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Abstract

One of the major issues related to electroencephalography (EEG) is to local-
ize where in the brain signals are generated, this is so called inverse problem
of source localization. The quality of the source localization depends on
the accuracy of the geometry and the electrical conductivity model used to
solve the problem. Among the head tissues, the skull conductivity is the one
that influences most the accuracy of the source localization, due to its low
conductivity value. Moreover, the human skull is a bony tissue consisting of
compact and spongy bone layers, whose thickness vary across the skull. As
the skull tissue composition has strong inter-individual variability both in
terms of geometry and of individual conductivity, conductivity estimation
techniques are required in order to determine the unknown skull conductiv-
ity. The aim of this thesis is to reduce the uncertainty on the skull conduc-
tivity both in spherical and realistic head geometries in order to increase the
quality of the inverse source localization problem. Therefore, conductivity
estimation is first performed on a 3-layered spherical head model. Existence,
uniqueness and stability of the conductivity in the intermediate skull layer
are discussed, together with a constructive recovery scheme. Then a simula-
tion study is performed comparing two realistic head models, a bulk model
where the skull is modelled as a single compartment and a detailed one
accounting for the compact and spongy bone layers, in order to determine
the importance of the internal skull structure for conductivity estimation in
EEG.
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General introduction

To better understand the human brain, neuroscientists have worked on var-
ious models, experiments, techniques, recording and imaging modalities to
reveal its structure and functionalities [72]. A fundamental problem in neu-
rosciences is to localize where is the electrical activity generated inside the
brain, what is the so called inverse problem of source estimation. The
inverse problem of source estimation aims at locating and estimating the
source of the electric activity of the functioning human brain, preferably
using non-invasive measurements, such as electroencephalography (EEG),
see [17,23,36,48,49,57].

EEG measures the effect of the electric activity of active brain regions
through values of the electric potential obtained by a set of electrodes placed
at the surface of the scalp [23] and serves for clinical (location of epilepsy
foci) and cognitive studies of the living human brain.

Before solving the inverse source problem, and for numerical simulation
purposes, one first solve the forward EEG problem, that is, given a source
distribution and a head model, what is the generated electrical potentials
at a set of electrodes located at the surface of the skull. The quality of the
forward solution, and the inverse solution, depends on the accuracy of the
volume conductor model used, i.e. the head model, reflecting the geometry
and the electrical conductivity values of the different head tissues [47].

Indeed, the human head consists of several tissues with some of the
most common tissues found in head models being: the scalp, the skull, the
cerebrospinal fluid (CSF), and the brain which is often divided into gray
and white matter.

A plethora of head models has been proposed to model the human head
and the various tissues within it. In general, the head models are divided in
two categories in terms of geometry. First, the spherical head models, where
the geometry of the human head is simplified to a sphere, while the different
head tissues are modelled as spherical layers [10, 23, 31, 36, 39, 57, 90]. The
second category consists in the realistic head models, where the tissues of
the head are described in greater detail [2, 15, 26, 65, 103], often extracted
from imaging modalities such as magnetic resonance imaging (MRI), while
less often using computed tomography (CT) scans [43] and combination of
the two [88].
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One of the biggest advantages of the spherical models, due to the sim-
plicity of the spherical geometry, is that an analytical solution can be com-
puted for the problem (mainly the forward), whereas a numerical solution
can be obtained based on the analytical solution with low computational
cost. In the realistic head models, different numerical approaches have to
be considered to solve the problem in the complex geometry, such as the
boundary element method (BEM) [22,46,77] and the finite element method
(FEM) [109]. Those solutions are in general more costly, compared to the
solutions obtained in the spherical domain. However, the solutions obtained
on spherical models might be less accurate compared to the ones on realistic
models, as it has been shown in [25,27], where the accuracy of the source lo-
calization is reduced with errors up to few centimetres (cm). Yet, a solution
to the first might be used as an initial solution for the later. For example,
estimating the quantity of sources from given EEG measurements, is not
a trivial task and one may solve the problem in a simplified spherical ge-
ometry [23] and then use the estimated quantities in a realistic head model
to accurately localize the sources. In addition, theoretical results such as
existence, uniqueness and stability of a solution in the spherical case may
be obtained and used as proofs of concept for solutions obtained in the real-
istic models. Thus, even though the two modelling types are quite different
in terms of geometry, both appear to be important in solving the different
aspects of the problem in EEG.

The inverse source localization problem in EEG is influenced by the elec-
tric conductivities of the several head tissues and especially by the conduc-
tivity of the skull due to its low value [100]. In addition, the human skull is
a bony tissue consisting of compact and spongy bone compartments, whose
distribution and density vary across individuals, and according to age, since
humidity of tissues, and therefore their conductivity tends to decrease [78].

Therefore conductivity estimation techniques are required to minimize
the uncertainty in source reconstruction due to the skull conductivity. Typ-
ically, an inverse conductivity estimation problem aims at determining an
unknown conductivity value inside a domain Ω from measurements acquired
on the boundary ∂Ω. In the EEG case, the measurements can be modelled
as pointwise values obtained on a portion of the boundary ∂Ω, the measured
potentials at a number of EEG electrodes (between 2 and 512 in modern
EEG protocols) at the upper part of the scalp.

However, nowadays there are still many applications where the conduc-
tivity of the skull is described by a given fixed value for the whole tissue.

Measurements of conductivity performed on extracted skull flaps from
patients under intra-cranial surgery, showed that depending the local skull
structure and the proportion of compact and spongy bone in the sample,
a significant variation in the measured conductivity values is observed [95].
This indicates the necessity for more accurate head models both in the skull
tissue geometry and electrical conductivity.
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The aim of this thesis is to minimize the uncertainty of the skull conduc-
tivity and investigate the importance of skull inhomogeneity for conductivity
estimation, in order to improve the accuracy of the inverse source localiza-
tion problem. The inverse conductivity estimation problem is first studied
deriving analytical formulas for a spherical head geometry where the skull
was modelled as a single and homogeneous layer. Existence, uniqueness and
stability of the solution are discussed, together with a reconstruction algo-
rithm for the skull conductivity (Part I). Derivation of analytical formulas
while considering an inhomogeneous skull, for instance assuming that the
skull itself is made of concentric layers, seems too simplistic. Therefore, we
then investigate the importance of skull inhomogeneity for conductivity es-
timation considering realistic head models. We perform a simulation study
that compares two realistic head models: the first modelling the skull as a
single and homogeneous layer, the second modelling its inhomogeneity by
accounting for compacta and spongiosa. Other aspects under consideration
are the selection of the proper skull tissue and the influence of different skull
templates on conductivity estimation (Part II).

Due to its rather general formulation, this work could be extended to
other geometries and unknown tissue conductivities. The inverse conductiv-
ity estimation problem could also be considered from other modalities (mag-
netoencephalography, MEG, or Electrical Impedance Tomography, EIT).



Contributions and structure of the thesis

The work of this thesis was performed within APICS and Athena project
teams at Research Center Inria Sophia Antipolis - Méditerranée, France, in
collaboration with BESA GmbH, Gräfelfing, Germany, and with Institut de
Neurosciences des Systèmes (INSERM), Aix Marseille University, France.
It was supported by the Région Provence-Alpes-Côte d’Azur, France, and
BESA GmbH.

Contributions

This thesis deals with two different approaches of the inverse skull conduc-
tivity estimation problem in EEG.

• In the first we consider the estimation problem in a spherical 3-layered
head geometry where the skull is modelled as a single homogeneous
layer. Existence, uniqueness and stability of the solution are estab-
lished, together with a reconstruction algorithm for the skull conduc-
tivity. The behaviour and the robustness of our algorithm is investi-
gated over various configurations, with respect to errors either to the
EEG measurements or on the source term (Part I).

• In the second, we investigate the importance of the skull inhomogene-
ity for conductivity estimation considering realistic head models. We
perform a simulation study that compares two realistic head models:
the first modelling the skull as a single and homogeneous layer, the
second modelling its inhomogeneity by accounting for compacta and
spongiosa compartments. Other aspects under consideration are the
selection of the proper skull tissue and the influence of different skull
templates on the conductivity estimation (Part II).

Outline

The content of this thesis is structured in an introductory part (chapter 1),
the first main part (Part I, chapters 2 and 3 followed by a conclusion), the
second main part (Part II, chapter 4) and the final part (chapter 5).
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Chapter 1 gives an introduction to head modelling. First, some funda-
mental concepts in EEG are explained. The structure of the human head is
discussed along with several head models encountered in the literature. A
physical model derived from the Maxwell equations under the quasi-static
approximation is introduced to model the electromagnetic fields generated
by currents within the human brain. In addition, various forward and in-
verse problems in EEG are presented. Finally, the influence of the various
head tissues, their segmentation and their conductivities is discussed for the
numerous head models encountered in the literature.

In Part I, Chapter 2, the inverse conductivity estimation problem is
considered in a spherical head geometry. Existence, uniqueness and stability
of the solution are discussed, together with a constructive scheme for the
inverse skull conductivity estimation problem.

Then, in Chapter 3, a reconstruction algorithm for the inverse skull con-
ductivity estimation problem in EEG is provided. A numerical analysis
is then performed using simulated EEG data. The behaviour and the ro-
bustness of our algorithm with respect to errors on the measurements or
the source term is investigated. Agreement of the conductivity estimation
results with the theoretical stability properties of the problem is discussed.

In Part II, Chapter 4, the importance of skull inhomogeneity for con-
ductivity estimation is considered in realistic head models. A simulation
study is performed that compares two realistic head models: the first mod-
elling the skull as a single and homogeneous layer, the second modelling its
inhomogeneity by accounting for two different types of skull tissues (com-
pacta and spongiosa). Other aspects under consideration are the selection
of the proper skull tissue and the influence of different skull templates on
conductivity estimation.

Finally, in Chapter 5, a general discussion and a conclusion are given.
The practical aspects of conductivity estimation are discussed, while we
suggest ways to improve the inverse conductivity estimation results both for
spherical and realistic head models.



Notations

E electric field
B magnetic field
u electric potential
σ conductivity
J current density

JP cerebral current density (sources)
S general source term
pq source moment

Cq source location
Q number of sources
Ω domain
∂Ω interface
S sphere
n outwards unit normal vector

T, T transfer and transmission matrices and operators
r radius of sphere
θ inclination
φ azimuth
x location ∈ R3

r location ∈ Ω ⊂ R3

g continuous potential at the boundary ∂Ω
gi pointwise values of the potential g
gkm spherical harmonics coefficients of the potential values g
g̃k normalized spherical harmonics coefficients from gkm
β0km spherical harmonics coefficients of the source term

β̃0k normalized spherical harmonics coefficients from β0km

where symbols in bold represent vector valued quantities, unless other-
wise indicated.
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CHAPTER 1

Head modelling

This chapter gives an introduction to head modelling. First, some fun-
damental concepts in EEG are explained. The structure of the human
head is discussed along with several head models encountered in the
literature. A physical model derived from the Maxwell equations under
the quasi-static approximation is introduced to model the electromag-
netic fields generated by currents within the human brain. In addition,
various forward and inverse problems in EEG are presented. Finally,
the influence of the various head tissues, their segmentation and their
conductivities is discussed for the numerous head models encountered
in the literature.

Electroencephalography (EEG) measures passively and non-invasively
the electrical activity of the functioning brain by recording electric poten-
tials at the surface of the scalp [78]. The electrical activity of the brain
is generated by displacement of charges of billions of synchronously active
cells, called neurons, that exist within it and produce current that spreads
in the whole head volume conductor. The generated potentials are captured
by a set of electrodes/sensors (between 2 and 512) that are placed on the
scalp using a EEG cap, leading to the obtained scalp EEG measurements,
see Figure 1.1.

The sets of synchronously active neurons generating the electric poten-
tials, recorded by EEG measures, are called generators or sources. It is
believed that most of the signals detected by EEG are generated by pyra-
midal neurons in the cortex, due to their local parallel distribution and
orientation which is pointing perpendicular to the local cortical surface [16].

Similarly to EEG, magnetoencephalography (MEG) [30, Ch. 4] measures
the normal component of the magnetic field produced by electrical currents
within the brain (the same sources generating the EEG measurements),
using sensitive magnetometers placed above the surface of the scalp.

The electrical activity generated within an active area of the brain can

17



18 CHAPTER 1. HEAD MODELLING

Figure 1.1: Recorded electrical potentials by a set of electrodes at the surface
of the scalp. [Left] The measured EEG potentials at electrodes along the
time. [Right] Electrodes locations on the scalp.

be “approximated” by an equivalent pointwise current dipole, located at
the center of the active area [16, 34], as illustrated in Figure 1.2. As mul-
tiple brain areas can be active at the same time, one can also use multiple
dipoles to approximate the measured potentials [76]. More sophisticated
multipolar (see for example [56]) or distributed sources (see the discussion
in [72, Sec. 3.2]) models are also proposed to model the brain’s electrical
activity. We refer to [78] for more details on how the electric fields and
potentials recorded by EEG are generated in the brain.

Figure 1.2: A pointwise current dipole is placed within the brain to model
the electrical activity of a small active brain patch.

One of the major issues related to EEG (or MEG) is to localize where
in the brain signals are generated. The solution to this so called inverse
source localization problem in EEG, depends on the mathematical algorithm
chosen [47], as well as on the choice of the head volume conductor model
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(in short, the head model), which reflects the geometry and the electrical
conductivity values of the different head tissues.

Tissues within the human head

Skull

Scalp

Cerebrospinal

        uid
Brain

Figure 1.3: Head tissues commonly found in head models.

The human head is an inhomogeneous medium that consists of several
types of tissue, including muscle, fat, bones, fluids, and air cavities. Al-
though the human skull is anatomically quite complicated, an approximation
of the human head is usually considered in head modelling, distinguishing
only a few tissue types. Some of the most commonly considered tissues in
head models are: the scalp, the skull, the cerebrospinal fluid (CSF), and the
brain (see Figure 1.3) which is often separated into gray and white matter.

As the electrical activity generated in the brain spreads within the head
volume conductor, it has to pass through the different head tissues to reach
the EEG sensors. Based on the tissue composition (bone, fluid, muscle
or fat), each is characterized by a different electrical conductivity. The
measurements recorded by EEG, are affected by the electrical conductivities
of the different tissues existing within the head. Various studies have been
performed to determine the dielectric properties of the various head tissues
by measuring samples (in vivo and in vitro) over a range of injected current
frequencies (see for example [41,42]).

Among the head tissues, the skull is the one that influences most the
EEG source localization because of its low conductivity [100] compared to
the other head tissues which are far more conductive. A brain to skull
conductivity ratio as high as 80 has been considered in the past in head
modelling, while more recently there are suggestions that this ratio is closer
to 15 [79]. Measurements of skull samples extracted from different skull
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areas show that the skull is inhomogeneous with the local skull conductivity
depending on the structure and bone composition variations [3].

CompactaSpongiosa

Skull

Figure 1.4: The layered structure of the skull consisting of compact (com-
pacta) and spongy (spongiosa) bone layers.

Indeed, the skull is a bony tissue consisting of two layers of compact
bone (compacta) separated by a layer of spongy bone (spongiosa), whose
thickness vary across the skull. While compacta is present everywhere across
the skull (apart from the suture lines, i.e. a type of joint between the bones
of the skull, see [37, Sec. 59 and 60]), spongiosa may not be always present,
as illustrated in Figure 1.4. As skull conductivity is mostly due to fluids
existing within the bones, the spongy bone, which contains more space for
fluids, is expected to be more conductive comparing to the compact bone.
As shown in [3, 28] the conductivity value of the spongiosa compared to
compacta may differ substantially, by a factor of 4.5 within an individual.
Further investigations in [95] show that the amount of spongiosa present
within a sample plays an important role on the measured skull conductivity
value, while the presence of suture lines (a type of joint by fibrous tissue)
can significantly increase the skull conductivity.

Figure 1.5: Cranial suture: A type of joint between the bones of the skull
where the bones are held tightly together by fibrous tissue.

As the skull tissue composition has strong inter-individual variability
both in terms of tissue geometry and of individual tissue conductivity, a
fixed conductivity value for the skull can not be set in advance and describe
any individual. Although the skull conductivity shows important variability
in terms of measured conductivities, this is not necessarily the case for the
other head tissues. In [18] the conductivity of a number of CSF samples
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was measured and concluded to be 1.79S/m as there was minor variability
across the measured samples.

When measuring the conductivity of extracted samples, important is the
dependence of the measured values on the frequency of the injected current
and the condition of the sample (storage conditions or temperature during
the measurement) [42,95].

Physical modelling

Maxwell’s equations

The electromagnetic fields and currents generated within the human brain,
obey the Maxwell partial differential equations:

∇ ·E =
ρ

ε
, (1.1)

∇×E = −∂B

∂t
,

∇ ·B = 0 , and

∇×B = µ0(J + ε
∂E

∂t
) (1.2)

which basically relate the electric field E (µV/mm), with the magnetic
field B (fT ) and the current density J (µA/mm2). We denote with ρ
the charge density, ε the electrical permittivity of the medium and µ the
magnetic permeability. We refer to [83] for more information on the Maxwell
equations and the units used.

An equation that is implied by the Maxwell’s equations (1.1) and (1.2)
is the conservation of charges formula, that relates the current density with
the charge density:

∇ · J =
∂ρ

∂t
.

Quasi-static approximation

For EEG and MEG modelling, the spatial scale (size of the human head),
the recording frequencies, and the medium properties make it possible to
neglect the inductive, capacitive and displacement effects, and to effectively
omit the time-derivatives [38, App. A] in the above time-varying general
setting, leading to the following simplified equations:

∇×E = 0 and ∇ · J = 0 .
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From the first one, we deduce that:

E = −∇u (1.3)

where u (V ) is the electric potential, a scalar quantity. Separating the
current density J into the ohmic current σE and the source current (also
called primary current) JP leads to:

J = σE + JP (1.4)

where σ (1/(Ωmm) or S/mm) is the electrical conductivity of the medium.
The addition of the primary current JP term is physiologically meaningful,
as the brain is not a passive medium, but is subject to an electrical activity
reflected by the electrically active brain regions. Estimating the primary
current distribution is one of the main goals in EEG and MEG.

Conductivity equation

Using equations (1.4) and (1.3), under the quasi-static approximation:

J = σE + JP

J = −σ∇u+ JP

∇ · J = −∇ · (σ∇u) +∇ · JP
as ∇ · J = 0

∇ · (σ∇u) = ∇ · JP

leads to our general model for the electric potential u in terms of conductivity
equation with source term in divergence form:

∇ ·
(
σ(r)∇u(r)

)
= ∇ · JP (r) in Ω ⊂ R3 (1.5)

where σ(r) ∈ R is the real valued conductivity of the medium at location r.
As discussed earlier, the human head is an inhomogeneous medium, due

to the various tissue existing within it. The value of the medium conductivity
σ(r) when considering the domain Ω ⊂ R3 of the head changes depending
on the tissue at location r.

Piecewise constant conductivity models

To model the inhomogeneity of the human head, a domain Ω ⊂ R3 composed
of a number of tissues i = 0, . . . , N represented as a set of nested regions
Ωi ⊂ Ω can be considered. There the conductivity of each region Ωi can
be considered constant (homogeneous within regions) and be described by a
real value (isotropic assumption). Assuming also that the innermost region
Ω0 represents the brain and that sources can only exist within the brain,
equation (1.5) becomes:
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∇ · (σi∇u) = ∇ · JP
∇σi · ∇u+ σi∆u = ∇ · JP
as ∇σi = 0

σi∆u = ∇ · JP in Ω0

while the right hand side of the equation is zero for the other regions
Ωi, i > 0.

