Genetic Programming Based on Novelty Search

Enrique Naredo 1
1 CQFD - Quality control and dynamic reliability
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Résumé : Novelty Search (NS) is a unique approach towards search and optimization, where an explicit objective function is replaced by a measure of solution novelty. However, NS has been mostly used in evolutionary robotics, its usefulness in classic machine learning problems has been unexplored. This thesis presents a NS-based Genetic Programming (GP) algorithms for common machine learning problems, with the following contributions. It is shown that NS can solve real-world classification, clustering and symbolic regression tasks, validated on realworld benchmarks and synthetic problems. These results are made possible by using a domain-specific behavior descriptor, related to the concept of semantics in GP. Moreover, two new versions of the NS algorithm are proposed, Probabilistic NS (PNS) and a variant of Minimal Criteria NS (MCNS). The former models the behavior of each solution as a random vector and eliminates all the NS parameters while reducing the computational overhead of the NS algorithm; the latter uses a standard objective function to constrain and bias the search towards high performance solutions. The thesis also discusses the effects of NS on GP search dynamics and code growth. Results show that NS can be used as a realistic alternative for machine learning, and particularly for GP-based classification.
Type de document :
Thèse
Artificial Intelligence [cs.AI]. ITT, Instituto tecnologico de Tijuana, 2016. English
Liste complète des métadonnées

Littérature citée [160 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/tel-01668776
Contributeur : Pierrick Legrand <>
Soumis le : mercredi 20 décembre 2017 - 11:57:31
Dernière modification le : jeudi 11 janvier 2018 - 06:22:12

Fichier

NaredoFINALThesis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : tel-01668776, version 1

Collections

Citation

Enrique Naredo. Genetic Programming Based on Novelty Search. Artificial Intelligence [cs.AI]. ITT, Instituto tecnologico de Tijuana, 2016. English. 〈tel-01668776〉

Partager

Métriques

Consultations de la notice

127

Téléchargements de fichiers

129