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R�esum�e de la th�ese

La modi�cation d'un simple nucl�eotide, �a une position tr�es pr�ecise dans le g�enome,
peut accroitre ou d�ecroitre le risque, pour un individu donn�e, de d�eclarer une mal-
adie. Pour d�ecouvrir ces modi�cations, des �etudes d'association sur un g�enome
complet (Genome Wide Association Study ou GWAS) sont e�ectu�ees. Ces analyses
comparent les points de polymorphisme (Single Nucleotide Polymorphism ou SNP)
de deux groupes d'individus: un groupe a�ect�e par la maladie et un groupe compos�e
d'individus sains. Un SNP est associ�e �a une maladie s'il apparait plus fr�equemment
dans le groupe des malades que dans le groupe sain. La d�etection des SNPs aident
�a mieux cibler les traitements et �a pr�evenir les risques. Les analyses GWAS sont
particuli�erement utiles dans le cas de maladies complexes comme l'asthme, le cancer,
le diab�ete, les maladies cardiaques ou les maladies mentales.

Le probl�eme est que la plupart des maladies ne sont pas caus�ees par une mutation
unique, mais souvent par plusieurs modi�cations localis�ees dans plusieurs g�enes (i.e.
une combinaison de plusieurs SNPs). Par exemple, des maladies g�en�etiques telles
que la bipolarit�e, la schizophr�enie, le diab�ete de type 2 ou quelques cancers, sont
polyg�eniques et montrent une forte h�et�erog�en�eit�e g�en�etique. Ainsi, des patients
pr�esentant des symptômes identiques peuvent avoir des pro�ls g�en�etiques di��erents
et peuvent donc r�epondre di��eremment aux mêmes m�edicaments.

Beaucoup de strat�egies ont �et�e explor�ees pour d�etecter les interactions entre vari-
ants g�en�etiques. Plusieurs m�ethodes sont bas�ees sur des approches statistiques telles
que la r�egression logistique ou les mod�eles de Bayes. D'autres adoptent des tech-
niques dapprentissage comme les SVM (Support Vector Machines), les r�eseaux de
neurones, les arbres de d�ecision ou les mod�eles arborescents al�eatoires. Ces strat�egies
sont cependant limit�ees �a l'analyse de petits jeux de donn�ees et d�etectent au mieux
des interactions entre 2 SNPs.

Pour pallier ces limitations, diverses solutions bas�ees sur la recherche de pat-
terns discriminatifs ont �et�e investigu�ees. La recherche de patterns discriminatifs
a pour objectif d'extraire des ensemble de SNPs (des patterns) qui apparaissent
plus fr�equemment dans une classe que dans une autre. Il a �et�e montr�e que ces
entit�es sont extrêmement pertinentes dans une large gamme d'applications. Plus
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6 R�esum�e de la th�ese

sp�eci�quement, en bio-informatique, cette strat�egie a �et�e appliqu�ee �a l'identi�cation
de combinaisons de SNPs, �a l'expression di��erentielle de g�enes ou �a la d�ecouverte
de motifs phosphoryl�es.

La recherche de patterns discriminatifs poss�ede l'avantage majeur de manip-
uler e�cacement la recherche de combinaison de SNPs. Par contre, cette strat�egie
rencontre un certain nombre de limitations qui freinent signi�cativement son utili-
sation dans le cadre d'�etude g�enomiques �a grande �echelle. Nous listons maintenant
quelques-unes de ces limitations et indiquons les d�e�s associ�es:

1. Mesure de la force d'association . Il existe une grande vari�et�e de mesures
statistiques pour �evaluer la force d'association entre les patterns biologiques
et les maladies. D�eterminer quelle mesure de qualit�e est la mieux adapt�ee
pour �a la fois ent�eriner la d�ecouverte d'un motif biologique et guider le pro-
cessus algorithmique vers sa d�ecouverte est un d�e� �a part enti�ere. De plus,
pour chaque mesure, il faut g�en�eralement choisir (empiriquement) un seuil per-
mettant d'atteindre un haut niveau de qualit�e. En pratique, c'est une tâche
particuli�erement di�cile. La raison principale est que si le seuil n'est pas strict,
un grand nombre de patterns inint�eressants est g�en�er�e. A l'oppos�e, avec un
seuil strict beaucoup de patterns signi�catifs peuvent ne pas être retenus. Il
faut donc d�e�nir des strat�egies beaucoup plus 
exibles pour r�esoudre cet an-
tagonisme.

2. E�cacit�e des calculs . La recherche de combinaisons d'un nombre de SNPs
cons�equent accroit fortement la complexit�e des calculs: le nombre de possi-
bilit�es augmente exponentiellement avec le nombre de SNPs consid�er�es dans
un pattern. Les approches \force-brute" peuvent g�en�eralement analyser un
petit nombre de SNPs (quelques centaines) tandis que des approches \heuris-
tiques", qui en manipulent beaucoup plus, peuvent ne pas d�etecter des combi-
naisons pertinentes. Le d�e�, ici, est de mettre en place de nouvelles m�ethodes
algorithmiques avec un �elagage e�cace de l'espace de recherche.

3. Tests d'hypoth�eses multiples . Cette limitation repr�esente un d�e� encore
plus important. Les algorithmes usuels g�en�erent �enorm�ement de patterns.
Beaucoup d'entre eux sont d�ecouverts par chance. Un grand nombre de tests
d'hypoth�eses est donc n�ecessaire pour corriger la signi�cation statistique des
r�esultats. Cette tâche est excessivement coûteuse en temps de calcul. Une
mani�ere d'attaquer le probl�eme est d'int�egrer directement les tests statistiques
au sein même du processus de recherche de patterns.

4. Visualisation des patterns . Les patterns discriminatifs repr�esentent le
r�esultat de la fouille, mais doivent être valid�es par des experts. La plupart du
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temps, les outils se bornent �a g�en�erer une liste (trop) importante de patterns,
liste qui inclut souvent des �el�ements redondants. L'interpr�etation est alors
di�cile, d'autant plus que le r�esultat est fourni textuellement, g�en�eralement
sans �el�ements contextuels. Il apparait donc n�ecessaire de restituer les r�esultats
dans un cadre plus confortable pour les experts du domaine, notamment par le
biais d'outils graphiques qui permettent rapidement de positionner l'essentiel
de l'information.

Le travail de th�ese pr�esent�e dans ce manuscrit est une contribution �a ces di��erents
d�e�s. Plus sp�eci�quement, nous proposons les solutions suivantes:

Premi�erement, pour mieux �evaluer la force d'association entre combinaisons de
SNPs et maladies g�en�etiques, une strat�egie d'analyse 
exible est propos�ee. Elle se
base sur la technique des \skypatterns" qui exploite une combinaison de mesures
pour juger de la pertinence d'un pattern.

Deuxi�emement, pour tenter de r�esoudre les probl�emes d'e�cacit�e et de tests
d'hypoth�eses multiples, nous proposons un nouvel algorithme, appel�e SSDPS (pour
Statistically Signi�cant Discriminative Patterns Search ), qui extrait des patterns
discriminants �a partir d'un jeu de donn�ees constitu�e de 2 classes. Plus pr�ecis�ement,
l'algorithme SSDPS recherche des patterns qui satisfont �a la fois des scores discrim-
inatifs et des intervalles de con�ance. Ces patterns sont d�e�nis comme patterns
statistiquement signi�catifs et discriminants. L'algorithme SSDPS se base sur une
strat�egie de recherche dans laquelle les propri�et�es anti-monotones des mesures de
risque et d'intervalles de con�ance sont avantageusement exploit�ees. Ces propri�et�es
permettent d'�elaguer tr�es e�cacement l'espace de recherche. De plus, cet algorithme
permet de d�ecouvrir des ensembles complets de patterns discriminatifs avec un seuil
de fr�equence tr�es bas. Il utilise �egalement des strat�egies heuristiques pour seule-
ment extraire les patterns les plus grands. Des exp�erimentations sur des jeux de
donn�ees r�eels montrent que l'algorithme SSDPS peut e�ectivement d�ecouvrir des
combinaisons int�eressantes de SNPs en tr�es peu de temps. Beaucoup de ces combi-
naisons contiennent des SNPs qui sont connus pour être associ�es �a des maladies.

Troisi�emement, pour aider �a mieux interpr�eter les r�esultats de l'algorithme SS-
DPS, nous avons d�evelopp�e un outil graphique interactif, appel�e SNPvisual, qui
visualise et positionne les patterns de SNPs directement sur le g�enome. Cet outils
int�egre �egalement d'autres informations permettant de resituer les patterns dans un
contexte biologique.

Bien que ces travaux de th�ese se concentrent sur l'�etude d'association sur l'ensemble
d'un g�enome, d'autres tâches bio-informatiques telles que la d�ecouverte d'expression
g�enique, la recherche de motifs de phosphorylation ou la d�etection de motifs de
r�egulation, peuvent tirer parti de ces recherches. Il faut noter que le probl�eme de
la recherche de combinaisons de SNPs associ�ees �a une maladie a �et�e tr�es largement
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�etudi�e par le biais d'approches statistiques, d'apprentissage ou de fouille de donn�ees.
N�eanmoins, nous estimons que les solutions propos�ees dans ce travail de th�ese restent
originales. Elles apportent un ensemble de techniques compl�ementaires par rapport
�a l'�etat de l'art actuel.

Le manuscrit est structur�e en 5 chapitres dont nous donnons rapidement, pour
chacun d'eux, le contenu.

Chapitre 1 : Etat de l'art sur la recherche de patterns discriminatif en bio-
informatique.

Dans ce chapitre, un �etat de l'art des techniques de recherche de patterns dis-
criminatifs et de leurs applications en bio-informatique est pr�esent�e. Une d�e�nition
pr�ecise du probl�eme est d'abord introduite. Puis quelques mesures statistiques stan-
dard pour �evaluer la puissance de discrimination ainsi que des m�ethodes de correc-
tion de la signi�cativit�e statistique sont pr�esent�ees. Nous poursuivons en d�etaillant
quelques algorithmes du domaine avec leur application en bio-informatique. Nous
terminons par exposer les d�e�s et les motivations de nos travaux de recherche.

Chapitre 2 : Identi�cation de combinaisons de variants g�en�etique avec des \Sky-
patterns".

Ce chapitre d�ecrit une m�ethode pour identi�er des combinaisons de variants
g�en�etiques associ�ees �a une maladie avec la technique Skypattern. Cette derni�ere
utilise une combinaison de mesures pour �evaluer l'importance de ces combinaisons.
Apr�es une introduction sur les mesures de forces d'association et de l'approche
Skypattern, nous pr�esentons plusieurs exp�erimentations conduites sur des jeux de
donn�ees r�eels qui d�emontrent l'e�cacit�e de cette m�ethode.

Chapitre 3 : Recherche de patterns discriminatifs et statistiquement signi�catifs
dans les donn�ees g�enomiques

Ce chapitre pr�esente en d�etail l'algorithme SSDPS d�evelopp�e dans cette th�ese
pour extraire des combinaisons de variants g�en�etiques. Les mesures de risque et
les m�ethodes de tests statistiques sont d'abord pr�esent�ees. Ensuite, la strat�egie
de recherche bas�ee sur les propri�et�es anti-monotones des mesures de risques et des
intervalles de con�ance pour e�ectuer un �elagage e�cace de l'espace de recherche est
expliqu�ee. Une approche en 2 �etapes est propos�ee: s�election de SNPs candidats, puis
recherche de combinaisons. Diverses exp�erimentations sont e�ectu�ees, �a la fois sur
des jeux de donn�ees synth�etiques et sur des jeux de donn�ees r�eels. Elles permettent
d�evaluer globalement les performances de l'algorithme SSDPS.

Chapitre 4 : Visualisation des SNPs
Ce chapitre pr�esente l'impl�ementation d'un outil graphique qui supporte les

di��erentes �etapes d'une analyse GWAS. Une vue globale de l'ensemble du logiciel
est d'abord expos�ee. Les di��erentes fonctions du logiciel sont ensuite d�ecrites.

Chapitre 5 : Conclusions et perspectives
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Ce chapitre conclut le manuscrit. Il r�esume les principales contributions et expose
les futures directions de recherche.
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Single Nucleotide Polymorphism (SNP), a single base pair changes at key positions
in the genome, may increase or decrease an individual's risk of getting a disease
or bene�tting from a particular therapy [1, 2]. To discover SNPs associated with a
disease, Genome-wide association studies (GWAS) compare the SNPs of two groups:
case group consists of patients with a disease and control group consists of healthy
people without the disease. A SNP may be associated with the disease if its occurs
more frequently in the case group than in the control group. Once new genetic
associations are identi�ed, they can be used to develop better strategies to detect,
treat and prevent the disease. GWAS studies are particularly useful in �nding SNPs
that contribute to complex diseases such as asthma, cancer, diabetes, heart disease
and mental illnesses [3].

The problem is that most diseases are not caused by single genetic variations
but by variations in many interacting genes (i.e. combinations of SNPs rather than
single SNPs) [4]. For example, common genetic disorders (such as bipolar disorder,
schizophrenia, type 2 diabetes and various cancer types) are polygenic and show
genetic heterogeneity, i.e. the patients have the same phenotype (disease), but their
genetic pro�les may be di�erent, and they may thus respond di�erently to di�erent
drugs. Thus, discovering high-order SNP combinations associated with interesting
phenotype is an important task.

Many approaches have been investigated for detecting the interactions of genetic
variants. Some methods use statistical approaches such as Logistic Regression [5]
or Bayes model [6], while others adopt machine learning techniques such as support
vector machine [7], neural networks [8], decision trees [9] or random forests [10].
These approaches have been e�ectively applied to discover SNPs interactions in
GWAS. However, they are used to tackle only small biological datasets and detect
only single or two-locus interactions [11, 12].

To address these limitations, various solutions based on discriminative pattern
mining have been investigated [13]. Discriminative pattern mining aims to �nd pat-
terns (sets of SNPs) which occur more frequently in one class than in the other
class. It has been demonstrated that discriminative patterns are very valuable in

11
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a wide range of applications [14, 15]. Discriminative pattern discovery algorithms
have been widely applied to tackle di�erent bioinformatics tasks such as identify-
ing SNP combinations [16], mining di�erential gene expressions [17] or discovering
phosphorylation motifs [18].

Traditional discriminative pattern mining techniques have advantages of e�-
ciently handling SNP combinations search. They also have several limitations that
prevent them from e�ectively tackling genomic data due to its unique characteristics.
Below are several key challenges that have to be taken into consideration:

1. Association strength measure . There exists a variety of statistical mea-
sures for evaluating the association strength between biological patterns and
diseases. Determining which quality measures are more adapted both for as-
sessing the discovered biological patterns and guiding the search process is a
challenge. In addition, for each measure, one has to choose a suitable thresh-
old to get the highest quality result. In practice, it is a very di�cult task.
The reason is that if the threshold is not strict, a huge number of less in-
teresting patterns are generated. Oppositely, many valuable patterns may be
missed by strict thresholds. This calls for more 
exible methods to evaluate
the association strength between genetic variant combinations and diseases.

2. Computational e�ciency . The need of searching for high-order SNP combi-
nations leads to increased computational complexity, since the number of pos-
sible patterns increases exponentially with the number of SNPs. To search for
SNP combinations from high-dimensional datasets, brute-force approaches can
handle only a relatively small number of SNPs (tens or hundreds), while heuris-
tic approaches risk missing informative combinations. This challenge calls for
novel algorithmic approaches with e�ective search space pruning strategies.

3. Multiple hypothesis testing . Beside the computational problem, multiple
hypothesis testing is an even more serious challenge. Existing algorithms often
generate a large number of patterns. Many of them could be discovered due to
random chance. Thus, a huge number of hypothesis tests are needed to correct
the statistical signi�cance of results. This task is very time-consuming. This
calls for approaches which integrate statistical tests in the pattern mining
process to directly discover statistically signi�cant discriminative patterns.

4. Interesting patterns visualization . Discriminative patterns are often used
to present result to an expert who will give a decision based on this result.
However, existing methods usually generate a large number of the patterns
which include many redundant ones. In addition, most of algorithms present
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the patterns in the form of long textual lists. This is impractical in many spe-
ci�c biological tasks since the generated patterns are complicated to interpret.
In addition, it is di�cult for the experts to understand the knowledge that is
related to analysis data. This calls for an interactive graphical tool that allows
to visualize the discriminative patterns.

To address the above challenges, this thesis aims to advance the state of the
art of discriminative pattern mining techniques and apply them to discover genetic
variant combinations associated with diseases. In particular, the following solutions
have been proposed:

First, to overcome the challenge of evaluating the association strength between
SNP combinations and diseases, a 
exible evaluation method has been proposed.
This method is based on theskypattern technique which allows combination of mea-
sures to be used to assess the interestingness of a pattern in a threshold-free manner.
Experiments on several real variant datasets demonstrate that the proposed method
e�ectively identi�es the risk genetic variant combinations related to diseases.

Second, to address the computational e�ciency and multiple hypothesis testing
problems, we proposed a novel algorithm, namedSSDPS, that discovers discrimina-
tive patterns in two-class datasets. More precisely, the SSDPS algorithm searches
patterns satisfying both discriminative scores (equivalent to risk scores) and con-
�dence intervals thresholds. These patterns are de�ned asstatistically signi�cant
discriminative patterns. The SSDPS algorithm is based on a search strategy in
which risk measures and con�dence intervals can be used as anti-monotonic proper-
ties. These properties allow the algorithm to e�ciently prune the search space. In
addition, the algorithm can discover a complete set of discriminative patterns with
a very low frequency threshold or use heuristic strategies to mine only the largest
patterns. Experiments on real SNP datasets: Age-Related Macular Degeneration,
Breast Cancer and Type 2 Diabetes show that the SSDPS algorithm can e�ectively
discover interesting SNP combinations in a short execution time. Many of them
contain SNPs which are already known as associated with diseases.

Third, to pursue the enhancement of interesting discriminative patterns visual-
ization, we implemented an interactive graphical tool, namedSNPvisual, to visual-
ize the discriminative patterns in the form of genetic variant combinations in a real
chromosome panel. This tool provides various interactive functions to visualize SNP
combinations with other related biological information in di�erent genetic variant
datasets. This is an e�cient and easy-to-use genetic-analysis tool that supports bi-
ologists in their search for the relations between genetic variant combinations and
phenotype.

Although these solutions are focused on GWAS, other bioinformatics tasks such
as gene expression discovery, phosphorylation motif mining and regulatory motif
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combinations detection can bene�t from these proposed techniques. We also note
that the problem of discovering SNP combinations associated with diseases has been
tackled with a broad range of work in statistics, machine learning and data min-
ing. Nonetheless, we believe that the solutions which are proposed in this thesis
are unique. They provide a complementary set of techniques to discover biological
patterns that other techniques were not designed for.

The rest of this dissertation is structured as follows:
Chapter 1 : Literature review: discriminative pattern mining for bioinfomatics
In this chapter, a comprehensive review of discriminative pattern mining tech-

niques and its applications to bioinformatics is formally presented. First, a uniform
de�nition of discriminative pattern mining problems is introduced. After that some
popular statistical measures for evaluating the discriminative power and statistical
signi�cance correction methods are presented. Then, various discriminative pattern
mining algorithms with di�erent search strategies and their applications in bioin-
formatics are detailed. At the end, the remaining challenges which motivate us to
propose new e�cient approaches, and the thesis contributions are exposed.

Chapter 2 : Identifying genetic variant combinations using Skypattern
This chapter presents a method to identify genetic variant combinations as-

sociated with diseases by the using skypattern technique. This technique allows
combinations of measures to be used to evaluate the importance of genetic variant
combinations. First, the background of association strength measures and skypat-
tern technique is introduced. Subsequently, various experiments on di�erent real
genetic variant datasets are conducted to demonstrate the e�ectiveness of the pro-
posed method. Finally, the conclusion of the chapter with a summary and future
research directions is given.

Chapter 3 : Searching for statistically signi�cant discriminative pattern in ge-
nomic data.

This chapter presents in details the SSDPS algorithm which is used to discover
multiple SNPs combinations in large genetic variant datasets. First, the background
of risk measures and statistical signi�cance testing methods is presented. After-
ward, the search strategy that allows risk measures and con�dence intervals to be
used as anti-monotonic properties to e�ectively prune the search space is explained.
Subsequently, a two-step framework (selecting candidate SNP genotypes step and
searching combinations step) is presented to search high-order SNP combinations
associated with diseases. Various experiments on both synthetic and real genetic
variant datasets are conducted to assess the e�ciency of the SSDPS algorithm. At
the end, summary of contributions and perspectives of this chapter are given.

Chapter 4 : SNP visualization.
This chapter presents the implementation of a graphical tool that supports all
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steps of GWAS analysis. First, an overview of the software architecture is intro-
duced. After that the di�erent methods to tackle each step of the software are
presented. The main visualization principles which are used to design the graphi-
cal tool are discussed. At the end, the visualization results and conclusion of this
chapter are given.

Chapter 5 : Conclusions and Perspectives
This chapter concludes the thesis with summary of contributions, limitations

and future research directions.
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Chapter 1

Literature review:
discriminative pattern mining
for bioinfomatics

Discriminative pattern mining is a powerful task in data mining and machine learn-
ing. This task aims to �nd patterns which occur with di�erent frequencies in class-
label datasets. Recently, this technique has been widely applied to tackle bioinfor-
matics problems. This chapter presents the current state of the art discriminative
pattern mining techniques and its applications to bioinformatics.