The conductivity of a region can also be modelled as anisotropic (differ-
ent conductivity value for different directions). In this case conductivity is
a tensor (or matrix).

In practice, the value of the conductivity at each location is given by the
head model, which approximates the various tissues geometry.

Geometry of head models

A plethora of head models has been proposed to model the human head and
approximate the various tissues within it. In general, the head models are
divided in two categories in terms of geometry.

Figure 1.6: Head models. [Left] 3-layered concentric spheres model. [Right]
4-layered realistic model.

First, spherical head models were proposed, where the geometry of the
human head is simplified to a ball, while the different head tissues are mod-
elled as homogeneous spherical layers [10,23,36,57,90]. When approximating
the head with spheres, a 3-layer concentric model is most often used, where
the brain is modelled as a homogeneous ball surrounded by two spherical
shells, representing the skull and the scalp tissues, respectively. The size
of the outer most sphere can either be fixed (unit sphere) [23] or chosen
such that it matches the measured diameter of the human head [90]. Al-
ternatively, when a set of points that describe the surface of an individual’s
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scalp are given, the size of the outer most sphere can be fitted to those
points, solving a least square problem. This is the case in [92], where the
surface of the scalp is extracted from magnetic resonance images (MRI), and
used to fit the size of the outer most sphere, while the points that are not
on the fitted sphere, are projected on it using a scaling factor. Similarly,
in the tool called CARTOOL [19] different sets of 3-layer spherical mod-
els are considered, to take into account the non-spherical head geometry
at the electrode locations, in an attempt to improve the source localization
accuracy of the 3-layer spherical model. Multiple sphere models are also
considered in MEG [64]. Considering other geometries, in [67] an elliptic
head approximation is investigated to solve the source localization problem
whereas in [30, Ch. 4] both the EEG and MEG case is considered in an
ellipsoidal geometry.

The second category consists in realistic head models [2, 15, 26, 65, 103],
where the tissues of the head are described in greater detail, often extracted
from imaging modalities such as MRI, while less often using computed to-
mography (CT) scans [43] or by other means like in [111] where images
of slices of the human head were used. Combinations of different imaging
modalities has also been investigated to capture as accurately as possible
the geometry of the head. For example in [88] the authors used MRI and
CT data to improve the accuracy of the head model in the skull geometry.
The choice of the imaging modality to extract the various head tissues will
be discussed later on in Section 1.5.

Usually when appropriate data are available, for the subject of interest,
an individual head model can be constructed segmenting the different tissues
from the available data. Conversely, when individual data are not available,
a realistic approximation can be used, usually constructed by registering
data of different individuals into the same space and then averaging them
to produce an average realistic head model [99] also known as template or
atlas [29]. Such models can also be used to perform group statistics, where
the head geometry of several individuals should be in a common space to be
comparable [89]. Age appropriate atlases have also been proposed to account
for morphological changes of the head over time and especially during the
early stages of growth in children [40,91]. Due to the imperfect anatomical
correspondence among the individuals, the created head model might cause
errors in the source localization as discussed in [99]. Averaging of several
MRI aquisitions of the same individual is also proposed in [52], producing
a template know as “Colin 27 Average Brain1”. Spherical and realistic
head models (including individual and age appropriate heads for childes
and adults) can be found in the BESA software2 (BESA GmbH, Gräfelfing,
Germany).

1http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
2https://www.besa.de/products/besa-research/features/head-model-selection/
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Forward and inverse problems in EEG

As discussed at the beginning of this chapter, one of the most important
problems in EEG, is to localize where is the electrical activity generated
inside the brain. Before solving the source localization problem, and for
numerical simulation purposes, one first must solve the forward problem in
EEG.

• The forward problem in EEG is: given a source distribution and a head
model, what is the generated electrical potentials at a set of electrodes
located at the surface of the scalp, as illustrated in Figure 1.7. In
other words, given the primary current JP (r) located within the brain
at location r, the domain of the head Ω (the geometry of the various
tissues) and the medium conductivity σ(r) at each location, compute
the generated potential u(r) at the boundary r ∈ ∂Ω.

+ σcompacta

σspongiosa
σbrain

σscalp

σCSF +
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Source
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Figure 1.7: The forward problem in EEG: given the geometry of the
head (and the various tissues within it), the conductivity of the tissues
and the parameters of the sources, compute the electric potential at a
set of electrodes located at the surface of the scalp.

On the other hand, several inverse problems can be considered in EEG
depending on the information to be recovered.

• The inverse source estimation problem, where given measurements of
the potential u at some points on the boundary ∂Ω and the medium
conductivity σ, the aim is to estimate the primary current JP that
explains the measured potentials. Variations of this problem may con-
sider given measurements on a part of the boundary Γ ∈ ∂Ω or mea-
surements at the whole boundary ∂Ω and the recovery of unknown
information about the sources (number of sources, location, orienta-
tion and moment strength).
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Figure 1.8: The inverse problem of source estimation in EEG: given
the electric potential at the surface of the scalp, the geometry of the
head and the conductivity of the tissues, estimate some parameters of
the sources.

• The inverse conductivity estimation problem, which aims at determin-
ing an unknown conductivity value inside a domain Ω from measure-
ments acquired on the boundary ∂Ω while the geometry of the head
and the source parameters are given. Solving the conductivity estima-
tion problem one may consider some tissue conductivities to be known
while estimating the unknown one or ones (for example estimating a
ratio of two conductivities).
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Figure 1.9: The inverse conductivity estimation problem in EEG: given
the electric potential at the surface of the scalp, the geometry of the
head and the parameters of the sources, recover information about the
tissues conductivities.

Simultaneous source and conductivity estimation has also been studied
in [1, 68], combining the two inverse problems.

Forward problem solutions

When the geometry of the head is simple enough to be expressed in an
analytical form, such as the layered spherical head geometries, an analytical
solution can be constructed for the forward problem. A numerical solution
can be obtained from the analytical solution with low computational cost.
In more complex head geometries, such as the realistic head models which
capture the head geometry in greater detail, numerical approaches have to
be considered to solve the forward problem. Those solutions are in general
computational costly, compared to the solutions obtained in the spherical
domain.

Both in the spherical and the realistic head geometries, the obtained
solutions (analytic or numerical), practically solve equation (1.5).

The methods used to solve the forward problem in the realistic geome-
tries are the boundary element method (BEM) [22, 46, 77] and the finite
element method (FEM) [20,109]. A prerequisite for both methods is a mesh
of the head, i.e. a discretization of the head volume and its tissues into
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elements. The head geometry and the various tissues within it can be ex-
tracted by segmenting MRI or other imaging data (as already discussed in
Section 1.3), while the segmented images distinguishing the various tissues
can be used to create the required mesh.

Solving the EEG forward problem for the discretized head volume with
known conductivities for its tissue, a lead field matrix can be computed,
that represents the linear relation between the amplitudes of dipolar sources
within the brain and electrode measurements on the scalp [109]. The di-
mension of a lead field matrix is (nelectrodes × 3 ∗ nnodes) where nelectrodes
is the number of electrodes and 3 ∗ nnodes corresponds to the 3 canonical
orientations at nnodes fixed dipole locations, i.e. the nodes of the mesh
assigned to the brain tissue. An implementation of BEM can be found in
OpenMEEG [46] whereas an implementation of FEM in BESA MRI3 (BESA
GmbH, Gräfelfing, Germany).

Inverse problem solutions

In contrast to the forward problem, the inverse problems in EEG are far
more difficult and in general not well posed4. This is especially true for the
inverse source estimation problem. The solution of the source estimation
problem is not unique, as more that one source distributions may explain
the same measured potentials, while measurement errors due to high lev-
els of noise (compared to the power of the obtained signals) can make the
solution unstable. To solve the ill-posed problem (as a problem is called
when it is not well posed), apart from the head model, a source model is re-
quired along with constrains over the source distribution. A detailed review
of some recent source localization techniques and the constrains each uses
can be found in [72] and the references therein, while a few more different
approaches can be found in [23,35,72].

Finally, to solve the inverse source localization problem in EEG, one
usually has to compute a number of forward solutions, which can be obtained
fast, having already computed once a lead field matrix.

Influence of head tissues and models

As discussed earlier in this chapter, the head is anatomically complicated
and inhomogeneous both in terms of tissue geometry and tissue conductivity.
While several head models have been proposed to approximate the human
head (spherical or realistic) with various numbers of included tissues, the

3http://www.besa.de/products/besa-mri/besa-mri-overview
4A mathematical problem is called well posed, when a solution exist, the solution is

unique and the solution is stable i.e. the solution changes continuously with variations of
the initial conditions.
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influence of each tissue geometry and conductivity to the problem’s solution
(forward or inverse) has to be investigated separately.

For several years, 3-layer spherical models have been used to construct
analytical solutions both for the forward and the inverse problems in EEG.
Numerical solutions obtained on the spherical models were often compared
to numerical solutions obtained on realistic head models for validation pur-
poses, see for example [46,70]. Due to the unrealistic geometry of the spher-
ical models and the modelling of the tissues as spherical layers (which is too
simplistic to capture the internal inhomogeneity of some head tissues and
especial of the skull), realistic head models are used which are proven to be
more accurate, especially in source localization.

In [105] the authors investigated the influence of different tissue com-
partments on the signal topography and signal magnitude, by incrementally
introducing tissue layers to a 3-layer realistic head model. They concluded
that including the highly conductive CSF layer significantly reduced the
measured errors while distinguishing between gray and white matter is also
important. Their findings also suggest that white matter anisotropy and dis-
tinguishing between the skull compacta and spongiosa did not significantly
improve the results with spongiosa having the smallest influence among the
included tissue layers. But, their models were not used to solve the in-
verse source localization problem and assess on the influence of the different
tissues simplifications.

In contrast, in [86] the authors investigated the influence of different head
models on scalp potentials and on the inverse source localization problem,
performing a simulation study based on dipolar sources in the motor cortex.
They considered a highly heterogeneous head model accounting for eleven
head tissues (scalp, skull compacta and spongiosa, CSF, gray and white
matter and other soft tissues) and compared it to simplified versions of
it. Their study suggests that the CSF tissue should be included in head
models, as it plays an important role, which is in agreement with [105]. In
contrast to [105], their findings suggest that distinction between gray and
white matter is not that important, as the obtained localization errors in the
simplified model were quite low. The influence of the skull inhomogeneity
(distinction between compacta and spongiosa) was investigated at the same
time with other tissues (fat and muscle) and thus was not clear from their
results.

From the above and as the electrical conductivity of the CSF has already
been determined and showed minor variability across the measured samples
[18] it is concluded that it should be considered in head modelling. However,
segmentation of the CSF layer from MRI data, is difficult, as in the most
common MRI sequences (T1 and T2 weighted sequences) a clear boundary
between the skull and the CSF is not visible as illustrated in Figures 1.11
and 1.12.

In CT scans (see Figure 1.10) the skull tissue is more visible than in
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MRI, but due to the exposure of the patient to radiation, the use of CT is
limited. In contrast, MRI only exposes the patient to a static magnetic field
and is widely used with numerous sequences targeting different tissues. The
MRI sequences that are often used in head modelling are the T1- and T2-
weighted sequences (see Figures 1.11 and 1.12 respectively), but extracting
the skull tissue from those sequences is in general difficult. A recent MRI
sequence has been proposed in [106] that aims in better imaging the skull
bone compared to the usual sequences.

Figure 1.10: Sagittal, coronal and transverse slices of CT data.

Figure 1.11: Sagittal, coronal and transverse slices of T1-weighted MRI data.

Figure 1.12: Sagittal, coronal and transverse slices of T2-weighted MRI data.

In [73] the influence of skull segmentation and modelling was investi-
gated comparing a realistic head model that accounts for the internal skull
structure (compacta and spongiosa) with various other head models. The
reference model was constructed by improving the skull segmentation ob-
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tained from MRI data with the skull geometry extracted from CT data. The
generated head model was used to localize dipoles and its performance was
compared to the model using the segmentation only from the MRI data,
various skull simplifications, and models where anisotropy was considered.
Their results showed that their isotropic heterogeneous skull model led to
the lower localization errors. Their results also indicate that segmentation
only based on MRI, introduced geometry errors that led to an increase in
the average localization errors.

The influence of skull segmentation inaccuracies was also investigated
in [65] compared to a reference model constructed from T1- and T2-weighted
MRI data. Their results show that a simplification of the skull tissue to a
single layer of constant thickness leads to significant (forward and inverse
problem) errors, while limiting the head model directly below the skull (dis-
carding any volume below) also leads to significant errors.

In the above studies [65,73,86,105], the conductivities of the tissues were
fixed and the influence of the tissue geometry was investigated. Their results
indicate the importance of the various tissues with respect to the selected
conductivity values, however different results might be obtained selecting
different conductivity values, see for example [2] where modelling the skull
as a single compartment and assuming a different brain to skull conductivity
ratio (80 instead of 25 in their reference model) the observed localization
errors were up to 31mm.

To better understand the influence of the various head tissues on the
forward solution the authors in [101] considered a 3-layer realistic model,
accounting for the scalp, skull (single layer) and brain tissues, and varied
the conductivity values of all the tissues together. In their investigation,
they also considered the skull to be anisotropic. Their global sensitivity
analysis concluded that the ratio between the scalp and skull conductivities
was the most influential, especially for shallow dipoles. Their anisotropy
investigation showed that the effect of the skull conductivity comes from its
radial component, while the tangential one had almost no effect.

In [84] the influence of skull conductivity misspecification is investigated,
modelling the skull as a single layer and varying its conductivity in a wide
range of values. They concluded that for an error of 20% in the skull conduc-
tivity the localization errors were acceptable (on average 3mm). However,
that investigation did not consider the internal skull structure (compacta
and spongiosa). A second investigation (included in the same study) points
out that the internal structure of the skull should be considered when mod-
elling the human head.

In [28] individual head models that account for the layered skull structure
were constructed by segmenting T1- and T2-weighted MRI data. Errors in
the forward computations and the inverse dipole localization were measured
while assuming the skull to be heterogeneous (layered structure with com-
pacta and spongiosa), homogeneous (single layer) and anisotropic, while a
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range of conductivity values and various proportions of spongiosa within the
skull was also considered. The obtained results suggest that accounting for
the layered structure of the skull is important, whereas assuming isotropic
or anisotropic skull conductivity had little influence.

The influence of the tissue conductivities is also investigated using MEG
measurements [50,103,108,109].

Other sources of modelling errors may also affect the accuracy of the
inverse solution. For example the location of the sensors on the scalp [2],
the number of sensors [62] or even the position of the patient during the
MRI acquisition and the EEG recording [87].

To conclude, both accurate tissue segmentation and conductivity values
should be considered while modelling the human head. Among the various
head tissues the skull has the strongest influence on the source localization
results, due to its low conductivity and inhomogeneity. Therefore, conduc-
tivity estimation techniques are required to minimize the uncertainty of the
unknown tissue conductivities. Apart from the mainly considered head tis-
sues (scalp, skull and brain), CSF and the internal structure of the skull
should also be considered in head models.

While realistic head models are able to capture better the complicated
head geometry, in spherical models, analytical solutions can be obtained
that can be used to validate the methods developed for the realistic head
models.



PART I

Conductivity estimation in a
spherical geometry
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CHAPTER 2

Spherical models

In the previous chapter we discussed about the conductivity Poisson
equation, that relates the electric potential to the source term through
the conductivity of the medium.

In this chapter we will use the conductivity Poisson equation to solve
the inverse conductivity problem in a bounded spherical domain that
approximates the human head geometry.

Our goal here is to establish uniqueness and a constructive scheme
for the inverse skull conductivity estimation problem using partial bound-
ary EEG data, in the preliminary case of a homogeneous skull conduc-
tivity. The stability of the inverse problem is also considered.

The results of this chapter are published in [24].

Introduction to spherical models

We study an inverse conductivity recovery problem in the particular case of a
spherical 3D domain Ω (a ball in R3) and for piecewise constant conductivity
functions, of which one value is unknown. More precisely, we assume Ω to
be made of 3 nested spherical layers, whose conductivity values are known
in the innermost and outermost layers. We assume that the elliptic partial
differential conductivity equation (conductivity PDE) holds with a given
source term in divergence form supported in the innermost layer.

Provided a single measurement as a pair of Cauchy data on the bound-
ary (open subset of the sphere ∂Ω), we establish uniqueness and stability
properties together with a reconstruction algorithm for the intermediate
conductivity [24].

We will also perform some analysis in order to investigate robustness
of the reconstruction with respect to available measurements and sources
information.

33
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We face a very specific version of the many inverse conductivity issues
for second order elliptic PDE under study nowadays. This one is related to
piecewise constant conductivities in a spherical geometry in R3, and set from
a single (Cauchy pair of partial) boundary measurement. Similar inverse
conductivity recovery problems may be formulated in more general (Lips-
chitz smooth) domains of arbitrary dimension, with more general conductiv-
ities. They are often considered from (several or) infinitely many boundary
measurements (pairs of Cauchy data, related Dirichlet-to-Neumann opera-
tor), and are called after Calderón [60], or after medical imaging processes
EIT (Electrical Impedance Tomography). Uniqueness and stability issues
for conductivity recovery are deeply discussed in [4–6,8, 32,39,53,60,97].

More general inverse problems for elliptic PDEs, in particular trans-
mission issues, are discussed in [54, 61, 85]. Stability properties of Cauchy
boundary value problems are described in [7] (see also references therein).

Typically, inverse conductivity recovery problems aim at determining an
unknown conductivity value inside a domain Ω from measurements acquired
on the boundary ∂Ω. To solve the inverse conductivity recovery problems,
we will assume that the potential u is given on an open subset Γ of ∂Ω:
u∣∣

Γ

= g, where g represents the given boundary data.

In practice (for example using EEG measurements) one usually has at his
disposal pointwise values to solve the inverse problem (the measurements at
a number of sensors). Estimating the continuous potential from the point-
wise values, is not a trivial task and we will discuss this problem and its
solutions in Chapter 3.

In general, the electrical potential u is solution to:

∇ ·
(
σ∇u

)
= S in R3 , (2.1)

where σ is the unknown conductivity and S is a source term. The nec-
essary assumptions for the above formula to make sense and its derivation
from the Maxwell equations is already discussed in Chapter 1, Section 1.2.

In addition, the current flux σ∂nu = 0 is assumed to vanish on ∂Ω assum-
ing that no current flux is present outside the domain Ω, as the conductivity
of the air at R3 \ Ω surrounding the domain Ω is considered to be zero:

σ∣∣
R3\Ω

= 0 .

In this setting we face the overdetermined boundary value problem being
given u on Γ, recover the unknown value of σ in some part of Ω:{

∇ · (σ∇u) = S in Ω
σ∇u · n = 0 in ∂Ω .

(2.2)

Here and in the next chapter we will also investigate questions as: the
existence of the skull conductivity for known sources inside the brain (the
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solution may not exist); the uniqueness of the recovered value (there could
be more than one conductivity value that explain the measured data); the
stability of this reconstruction (the recovered conductivity value may change
dramatically with slight changes in the measured data), and how to create
constructive procedures that are robust (the proposed algorithm might in-
troduce numerical errors to the solution for example due to the accuracy of
the computations).

