé, Valeurs propres d'un corpsélastiquecorps´corpsélastique, C. R. Acad. Sci. Paris Sér. I Math, vol.311, issue.13, pp.857-859, 1990.

R. J. Hartranft and G. C. Sih, The Use of Eigenfunction Expansions in the General Solution of Three-Dimensional Crack Problems, Indiana University Mathematics Journal, vol.19, issue.2, pp.123-138, 1967.
DOI : 10.1512/iumj.1970.19.19012

N. Heuer, M. E. Mellado, and E. P. Stephan, Ap-adaptive algorithm for the BEM with the hypersingular operator on the plane screen, and hp finite element methods: mathematics and engineering practice, pp.85-104, 2000.
DOI : 10.1016/0045-7825(93)90017-R

R. Hiptmair, Symmetric Coupling for Eddy Current Problems, SIAM Journal on Numerical Analysis, vol.40, issue.1, pp.41-65, 2002.
DOI : 10.1137/S0036142900380467

URL : http://www.uni-tuebingen.de/uni/opx/reports/hiptmair_148.ps.gz

T. Huttunen, J. P. Kaipio, and P. Monk, An ultra-weak method for acoustic fluid???solid interaction, Journal of Computational and Applied Mathematics, vol.213, issue.1, pp.166-185, 2008.
DOI : 10.1016/j.cam.2006.12.030

URL : https://doi.org/10.1016/j.cam.2006.12.030

H. Igarashi, A. Kost, and T. Honma, Impedance boundary condition for vector potentials on thin layers and its application to integral equations, The European Physical Journal Applied Physics, vol.1, issue.1, pp.103-109, 1998.
DOI : 10.1051/epjap:1998123

J. Jin, J. L. Volakis, C. L. Yu, and A. C. Woo, Modeling of resistive sheets in finite element solutions (EM scattering), IEEE Transactions on Antennas and Propagation, vol.40, issue.6, pp.727-731, 1992.
DOI : 10.1109/8.144609

D. S. Jones, LOW-FREQUENCY SCATTERING BY A BODY IN LUBRICATED CONTACT, The Quarterly Journal of Mechanics and Applied Mathematics, vol.36, issue.1, pp.111-138, 1983.
DOI : 10.1093/qjmam/36.1.111

M. Käser and M. Dumbser, A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids, GEOPHYSICS, vol.73, issue.3, pp.23-35, 2008.
DOI : 10.1190/1.2870081

E. F. Knott and T. B. Senior, Non-specular radar cross section study, 1974.

D. Komatitsch, C. Barnes, and J. Tromp, Wave propagation near a fluid???solid interface: A spectral???element approach, GEOPHYSICS, vol.65, issue.2, pp.623-631, 2000.
DOI : 10.1190/1.1444758

URL : https://hal.archives-ouvertes.fr/hal-00669051

V. A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Ob??, vol.16, pp.209-292, 1967.

V. A. Kondratev and O. A. Oleinik, Boundary-value problems for partial differential equations in non-smooth domains, Russian Mathematical Surveys, vol.38, issue.2, pp.1-86, 1983.
DOI : 10.1070/RM1983v038n02ABEH003470

V. A. Kozlov, V. G. Maz-'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol.52, 1997.
DOI : 10.1090/surv/052

L. Krähenbühl, F. Buret, R. Perrussel, D. Voyer, P. Dular et al., Numerical treatment of rounded and sharp corners in the modeling of 2D electrostatic fields, Journal of microwaves, vol.10, issue.1, pp.66-81, 2011.

L. Krähenbühl and D. Muller, Thin layers in electrical engineering-example of shell models in analysing eddy-currents by boundary and finite element methods, IEEE Transactions on Magnetics, vol.29, issue.2, pp.1450-1455, 1993.
DOI : 10.1109/20.250676

S. Krenk and H. Schmidt, Elastic Wave Scattering by a Circular Crack, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.308, issue.1502, pp.167-198, 1502.
DOI : 10.1098/rsta.1982.0158

O. D. Lafitte, Diffraction in the high frequency regime by a thin layer of dielectric material I: The equivalent impedance boundary condition, SIAM Journal on Applied Mathematics, vol.59, issue.3, pp.1028-1052, 1999.
DOI : 10.1137/S0036139996307152

O. D. Lafitte and G. Lebeau, ´ Equations de Maxwell et opérateur d'impédance sur le bord d'un obstacle convexe absorbant, C. R. Acad. Sci. Paris Sér. I Math, issue.11, pp.3161177-1182, 1993.