1.1 Introduction

Recently, discriminative pattern mining techniques have been widely applied to
tackle bioinformatics problems [19, 15, 13, 14]. They provide e�cient methods to
detect biologically signi�cant patterns in various biological data. The important ap-
plications of discriminative pattern discovery in bioinformatics include identifying
high-order SNP combinations [20, 16, 21, 22, 23], searching di�erential genes expres-
sions [24, 25, 26, 27, 17], detecting phosphorylation motifs [28, 29, 30, 18], discovering
regulatory motif combinations [31, 32, 33] and other applications [34, 35, 36, 37].
The sheer volume of biological data increases: constant improvement of discrimi-
native pattern mining algorithms are required to cope with this increase in volume
(especially number of genetic variants). In addition, with scienti�c progresses, the
expectations of biologists evolve (and their available time dwindles). Thus discrim-
inative pattern discovery algorithms have to be adapted to take that into account.

There are some existing studies that summarize the recent advances on discrim-
inative pattern mining techniques in the literature [38, 15, 13]. However, to deeply
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understand these techniques, this chapter provides a complementary study to discuss
the properties, techniques, challenges and applications of available discriminative
pattern mining algorithms in bioinformatics.

The rest of this chapter is organized as follows: Section 1.2 presents the de�-
nition and the problem of discriminative pattern discovery. Section 1.3 introduces
some popular quality measures and statistical signi�cance correction methods which
are used to evaluate the interestingness and the statistical signi�cance of patterns.
Section 1.4 focuses on various discriminative pattern mining algorithms with di�er-
ent target objectives and search strategies. Section 1.5 illustrates the e�ectiveness
of adopting discriminative pattern mining techniques to handle a variety of applica-
tions in bioinformatics. Section 1.6 concludes this chapter with the thesis's research
directions and its contributions in the �elds of data mining and bioinformatics.

1.2 Preliminaries

Frequent itemset mining is an important task of data mining. This task aims at
�nding all set of items occurring frequently in a transaction dataset [39, 40, 41, 42].
A typical example of frequent patterns from a dataset of supermarket transactions
could be the products that are often purchased together, such as beer and chips or
bread and milk. Furthermore, there exists numerous datasets with multiple classes
in the real world such as biological datasets with two groups of individuals: patients
with a disease and healthy people without the disease, cancer data with di�erent
subtypes or marketing data with various classes of customers. Discovering patterns
which are discriminative between di�erent classes has also become an essential work.
Such patterns are of great value for classi�er construction [19, 38] and very interest-
ing in a wide range of applications such as medicine [15], bioinformatics [13, 14] and
marketing [43]. For example, in bioinformatics, detecting groups of genetic variants
which occur more frequently in the group of individuals which are e�ected by a
disease than in the healthy individuals is an important task. These genetic variant
groups can be used to develop better strategies to detect, treat and prevent the
disease.

To address this issue, discriminative pattern mining [44], an extension of frequent
itemset mining, is investigated to discover patterns in a dataset with multiple classes.
This approach aims to �nd a set of patterns which have di�erences of frequency
across classes. Research on discriminative patterns evolves rapidly under several
terms such as emerging patterns [45], jumping emerging patterns [46] and contrast
sets [47]. According to these studies, emerging pattern mining detects the set of
patterns whose support is signi�cantly larger in one class than in the others. A
jumping emerging pattern, a special type of emerging pattern, is de�ned as a pattern
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which is present in one class but absent in the others. Similarly, contrast set mining
aims at seeking patterns that have di�erent levels of frequency in di�erent groups
of individuals. Overall, although di�erent names are used for these patterns, they
are similar in essence. Accordingly, we refer to all these patterns as discriminative
patterns. In this section, the main de�nitions and the problem of discriminative
pattern discovery are introduced.

Let I = f i 1; i 2; :::; i m g be a set ofm items and C be a set ofs labels. A subset
p = f i 1; i 2; :::; i kg � I is called itemset , pattern or k � pattern if it consists of
k items. A pair t i = ( x i ; yi ) where x i � I and yi 2 C is called a transaction . A
multiset of n transactions, denotedT, over I can be termed as atransaction dataset ,
denoted D. Let D i be a subset of transactions corresponding to the classci . We
have D = D1 [ D2 [ ::: [ Ds.

Given p � I , a set of transactions in D that contains p is denoted by D(p).
Similarly, a set of transactions in D i that contains p is denoted by D i (p).

The support of pattern p over D is de�ned by:

sup(p; D) =
jD (p)j

jD j
The support of pattern p over D i is de�ned by:

sup(p; D i ) =
jD i (p)j

jD i j

where j:j denotes the cardinality of a set.

De�nition 1.1 (Frequent pattern) Given a minimum frequency threshold � (0 � � �
1), a pattern p � I is frequent in D if its support value over D is no less than� :
sup(p; D) � � .

For illustration purpose, Fig. 1.1 presents a simple transaction dataset which
contains two classes, each with 10 transactions (rows) and 15 items (columns). In
this dataset, 4 example patterns can be observed:p1 = f i 1; i 2; i 3g, p2 = f i 5; i 6; i 7g,
p3 = f i 9; i 10g, and p4 = f i 12; i 13; i 14g.

The supports of p1, p2, p3, p4 in D1 are: sup(p1; D1) = 0 :6, sup(p2; D1) = 0 :4,
sup(p3; D1) = 0 :2, sup(p4; D1) = 0 :7. Suppose� = 0 :3 is the minimum frequency
threshold. p1, p2, p4 are frequent in D1 however p3 is not frequent in D1.

Local discriminative pattern mining problem : To evaluate the importance
of a pattern in class-labeled datasets, algorithms often adopt some statistical mea-
sures such as growth rate [45], support di�erence [47] or mutual information [48].
These measures are de�ned over the supports of a pattern in the classes. For exam-
ple, the growth rate of supports of pattern p in classesD i and D j , denoted GR, is
de�ned by:
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Figure 1.1: An example of a two-class labeled dataset

GR(p; D i ; D j ) =
sup(p; D i )
sup(p; D j )

De�nition 1.2 (Discriminative pattern) Let f (p; D) be the discriminative measure
function. Given a minimum discriminative threshold � , pattern p is discriminative
if its discriminative power is no less than � : f (p; D) � � .

Taking again the data in Fig 1.1 for example. TheGR values ofp1, p2, p3, p4 are:
GR(p1; D1; D2) = 3, GR(p2; D1; D2) = 1, GR(p3; D1; D2) = 1 , GR(p4; D1; D2) =
3:5. Suppose� = 2 is the minimum discriminative threshold. p1, p3, p4 are discrim-
inative patterns since their GR values are larger than� .
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Given a dataset D with s classes and a minimum discriminative threshold� ,
the local discriminative pattern mining problem is to �nd a set of patterns, denoted
Rlocal , which satis�es:

Rlocal = f p � I jcompare(f (p; D); � ) is true g

where f is the discriminative measure function. compare is true if the discrimi-
native power of p satis�es the comparison constraints (such as<; >; � ; � ; = ; 6=).

Global discriminative pattern mining problem: For the global case, some
constraints are added on the set of output patterns in order to remove (most of)
redundancies and increase interest of the patterns output.

De�nition 1.3 (Pattern set) A pattern set, denoted g, is a subset of the powerset of
Rlocal , g � 2R local .

In the global context, we want to �nd g � 2R local , preferably such asjgj <<
j2R local j. In order to do so, g should not have redundant patterns.

One approach is to considerclosed patternswhich are de�ned as follows:

De�nition 1.4 (Closed pattern) Given a dataset D , a pattern p is closed inD if there
doesn't exist any pattern q which contains p and has the same support asp in D .

The closed pattern approach can be used to remove a certain kind of redundancy
of individual patterns. However, the number of generated patterns is still high.

More radical approaches to pattern set mining consider a scoring functionf :
2R local 7�! R which gives a better score to smaller and more interesting pattern sets.
The problem then becomes an optimization problem: �nd g � 2R local that gives
optimal f value. The problem is NP-hard thus �nding good approximations is the
only possibility.

In pattern set mining, �nding suitable scoring functions is di�cult. There ex-
ists various functions to evaluate the discriminative power of pattern sets such as
accuracy, w accuracy and Laplace [49]. However, these measures do not guarantee
that the selected pattern sets are statistically signi�cant.

Statistically signi�cant discriminative pattern problem : In discrimina-
tive pattern mining, many patterns are tested for statistical signi�cance, denoted
p value, by using Pearson's chi square test [50] or Fisher's extract test [51]. With
a large number of tests, false positive errors may occur. Thus, we need to con-
trol this type of error by using hypothesis testing methods. Some methods such
as Bonferroni's correction [52], Tarone's testability criterion [53], or Westfall-Young
permutation procedure [54] are often used to correct thesigni�cance level, denoted
� . A pattern is statistically signi�cant if its p value is less than� .
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De�nition 1.5 (Statistically signi�cant discriminative pattern) Given a corrected sig-
ni�cance level � , a discriminative pattern p is statistically signi�cant discriminative
if its p value is lower than � .

Statistically signi�cant discriminative pattern mining aims to �nd all patterns,
denoted Rstat , whosep value is below a corrected signi�cance level.

Rstat = f p � I jz(p; D) < � ) and p 2 Rlocal for some �; f; compare g

where z is a function testing statistical signi�cance.

1.3 Quality functions

To rank and select the patterns according to their potential interest to the users,
several quality measures have been proposed. An appropriate measure allows the
algorithms to reduce the search space as well as retrieve high quality results. In
this section, we present some popular functions which are used to measure the
interestingness of pattern in local and global levels. In addition, major statistical
signi�cance correction methods are also discussed.

1.3.1 Local measures

To evaluate the importance of discriminative patterns, the algorithms adopt some
statistical measures which are generally de�ned based on the relative support of
pattern in di�erent classes. These measures can be de�ned either simply as the
di�erence or ratio of the two supports [45, 47] or other variations, such as� 2 [49]
and mutual information [55]. As discussed in [19, 13, 48, 56], there exists a wide
range of measures for evaluating the discriminative power of a pattern at the local
level. In this section, measures for a pattern in two-class datasets are presented.
These functions can be extended for multiple classes problems as discussed in [47].

Let D be a two-class dataset:D = D1 [ D2. The presence and absence of a
pattern in D1 and D2 can be tabulated by a contingency table as Table 1.1. A list
of widely used measures for discriminative power are shown in Table 1.2. According
to the properties of these statistical measures, a pattern with a higher value is
considered as more discriminating.

Weighted Relative Accuracy (WRAcc) and generalization quotient (qg) are widely
used measures for subgroups discovery [62, 63, 57]. According to [15], algorithms
employing the WRAcc as the quality measure perform well compared with other
algorithms. The reason is that this measure considers both the unusualness of the
patterns and the size of the subgroups.
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Table 1.1: Contingency table of a pattern in two-class dataset

Presence Absence Row total
D1 t11 t12 jD1j = t11 + t12

D2 t21 t22 jD2j = t21 + t22

Column total t1 t2 jD j = jD1j + jD2j

Table 1.2: Local discriminative power measures

No Name Equation Ref.

1 Weighted
Relative
Accuracy

WRAcc(p; D1; D2) = t11 + t21
jD 1 j+ jD 2 j (

t11
t11 + t21

� jD 1 j
jD 1 j+ jD 2 j ) [57]

2 Generalization
quotient

qg(p; D1; D2) = t11
t21 + g , g is a user-de�ned parameter [58]

3 Di�erence
support

DS(p; D1; D2) = jsup(p; D1) � sup(p; D2)j [47]

4 Growth rate GR(p; D1; D2) = sup(p;D 1 )
sup(p;D 2 ) [45]

5 Odds ratio OR(p; D1; D2) = t11 t22
t12 t21

[59]

6 Chi square � 2 =
P i =2

i =1
P j =2

j =1
(t ij � E ij )2

E ij
; E ij =

P q=2
q=1 t iq

P q=2
q=1 tqj

jD j [60]

7 Mutual infor-
mation

MI (p; D1; D2) =
P i =2

i =1
P j =2

j =1
t ij
jD j log t ij =jD j

t i jD j j=jD j2 [55]

8 Information
gain

IG (p; D1; D2) = sup(p; D1)( logsup(p;D 1 )
sup(p;D ) � log jD 1 j

jD j ) [60]

9 Gini index GI (p; D1; D2) = 1
2

P 2
i =1 sup(p; D i )(1 � sup(p; D1)) [61]

10 supMaxPair supMaxPair (p; D1; D2) = sup(p; D1) �
max � � p(sup(�; D 2)), ( j� j = 2)

[24]
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Other measures such as di�erence support (DS) [47] and growth rate (GR) [45]
measure the discriminative power of a pattern based on its supports in di�erent
classes. In particular, DS measures the di�erence of supports between the two
classes. On the other hand,GR measures the ratio of supports between the two
groups. These measures are also demonstrated as equivalent with risk ratio (RR)
and absolute risk reduction (ARR ) which are often used in GWAS to evaluate the
association strength of biological patterns with an interesting group of individuals
[59]. Similarly, odds ratio (OR) is often adopted to evaluate the discriminative
power of patterns [57]. It calculates the ratio of odds of a pattern in one class to
that in the other class. This measure is also known as a gold standard for measuring
the association strength in GWAS [64]. In practice, the combination of DS, GR,
and OR is e�ciently applied to assess the importance of risk factor patterns. For
example, by using a combination of these measures, it has been shown that the task
of cancer classi�cation is performed more accurately than with an approach based
on Naive Bayesian classi�er [59].

Another important group of measures such as Chi square (� 2), Mutual informa-
tion ( MI ), Information gain ( IG ), and Gini index ( GI ) are used to evaluate the
signi�cant di�erence of frequencies of a pattern in two classes [48, 61]. More specif-
ically, � 2 is used to determine whether there is a signi�cant di�erence between the
frequencies of a pattern in two groups of subjects.MI and IG are functions based on
information theory. They measure the di�erence of frequencies of a pattern between
two classes [48]. Similarly, Gini index (GI ) is used to measure the inequality of a
pattern in two classes. These measures can be used in branch-and-bound [65, 66]
and constraint programming algorithms [60] to discover discriminative patterns.

On the other hand, supMaxpair [24] is an extension ofDS. They form a family
of monotonous interestingness measures for discriminative power. It can be used to
prune the search space in an Apriori framework and mine discriminative patterns
with very low frequency in high dimensional and dense datasets.

As discussed above, there is a wide range of measures. However, using these
measures for discovering discriminative biological patterns remains challenging.

The �rst problem relates to the strategies for mining discriminative patterns.
None of these statistical metrics are anti-monotone [47, 61]. It means that the
discriminative power of a pattern is not correlated to the discriminative power of
its sub-patterns. This considerably limits the opportunities for pruning the search
space, compared to a traditional pattern mining setting.

Second, for each measure, users have to choose an appropriate threshold to eval-
uate the signi�cance of patterns. This is an extremely di�cult task, and incorrect
choice of thresholds may have an important impact. If the thresholds are too loose,
the pattern mining algorithms will generate many patterns of limited interest. On
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the other hand, some interesting patterns will be lost if the thresholds are too re-
strictive.

Third, biological patterns are more complicated than general patterns since they
are related to natural properties. Thus, it is di�cult to directly use discriminative
power measures to assess the importance of biological patterns. In fact, researchers
often use additional techniques or combine some measures to evaluate the statistical
signi�cance of biological patterns. In practice, one usually combines it with other
measures to evaluate the interesting of biological patterns. Speci�cally,OR and � 2

are used in [24] to evaluate the signi�cance of co-occurrence for genes expressions.
Similarly, OR, � 2 and p value are adopted in [16] to evaluate association strength
between high-order SNP combinations and disease. In addition, the combination of
OR, RR, and ARR is used in [59] to evaluate the signi�cance of risk factor patterns.

1.3.2 Global measures

Instead of evaluating individual discriminative patterns, the discriminative pattern
set mining techniques use global constraints to assess the set of patterns [49].

Many functions exist to measure the interestingness of a pattern set. Some
popular measures are listed in Table 1.3. To illustrate these measures, we use the
following notations: g is a pattern set consisting ofs patterns where pi is the i th

pattern in this set. D (p) and Dk (p) are the set of transactions that contain pattern
p in D and Dk respectively. Similarly, we useD(g) and Dk (g) to denote the set of
transactions that contain pattern set g in D and Dk respectively. A pattern set can
be interpreted as a disjunction of the individual patterns. Thus D(g) and Dk (g) can
be computed by taking the union over the individual transaction sets.

D (g) = D(p1) [ D (p2) [ ::: [ D (ps)

Dk (g) = Dk (p1) [ Dk (p2) [ ::: [ Dk (ps)

itemsOverlap is used to measure the similarity of discriminative patterns with
regard to the set of items that are included in these discriminative patterns while
transOverlap is applied to calculate the similarity between the transaction sets
that contain the discriminative patterns [67]. The discriminative pattern sets with
smaller itemsOverlap or transOverlap values are better because they contain fewer
and less redundant discriminative patterns.

For example, given a set of 5 discriminative patterns: p1 = f a; b; c; dg, p2 =
f a; b; c; f; gg, p3 = f a; b; d; hg, p4 = f d; g; i; j; k g, p5 = f i; j; k; h g.

Consider the following pattern sets: g1 = f p1; p2; p3g, g2 = f p4; p5g, g3 =
f p1; p4g.
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Table 1.3: Global discriminative quality measures

No Name Equation Ref.

1 Item over-
lap

itemsOverlap(g) = 2
s(s+1)

P s
i =1

P s
j = i +1 jpi \ pj j [67]

2 Transaction
overlap

transOverlap (g) = 2
s(s+1)

P s
i =1

P s
j = i +1 jD (pi ) \ D (pj )j [67]

3 Area tile (ps; D ) = f (T; ik )jT 2 D(pi ); i k 2 psg
area(g) = jtile (p1; D ) [ tile (p2; D ) [ ::: [ (ps; D )j

[49,
68]

4 Overall
coverage

COV(g) = jD 1 (g)[ D 2 (g)j
jD j [15]

5 Accuracy accuracy(g) = jD1(g)j � j D2(g)j [49]
[69]

6 Weighted
accuracy

w accuracy(g) = jD 1 (g)j
jD 1 j � jD 2 (g)j

jD 2 j [49]

7 Laplace Laplace(g) = jD 1 (g)j+1
jD 1 (g)j+ jD 2 (g)j+2 [49]

The itemOverlap values of these pattern sets are:
itemOverlap (g1) = 2

3(3+1) (3 + 3 + 2) = 1 :45,

itemOverlap (g2) = 2
2(2+1) (3) = 1,

itemOverlap (g3) = 2
2(2+1) (1) = 1

3 .
In this case, g3 is better than g1 and g2 since it contains fewer redundant dis-

criminative patterns.
For the other functions, the goal is to maximize the score returned by the func-

tion. The area of a pattern set is estimated by counting all the tiles covered by the
individual patterns [49, 68]. More speci�cally, a tile of a pattern is the set of all tuples
(t; i ) 2 D (t 2 T; i 2 I ) that are covered by the pattern. The area of a single pattern
is the number of tuples that are covered in thetile : area(p) = jtile (p)j � j I j:jT j.
Overall coverage (COV) is de�ned as the fraction of transactions covered by a pat-
tern set [15]. This measure gives us the proportion of transactions that are covered
by the discovered pattern set. On the other hand,accuracy is de�ned as the dif-
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Table 1.4: Statistical signi�cance correction methods

No P value correction methods Ref.
1 Bonferroni's correction [47, 71]
2 Tarone's testability criterion [72, 73, 70]
3 Westfall-Young permutation [33, 31]
4 LAMP [32, 74]

ference of number of transactions that are covered by a pattern set in two classes.
Similarly, weighted accuracy (w accuracy) and Laplace are also computed based on
the number of transactions that are covered by a pattern set.

There are many measures to assess the global interestingness of a pattern set.
These functions can be used to evaluate the redundancy, diversity or discrimination
of pattern sets. In practice, providing the constraints guaranteeing that the patterns
are globally signi�cant is a di�cult task.

1.3.3 Multiple hypothesis testing

To test the statistical signi�cance ( p value) of a discovered discriminative pattern,
di�erent mathematical methods such as Fisher's exact test or Pearson's chi-square
test are used. In practice, discriminative pattern mining algorithms often generate
a large number of patterns due to the high-dimension of dataset as well as the
combinatorial nature of the task. Accordingly, a huge amount of statistical tests
is performed to evaluate the signi�cance of discovered patterns. With the large
number of tests, the probability of false discovery increases. Thus the calibration
of signi�cance level in each test is required to control the total error rate of false
positives by multiple testing correction procedure [70]. A list of the popular p value
statistical signi�cance correction procedures is given in Table 1.4.

Bonferroni correction procedure [52] is a simple and widely used theoretical ap-
proach. Given I items, we must perform M = 2 I � 1 association tests, one for each
possible pattern, to measure the signi�cance of patterns. Let� be a signi�cance
level. Bonferroni correction controls the probability of at least one false discov-
ery, called family wise error rate (FWER), by adjusting the signi�cance level to
� = �=M . A pattern is statistically signi�cant if its p value is below the adjusted
signi�cance level � . When all possible patterns are checked, the number of tests
increases exponentially due to the amount of items, and� becomes a very small
value. But computing all M tests is very time-consuming.

To overcome this problem, Tarone's testability criterion [73], an improvement of
Bonferroni correction procedure, is proposed. The key of this strategy is that only a
subset ofM tests, called testable hypotheses, can reach the signi�cance level. Thus
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instead of checking allM tests, one can safely prune the tests which are not testable
hypotheses without a�ecting the probability of reporting FWER. This method is
successfully applied in data mining to �nd signi�cant combination of transcript
factors in gene regulatory network [32] and search signi�cant subgraphs [70].

Another strategy is the Westfall-Young permutation procedure [54] which gen-
erates a null distribution from thousands of randomly permuted datasets, and de-
termines � based on the distribution. According to [31], this method has higher
detection power than Bonferroni correction and its improvements [75, 76]. Westfall-
Young procedure has been successfully used in data mining to �nd statistically
signi�cant discriminative patterns [31, 33].