Quite frequently, for piecewise constant conductivities, the sub-domain
(supporting the unknown conductivity value) is also to be determined, in
some cases this is even more important than the constant conductivity
value itself (for example for tumor detection, see [9, Ch. 3] and references
therein, [58, 59]). But in the case of EEG, the sub-domains containing the
various tissues can be considered known, because they can be extracted from
Magnetic Resonance Images (MRI). And for simplicity, we only consider the
inverse skull conductivity estimation problem in a three-layer spherical head
geometry, using partial boundary EEG data. The dipolar sources positions
and moments will be considered to be known. This may appear to be an un-
realistic assumption because source reconstruction is itself a difficult inverse
problem. But in fact, in some situations there are prior assumptions as to
the positions of the sources (in primary evoked electrical potentials), and the
position of a source also constrains its orientation, because to the laminar or-
ganization of pyramidal neurons in the grey matter. The source locations, for
example, can be fixed in somatosensory evoked potentials (SEP) and fields
(SEF) measurements by the SEF localisations, which might be considered
mm-accurate and mainly independent of skull conductivity, see [15,110].

Layered geometry and conductivity model

We consider the inverse conductivity estimation problem in a spherical do-
main Ω ⊂ R3 made of 3 concentric spherical layers (centered at 0), a ball
Ω0, and 2 consecutive surrounding spherical shells Ω1, Ω2. Their respective
boundaries are the spheres denoted as S0, S1, and S2, with Si of radius ri
such that 0 < r0 < r1 < r2. We also put Ω3 = R3 \ Ω = R3 \ (Ω ∪ S2).

For i = 0, 1, 2, we assume that σ is a real valued piecewise constant
conductivity coefficient with values σi > 0 in Ωi. Let also σ3 = 0.

Note that in the present work, the values σi of the conductivity in Ωi for
i 6= 1 outermost layers Ω0, Ω2 are assumed to be known.

In the EEG framework and for spherical three-layer head models, the
domains Ωi respectively represent the brain, the skull and the scalp tissues
for i = 0, 1, 2, as shown in Figure 2.1, see [48, 49]. There, under isotropic
assumption, it holds that 0 < σ1 < σ0 ' σ2.

Throughout the present work, the geometry Ω and the conductivity σ
will be assumed to satisfy the above assumptions. More general situations
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Figure 2.1: Spherical head model, with one source Cq, pq.

are discussed in Section 3.3.3.

Conductivity estimation

We consider the following inverse conductivity estimation problem in the 3-
layered spherical framework of Section 2.2. From (a single pair of) Cauchy
boundary data u = g in a (non-empty) open subset Γ of ∂Ω = S2 and
∂nu = 0 on S2 of a solution to (2.5), and from a (known) source term S
given by (2.4), we want to recover the constant value σ1 of the conductivity
σ in the intermediate layer Ω1.

Before, we still need to describe the PDE and associated boundary value
problems in each of the consecutive layers Ωi.

Model, assumptions

We consider the conductivity Laplace-Poisson partial differential equation
(PDE) (2.1):

∇ ·
(
σ∇u

)
= S or div (σ gradu) = S in R3 , (2.3)

(in the distributional sense), with a source term S taken to be a distribution
on R3 compactly supported in Ω0.

We investigate situations where source terms S are of divergence form:

S = ∇ · JP = div JP ,

for distributions JP made of Q pointwise dipolar sources located at Cq ∈ Ω0

with (non zero) moments pq ∈ R3:

JP =

Q∑
q=1

pq δCq , whence S =

Q∑
q=1

pq · ∇δCq , (2.4)
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where δCq is the Dirac distribution supported at Cq ∈ Ω0. Therefore, in R3,

∇ ·
(
σ∇u

)
=

Q∑
q=1

pq · ∇δCq . (2.5)

For the EEG case, under the quasi-static approximation and modeling the
primary cerebral current JP as in (2.4), Maxwell’s equations imply that the
conductivity PDE (2.5) drives the behaviour of the electric potential u [48].

Solution to Laplace-Poisson PDE

For each of the spherical layers i = 0, 1, 2, 3, write u|Ωi
= ui for the restriction

to Ωi of the solution u to (2.5). We put ∂nui for the normal derivative of ui
on spheres in Ωi, the unit normal vector being taken towards the exterior
direction (pointing to Ωi+1). In the present spherical setting, we actually
have ∂n = ∂r, as the direction of the unit normal vector coincides with the
radial direction coming from the center of the circle.

For i = 1, 2, 3, the following Dirichlet and Neumann transmission condi-
tions hold on Si−1, in particular in L2(Si−1), see [17,23,36]:

ui−1 = ui , σi−1 ∂nui−1 = σi ∂nui .

Linked by those boundary conditions and under the piece-wise constant
conductivity assumption, the solutions ui to (2.5) in Ωi satisfy the following
Laplace and Laplace-Poisson equations:

∆ui = 0 in Ωi , i > 0 ,

∆u0 =
1

σ0

Q∑
q=1

pq · ∇δCq in Ω0 .
(2.6)

The above derivation is shown in Section 1.2.4.

We will see (in Section 2.5) that the transmission from

[
ui
∂nui

]
on Si to[

ui−1

∂nui−1

]
on Si−1, for i = 1, 2, may be written

[
ui−1

∂nui−1

]
|Si−1

=

[
1 0

0 σi
σi−1

]
T (Si−1, Si)

[
ui

∂nui

]
|Si

.

for some operator T (Si−1, Si) that accounts for the harmonicity of ui in Ωi

and that we will express using spherical harmonics, see Section 2.5.2.

Concerning the source term S, note that it’s knowledge only determines
u0 on S0 up to the addition of a harmonic function in Ω0. Indeed, by
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convolution with a fundamental solution of Laplace equation in R3, we see
that

us(x) =
1

4π

Q∑
q=1

< pq,x−Cq >

|x−Cq|3
,x 6∈ {Cq} , (2.7)

satisfies us(x)→ 0 at |x| → ∞,

∆us =

Q∑
q=1

pq · ∇δCq ,

in R3, whence in Ω and Ω0, and ∆us = 0 outside Ω0. Solutions u0 to (2.6)
in Ω0 are then provided by us/σ0 up to the addition of a harmonic function
in Ω0.

Spherical harmonics expansions

In order to express harmonic functions in the spherical shells and balls
Ωi and their boundary values on Si, we use the spherical harmonics basis
rk Ykm(θ, ϕ), r−(k+1) Ykm(θ, ϕ), k ≥ 0, |m| ≤ k, in the spherical coordinates
(r, θ, ϕ). These are homogeneous harmonic and anti-harmonic polynomials
for which we refer to [13, Ch. 9, 10], [33, Ch. II, Sec. 7.3] as for their
properties. The basis functions Ykm(θ, ϕ) are products between associated
Legendre functions of indices k ≥ 0, |m| ≤ k, applied to cos θ and elements
of the Fourier basis of index m on circles in ϕ (real or complex valued,
cos mϕ, sin mϕ or e±imϕ).

Note that for g ∈ L2(S2), we have the relations:

‖g‖2L2(S2) =
∑
k,m

|gkm|2 ,

and:

‖∇g‖2L2(S2,R2) =
∑
k,m

k(k + 1)|gkm|2 . (2.8)

Here, gkm are the spherical harmonic coefficients of the expanded potential
(g on S2) on the spherical harmonic basis. This issue is discussed further in
this section. Their definition is given in Appendix by equation (A.3).

Source term

The decomposition theorem [13, Thm 9.6], [33, Ch. II, Sec. 7.3, Prop. 6], is
to the effect that the restriction ui of u to Ωi for i = 1, 2 may be expanded
on the spherical harmonics basis as follows, at (r, θ, ϕ) ∈ Ωi:
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ui(r, θ, ϕ) =

∞∑
k=0

k∑
m=−k

[
αikmr

k + βikmr
−(k+1)

]
Ykm(θ, ϕ) ∈ Ωi , (2.9)

where αikm and βikm are the spherical harmonic coefficients of the har-
monic and anti-harmonic parts of ui, respectively (harmonic inside or out-
side ∪j≤iΩi). Similarly, because it is harmonic in a spherical layer sur-
rounding S0, the restriction u0 of u to Ω0 is given at points (r, θ, ϕ) with
r > maxq |Cq| > 0 by

u0(r, θ, ϕ) =
∞∑
k=0

k∑
m=−k

α0kmr
k Ykm(θ, ϕ) + us(r, θ, ϕ) ,

where us given by (2.7) is expanded there as: r−(k+1) Ykm(θ, ϕ):

us(r, θ, ϕ) =
∑
k,m

β0kmr
−(k+1)Ykm(θ, ϕ) . (2.10)

Here, β0km are the spherical harmonic coefficients of the anti-harmonic (har-
monic outside Ω0) function uS . Their definition is given in Appendix by
equation (A.4).

Boundary data on spheres

The normal derivative of ui, i = 0, 1, 2, is then given in Ωi (with r >
maxq |Cq| for i = 0) by:

∂nui(r, θ, ϕ) =
∑
k,m

[
αikmkr

k−1−βikm(k + 1)r−(k+2)
]
Ykm(θ, ϕ) (2.11)

On Si, we put (because ui ∈ L2(Si) where the spherical harmonics form an
orthogonal basis [13, Thm 5.12]):

ui(ri, θ, ϕ) =

∞∑
k=0

k∑
m=−k

γikmYkm(θ, ϕ) , ∂nui(ri, θ, ϕ) =

∞∑
k=0

k∑
m=−k

δikmYkm(θ, ϕ) ,

with l2 summable coefficients γikm, δikm (that may be real or complex valued
depending on the choice for Ykm).

Assuming that u is given at the full ∂Ω = S2 or already extended from Γ
to S2 (see [11,23] and the discussion in Section 3.1.1), we have that u2 = g:

u2(r2, θ, ϕ) =
∑
k,m

γ2kmYkm(θ, ϕ) =
∑
k,m

gkmYkm(θ, ϕ) = g(θ, ϕ) ,

for g ∈ L2(S2). Then gkm = γ2km, whereas the corresponding δ2km = 0
since ∂nu2 = 0 on S2 (because σ3 = 0).
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Transmission conditions

Matrix form

Below, we write for sake of simplicity, for i = 0, 1, 2: αik = αikm, βik = βikm,
γik = γikm, δik = δikm, gk = gkm, for all k ≥ 0, and every |m| ≤ k (we could
also take the sums over |m| ≤ k).

Recall from Section 2.3.2 that the following transmission conditions hold
on Si−1 for i = 1, 2, 3:

Σi−1

[
ui−1

∂nui−1

]
|Si−1

= Σi

[
ui
∂nui

]
|Si−1

, (2.12)

with

Σi =

[
1 0

0 σi

]
hence Σ−1

i =

[
1 0

0 1
σi

]
and σi Σ−1

i =

[
σi 0

0 1

]
.

By projection of (2.9), (2.11), onto (the orthogonal L2(Si) basis of) spherical
harmonics, and with

Tk(ri) =

[
rki r

−(k+1)
i

krk−1
i −(k + 1)r

−(k+2)
i

]
,

we obtain for all k ≥ 0 the following relations on Si:[
γik

δik

]
= Tk(ri)

[
αik

βik

]
.

In particular:

βik =
rk+1
i

2k + 1
(k γik − δik) . (2.13)

The transmission conditions (2.12) through Si−1 express as:

Σi−1

[
γi−1k

δi−1k

]
= Σi Tk(ri−1)

[
αik
βik

]
.

Because Tk(ri) is invertible (ri > 0), this implies that:[
γi−1k

δi−1k

]
= Σ−1

i−1 Σi Tk(ri−1)Tk(ri)
−1

[
γik

δik

]
.

Therefore, in the spherical geometry, T (Si−1, Si) = Tk(ri−1)Tk(ri)
−1 for the

operator T (Si−1, Si) introduced at the end of Section 2.3.2.
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Hence, because γ2k = gk and δ2k = 0 (see Section 2.4.2):[
γ0k

δ0k

]
= Σ−1

0 Σ1 Tk(r0)Tk(r1)−1 Σ−1
1 Σ2 Tk(r1)Tk(r2)−1

[
gk

0

]
, (2.14)

while

β0k = [0 1]Tk(r0)−1

[
γ0k

δ0k

]
. (2.15)

These formula express a linear relation between the source term coefficients
β0k and the boundary Dirichlet data with coefficients gk, which is studied in
Appendix and gives rise to (2.16) below. A graphical demonstration of the
above relation showing the data transmission over the spherical interfaces
is presented in Figure 2.2. We already see the particular role of σ1 that
appears through Σ−1

1 and Σ1. This explains why, after multiplication by σ1

and algebraic manipulations, we obtain in (2.16) a polynomial of degree 2
in σ1.

Figure 2.2: Data transmission from S2 to S0 between the source term coef-
ficients β0k and the boundary Dirichlet data with coefficients gk.

Algebraic equations

Let us now derive the polynomial of degree 2 in σ1. From (2.14), (2.15), we
get for all k ≥ 0,

β0k = gk×

[0 1]Tk(r0)−1 Σ−1
0 Σ1 Tk(r0)Tk(r1)−1 Σ−1

1 Σ2 Tk(r1)Tk(r2)−1

[
1

0

]
.

The matrices Tk(ri) and Tk(rj)
−1 can be written:

Tk(ri) =

[
1 0

0 1
ri

] [
1 1

k −(k + 1)

] [
rki 0

0 r
−(k+1)
i

]
,
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Tk(rj)
−1 =

1

2k + 1

[
r−kj 0

0 r
(k+1)
j

] [
k + 1 1

k −1

] [
1 0

0 rj

]
.

Their products that give an expression of T (Si−1, Si) in the spherical geom-
etry are then such that:

Tk(ri−1)Tk(ri)
−1 =

1

2k + 1
×

[
1 0

0 r−1
i−1

] [
1 1

k −(k + 1)

] 
(
ri−1

ri

)k
0

0
(

ri
ri−1

)k+1

 [k + 1 1

k −1

] [
1 0

0 ri

]

=
1

2k + 1

(
ri
ri−1

)k+1

×[
1 0

0 r−1
i−1

] [
1 1

k −(k + 1)

] [(
ri−1

ri

)2k+1
0

0 1

] [
k + 1 1

k −1

] [
1 0

0 ri

]
.

We can write

Tk(ri−1)Tk(ri)
−1 = ρ

(i)
k

a(i)
k b

(i)
k

c
(i)
k d

(i)
k

 ,
with

ρ
(i)
k =

1

2k + 1

(
ri
ri−1

)k+1

, i = 1, 2 , ρ
(0)
k =

rk+1
0

2k + 1
,

and the real valued quantities, with their equivalent asymptotic behaviours
as k →∞: 

a
(i)
k = (k + 1)

(
ri−1

ri

)2k+1
+ k ∼ k ,

b
(i)
k = ri

[(
ri−1

ri

)2k+1
− 1

]
∼ −ri ,

c
(i)
k = k (k+1)

ri−1 ri
b
(i)
k ∼ − k2

ri−1
,

d
(i)
k = ri

ri−1

[
k
(
ri−1

ri

)2k+1
+k + 1

]
∼ kri

ri−1
.

Define also the real valued quantities e
(0)
k , f

(0)
k :

e
(0)
k = k , f

(0)
k = f (0) = −r0 .

We have
[0 1]Tk(r0)−1 = ρ

(0)
k

[
e

(0)
k f

(0)
k

]
.
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Then, for all k ≥ 0, equations (2.14), (2.15) can be rewritten as:

B1(k)σ1 β0k =
(
A2(k)σ2

1 +A1(k)σ1 +A0(k)
)
gk , (2.16)

and holds true with:

B1(k) =
σ0

ρ
(0)
k ρ

(1)
k ρ

(2)
k

whence rk+1
0 B1(k) = σ0 (2k+1)3

(
r0

r2

)k+1

∼ 8k3

(
r0

r2

)k+1

,

and 

A1(k) = σ0 e
(0)
k a

(1)
k a

(2)
k + σ2 f

(0)
k d

(1)
k c

(2)
k ∼ k3(σ0 + σ2) ,

A2(k) = f
(0)
k c

(1)
k a

(2)
k ∼ k3 ,

A0(k) = σ0 σ2 e
(0)
k b

(1)
k c

(2)
k ∼ k3σ0σ2 .

Observe that rk+1
0 B1(k) acts on r

−(k+1)
0 β0k that are members of an l2

sequence (see Section 2.4.1 and equation (2.13) with i = 0).

One can show with the above expressions that the behaviours of the
ratios Ai(k)/A2(k), B1(k)/A2(k) ensure that they all are uniformly bounded
from below or from above by positive constants, for k > 0 .

Note also that 

B1(k) = σ0 B̃1(k) ,

A1(k) = σ0 Ã10(k) + σ2 Ã12(k) ,

A2(k) = Ã2(k) ,

A0(k) = σ0 σ2 Ã0(k) ,

where Ãi, Ãij , B̃1 only depend on the spherical geometry.

Therefore, equation (2.16) is composed of non negative quantities Ai(k),
i = 0, 1, 2, B1(k) that depend only on the geometry, on the given conductiv-
ity values σ0, σ2, and on k. Actually, A1(k), B1(k) > 0 for all k ≥ 0 while
A0(k), A2(k) > 0 for k > 0 but A0(0) = A2(0) = 0. In particular, for all
k ≥ 0 and for σ1 > 0, we have A2(k)σ2

1 +A1(k)σ1 +A0(k) > 0.

This implies that β0k = 0⇔ gk = 0 and that for all k such that gk 6= 0,
β0k/gk is real valued positive: the spherical harmonics basis diagonalizes the
transmission relations.

Note that Equation (2.16) is the one on which relies our conductivity
estimation result, but also the data transmission step (see Section 3.1.2).
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Uniqueness result

Recall that the geometry Ω and the conductivity coefficients satisfy the
hypotheses of Section 2.2. Let Γ ⊂ S2 be a (non empty) open set.

Assume the source term S given by (2.4) to be known, and not to be
reduced to a single dipolar pointwise source located at the origin (S 6=
p · ∇δ0).

Theorem 1 Let σ, σ′ be piecewise constant conductivities in Ω associated to
two values σ1, σ′1 in Ω1 and equal values σ0, σ2 in Ω0, Ω2. If two solutions
u, u′ to (2.5) associated with σ, σ′ and such that ∂nu = ∂nu

′ = 0 on S2

coincide on Γ: u|Γ = u′|Γ, then σ1 = σ′1.

This implies that a single pair of partial boundary Dirichlet data u|Γ on
Γ and Neumann data ∂nu = 0 (vanishing) on S2 of a solution u to (2.5)
uniquely determines σ1 > 0.

As the proof in [24, Sec. 3.3] shows, source terms S that guarantee
uniqueness are such that associated Dirichlet data u|Γ on Γ do not iden-
tically vanish. Notice also that if no source is present, uniqueness fails
(boundary data identically vanish on S2). However, Theorem 1 would also
hold true for non identically vanishing Neumann data on S2.

Stability properties

We now present a stability result for the inverse conductivity estimation
problem with respect to the source term whenever Γ = S2. The proof of the
stability result can be found in [24, Sec. 3.4].

Proposition 1 Assume the source terms S, S ′ and the conductivities σ,
σ′ to satisfy the assumptions of Theorem 1. Let us, u

′
s be the associated

potentials through (2.7). Let u, u′ be the associated solutions to (2.5) such
that ∂nu = ∂nu

′ = 0 on S2. Let g, g′ be their boundary values on S2. Then,
there exist c, cs > 0 such that∣∣σ1 − σ′1

∣∣ ≤ c ‖g − g′‖L2(S2) + cs ‖us − u′s‖L2(S0) .

Whenever 0 < sm ≤ σ1 , σ
′
1 ≤ sM for constants sm, sM , then c, cs do not

depend on σ1 , σ
′
1 but on sm, sM .