S. G. Larsson and A. J. Carlsson, Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials, Journal of the Mechanics and Physics of Solids, vol.21, issue.4, pp.263-277, 1973.
DOI : 10.1016/0022-5096(73)90024-0

D. Leguillon and S. Murer, Crack deflection in a biaxial stress state, International Journal of Fracture, vol.141, issue.1, pp.75-90, 2008.
DOI : 10.1016/j.msea.2005.11.002

M. A. Leontovich, Approximate boundary conditions for the electromagnetic field on the surface of a good conductor, Investigations on radiowave propagation, pp.5-12, 1948.

C. J. Luke and P. A. Martin, Fluid???Solid Interaction: Acoustic Scattering by a Smooth Elastic Obstacle, SIAM Journal on Applied Mathematics, vol.55, issue.4, pp.904-922, 1995.
DOI : 10.1137/S0036139993259027

B. N. Mandal and A. Chakrabarti, Applied singular integral equations, 2011.

A. Márquez, V. Meddahi, and . Selgas, A new BEM???FEM coupling strategy for two-dimensional fluid???solid interaction problems, Journal of Computational Physics, vol.199, issue.1, pp.205-220, 2004.
DOI : 10.1016/j.jcp.2004.02.005

P. A. Martin, Exact Solution of a Simple Hypersingular Integral Equation, Journal of Integral Equations and Applications, vol.4, issue.2, pp.197-204, 1992.
DOI : 10.1216/jiea/1181075681

P. A. Martin, Perturbed cracks in two dimensions: an integral-equation approach, International Journal of Fracture, vol.104, issue.3, pp.315-325, 2000.
DOI : 10.1023/A:1007610308529

P. A. Martin, Multiple scattering: interaction of time-harmonic waves with N obstacles, 2006.
DOI : 10.1017/CBO9780511735110

I. D. Mayergoyz and G. Bedrosian, On calculation of 3-D eddy currents in conducting and magnetic shells, IEEE Transactions on Magnetics, vol.31, issue.3, pp.1319-1324, 1995.
DOI : 10.1109/20.376271

V. G. Maz-'ya and B. A. Plamenevskii, On the coefficients in the asymptotic of solutions of the elliptic boundary problem in domains with conical points, Amer. Math. Soc. Trans, vol.123, issue.2, pp.57-88, 1984.

J. Mcwhirter, Computation of three-dimensional eddy currents in thin conductors, IEEE Transactions on Magnetics, vol.18, issue.2, pp.456-460, 1982.
DOI : 10.1109/TMAG.1982.1061860

G. Monegato, Definitions, properties and applications of finite-part integrals, Journal of Computational and Applied Mathematics, vol.229, issue.2, pp.425-439, 2009.
DOI : 10.1016/j.cam.2008.04.006

P. Monk and V. Selgas, An inverse fluid-solid interaction problem, Inverse Probl. Imaging, vol.3, issue.2, pp.173-198, 2009.

M. Moussaoui, Sur l'approximation des solutions du probleme de Dirichlet dans un ouvert avec coins, Singularities and constructive methods for their treatment (Oberwolfach, pp.199-206, 1983.
DOI : 10.1007/BF02237995

S. Muñoz, J. L. Sebastián, M. Sancho, and J. M. Miranda, Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields, Bioelectromagnetics, vol.56, issue.8, pp.631-633, 2004.
DOI : 10.1016/S1567-5394(02)00010-5

N. I. Muskhelishvili, Singular integral equations Boundary problems of function theory and their application to mathematical physics, P. Noordhoff N. V, 1953.

T. Nakata, N. Takahashi, K. Fujiwara, and Y. Shiraki, 3D magnetic field analysis using special elements, IEEE Transactions on Magnetics, vol.26, issue.5, pp.2379-2381, 1990.
DOI : 10.1109/20.104737

D. Natroshvili, A. Sändig, and W. L. Wendland, Fluid-structure interaction problems, Mathematical aspects of boundary element methods, pp.252-262, 1998.

S. Nicaise, Polygonal interface problems. Methoden und Verfahren der Mathematischen Physik, 39. Verlag Peter D. Lang, Frankfurt-am-Main, 1993.
DOI : 10.1002/mma.1670170104

B. Nkemzi and M. Jung, Flux intensity functions for the Laplacian at polyhedral edges, International Journal of Fracture, vol.136, issue.2, pp.167-185, 2012.
DOI : 10.1007/s10704-005-4245-8

N. Omer, Z. Yosibash, M. Costabel, and M. Dauge, Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method, International Journal of Fracture, vol.129, issue.2, pp.97-130, 2004.
DOI : 10.1023/B:FRAC.0000045717.60837.75

N. F. Parsons and P. A. Martin, Trapping of water waves by submerged plates using hypersingular integral equations, Journal of Fluid Mechanics, vol.9, issue.-1, pp.359-375, 1995.
DOI : 10.1016/0141-1187(92)90035-I

]. V. Péron, Modélisation mathématique de phénomènesphénomènes´phénomènesélectromagnétiques dans des matériauxmatériaux`matériauxà fort contraste, 2009.