Recently, a novel method for p value correction, named LAMP [32] has been
proposed. It is based on frequent itemset mining to exclude meaningless infrequent
itemsets which never reach the signi�cance level. This method adjustsp value much
more accurately and is less cost-consuming than Bonferroni's test procedure [32, 74].

Among these procedures, Tarone's testability criterion, Westfall-Young and LAMP
can be directly used in the pattern mining process [31, 74, 33, 72] to �nd the sta-
tistically signi�cant discriminative patterns in one stage. These studies are the �rst
approaches that successfully combinedp value correction procedures into the pat-
tern mining process.

1.4 Algorithms and software frameworks

Many algorithms and software frameworks have been investigated to e�ciently dis-
cover discriminative patterns. The various strategies can be classi�ed into several
categories such as local discriminative pattern mining [24, 62, 77], global discrimi-
native pattern mining or discriminative pattern set mining [78, 69, 79, 49, 80] and
statistically signi�cant discriminative pattern mining [71, 31, 32, 74, 33, 72]. In the
local discriminative pattern mining context, every pattern is separately evaluated
under no consideration of the relationships between each other. The disadvantage
of this approach is that it outputs a lot of patterns of mixed interest (many re-
dundancies). For the global case, some constraints are added on the set of output
patterns in order to remove (most of) redundancies and increase interest of the
patterns output. A di�culty is to provide the constraints guaranteeing that the
patterns are interesting. Thus, adding statistical constraints which come with guar-
antees well understood by the biologists (and many other practitioners) is essential.
To address this problem, statistically signi�cant discriminative pattern mining is
proposed. This approach aims to detect patterns which are at the same time dis-
criminative and statistically signi�cant by using statistical signi�cance correction
procedures.
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Table 1.5: Local discriminative pattern mining algorithms

Search
strategy

Algorithms Quality measure Ref.

Exhaustive
Apriori-SD WRAcc [63]
SMP supMaxPair [24]
DDMiner IG [44]

Top-ranking
CIMCP � 2, IG , GI ,

F isher score
[60]

SSDP qg, WRAcc, DS [81, 82]
Top-K Minimal Jump-
ing Emerging Patterns

GR [83]

Heuristics

SD qg [58]
CN2-SD WRAcc [57]
SDIGA WRAcc [43]
NMEEF-SD WRAcc [84]
GAR-SD support, conf idence,

signif icance
[85]

In general, to discover discriminative patterns, the algorithms perform the search
on a dataset and use some statistical measures which are discussed in the previous
section to rank and select the interesting patterns. In recent years, a wide variety of
software frameworks and algorithms have been investigated to tackle this issue. It is
out of the scope of this section to present exhaustively the algorithms. Rather, we
present a selection of state-of-the-art algorithms that have been successfully used in
bioinformatics. In particular, local and global discriminative pattern mining with
some popular search strategies such as exhaustive, top-ranked and heuristic are
�rstly discussed. Next, some successful approaches for directly mining statistically
signi�cant discriminative patterns are presented.

1.4.1 Local discriminatve pattern mining

Local discriminative pattern mining algorithms aim to �nd and evaluate individual
patterns separately. They often adopt some quality functions which are displayed in
Table 1.2 to measure the signi�cance of patterns. If the score of a pattern satis�es
a given threshold it is considered as a discriminative pattern. A large number of
algorithms and software frameworks have been developed for this task. Table 1.5
and Table 1.6 show some popular algorithms and software respectively.

Depending on search strategies, local discriminative pattern mining algorithms
can be classi�ed into 3 groups: exhaustive, heuristic and top-ranked.
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Table 1.6: Software frameworks for local discriminative pattern mining

Software License Source
VIKAMINE GNU http://www.vikamine.org
Orange GPL https://orange.biolab.si/
Cortana Free download http://datamining.liacs.nl/cortana.html
KEEL GPLv3 http://www.keel.es
RapidMiner Commercial https://rapidminer.com

Exhaustive search aims to discover the complete set of discriminative patterns
which satisfy a given threshold. These algorithms usually adopt some classic search
strategies such as breadth-�rst search (BFS) and depth-�rst search (DFS) [42]. To
�nd patterns with size of k, a BFS algorithm such as Apriori [39] starts with patterns
of sizek = 1. Then the patterns of larger size are created based on the set of patterns
which are generated in the previous step, i.e. patterns of sizek are generated from the
set of patterns of sizek � 1. This approach requires a lot of memory for intermediate
computation, and usually runs out of memory. In addition, it cannot bene�t from
some important optimization techniques such as dataset reduction. On the other
hand, DFS algorithms start to search patterns with individual items. For a selected
item i , all patterns that contain i are recursively generated. This process is repeated
for all items. This DFS strategy is usually the basis of e�cient algorithms such as
FP-Growth [40], LCM [86].

These search strategies are widely applied in discriminative pattern mining. For
example, Apriori-SD algorithm [63] discovers discriminative patterns based on Apri-
ori framework. First, it �nds all patterns satisfying the support threshold. Then pat-
terns are evaluated for discriminative scores and selected according to theirWRAcc
score in a post-processing step. Similarly, SMP algorithm [24] usessupMaxPair ,
a monotonic measure, in an Apriori framework to exhaustively mine discriminative
patterns with low support. On the other hand, SD-Map [62], a fast algorithm for
exhaustive discriminative pattern discovery, applies FP-growth method to detect
association rules with adaptations for the discriminative pattern mining task. Sim-
ilarly, BSD [87], an algorithm for fast discovery of relevant subgroups, exhaustively
discovers discriminative patterns based on a branch-and-bound strategy.

Among these approaches, algorithms based on DFS are more e�cient than those
based on BFS. DFS approaches allow e�cient pruning strategies to be applied to
reduce the search space. In addition, DFS can be employed for directly mining dis-
criminative patterns. For example, the algorithm in [88] performs a recursive search
on a search tree to discover discriminative patterns which satisfy a minimum support
and information gain value thresholds. On the other hand, DDPMine [44] performs a
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branch-and-bound search for directly mining discriminative patterns without gener-
ating the complete pattern set. These approaches outperform the two-step methods
[65, 89, 90]: �rst generate a set of frequent patterns, then apply a statistical measure
to evaluate and select the discriminative patterns.

The exhaustive algorithms guarantee to discover a complete set of discriminative
patterns in a given dataset. However, they can not be used for high-dimension
datasets such as biological datasets which usually have some hundred thousands of
items. To overcome this limitation, heuristic methods have been investigated to
discover a good enough but not necessary optimal result. This approach trades o�
between execution time and the quality of the pattern set.

The common approach for heuristic search of discriminative patterns is beam
search [57, 58]. To conduct the mining of discriminative patterns, the beam search
algorithms use an initial number of discriminative patterns which is determined by
a beam size parameter. For each iteration, new patterns are generated from the set
of candidates which have been selected in the previous step. A typical algorithm
which uses beam search strategy is CN2-SD [57]. To start the search, CN2-SD
considers the highest quality items (according to their discriminative power and
minimal support threshold) as singleton discriminative patterns. For each iteration,
the least relevant patterns are replaced by the most relevant ones with larger sizes.
The search stops when the patterns in the current beam can not be replaced by
more relevant patterns.

On the other hand, other algorithms based on genetic fuzzy systems have also
been developed to tackle the task of heuristic discriminative patterns discovery
[43, 84, 85]. These approaches are designed to �nd the most important rules of
the subgroups on various quality measures based on evolutionary computing. In
comparison with beam search, these approaches are more e�cient [91]. They can be
employed to tackle high dimensional datasets [81].

Another search strategy in local discriminative pattern mining is top-ranking.
The idea is, given a small integerk, to output only the �rst k patterns according to
statistical signi�cance.

According to the literature, the �rst approach for discovering top-k discriminative
pattern has been studied in [83]. It enumerates top-k discriminative patterns, called
top-k minimal jumping emerging patterns, based on CP-Tree [92]. To prune the
search space, the algorithm uses the minimal support of patterns.

Another approach for top-k discriminative pattern mining is based on constraint
programming [60]. In this study, the task of mining top-k discriminative patterns
is modeled as a constraint programming problem. Based on speci�c properties of
statistical measures such as Fisher score, information gain, Gini index, or� 2 the
algorithm discovers k patterns with regard to a given constraint.



32 Chapter 1

Last, approaches based on evolutionary algorithms have also been investigated to
mine top-k discriminative patterns [82, 81]. These approaches have been successfully
applied to discover top-k discriminative patterns in high dimension datasets which
are di�cult to analyze with traditional methods.

Overall, local discriminative pattern mining has been tackled with various search
strategies, and has demonstrated its usefulness in many applications. However, the
major drawback of this approach is the amount of generated patterns which is often
very large. It is complicated to use directly the patterns without post processing.
Moreover, many redundant discriminative patterns are included in the result since
the algorithms evaluate patterns independently.

1.4.2 Global discriminative pattern mining

As discussed in the previous section, most existing local discriminative pattern min-
ing algorithms often face the problem of generating a huge number of patterns which
include many redundant ones. These patterns might be covered by a similar set of
transactions or include an equivalent set of items. In practice, discovering all these
redundant patterns is time-consuming. In addition, it is complicated to interpret
the results. Thus, searching a condensed and non-redundant pattern set is a critical
task. This task is often referred as global discriminative patterns or discriminative
pattern set mining in data mining.

The objective of global discriminative pattern mining is to keep only some rep-
resentative discriminative patterns of all the equivalent ones to reduce the degree
of redundancy and increase the ease of understanding of discriminative patterns in
real-world applications. Instead of evaluating individual patterns separately, global
discriminative pattern mining algorithms often adopt global functions which are
shown in Table 1.3 or also use local functions which are illustrated in Table 1.2,
to rank and select a set of global interesting patterns according to the whole pat-
tern set. Some popular global discriminative pattern mining algorithms with their
quality measures are listed in Table 1.7.

The global discriminative patterns can be discovered by di�erent ways. The �rst
approach is in two steps: in the �rst step, all discriminative patterns which satisfy
given constraints, are discovered by a local discriminative pattern mining algorithm.
Then, in the second step, patterns are post-processed to �nd discriminative pattern
sets. The post-processing can be conducted by exhaustive or approximate search de-
pending on the user's objective. However, with a huge amount of generated patterns,
greedy search is often performed to compute the pattern sets [69, 96].

The other strategy for discovering global discriminative patterns is to perform
heuristic search. The most popular approach for this strategy is beam search [78,
93]. This technique can be brie
y described as follow: the algorithm �nds the
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Table 1.7: Global discriminative pattern mining algorithms

Search
strategy

Algorithm Measure Ref.

Heuristic

GSD WRACC [93]
SSDS WRACC [78]
BSD qg [87]
CDPM support, DS [80]

Top-ranking
Delta-relevant patterns
mining

WRACC [94]

RP-growth � 2, IG [95]
K-pattern set mining under
constraints

accuracy, w accuracy,
Laplace

[49]

most interesting (local) discriminative patterns, and then candidate pattern sets are
selected according to current beam which contains these patterns. Subsequently,
based on the overall statistical signi�cance, the most signi�cant pattern sets are
selected. This process is continued until no more candidate pattern sets can be
discovered. Pattern sets with a strong discriminative power are obtained in the �nal
result.

Additionally, the problem of discovering pattern sets can be formulated as a
global optimization problem with user-speci�ed signi�cant constraints. For instance,
the approach in [49] imposes signi�cant constraints on the whole pattern set to �nd
k-pattern sets with the strongest discriminative power in one step.

Moreover, other de�nitions and strategies have also been investigated to tackle
the problem of redundant patterns. The simplest method employed is theclose-
ness constraint to �nd closed discriminative patterns [96, 97]. The idea of these
approaches is equivalent to closed frequent itemsets mining which is widely used in
data mining [98].

Some other studies proposedrelevant pattern concept to mine non-redundant
patterns in class labels datasets [87, 94, 95, 99]. The relevance between two discrim-
inative patterns is de�ned based on the relationship of the sets of transactions that
contain these discriminative patterns in the two classes. For example, letD1(p) and
D2(p) be the sets of transactions that contain pattern p in D1 and D2 respectively.
Similarly, let D1(q) and D2(q) be the sets of transactions that contain pattern q
in D1 and D2. Pattern p is relevant with another pattern q if D1(q) � D1(p) and
D2(p) � D2(q). Or we can also say that q is irrelevant with respect to p. If q is
irrelevant with respect to p, then the power of a discriminative pattern q is lower or
equal to the power of discriminative pattern p for any quality function satisfying a
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given set of axioms [87]. Thus, the relevant pattern mining algorithms discover non-
redundant patterns by �ltering out irrelevant patterns [99, 95]. These methods can
be applied to �nd a set of non-redundant pattern set. However, these approaches
do not consider the relationship between the discriminative power of a pattern and
scores of its subsets. Thus, they can not remove redundant patterns caused by their
subsets.

To address this problem, a new concept, namedconditional discriminative pat-
tern, has been investigated [80]. A conditional discriminative pattern is de�ned
based on the discriminative power of a pattern and the discriminative power of its
subsets. Speci�cally, let p be a k-pattern then p has 2k � 2 possible sub-patterns.
Each sub-pattern is covered by an equivalent transaction set.Local signi�cance of
k-pattern is de�ned as the smallest value of discriminative powers of (k-1)patterns.
Global signi�cance is de�ned as the discriminative power of p which is computed
based on its original transaction set. A k-pattern is conditional discriminative if it
satis�es signi�cance thresholds on both local and global levels. For example, sup-
posep is a 2-pattern which has two sub-patterns: a and b; � and � are the global
and local signi�cance thresholds respectively.p is conditional discriminative pattern
if its discriminative power is not less than � and discriminative power of a and dis-
criminative power of b are not less than � . To discover conditional discriminative
patterns, the algorithm builds data on a tree structure, then adopts DFS strategy
to traverse and produce patterns which satisfy both local and global signi�cance
thresholds. Experimental results show that an approach based on conditional dis-
criminative pattern e�ciently eliminates redundant patterns whose discriminative
power mainly comes from their sub-patterns.

In short, compared with the local discriminative patterns discovery the task
of global discriminative patterns mining is more complicated and time-consuming.
The exhaustive search is infeasible since the number of sets of local discriminative
patterns is enormous. Thus, to trade o� between the performance and the quality
of non-redundant pattern set most approaches adopt heuristic strategies.

1.4.3 Statistically signi�cant discriminative pattern mining

Beside the computation and redundancy problems, a perhaps even more important
challenge in discriminative pattern mining algorithms is multiple hypothesis testing.
The available algorithms often discover a huge number of patterns which should
be tested for statistical signi�cance, p value. For example, given I items, we must
perform 2I � 1 association tests, one for each possible pattern, to measure the sig-
ni�cance of the pattern set. With the enormous number of tests, the probability
of some patterns deemed to be signi�cantly associated with class membership by
mistake is high. This probability is referred as false positivesor family wise error
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Table 1.8: Statistically signi�cant discriminative pattern mining algorithms

Algorithm Multiple hyphothesis testing Ref.
FastWY Westfall-Young procedure [31]
Westfall-Young light Westfall-Young procedure [33]
LAMP LAMP [32]
New LAMP LAMP [74]
FACS Tarone's testability criterion [72]

rate (FWER) . Thus calibrating the signi�cance level in each test is required to con-
trol the total error rate of false positives by multiple testing correction procedures
which are given in Table 1.4. This task is time-consuming since a large number of
validations are computed.

Searching for statistically signi�cant itemsets has been widely studied [71, 100,
101]. A naive approach to discover statistically signi�cant patterns is a two-step
strategy: �rst �nd all discriminative patterns which satisfy a given threshold, then
conduct permutation test to choose the signi�cance level� and select patterns which
have p value lower than this threshold [71]. This method is e�ectively employed to
�nd a set of statistically signi�cant discriminative patterns. However, it can deal
with only very small datasets since the number of tests (patterns) scales combina-
torially.

To address this problem, some methods allowing to combine discovering patterns
and multiple hypothesis testing in one stage are proposed [31, 32, 74, 33, 72]. These
algorithms are summarized in Table 1.8.

Among them, FastWY [31] is an early approach which takes the dependence be-
tween test statistics in pattern mining into account. In this study, Fisher's exact test
and Westfall-Young procedure are used to test the statistic and correct the signi�-
cance level respectively. FastWY discovers all statistically signi�cant discriminative
patterns in three steps. Step 1: estimate a null distribution. Step 2: calculate the
adjusted signi�cance level � . Step 3: generate patterns whosep values are lower
than � . To �nd the adjusted signi�cance level � for keeping FWER � � , FastWY
uses randomly permuted datasets. Speci�cally, for each permuted dataset, FastWY
uses a branch-and-bound algorithm combined with the lower bound and monotonic-
ity properties of p value to discover the minimum p value among all of the patterns.
When a minimum p value is retrieved, it can be used as the adjusted signi�cance
level for multiple testing. FastWY is not e�cient since it uses randomly permuted
datasets to �nd adjusted signi�cance level. This task has to be repeatedN times
if N permutations are required to calculate the FWER. To address this limitation,
Westfall-Young light algorithm [33] uses an incremental search strategy to �nd all
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signi�cant patterns in one instead of N times without any extra memory require-
ments. Similar to FastWY, Westfall-Young light uses Westfall-Young procedure in
a branch-and-bound algorithm to �nd and correct the signi�cance of patterns. Ex-
perimental results show that Westfall-Young light algorithm outperforms FastWY
in both execution time and memory usage.

Recently, a novel method for p value correction, named LAMP , based on fre-
quent itemset mining to exclude meaninglessly infrequent itemsets which never reach
the signi�cance level, has been proposed. This method adjustsp value much more
accurately and is less cost-consuming than Bonferroni's test procedure [32]. LAMP is
adopted in [74] to directly discover statistically signi�cant discriminative patterns.
In this study, LAMP condition is demonstrated as a kind of monotonic function.
This property is e�ciently used in frequent itemset mining to explore all statisti-
cally signi�cant discriminative patterns satisfying a given threshold function. This
algorithm allows to discover statistically signi�cant discriminative patterns in a short
time even for very large-scale databases.

The above approaches evaluate the statistical signi�cance of patterns by Pear-
son's chi square test or Fisher's extract test which does not consider the conditional
association between discriminative patterns and the target class. As a result, many
false discoveries might occur due to unaccounted confounding e�ects. To address
this problem, a novel algorithm, named FACS [72], which applied Tarone's testa-
bility criterion in Cochran-Mantel-Haenszel (CMH) test [102] is proposed. In this
study, Tarone's testability criterion is employed to correct the statistical signi�cance
level. The CMH test is used to test conditional association between discriminative
pattern and class label. This is the �rst algorithm that bridges the gap between
Tarone's testability criterion and the CMH test. FACS includes two main steps:
compute Tarone's corrected signi�cance threshold � tar and retrieve all patterns
whosep values (estimated by CMH test) are below � tar . To compute � tar , FACS
uses a branch-and-bound algorithm which allows to directly apply Tarone's testabil-
ity criterion to the CMH. Experimental results show that this approach outperforms
the state-of-the-art signi�cant discriminative patterns mining such as LAMP [32] and
BONF-CMH [74].

In short, the approaches that combine test statistic in pattern mining have been
successfully applied for discovering statistically signi�cant discriminative patterns.
They not only generate a limited number of patterns but also correct the signi�cance
level of results.
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Table 1.9: An example of SNPs dataset

Individual
SNP

Label
SNP1 SNP2 SNP3 SNP4 SNP5

1 AT GC AT GC AG
Case2 AT GC AA CC AG

3 AT CC AT GG AG
4 AA GG AA GC AA

Control5 AT GG AT GC AA
6 TT GC AA CC GG

1.5 Applications in bioinformatics

Discriminative pattern mining is very important for bioinformatics. Although this
thesis is focused on GWAS, the discriminative pattern discovery techniques which
are investigated in this thesis are also e�ectively applied to other bioinformatics
problems. In this section, we present some major bioinformatics problems which
have been successfully tackled by discriminative pattern mining techniques. In par-
ticular, the tasks of identifying high-order SNP combinations, discovering di�eren-
tial gene expressions, detecting phosphorylation motifs and mining regulatory motif
combinations are focused.

1.5.1 High-order SNP combinations identifying

Single-nucleotide polymorphism (SNP) is a variation in a single nucleotide that
occurs at a speci�c position in the genome [1]. These SNPs may be associated with
the increase or decrease of an individual's risk of getting a disease or bene�tting
from a particular therapy. To �nd SNPs associated with a disease, genome-wide
association studies (GWAS) compare the SNPs of two groups: case group consists of
patients which are a�ected by a disease and control group consists of healthy people
without a disease. Single SNPs or combinations of SNPs are correlated with a disease
if they occur more frequently in the case group than in the control group. Once new
genetic associations are identi�ed, they can be used to develop better strategies
to detect, treat and prevent the disease [2]. Thus identifying SNP combinations
associated with diseases is very important task in bioinformatics. Table 1.9 shows a
simple SNP dataset which includes 6 individuals of two groups (case and control),
each individual contains 5 SNPs.

Many approaches have been investigated for detecting the interactions of genetic
variants. Some methods uses statistical models such as Logistic Regression [5], Bayes
model [6] while others adopt machine learning techniques such as support vector
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machine [7], neural networks [8], decision trees [9], and random forests [10]. These
approaches have been e�ectively applied to discover SNPs interactions in GWAS.
However, they are used to tackle only small biological datasets and detect only single
or two-locus interactions [11, 12].

To address these limitations, various solutions based on discriminative pattern
mining have been investigated. Local pattern mining algorithms can be directly ap-
plied to �nd high-order SNP combinations associated with disease [16, 21, 103, 104].
These studies adopt exhaustive search strategy to discover all possible discriminative
patterns. In addition, to assess the association strength between SNP combinations
and disease, local quality measures such asOR, � 2 are used. Experimental results
show that these approaches can discover many interesting SNP patterns. However,
the exhaustive search strategies which are used in these studies are only suitable to
deal with small variant datasets with some hundreds or thousands of SNPs.