Remark 1 For ordered lists of sources (pq,Cq) , (p′q,C
′
q) with length Q,

we can define the geometric distance

d(S,S ′) =

Q∑
q=1

(
|pq − p′q|+ |Cq −C′q|

)
.
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If the sources are located far enough from S0 in the sense that max(|Cq|, |C′q|) ≤
ρ < r0, and because us is on S0 a continuous function of pq,Cq, we can
rewrite the inequality in Proposition 1 as:∣∣σ1 − σ′1

∣∣ ≤ c ‖g − g′‖L2(S2) + c′s d(S,S ′) ,

with c′s = K(ρ) cs for some constant K(ρ) which depends on ρ. Hence, the
conductivity σ1 depends continuously on the (complete) Dirichlet boundary
data g (in L2(S2)) and on the source term S, with appropriate topology.

Notice also the relation:

β0km =
1

2k + 1

Q∑
q=1

〈pq , ∇
(
rk Ykm(θ, ϕ)

)
(Cq)〉L2(S0) .

Finally, observe that the constants c, cs, c
′
s in the above inequalities also

depend on the data g′ whence on S ′. The dependence between Dirichlet data
g′ on S2 and the source term S ′ can be precised by using, for instance, the
last equality together with relation (2.16) between their coefficients (g′k) and
(β0k), and then recalling the assumption sm ≤ σ′1 ≤ sM .
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Application to EEG

Previously, we solved the inverse skull conductivity estimation problem
from the available EEG partial boundary data, expanded on the spher-
ical harmonics basis, and transmitted over the spherical interfaces by
transfer functions, while we considered that the source term is known.
The stability of the inverse problem was also considered.

In this chapter we construct a reconstruction algorithm for the above
inverse conductivity problem in EEG. A numerical analysis is then per-
formed using simulated EEG data and source activity of various source
configurations, expanded on spherical harmonic basis. The behaviour
and the robustness of our algorithm is investigated over various source
configurations and by introducing errors either to the EEG measure-
ments or on the source term. Agreement of the conductivity estimation
results with the theoretical stability properties of the problem is dis-
cussed.

FindSources3D

FindSources3D1 (FS3D) is a Matlab software solving the inverse source lo-
calization problem in EEG in the layered spherical geometry of Section 2.2,
see also [23]. It estimates pointwise dipolar current sources from pointwise
measurement acquired by electrode on the surface of the scalp. It incorpo-
rates in particular the following functionalities.

Expansion of pointwise EEG data

EEG measurements can be used to solve the inverse conductivity problem.
These can be modelled as pointwise values of the potential u obtained on

1See http://www-sop.inria.fr/apics/FindSources3D/.

46
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the upper part of the scalp Γ ⊂ ∂Ω, at a number Ne of electrode locations
ri (the location of the electrodes of the EEG cap):

u(ri) ' gi , ri ∈ Γ . (3.1)

Solving the inverse estimation problems from the given pointwise values
gi is not trivial and usually involves estimating the continuous potential
values g on the whole ∂Ω from the values gi [23, Sec. 3 and App. A].

The potential u is estimated from its values at the electrode locations in
(3.1). The EEG case is then summarised by (2.2) together with (3.1).

The computation of the function g on S2 from the pointwise values gi of
g at electrode locations ri is actually an ill posed problem which needs to be
regularized in order to be solved. First, it does not admit a unique solution.
Next, we must take care about the fact that the values gi may be corrupted
by measurement (and modelling) errors.

A solution is to set this interpolation/extrapolation issue as a best con-
strained approximation problem in a suitable class of function. This is usu-
ally called Tykhonov regularization process. Such a procedure for the overall
cortical mapping transmission step is described in [23, App. A], see also ref-
erence therein. We will discuss it shortly in Section 3.1.2. It uses boundary
element methods and can be applied in realistic layered geometries, using
for example tools such as OpenMEEG [46].

In the present spherical setting, we make use of the spherical harmonic
basis (see Section 2.4) in order to formulate the problem as in [11], where it
is shown to be well-posed (best constrained approximation).

The function g on S2 is expressed as a truncated sum over the spherical
harmonic basis:

g(r2, θ, ϕ) =
∑
k,m

gkmYkm(θ, ϕ) , (3.2)

where k = 1, . . . ,K (|m| ≤ k).
Usually in EEG the potentials are recorded2 at a set of Ne electrode

locations, between 64 and 128. The problem is then to find the spherical
harmonic coefficients gkm from the pointwise measurements gi at electrode
locations ri at the upper part of the scalp, with i = 1, . . . , Ne. It can be
written in a linear form as:

[gi] = M [gkm] , (3.3)

where [gi] ∈ RNe , [gkm] ∈ R(K+1)2
and M is a matrix of size Ne × (K + 1)2

which maps the spherical harmonic coefficients of g onto its pointwise values
at ri = (r2, θi, ϕi), whose entries are given by Ykm(θi, ϕi).

2The EEG measurements are in fact acquired over a period of time and in this work,
we treat them at a fixed time instant as static data. We do not precise the actual time
treatment which consist in separation and combination of time independent components
(of MUSIC type [75]).
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For a number K ≥ 30 the above linear system becomes undetermined,
as the number Ne of measurements is smaller than the number of basis
functions (which in total is (K + 1)2 for all indices k and m), and should be
constrained.

Using the relation (2.8) we compute the coefficients [gkm] by solving the
equality (3.3) and minimizing the quadratic criterion (2.8). The above is
thus summarized by:  min

[gkm]

∑
k,m

k(k + 1)|gkm|2 ,

M [gkm] = [gi] .

(3.4)

Transmission between scalp and cortex

The “cortical mapping” step consist in data transmission from the scalp to
the cortex, described in [23, Sec. 3] on the spherical harmonic coefficients
(obtaining β0km from gkm).

Within FS3D and with the purpose of source estimation, this is actually
performed using formula (2.16) as a “parametrization” of:

[gkm] = Tmap[β0km] , (3.5)

where, for k ≥ 0,

Tmap = Tmap(k) =
B1(k)σ1

A2(k)σ2
1 +A1(k)σ1 +A0(k)

.

This step could be done either after (3.4) or as a parametrization directly
incorporated into (3.4). We will mainly use the latter in our study (unless
stated otherwise).

Source localization

Source localization from EEG data is the primary aim of the software Find-
Sources3D. It requires the conductivity values and the spherical head geom-
etry to be given. The anti-harmonic part us of the potential in the brain
(see (2.7), (2.9)) is computed on S0 and its squared values are quadratically
approximated on circles by rational functions in [23]. The poles of these
rational functions are then post processed, in order to furnish the quantity
Q of the sources and an approximation of Cq, pq. The idea behind this
process is that u2

s can be extended from circles to disks in a function of
the complex variable whose singularities are linked to the source locations
Cq. The poles of the best rational approximants in the disk are close to
those singularities that they allow to estimate. More precisely, the sphere
(brain) is scanned into series of parallel planar cross sections, in various di-
rections. On each of these cross sections, u2

s extends into a function of the
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complex variable of which the “planar singularities” in the corresponding
disk are well approximated by the poles of the best rational approximant
(in quadratic norm, on the circle). Observe that the suitable degree of the
rational approximant (the smallest degree of the denominator that produces
a sufficiently small error) indicates the quantity of sources. These singulari-
ties, hence the corresponding poles, superimpose ones onto the others along
the parallel sections, in order to form lines. Changing the direction will
furnish some other lines and they will intersect all together at the sources
locations. A post treatment is then applied, that consists in a clustering
algorithm followed by a dipole fitting procedure for each source.

Reconstruction algorithm for σ1

Measurements of the Dirichlet data g on the scalp S2 (pointwise values
at electrodes locations) and known sources activity are expanded on the
spherical harmonics basis. We therefore have at our disposal the spherical
harmonics coefficients (gkm, β0km) for 0 ≤ k ≤ K for some K > 0 and
|m| ≤ k.

As the reconstruction of the conductivity σ1 does not depend on the
spherical harmonics indices m (see Section 2.5), in order to increase the
robustness of our reconstruction algorithm, the following normalization is
applied over the different spherical harmonics indices k:

g̃k =
∑
|m|≤k

gkm β̄0km ,

β̃0k =
∑
|m|≤k

β0km β̄0km =
∑
|m|≤k

|β0km|2 .
(3.6)

There, β̄0km is the complex conjugate number to β0km (indeed, β0km

could be complex valued if the basis elements Ykm are taken in their com-
plex valued form). Using the above normalization, both the β̃0k coefficients
become real valued and the number of polynomial equations to be solved is
reduced to only K + 1 equations.

Let us rewrite equation (2.16) in the following error equation:

εk(σ1, β̃0k, g̃k) = B1(k)σ1 β̃0k −
(
A2(k)σ2

1 +A1(k)σ1 +A0(k)
)
g̃k . (3.7)

The conductivity reconstruction procedure is a least square minimization
of the error equation as a truncated finite sum for K > 0:

σest1 = arg min
s

K∑
k=0

∣∣∣εk(s, β̃0k, g̃k)
∣∣∣2 . (3.8)
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Numerical illustrations

We consider the EEG framework in the spherical three-layer head model,
as described in Section 2.2, where the layers represent the brain, the skull
and the scalp tissues, respectively. The typical dimensions used for the
three concentric spheres are 8 cm for brain radius, 5 mm for skull thickness,
and 7 mm for scalp thickness [10, 90]. In our numerical analysis the above
values are normalized, leading to the radii r0 = 0.87, r1 = 0.92, and r2 =
1 as in [23]. The brain and scalp tissue conductivities are set to σ0 =
σ2 = 0.33 S/m, while the skull conductivity σ1 is to be recovered. When
generating simulated EEG data through the associated forward simulation,
we will set σ1 = 0.0042 S/m.

Our study uses simulated data associated to a single or multiple dipoles
and the minimization of the criterion (3.8) for the conductivity estimation.
The algorithm is written as a MATLAB code and takes as input a pair of
spherical harmonics coefficients g̃k (expanded EEG measurements) and β̃0k

(expanded source activity), computed in the FS3D software (either following
the process in Section 3.1.1 or in Section 3.1.2) for 0 ≤ k ≤ K = 30.
The forward simulations are run with the FS3D software (unless stated
otherwise) generating potential values at a set of 64 electrode locations on
the upper part of the scalp. The inverse source localization functionality of
FS3D (see Section 3.1.3) is fully used in Section 3.3.1 to estimate the source
location and moment from a given set of potential values.

Usually, the measurements recorded during an EEG experiment are sub-
ject to some ambient noise and measurement errors, and the a priori knowl-
edge on the sources is not perfect. The inverse conductivity estimation
problem is sensitive to such perturbations though it possesses the stability
property described in Proposition 1. To investigate the robustness of our
algorithm in accordance with the stability property of the inverse conductiv-
ity estimation problem a number of investigations are performed in addition
to those contained in [24].

First we examine the robustness of our algorithm in recovering the un-
known conductivity from estimated source locations at different brain lobes
(i.e. not perfectly known source locations). Then the robustness of our al-
gorithm is investigated with respect to measurement errors (i.e. noise at the
sensors level) and the source properties, simulating scenarios for a plethora
of inexact source locations and inexact source moments.

Let us consider three different source terms each made of a single dipole
located in the brain at: C1 = (0.019, 0.667, 0.1), C2 = (0.012, 0.426, 0.064)
and C3 = (0.003, 0.112, 0.017) respectively. The first is mimicking an EEG
source at the frontal lobe (source configuration listed in Table 3.2) whereas
the other two are shifted versions of the first towards the center of Ω0 at
O = (0, 0, 0). Consider the line segment l = (O,CS0) between O and a
point CS0 (on the surface S0) passing through C1 (length equal to the r0
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S0 C1 C2 C3 O

Figure 3.1: Dipolar source C1, C2, C3 sharing the same moment p1 (blue),
aligned on the same radius (red) of S0 in Ω0.

radius). The sources are located at C1,C2,C3 ∈ l and share the same
moment p1 = (0.027, 0.959, 0.28) as illustrated in Figure 3.1.

Behaviour with respect to various dipole configurations

We validate our reconstruction algorithm using simulated EEG data and
source terms, of various single and double dipole configurations. The EEG
data were simulated using FS3D software for solving the direct EEG problem
with dipoles that were placed at locations Cact

i , within different brain lobes,
and at locations C1,C2 and C3. As the FS3D software is going to be used
later for estimating the sources, using it to solve both for the forward and
the inverse problem, it might lead to biased results. Therefore, EEG data
were also simulated using the BESA simulator3 for the same configuration
(sources, geometry, conductivities and electrode locations) used in FS3D.

In the following investigations the EEG data will be expanded on spher-
ical harmonic basis using either equation (3.4) or (3.5). As we will see, the
expansion using equation (3.4), introduce a significant amount of errors to
the computed spherical harmonics coefficients gkm, compared to the method
based on equation (3.5). This is due to the fact that the minimization prob-
lem solved by (3.4) aims at finding the spherical harmonic coefficients that
best fit the EEG given data, while using equation (3.5) carries additional
information about the sources and the layered geometry that make the com-

3See http://www.besa.de/downloads/besa-simulator/.



52 CHAPTER 3. APPLICATION TO EEG

putations much more precise.

Known source terms

First, the simulated EEG measurements where processed using the FS3D
software, computing the spherical harmonics coefficients gkm of the measure-
ments using equation (3.4), while also computing the spherical harmonics
coefficients β0km of the given source term. We perform conductivity esti-
mation from the pair of normalized coefficients g̃k and β̃0k, for each source
configuration, see Section 3.2 and equation (3.6). The estimated conductiv-
ities for each source configuration is listed in Table 3.1.

Configuration Src Model σest1 Rel. Err. Rel. EEG Err.

Frontal lobe 1 BESA 2.905e-03 3.082e-01 1.925e-01

Frontal lobe 1 FS3D 2.879e-03 3.145e-01 1.848e-01

Left occipital 1 BESA 1.871e-03 5.546e-01 2.141e-01

Left occipital 1 FS3D 2.026e-03 5.177e-01 1.990e-01

Right phg 1 BESA 2.432e-03 4.209e-01 3.173e-01

Right phg 1 FS3D 2.023e-03 5.184e-01 3.598e-01

Bilateral temporal 2 BESA 2.462e-03 4.139e-01 2.977e-01

Bilateral temporal 2 FS3D 3.512e-03 1.638e-01 8.737e-02

C1 1 FS3D 2.879e-03 3.145e-01 1.848e-01

C2 1 FS3D 3.356e-03 2.010e-01 1.428e-01

C3 1 FS3D 3.570e-03 1.501e-01 1.023e-01

Table 3.1: Conductivity estimation results using equation (3.4). Listed in
columns are: (i) the EEG configuration name, (ii) the number of sources
for each configuration, (iii) the EEG data simulator used to simulate the
data, (iv) the estimated conductivity value σest1 in S/m, (v) the relative
error between σ1 and σest1 and (vi) the relative error between gkm and gmapkm .

In this setting, the knowledge of the source term is perfect, as the co-
efficients β̃0k are computed from the given source location and moment of
each configuration. On the other hand, during the expansion of the EEG
data using (3.4) a great amount of errors is introduced to the computed g̃k
coefficients (through the gkm coefficients), introducing errors to the input
data of the conductivity estimation algorithm. As the EEG data of each
configuration were simulated using a given source term, we are able to com-
pute the amount of introduced errors to the gkm coefficients. The errors
are measured as the l1 distance between the spherical harmonics coefficients
gkm and gmapkm , where gkm were determined by equation (3.4) and gmapkm de-
termined by equation (3.5) which is more precise. The relative EEG error

in Table 3.1 is defined as

∑
|gkm − gmapkm |∑
|gmapkm |

. The estimated conductivities are
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certainly affected by those introduced errors, but still the estimated conduc-
tivities are of the same order of magnitude as the actual conductivity value
(used in the data simulation).

Estimated source terms

The simulated EEG measurements where processed again, using the FS3D
software, estimating the source location Cest

i that best explains the given
measurements while also computing the spherical harmonics coefficients gkm
of the measurements using equation (3.5) and the β0km coefficients of the
source term. Note that source estimation is done by using the knowledge
that the skull conductivity is σ1 = 0.0042S/m, whereas through equa-
tion (3.5) the same value is used to expand the EEG data.

We perform conductivity estimation from the pair of normalized spher-
ical harmonics coefficients g̃k and β̃0k, for each source configuration, see
Section 3.2. The estimated conductivities for each paradigm is listed in
Table 3.2.

Configuration Src Model σest1 Rel. Error Distance

Frontal lobe 1 BESA 4.302e-03 2.431e-02 4.454e-02

Frontal lobe 1 FS3D 4.211e-03 2.677e-03 1.788e-06

Left occipital 1 BESA 4.026e-03 4.141e-02 4.986e-02

Left occipital 1 FS3D 4.052e-03 3.524e-02 2.808e-02

Right phg 1 BESA 4.053e-03 3.485e-02 3.424e-02

Bilateral temporal 2 BESA 4.104e-03 2.280e-02 6.819e-02

Table 3.2: Conductivity estimation results using equation (3.5). Listed in
columns are: (i) the EEG source name, (ii) the number of sources for each
configuration, (iii) the EEG data simulator used to simulate the data, (iv)
the estimated conductivity value σest1 in S/m, (v) the relative error between
σ1 and σest1 and (vi) the distance

∑
i |Cact

i −Cest
i |.

In this setting, the expansion of the EEG data using (3.5) does not
introduce errors to the computed g̃k coefficients. In contrast, the knowledge
of the source term is not perfect as the sources where estimated (using
the reference conductivity σ1 = 0.0042 S/m), introducing some errors to
the input data of the conductivity estimation algorithm. Although, the
estimated conductivities seem to be quite accurate, reporting conductivity
values close to the actual conductivity value σ1 used in the data simulations.
Note also that the algorithm was able to recover properly the unknown
conductivity value even in the case where two sources were used for the
data simulation. This suggests that our algorithm is able to handle cases
with more than one source present at a time. The influence of the source
mislocation will further be studied in the following investigations. Finally,
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no big differences are observed between the estimations results with respect
to brain locations of the actual sources.

As we have clearly seen, the expansion of the EEG data while computing
the g̃k spherical harmonic coefficients using equation (3.4) introduce unac-
ceptable errors to the conductivity estimation algorithm. Therefore, in the
following investigations and in order to control the introduced uncertainty to
the input data for the conductivity estimation, we will only use the method
based on equation (3.5) followed by the normalization of equation (3.6).
Our choice is less realistic compared to the method based on equation (3.4),
but necessary for isolating the influence of each modified parameter on the
conductivity estimation procedure.

Robustness with respect to measurement errors

To investigate the stability of our algorithm with respect to measurement
errors and the possible influence of the depth of the source, we consider three
different source terms each of them made of a single dipole located at: C1,
C2 and C3 respectively, all with moment p1. For each source term, EEG
measurements are simulated, whereas the spherical harmonics coefficients
of the EEG data g̃k and the source term β̃0k are computed. Then, new
spherical harmonics coefficients g̃ik have been simulated by adding white
Gaussian noise of various levels to the simulated EEG data gi, with the
noise levels been computed as a percent of the standard deviation of the
actual EEG measurements (in the spatial scale). Conductivity estimation
is performed for the generated pairs of coefficients g̃ik and β̃0k. Therefore,
the only uncertainty introduced to the input pair of coefficients, namely the
g̃ik, arise from the measurement errors, while the source term (used in data
simulation) was perfectly known. The estimated conductivities over the
introduced noise levels and the corresponding distance between the actual
and the noisy measurement coefficients are presented in Figure 3.2.

