A. P. Selvadurai, Partial Differential Equations in Mechanics 1:Fun- damentals, Laplace's Equation, Diffusion Equation, 2013.

A. P. Selvadurai, Partial Differential Equations in Mechanics 2: the Biharmonic Equation, Poisson's Equation, 2013.
DOI : 10.1007/978-3-662-09205-7

M. Stone and P. Goldbart, Mathematics for physics: a guided tour for graduate students, 2009.
DOI : 10.1017/CBO9780511627040

G. Barton, Elements of Green's functions and propagation: potentials, diffusion, and waves, 1989.

S. Agmon, Lectures on elliptic boundary value problems, 2010.
DOI : 10.1090/chel/369

O. Pantz and C. Acad, Sensibilit?? de l'??quation de la chaleur aux sauts de conductivit??, Comptes Rendus Mathematique, vol.341, issue.5, pp.333-337, 2005.
DOI : 10.1016/j.crma.2005.07.005

M. M. Brahim, Méthodes d'´ eléments finis pour leprobì eme de changement de phase en milieux composites, 2016.

P. Grisvard, Elliptic problems in nonsmooth domains, SIAM, 2011.
DOI : 10.1137/1.9781611972030

C. S. Peskin, The immersed boundary method, Acta numerica, vol.11, pp.479-517, 2002.

A. Gilmanov and F. Sotiropoulos, A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, Journal of Computational Physics, vol.207, issue.2, pp.457-492, 2005.
DOI : 10.1016/j.jcp.2005.01.020

P. Mccorquodale, P. Colella, D. P. Grote, and J. Vay, A node-centered local refinement algorithm for Poisson's equation in complex geometries, Journal of Computational Physics, vol.201, issue.1, pp.34-60, 2004.
DOI : 10.1016/j.jcp.2004.04.022

A. Mckenney, L. Greengard, and A. Mayo, A Fast Poisson Solver for Complex Geometries, Journal of Computational Physics, vol.118, issue.2, pp.348-355, 1995.
DOI : 10.1006/jcph.1995.1104

F. Gibou, R. P. Fedkiw, L. Cheng, and M. Kang, A Second-Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains, Journal of Computational Physics, vol.176, issue.1, pp.205-227, 2002.
DOI : 10.1006/jcph.2001.6977

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://www.ann.jussieu.fr/~frey/papers/levelsets/Osher S., Fronts propagating with curvature dependent speed.pdf

J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

C. Min, F. Gibou, and H. D. Ceniceros, A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids, Journal of Computational Physics, vol.218, issue.1, pp.123-140, 2006.
DOI : 10.1016/j.jcp.2006.01.046

F. Gibou, C. Min, and R. Fedkiw, High Resolution Sharp Computational Methods for Elliptic and Parabolic Problems in Complex Geometries, Journal of Scientific Computing, vol.179, issue.2, pp.369-413, 2013.
DOI : 10.1006/jcph.2002.7066

J. Huh and J. A. Sethian, Exact subgrid interface correction schemes for elliptic interface problems, Proceedings of the National Academy of Sciences, vol.1, issue.29, pp.9874-9879, 2008.
DOI : 10.2140/camcos.2006.1.207

URL : http://www.pnas.org/content/105/29/9874.full.pdf

D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant et al., A locally refined rectangular grid finite element method: Application to computational fluid dynamics and computational physics, Journal of Computational Physics, vol.92, issue.1, pp.1-66, 1991.
DOI : 10.1016/0021-9991(91)90291-R

H. Johansen and P. Colella, A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains, Journal of Computational Physics, vol.147, issue.1, pp.60-85, 1998.
DOI : 10.1006/jcph.1998.5965

A. N. Marques, J. Nave, and R. R. Rosales, High order solution of Poisson problems with piecewise constant coefficients and interface jumps, Journal of Computational Physics, vol.335, pp.497-515, 2017.
DOI : 10.1016/j.jcp.2017.01.029

X. Li, J. Lowengrub, A. Rätz, and A. Voigt, Solving pdes in complex geometries, Communications in Mathematical Sciences, vol.7, issue.1, p.81, 2009.
DOI : 10.4310/CMS.2009.v7.n1.a4

A. Guittet, M. Lepilliez, S. Tanguy, and F. Gibou, Solving elliptic problems with discontinuities on irregular domains ??? the Voronoi Interface Method, Journal of Computational Physics, vol.298, pp.747-765, 2015.
DOI : 10.1016/j.jcp.2015.06.026

A. Guittet, M. Theillard, and F. Gibou, A stable projection method for the incompressible Navier???Stokes equations on arbitrary geometries and adaptive Quad/Octrees, Journal of Computational Physics, vol.292, pp.215-238, 2015.
DOI : 10.1016/j.jcp.2015.03.024

A. J. Chorin, A Numerical Method for Solving Incompressible Viscous Flow Problems, Journal of Computational Physics, vol.135, issue.2, pp.118-125, 1997.
DOI : 10.1006/jcph.1997.5716