To work with larger SNP datasets, other methods use heuristic strategy to dis-
cover a good enough but not necessarily optimal result [105, 21, 20]. Although the
performances of these methods are better than the exhaustive search approaches,
risk of missing interesting SNP combinations is increased.

In addition, common step-wise approaches [23, 106, 107, 108] have also been
investigated to conduct the mining of SNP patterns. These methods include two
steps: �ltering step and searching step. During the �rst step, the interesting SNPs
with regard to some conditions are selected. Then these SNP candidates are used
in the second step to �nd combinations using speci�c discriminative pattern mining
algorithms. Experimental results demonstrate that these approaches are e�cient.
Many interesting SNP patterns are discovered in an acceptable execution time.

In short, searching high-order SNP combinations in large genetic variant datasets
is a challenge. The exhaustive search is infeasible while heuristic and step-wise
approaches increase risk of missing importance patterns. Thus, methods capable of
e�ciently searching high quality SNP combinations should be considered to pursue
this issue.

1.5.2 Di�erential gene expressions discovering

Discovering and visualizing di�erential gene expression groups plays an important
role in bioinformatics [25, 109, 110]. These compounds of gene expressions can
be used to build disease diagnosis or treatment systems [26, 27, 17, 111]. With
the development of AND chip technologies, thousands of gene expressions can be
measured in an experiment. Thus, searching combinations of gene expressions in
high-dimension datasets is a computational challenge.

The gene expression data is presented as a matrix in which rows correspond to
the set of genes and columns present the normal cells or disease cells. The value
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Table 1.10: An example of gene expression dataset

Genes
Cell types

Cancer Cancer Cancer Normal Normal Normal
gene1 0.1 0.2 0.3 0.7 0.9 0.3
gene2 0.1 0.2 0.3 0.4 0.5 0.6
gene3 -0.70 -1.1 -0.2 -.90 -0.55 -0.32
gene4 3.25 4.15 5.25 0.50 0.75 0.83
gene5 -2.05 1.1 -2.2 4.0 -5.5 0.3
gene6 1.0 1.1 1.2 1.0 1.5 1.3

at position ( i; j ) presents the expression level of equivalent genei th and cell j th . A
simple example of gene expression data is shown in Table 1.10.

The task of discovering di�erentially expressed genes requires to �nd groups
of genes that are constrained to speci�c intervals of gene expression levels. Such
patterns occur highly frequently in one class of cells but less in another class of cells
or are only present in one class of cells but do not occur in the other cells. For
example, gen1 and gen2 have values of gene expression ranging from 0.1 to 0.3
and they occur 100% in the cancer cells but are absent in the normal cells. In this
situation, the combination of gen 1 and gen2 is considered as an interesting gene
expression pattern.

The problem of identifying di�erentially expressed genes can be handled by dis-
criminative pattern discovery methods [25, 26, 27, 17]. In order to perform this
task, the gene expression dataset is transformed into the input of a discriminative
pattern mining algorithm by considering each gene as an item and each cell type
as a transaction. More importantly, discretization methods have to be used to par-
tition gene expression levels into a number of suitable intervals [25, 26, 17]. The
reason is that gene expression are continuous values thus they cannot be used di-
rectly in discriminative pattern mining algorithms. To test the signi�cance of gene
combinations associated with the interesting class of cells, one can directly adopt
the local quality measures. For example, to measure the discriminative power of
gene expression combinations, the studies in [25, 26, 17] directly useGR while [27]
adopts p value which is computed by Fisher's exact test.

In brief, discriminative pattern mining algorithms can be adopted to search dif-
ferential gene expression combinations. However, these methods have to discretize
the value of gene expression level to be suitable for the available discriminative
pattern mining algorithms. This problem calls for approaches which can analyze
continuous value.
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Figure 1.2: Phosphorylation motifs discovery process [29]

1.5.3 Phosphorylation motifs detection

The goal of discovery of phosphorylation motifs is to �nd a set of motifs that occur
more frequently in the phosphorylated peptide set, called foreground (P), than in
the unphosphorylated peptide set, called background (N ) [28]. An example of phos-
phorylation motifs discovery is demonstrated in Fig 1.2. According to this objective,
the discovery of motif combinations is equivalent to discriminative patterns mining.
Upon this issue, the motif datasets can be considered as the inputs of discriminative
pattern discovery methods where the property of (un)phosphorylation are consid-
ered as class labels; the given peptides set correspond to the transactions; and the
phosphorylation motifs as the set of items. The interesting motif combinations with
statistical signi�cance can represent the di�erences between these two classes, which
are equivalent to the discriminative patterns.

A wide range of e�ective approaches has been proposed for phosphorylation motif
discovery [28, 29, 30, 18, 112, 113]. Among them, Motif-All [29] and C-Motif [18]
are the two studies which use discriminative pattern mining techniques to tackle the
problem of discovering phosphorylation motif combinations. Motif-All [29] uses two-
step approach for discovering statistically signi�cant motifs. In the �rst step, Motif-
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All uses the support enumeration to mine a set of frequent motifs as candidates in
the foreground. Then it adopts statistical signi�cance measure to rank and select the
signi�cant ones in the second step. On the other hand, to avoid two-step limitations
C-Motif [18] conducts these two tasks in a single step to directly generates the
signi�cant motifs. These approaches use local quality measure functions to rank the
statistical signi�cance of discovered phosphorylation motifs. Particularly, OR and
GR (i.e risk ratio) are used in Motif-All and C-Motif respectively. Experimental
results show that these approaches outperform other alternative methods such as
MoDL[28], MMFPh [30], Motif-X [112] and F-Motif [113].

Although there exist some successful methods to discover phosphorylation motifs,
the number of generated patterns is still high. It is di�cult for biologist to interpret
the results. Further research with computation and statistics perspective will be
needed to reduce the execution time and amount of reported motif combinations.

1.5.4 Regulatory motif combinations mining

Transcription factors (TFs) is a critical component of the cellular machinery [32].
Usually some TFs work together to enable cells to respond to various signals. Similar
to other biological pattern discoveries, the detection of multiple TFs combinations is
not only computationally challenging but also extremely unlikely because of multiple
testing correction. With k motifs taken into consideration, the number of tests for
all combinations increases exponentially tok. It is well known that false positives
may occur due to the multiple hypothesis tests.

Fig 1.3 illustrates an example of regulation motif combination in N genes. In
this example, each gene has one expression level. For a given motif,N genes are
partitioned into two groups, regulatory or unregulatory, depending on the p value
of motifs. A combination of motifs is compounded by all its motif members. For
example, Motif 1,2,3 is the combination of three motifs: Motif 1, Motif 2 and Motif
3. The statistical signi�cance of a motif combination is evaluated by p value which
is computed from Fisher's exact test. If its p value is below a given threshold, it is
considered as a regulatory motif.

Recently, to discover regulatory motif combinations, various statistically signi�-
cant discriminative pattern mining algorithms have been proposed [31, 32, 74, 33, 72].
These approaches e�ectively discover many signi�cant regulatory motif combina-
tions. They not only generate limited number of patterns but also retrieve a set of
motif combinations which satisfy the corrected statistical signi�cance level.

For example, FastWY [31] performs experiments on two datasets: yeast dataset
consists of 102 motifs in 5,988 genes and human dataset consists of 397 motifs in
11,610 genes. Experimental results show that FastWY e�ciently �nds statistically
signi�cant motif combinations. In particular, in the yeast dataset, it discovers 12
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Figure 1.3: An example of regulation motif combination [32]. (A) Three individual
motifs and a combination of three motifs with gene expression levels. (B)p value
of the motifs. (C) Combination of three motifs.

patterns which satisfy adjusted signi�cance level � = 0 :000580. The largest pat-
tern contains 4 motifs. In the human dataset, it discovers 7 patterns which satisfy
adjusted signi�cance level � = 1 :781 � 107. The largest pattern contains 8 mo-
tifs. In general, FastWY discovers high statistically signi�cant motif combinations.
However, the running time is still high. For example, with human dataset, FastWY
spends approximate 100,000 seconds to discover 7 statistically signi�cant motif com-
binations.

On the other hand, FACS [72] applies Tarone's testability criterion to the CMH
test to discover statistically signi�cant motif combinations. Experiment on breast
cancer dataset which includes 12,773 genes and 397 motifs shows that FACS is
more e�cient than other approaches. For example, in comparison with LAMP, the
performance of FACS is better. In addition, FACS generates only 26 statistically sig-
ni�cant motif combinations. This number of patterns is approximate 3% proportion
of motif patterns which are discovered by LAMP.

Brie
y, statistically signi�cant discriminative pattern discovery algorithms are
e�cient methods for dealing with searching patterns in biological datasets. They
generate limited number and high statistically signi�cant patterns. However, the
computation cost is still high.
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1.6 Conclusion

In this chapter, a comprehensive study of discriminative pattern mining techniques
and its applications in bioinformatics has been presented. We introduce a uniform
de�nition of discriminative pattern mining with various search objectives such as
local, global and statistically signi�cant discriminative patterns. In addition, some
popular statistical measures for discriminative power andp value correction are also
discussed.

Discriminative pattern mining techniques have been applied to tackle GWAS
which is the most important task of bioinformatics. However, there are some remain-
ing challenges that prevent them to directly handle large SNP datasets. These chal-
lenges include association strength measure, high-order SNP combinations search-
ing, statistical signi�cance testing and interesting SNP combinations visualization.
To address these challenges, this thesis advances state-of-the-art of discriminative
pattern mining techniques to discover genetic variant combinations associated with
interesting phenotype.
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Chapter 2

Identifying Genetic Variant
Combinations Using
Skypatterns

This chapter presents the method to identify genetic variant combinations associated
with diseases by using the skypattern technique. This technique allows combinations
of measures to be used to evaluate the importance of genetic variant combinations
without having to select a given measure and a �xed threshold.

2.1 Introduction

Local discriminative pattern mining algorithms have been applied to discover genetic
variant combinations associated with diseases [16, 103]. These algorithms directly
use local quality measures to evaluate the association strength between SNP com-
binations and diseases. However, a wide range of statistical discriminative power
measures are available. Selecting the most appropriate measures in biological sit-
uations remains a major challenge. In addition, for each measure users have to
indicate an appropriate threshold to evaluate the importance of patterns, which is
an extremely di�cult task, speci�c to each particular biological datasets. The reason
is that when the thresholds are not strict, the pattern mining algorithms generate
many patterns of limited interest. On the other hand, some interesting patterns
may be lost if the constraints are too restrictive.

To address these challenges, we propose to use the skypattern technique, which
is based on a Pareto-dominance relation between set of measures, to evaluate the
association strength of variant combinations and diseases. Skypattern technique has
been introduced by [114]. This technique allows multi-criteria decision to be taken

45
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in a threshold free manner to evaluate the importance of patterns. Given a set of
patterns, each pattern is evaluated by a set of measures. Skypatterns are patterns
which have dominance over the other patterns. Skypatterns are highly interesting
since they not only receive a global evaluation from the set of measures, but also do
not require any thresholds on the measures.

This chapter is organized as follows. Next section focuses on skypattern tech-
niques which are used to evaluate the interestingness of a pattern. Then various
experiments are conducted to illustrate the e�ciency of the skypattern technique in
identifying genetic variant combinations associated with diseases. In the last section,
a summary of the results and future research directions are given.

2.2 Skypatterns

Pattern mining techniques use threshold-based or top-k-ranking strategy to select
the interesting patterns. However, it is di�cult to choose an appropriate threshold
or a k value in most practical situations. To solve this problem, [114] proposed to use
skyline queries to mine skyline patterns (or skypatterns) in a threshold-free manner.
The idea is that each pattern is evaluated by a set of measures. Patternx is evaluated
better than pattern y if x dominates y. It means that x has at least one measure
better than y, and the other measures ofx must be not worse than the measures of
y. A traditional example for this problem is retail transaction data in which each
transaction corresponds to a client invoice; and every item in the transaction is a
product bought by the client. Individual patterns are evaluated by some criteria
such as frequency, size and price respectively. A user selecting a set of patterns
may consider a pattern with high frequency, large size and low price. In this case,
we say that pattern x dominates another pattern y if x:f requency � y:f requency,
x:size � y:size, x:price � y:price, where at least one inequality is strict. The
general de�nitions of skypatterns are stated as follows:

We considerD and I as de�ned in Chapter 1. An individual pattern is evaluated
by a set of k measuresM = f m1; m2; :::; mkg.

De�nition 2.1 (Dominance) Given a set of measuresM , a pattern p dominates an-
other pattern q with respect to M , denoted by p � M q, i� 8m 2 M , m(p) � m(q)
and 9m 2 M such that m(p) > m (q).

De�nition 2.2 (Skypattern and skypattern operator) Given a set of patterns P, each
pattern is evaluated by a set of measuresM . A skypattern with respect to M is
a pattern not dominated in M . The skypattern operator, which is denoted by
Sky(M ), returns all the skypatterns with respect to M .
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Table 2.1: Example of transaction dataset

Transactions i 1 i 2 i 3 i 4 i 5 i 6

t1 1 1 1 1 0 1
t2 1 1 1 1 1 0
t3 1 1 0 0 0 0
t4 0 0 0 1 0 0
t5 1 0 1 0 0 0
t6 0 0 0 0 1 0

Table 2.2: Skypatterns with respect to the set of measuresM = f f req; sizeg

Patterns f req size
i 1 4 1
i 1i 2 3 2
i 1i 3 3 2
i 1i 2i 3i 4 2 4

Sky(M ) = f p 2 Pj 6 9q 2 P : q � M pg

Given a set of measuresM , the skypattern mining problem is thus to evaluate
the query Sky(M ) over 2I patterns.

For example, Table 2.1 presents a transaction dataset including 6 transactions
denoted by t1; :::; t6 which are described by 6 itemsi 1; :::; i 6. Each individual pattern
is evaluated by a set of measuresM including:

- m1: f req (p) is the frequency of pattern p.
- m2: size(p) is cardinality of pattern p.
- m3: area(p) = freq (p) � size(p).
Considering pattern i 1i 2i 3i 4 for example, we havefreq (i 1i 2i 3i 4) = 2, size(i 1i 2i 3i 4) =

4 and area(i 1i 2i 3i 4) = 8.
Suppose usingM = f f req; sizeg as a set of measures, patterni 1i 2i 3i 4 dominates

pattern i 1i 2i 3 sincefreq (i 1i 2i 3i 4) = f req (i 1i 2i 3) and size(i 1i 2i 3i 4) > size (i 1i 2i 3).
Skypattern operator with respect to M generates a set of skypatterns which is

shown in Table 2.2. Graphical presentation ofSky(M ) is illustrated in Fig 2.1. The
shaded area is called the dominated area since it cannot contain any skypatterns.

Mining skypatterns with respect to the set of measures is a computational chal-
lenge. This process can be done with an exhaustive search strategy: i.e., �rst discover
all patterns, then run domination tests with respect to the set of measures to �nd
skypatterns. In practice, this approach is not feasible since the collection of patterns
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Figure 2.1: Graphical presentation ofSky(M )

is often very large to be manageable. Obviously, to limit the size of the collection,
constraints might be introduced. However, the consistency of the result may be lost
(i.e., some skypatterns may not be produced) and the thresholding problem would
remain.

2.3 Skypatterns cube

In practice, selecting the most appropriate set of measures to evaluate the impor-
tance of patterns is a di�cult task since users may not know exactly the role of
each measure. Nevertheless, users can keep all the potential measures; then add or
remove a measure to look how the skypattern set changes. To explore the di�erent
sets of measures, [115] proposes the notion ofskypattern cube. The skypattern cube
is a lattice over all subsets of measures where each node of the lattice corresponds to
a subset of measures and its skypattern set. Based on this structure, users can have
a better understanding about the role of measures by observing the new skypatterns
or the ones which disappear when adding or removing a measure in two neighboring
nodes. Additionally, di�erent subsets of measures may lead to the same set of sky-
patterns and thus be shown as equivalent. This helps users to classify the measure
subsets e�ectively. The de�nition of the skypattern cube is given as follows:

De�nition 2.3 (Skypattern cube) Given a set of measuresM , the skypattern cube
with respect to M , denoted by SkyCube(M ), consists of 2jM j � 1 skypattern sets
which are generated bySky(M u), for all M u � M .

SkyCube(M ) = f (M u ; Sky(M u)) jM u � M; M u 6= ;g
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Figure 2.2: Full lattice association to 4 measures

To compute skypattern cube, theSkyCubesoftware can be used [115]. This soft-
ware discovers and presents skypatterns in a lattice structure which enable users
to perform various queries e�ectively and to discover the most interesting skypat-
tern sets. For example, Fig 2.2 illustrates the relative lattice which is generated
by SkyCube. This lattice presents all subsets of 4 measures and their equivalent
skypatterns. Users can choose a speci�c subset of measures to view the related
skypatterns.

Whole skypattern cube may generate skypatterns that are redundant. For ex-
ample, a skypattern p can be present in many di�erent nodes. Thus, we use the
compression function of the SkyCube to keep only theproper skypatterns of each
node. A proper skypattern is a skypattern that is not derived from its child nodes.
For example p is a proper skypattern for f m1; m2g if p is not a skypattern for f m1g
nor f m2g. In some cases a node may not have proper skypatterns, so it disappears
from the compressed SkyCube. For example, Fig 2.3 shows the relative compressed
lattice of a set of 4 measures. The lattice shows only the nodes which generate
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Figure 2.3: Compressed lattice association to 4 measures

proper skypatterns.

2.4 Experiments

In this section, we use skypattern technique to identify SNP combinations associated
with diseases. To evaluate the e�ciency of skypattern technique, various genetic
variant datasets and association strength measures are used.
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Table 2.3: Seven common diseases datasets

No Diseases Genes Chromosome SNPs

1 Bipolar disorder (BD) PALB2 16 rs420259

2 Coronary artery disease (CAD) CDKN2A 9 rs1333049

3 Crohn's disease (CD) BSN 3 rs9858542

4 Hypertension (HT) RYR2 1 rs2820037

5 Rheumatoid arthritis (RA) PTPN22 1 rs6679677

6 Type 1 diabetes (T1D) KIAA0350 16 rs12708716

7 Type 2 diabetes (T2D) TCF7L2 10 rs4506565

2.4.1 Datasets

In this study, we use 7 real case-control genetic variant datasets which are provided
by Wellcome Trust Sanger Institute (http://www.sanger.ac.uk/). Based on the re-
sults of [116], the strong SNP signals associated with diseases are showed in Table
2.3. Since discovering all SNP combinations in large case-control dataset is time-
consuming, for each dataset we select 100 SNPs including SNP related to disease on
a particular chromosome.

The purpose of the experiments is to evaluate the e�ectiveness of skypatterns
with respect to the set of measures. The e�ectiveness of a measure (or set of mea-
sures) is assessed based on the number of interesting SNP genotype combinations
that it found. According to the literature there is no report related to SNP combina-
tions association with these diseases. In this study we suppose that the interesting
SNP genotype combinations are patterns containing at least one of the SNPs related
to diseases reported by the literature.

2.4.2 Mining skypatterns strategy

Exhaustively mining SNP genotype combinations and calculating skypattern cube
are computationally challenging. Thus, in these experiments, the size of combi-
nations are limited to three SNP genotypes. To discover SNP combinations and
compute skypatterns the following steps are conducted.

First, we use a brute-force strategy to mine all SNP genotype combinations of
size 3. This process guarantees that all 3-SNP genotype combinations are taken
into consideration. The exhaustive search strategy generates a very large number
of patterns. Thus, to reduce the size of pattern sets, we �lter the less interesting
ones. In particular, the patterns having support in case group< 10% and support
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Table 2.4: Discriminative power measures

No Measures Denoted
1 Di�erence support DS
2 Growth rate GR
3 Odds ratio OR
4 Chi square X 2

5 Weighted Relative Accuracy WRAcc
6 Mutual information MI
7 Information gain IG
8 SupMaxPair SupMaxPair

in control group > 50% are removed. After reducing, each set of patterns consists
of approximately 500,000 patterns.

Then we use 8 measures which are shown in Table 2.4 to evaluate the impor-
tance of SNP genotype combinations. These are popular measures for evaluating
the discriminative power of patterns in two-class datasets. They are often adopted
to evaluate the association strength between biological patterns and interesting phe-
notype.

Finally, SkyCube software is used to �nd skypatterns over these SNP genotype
combinations.

2.4.3 Results

2.4.3.1 Individual measures results

Firstly, we evaluate the e�ectiveness of 8 individual measures for identifying the
SNP genotype combinations related to diseases. This result is used as a baseline
to compare and evaluate the e�ectiveness of skypatterns over patterns evaluated
by individual measures. For each measure, we select the top 100 patterns which
have the highest discriminative power for analysis. The e�ectiveness of individual
measures is assessed based on the number of patterns containing the SNP genotype
associated to disease in this set. Table 2.5 shows the number of interesting SNP
genotype combinations which are identi�ed by individual measures in 7 datasets.

The most e�ective measure isX 2 which can discover interesting SNP genotype
combinations in all datasets. The highest e�ectiveness ofX 2 is for RA disease. How-
ever, in the other datasets, the e�ciency of X 2 decreases. In contrast, the group of
measures includingDS, WRAcc, SupMaxPair is the least e�ective. These mea-
sures can only detect variants related to disease in some datasets. The other mea-
sures such asGR, OR, MI and IG give a higher e�ectiveness. The notable methods
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Table 2.5: Number of risk patterns identi�ed by individual metrics

No Measures BD CAD CD HT RA T1D T2D
1 DS 0 10 0 20 97 0 0
2 GR 4 33 0 21 91 10 9
3 OR 5 53 0 19 91 10 9
4 X 2 2 27 16 21 100 4 47
5 WRAcc 0 10 0 22 98 0 0
6 MI 3 9 0 18 90 16 11
7 IG 4 53 0 22 98 8 0
8 SupMaxPair 0 0 0 53 0 10 0

Table 2.6: The highest e�ectiveness of two-measure sets

Measures BD CAD CD HT RA T1D T2D
f GR; SupMaxPair g 0/12 10/15 13/21 12/15 10/14 6/14 7/24
f OR; SupMaxPair g 0/14 8/13 13/21 8/11 10/15 4/9 2/20
f MI; SupMaxPair g 0/35 25/56 16/36 17/51 10/43 6/24 18/51

in this group are OR and GR. Both of them discover risk variant combinations in
6/7 datasets. In short, there is no best measure for all datasets. However, each
measure e�ectively identi�es risk variant combinations in a particular dataset.