The results show that our conductivity estimation algorithm is robust
with respect to the added noise, as the estimated conductivities are quite
close to the actual σ1 conductivity value (used in the simulations) up to
30% of added noise, and all the estimated conductivities being in the scale of
10−3 far from the actual one. This comes in agreement with the inequality in
Proposition 1 stating that the distance between the actual and the estimated
conductivity is bounded by the distance between the measurements up to a
multiplicative constant (since the distance between the potentials us and u′s
associated to the source terms is assumed to be zero in this case). Observe
that conductivity estimation seems to be less affected by the added noise
for sources deeper in Ω0, as the values of the relative errors decrease when
the source is moving from C1 to C3.
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(d) Dipole located at C2
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(e) Dipole located at C3
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(f) Dipole located at C3

Figure 3.2: Conductivity estimation results with respect to the added
level of noise (in percentage) on the simulated EEG measurements.
[Left] Estimated conductivity values (S/m) over the increasing per-
cent of noise. Displayed are: σ1, the actual conductivity value used
in the EEG data simulation, and σest, the estimated conductivity
value for each level of added noise. [Right] The distance

∑
k |g̃k− g̃ik|

between the spherical harmonics coefficients of the simulated and
the noisy EEG data.
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Behaviour with respect to errors on the source term

Influence of mislocated sources at a constant distance

The original source location Ci for i = 1, · · · , 3 is replaced by inexact lo-
cations Cn

i for n = 1, · · · , 20 located at a constant distance from Ci (a
percentage of the inner sphere radius r0), as illustrated in Figure 3.3, while
the source moment p1 is retained. For each new dipole location Cn

i , the
associated spherical harmonics coefficients β̃n0k are simulated. We perform
conductivity estimation from the pairs g̃k, β̃

n
0k (recall that g̃k correspond to

the actual β̃0k). Therefore, the only uncertainty introduced to the input pair
of coefficients, namely the β̃n0k, comes from the inexact location of the source
term, while keeping the EEG measurements and the original source moment
intact. The conductivity estimation results and the resulting relative errors
while the distance |Ci −Cn

i | increases are illustrated in Figure 3.4.

Figure 3.3: Locations (in Ω0) of Ci (red bullets) and of the 20 points Cn
i

(blue cross) surrounding each Ci, for |Ci − Cn
i | equal to 10% of r0 with

i = 1, 2, 3.

Observe that in the plots 3.4(e) and 3.4(f), the mislocation distance (on
the abcissa axis) do not reach the same values as in the other plots of Fig-
ure 3.4. This happens because in our simulations the mislocation distance
from a location Ci was not allowed to reach the center of Ω0 (the point O at
origin), as discussed in Section 2.6. Therefore, we have chosen mislocation
distances up to 12% of r0 which do not reach the origin. The obtained con-
ductivity estimation results show that our algorithm is stable with respect
to the source mislocations, while the distance between the actual source
location and its mislocations increases. As stated by the inequality in Re-
mark 1 the distance between the actual and the estimated conductivity is
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Figure 3.4: Conductivity estimation results, with respect to increas-
ing mislocation distances (in percent of the brain radius) from the
actual dipole. [Left] 20 estimated conductivity values (S/m) for each
percentage values of increasing distance. Displayed are: σ1, the ac-
tual conductivity value used in the EEG data simulation, σest1 , the
estimated conductivity value for each dipole position Cn

i , and σ̃est1 ,
the mean value of σest1 among n = 1, · · · , 20. [Right] The relative
error between the mean values σ̃est1 and σ1.
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bounded by the distance between the source terms up to a multiplicative
constant (since the distance between the functions g and g′ is zero in this
case). Observe that for a source mislocation up to 6% of r0 the estimated
conductivities are not that far from the actual one, and all the estimated
conductivities being in the scale of 10−3 far from the actual one. This means
that having a wrong source localization in an EEG experiment of no more
than 0, 8 cm (using the realistic brain radius mentioned at the beginning of
Section 3.3) the estimated conductivity would still not be that far.

Finally, it is visually evident that the deeper sources (as the one located
at C2 and C3) are less and less affected by the source mislocation, with the
estimated conductivities closer to the actual one. This is maybe due to the
increasing distance between the source location Ci and the sensors on S2.

Influence of radial source mislocations

The original location Ci for i = 1, · · · , 3 is replaced by inexact locations Cn
i

for n = 1, · · · , N located at a constant distance from Ci and on the radius
l passing from C1. The mislocation distance was chosen to be 10% of r0,
leading to N = 20 mislocated sources. The source moment p1 is retained
for all mislocated sources. For each new inexact dipole location Cn

i , the
associated spherical harmonics coefficients β̃n0k are simulated. We perform
conductivity estimation from the pairs g̃k, β̃

n
0k (recall that g̃k correspond to

the actual β̃0k). Therefore, the only uncertainty introduced to the input
pair of coefficients, namely the β̃n0k, come from the inexact location of the
source term, while keeping the EEG measurements and the original source
moment intact. This is similar to the investigation of the previous paragraph
but with the sources mislocated on the radial direction. For simplicity, the
locations of the inexact sources Cn

i are presented as the distance from the
origin.

The conductivity estimation results and the resulting relative errors are
illustrated in Figure 3.5 as a function of the distance between the inexact
source location and the origin. The conductivity estimation results show
that our algorithm is again stable with respect to this type of source mis-
locations as the mislocation distance increases, at least up to a reasonable
distance from the actual source, and in agreement with the inequality in
Remark 1. Observe also that the conductivity estimation problem seems
more stable when the sources are closer to the origin (located at C2 and
C3), as more estimated conductivities are close to the true conductivity line
compared to the one obtained when the actual source was located at C1.

Observe that the closer an inexact location is to the actual one, the
better the accuracy of the conductivity estimation is.
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Figure 3.5: Conductivity estimation results for bounded mislocations of the
actual dipole in the radial direction. The results are presented with respect
to the distance of the mislocated source from the origin. [Left] Estimated
conductivity values (S/m) for the mislocated dipoles Ci. Displayed are:
Ci bounds, the mislocation bounds set at 10% of the brain radius, σest1 , the
estimated conductivity value within the mislocation bounds, σest1 range, the
corresponding range of estimated conductivities, σest−true1 , the estimated
conductivity value for the actual dipole Ci, and σ1, the actual conductivity
value used in the EEG data simulation. [Right] Relative errors between σest1

and σ1.
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Sensitivity to the radial source position from S0

As discussed in Section 2.7 the stability of the inverse conductivity estima-
tion problem depends on the distance of the sources from the interface S0.
To better illustrate this stability property, we extend the previous investi-
gation by exploring more “radial” locations (not only at the locations C1,
C2 and C3) for the simulated sources.

Therefore, we perform an investigation where we consider 100 source
locations evenly distributed on the radius l passing from C1, to simulate
the spherical harmonics coefficients g̃k and β̃0k. We take care to ensure that
among them the closest dipole to the center and the surface of the Ω0 ball
has at least a minimum distance of 0.01, while the source moment p1 is
retained.

Each simulated source, Di for i = 1, · · · , 100, is replaced by inexact loca-
tions Dn

i for n = 1, · · · , N < 100, belonging to a subset of {Di}, simulating
the inexact spherical harmonics coefficients β̃n0k. The number N of the in-
exact locations (for each simulated source), is determined by the following
two quantities: the maximum distance between two estimated conductivi-

ties
∣∣∣σest1 − σest1

′
∣∣∣ when the inexact locations are bounded to be 10% of r0 far

from the simulated source location Di (i.e. |Di−Dn
i | ≤ 0.1r0) as illustrated

in Plot 3.6(b) and second, the maximum distance between two inexact loca-
tions |Dn

i −Dn
i
′| when the estimated conductivities of the inexact location

are bounded to be 10% far from the estimated conductivity of the simu-
lated source (i.e.

∣∣σest1 − σ
est−true
1

∣∣ ≤ 0.1) as illustrated in Plot 3.6(a). Both
quantities are expressed as a function of the simulated source location, pre-
sented as the distance from the origin. An example showing the bounds
and the conductivity estimation results participating to the computations
of the above two quantities for a simulated source placed at C1 is presented
in Figure 3.6. The results of the investigation for all the simulated sources
and their inexact locations are presented in Figure 3.7.

The results are in agreement with the previous investigations and the sta-
bility property in Section 2.7, showing that the deeper a source is (i.e. far
from the S0 surface), the more stable the conductivity estimation problem
is. This can be easily observed in Plot 3.7(a) where the distance between the
estimated conductivities increases (becoming less stable) while the simulated
source is moving towards the surface S0, even though the mislocation dis-
tance (i.e. selected bound) was fixed. In Plot 3.7(b) the same phenomenon
is observed up to the value of 0.3 in the abcissa axis.

At values higher than 0.75 in Plot 3.7(a) a decay of the computed dis-
tance is observed. This happens for two reasons, first the conductivity es-
timation problem becomes less stable and the estimated conductivities of
neighbouring mislocated sources have bigger difference between them, and
second because the actual source comes too close to S0 leaving less and less
space for inexact locations. For both reasons, less and less data contribute to
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(b) Bounded estimated conductivities of C1

Figure 3.6: Conductivity estimation results for bounded mislocations of
a simulated dipole (placed at C1) in the radial direction. [Left] Con-
ductivity estimation results (S/m) for bounded dipole mislocations within
|C1 − Cn

1 | ≤ 0.1r0. Displayed are: “Ci bounds”, the mislocation bounds
set at 10% of the brain radius, and σest1 range, the corresponding range of
estimated conductivities. [Right] Bounded conductivity estimation results
(S/m) within

∣∣σest1 − σ
est−true
1

∣∣ ≤ 0.1σest−true1 . Displayed are: σest1 bounds,
the conductivity estimation bounds set at 10% of the estimated conductivity
for the simulated source C1, “Ci range”, the corresponding range of mis-
location. Displayed in both are: σ1, the actual conductivity value used in
the EEG data simulation, and σest1 , the estimated conductivities within the
given bounds.
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Figure 3.7: Bounded conductivity estimation results with respect to the
simulated source locations. The results are presented with respect to the
distance of the simulated sources from the origin (abcissa axis). [Left] The

maximum distance between two estimated conductivities
∣∣∣σest1 − σest1

′
∣∣∣ when

the inexact locations are bounded to be 10% of r0 far from the simulated
source location Di. [Right] The maximum distance between two inexact
locations |Dn

i − Dn
i
′| when the estimated conductivities of the inexact lo-

cations are bounded to be 10% far from the estimated conductivity of the
simulated source.
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the computations. The same effects can be observed in Plot 3.7(b) starting
after 0.35 for the first reason and before 0.8 for both.

Influence of the moment

Figure 3.8: Dipolar source at C1 (red point) with its original moment p1

(red vector) and its 20 inexact orientations pn1 (blue vectors) having an
amplitude equal to the original: |p1| = |pn1 | = 1.

The influence of inexact value of the moment on the conductivity esti-
mation is investigated at the three dipole locations C1, C2, and C3. The
original source orientation is replaced by 20 inexact orientations pn1 of a
given amplitude (strength), as illustrated in Figure 3.9. We consider vari-
ous strengths with values in [0.9, 1.1] of the amplitude |p1| = 1 of the original
dipole. For each new source amplitude the spherical harmonics coefficients
β̃n0k of the inexact orientation pn1 are simulated. We perform conductivity
estimation from the pairs g̃k, β̃

n
0k (recall that g̃k correspond to the actual

β̃0k). Therefore, the uncertainty only acts on the coefficients β̃n0k and comes
from the inexact orientation, when the amplitude is set to 1 (the original
source amplitude) and both the orientation and the amplitude for the other
amplitude values. The EEG measurements and the original source location
are intact. The conductivity estimation results and the mean of the re-
sulted relative errors are illustrated in Figure 3.9 as a function of the source
strength.

The conductivity estimation results show that our algorithm seems to be
most affected by the moment amplitude, with the estimated conductivities
varying in the scale of 10−2.

Finally observe, that deeper sources seems to be less affected by the
moment amplitude, with the mean relative error decreasing when the source
location is moving from C1 to C2 and C3.
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(c) Variations of |p1| at C2
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Figure 3.9: Conductivity estimation results with respect to increasing in-
exact moment amplitude values (relative to the actual source moment
|p1| = 1). [Left] Conductivity estimation results (S/m) for 20 inexact ori-
entations for each inexact moment amplitude value. Displayed are: σ1,
the actual conductivity value used in the EEG data simulation, σest1 , the
estimated conductivities for each new source moment (orientation and am-
plitude), σest−true1 , the estimated conductivity value for the actual dipole
(Ci), and σ̃est1 , the mean value of σest1 among n = 1, · · · , 20. [Right] The
relative error between the mean values σ̃est1 and σ1.



Discussion and conclusion

Following Chapter 2, observe that our uniqueness result, Theorem 1, may
be expressed as an identifiability property of the conductivity value (model
parameter) σ1 in the relation (2.16) from boundary data to sources (transfer
function, control to observation), [21, 66]. This could be useful in order to
couple EEG with additional modalities, like EIT (where ∂nu 6= 0 is known
on Γ) or even MEG (magnetoencephalography, which measures the mag-
netic field outside the head), and to simultaneously estimate both σ1 and
the source term S in situations where the latter is (partially) unknown. The
source locations, for example, can be fixed in somatosensory evoked poten-
tials (SEP) and fields (SEF) measurements by the SEF localisations, which
are mainly independent of skull conductivity, see [15,110].

In EIT, the source term is zero (S = 0), as it is assumed that the
only electrical activity present is the injected current at the selected pair of
EEG electrodes. Therefore, the current flux φ = σ∂nu is taken as an input
(control) at the selected pair of electrodes, while the associated potential
values (3.1) are measured at the other electrode locations (r 6= rin , rout).
This is summarized by:{

∇ · (σ∇u) = 0 in Ω ,
σ∇u · n = δrin − δrout in ∂Ω ,

where rin is the input electrode where the current was injected, rout the
output electrode, and δr the Dirac mass at location r.

Situations with more than 3 spherical layers could be described simi-
larly, which may help to consider more general conductivities (smooth but
non constant) by piecewise constant discretization. The addition of a new
spherical layer would practically require to incorporate a few more matrices
describing its transmission conditions in the relation in Section 2.5.1. This
would be a step towards non homogeneous layers. Anisotropic models could
be considered as well, in relations with more realistic geometries.

Also, one may also recover using the above scheme possibly unknown
information about the (spherical) geometry of Ω1 (like r1 or/and r0).

In Chapter 3, the presented results illustrate the influence of errors on
conductivity estimation, and the robust character of our algorithm, in accor-
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dance with the stability result of Proposition 1. The proposed conductivity
estimation algorithm proved to be robust both to measurement errors and
to various source mislocations, while the estimations appear to be more sta-
ble at deep source locations. In contrast, the algorithm seems to be less
robust with respect to the moment amplitude but the obtained estimations
are again more stable at deep source locations.

Observe that the obtained results in Table 3.2 and Figures 3.2, 3.4, and
3.5 are quite accurate (within the scale of 10−3) for a small and acceptable
amount of introduced errors. For example, for an inverse source localization
algorithm, an acceptable localization error would be within the scale of a few
millimetres, while localizations of a few centimetres would be inappropriate
for clinical and functional use. Assuming the realistic brain radius of 8 cm
as in [90] a mislocation of 10% of the brain radius translates to 0.8 cm local-
ization error in the human brain. Therefore, the estimations obtained with
our algorithm and shown in Figures 3.4 and 3.5 beyond this (mislocation)
value are less and less met in practice.

The bounds introduced in Figure 3.6, aim in particular at illustrating
the robustness of our algorithm with respect to a fixed range of variation
around the actual data, discarding estimations that are too far. In addition,
the obtained results are in accordance with the discussion in Section 2.7,
where it has been mentioned that if the sources are located far enough from
S0 in the sense that max(|Cq|, |C′q|) ≤ ρ < r0, the conductivity σ1 depends
on the boundary data g and on the source term S. The results shown in
Figures 3.2, 3.4, and 3.5 also illustrate the difference of stability with respect
to the source distance from S0. Computing the value of ρ and determining
whether the computed values come in agreement with the numerical results
would be interesting for a future investigation.

The results in Figure 3.9 indicate that the conductivity estimation algo-
rithm is not very robust with respect to the moment amplitude and should
be investigated further. Following the discussion of the last paragraph of
Section 4.3.4, we could also perform the dual investigation and, for each
fixed orientation of the moment, vary its amplitude.

In order to penalize high frequencies and to get more accurate estima-
tions, one might introduce in the minimization criterion (3.8) appropriate
multiplicative weights (decreasing with the spherical harmonic index k). Pe-
nalization of the high frequencies trough weighting can also be applied at
equation (3.4). Also, concerning the computation of the coefficients from
the pointwise values at electrodes, another possibility would be to solve the
following minimization problem:

min
[gkm]
‖M [gkm]− [gi]‖2 + λ

∑
k,m

k(k + 1)|gkm|2 ,

where λ > 0 is a regularization coefficient. Note that one could also replace
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the normalization (3.6) by:
g̃k =

∑
|m|≤k

|gkm|2 ,

β̃0k =
∑
|m|≤k

β0km ḡkm ,

where ḡkm is the complex conjugate number to gkm.
To improve both the EEG data expansion and the conductivity estima-

tion, one might consider using another degree K for the spherical harmonic
basis. Theoretically, the value of K should be chosen such that it satisfy the
inequality Ne ≤ (K+1)2, in order to have an equal or higher number of know
terms compared to unknowns. This implies that in our setting (Ne = 64),
the degree for the spherical harmonic basis could be set to K = 7, which
is the minimal value. However the appropriate value of K might be higher
depending on the activity of a source activity and its frequency.

We observed in Section 3.3.3, Figure 3.4, that the mean estimated con-
ductivity value was quite close to the actual σ1 value used for the EEG
data simulation. This suggest to use an iterative procedure that alternates
between conductivity estimation and source localization steps.

More general models in terms of PDE could be interesting namely those
provided by Helmholtz equation, see for example [12]. They furnish more
precise models than Laplace-Poisson equation when the quasi-static assump-
tion is no longer valid.
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Conductivity estimation in a
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CHAPTER 4

Importance of skull inhomogeneity

In the previous chapters we have studied the inverse conductivity esti-
mation problem deriving analytical formulas for a spherical head geom-
etry where the skull was modelled as a single and homogeneous layer.
Derivation of analytical formulas while considering an inhomogeneous
skull would assume that the skull is made of concentric spheres, which is
too simplistic. Thus to analyse the importance of skull inhomogeneity
we will consider realistic head models.

In this chapter, we question the validity of the human skull inho-
mogeneity for conductivity estimation in EEG, performing a simulation
study that compares two realistic head models: the first modelling the
skull as a single and homogeneous layer, the second modelling its inho-
mogeneity by accounting for two different types of skull tissues.

Simultaneous conductivity estimation and source localization is per-
formed on the compared models using a number of single dipole simu-
lated EEG data. Other aspects under consideration are the selection of
the proper skull tissue and the influence of different skull templates on
conductivity estimation.

Introduction to skull inhomogeneity

One of the major issues related to EEG is to localize where in the brain
signals are generated. This is the so called inverse problem in electroen-
cephalography (EEG) [72] and aims at finding the source distribution that
best explains the electric potentials measured by a set of electrodes at the
surface of the scalp. The quality of the inverse solution depends on the
mathematical algorithm chosen [47], as well as the accuracy of the volume
conductor, i.e. the head model, reflecting the geometry and the conductivity
values of the different head tissues.

The human head consists of several tissues, some of the most commonly
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found in head models being: the scalp, the skull, the cerebrospinal fluid
(CSF), and the brain which is often segmented into gray and white mat-
ter. Among the head tissues, the skull is the one that influences most the
accuracy of EEG source localization methods because of its low conductiv-
ity [100].