F. Losasso, F. Gibou, and R. Fedkiw, Simulating water and smoke with an octree data structure, ACM Transactions on Graphics, vol.23, issue.3, pp.457-462, 2004.
DOI : 10.1145/1015706.1015745

URL : http://graphics.stanford.edu/~fedkiw/papers/stanford2004-02.pdf

S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, vol.190, issue.2, pp.572-600, 2003.
DOI : 10.1016/S0021-9991(03)00298-5

URL : https://hal.archives-ouvertes.fr/hal-01445436

Z. Li and C. Wang, A Fast Finite Differenc Method For Solving Navier-Stokes Equations on Irregular Domains, Communications in Mathematical Sciences, vol.1, issue.1, pp.180-196, 2003.
DOI : 10.4310/CMS.2003.v1.n1.a11

E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, vol.161, issue.1, pp.35-60, 2000.
DOI : 10.1006/jcph.2000.6484

M. A. Olshanskii, K. M. Terekhov, and Y. V. Vassilevski, An octree-based solver for the incompressible Navier???Stokes equations with enhanced stability and low dissipation, Computers & Fluids, vol.84, pp.231-246, 2013.
DOI : 10.1016/j.compfluid.2013.04.027

A. Mcadams, E. Sifakis, and J. Teran, A parallel multigrid poisson solver for fluids simulation on large grids, Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.65-74, 2010.

R. A. Finkel and J. L. Bentley, Quad trees a data structure for retrieval on composite keys, Acta Informatica, vol.4, issue.1, pp.1-9, 1974.
DOI : 10.1007/BF00288933

S. F. Frisken and R. N. Perry, Simple and Efficient Traversal Methods for Quadtrees and Octrees, Journal of Graphics Tools, vol.14, issue.3, pp.1-11, 2002.
DOI : 10.1111/j.1467-8659.1995.cgf143_0383.x

URL : http://www.merl.com/papers/docs/TR2002-41.pdf

A. D. Angelo, A brief introduction to quadtrees and their applications

H. Samet, Hierarchical spatial data structures Design and Implementation of Large Spatial Databases, pp.191-212, 1990.

H. Samet, An Overview of Quadtrees, Octrees, and Related Hierarchical Data Structures, Theoretical Foundations of Computer Graphics and CAD, pp.51-68, 1988.
DOI : 10.1007/978-3-642-83539-1_2

M. R. Lattanzi, Table-driven quadtree traversal algorithms, 1989.

H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys, vol.16, issue.2, pp.187-260, 1984.
DOI : 10.1145/356924.356930

URL : http://www.cs.umd.edu/~hjs/pubs/SameCSUR84-ocr.pdf

E. Balaras and M. Vanella, Adaptive mesh refinement strategies for immersed boundary methods, " in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p.162, 2009.

P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco, Dynamic octree load balancing using space-filling curves, 2003.

T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, Space-filling curves and their use in the design of geometric data structures, Theoretical Computer Science, vol.181, issue.1, pp.3-15, 1997.
DOI : 10.1016/S0304-3975(96)00259-9

G. M. Morton, A computer oriented geodetic data base and a new technique in file sequencing, International Business Machines Company, 1966.

C. Burstedde, L. C. Wilcox, and O. Ghattas, : Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees, SIAM Journal on Scientific Computing, vol.33, issue.3, pp.1103-1133, 2011.
DOI : 10.1137/100791634

D. Causon and C. Mingham, Introductory finite difference methods for PDEs, Bookboon, 2010.

D. N. Arnold, Lecture notes on numerical analysis of partial differential equations, 2012.

R. J. Leveque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, 2007.
DOI : 10.1137/1.9780898717839

R. E. White, Computational Mathematics: Models, Methods, and Analysis with MATLAB R and MPI, 2015.
DOI : 10.1201/9780203494479

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, vol.82, issue.1, pp.64-84, 1989.
DOI : 10.1016/0021-9991(89)90035-1

M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.53, issue.3, pp.484-512, 1984.
DOI : 10.1016/0021-9991(84)90073-1

O. V. Vasilyev, High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation Properties, Journal of Computational Physics, vol.157, issue.2, pp.746-761, 2000.
DOI : 10.1006/jcph.1999.6398

URL : http://ctr-sgi1.stanford.edu/CTR/ResBriefs98/vasilyev.pdf

F. Ham, F. Lien, and A. Strong, A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids, Journal of Computational Physics, vol.177, issue.1, pp.117-133, 2002.
DOI : 10.1006/jcph.2002.7006

K. W. Morton and D. F. Mayers, Numerical solution of partial differential equations: an introduction, 2005.
DOI : 10.1017/CBO9780511812248

D. N. Arnold, Stability, consistency, and convergence of numerical discretizations, Encyclopedia of Applied and Computational Mathematics, pp.1358-1364, 2015.