V. Péron, Equivalent Boundary Conditions for an Elasto-Acoustic Problem set in a Domain with a Thin Layer, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.5, 2013.
DOI : 10.1051/m2an:2000106

V. Péron, Equivalent Boundary Conditions for an Elasto-Acoustic Problem set in a Domain with a Thin Layer, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.5, pp.1431-1449
DOI : 10.1051/m2an:2000106

V. Péron, Impedance transmission conditions for eddy current problems, 2017.

V. Péron, K. Schmidt, and M. Duruflé, Equivalent Transmission Conditions for the Time-Harmonic Maxwell Equations in 3D for a Medium with a Highly Conductive Thin Sheet, SIAM Journal on Applied Mathematics, vol.76, issue.3, pp.1031-1052, 2016.
DOI : 10.1137/15M1012116

R. Perrussel, C. Poignard, V. Péron, R. Sabariego, P. Dular et al., Asymptotic expansion for the magnetic potential in the eddy-current problem, 10th International Symposium on Electric and Magnetic Fields, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01393362

J. Poltz and K. Romanowski, Solution of quasi-stationary field problems by means of magnetic scalar potential, IEEE Transactions on Magnetics, vol.19, issue.6, pp.2425-2428, 1983.
DOI : 10.1109/TMAG.1983.1062878

J. R. Rice, Limitations to the small scale yielding approximation for crack tip plasticity, Journal of the Mechanics and Physics of Solids, vol.22, issue.1, pp.17-26, 1974.
DOI : 10.1016/0022-5096(74)90010-6

J. O. Robertsson, A numerical free-surface condition for elastic/viscoelastic finitedifference modeling in the presence of topography, Geophysics, issue.6, pp.611921-1934, 1996.

D. Rodger and N. Atkinson, Finite element method for 3D eddy current flow in thin conducting sheets, IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, vol.135, issue.6, pp.369-374, 1988.
DOI : 10.1049/ip-a-1.1988.0059

S. M. Rytov, Calcul du skin effect par la méthode des perturbations, Journal of Physics, vol.11, issue.3, pp.233-242, 1940.

K. Schmidt and A. Chernov, A Unified Analysis of Transmission Conditions for Thin Conducting Sheets in the Time-Harmonic Eddy Current Model, SIAM Journal on Applied Mathematics, vol.73, issue.6, pp.1980-2003, 2013.
DOI : 10.1137/120901398

K. Schmidt and A. Chernov, Robust Transmission Conditions of High Order for Thin Conducting Sheets in Two Dimensions, IEEE Transactions on Magnetics, vol.50, issue.2, pp.41-44, 2014.
DOI : 10.1109/TMAG.2013.2285437

K. Schmidt and R. Hiptmair, Asymptotic boundary element methods for thin conducting sheets, Discrete Contin. Dyn. Syst. Ser. S, vol.8, issue.3, pp.619-647, 2015.

K. Schmidt, O. Sterz, and R. Hiptmair, Estimating the Eddy-Current Modeling Error, IEEE Transactions on Magnetics, vol.44, issue.6, pp.686-689, 2008.
DOI : 10.1109/TMAG.2008.915834

S. Schneider, FE/FMBE coupling to model fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.27, issue.7, pp.2137-2156, 2008.
DOI : 10.1007/978-94-011-1866-8

J. L. Sebastián, S. Muñoz, M. Sancho, and J. M. Miranda, Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure, Physics in Medicine and Biology, vol.46, issue.1, pp.213-225, 2001.
DOI : 10.1088/0031-9155/46/1/315

T. Senior, Approximate boundary conditions, IEEE Transactions on Antennas and Propagation, vol.29, issue.5, pp.826-829, 1981.
DOI : 10.1109/TAP.1981.1142657

T. B. Senior and J. L. , Volakis, and Institution of Electrical Engineers. Approximate Boundary Conditions in Electromagnetics, IEE Electromagnetic Waves Series. Inst of Engineering & Technology, 1995.