2.4.3.2 Skypattern results

We then analyze the skypatterns generated from SkyCube. According to the subsets
of measures which generate proper skypatterns, we analyze the skypattern sets with
respect to the combinations of 2 to 4 measures.

Firstly, we consider the skypattern sets with respect to 2 measures. Based on
the number of interesting SNP genotype combinations found in each skypattern
set, the most e�ective 2-measure combination isf GR; SupMaxPair g. The lowest
e�ective methods is f DS; WRAccg. Table 2.6 presents the most e�ective 2-measure
combinations. Note that, in this table, the e�ectiveness of the measure combinations
are presented by the number of risk patterns per total skypatterns.

These 2-measure combinations can identify many risk variant combinations in
their equivalent skypattern sets. Considering CD dataset for example, these measure
compounds can detect interesting SNP genotype combinations e�ectively. Particu-
larly, the ratio of skypatterns containing risk variant over the total of skypatterns
of f GR; SupMaxPair g, f OR; SupMaxPair g, and f MI; SupMaxPair g are 13/21,
13/21, and 16/36 respectively. Notably, for this dataset most individual measures
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Table 2.7: The highest e�ectiveness of three-measure sets

Measures BD CAD CD HT RA T1D T2D
f OR; MI ,
SupMaxPair g

1/54 29/40 3/20 45/123 14/39 2/6 9/28

f X 2; MI ,
SupMaxPair g

1/218 126/198 3/36 60/230 46/71 13/29 37/136

f WRAcc; MI ,
SupMaxPair g

1/130 61/102 10/135 88/266 69/100 31/111 13/103

Table 2.8: The e�ectiveness comparison of f GR; SupMaxPair g and
f OR; MI; SupMaxPair g

Measures BD CAD CD HT RA T1D T2D
f GR; SupMaxPair g 0 0.67 0.62 0.8 0.71 0.43 0.29
f OR; MI; SupMaxPair g 0.02 0.73 0.15 0.37 0.36 0.33 0.32

cannot detect risk variant combinations in the top of 100 patterns, exceptX 2.
Similarly, the result of the most e�ective 3-measure combinations is presented in

Table 2.7. According to this result, f OR; MI; SupMaxPair g is the most e�ective
3-measure combination. It identi�es risk variant groups in all datasets. The highest
e�ectiveness is for CAD with 29 out of 40 skypatterns containing risk SNP genotype.
However, this combination is less e�cient in BD where there is only 1 skypattern
including risk variant over 54 skypatterns.

In comparison with 2-measure combinations, the set of measuresf OR; MI ,
SupMaxPair g is less e�ective. For example, with 7 datasets, there are 4 out of 7
datasets in which the combination of f GR; SupMaxPair g is better than f OR; MI ,
SupMaxPair g. Table 2.8 presents the comparison off GR; SupMaxPair g and
f OR; MI , SupMaxPair g. Note that, to compare easily we used the ratio (the
number of interesting patterns per total number of skypatterns) to present the ef-
fectiveness of measure combinations.

The combination of two or three measures can e�ectively discover the groups of
variants associated to diseases. However, it is less e�ective when we use 4-measure
combinations. Particularly, these 4-measure combinations can only identify risk
SNP genotype combinations in 2 out of 7 datasets including CAD and T2D. In the
other remaining datasets, there is no risk variant combinations detected although
the number of generated skypatterns are high. Especially, the SkyCube doesn't
generate any proper skypattern sets which corresponds to the combination of more
than 4 measures.
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Table 2.9: The comparison between 2-measure combinations andX 2

Measures BD CAD CD HT RA T1D T2D

X 2 0/12 1/15 1/21 2/15 14/14 0/14 6/24
f GR,
SupMaxPair g

0/12 10/15 13/21 12/15 10/14 6/14 7/24

X 2 1/14 1/13 1/21 2/11 15/15 0/9 6/20
f OR,
SupMaxPair g

0/14 8/13 13/21 8/11 10/15 4/9 2/20

X 2 1/35 10/56 5/36 13/51 43/43 0/24 24/51
f MI ,
SupMaxPair g

0/35 25/56 16/36 17/51 10/43 6/24 18/51

2.4.3.3 Individual measures and skypatterns comparison

In order to con�rm the e�ectiveness of measure combinations over individual mea-
sures, we compare them withX 2 which is the most e�cient individual metrics. For
fair comparison, the number of highestX 2 patterns is reselected. For each dataset,
we select the top-k patterns in descending order ofX 2 where k is the number of
skypatterns which are generated from the combination of measures in that dataset.
This comparison is fair as it considers in both cases thek �rst patterns that an an-
alyst will examine. The e�ciency of one method is evaluated better than the other
if its pattern set contains a higher number of risk SNP genotype combinations. The
comparison between 2-measure combinations andX 2 is showed in Table 2.9.

According to this result, the skypatterns with respect to f GR; SupMaxPair g
contain more interesting SNP genotype combinations thanX 2 does. Speci�cally,
there are 5 out of 7 datasets in whichf GR; SupMaxPair g is better than X 2. They
are equally e�cient in BD; and less e�ective than X 2 in RA. Similarly, the e�ec-
tiveness off OR; SupMaxPair g and f MI; SupMaxPair g are also better in average
than X 2. To be more speci�c, in 4 out of 7 datasets these methods are better than
X 2, but they are worse than X 2 in the 3 remaining datasets (BD, HT, T2D).

In addition, the set of measuresf OR; MI; SupMaxPair g is more e�ective than
X 2. Speci�cally, there are 5 out of 7 datasets in whichf OR; MI; SupMaxPair g is
better than X 2; one is equal; and another one is less e�cient thanX 2. Table 2.10
illustrates the comparison of f OR; MI; SupMaxPair g and X 2.

To sum up, according to the results, using combination of measures is more e�ec-
tive than using individual measures. Particularly, X 2 is the most e�ective individual
measure, whereas,f GR; SupMaxPair g and f OR; MI; SupMaxPair g are the most
e�ective for two and three measure combinations. In comparison withX 2, both of
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Table 2.10: The comparison betweenf OR, MI, SupMaxPair g and X 2

Measures BD CAD CD HT RA T1D T2D
X 2 1/54 6/40 1/20 25/123 39/39 0/6 8/28
f OR; MI ,
SupMaxPair g

1/54 29/40 3/20 45/123 14/39 2/6 9/28

f GR; SupMaxPair g and f OR; MI; SupMaxPair g are more e�cient than X 2. The
set of measuresf OR; MI; SupMaxPair g is less e�ective than f GR; SupMaxPair g
slightly. The compound of 2 or 3 measures are e�ective but the combination of 4
measures or higher are not useful in our setting.

2.5 Conclusion

In this chapter we proposed to use the skypattern technique to identify the groups of
genetic variants associated with diseases. The experiments on various SNP datasets
demonstrate that the proposed method is promising. The skypatterns with respect
to the set of two or three statistical measures can e�ectively detect SNP genotype
combinations related to diseases. In comparison withX 2, the most e�ective individ-
ual method, the set of two or three measures give a higher e�ciency. However, it is
not necessary to use more than 3-measures combinations since they do not generate
proper skypatterns e�ectively.

The skypattern technique has a good potential to evaluate the association strength
between SNP combinations and diseases. However, mining skypatterns with regard
to multiple measures is a time-consuming task. Thus, to use this technique for larger
genetic variant datasets further research is required.
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Searching for Statistically
Signi�cant Discriminative
Patterns in Genomic Data

This chapter presents an e�cient algorithm to search statistically signi�cant discrim-
inative patterns in two-class datasets. It has been e�ciently applied in a two-step
framework to discover high-order SNP combinations associated with diseases.

3.1 Introduction

Using the skypattern technique to evaluate the association strength of SNP com-
binations and diseases is an interesting approach. It has been demonstrated that
relevant SNP combinations associated with diseases can be identi�ed by using groups
of risk measures. The proposed approach in the previous chapter can only tackle
small genetic variant datasets since discovering SNP combinations is a computa-
tional challenge. The available local discriminative pattern mining algorithms can
be applied to handle this problem. However, some major problems remain.

First, they are exclusively based on enumeration strategies. This is a very time-
consuming approach for datasets with a large number of items (where the \items"
are SNPs in biological datasets). Many discriminative patterns cannot be discovered
due to the exponential number of combinations among individual items. In addition,
patterns of little biological interest may occur. A post-processing step (or domain
knowledge step) is often required to select patterns with potential biological interest
[16, 103, 22].

Second, most of discriminative measures are not anti-monotonic [44, 45, 47, 13].
It means that there exists no correlation between a pattern and its subsets with
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regard to discriminative scores. Thus, discriminative measures cannot be used to
prune the search space like in classical frequent itemset mining [47, 61].

Third, mining low frequency patterns is algorithmically challenging. The ap-
proaches based on the frequency threshold usually ignore these patterns. However,
in practice, there exists many patterns with a low frequency but high discriminative
scores. Discovering these patterns is necessary since they give valuable information
[24, 23].

Fourth, beside the computational problems, multiple hypothesis testing is an
even more serious challenge. Existing algorithms often generate a large number
of combinations. Many of them could be discovered even due to random chance.
Thus, a huge number of hypothesis tests is needed to test the statistical signi�cance
of results [71, 33, 72].

In this chapter, we propose an algorithm, named \Statistically Signi�cant Dis-
criminative Pattern Search" (SSDPS), that discovers discriminative patterns in two-
class datasets. More precisely, the SSDPS algorithm aims at searching patterns sat-
isfying both discriminative scores (equivalent to risk scores) and con�dence intervals
thresholds. These patterns are de�ned asstatistically signi�cant discrimina-
tive patterns . The SSDPS algorithm is based on a strategy in which risk measures
and con�dence intervals can be used as anti-monotonic properties. These properties
allow the search space to be e�ciently pruned. All patterns are directly tested for
risk scores and con�dence intervals in the mining process. Only patterns satisfy-
ing discriminative and statistical signi�cance thresholds are considered as the target
output. The algorithm can discover complete set of discriminative patterns with a
very low frequency threshold. It can also use heuristic strategies to mine only the
largest statistically signi�cant discriminative patterns with regard to a set of risk
measures and con�dence intervals. The heuristic strategies allow users to choose a
trade-o� between execution time and result quality.

The SSDPS algorithm has been used to conduct various experiments on both syn-
thetic datasets and real SNP datasets: Age-Related Macular Degeneration, Breast
Cancer and Type 2 Diabetes. The experiments show that SSDPS algorithm can
e�ectively discover interesting patterns with a short execution time. Many of them
contain SNPs which are already known as associated with diseases. In addition,
the SSDPS algorithm detects patterns which include very low frequency SNPs, and
which can open new investigations. We also evaluate the performances of SSDPS
algorithm. They are comparable with other existing methods such as SFP-Growth
[103] or CIMCP [60], while the proportion of generated patterns is less than the
amount of patterns output by these methods.

The rest of this chapter is organized as follows: Section 3.2 presents the back-
ground of risk measures and statistical signi�cance tests which are used to evaluate
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Table 3.1: A 2x2 contingency table of a pattern in case-control data

Presence Absence Total
Case a b a+ b
Control c d c+ d

the discriminative patterns and prune the search space. Section 3.3 precisely de-
�nes the concept of statistically signi�cant discriminative pattern, and Section 3.4
presents the enumeration strategy used by the SSDPS algorithm. In Section 3.5,
the design and implementation of the SSDPS algorithm are described. Section 3.6
is dedicated to experiments and results. Section 3.7 concludes the chapter.

3.2 Risk measures and statistical signi�cance tests

In this section, we present the background of risk measures and statistical signif-
icance tests which are used as constraints in the SSDPS algorithm to e�ciently
discover patterns with a high statistical signi�cance.

3.2.1 Risk measures

Odds ratio (OR), risk ratio (RR) and absolute risk reduction (ARR) are bio-statistics
measurements that are widely used for testing association in case-control studies
[117] [59] [118]. They are used to quantify how strongly the presence or absence
of property A is associated with the presence or absence of property B in a given
population. Suppose that cases and controls are conducted to evaluate exposure to a
suspected causal factor. The observation data can be tabulated by a 2x2 contingency
table as shown in Table 3.1.

Where:
a is the number of presence in case group.
b is the number of absence in case group.
c is the number of presence in control group.
d is number of absence in control group.
The OR, RR, ARR are estimated based on the relation of odds between the two

groups of subjects. They are computed by the following equations:

OR =
a=b
c=d

=
a:d
b:c

(3.1)

RR =
a=(a + b)
c=(c + d)

(3.2)
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ARR =
a

a + b
�

c
c + d

(3.3)

The estimation of OR, RR, or ARR indicates the association between variants
and disease. In particular, there is no association ifOR = 1, RR = 1, or ARR = 0;
risk increases ifOR > 1, RR > 1, or ARR > 0; risk decreases ifOR < 1, RR < 1,
or ARR < 0.

Finding variant combinations with high risk scores is the objective of GWAS. It
shows that variant combinations may be associated with a speci�c disease.

For example, observing variant combinationp in 100 individuals e�ected by Type
2 Diabetes (case group), and 100 healthy individuals (control group), we have the
following results:

Situation 1: p occurs in 50 case individuals and 40 control individuals.OR, RR
and ARR are equal to: OR = 50=50

40=60 = 1 :5, RR = 50=100
40=100 = 1 :25, ARR = 50

100 � 40
100 =

0:1.
OR > 1, RR > 1 and ARR > 0 indicate that p is associated with disease.
Situation 2: p occurs in 60 cases and in 10 controls.OR, RR and ARR are equal

to: OR = 60=40
10=60 = 9, RR = 60=100

10=100 = 6, ARR = 60
100 � 10

100 = 0 :5.
In this situation the association betweenp and disease is strongly recognized.

3.2.2 Statistical signi�cance tests

p value and con�dence intervals are statistical measures. Both of them are often
used to assess the statistical signi�cance of results since they provide complementary
information [119, 118].

3.2.2.1 p value

The p value is a probability, which is the result of a statistical test. It is used to
determine if a null hypothesis of a study is to be accepted or rejected, or used to
determine the statistical signi�cance of results. A small p value corresponds to a
strong evidence. The results are indicated as \statistically signi�can" if the p value
is below a given threshold. A p value threshold of 0.05 (or 5%) is often chosen
to indicate the level of signi�cance [2]. The p value can be estimated by di�erent
mathematical methods such as Fisher Exact Probability Test or Pearson's chi-square
test.

3.2.2.2 Con�dence intervals

Con�dence intervals (CI ) are the result of a statistical measure. They provide infor-
mation about a range of values (lower con�dence interval (LCI ) to upper con�dence
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interval ( UCI )) in which the true value lies with a certain degree of probability. CI
is able to assess the statistical signi�cance of a result [118]. A con�dence level of
95% is usually selected. It means that theCI covers the true value in 95 out of 100
studies.

A 95% CI for the population value of OR is estimated by the two quantities:
lower CI (denoted LCI OR ) and upper CI (denoted UCIOR ).

LCI OR = e
�

ln (OR)� 1:96
q

1
a + 1

b + 1
c + 1

d

�

(3.4)

UCIOR = e
�

ln (OR)+1 :96
q

1
a + 1

b + 1
c + 1

d

�

(3.5)

Similarly, a 95% CI for the population value of RR is estimated by the two
quantities: lower CI (denoted LCI RR ) and upper CI (denoted UCIRR ).

LCI RR = e
�

ln (RR )� 1:96
q

1
a � 1

a+ b + 1
c � 1

c+ d

�

(3.6)

UCIRR = e
�

ln (RR )+1 :96
q

1
a � 1

a+ b + 1
c � 1

c+ d

�

(3.7)

In case-control studies,OR = 1 or RR = 1 indicates \no association" between
the exposure and the disease. Thus, if the 95%CI does not contain the value 1.0,
the association is statistically signi�cant at 0.05. In contrast, if the 95% CI of OR
or RR contains 1.0, the association is not signi�cant at the 0.05 level.

Consider the previous example. Supposep value = 0 :05 is the signi�cant level
(obtained by Fisher Exact Probability Test) and we expect to �nd variants associated
with disease (OR and RR larger than 1). We have the following results:

In situation 1, we have: p value = 0 :1; 95% CI of OR is (0.856 - 2.626); 95%
CI of RR is (0.9169 - 1.7041). Hence,p is not statistically signi�cant at the 0.05
level, since both 95%CI of OR and RR contain 1, and p value does not satisfy the
signi�cance threshold (although the OR and RR are larger than 1).

In situation 2, we have: p value = 2 :5e� 14; 95% CI of OR is (6.2751 - 29.0434);
95% CI of RR is (3.2621 - 11.0358). Hence,p is statistically signi�cant since all
95% CI do not contain 1 and p value satis�es the signi�cance threshold.

In short, OR, RR or ARR of a result larger than a prede�ned limit does not nec-
essarily indicate that this association is statistically signi�cant. Users must consider
the CI or p value to determine signi�cance.
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Table 3.2: Transaction table of two-class data

Tids Items Class
1 a b c f i j 1
2 a b c e g i 1
3 a b c f h j 1
4 b d e g i j 1
5 d f g h i j 1
6 b c e g h j 0
7 a b c f g h 0
8 b c d e h i 0
9 a d e g h j 0

3.3 Statistically signi�cant discriminative patterns

The goal of the study is to �nd patterns in GWAS that are at the same time dis-
criminative and statistically signi�cant, as de�ned in Section 3.2. In this section, we
present our de�nition of such patterns.

The input of discriminative pattern mining algorithms or GWASs is presented as
a matrix including n rows and m columns. Each row corresponds to a transaction
(or an individual) which belongs to positive or negative class (case or control group),
whereas columns are items (or SNPs).

For example, Table 3.2 presents a dataset including 9 transactions (identi�ed by
1::9) which are described by 10 items (denoted bya::j ). The dataset is partitioned
into two classes. The positive class (class label = 1) includes 5 transaction ids from
1 to 5, and the negative class (class label = 0) consists of 4 transaction ids from 6
to 9.

The objective of GWASs or discriminative pattern mining algorithms is to �nd
groups of items satisfying some constraint thresholds such as risk ratio, odds ratio
or risk di�erence.

The formal presentation of this problem is given in the following:
Let I be a set ofm items I = f i 1; :::; i m g and S1, S2 be two labels .
A transaction over I is a pair t i = f (x i ; yi )g, where x i � I , yi 2 f S1; S2g. Each

transaction is identi�ed by an integer, denoted tid .
A set of tids T = f 1::ng over I can be termed as atransaction datasetD over I .
The two sets of tids that belong to S1 and S2 are denoted byD1 and D2, and

we havejD j = jD1j + jD2j.
A set p � I is called an itemset (or pattern) and a set q � f 1::ng is called a

tidset . For convenience, we write a tidsetf 1; 2; 3g as 123, and an itemsetf a; b; cg
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as abc. The number of transactions in D i containing p is denoted by jD i (p)j. The
relational support of pattern p in classD i , denoted sup(p; D i ), is de�ned as:

sup(p; D i ) =
jD i (p)j

jD i j
(3.8)

The negated support ofp in D i , denoted sup(p; D i ), is de�ned as:

sup(p; D i ) = 1 � sup(p; D i ) (3.9)

Pattern p is frequent in D i if its support value in D i is no less than a given
threshold; p is closed frequentin D i if there doesn't exist any frequent pattern which
contains p and has the same support asp in D i ; p is maximal frequent in D i if it is
not a subset of any other frequent pattern in D i .

Taking again Table 3.2 as example, letmin sup = 0 :3 be the support threshold.
Then abc is frequent sincesup(abc; D1) = 3 =5 = 0:6 � min sup. In addition, abc is
closed frequent inD1 since there exist no frequent pattern containingabcand having
the same support asabcin D1. In contrast, abcf is frequent but not closed frequent
in D1. Becauseabcf is a subset ofabcf j and sup(abcf; D1) = sup(abcf j; D 1) = 2 =5.
abcf j is a maximal frequent pattern in D1.

Discriminative score of a pattern p in dataset D , denoted scr(p; D), is de�ned
over the relational supports ofp in the two classes such as support di�erence, growth
rate or odds ratio support.

Support di�erence of pattern p in dataset D , denoted SD(p; D), is de�ned as:

SD(p; D) = sup(p; D1) � sup(p; D2) (3.10)

Growth rate support of pattern p in dataset D , denotedGR(p; D), is de�ned as:

GR(p; D) =
sup(p; D1)
sup(p; D2)

(3.11)

Odds ratio support of pattern p in dataset D , denotedORS(p; D), is de�ned as:

ORS(p; D) =
sup(p; D1)=sup(p; D1)
sup(p; D2)=sup(p; D2)

(3.12)

For example,sup(abc; D1) = 0 :6, sup(abc; D2) = 0 :25, then we haveSD(abc; D) =
0:35, GR(abc; D) = 2 :4, ORS(abc; D) = 4 :5.