Although spherical head models can be used to solve the inverse source
localization problem, when localization accuracy is the main priority, real-
istically shaped head models are used instead [27]. The realistically shaped
head models, capture the head tissues in greater detail, as the tissues are of-
ten extracted from imaging modalities such as MRI and CT scans. Usually
when such data are available, for the subject of interest, an individual head
model can be constructed segmenting the different tissues for the available
data. Conversely, when individual data are not available, a realistic approx-
imation can be used, usually constructed by registering data of different
individuals into the same space and then averaging them to produce an
average realistic head model. Due to the imperfect anatomical correspon-
dence among the individuals, the created head model might cause errors in
the source localization as discussed in [99].

The human skull is a bony tissue consisting of compact (compacta) and
spongy (spongiosa) bone layers, whose thickness vary across the skull. While
compacta is present almost everywhere across the skull, spongiosa may not
be always present. However, most often the skull is modelled as single bulk
compartment, without taking into account the internal skull structure as it
is not always visible in the available MRI data.

The conductivity value of the spongiosa compared to compacta may dif-
fer substantially, by a factor of 4.5 within an individual [3,28]. Depending on
the relative thickness of the spongiosa, an approximate relationship between
the bulk skull conductivity and the compacta and spongiosa conductivities
can be formulated [28]. As the relative thickness of the spongiosa varies
across the skull it has to be expected that the bulk skull conductivity also
varies. Indeed, this is the case of measured conductivity values using skull
samples of various proportions of spongiosa within the sample [95]. How-
ever, the skull is often modelled as a single bulk compartment with a single
homogeneous conductivity value.

Solving the inverse problem of source reconstruction using uncertain
head geometries [28, 65, 86] or conductivity values [2, 84] may lead to im-
portant localization errors.

As the skull tissue composition has strong inter-individual variability
both in terms of tissue geometry and of individual tissue conductivity, con-
ductivity estimation techniques are required [68] in order to determine the
unknown skull tissue conductivity.

Conductivity estimation can be performed on data from an event-related
stimulation paradigm, which can be explained by one dipole source [102].
Somatosensory Evoked Potentials (SEP) is one of the many event-related
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stimulation paradigms [68] which has been suggested for conductivity esti-
mation. SEP are obtained in response to a sensory stimulus, such as an
electrical stimulation of the skin over the trajectory of the median nerve
within an arm. The location of the response activity arises within the so-
matosensory cortex and while being quite focal can be explained by one
dipole source.

A conductivity value for the skull can be estimated as the value for which
the single dipole source provides the best goodness of fit to the EEG data.
This conductivity value could then be used to analyse the actual data of
interest whose activity is likely to lie outside the somatosensory cortex.

Furthermore, it is known that the EEG forward solution, i.e. given a
source distribution what is the generated electrical potentials at a set of
electrodes placed at the surface of the skull, is most affected by the conduc-
tivities of all tissues between the source and the sensors [44,65]. For conduc-
tivity estimation based on data from an event-related stimulation paradigm
this means that the estimated skull conductivity might reflect only the local
skull conductivity. The estimated conductivity value based on a different
paradigm located in another brain region might differ substantially.

This raises the following research question: Is conductivity estimation
based on data from an event-related stimulation paradigm meaningful with-
out accounting for the internal skull structure, especially when the activity
of interest may lie outside the area where the activity of the stimulation
paradigm was located?

We perform a simulation study comparing two realistic head models
constructed from individual MRI data, in order to determine the importance
of the internal skull structure for conductivity estimation in EEG: a detailed
model accounting for the compact and spongy bone layers and a bulk model
where the skull is simplified to a single compartment. Using the detailed
model as a reference, reference EEG data is generated for 20 single dipole
sources placed at different brain areas. Conductivity estimation is performed
in both models for all 20 single dipole sources using a simple exhaustive
search approach, estimating the bulk skull conductivity in the bulk model
and the compact bone conductivity in the detailed model, while the rest
of the conductivity values are considered identical to the ones used in the
reference data generation.

Materials and methods

Detailed head model generation

Acquired data

Magnetic resonance images (MRI) of three epileptic male subjects (30, 32
and 20 years-old) were acquired with a T1-weighted sequence. The voxel
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Figure 4.1: Detailed model generation work-flow: The individual’s MRI is
segmented distinguishing the scalp, skull, CSF and brain tissues. A spon-
giosa model is extracted from a template and included in the individual’s
skull segmentation, leading to a 5-layer realistic head model.

scan resolution was 1 × 1 × 1 mm. The data acquisition protocol was in
accordance with the French rules for public health (article L 1121-1) and
the Helsinki Declaration.

Segmentation and spongiosa model extraction

Our three detailed models (one for each patient) are based on the segmenta-
tion of the individual T1 MRI data using the automated procedure of BESA
MRI 2.0 (BESA GmbH, Gräfelfing, Germany). We distinguished between
the following tissue types: scalp, skull, CSF, and brain. Due to the low con-
trast and high noise of the available MRI the accurate segmentation of the
internal skull structure (spongiosa compartment) was not possible. Instead,
a template of the spongiosa compartment was extracted and aligned with
the individual’s skull segmentation. The spongiosa template was extracted
from the labeled “Colin 27 Average Brain” [52].

Spongiosa model registration

In order to later include the spongiosa model to our individual’s segmen-
tation, we performed first an affine and then a non-linear registration of
the skull template to the individual skull segmentation. Here, our main
concern is the best possible alignment of the skull template, thus also the
spongiosa compartment, with our individual skull segmentation. For the
affine registration the FLIRT [55] tool implemented in the FSL toolbox was
used. The non-linear registration was based on an extension [93] of the Dif-
feomorphics Deamons algorithm [104] implementation in MedInria 1.x [96]
using a cost-function suitable for registration of labeled images. The nearest
neighbour interpolation option was used to preserve meaningful labels in the
transformed images.
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Post-processing of the registered spongiosa model

The transformed spongiosa model was then post-processed using morpho-
logical operations.A morphological closing by 2 mm was applied to the spon-
giosa model to smoothen the distribution. Furthermore, the spongiosa model
was masked with a by 1 mm eroded skull to guarantee the minimum thick-
ness of the inner and outer compact bone layers. The morphological op-
erations used, were implemented in MATLAB and Image Processing Tool-
box Release 2012b (The MathWorks, Inc., Natick, Massachusetts, United
States).

Volume conductor generation

All skull voxels of the individual segmentation that were marked in the trans-
formed and post-processed spongiosa mask were relabeled as spongiosa. A
1 mm geometry-adapted hexahedral finite element mesh (FEM) [107] was
then created in BESA MRI 2.0 (BESA GmbH, Gräfelfing, Germany) from
the individual’s segmentation with the included spongiosa model. The re-
sulting 5-layer head model finally accounts for the following tissue types:
scalp, skull’s compacta and spongiosa, CSF, and brain. The same pro-
cedure was repeated for each patient using his MRI data to build a new
detailed model. The detailed model generation work-flow is summarized in
Figure 4.1.

Simulation setup

Reference data generation

Reference data was generated for 20 dipoles at 10 different locations spread
over both brain hemispheres with radial and tangential orientations. The
brain areas of our subjects were identified based on visual comparison with
the Talairach Atlas. The source locations were manually selected to repre-
sent the following brain areas: frontal lobe, somatosensory cortex, auditory
cortex, temporal lobe, and occipital cortex. Reference EEG data was simu-
lated at 64 electrode locations for each source, in each detailed FEM model,
with the sources not lying on the nodes of the FEM grid. The data sim-
ulation was performed in BESA Research 6.0 (BESA GmbH, Gräfelfing,
Germany).

For the reference data generation the following commonly used isotropic
conductivity values [28] were assigned to each element of the detailed model
depending on the tissue: scalp 0.43 S/m, compacta 0.0064 S/m, spongiosa
0.0287 S/m, cerebral spinal fluid (CSF) 1.79 S/m, and brain 0.33 S/m. The
reference data generation for a single dipole is illustrated in Figure 4.2.
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Figure 4.2: Reference data simulation for a single dipole: EEG measure-
ments of a single time instant are generated placing a source in the reference
volume conductor model of known tissue conductivities. The procedure was
repeated for all 20 dipoles (10 locations with radial and tangential orienta-
tion).

Test models

Two test models are considered to perform conductivity estimation selecting
12 isotropic conductivity values to evaluate the tissue in question within each
model, while the rest of the conductivity values are considered identical to
the ones used in the reference data generation. We have taken care to use
the same relative conductivity range from 42% to 250% of a reference tissue
conductivity value for both models.

• The detailed model that specifically accounts for the internal skull
structure (i.e. compact and spongy bone). For the detailed model the
12 evaluated isotropic compact bone conductivity values are evenly
distributed in the range [0.0026, 0.016] S/m including the commonly
used conductivity value 0.0064 S/m for the compact bone which was
used in the reference data generation, as stated above. The value
of 0.0064 S/m was also used as the reference for the compact bone
conductivity range.

• A bulk model where the skull is simplified to a single compartment
(without spongiosa). For the bulk model the 12 evaluated isotropic
bulk skull conductivity values are evenly distributed in the range
[0.0042, 0.025] S/m including the commonly used conductivity value
0.0042 S/m [28] for the skull. For this model the reference for the skull
conductivity chosen as 100% was 0.01 S/m which was suggested in [28].

Conductivity estimation

Conductivity estimation and simultaneous source reconstruction is performed
on the two test models for each patient and for all reference data, estimat-
ing the bulk skull conductivity in the bulk model and the compact bone
conductivity in the detailed model.
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Figure 4.3: Conductivity estimation and source localization on both test
models from single source reference data. The estimated conductivities are
the bulk skull conductivity in the bulk model (the skull is modelled as a
single compartment) and the compacta conductivity in the detailed model
with spongiosa (the skull contains both compacta and spongiosa).

As we will see in this section, conductivity estimation is performed on
each test model by maximising the goodness of fit between the reference
paradigm data and the FEM forward computations with different homo-
geneous and isotropic conductivity values. For each conductivity value σi,
i = 1 . . . 12 a lead field matrix L(σi) was computed, capturing the head ge-
ometry and the tissues conductivities. A lead field matrix, computed by solv-
ing the EEG forward problem, represents the linear relationship between the
amplitudes of dipolar sources within the brain and electrode measurements
on the scalp. The dimension of a lead field matrix is (nelectrodes× 3 ∗nnodes)
where nelectrodes is the number of electrodes and 3 ∗ nnodes corresponds to
the 3 canonical orientations at nnodes fixed dipole locations.

For each precomputed lead field matrix L(σi) a source estimation step
is performed using a simple exhaustive search approach, where each node of
an 2 × 2 × 2 mm search grid is evaluated.

The estimated conductivity value, is the conductivity value σi used in
the ith precomputed lead field matrix (among the 12 precomputed lead field
matrices) that gave the best goodness of fit to the reference data during
the exhaustive search approach. Our goodness of fit measure is the `2 norm
distance of the reference data from the projection norm of an evaluated
node:

||EEGref − Lnode(σi)Mnode||2 (4.1)

where EEGref is a (nelectrodes × 1) column vector of the reference EEG
measurements of a single paradigm generated on a reference model, Lnode(σi)
is a (nelectrodes × 3) sub-matrix of the lead field matrix L(σi) corresponding
to the evaluated search grid node and Mnode is a (3 × 1) column vector of
the estimated source moment on the same search grid node. The source
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moment is estimated as:

Mnode = L†node(σi)EEGref (4.2)

where L†node(σi) is the pseudo-inverse of the sub-matrix Lnode(σi). The es-
timated conductivity corresponds to the index:

i = argmax
i

(
max
node

(
1−
||EEGref − Lnode(σi)Mnode||2

||EEGref ||2

))
. (4.3)

Observe that along with the estimated conductivity value, the source loca-
tion is also obtained as the node maximizing the goodness of fit.

The conductivity estimation procedure thus follows the following algo-
rithm:

1. Select a test model with conductivity values for all tissues except the
tissue in question

2. Select a vector σ of Nc possible isotropic conductivities for the tissue
in question

3. Compute the lead field matrix L(σi), i = 1, ..., Nc for each selected
conductivity value σi for the tissue in question

4. For each conductivity value index i = 1, ..., Nc

(a) For each node = 1, 2, ..., N of the search grid compute:

pi(node) = ||EEGref − Lnode(σi)L†node(σi)EEGref ||2
(b) Find the index node∗ minimizing pi(node)

(c) Compute the goal function value: (1− ||EEGref−Lnode∗ (σi)Mnode∗ ||2
||EEGref ||2 )

5. The optimal conductivity value is the one that corresponds to the
maximum goal function value, while the optimal reconstructed source
location is the node∗ for the optimal conductivity value.

Model evaluation

We evaluate the quality of the estimated conductivities and the accuracy of
our source reconstruction on the test models (bulk or detailed).

Our main concern is to investigate the influence of the skull modelling
on the quality of conductivity estimation.

To evaluate the quality of the conductivity estimation, a variability mea-
sure is defined that is able to compute a comparable quantity for both test
models, despite the fact that the possible estimated conductivity values
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belong to different ranges. For this purpose the coefficient of variation is
computed as:

Cv =
std

µ
× 100 , (4.4)

where std is the standard deviation and µ the mean value of the estimated
conductivities for a given model based on the 20 dipolar sources.

The localization errors are computed as the distance between the esti-
mated sources in a test model and the original source locations used for the
reference data generation.

Results

Influence of spongiosa modelling

The conductivity estimation results on the 20 manually selected sources are
visualized in Fig. 4.4.
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(a) Bulk model
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(b) Detailed model

Figure 4.4: The frequency of the estimated conductivities for the 20 man-
ually selected sources: The frequency of estimated conductivities for the
three patients, using the simplified model (a) and the model containing the
spongiosa (b). The compact bone conductivity value in the reference model
was 0.0064 S/m.

The results of our estimated conductivities show that the range of es-
timated conductivities when estimating the conductivity of the bulk skull
(bulk model) is [0.0042, 0.0118] S/m for Patient 1 and Patient 3, and [0.0042,
0.0099] S/m for Patient 2, whereas when estimating the compact bone con-
ductivity accounting for the spongiosa (detailed model) the intervals are
smaller: [0.0050, 0.0087] S/m for Patient 1, [0.0050, 0.0075] S/m for Patient 2,
and [0.0038, 0.0075] S/m for Patient 3.

The coefficient of variation (measuring the relative variability) of the
estimated conductivities in the bulk model is 29% for Patient 1, 23% for
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(a) Patient 1, bulk model
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(b) Patient 1, detailed model
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(c) Patient 2, bulk model

1

2

3

4

5

6

7

8

9

0
.0

0
2
6

0
.0

0
3
8

 0
.0

0
5

0
.0

0
6
3

0
.0

0
7
5

0
.0

0
8
7

0
.0

0
9
9

0
.0

1
1
1

0
.0

1
2
3

0
.0

1
3
6

0
.0

1
4
8

 0
.0

1
6

Conductivity Value (S/m)

L
o

c
a

liz
a

ti
o

n
 e

rr
o

r 
(m

m
)

 

 

(d) Patient 2, detailed model
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(e) Patient 3, bulk model
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(f) Patient 3, detailed model

Figure 4.5: Localization errors for the 20 manually selected sources, across
evenly spread conductivity values: results for three patients and their test
models. The red x symbols indicate the localization error for the 20 manually
selected dipoles.
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Patient 2 and 25% for Patient 3, whereas in the detailed model the values
are 17%, 11% and 14% respectively. The above implies that the relative
variability of the estimated conductivities is 77%, 106% and 80% higher for
each patient when estimating the conductivity of the bulk skull (bulk model)
as compared to the model accounting for the spongiosa (detailed model).

The results of the simultaneous conductivity estimation and source lo-
calization, for all patients, are presented in Fig. 4.5. The results show that
when using the bulk model to perform conductivity estimation and simul-
taneously recover the source locations, the obtained localization errors are
higher (with errors reaching 9 mm for some sources) compared to the results
obtained when using the detailed model where the localization errors are
below 3 mm (except for one source for Patient 1 in Plot 4.5 (b ).

Evaluation in the whole brain volume

Although the simulated data based on the 20 manually selected sources
represent different brain areas, the number of the sources is not sufficient to
explore the whole brain volume and assess the “global” performance of each
test model. Therefore, new reference data are generated for a large number
of probe – evaluation – sources with random orientations, that are evenly
spread in the brain volume.

Two settings of probe sources are investigated: a) probe sources are
placed on the nodes of the search grid used for the conductivity estimation
procedure and b) probe sources are shifted such that they are placed between
the nodes of the search grid. In the latter setting, there is no “inverse crime”,
since the locations used to generate the reference probe data differ from
the ones used for conductivity estimation. The reference probe data are
generated in each detailed model (used as reference) following an equivalent
procedure as described in Subsection 4.2.2. Conductivity estimation and
simultaneous source reconstruction is then performed for the new reference
probe data on the test models.

Evaluation of the conductivity estimation

The conductivity estimation results on both probe source settings are pre-
sented in Fig. 4.6. The results show that the range of estimated conduc-
tivities is higher when the bulk model is used for conductivity estimation,
compared to the results obtained using the detailed model.

The results in Figure 4.6(b) indicate the ideal scenario of conductivity
estimation, where all the estimated conductivities are concentrated to the
value 0.0063 S/m, i.e. the closest value to the conductivity used in the
reference data simulation (0.0064 S/m).

Observe that the values of the frequency of the estimated conductivities
in Figure 4.6(b) vary across the subjects. This is due to the size of the brain
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volume of each patient and the number of sources that could be spread
within it.
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(a) Bulk model: sources on the nodes
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(b) Detailed model: sources on the nodes
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(c) Bulk model: sources between the nodes
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(d) Detailed model: sources between the nodes

Figure 4.6: The frequency of estimated conductivities for three patients,
using a large number of probe sources spread in the brain volume. The
frequency of estimated conductivities on the bulk (a) and on the detailed
(b) model, in the ideal case where the probe sources had been on the nodes
of the search grid for the reference probe data simulation. The frequency
of estimated conductivities on the bulk (c) and on the detailed (d) model,
when the probe sources had been between the nodes of the search grid for
the reference probe data simulation. The compact bone conductivity value
in the reference volume conductor was 0.0064 S/m.

Evaluation of the localization errors

To evaluate the localization error on the whole brain volume, the mean
localisation error d(σi) for a conductivity value σi across the probe sources
is computed as: the mean distance between the original probe locations
(during the reference data simulation within the detailed model) and the
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reconstructed sources (within a test model) during a source reconstruction
step i.e. the reconstructed location node∗ for each probe source performing
the exhaustive search approach for a lead field matrix L(σi).

The localization errors of our test models are first evaluated over probe
sources that are placed on the nodes of the search grid used for conductivity
estimation. The obtained localization errors are illustrated in Fig. 4.7.

In this ideal situation, as both the simulated data (using the probe
sources) and the search grid nodes used for conductivity estimation are on
the same grid, the main difference between the probe data (simulated with
the detailed model and the reference conductivities) and the conductivity
estimation data fitting term (computed on a test model) comes from the dif-
ferences in conductivity between the two models. Thus when the bulk model
is used for conductivity estimation, its difference from the detailed model
comes from the simplification of the skull tissues geometry. On the other
hand, when the detailed model is used, its difference comes only from the
conductivity value for the compact bone (0.0064 S/m during the data gener-
ation instead of the conductivity value investigated during the conductivity
estimation).

As a consequence, the mean localization errors in the bulk model are in
general much higher than the mean localization errors in the detailed model,
with the minimum mean localization error in the bulk model (obtained for
the conductivity value 0.008 S/m) being 5.5 mm, 4.3 mm, and 4.3 mm re-
spectively for each patient, whereas in the detailed model (obtained for the
conductivity value 0.0063 S/m) it is 0 mm for all patients. The latter con-
firms the expected superior performance of the detailed model in source
localisation.