P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Communications on Pure and Applied Mathematics, vol.5, issue.2, pp.267-293, 1956.
DOI : 10.1002/sapm1950291223

M. Kadri, Analysis of the nine-point finite difference approximation for the heat conduction equation in a nuclear fuel element, 1983.

Z. Chen, D. Cheng, W. Feng, and T. Wu, An optimal 25-point finite difference scheme for the Helmholtz equation with PML, Journal of Computational and Applied Mathematics, vol.236, issue.6, pp.389-410, 2013.
DOI : 10.1016/j.cam.2011.08.007

C. Jo, C. Shin, and J. H. Suh, An optimal 9???point, finite???difference, frequency???space, 2-D scalar wave extrapolator, GEOPHYSICS, vol.61, issue.2, pp.529-537, 1996.
DOI : 10.1190/1.1443979

C. Batty, A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients, Journal of Computational Physics, vol.331, pp.49-72, 2017.
DOI : 10.1016/j.jcp.2016.11.035

M. Cisternino, A. Iollo, L. Weynans, A. Colin, and P. Poulin, Electrostrictive materials: modelling and simulation, 7 th European Congress on Computational Methods in Applied Sciences and Engineering, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411132

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

G. Carbou and P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Advances in Differential Equations, pp.1453-1480, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00295077

F. Chantalat, C. Bruneau, C. Galusinski, and A. Iollo, Level-set, penalization and cartesian meshes: A paradigm for inverse problems and optimal design, Journal of Computational Physics, vol.228, issue.17, pp.6291-6315, 2009.
DOI : 10.1016/j.jcp.2009.05.017

URL : https://hal.archives-ouvertes.fr/hal-00385460

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune et al., Petsc users manual revision 3, tech. rep., Argonne National Laboratory (ANL), p.2014
DOI : 10.2172/1178102

R. W. Freund, G. H. Golub, and N. M. , Iterative solution of linear systems, Acta Numerica, vol.13, pp.57-100, 1992.
DOI : 10.1137/0720023

URL : ftp://elib.stanford.edu/pub/reports/na/m/91/05/NA-M-91-05.ps

K. Morikuni, L. Reichel, and K. Hayami, FGMRES for linear discrete ill-posed problems, Applied Numerical Mathematics, vol.75, pp.175-187, 2014.
DOI : 10.1016/j.apnum.2013.08.004

URL : http://www.math.kent.edu/~reichel/publications/fgmres.pdf

Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM Journal on Scientific Computing, vol.14, issue.2, pp.461-469, 1993.
DOI : 10.1137/0914028

URL : ftp://ftp.cs.umn.edu/dept/users/saad/reports/PDF/umsi-91-279.pdf

V. Voller, An overview of numerical methods for solving phase change problems Advances in numerical heat transfer, pp.341-380, 1997.

F. Jelassi, M. Aza¨?ezaza¨?ez, E. Palomo, and D. Barrio, A substructuring method for phase change modelling in hybrid media, Computers & Fluids, vol.88, issue.Complete, pp.81-92, 2013.
DOI : 10.1016/j.compfluid.2013.09.003

X. Jin, H. Hu, X. Shi, X. Zhou, and X. Zhang, Comparison of two numerical heat transfer models for phase change material board, Applied Thermal Engineering, vol.128, 2017.
DOI : 10.1016/j.applthermaleng.2017.09.015

V. Voller, FAST IMPLICIT FINITE-DIFFERENCE METHOD FOR THE ANALYSIS OF PHASE CHANGE PROBLEMS, Numerical Heat Transfer, Part B: Fundamentals, vol.4, issue.2, pp.155-169, 1990.
DOI : 10.1080/10407799008961731

V. Voller and C. Swaminathan, ERAL SOURCE-BASED METHOD FOR SOLIDIFICATION PHASE CHANGE, Numerical Heat Transfer, Part B: Fundamentals, vol.19, issue.2, pp.175-189, 1991.
DOI : 10.1080/10407798908944899

T. Kim, D. M. France, W. Yu, W. Zhao, and D. Singh, Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power, Solar Energy, vol.103, pp.438-447, 2014.
DOI : 10.1016/j.solener.2014.02.038

J. Brusche, A. Segal, C. Vuik, and H. Urbach, A Comparison of Enthalpy and Temperature Methods for Melting Problems on Composite Domains, Numerical Mathematics and Advanced Applications, pp.585-592, 2006.
DOI : 10.1007/978-3-540-34288-5_55

P. Giménez, A. Jové, C. Prieto, and S. Fereres, Effect of an increased thermal contact resistance in a salt PCM-graphite foam composite TES system, Renewable Energy, vol.106, pp.321-334, 2017.
DOI : 10.1016/j.renene.2017.01.032

Z. Acem, J. Lopez, and E. P. Barrio, KNO3/NaNO3 ??? Graphite materials for thermal energy storage at high temperature: Part I. ??? Elaboration methods and thermal properties, Applied Thermal Engineering, vol.30, issue.13, pp.1580-1585, 2010.
DOI : 10.1016/j.applthermaleng.2010.03.013