De�nition 3.1 (Discriminative pattern) Let � be a discriminative threshold,scr(p; D)
be the discriminative score of pattern p in D . The pattern p is discriminative if
scr(p; D) � � .
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Table 3.3: The equivalence of terms between GWAS and discriminative pattern
mining

GWAS Discriminative pattern mining
Case group Positive class
Control group Negative class
Individual SNP Item
SNP combination Itemset (or pattern)
The presence of SNP
combination in the case group

The number of transactions in
the positive class containing pattern

The presence of SNP
combination in the control group

The number of transactions in the
negative class containing pattern

For example, let � = 0 :2 be the SD threshold. Then abc is a discriminative
pattern since its score satis�es the threshold. In contrast, pattern abcf is not dis-
criminative since SD(abcf; D) = 0 :15.

Searching for the combinations of SNPs associated with diseases is equal to �nd-
ing discriminative patterns in two-class datasets. The equivalence of terms between
GWAS and discriminative pattern mining is shown in Table 3.3. In this setting,
the risk measures are discriminative measures [59]. In particular, theARR of SNPs
combination in the case and the control group can be exactly said to be theSD
of a pattern in the positive and the negative class. Similarly, we can conclude the
equivalence betweenRR and GR, betweenOR and ORS.

In addition, we can also demonstrate that 95%CI of GR and 95%CI of ORS
are equivalent to 95%CI of RR and 95%CI of OR, respectively.

Let a = jD1(p)j (the number of transactions in D1 that contains p), b = jD1j �
jD1(p)j (the number of transactions in D1 that does not contain p), c = jD2(p)j (the
number of transactions in D2 that contains p), d = jD2j � j D2(p)j (the number of
transactions in D2 that does not contain p).

A 95% CI of GR is estimated by lower CI (denoted LCI GR ) and upper CI
(denoted LCI GR ) which are given by:

LCI GR = e
�

ln (GR)� 1:96
q

1
a � 1

a+ b + 1
c � 1

c+ d

�

(3.13)

UCIGR = e
�

ln (GR)+1 :96
q

1
a � 1

a+ b + 1
c � 1

c+ d

�

(3.14)

A 95% CI of ORS is estimated by lower CI (denoted LCI ORS ) and upper CI
(denoted LCI ORS ) which are given by:
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LCI ORS = e
�

ln (ORS )� 1:96
q

1
a + 1

b + 1
c + 1

d

�

(3.15)

UCIORS = e
�

ln (ORS )+1 :96
q

1
a + 1

b + 1
c + 1

d

�

(3.16)

De�nition 3.2 (Statistically signi�cant pattern) Let � be a lower con�dence interval
threshold, lci (p; D) be the lower con�dence interval of pattern p in D . The pattern
p is statistically signi�cant if lci (p; D) > � .

De�nition 3.3 (Statistically signi�cant discriminative pattern) Given a discrimina-
tive threshold � and a lower con�dence interval threshold� . Pattern p is statistically
signi�cant discriminative in D if scr(p; D) � � and lci (p; D) > � .

Problem statement: Given a two-class datasetD , the problem is to discover
complete set of patternsP in D where allp in P satisfy scr(p; D) � � and lci (p; D) >
� .

Note that this problem can be extended to discover all patterns which satisfy
multiple discriminative score thresholds and con�dence intervals. In particular, given
a set of discriminative thresholds f SD = � 1; GR = � 2; ORS = � 3g, and a set of
lower con�dence interval thresholds f LCI GR = � 1; LCI ORS = � 2g. We want to
discover all patterns which satisfy SD � � 1 and GR � � 2 and ORS � � 3 and
LCI GR > � 1 and LCI ORS > � 2.

For example, let � 1 = 0 :2; � 2 = 2 ; � 3 = 2 be the thresholds ofSD, GR, and ORS,
respectively. abc is a discriminative pattern since its scores satisfy the thresholds.
In this example we don't consider con�dence intervals because the sample size is too
small.

3.4 Enumeration strategy

The main practical contribution of this chapter is SSDPS, an e�cient algorithm
for mining statistically signi�cant discriminative patterns. This algorithm will be
presented in the next section (Section 3.5). SSDPS owes its e�ciency to an original
enumeration strategy of the patterns, which allows to exploit some degree of anti-
monotonicity on the measures of discriminance and statistical signi�cance.

The majority of enumeration strategies used in pattern mining algorithms make
a tree-shaped enumeration (called anenumeration tree) over all the possible item-
sets. This enumeration tree is based onitemset augmentation: each itemset p is
represented by a node, and the itemsetsp [ f eg (for e in I ) are children of p: the
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augmentation is the transition from p to p [ f eg. If such augmentation was con-
duced for all e 2 I , this would lead to enumerating multiple times the same itemset
(ex: ab[ c = bc[ a = abc). Each enumeration strategy imposes constraints on the
e that can be used for augmentation at each step, preventing redundant enumer-
ation while preserving completeness. The other important component of pattern
mining enumeration strategies is the use ofanti-monotonicity properties. When
enumerating frequent itemsets, one can notice that if an itemsetp is unfrequent
(sup(p; D) < min sup), then no super-itemsetsp0 � p can be frequent (necessarily
sup(p0; D ) < sup(p; D) < min sup). This allows to stop any further enumeration
when an unfrequent itemsetp is found, allowing a massive reduction in the search
space [39]. As far as we know, no such anti-monotonicity could be de�ned on mea-
sures of discriminance or statistical signi�cance.

The enumeration strategy proposed in SSDPS also builds an enumeration tree.
However, it is based on the tidsets and not the itemsets. Each node of the enu-
meration tree is a tidset (with the empty tidset at the root), and the augmentation
operation consists in adding a single tid: the children of node of tidsett are nodes of
tidset t [ i for somei 2 f 1::ng. An example enumeration tree for the data of Table
3.2 is presented in Figure 3.1, with the tidset written on the top of each node. Note
that the tidset is displayed with a separation of the tids from D1 (case) and fromD2

(control). For example, consider the node represented by 12 : 8: this node corre-
sponds to the tidset 128 in which 12 are the positive tids, and 8 is the negative tid.
The children of 12:8 are 12:68 (augmentation by 6) and 12:78 (augmentation by
7).

Before delving deeper on the enumeration strategy that was used to construct
this tree, we explain how it is possible to recover the itemsets (which are our expected
outputs) from the tidsets. This is a well known problem: itemsets and tidsets are
in facts dual notions, and they can be linked by two functions that form a Galois
connection [120]. The main di�erence in our de�nition is that the main dataset can
be divided into two parts ( D = D1 [ D2), and we want to be able to apply functions
of the Galois connection either in the complete datasetD or in any of its parts D1

or D2.

De�nition 3.4 (Galois connection) For a dataset D = D1 [ D2:

ˆ For any tidset q � f 1::ng and any itemset p � I , we de�ne:

f (q; D) = f i 2 I j 8k 2 q i 2 tkg

g(p; D) = f k 2 f 1::ng j p � tkg
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ˆ For any tidset q1 � D1 and any itemset p � I , we de�ne:

f 1(q1; D1) = f i 2 I j 8k 2 q1 i 2 tkg

g1(p; D1) = f k 2 D1 j p � tkg

ˆ For any tidset q2 � D2 and any itemset p � I , we de�ne:

f 2(q2; D2) = f i 2 I j 8k 2 q2 i 2 tkg

g2(p; D2) = f k 2 D2 j p � tkg

Note that this de�nition marginally di�ers from the standard de�nition presented
in [120]: here for convenience we operate on the set of tidsf 1::ng, whereas the
standard de�nition operates on the set of transaction f t1; :::; tng.

In Figure 3.1, under each tidsetq, its associated itemsetf (q; D) is displayed. For
example for node 12:8, the itemset f (128; D) = bci is displayed. One can verify in
Table 3.2 that bci is the only itemset common to the transactionst1, t2 and t8.

Finding an itemset associated to a tidset is a trivial use of the Galois connection.
A more advanced use is to de�ne aclosure operator, which takes as input any tidset
q, and returns the closed pattern that has the smallest tidset containingq.

De�nition 3.5 (Closure operator) For a dataset D and any tidset q � f 1::ng, the
closure operator is de�ned as:

c(q; D) = g � f (q; D)

The output of c(q; D) is the tidset of the closed itemset having the smallest tidset
containing q.

We can similarly de�ne c1(q1; D1) = g1 � f 1(q1; D1) for q1 � D1 and c2(q2; D2) =
g2 � f 2(q2; D2) for q2 � D2.

Note that the standard literature on pattern mining de�nes the closure operator
as taking an itemset as input, whereas here we de�ne it as having a tidset as input.
Replacing g � f by f � g gives the dual closure operator taking itemsets as input.

The basics of the enumeration have been given: the enumeration proceeds by
augmenting tidsets (starting from the empty tidset), and for each tidset function f
of the Galois connection gives the associated itemset. The speci�city of our enu-
meration strategy is to be designed around statistically signi�cant discriminative
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patterns. This appears �rst in our computation of closure: we divide the computa-
tion of closure in the two sub-datasetsD1 and D2. This intermediary step allows
some early pruning. Second, most measures of discriminance require the pattern to
have a non-zero support inD2 (GR and ORS). The same condition apply for mea-
sures of statistical signi�cance: in both cases we need to defer measures of interest
of patterns until it has some tids in D2.

Our enumeration strategy thus operates in two steps:

1. From the empty set, it enumerates closed tidsets containing only elements of
D1 (case group).

2. For each of those tidset containing only tids ofD1, augmentations using only
tids of D2 are generated and their closure is computed. Any subsequent aug-
mentation of such nodes will only be allowed to be augmented by tids ofD2.

More formally, let q � f 1::ng be a tidset, with q = q+ [ q� , where q+ � D1 and
q� � D2. Then the possible augmentations ofq are:

ˆ (Rule 1) if q� = ; : q can either:

{ (Rule 1a) be augmented with k 2 D1 such that k < min (q+ )

{ (Rule 1b) be augmented with k 2 D2

ˆ (Rule 2) if q� 6= ; : q can only be augmented with tid k 2 D2 such that
k < min (q� )

This enumeration mechanic is based on imposing an arbitrary ordering on the
tidsets, a classical technique when enumerating itemsets. It is guaranteed to avoid
enumerating duplicates.

More interestingly, we show that it allows to bene�t from an anti-monotony
property on the measures of statistical signi�cance and discriminance.

Theorem 3.1 (Anti-monotonicity) Let q1 and q2 be two tidsets such as:q+
1 =

q+
2 and q�

1 � q�
2 (we haveq+

1 6= ; and q�
2 6= ; ). Let p1 = f (q1; D ) and p2 = f (q2; D ).

Then:

1. scr(p1; D ) > scr (p2; D ) with scr a discriminance measure inf SD; GR; ORSg.

2. lci (p1; D ) > lci (p2; D ) with lci a low con�dence interval in f LCI ORS ; LCI GR g.

Proof: 1) For the tidset q1, let a = jq+
1 j be the number of positive tids and

c = jq�
1 j be the number of negative tids (0 � a � j D1j, 0 � c � j D2j). Let
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b = jD1j � a, and d = jD2j � c. Then SD, GR, and ORS of p1 are estimated as
follows:

SD(p1; D ) =
a

a + b
�

c
c + d

GR(p1; D ) =
a=(a + b)
c=(c + d)

ORS(p1; D ) =
a:d
b:c

We have q1 � q2, then jq1j � j q2j = x > 0, where by de�nition of q1 and q2 those
x tids are part of D2. SD, GR, and ORS of p2 are thus estimated as follows:

SD(p2; D ) =
a

a + b
�

c + x
c + d

< SD (p1; D )

GR(p2; D ) =
a=(a + b)

(c + x)=(c + d)
< GR (p1; D )

ORS(p2; D ) =
a:(d � x)
b:(c + x)

< ORS (p1; D )

2) Please refer to the supporting document for the detailed demonstration of this
part.

�
This theorem provides pruning by anti-monotonicity in our enumeration strat-

egy: for a node having a tidset with tids both from D1 and D2, if the discriminance
or statistical signi�cance measures are below a given threshold, then necessarily its
augmentations will also be under the threshold. Hence this part of the enumeration
tree can be pruned.

Consider the node 2:8for example. Its associated itemset isbceiand ORS(bcei; D)
= 3=4. If the threshold is 2, then this node can be pruned and its augmentations
need not be computed. This allows to signi�cantly reduce the search space.

3.5 SSDPS: Algorithm design and implementation

In this section, we present the SSDPS algorithm. We �rst present in details how
the enumeration strategy presented in Section 3.4 is exploited in the algorithm. We
then show several techniques to improve the e�ciency of the algorithm. Last, we
modify the algorithm to perform heuristic search, in order to trades exhaustiveness
for signi�cantly reduced running times.
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Figure 3.1: Tidset-itemset search tree

3.5.1 Exhaustive search

As mentioned in the previous section, our algorithm is based on an enumeration of
the tidsets. It discovers statistically signi�cant discriminative closed patterns.

The main procedure for enumerating tidsets is given in Algorithm 1. This pro-
cedure calls the recursive procedurepositive expand (Algorithm 2) to �nd closed
frequent itemsets in the positive class. Computing discriminative patterns relies on
the recursive procedurenegative expand (Algorithm 3).

Delving more into details, positive expand (Algorithm 2) is based on the prin-
ciples of the LCM algorithm [86], the state of the art for mining closed frequent
itemsets. positive expand takes as input the tidset t of a pattern that is closed in
D1 and a tid e 2 D1 that can be used to augmentt. This augmentation is per-
formed on line 1, and the pattern p associated to the augmented tidsett+ = t [ f eg
is computed in line 2. If p = ; , there are no items common to all transactions oft+

so the enumeration can stop (test of line 3). Else, we can continue the enumeration
by applying Rule 1 of enumeration presented in Section 3.4. Lines 4 to 10 apply the
LCM principles of enumerating closed itemsets without redundancies (the interested
reader referred to [121] Section 3.2 for a description of these principles). At this step
of the enumeration, the closure is computed inD 1 (line 4). The test of line 5 veri�es
if the closure actually extends the tidset, requiring a further veri�cation in line 10,
and the construction of the new extended tidset (line 7).
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Lines 9 to 11 implement Rule 1a of enumeration, allowing to grow the positive
part of the tidset. Lines 12 to 13 implement Rule 1b of enumeration, stopping the
growth of the positive part and starting to grow the negative part of the tidset.

The same logic is followed in lines 15 to 20, in the case where the tidset is not
extended by the closure (test of line 10 is false).

The �nal expansion of the tidset is handled by negative expand (Algorithm 3),
that can only perform augmentations with negative tidsets. It is very similar to
positive expand, with several key di�erences. The �rst obvious one is that the
closure is this time computed in D2 (line 5). The second one is that onlyRule 2
of enumeration can be applied (lines 17 and 25). The third and most important
di�erence is that because we have tidsets with positive and negative tids, we can
compute discriminance as well as statistical signi�cance measures. Hence, Theorem
3.1 can be applied to bene�t from pruning by anti-monotonicity. This is done in
line 4.

As an example of the execution of the algorithm, consider tidset 12. Its associated
itemset is abci and its closure in D1 is 12. Thus abci is closed inD1. Then 12 will
be combined with all tids in D2 to �nd discriminative patterns. In particular, the
following tidsets are created: 126, 127, 128, and 129.

Consider the tidset of 128. We havef (128; D) = bci and c2(128; D2) = 128. Thus
bci is closed in D2. The discriminative scores ofbci in D are: ORS(bci; D) = 2,
GR(bci; D) = 1 :6, SD(bci; D) = 0 :15.

Suppose the discriminative thresholds are:ORS = 1 :5, GR = 1 :5 and SD = 0 :1.
bci is a discriminative pattern since it satis�es all given thresholds, and 128 is the
tidset containing bci.

In contrast, 1278 does not satisfy discriminative thresholds. Thus all branches
expanded from this node are pruned.

The SSDPS algorithm can discover patterns even from small tidset (upper nodes
of the enumeration tree). It means that the patterns with very low support are
taken into consideration.

Algorithm 1 Exhaustive search algorithm
Input: two-class dataset D , discriminative thresholds � , con�dence intervals �
Output: the set of statistically signi�cant discriminative patterns

1: transaction id set t = ;
2: for each transaction id e in positive class do
3: positive expand(t; e; D; �; � )
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Algorithm 2 Positive class expanding
Procedurepositive expand(t; e; D; �; � )

1: t+  t [ f eg
2: p  f (t+ ; D )
3: if p is not empty then
4: t ext+  c1(t+ ; D1)
5: if t ext+ 6= t+ then
6: if max(t ext+ ) < e then
7: q  t+ [ t ext+

8: RD  reduced dataset(q; D)
9: for eache+ in D1 n q do

10: if e+ < e then
11: positive expand(q; e+ ; RD; �; � )

12: for eache� in D2 do
13: negative expand(q; e� ; RD; �; � )

14: else
15: RD  reduced dataset(t+ ; D )
16: for eache+ in D1 do
17: if e+ < min (t+ ) then
18: positive expand(t+ ; e+ ; RD; �; � )

19: for eache� in D2 do
20: negative expand(t+ ; e� ; RD; �; � )
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Algorithm 3 Negative class expanding
Procedurenegative expand(t; e; D; �; � )

1: t �  t [ f eg
2: p  f (t � ; D )
3: if p 6= ; then
4: if check signif icance (p; D; �; � ) is true then
5: t ext �  c2(t � ; D2)
6: if t ext � 6= t � then
7: if max(t ext � ) < e then
8: q  t � [ t ext �

9: q ext  c(q; D)
10: p0  f (q; D)
11: if q ext = q then
12: if check signif icance (p0; D; �; � ) is true then
13: output: p0

14: RD  reduced dataset(q; D)
15: for eache� 2 D2 n q do
16: if e� < e then
17: negative expand(q; e� ; RD; �; � )

18: else
19: t ext  c(t � ; D )
20: if t ext = t � then
21: output: p
22: RD  reduced dataset(t � ; D )
23: for eache� 2 D2 n t � do
24: if e� < e then
25: negative expand(t � ; e� ; RD; �; � )
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3.5.2 Searching the largest patterns

Exhaustive mining generates an exponential number of patterns, and speci�cally
many redundant ones. Hence, �ltering out a limited proportion of highly statisti-
cally signi�cant patterns is important. To limited the amount of output patterns,
we consider searching only largest (in size) statistically signi�cant discriminative
patterns (largest patterns in short). They are de�ned as follow:

De�nition 3.6 (Largest statistically signi�cant discriminative pattern) p is a largest
statistically signi�cant discriminative pattern if there does not exist any pattern p0,
so that p � p0 and the discriminative scores ofp0 are larger than the discriminative
scores ofp.

If p is such a largest pattern, all subsets ofp will have discriminative scores
smaller than discriminative scores ofp. Therefore, instead of discovering all patterns
which satisfy the constraints, we focus on �nding only the largest patterns.

As presented in the Section 3.5.1, discovering discriminative patterns is per-
formed by the negative expand procedure which was presented in Algorithm 3. We
propose in Algorithm 4 a new negative expansion procedure,negative expand largest,
which replacesnegative expand and which allows to directly compute largest pat-
terns. The intuition of negative expand largest is that once positive expand has
found a set of tids t from D1 and a corresponding patternp, the function will try
to discover the largest extension oft with tids of D2 that preserves the pattern
p. Two cases can arise: either such extension with tids ofD2 exists and discrim-
inance/signi�cance measures can be computed. Or such extension does not exist:
in this case we choose to output the patternp with only its tids t � D1: this is
a pattern that occurs only in case, such kind of discriminative patterns are called
jumping emerging patterns[45].

For example, consider the tidset of 13 and its corresponding patternabcf j . 13
has no tid extension inD2. Thus, abcf j occurs only in D1: it is a jumping emerging
pattern. On the other hand, consider the tidset of 123 and its corresponding pattern
abc. Its tid extension in D2 is 7, no further extension in D2 preserves patternabc.
Thus, abc is a largest discriminative pattern.

In practice, in Algorithm 4, line 1 �rst veri�es that the tid t � D1 is large
enough, by comparing it to a user given thresholdu. This allows to avoid output
largest patterns that only cover few lines in D1 (i.e. few individuals in case). Then
the tids of D2 that contain pattern p corresponding tot are computed and stored in
t ext � (line 3). If t ext � is empty, then the pattern p corresponding to t is output,
this is a jumping emerging pattern (line 5). Else we join t and t ext � in k, compute
the closure of this extended tidset in D , and check in line 9 that the tidset k is
closed. If k is closed, we know that its corresponding pattern isp: we can compute
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its discriminance and signi�cance in line 10 and if they are above thresholds output
pattern p.

Algorithm 4 Negative class expanding for searching the largest pattern
Procedurenegative expand largest(t; e; D; �; �; u )

1: if size oft � u then
2: p  f 1(t; D 1)
3: t ext �  f 2 � g2(p; D2)
4: if t ext � = ; then
5: output p
6: else
7: k  t [ t ext �

8: k ext  c(k; D )
9: if k ext = k then

10: if check signif icance (p; D; �; � ) then
11: output p

With this framework the number of generated patterns is limited. In addition,
the execution time is highly reduced. The reason is that the algorithm spends time
only for discovering the tidsets which can generate closed patterns in the positive
class, while the tasks of identifying the largest patterns are computed quickly in the
negative class.

Furthermore, to make a trade o� between execution time and the number of
generated largest patterns, three heuristic strategies are used:

1. Reverse order of searching: the main loop (line 2 of Algorithm 1) starts with
the tids of highest numerical value, and proceeds towards the tids of lowest
numerical value. Recall that our enumeration strategy does not allow to enu-
merate a tidset containing a tid of higher value than the maximal tid of the
tidset (arbitrary order to avoid duplicates in the enumeration). Starting with
tids of high numerical value thus allows to make a full enumeration immedi-
ately, and discover early the largest tidsets.

2. Increase risk score thresholds: For each successful output pattern, the risk
score thresholds are increased (by 0.1 for example). This strategy guarantees
that the later output patterns have better risk scores than the current pattern.
Moreover, with increasing risk threshold strategy, the pruning based on risk
scores is even more e�cient.