The localization errors of our models are then evaluated over the same
number of probe sources, but shifted such that they are placed between the
nodes of the search grid. The obtained results are illustrated in Fig. 4.8.

The mean localization errors for this probe setting are also higher in
the bulk model compared to the detailed model, with the minimum mean
localization error in the first (obtained for the conductivity value 0.008 S/m)
being 6 mm, 5.2 mm and 4.9 mm respectively for each patient, whereas in
the detailed model (obtained for the conductivity value 0.0063 S/m) being
1.7 mm for all patients. Compared to the results of Fig. 4.7 there is a
general increase of the mean localization errors in all test models, but most
noticeable is the increase in the detailed models for the minimum localisation
error, increasing from 0 mm to 1.7 mm for all patients.

Note that as the search grid used for conductivity estimation has 2× 2× 2 mm
resolution, the minimum distance between a probe source location (laying
in the middle of the search grid nodes) and the closest search grid node is
approximately 1.7 mm, thus explaining the noticeable increase of the mini-
mum mean localization error of the detailed models. The localization errors
of the bulk models are also affected by the 1.7 mm distance between a probe
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(a) Patient 1, bulk model
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(b) Patient 1, detailed model
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(c) Patient 2, bulk model
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(d) Patient 2, detailed model
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(e) Patient 3, bulk model
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(f) Patient 3, detailed model

Figure 4.7: Mean localization errors for the probe sources placed on the
search grid, across evenly spread conductivity values: results for three pa-
tients and their test models. The blue line indicates the mean localization
errors for the evenly spread probe sources placed on the search grid. The
dashed lines represent the standard deviation.
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(a) Patient 1, bulk model
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(b) Patient 1, detailed model
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(c) Patient 2, bulk model
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(d) Patient 2, detailed model
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(e) Patient 3, bulk model
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(f) Patient 3, detailed model

Figure 4.8: Mean localization errors for the probe sources placed off the
search grid, across evenly spread conductivity values: results for three pa-
tients and their test models. The dashed lines represent the standard devi-
ation.
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source and the closest search grid node, but as there are many localisation
errors with higher values than 1.7 mm (due to the model inaccuracies) the
minimum mean localization error is not that much (visually) affected.

Observe that the mean localization results can also be viewed as the
influence of wrongly estimated conductivity in source localization.

A head calibration scheme

Let us assume a plausible conductivity estimation scenario where one per-
forms conductivity estimation on an event-related stimulation paradigm
prior to collecting the actual data of interest, in order to calibrate the head
model (volume conductor) and “improve” the later data analysis (source
localization).

For example, consider that one would like to use SEP data in order
to estimate the conductivity of an unknown tissue. Setting the estimated
conductivity value for that tissue in his head model, one would like to analyse
some EEG recordings from a different EEG experiment. Note that the
location of the SEP arises within the somatosensory cortex whereas the
activity of the EEG experiment may lie elsewhere. In such a scenario, the
estimated conductivity of the tissue in question is optimised based on the
activity (and the location) of the event-related stimulation paradigm and
not on the activity of the actual data of interest.

Let us focus our attention on the inaccuracies one would get in the re-
constructed sources following such a conductivity estimation scheme. We
will investigate the following two questions: 1) when using an estimated
conductivity value based on a single source to later perform source local-
ization, what would be on average the obtained localization error? and 2)
when randomly selecting a source for conductivity estimation, what would
be on average the localisation error one should expect?

We will perform our investigation, using the estimated conductivities of
the 20 manually selected sources (assuming that one has used one of those
sources for the model calibration) and the localisation errors of the probe
sources to assess on the performance of the test models. The performance
of the test model will be evaluated on the values of the conductivities that
were estimated during the model calibration i.e. the subset J ⊆ {1 . . . 12}
of estimated conductivity values using the 20 manually selected sources.

To answer the first question, one should consider the mean localisation
error d(σi) for the subset J ⊆ {1 . . . 12} of conductivity values. The vari-
ability of those mean localisation errors is also investigated, computing the
difference of the maximum and minimum mean localisation errors for the
same set of conductivity values J ⊆ {1 . . . 12}.

Finally, to answer the second question, we introduce the expected mean
localization error metric computed as:
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E[ d ] =

∑
i
wid(σi)∑
i
wi

(4.5)

where d(σi) is the mean localization error across the probe sources for con-
ductivity value σi while wi is the number of times σi was estimated based on
our 20 manually placed sources, i.e the frequency of estimated conductivities
displayed in Figure 4.4(a).

The results of this investigation for both source configurations are sum-
marised in Table 4.1.

Our investigation is first performed using probe sources placed on the
nodes of the search grid used for conductivity estimation. The mean lo-
calization errors of the probe sources in this setting and the localization
errors of the 20 manually placed sources (supposed to be used for the head
calibration) are illustrated in Figure 4.9.

In the bulk model and for the same probe sources configuration, the
difference between the maximum and the minimum mean localization error
is 1.8 mm for Patient 1, 2.6 mm for Patient 2, and 2.4 mm for Patient 3.

The expected mean source localization error (5.98 mm, 4.89 mm, and
4.80 mm) for each patient respectively, is by 0.5 mm, 0.6 mm, and 0.5 mm
larger than the optimal error in the same model.

Our investigation is then performed using probe sources shifted between
the nodes of the search grid used for conductivity estimation. The mean
localization errors of the probe sources in this setting and the localization
errors of the 20 manually placed sources are illustrated in Figure 4.10.

In the bulk model for the shifted probe source configuration the difference
between the maximum and the minimum mean localization error is 1.7 mm
for Patient 1, 1.8 mm for Patient 2, and 2.0 mm for Patient 3.

The expected mean source localization error (6.43 mm, 5.62 mm, and
5.3 mm) for each patient is by 0.4 mm larger than the optimal error in the
same model for all the patients.

Selection of the skull tissue conductivity

Estimating spongiosa conductivity

To further analyse the influence of the skull inhomogeneity in conductivity
estimation, an additional investigation is performed estimating the conduc-
tivity of the spongy bone in the detailed model (instead of the conduc-
tivity of the compact bone). For this investigation we choose to evalu-
ate 12 isotropic spongy bone conductivity values evenly distributed in the
range [0.012, 0.0717] S/m including the commonly used conductivity value



86 CHAPTER 4. IMPORTANCE OF SKULL INHOMOGENEITY

T
a
b

le
4
.1

:
E

va
lu

ation
of

th
e

con
d

u
ctiv

ity
estim

ation
an

d
sou

rce
recon

stru
ction

resu
lts

for
all

th
ree

p
atien

ts
an

d
all

test
m

o
d

els.
L

isted
in

row
s

are:
(i)

C
v ,

th
e

co
effi

cien
t

of
variation

(in
p

ercen
t),

(ii)
th

e
ran

ge
of

th
e

m
ean

lo
calisation

errors
for

th
e

p
ro

b
e

so
u

rces
p

laced
o
n

th
e

n
o
d

es
of

th
e

search
grid

(in
m
m

),
(iii)

th
e

ran
ge

of
th

e
m

ean
lo

calisation
errors

for
th

e
p

rob
e

so
u

rces
p

la
ced

b
etw

een
th

e
n

o
d

es
of

th
e

search
grid

(in
m
m

),
(iv

)
th

e
ex

p
ected

m
ean

lo
calisation

error
for

th
e

p
rob

e
sou

rces
fo

r
p

laced
on

th
e

n
o
d

es
of

th
e

search
g
rid

(in
m
m

),
an

d
(v

)
th

e
ex

p
ected

m
ean

lo
calisation

error
for

th
e

p
rob

e
sou

rces
p
laced

b
etw

een
th

e
n

o
d

es
o
f

th
e

search
grid

.
T

h
e

ran
ge

of
th

e
m

ean
lo

calisation
errors

w
as

com
p

u
ted

for
i∈

J
,

w
h

ere
J
⊆
{1
...12}

is
th

e
set

o
f

estim
a
ted

co
n

d
u

ctiv
ity

valu
es

u
sin

g
th

e
20

m
an

u
ally

selected
sou

rces.
T

h
e

n
otation

s
P
o
n

an
d
P
o
f
f

d
istin

gu
ish

if
th

e
p

rob
e

sou
rces

w
h

ere
p

la
ced

o
n

o
r

b
etw

een
(off

)
th

e
search

grid
n

o
d

es
(u

sed
for

con
d

u
ctiv

ity
estim

ation
).

P
atien

t
1

P
atien

t
2

P
atien

t
3

M
etric

B
u

lk
D

etailed
B

u
lk

D
etailed

B
u

lk
D

etailed

C
v

2
9

17
23

11
25

14

d
i (P

o
n
)

[5.53
,

7.32
]

[0,
2.65]

[4.29,
6.92]

[0,
2.34]

[4.27,
6.71]

[0,
4.36]

d
i (P

o
f
f )

[6,
7
.7

1]
[1.74,

3.07]
[5.23,

6.99]
[1.74,

2.46]
[4.87,

6.94]
[1.75,

4.41]

E
[d

(P
o
n
)]

5.98
1.06

4.89
0.67

4.80
0.79

E
[d

(P
o
f
f )]

6.43
2.12

5.62
1.95

5.30
2.05



4.4. SELECTION OF THE SKULL TISSUE CONDUCTIVITY 87

0

2

4

6

8

10

12

14

0
.0

0
4
2

0
.0

0
6
1

 0
.0

0
8

0
.0

0
9
9

0
.0

1
1
8

0
.0

1
3
7

0
.0

1
5
5

0
.0

1
7
4

0
.0

1
9
3

0
.0

2
1
2

0
.0

2
3
1

 0
.0

2
5

Conductivity Value (S/m)

L
o

c
a

liz
a

ti
o

n
 e

rr
o

r 
(m

m
)

 

 

d(σ)

d(σ) − std

d(σ) + std

paradigm loc. error

(a) Patient 1, bulk model
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(b) Patient 1, detailed model

0

2

4

6

8

10

12

14

0
.0

0
4
2

0
.0

0
6
1

 0
.0

0
8

0
.0

0
9
9

0
.0

1
1
8

0
.0

1
3
7

0
.0

1
5
5

0
.0

1
7
4

0
.0

1
9
3

0
.0

2
1
2

0
.0

2
3
1

 0
.0

2
5

Conductivity Value (S/m)

L
o

c
a

liz
a

ti
o

n
 e

rr
o

r 
(m

m
)

 

 

d(σ)

d(σ) − std

d(σ) + std

paradigm loc. error

(c) Patient 2, bulk model
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(d) Patient 2, detailed model
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(e) Patient 3, bulk model

0

2

4

6

8

10

12

14

0
.0

0
2
6

0
.0

0
3
8

 0
.0

0
5

0
.0

0
6
3

0
.0

0
7
5

0
.0

0
8
7

0
.0

0
9
9

0
.0

1
1
1

0
.0

1
2
3

0
.0

1
3
6

0
.0

1
4
8

 0
.0

1
6

Conductivity Value (S/m)

L
o

c
a

liz
a

ti
o

n
 e

rr
o

r 
(m

m
)

 

 

d(σ)

d(σ) − std

d(σ) + std

paradigm loc. error

(f) Patient 3, detailed model

Figure 4.9: Localization errors for the 20 manually selected sources and the
probe sources placed on the search grid, across evenly spread conductivity
values: results for three patients and their test models. The red x symbols
indicate the localization error for the 20 manually selected sources. The
blue line indicates the mean localization errors for the evenly spread probe
sources placed on the search grid. The dashed lines represent the standard
deviation.
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(a) Patient 1, bulk model
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(b) Patient 1, detailed model
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(c) Patient 2, bulk model
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(d) Patient 2, detailed model
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(e) Patient 3, bulk model
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(f) Patient 3, detailed model

Figure 4.10: Localization errors for the 20 manually selected sources and the
probe sources placed off the search grid, across evenly spread conductivity
values: results for three patients and their test models. The red x symbols
indicate the localization error for the 20 manually selected sources. The
blue line indicates the mean localization errors for the evenly spread probe
sources placed off the search grid. The dashed lines represent the standard
deviation.
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(a) Compact bone
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(b) Spongy bone

Figure 4.11: Localization errors across evenly spread conductivity values,
estimating (a) the compact bone and (b) spongy bone conductivity on the
detailed model of Patient 2. The red x symbols indicate the localization
error for the 20 manually selected sources. The blue line indicates the mean
localization errors for the evenly spread probe sources placed off the search
grid. The dashed lines represent the mean localization errors for the evenly
spread probe sources plus (or minus) the standard deviation. For the refer-
ence data generation the compact bone conductivity was set to 0.0064 S/m
and for the spongy bone conductivity to 0.0287 S/m.

0.0287 S/m for the spongy bone which was used in the reference data gen-
eration described in Section 4.2.2.

Conductivity estimation and simultaneous source localization is per-
formed using the method described in Section 4.2.2 for the 20 manually
placed sources (see Section 4.2.2) and also the probe sources that are shifted
between the nodes of the search grid (see Section 4.3.2).

The conductivity estimation results for the spongiosa are compared to
the results obtained for the compacta and presented in Figure 4.11. The
results show that estimating the spongy bone conductivity under this range
of conductivities when the compact bone is known, does not influence signif-
icantly the source localization. Indeed the obtained localization errors are
quite low over the different conductivity values when estimating the spongy
bone conductivity. In contrast, when conductivity estimation was performed
on the compact bone the obtained localization errors increase more rapidly
over the different conductivity values. This justifies our choice in our inves-
tigations, performing conductivity estimation on the compact bone instead
of the spongy bone.
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(a) Colin27: 14.84% of spongy bone (b) BLNI2012: 8.57% of spongy bone

Figure 4.12: Comparison of two detailed models for Patient 2 with different
spongy bone distributions included in the skull: (a) the “Colin 27 Average
Brain” template and (b) the reference model in [65].
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(a) Colin27
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Figure 4.13: Localization errors across evenly spread conductivity values,
using two detailed models for Patient 2 with different spongy bone distri-
butions included in the skull: results using (a) the Colin27 detailed model
and (b) the BLNI2012 detailed model. The blue line indicates the mean
localization errors for the evenly spread probe sources placed off the search
grid. The dashed lines represent the standard deviation. For the reference
data generation the compact bone conductivity was set to 0.0064 S/m.
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Influence of the spongiosa distribution in compacta conduc-
tivity estimation

To determine the influence of the spongiosa distribution in conductivity
estimation, a new detailed model was constructed for Patient 2 using a
different spongy bone template. Note that we are back to compacta con-
ductivity estimation. The distribution of the spongy bone included in the
new detailed model was extracted from the reference model in [65] following
an equivalent procedure as described in Section 4.2.1. Let as refer to this
detailed model as “BLNI2012”. Recall that the distribution of the spongy
bone in the detailed model of Patient 2 was based on the “Colin 27 Aver-
age Brain” [52] template, already presented in Section 4.2.1. We will refer
to this model as “Colin27”. In the Colin27 detailed model, the amount of
spongiosa present in the skull was 14.84% of the overall skull tissue, whereas
in the BLNI2012 detailed model the amount of spongiosa was 8.57%. The
amount of spongiosa present within the skull, was estimated according to
the volume assigned to the spongiosa tissues relative to the total skull vol-
ume (spongiosa and compacta) in each generated FEM model. Note that
including the two different spongy bone distributions to the segmentation of
the same patient, allow us both to investigate the influence of the spongiosa
distribution in the same space (skull size and geometry) and also use the
same source locations for the data generation in both models.

Conductivity estimation and simultaneous source localization is per-
formed using the method described in Section 4.2.2 for the 20 manually
placed sources (see Section 4.2.2) and also the probe sources that are shifted
between the nodes of the search grid (see Section 4.3.2) on the BLNI2012
detailed model.

A side by side comparison of the two models is illustrated in Figure 4.12.
The conductivity estimation results and the obtained localization errors are
presented in Figure 4.13, comparing them with the previously obtained re-
sults on the Colin27 detailed model.

The coefficient of variation (measuring the relative variability) of the
estimated conductivities in the Colin27 detailed model was 11 % whereas in
the BLNI2012 detailed model the coefficient is 22 %. Comparing the above
coefficients of variation with the one obtained for the bulk model in the
same patient (see Section 4.3.1), the above values implies that the relative
variability of the estimated conductivities is 105 % and 7 % higher when
estimating the conductivity of the bulk skull (bulk model) as compared to
the models accounting for the spongiosa (the Colin27 and the BLNI2012
detailed model respectively).

Observe that the above increase in the relative variability is quite dif-
ferent when using the two detailed models (the Colin27 and the BLNI2012
relative to the bulk models). The difference between the Colin27 and the
BLNI2012 detailed model was the distribution of the spongy bone included
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in the same skull segmentation, which reduced from 14.84% to 8.57%. This
indicate that when the amount of spongy bone present in the skull is low,
the detailed model is not very different from the bulk model and thus the
importance of spongiosa within the skull is reduced.

Discussion

In this part, we performed simultaneous conductivity estimation and source
reconstruction on detailed and simplified realistic head models of three pa-
tients to investigate the influence of spongiosa in skull modelling for conduc-
tivity estimation. Our main goal was to quantify the amount of variability in
the estimated conductivities when the spongiosa was included or not within
the skull layer. The resulting source localisation errors were also computed.
Our conductivity estimation scheme was performed using a set of predefined
conductivity values for the tissue in question, fitting forward model compu-
tations (on the investigated models) to simulated EEG measurements (on
detailed head models considered as reference models). We simulated EEG
measurements considering single dipole sources placed manually in different
brain areas, and we also used a large number of probe sources evenly spread
in the brain to cover a large number of possible brain locations. Simultane-
ous conductivity estimation and source localisation was performed over all
simulated data.

Our results show that when estimating the bulk skull conductivity using
the manually placed sources the relative variance of the estimated values was
for the three patients larger than when taking the spongiosa into account.
An even higher variability of the estimated conductivities was observed,
when the conductivity estimation was performed using the probe sources.
This confirms our initial expectation with regard to the influence of the local
variation of the bulk skull conductivity due to the spongiosa distribution.

For the bulk models and the conductivity values estimated from some
of the 20 manually placed sources the mean localization error was at least
1.8 mm larger than the optimal error (i.e. the minimum mean localization
error). This means that, when selecting a single paradigm (an event-related
stimulation paradigm explained by a single dipole source) for conductivity
estimation it cannot be guaranteed that the localization error using the
resulting estimated conductivity will be optimal.

In the bulk models the majority of the localization errors for the 20
manually placed sources are smaller than the mean localization error of the
probe sources for the same conductivity value. This indicates that although
estimating the bulk skull conductivity from a chosen source paradigm leads
to decreased localization error for that paradigm, using the same conduc-
tivity value to explain the sources of the actual data of interest, may on
average lead to bigger localization errors.
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When randomly choosing a paradigm and estimating the bulk skull con-
ductivity an additional localization error of at least 0.5 mm has to be ex-
pected.

The presented issue could be mitigated by performing the conductivity
estimation not only for one but for multiple paradigms representing different
brain areas. The additional experiments may, however, require too much
time and effort for this to be a viable solution.

We mention the recent work [1] presenting an approach for estimating
the conductivity based on multiple near-dipolar scalp EEG maps automati-
cally extracted from continuous EEG data. Conductivity estimation in this
approach is based not only on a single source location, and in consequence,
the estimated values might yield estimated values which are closer to the
optimal value.