S. Shannon, V. Péron, and Z. Yosibash, Singular asymptotic solution along an elliptical edge for the Laplace equation in 3-D, Engineering Fracture Mechanics, vol.134, pp.174-181, 2015.
DOI : 10.1016/j.engfracmech.2014.12.018

URL : https://hal.archives-ouvertes.fr/hal-01097676

S. Shannon, V. Péron, and Z. Yosibash, The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions, Mathematical Methods in the Applied Sciences, vol.123, issue.13, pp.394951-4963, 2016.
DOI : 10.1002/mma.2947

S. Shannon, Z. Yosibash, M. Dauge, and M. Costabel, Extracting generalized edge flux intensity functions with the quasidual function method along circular 3-D edges, International Journal of Fracture, vol.168, issue.5, pp.25-50, 2013.
DOI : 10.1007/s10704-010-9553-y

URL : https://hal.archives-ouvertes.fr/hal-00725928

J. D. Sherwood, Resistance coefficients for Stokes flow around a disk with a Navier slip condition, Physics of Fluids, vol.26, issue.9, p.93103, 2012.
DOI : 10.1063/1.868784

B. A. Szabó and Z. Yosibash, NUMERICAL ANALYSIS OF SINGULARITIES IN TWO DIMENSIONS. PART 2: COMPUTATION OF GENERALIZED FLUX/STRESS INTENSITY FACTORS, International Journal for Numerical Methods in Engineering, vol.15, issue.3, pp.409-434, 1996.
DOI : 10.1007/BF00044508

J. P. Tanzosh and H. A. Stone, Transverse motion of a disk through a rotating viscous fluid, Journal of Fluid Mechanics, vol.21, issue.-1, pp.295-324, 1995.
DOI : 10.1080/14786443608561607

J. Teissié, M. Golzio, and M. P. Rols, Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1724, issue.3, pp.270-280, 2005.
DOI : 10.1016/j.bbagen.2005.05.006

O. V. Tozoni and I. D. Mayergoyz, Analysis of three-dimensional electromagnetic fields, 1974.

C. J. Tranter, A FURTHER NOTE ON DUAL INTEGRAL EQUATIONS AND AN APPLICATION TO THE DIFFRACTION OF ELECTROMAGNETIC WAVES, The Quarterly Journal of Mechanics and Applied Mathematics, vol.7, issue.3, 1954.
DOI : 10.1093/qjmam/7.3.317

F. G. Tricomi, Integral equations, Pure and Applied Mathematics, 1957.

E. O. Tuck, Application and solution of Cauchy singular integral equations In Application and numerical solution of integral equations, of Monographs Textbooks Mech. Solids Fluids: Mech. Anal, pp.21-49, 1978.

&. Sijthoff and . Noordhoff, Alphen aan den Rijn, 1980.

T. Petersdorff and E. P. Stephan, Decompositions in Edge and Corner Singularities for the Solution of the Dirichlet Problem of the Laplacian in a Polyhedron, Mathematische Nachrichten, vol.11, issue.1, pp.71-103, 1990.
DOI : 10.1002/mana.19901490106

W. L. Wendland, On applications and the convergence of boundary integral methods, Treatment of integral equations by numerical methods, pp.463-476, 1982.

Z. Yosibash, N. Omer, M. Costabel, and M. Dauge, Edge Stress Intensity Functions in Polyhedral Domains and their Extraction by a Quasidual Function Method, International Journal of Fracture, vol.19, issue.3, pp.37-73, 2005.
DOI : 10.1007/BFb0086682

URL : https://hal.archives-ouvertes.fr/hal-00012184

Z. Yosibash, S. Shannon, M. Dauge, and M. Costabel, Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains, International Journal of Fracture, vol.136, issue.1???4, pp.31-52, 2011.
DOI : 10.1007/s10704-005-4245-8

URL : https://hal.archives-ouvertes.fr/hal-00490971

S. Yuferev, L. Proekt, and N. Ida, Surface impedance boundary conditions near corners and edges: rigorous consideration, IEEE Transactions on Magnetics, vol.37, issue.5, pp.3465-3468, 2001.
DOI : 10.1109/20.952638

W. Zhang and H. A. Stone, Oscillatory motions of circular disks and nearly spherical particles in viscous flows, Journal of Fluid Mechanics, vol.367, pp.329-358, 1998.
DOI : 10.1017/S0022112098001670

J. S. Ziebell and L. Farina, Water wave radiation by a submerged rough disc, Wave Motion, vol.49, issue.1, pp.34-49, 2012.
DOI : 10.1016/j.wavemoti.2011.07.001