3. Control searching steps: When the risk scores get higher, the algorithm spend
more time to �nd patterns which satisfy the thresholds. In this case, we impose
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Table 3.4: Vertical binary data representation

Items
Tids

1 2 3 4 5 6 7 8 9
a 1 1 1 0 0 0 1 0 1
b 1 1 1 1 0 1 1 1 0
c 1 1 1 0 0 1 1 1 0
d 0 0 0 1 1 0 0 1 1
e 0 1 0 1 0 1 0 1 1
f 1 0 1 0 1 0 1 0 0
g 0 1 0 1 1 1 1 0 1
h 0 0 1 0 1 1 1 1 1
i 1 1 0 1 1 0 0 1 0
j 1 0 1 1 1 1 0 0 1

Class 1 1 1 1 1 0 0 0 0

a limit on the number of enumeration steps, in order to control the running
time of program. In particular, if the algorithm cannot discover any patterns
which have risk scores better than the current pattern after a given number of
steps, the algorithm is forced to stop.

3.5.3 Implementation

The SSDPS algorithm uses vertical data format [122, 41] combined with a binary
data representation to improved its performances. In this format, each row repre-
sents an item and columns correspond to tids. The value 1 at position (i; j ) indicates
that the item i is presents in the transaction having tid j . In contrast, 0 indicates
that item i is absent in the transaction having tid j . Considering again the data of
Table 2, the vertical binary data format is illustrated in Table 4. Each item of Table
2 is transformed into a row in Table 4. Consider itema for example, in the original
data, it is present in tidset 01268, and then transformed as a vector of bits (the �rst
row) in Table 4.

The bene�ts of this data representation are: 1) The task of computing support
is simpler and faster. We only need tidset to compute the support of an itemset.
2) The vector of bits (bitset) representation allows to e�ciently compute support of
itemsets, using bitset or AVX2 AND operations. 3) We can easily distinguish the
positive and negative tids in a tidset. This helps us to estimate the discriminative
scores and con�dence intervals e�ectively.

The performance of the SSDPS algorithm relies on the computation of 2 func-
tions: f () (compute associated itemset of a tidset) andc() (compute closure operator
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of a tidset). Both functions need to compute the intersection of two sets. With in-
teger data presentation this operator spendsO(max(n; m)) iterations, where n and
m are the size of the two sets. Thus, the time required for each task of computing
associated itemset (or closure operator) isO(I � max(n; m)), where I is the number
of items in dataset. In this study, we use the dataset reduction technique [40] to
decrease the number of rows, i.e. the number of itemsI (function reduced dataset).
With the use of this technique, the number of items is signi�cantly reduced after
each step of searching.

3.6 Experiments and results

In this section, we �rst present a two-step framework to �nd high-order SNP combi-
nations in case-control datasets. We then apply this framework to several synthetic
and real variant datasets. All experiments have been conducted on a laptop with
Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, 16GB memory and Linux operating
system.

3.6.1 Two-step framework

In genetic variant datasets, each SNP has three genotypes which are here considered
as the items. Since the amount of genotypes is very large, using all genotypes to
�nd combinations is infeasible. In addition, many individual genotypes are no really
meaningful. For example, the genotypes that have very high frequency or that occur
more in control group than in case group are not very interesting. These genotypes
are considered as noise since they can be combined with many discriminative pattern
without decreasing their score. Thus, discarding these genotypes is important.

To e�ectively search multiple SNPs combinations, two-step approaches are inves-
tigated [23, 106, 107, 108]. Speci�cally, [23] proposed MSCD algorithm to discover
SNPs combinations. In the �rst step, MSCD selects candidate SNPs according
to energy distribution di�erence of all SNPs. Then, in the second step, it uses a
pruning-tree search to �nd SNPs combinations. Similarly, [106] proposed an al-
gorithm which �rst runs k-means clustering algorithm on the set of all SNPs and
then selects candidates from each cluster. These candidates are examined to �nd
the SNPs combinations. With the same strategy, epiMiner algorithms [107] uses
Co-Information Index(CII) to rank contributions of individual SNPs to the pheno-
type in the �rst step. To search SNPs interactions within the retained SNPs, in the
second step, epiMiner sequentially builds combinations and test theirp values. On
the other hand, the approach of EDCF [108] is di�erent. It is based on clustering
of relatively frequent items. First, three groups of genotypes are created: frequent
genotypes in cases, frequent genotypes in controls and the remaining genotypes.
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Then, items in the three groups are constructed sequentially to �nd high-order SNPs
interactions. The signi�cance of the �nal combinations are evaluated by Pearson's
� 2 test.

Similar with these approaches, for detecting the interesting SNP combinations
which occur frequently in the case group but less frequently in the control group,
we propose to use a two-step approach. However, the �rst step of our method
is di�erent: we use p value and support of genotype in the control group (de-
noted control support) to select candidate genotypes. In particular, if a is the
p value threshold and b the control support threshold, we select genotypes which
have p value � a and control support � b. The reason is that the p value guar-
anties that the selected candidates are signi�cant, while the control support is used
to eliminate very common genotypes. These genotypes are then used to �nd the
largest statistically signi�cant discriminative patterns using the SSDPS algorithm.

3.6.2 Experiments on synthetic datasets

3.6.2.1 Evaluation of pruning e�ciency

To evaluate the pruning e�ciency of the SSDPS algorithm, we create a dataset
including 260 items and 100 transactions. In this dataset, 50 transactions belong to
the positive class and 50 transactions belong to the negative class. The values of
items in the positive and negative classes are randomly set to 0 or 1.

We then use two approaches to discover statistically signi�cant discriminative
patterns: 1) perform SSDPS exhaustive search with pruning strategy and 2) perform
SSDPS exhaustive search without pruning strategy. Both approaches use the same
parameters: OR = 2, RR = 2, ARR = 0 :2, and LCI OR = 1.

As the result, the search space is e�ectively reduced when using risk measures
and con�dence interval. In particular, without pruning strategy SSDPS checks
24,793,469 nodes to �nd 14,530 statistically signi�cant discriminative patterns. With
pruning strategy, SSDPS examines 3,406,007 nodes to discover the same amount of
patterns. Note that this amount of pruned nodes is only counted in the negative
expand function where the pruning strategy is applied.

3.6.2.2 Evaluation of the two-step framework

For evaluating the e�ectiveness of the SSDPD algorithm in the two-step framework,
we create six synthetic datasets. For all datasets, the number of individuals is set
to 100: half belong to the positive class and half belong to the negative class. The
number of items are set to 1000, 2000, 4000, 6000, 8000, and 10000 respectively.
The item values in the positive and negative classes are randomly set to 0 or 1.
To simulate practical situations, we set a density to 0.33 (the density has been



Experiments and results 79

Table 3.5: Summary of three variant datasets

Data Case Control SNPs
AMD 96 50 103611
BC 1045 1463 15436
T2D (chromosome 16) 1991 1500 15309

approximated with real SNP datasets). In each dataset, �ve statistically signi�cant
discriminative patterns of size 2, 4, 6, 8, and 10 have been inserted.

Then we test the two approaches:

1. Exhaustive approach: all SNPs are considered;

2. Two-step approach, as described previously, with ap value threshold set to
0.1 and control support threshold set to 100% (the support parameter is thus
not used in this experiment).

In all cases, the �ve patterns have been found. As shown in Figure 3.2a, the
execution times of the two-step approach is approximately one order of magnitude
faster than the exhaustive search. The total number of patterns generated by the
two-step approach is more than one order of magnitude smaller than the number
of patterns generated by the exhaustive search (Figure 3.2b). These �rst experi-
ments show that the two-step approach is very e�cient compared to the exhaustive
approach: relevant patterns can be found in a shorter time.

3.6.3 Experiments on real datasets

In this subsection, we present the experiments for identifying high-order SNP com-
binations associated with diseases on three real genetic variant datasets.

3.6.3.1 Dataset summary

The three datasets are the following: Age-Related Macular Degeneration (AMD)
[123], Breast Cancer (BC) [124] and Type 2 Diabetes (T2D) [116]. With T2D, we
only use chromosome 16 which contains 3 signi�cant SNPs associated to this disease.
The summary of the three datasets is shown in Table 3.5.

Based on previous studies [116, 124, 123], each disease is linked to a few SNPs,
as illustrated in Table 3.6.
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Figure 3.2: Results of two approaches on simulated datasets.
(a) running times, (b) number of generated patterns.
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Table 3.6: Individual SNPs associated with diseases

Disease SNP Chromosome Gene

AMD
rs1329428 1 CFH
rs380390 1 CFH

BC

rs2107732 7 CCM2
rs4986790 9 TLR4
rs2285374 11 VPS11
rs7313899 12 OR6C4
rs2879097 17 MEL18
rs2822558 21 ABCC13
rs2230018 23 UTX

T2D
rs7193144 16 FTO
rs8050136 16 FTO
rs9939609 16 FTO

Table 3.7: Pattern generated on AMD dataset with di�erent control support

Support rs13294282 rs3803900 Both Patterns Time(s)
30% 21 5 5 29 16
50% 59 9 9 299 145
70% 45 2 2 307 287

rs13294282, rs3803900: the number of patterns containing these SNPs. Both:
the number of patterns including both SNPs. Patterns: the total number of
patterns generated. Time: the execution time in second.

3.6.3.2 Experiment on AMD dataset

To search SNPs combinations associated with AMD the two-step framework is used
with two sets of parameters:

ˆ Set 1: a �xed p value threshold at 0.001 and threecontrol support thresholds:
30%; 50% and 70%.

ˆ Set 2: a �xed control support at 30% and three p value thresholds: 0.005,
0.01, and 0.05.

As the results, patterns including SNP rs1329428 and rs380390 are reported in
all cases. Table 3.7 summarizes the results of the SSDPS algorithm with parameters
tuned according to Set 1 (variation of control support).
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To analyze speci�c pattern set and compare our result with EDCF and MSCD we
present the list of patterns output with p value = 0 :001 andcontrol support = 30%
in Table 3.8. In this speci�c case, SSDPS generates 29 patterns from size 2 to 4.
From these 29 patterns, 21 patterns contain SNP rs13294282, 5 patterns contain
SNP rs3803900 and 5 patterns have both of them. Note also the very short execution
time (16 seconds).

In comparison with EDCF and MSCD, SSDPS is more e�cient. According to
[23], EDCF spent 2,800 seconds to discover the top 20 signi�cant SNP combinations
which include 1 pattern containing disease SNPs. On the other hand, MSCD took
77 seconds to identify 27 signi�cant patterns of size ranging from 2 to 4. In which,
11 patterns contain rs13294282 and 3 patterns contain rs3803900. Most of these
patterns are of size of 2 SNPs. In addition, there is no pattern in this set that
contains both disease SNPs. Note that, the execution time of MSCD is fast because
the number of SNPs after �ltering is very small. More precisely, MSCD selects 32
sets of SNPs, each of them having only 28 signi�cant SNPs. These candidate SNPs
are then used for discovering combinations.

With larger control support thresholds (50% and 70%), the number of output
patterns increase, as well as the number of patterns having these two SNPs.

Table 3.9 summarizes the results of the SSDPS algorithm with parameters tuned
according to Set 2 (variation of the p value). Again, in all cases, patterns including
the two interesting SNPs are output. Furthermore, the total number of output
patterns is limited, whatever the p value. However, the execution times are more
important. This is mainly due to the number of selected SNPs during the �ltering
step. In that case, the number of selected SNPs withp value of 0.005, 0.01, and
0.05 are 315, 778 and 4470, respectively.

3.6.3.3 Experiment on BC dataset

Note that in the following experiments, we can no longer compare with EDCF
and MSCD, as they have not been applied to this data. For the Breast Cancer
experiment, parameters are set as follows:p value = 0 :005 and control support =
20%, 25% and 30%. Thep value threshold is larger than in the AMD tests since the
BC number of genotypes is much smaller. With these �lter conditions, 5 out of 7
SNPs associated with BC are selected in step 1. 2 interesting SNPs are not selected
for the second step.

Then, the SSDPS algorithm is run and output patterns from which 2 SNPs re-
lated to BC are present. More speci�cally, with p value = 0 :005 andcontrol support =
20%, 50 patterns are generated, in which there are 3 patterns that contain rs2230018AC,
and 2 patterns that contain rs2107732TC. The top 10 out of 50 patterns having
the highest risk scores are shown in Table 3.10. These patterns have a very low fre-
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Table 3.8: Patterns generated on the AMD dataset with p value = 0 :001 and
control support = 30%

SNP combinations jPaj jPoj
rs105043391 rs104832260 31 2
rs1329428 2 rs105041211 35 1
rs65989910 rs1329428 2 33 0
rs65989910 rs1329428 2 rs2731850 32 0
rs4041992 rs65989910 rs1329428 2 rs2731850 31 0
rs7183091 rs1329428 2 rs380390 0 32 1
rs2882472 rs38445561 35 1
rs71851872 rs38445561 32 2
rs104883431 rs1329428 2 rs380390 0 31 2
rs1329428 2 rs380390 0 rs2870202 33 1
rs2870202 rs38445561 32 2
rs105205832 rs1329428 2 33 0
rs1329428 2 rs102541160 37 2
rs71851872 rs13636880 rs13946080 35 2
rs9628482 rs13636880 31 1
rs104883431 rs48948401 33 2
rs13636880 rs1329428 2 45 3
rs13636880 rs1329428 2 rs13946080 41 1
rs13636880 rs1329428 2 rs13946080 rs380390 0 30 1
rs13636880 rs13946080 rs2870202 35 2
rs13636880 rs1329428 2 rs2870202 34 0
rs13636880 rs1329428 2 rs13946080 rs2870202 31 0
rs71851872 rs1329428 2 42 2
rs71851872 rs1329428 2 rs380390 0 31 1
rs71851872 rs13636880 rs1329428 2 31 1
rs105079492 rs13636880 rs1329428 2 rs13946080 33 0
rs11463822 rs1329428 2 34 1
rs821592 rs1329428 2 30 1
rs1329428 2 rs67301411 30 1

jPaj, jPoj: number of individuals in case, control
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Table 3.9: Patterns generated on AMD dataset for di�erent p values

P value rs13294282 rs3803900 Both Patterns Time(s)
0.005 22 4 4 35 120
0.01 25 5 5 46 465
0.05 25 3 3 51 1750

rs13294282, rs3803900: the number of patterns containing these SNPs. Both:
the number of patterns including both SNPs. Patterns: the total number of
patterns generated. Time: the execution time in second.

Table 3.10: Top 10-highest risk scores patterns of Breast Cancer

SNP combinations jPaj jPoj
rs12842916TC rs209373AG rs3788890TG
rs5955139TC 22 0
rs2884554AA rs5951332AG 21 0
rs1968987AT rs2856705AG rs5955139TC 25 1
rs12842916TC rs6580942CC rs7066252GC 24 1
rs4827909TC rs6580942CC rs7066252GC 24 1
rs1048369TC rs1129980AC rs179008TA
rs1968987AT rs7884806AG 24 1
rs2242801GG rs2498323AG rs5951332AG 23 1
rs12842916TC rs2707164AG rs4907817AA 22 1
rs4907817AA rs5955353AG 22 1
rs1132201AG rs1266719CG rs1385699TC
rs2107732 TC 21 1

jPaj, jPoj: number of individuals in case, control

quency. For instance, the highest occurrence of the pattern containing rs2107732TC
is 21 out of 1045 case individuals and 1 out of 1463 control individuals. Other SNPs
combinations have also a low frequency. In this pattern set, a particular pattern
occurs in 22 case individuals but is absent in the control group. It has 4 SNPs
which are located in di�erence genes. An interesting point is that all SNPs belong
to chromosome X and each of them has a very lowp value. This kind of information
are pertinent clues for clinician to investigate new hypotheses.

3.6.3.4 Experiment on T2D dataset

According to p value of all individual genotypes, three SNPs associated with T2D
have p value less than 0.02. Thus, in order to consider these SNPs in mining com-
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Table 3.11: Top 10-highest risk scores patterns of T2D

SNP combinations jPaj jPoj
rs10775354AC rs12051393GT 41 1
rs4985114@CC rs1684568GT 28 1
rs16966656@AC rs1684568GT 27 1
rs1684568GT rs10500444@AC 26 1
rs2370096AG rs1078621AA rs6499591CG 39 0
rs8045058GG rs2370096AG rs6499591CG 34 0
rs1684568GT rs9939012CT 32 0
rs153084AG rs2370096AG rs6499591CG 31 0
rs1684568GT rs12051393GT 31 0
rs231619CC rs10775354AC 28 0

jPaj, jPoj: number of individuals in case, control

binations we choosep value = 0 :02 and control support = 20% to �lter candidates.
With these parameters, the SSDPS algorithm discovers all three SNPs associated
with T2D. However, the frequency of patterns containing these SNPs is very low.
Particularly, there are 2 patterns including all of three SNPs associated with T2D.
The occurrences of these patterns in case group are 23 and 22 out of 1991 case sam-
ples, respectively. While both of them exist in only 1 out of 1500 control samples.

Similarly to the previous experiments on AMD and BC datasets, we also use
p value = 0 :005 and control support = 20% to �lter candidate genotypes. With
these parameters, all three SNPs associated with T2D are excluded from the set of
candidates. Consequently, the set of generated patterns cannot contain them. How-
ever, the output patterns include many interesting ones. Many have high di�erence
of frequency in the two classes. These patterns include many signi�cant individual
SNPs. Consider the top of 10-highest risk scores patterns of T2D which are shown
in Table 3.11. These patterns are built from 12 signi�cant individual genotypes. In
the literature, they are not known as SNPs associated with T2D. However, some
of them have remarkable properties. For example, rs231619CC exists in 62 case
individuals but is absent in control (its frequency is approximately 1.8%), and this
SNP is located in an unknown gene region. These SNPs have very low frequency.
In other word, they are rare relatively to T2D. The list of 12 signi�cant SNPs of the
top 10-highest scores patterns is illustrated in Table 3.12.
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Table 3.12: Individual SNPs in the 10-highest risk scores patterns of T2D

SNP genotype Case Control Position Gene
rs8045058GG 424 253 3631656 DNASE1
rs231619CC 62 0 4124765 unknown
rs10775354AC 288 163 6747691 RBFOX1
rs4985114CC 464 284 8687186 ABAT
rs16966656AC 167 61 9899720 GRINA2
rs153084AG 475 287 13234017 SHISA9
rs2370096AG 373 101 22466298 LOC653786
rs1684568GT 105 11 34307201 unknown
rs12051393GT 88 8 57653933 unknown
rs10500444AC 381 233 60142165 unknown
rs1078621AA 471 245 67336497 CDH1
rs6499591CG 160 63 71464505 ZFHX3
rs9939012CT 410 249 73031343 unknown

3.7 Conclusion

In this chapter we propose an algorithm, called SSDPS, that e�ciently �nds statisti-
cally signi�cant discriminative patterns from a case-control SNP dataset. The strat-
egy directly uses relative risk measures and con�dence intervals as anti-monotonic
properties to e�ciently prune the less important patterns during the mining pro-
cess. In addition, a two-step framework is applied to speed-up the process without
signi�cant loss in quality.

Experiments on real dataset show that the SSDPS algorithm e�ciently detects
high-order SNP combinations. Most of known SNPs related to diseases belong to
the patterns. Other interesting patterns are also generated and might be of interest
for further investigation. Furthermore, contrary to other methods, the number of
generated pattern is small, allowing direct interpretation by clinicians.

However, choosing appropriate thresholds to select individual genotypes (step 1)
is still di�cult, and requires a good expertise from the users. One perspective of
this work is to investigate methods to suggest good thresholds to the user based on
characteristics of the dataset.

Another perspective is to analyze further the discovered patterns. In this re-
gard, we are working on visualization strategies allowing to present our patterns to
biologists in order to quickly focus on the most promising patterns for a biological
investigation.

A last direction for future work, as hinted in the introduction, is to frame the
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signi�cant pattern discovery problem as a multiple hypothesis problem, in order to
further remove uninteresting patterns. The goal will be to have a computationally
e�cient solution for this problem, possibly using parallel computation.

3.8 Technical details for proof of Theorem 1

In this section, we present the detailed proof of theorem 1.
Let recall the presence and absence of patternp in D . It is presented in a 2x2

contingency table as follow:

Table 3.13: A 2x2 contingency table of a pattern in case-control data

Presence Absence Total
Case a b D1

Control c d D2

Let qi � g(qi ; D ) and qj � g(qj ; D ) be two TI-pairs in the same equivalent class.
We have qi � qj and pi = g(qi ; D ), pj = g(qj ; D ). Let jqj j � j qi j = 1 be a minimal
di�erence between qj and qi we have:

The lower con�dence intervals of ORS of pi ans pj are given:

LCI ORS(pi ; D ) = exp
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The lower con�dence intervals of GR of pi and pj are given:

LCI GR(pi ; D ) = exp
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LCI GR(pj ; D ) = exp
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(3.20)
For all integers a; b; c > 0 and all integers d > 1 we want to demonstrate that:

(3:17) > (3:18) and (3:19) > (3:20).
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3.8.1 Proof of LCI ORS(pi ; D) > LCI ORS(pj ; D)

The lower con�dence interval of ORS of pi and pj are given:

LCI ORS(pi ; D ) = exp
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First of all we can rewrite some terms and give their bounds.
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Now, we calculate the di�erence:
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The �rst term is clearly positive, the last one is the hardest to treat. With a
little trick we can give another expression for this di�erence:
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The denominator is always positive. We can notice that if d � c + 1 then the
numerator is also positive soLCI ORS(pi ; D ) > LCI ORS(pj ; D ). We must treat
the other case.