As an alternative solution, electrical impedance tomography (EIT) [98]
can be used, where current is injected through a pair of EEG electrodes while
the unknown conductivities can be estimated maximizing a goodness of fit
with the data at the other electrodes [79]. There, pairs of electrodes may
be used to increase the performance of conductivity estimation. Moreover,
the location of the source of the electrical activity and its waveform i.e the
injected electrical current at the pair of electrodes, is well known. Therefore,
the uncertainty of the source term in the conductivity estimation scheme is
eliminated, which could increase the accuracy of the estimated conductivi-
ties. This is hardly the case in EEG (or even in SEP measurements), where
the exact location of the activity is not perfectly known and may lead to
inaccuracies in the estimated conductivities due to wrongly estimated source
locations.

In our investigations, a decrease of the localisation errors in the detailed
models is observed compared to the bulk models, indicating that including
the spongiosa in skull modelling improves the source localisation accuracy.
This comes in agreement with the work in [28] where simulations were per-
formed on detailed and simplified skull models to investigate the influence on
the errors in the forward calculations and the reconstructed dipole locations.

According to the work of [3, 95] where the conductivity of several skull
samples was measured invasively, the conductivity of the human skull is
not homogeneous and depends on the local skull structures (presence of
compacta only or both compacta and spongiosa).

In our investigations (see Section 4.4.1), estimating the spongy bone con-
ductivity when the compact bone is known, did not influence significantly
the conductivity estimation results. This may indicate that lower conduc-
tivity values influence more the localization errors compared to misspecified
higher conductivity values. Therefore in the present work, we have chosen
to estimate the compact bone conductivity instead.

In our study we have chosen to simulate single dipole EEG data and use
a simple exhaustive search approach to localize them. Due to the simplicity
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of the localization method, which evaluates only the nodes of a search grid
to localize the sources, the reported sources location are restricted to lay on
the nodes of the evaluation grid. This can introduce localization errors that
depend on the resolution of the evaluation grid (see the discussion at the end
of Section 4.3.2) and can affect the estimated conductivities. The above issue
could be resolved considering several advanced source localisation techniques
existing both for dipolar or distributed sources [72].

Finally, our experiments have also shown that the reference model gen-
eration workflow allows to model compartments (skull spongiosa) even when
they are not visible in the original MRI data. An additional investigation on
real EEG measurements would however be required to determine whether a
bulk skull model or including spongiosa from a skull template to the individ-
ual’s skull segmentation would improve the conductivity estimation results.
In such an investigation one could follow a procedure similar to [15, 110]
in order to construct an accurate head model from MRI data (where the
skull spongiosa is visible), and combine EEG and MEG measurements to
estimate the compacta conductivity. Then using the created model as ref-
erence, could evaluate the performance of the other models with the bulk
skull and the included “artificial” spongiosa.

Conclusion

Our results show that without accounting for the internal skull structure the
conductivity estimation is not in all cases optimal. The estimated conduc-
tivity depends on the paradigm which data is used during the estimation
process.

We also recommend, if possible, to use a model that correctly represents
the internal structure of the skull to reduce the variability in the estimated
conductivities.



CHAPTER 5

General discussion and conclusion

The human head is an inhomogeneous medium, anatomically complicated,
composed of several tissues of various conductivities. While the conductivity
values of some head tissues may be considered as known, the conductivity
value of the skull shows great inter-subject and intra-subject variability.
Therefore an average conductivity value across a population can not be
used to describe the skull conductivity of each individual (see discussion in
Section 1.1).

In addition, EEG signals are affected by the conductivities of the head
tissues and particularly by the conductivity of the skull because of its low
value, which also affects the source localization accuracy in EEG. Therefore,
conductivity estimation techniques are required to minimize the uncertainty
of the unknown skull conductivity value (or values) and thus improve the
accuracy of source localization techniques, as established in [68]. The ulti-
mate goal of conductivity estimation to be achieved, is to avoid the invasive
measurements that are currently in use (see for example [63]), which can
cause implications to the individual.

The aim of conductivity estimation techniques is to determine the un-
known conductivity value within a domain from non invasive measurements
acquired at some distance of its boundary. To solve the inverse conductivity
estimation problem in EEG, and in addition to the EEG measurements, we
assumed the geometry of the head (including the internal tissues) and the
source parameters to be known.

While the geometry of the head tissues can be extracted (with suffi-
cient accuracy) from imaging modalities, the location of the sources is rarely
known in clinical or experimental applications. Exceptions are specific ex-
periments or well studied cases in EEG where the response of the brain to a
stimulus generates an electrical activity which is expected to arise within a
certain area of the brain. Such an example are the Somatosensory Evoked
Potentials (SEP) which are obtained in response to a sensory stimulus. The
location of the response activity arises within the somatosensory cortex and
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it is quite focal in that region of the brain. Still, SEP/SEF data source lo-
calization show significant inter-individual variability in terms of estimated
source locations and orientations.

Concerning the sources and in order to solve the inverse conductivity
estimation problem, one has either to have a priori knowledge about the
source distribution or to solve both the source localization and conductivity
estimation problems. The two problems depend on each others solution for
accurate results.

A priori knowledge about the sources can be obtained for example us-
ing SEP data, as the location of the response activity is “known” and the
activity is quite focal, thus can be explained by a single dipole. An alterna-
tive solution is to use simultaneously with EEG other modalities to locate
the sources, such as MEG that is shown to be nearly not affected by the
conductivity of the skull [15, 110] or even intracranial recordings as in [63].

Conductivity estimation on a homogeneous skull

We solved in Part I the conductivity estimation problem for the skull in a 3-
layered spherical head geometry, where the skull is modelled as a single and
homogeneous layer. The problem is solved from the available EEG partial
boundary data, expanded on the spherical harmonics basis, and transmitted
over the spherical interfaces by transfer functions, while the full knowledge
of the sources is given (through a number of coefficients of its spherical
harmonics expansion).

Linear algebra computations then allow us to find polynomials that pos-
sess a root which should coincide with the unknown skull conductivity, thus
solving the estimation problem. This proves that a solution to the skull
conductivity estimation problem exists, when the sources are known, and
also that the solution is unique and “stable”.

We provided a reconstruction algorithm for the skull conductivity, which
solves the problem with low computational cost. It uses a non-linear least
squares minimization scheme applied to the computed spherical harmonics
coefficients of the solution in the three layers. Our numerical study shows
that the algorithm is able to accurately estimate the skull conductivity, with
good robustness properties with respect to various levels of noise and source
configurations.

In reality, neither approximating the head tissues by spherical layers is
realistic, nor the location of the sources is perfectly known. To solve the
problem of unrealistic head geometry, realistically shaped head models have
been proposed to model the non spherical geometry of the head tissues in
greater detail. Using realistic head models, the source localization accuracy
was improved with respect to the spherical head models, but still, in most
applications the skull was modelled as a single bulk and homogeneous layer
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using an average (reported) conductivity value that might be far from the
true conductivity of a given individual.

Unlike the conductivity estimation case in our spherical head model,
where the unknown conductivity value was recovered solving polynomial
equations, in realistic models, one can estimate the unknown conductivity
value as the value that provides the best goodness of fit between the given
EEG data and a number of forward simulations considering different conduc-
tivity settings (varying the unknown tissue conductivity). If the sources are
not known (which is usually the case), additional forward simulations have
to be considered (for each conductivity setting) evaluating various source
locations in order to find the best goodness of fit to the given data, solving
simultaneously both problems [68].

Observe that estimating a conductivity value as the value that best ex-
plains the given EEG data via the given head model and the source param-
eters, the estimated value does not necessary have to match the biological
conductivity of the unknown tissue. This may happen because the head
models are approximations of the individuals head, with modelling inaccu-
racies in terms of tissue geometry and conductivity. Performing conductivity
estimation one also compensates for inaccuracies in the head model (assum-
ing that the source parameters are correct), which might yield to significant
improvement to the source localization accuracy. Thus, performing conduc-
tivity estimation can be viewed as an additional advantage over solving the
source localization problem alone.

Conductivity estimation on an inhomogeneous skull

Several studies based on invasive measurements and sensitivity analysis of
the skull conductivity show that the skull is indeed inhomogeneous, with
the local skull conductivity depending on the internal skull structure and
its local composition [3, 28, 95]. In Part II, we question the validity of the
human skull inhomogeneity for conductivity estimation in EEG, performing
a simulation study that compares two head models in realistic geometry:
the first modelling the skull as a single and homogeneous layer, the second
modelling its inhomogeneity by accounting for two different types of skull
tissues (compacta and spongiosa).

Our simultaneous conductivity estimation and source localization scheme
was performed using a set of predefined conductivity values for the tissue in
question, fitting forward model computations (on the investigated models)
to simulated EEG measurements (on detailed head models considered as
reference models). Simultaneous conductivity estimation and source local-
ization was performed over simulated data from single dipoles.

Our study shows that without accounting for the internal skull struc-
ture the conductivity estimation is not in all cases optimal. The estimated
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conductivity depends on the sources captured by the EEG data used dur-
ing the estimation process. When using a wrong conductivity value for the
bulk skull, the mean localization error computed over spread sources within
the whole head volume increased, while this increase is significantly lower
in the model accounting for the internal skull structure. Those results are
in agreement with previous studies showing that the internal structure of
the skull should be considered in the head modelling [28,73]. Therefore, we
recommend, if possible, to use a model that correctly represents the internal
structure of the skull to reduce the variability in the estimated conductivi-
ties.

Selection of skull tissue and conductivities

For the examined conductivity values in our study, our investigation suggest
that when accounting for the skull compact and spongiosa, conductivity es-
timation should be performed on compacta, as spongiosa has less influence
on the conductivity estimation procedure. When spongiosa can not be seg-
mented from the available data, a spongiosa template can be included within
the bulk skull instead, but to conclude whether including a skull template
improves or not the source localization in practice, further investigations are
needed. In [73] an artificial spongiosa layer was included within the skull
by iteratively eroding the compact layer, to improve the source localization
accuracy of the bulk skull model. The investigation was based only on a
single subject, which makes it difficult to conclude for the whole population.

Performing simultaneous conductivity estimation and source localization
in our study a number of forward simulations had to be considered with
different conductivity settings (varying the unknown conductivity value).
For each distinct conductivity setting, a new lead field matrix solution has
to be computed making the problem computationally demanding.

In an effort to determine the right conductivity range for conductivity
estimation, one may consider solving the conductivity estimation problem
first in a spherical geometry (where the solution can be obtained with low
computational cost) or find ways to improve the computational time of the
forward problem in the realistic geometry.

In [69], a method is proposed which allows to approximate the lead field
matrix for a set of conductivity configurations, using only the exact solution
for a small set of basis points from the conductivity space. This approach
has the computational advantage that allows one to investigate a wide range
of conductivity values with greater precision without making the problem
impractical (in terms of computational time).

Determining the conductivity points that influence most the conduc-
tivity estimation procedure could also be of great importance, rather than
selecting evenly spread conductivity points within a plausible range, as in
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our investigations.

Source localization, techniques and restrictions

As the source mislocation affects the estimated conductivities, the more
accurate the source estimation is the better the conductivity estimation will
perform. The choice of source model and source localization technique to
analyse the given EEG data is of crucial importance as the given EEG data
might capture focal or not activity, activity generated by one or more active
brain areas, different amounts of noise present in the data. In our study in
the realistic head geometry, a simple exhaustive search approach was used
assuming that only one dipolar source is active at a single time instant. This
assumption can already constrain a lot the use of our technique depending
on the expected nature of the sources in the given EEG data.

Several more advanced source localization techniques are proposed in the
literature, such as MUSIC [74] which can detect multiple dipolar sources,
techniques that try to separate the source [76] or that rely on distributed
sources. Among the techniques that rely on distributed sources are: mini-
mum norm [94], mixed norm [45], LORETA [81, 82], and EPIFOCUS [71]
which can be used to locate focal activity (as the one generated in SEP
and epileptic EEG recordings), see discussion in [72] for more techniques.
Finally, in [80] an extension to a data-based method has been developed
that learns a dictionary from a set of measurements aquired over multiple
repetitions (trials). The method has been developed to better handle the
trial to trial variability (variations in latency and phase of signals) than sim-
ply averaging them and is designed to handle multidimensional data, such
as MEG and EEG. Using such techniques with our conductivity estimation
scheme is expected to improve its use with more general and experimental
EEG recordings.

While in our study the whole brain was discretized forming a grid of
source locations that was used as the source space, the sources are in general
expected to arise within the gray matter and not within the white matter of
the brain. Using SEP or similar data where the sources are expected to arise
within a specific cortex lobe, this a priori information can be incorporated
into the conductivity estimation scheme restricting further the source space.
To restrict the source space and allow sources to be active only within the
somatosensory cortex, segmentation of this area should be performed, which
can be done using brain anatomical atlases. An anatomical brain atlas, is a
division of the brain into structures and can be registered to the individual’s
MRI data to segment the structure of interest (in our case the volume of the
somatosensory cortex) as illustrated in Fig 5.1.

Restricting the source parameters such as the amplitude, may also im-
prove the conductivity estimation procedure.
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Figure 5.1: Source space restriction using an anatomical atlas. [Left] A brain
anatomical atlas. [Middle] The registered atlas superimposed on a slice of
the individuals MRI data. [Right] The resulting restricted source space (in
red color).

Multimodal data

With continuous technological advances in computer power and the improve-
ments in imaging modalities, more and more information can be combined
to solve the inverse source localization problem in EEG.

Already, the geometry of the head tissues can be extracted by segment-
ing non-invasive imaging modalities and their combinations (see Section 1.5).
Due to the improvements in the resolution of the MRI sequences, segmen-
tation of the various head tissues is becoming more and more reliable. New
MRI sequences that better image the skull [106] are going to improve the
skull segmentation, which is currently challenging from MRI data, leading
to head models with improved accuracy.

In the recent years, an increasing number of approaches have emerged
that aim at improving the source localization by combining simultaneous
multimodal measurements, see for example [14] where MEG and EEG mea-
surements are combined to solve the problem.
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Mathematical notes and tools

Mathematical notes

Operators

In the three-dimensional Cartesian coordinate system we have the following
operators:

The gradient of a scalar function f , is a vector defined as:

grad f = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k .

Shows how fast f changes in the three directions.

The divergence of a vector field F is a scalar defined as:

div F = ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

.

The divergence at a point represents the degree to which a small volume
around the point is a source or a sink for the vector flow.

The Curl of a vector field F, is a vector defined as:

rot F = ∇× F =

(
∂Fz
∂y
− ∂Fy

∂z

)
i +

(
∂Fx
∂z
− ∂Fz

∂x

)
j +

(
∂Fy
∂x
− ∂Fx

∂y

)
k .

The Laplacian of a real valued function is a real valued quantity defined
as:

∆f = ∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0 .

The Laplace operator can be interpreted as the extent to which a point
represents a source or sink.
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Spherical coordinates

In a spherical domain the problem is usually considered in spherical coordi-
nates, an orthogonal three-dimensional coordinate system expressed by the
radius r, the inclination θ and the azimuth φ. The Cartesian coordinates
r = [x, y, z] can be retrieved from the spherical coordinates (radius r,
inclination θ, azimuth φ), where r ∈ [0,∞), θ ∈ [0, π], φ ∈ [0, 2π), by:

x = r sin θ cosφ ,
y = r sin θ sinφ ,
z = r cos θ .

Laplace equation

Laplace’s equation is a second-order partial differential equation often writ-
ten as:

∇2ϕ = 0 or ∆ϕ = 0 , (A.1)

where ∇2 = ∆ is the Laplace operator and ϕ is a scalar function.

The solutions of Laplace’s equation are called harmonic functions
(source Wiki, [51]).

In three dimensions, the problem is to find twice-differentiable real-
valued functions f , of real variables x, y, and z, such that the following
equation is satisfied in terms of:

Cartesian coordinates:

∆f =
∂2f

∂2
x

+
∂2f

∂2
y

+
∂2f

∂2
y

= 0 .

Spherical coordinates:

∆f =
1

ρ2

∂

∂ρ

(
ρ2∂f

∂ρ

)
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

ρ2 sin2 θ

∂2f

∂ϕ2
= 0 .

Harmonic functions

In a region Ω a function is called harmonic if it satisfies the Laplace equation
at every point in the region. If the region is the exterior of a certain closed
surface S, then it must in addition vanish like 1/l for l→∞.

Poisson equation:

If the right-hand side is specified as a given function, h(x, y, z), i.e., if the
whole equation is written as

∆f = h , (A.2)

then it is called ”Poisson’s equation”.
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Spherical harmonic coefficients

As we have seen in Section 2.4, the function of the potential ui(r, θ, ϕ) that
is harmonic on a boundary Si, can be expanded on spherical harmonic basis
of degree K > 0. The spherical harmonic coefficients gkm and β0km of the
expanded potensial u0(r0, θ, ϕ) and g(r2, θ, ϕ) can then be computed as:

gkm =

∫∫
S2

g(r2, θ, ϕ)rk2Ykm(θ, ϕ)sinθdθdϕ , (A.3)

β0km =

∫∫
S0

us(r0, θ, ϕ)r
−(k+1)
0 Ykm(θ, ϕ)sinθdθdϕ . (A.4)

See [33, Ch. II, Eq. (7.74)].

Boundary value problems

When a physical problem is considered in a bounded domain of space, for
example within a spherical geometry, then we are led to boundary value
problems [83].

Two of the most important boundary conditions are of the following
types:

1. Boundary conditions of the first kind (Dirichlet conditions).

2. Boundary conditions of the second kind (Neumann conditions).

The formulation of the Dirichlet and Neumann boundary conditions for the
Laplace equations follows.

Dirichlet boundary conditions

Find the solution of the equation ∆u = 0 in some domain of space (or plane)
which takes given values on the boundary.

For example find the distribution of the electric potential inside a domain
if the potential on its boundary is given.{

∆u = 0 in the domain Ω ,
u = ϕ on the boundary ∂Ω ,

where ϕ is a given function.

Neumann boundary conditions

Find the solution of the given equation in some domain of space (or plane)
assuming that the outwards normal derivative ∂nu (which is propor-
tional to the mass flux) is given on ∂Ω.{

∆u = 0 in the domain Ω ,
∂nu = ϕ on the boundary ∂Ω .
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The Neumann problem has a meaning only in the case where the total
flux through the boundary ∂Ω is equal to zero (

∫
∂Ω ∂nuds = 0).

Neumann boundary conditions and Poisson equation

The Dirichlet and Neumann boundary conditions are formulated similarly
for the Poisson equation ∆u = f .

For the Neumann boundary value problem:{
∆u = f in the domain Ω ,
∂nu = ϕ on the boundary ∂Ω ,

to have a solution it is necessary and sufficient that∫
Ω
fdx =

∫
∂Ω
ϕds .

Another peculiarity of the Neumann boundary problem for the Poisson equa-
tion is that the solution is not unique.

One way of solving such problems is by finding a set of solutions of the
homogeneous partial differential equation in question that satisfies certain
boundary conditions. Based on the linear superposition of those solution
one is able to construct the general solution.
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[44] N. G. Gençer and C. E. Acar. Sensitivity of EEG and MEG mea-
surements to tissue conductivity. Physics in Medicine and Biology,
49(5):701, Mar. 2004.

[45] A. Gramfort, M. Kowalski, and M. Hämäläinen. Mixed-norm es-
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[100] S. Vallaghé and M. Clerc. A global sensitivity analysis of three- and
four-layer EEG conductivity models. IEEE Transactions on Biomed-
ical Engineering, 56(4):988–995, Apr. 2009.

[101] S. Vallaghe and M. Clerc. A Global Sensitivity Analysis of Three-
and Four-Layer EEG Conductivity Models. IEEE Transactions on
Biomedical Engineering, 56(4):988–995, Apr. 2009.

http://darwin.bio.uci.edu/~cestark/roial/roial.html
http://darwin.bio.uci.edu/~cestark/roial/roial.html


114 BIBLIOGRAPHY
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