Let us supposed � c + 2. Let us rewrite the di�erence:

LCI ORS(pi ; D )� LCI ORS(pj ; D ) = ln
d(c + 1)
c(d � 1)

� 1:96
1

c(c+1) � 1
d(d� 1)

q
� + 1

c+1 + 1
d� 1 +

q
� + 1

c + 1
d

In this case we know that the fraction is strictly positive, so we have to maximize
it to lower bound the di�erence. We can remove some terms:

LCI ORS(pi ; D ) � LCI ORS(pj ; D ) � ln
d(c + 1)
c(d � 1)

� 2
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It gives a general expression for the lower bound. The problem is it depends on
two variables, so the idea is to removedd. We get quickly:
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Then we get,
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(3.21)

This lower bound depends only onc but studying directly this function is not
simple. That's why, we can �rst simplify it.
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� ln
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Let us introduce the function f de�ned by:

8x > 0; f (x) = ln
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We can derive this function
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This denominator is always positive. Let us look at � 2x
p

x + 3( x + 1) � 0:

� 2x
p

x + 3( x + 1) � 0  ! 3 � x(2
p

x � 3)

The function x 7! x(2
p

x � 3) is clearly a growing function. As whenx = 4 the
inequality is true, it is true for all x � 4. It shows that f 0 is negative on [4; + 1 ]. So
f is decreasing on the same interval. Howeverlim x! + 1 f (x) = 0. Hence, we know
that LCI ORS(pi ; D ) � LCI ORS(pj ; D ) for all c � 4.

The three casesc = 1 ; 2 and 3 have �nally to be treated, but the function f
cannot be used for that. For the last steps we will use the initial bound (1):
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If c = 3

LCI ORS(pi ; D ) � LCI ORS(pj ; D ) = ln
4
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� 0

Eventually, for all c � 1 we haveLCI ORS(pi ; D ) > LCI ORS(pj ; D ). Gather-
ing the casesd � c+ 1 and d � c+ 2, we have LCI ORS(pi ; D ) > LCI ORS(pj ; D )
for all a; b; c; d2 N� with d � 2.

3.8.2 Proof of LCI GR(pi ; D) > LCI GR(pj ; D)

Lower con�dence intervals of GR of pi and pj are given:

LCI GR(pi ; D ) = exp
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We want to approve LCI GR(pi ; D ) > LCI GR(pj ; D ). Similar with proof of
lower con�dence interval of ORS, we want to demonstrate that LCI GR(pi ; D ) �
LCI GR(pj ; D ) > 0, we rewrite this inequality as follow:
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We set � = 1
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a+ b > 0 and we have:
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We try to delete d in this lower bound:
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The second inequality involves problems with the lower-boundg2 (this lower
bound will not be positive). So, in the next part we assumed � 2. Thus:
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We can simplify a little:
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We have to show that this function is positive for all c � 1. However, this is not
the case forc = 1 and c = 2 but we can show that it is true for all c � 3. Hence, the
issue is that g1 is not directly easy to analyze, so we have to provide a easier lower
bound but it implies some singular cases to treat.
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' 0:812. Let us usef (c) as new lower bound. We can calculate:
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We want to show that the lower bound function f is positive. Actually, we are
going to show that this function is decreasing beyond some point. First we can
notice that g is increasing:
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U : x 7! 1 � �
p

1 + x
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and V : x 7!
1
x

are clearly decreasing onR+

Sog = U � V is increasing onR+ . Moreover g(9) > 0, then for all c � 9, g(c) � 0.
It implies that for all c � 9, f 0(c) � 0. Nonetheless, we notice thatf (9) � 0 and
f (c) 7! 0 when c 7! 1 . As f is decreasing forc � 9, it means that f is positive for
c � 9. We sum up (for d � 2; c � 9):

LCI GR(pi ; D ) � LCI GR(pj ; D ) � g4 > g1 � f (c) � 0

The cases (c = 1 ; d > 1) and (c = 2 ; d > 1) need to be treated. We will use the
g2 function, we recall:
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Let us set c = 2, then:
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are decreasing andR : x 7! � 1
d+ x is increasing, so thatd 7! g2 = P � Q � R is

increasing. Unfortunately g2 with c = 2 ; d = 2 is negative but with c = 2 ; d = 3 is
positive. It means that the inequality is true in the case (c = 2 ; d = 3) becauseg2 is
increasing, but not for the case (c = 2 ; d = 2). In the same way, we can show that
the inequality is true for the case (c = 1 ; d � 4) but not for the remaining cases:
(c = 1 ; d = 2) and ( c = 1 ; d = 3).

The inequality LCI GR(pi ; D ) � LCI GR(pj ; D ) > 0 is true except the cases
(c = 1 ; d = 2), ( c = 1 ; d = 3) and ( c = 2 ; d = 2). However, we havec + d = jD2j, is
a large integer. Thus these remaining cases cannot happen in practice.
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Chapter 4

SNP visualization

This chapter presents a graphical tool which is used to visualize the combinations
of genetic variants in a whole genome. It is an e�cient and easy-to-use genetic-
analysis tool that supports biologists in their search for relations between genetic
variant combinations and interesting phenotypes.

4.1 Introduction

Discriminative patterns are used to present GWAS results to an expert who will
take decisions based on the analysis results. Existing methods usually generate a
large number of patterns which include many redundant ones. In addition, patterns
are presented in long textual lists. This can be very complicated for experts to
analyze the knowledge represented by this list of patterns. Particularly, in GWAS
analysis, biologists may want to present a limited number of patterns in the form of
real SNP combinations with other related biological information. Available software
such as PLINK [125] and SNPsys [126] can only search and visualize single or pair of
SNPs interactions. The discriminative patterns present interactions between many
more SNPs, which can be interesting for biologists. Thus it is necessary to have an
interactive graphical tool to present them.

This chapter presents a graphical tool, namedSNPVisual, to visualize the dis-
criminative patterns. They are represented as easy to understand genetic variant
combinations with their biological context. This tool can be used to visualize the
combinations of genetic variants in various real variant datasets (we tested it on hu-
man and plant datasets). SNP combinations are illustrated in chromosomes accord-
ing to their positions and various related information such as genes and quantitative
trait locus (QTL) regions. With this tool one can easily observe which groups of
SNPs are interacting in a whole genome.

95
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Table 4.1: SNPs dataset example

Individual
SNP

Label
SNP1 SNP2 SNP3 SNP4 SNP5

1 AT GC AT GC AG
Case2 AT GC AA CC AG

3 AT CC AT GG AG
4 AA GG AA GC AA

Control5 AT GG AT GC AA
6 TT GC AA CC GG

The rest of this chapter is organized as follows: Next section brie
y introduces
the architecture of the software. The di�erent methods which are used to tackle
each step of the software are then detailed. At the end, a summary of the results
and future research directions are presented.

4.2 Overall architecture

To dectect and visualize interesting SNP combinations, the software conducts several
steps. These steps are divided into two main parts: pattern detection and pattern
visualization. Fig. 4.1 illustrates the overall architecture of the software. Visualiza-
tion of interesting SNP combinations on whole genome is a real challenge since it is
not so easy to present many patterns. Thus this task is needed to be decompressed
into several steps.

4.2.1 Pattern detection

Pattern detection aims to discover high-order SNP combinations which satisfy given
constraints such as risk measures and statistical signi�cance thresholds. This process
consists of several steps which have been presented in the Chapter 3. However, to
follow easily, we brie
y recall these tasks.

The input of the software is a case/control dataset which is represented by a
matrix. In this matrix rows are individuals and columns are SNPs. Each SNP has
2 alleles which form three genotypes. Table 4.1 presents an example of SNP data
with 6 individuals which belong to two groups. Each individual contains 5 SNPs.

To be used in discriminative pattern mining algorithm, the SNP data is trans-
formed into a binary matrix. In the binary matrix, columns correspond to SNP
genotypes and rows correspond to individuals which have labels of case or control.
The data transformation task is done by step 1 (Formatting) of this software.
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Figure 4.1: The software architecture
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Using all SNP genotypes to �nd combinations is infeasible since the number of
SNP genotypes is very large. Thus �ltering (step 2) is needed to select the most
interesting individual SNP genotypes based onp value and support in the control
group. These candidate SNP genotypes are used to �nd combinations by the SS-
DPS algorithm (step 3). The SSDPS algorithm exploits multiple risk measures and
con�dence intervals to discover statistically signi�cant discriminative patterns. In
addition, various parameters can be used to trade o� execution time and the number
of generated patterns. After this step, a set of statistically signi�cant discriminative
patterns is generated. The number of generated patterns is often large to manually
analyze. In addition, they are represented in the form of long textual texts. This
may be complicated to understand the knowledge that is related to the generated
patterns.

4.2.2 Pattern visualization

In order to present generated patterns as genetic variant combinations in real ge-
nomic datasets, several steps are required.

Clustering (step 4) aims to regroup similar discriminative patterns. This task
helps to reduce the number of analysis patterns. To �nd similar patterns, hierarchical
clustering algorithm is proposed to use. This algorithm automatically calculates the
similarity of patterns and partitions them into appropriate groups.

Pattern group generation (step 5) aims to represent the \pattern groups" which
are found by the previous step. Each pattern group represents a set of similar
discriminative patterns. To compute the representative of pattern groups, di�erent
methods such as union, intersection and majority are used.

Visualization (step 6) provides various interactive functions to visualize the SNP
combinations on a speci�c genome with other related biological data. SNPs are
demonstrated on chromosomes in graphical style according to their real position. In
addition, several functionalities such as overview, zoom and detail are provided to
help users to analyze the SNP combinations.

The speci�c methods used to tackle these steps are detailed in the following
sections.

4.3 Clustering

The SSDPS algorithm generates a set of discriminative patterns which include some
redundancies. In order to limit the number of analysis patterns we propose to group
the similar patterns into sensible groups.

Each pattern consists of a set of items. Apattern group is a set of similar
patterns.
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Table 4.2: Popular distance measures

Measure Equation

Euclidean distance jja � bjj2 =
q P 2

i =1 (ai � bi )2

Manhattan distance jja � bjj1 =
P 2

i =1 jai � bi j2

Maximum distance jja � bjj1 = maxjai � bi j

For example, given a set of 5 discriminative patterns: p1 = f a; b; c; dg, p2 =
f a; b; c; f; gg, p3 = f a; b; d; hg, p4 = f d; g; i; j; k g, p5 = f i; j; k; h g, example pattern
groups can be:g1 = f p1; p2; p3g, g2 = f p4; p5g, g3 = f p1; p4g, g4 = f p4; p5g.

Intuitively, two patterns are similar if they share a large number of items. For
example, p4 and p5 share 3 items thus they are more similar thanp1 and p4 which
share only 1 item.

In order to �nd pattern groups which contain a set of similar patterns, we propose
to use clustering algorithms which automatically calculate the similarity of patterns
and partition them into appropriate groups.

Clustering algorithms aim to organize data into sensible groups according to the
similarity of data. A formal de�nition of the clustering problem can be stated as
follows: Given n objects, �nd k groups based on the similarity of these objects (with
k < n ). The similarity of the objects is often calculated by distance measures such as
Euclidean and Manhattan distance. The equations of some popular distance metrics
for two-dimensional space are illustrated in Table 4.2.

There is a wide variety of algorithms for clustering data. Among them, K-means
[127] is the most popular and the simplest one. K-means �nds all clusters simulta-
neously by partitioning the data. To perform clustering by K-means, two important
parameters are required: number of clustersK and distance measure. Choosing an
appropriate K is the most di�cult task. There is no perfect mathematical criterion
existing for this task.

On the other hand, hierarchical clustering algorithms [128] build a binary tree of
the data that successively merges similar groups of points. The binary tree can be
built in 2 ways: each point of data is a cluster at the beginning, and the most similar
pair of clusters are merged to form a hierarchical cluster. Or all data points together
are considered as one cluster at the beginning and each cluster is recursively divided
into smaller clusters. Fig 4.2 shows an example of a hierarchical clustering with 7
objects. Hierarchical clustering algorithms are widely used in practice since they
only require a measure of similarity between groups of data points. In addition, the
hierarchical tree provides a useful summary of the data.

In this study, we use hierarchical clustering algorithms to classify similar dis-
criminative patterns into sensible groups.
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Figure 4.2: Example of hierarchical clustering

4.4 Pattern groups generation

Hierarchical clustering algorithm organizes the set of discriminative patterns in a
binary tree. Each leaf is a discriminative pattern and each branch is equivalent to
a group of similar discriminative patterns. The clustering algorithm allows to cut
the tree into di�erent sub-clusters based on a given threshold value. Each generated
sub-cluster is a pattern group.

As discussed in the previous section, each pattern group is a set of its discrimina-
tive pattern members. It means that the pattern group contains a larger number of
items than its members. It is out of scope of this thesis to �nd good representatives
of pattern groups. However, for sake of visualization we propose to use di�erent
methods to represent a pattern group by a set of items. In particular, the repre-
sentative of a pattern group can be created by union, intersection or majority of all
individual items which belong to all discriminative pattern members of the pattern
group.

Let g be a pattern group containing s discriminative patterns.
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The union of pattern group g is de�ned by:

uni (g) = p1 [ p2 [ ::: [ ps

For example, uni (g1) = f a; b; c; d; f; g; hg, uni (g2) = f d; g; i; j; k; h g
The intersection of pattern group g is de�ned by:

inter (g) = p1 \ p2 \ ::: \ ps

For example, inter (g1) = f a; bg, inter (g2) = f i; j; k g
The majority of pattern group includes items which have frequency larger than

a given threshold � . The majority of pattern group g is de�ned by:

major (g) = f i 2 (p1 [ p2 [ ::: [ ps) j f re (i ) � � g

where fre (i ) is the percentage of number of patterns that contain item i over
the total patterns of the pattern group.

For example, suppose� = 70%, the majority g1 and majority g2 are: major (g1) =
f a; b; c; dg, major (g2) = f i; j; k g.

4.5 Visualization

This section presents di�erent principles and functionarities which are used to visu-
alize SNP combinations on whole genome.

4.5.1 Visualization principle

To visualize the SNP combinations in whole genome, two principles are used to
design our graphical tool.

The �rst principle is based on work on information visualization [129] which
includes di�erent tasks such as overview, zoom and details on demand. Overview
task aims to see overall patterns and trends. On the other hand, zoom task aims to
see a smaller subset of the data. Usually there are some portion of data which are
interesting for the users. Thus to enable users to control the zoom focus and the
zoom factor, an interactive zooming tool is needed. A good zooming tool helps users
to preserve their sense of position and context. Details on demand aims to see values
of patterns when interactively selected. This task allows to select an interesting item
or group of items and get the highest level of information.

The second principle is to base our visualization on representation understood by
biologists. In biological context, SNPs are often illustrated in speci�c chromosomes
according to their positions. The available tools allow users to see an overview of
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Figure 4.3: Example of a whole genome overview

whole genome or focus on an interesting chromosome region with other related bio-
logical information. For example, European Bioinformatics Institute (EMBL-EBI)
provides an online tool (http://www.ensembl.org) to visualize the whole genome.
This online tool allows users to view all chromosomes of a genome or focus on a
speci�c interesting chromosome region. In addition, various related biological infor-
mation are also illustrated in the selected region. For instance, Fig 4.3 shows an
overview of all chromosomes of human genome while Fig 4.4 presents a short region
on chromosome 2.

4.5.2 Visualization functionalities

To implement the graphical tool we use the Shiny package which is a web application
framework for R. Results of pattern clustering and SNP combinations are presented
to the users through an interactive graphical user interface (GUI). This GUI o�ers
a series of e�ective visualizations to explore the generated discriminative patterns.
The GUI can run as a desktop application or as a web application inside a web
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Figure 4.4: Example of zoomed region on a speci�c chromosome

browser.
The main interface of the graphical tool is divided into two parts. The left panel

provides space to set up parameters while the right panel is a graphical representa-
tion of the pattern groups.

4.5.2.1 Parameters set up

This tool is designed to visualize various genetic variant datasets. Thus it allows to
load di�erent data related to analysis patterns. The left panel of the tool provides
functions to load data and set up parameters related to clustering and visualization.
Fig 4.5 illustrates the left panel of this tool. This panel consists three groups of
controls.

Input data parameters (Fig 4.5(a)) includes di�erent �le upload controls to load
data such as patterns, chromosomes, genes, QTLs. Depending on the analysis data,
users have to load appropriate data. For instance, with plaint dataset genes and
QTLs data are provided while human dataset only contains genes data.
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(a) Input data (b) Clustering and generat-
ing pattern groups

(c) Choosing pattern groups

Figure 4.5: Left panel of the graphical tool

Clustering and generating pattern groups parameters(Fig 4.5(b)) supplies meth-
ods to cluster patterns and create the representation of pattern groups. In particular,
various clustering methods and distance measures are provided. A slide bar is given
to select threshold value to cut the hierarchical tree to generate sub-clusters. Note
that each sub-cluster is a pattern group. Three methods are also provided to cre-
ate the representation of pattern groups: union, intersection and majority. With
majority option, users have to choose the frequency threshold to generate pattern
groups.

After all required data is loaded and patterns are regrouped, a set of pattern
groups is created according to the given thresholds. These generated pattern groups
are shown in theChoose pattern groupsarea (Fig 4.5(c)) where users can select some
interesting ones to present on the chromosomes.

4.5.2.2 Graphical presentation

The graphical presentation part consists of several tabs. Each tab corresponds to a
visualization function. These functions allow to visualize the discriminative patterns
such as clustering similar discriminative patterns, representing pattern groups on
chromosomes and show detail of selected pattern groups.

Clustering: This function provides a useful tool to regroup patterns into pattern
groups with hierarchical clustering algorithms. Various hierarchical clustering meth-
ods and distance measures are provided to cluster the patterns. Fig. 4.6 shows an
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Figure 4.6: Hierarchical clustering dendrogram

example of the hierarchical clustering dendrogram. It visually illustrates the groups
of patterns which have similar sets of SNPs.

To generate pattern groups, one can choose an appropriate threshold value to cut
the hierarchical tree. Each generated sub-cluster is considered as a pattern group (a
set of similar discriminative patterns). For example, with the threshold value of the
Fig 4.6, 6 sub-clusters (equivalent to 6 pattern groups) are created. Note that one
can easily adjust the cut threshold value to get an appropriate number of pattern
groups. In addition, to created representatives of the pattern groups three methods
are provided: union, intersection and majority.

Visualization: This function provides an interactive tool to draw SNP combi-
nations on the whole genome. With the pattern groups which are created in the
previous step, one can select which pattern groups to show on the chromosomes. For
example, Fig 4.7 shows a visualization of SNP combinations on whole chromosomes.
To easily observe the interaction of SNPs, each pattern group is assigned a unique
color. The SNPs are drawn on the chromosomes based on their real positions with
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Figure 4.7: SNP combinations overview

the colors of pattern groups that contain them.
The zoom function allows users to focus on a speci�c region of chromosome. This

function provides a variety of information that is related to the selected region such
as SNPs, genes and QTL regions. For instance, Fig 4.8 illustrates a zoomed region of
chromosome A02. This region shows four SNPs with other related information. One
QTL region with its name and covered region (red line) is illustrated in the lower
area of chromosome while genes are shown in the upper area of the chromosome.

Detail: This function provides detailed information related to the selected pat-
tern groups. Each pattern group contains a list of SNPs which have many related
information such as genotype, position and chromosome. For detail analysis pur-
pose, these features are fully displayed in this function. For example, Fig 4.9 shows



Related works 107

Figure 4.8: Zoom in a short region on chromosome A02

details of 6 pattern groups. Each pattern group consists of a list of SNPs with de-
tail related information such as genotype, position, chromosome. This function also
provides utilities to sort or �lter pattern groups.

4.6 Related works

Visualizing SNP combinations in the whole genome has widespread attention in
bioinformatics. There exist many genetic-analysis tools to discover and visualize the
signi�cant SNPs.

Among them, PLINK [125] is the most popular one. This is a tool set for genome
wide association studies based on statistical methods. For case/control GWAS, it
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Figure 4.9: Detail of pattern groups

o�ers various tests association such as Cochran-Armitage trend test, Fisher's ex-
act test, genotypic tests (general, dominant, and recessive models), and Cochran-
Mantel-Haenszel tests to measure the association strength between SNPs and dis-
ease. PLINK allows to test individual SNPs or pair of SNPs that are associated with
disease. It tests all SNPs and presents the results with Manhattan plots. This plot
shows� log10 p value for each SNP against chromosomal location. For visual e�ect,
chromosomes are shown in di�erent colors. Based on this plot, user can observe
which region of chromosomes contains signi�cant SNPs.

Similarly, SNPsys software [126] is a graphical tool that allows to discover and
visualize pairs of SNPs from large genetic variant datasets on complex diseases. This
software can run on desktop machine or web browser as a stand-alone application.
An example of SNP-SNP interactions generated by SNPsys is illustrated in Fig 4.10.
With only textual output, it is di�cult to observe SNPs interactions on the whole
genome by SNPsys.

Beside these tools, some organizations provide public websites to search and view
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Figure 4.10: Pairs of SNPs interaction discovered by SNPsys

individual SNPs on real chromosomes. For example, National Center for Biotech-
nology Information (NCBI) supports 1000 genomes browse web page to search and
visualize various information related to SNPs. Similarly, other websites such as
https://www.snpedia.com/, https://www.ensembl.org/index.html also provide on-
line tool to �nd SNPs in whole genome.

In short, these are useful graphic tools to search and visualize SNPs in the whole
genome. However, these tools are used for individual SNPs or pair of SNP inter-
action. In comparison with available tools, our software has two di�erent features:
First, the interactive GUI provides multiple functions to cluster and visualize SNP
combinations on whole chromosomes. The clustering algorithm is e�ciently used to
regroup similar patterns. This task is useful since the number of analysis pattern
groups is much more smaller than the proportion of beginning patterns. In addi-
tion, the combinations of multiple SNPs (much more larger than 2) are taken into
analysis. With GUI, users can easily observe these SNPs combinations with various
additional biological information such as genes, QTLs. Second, our tool allows to
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visualize di�erent genetic variant datasets such as human, plant, animal instead of
single dataset like PLINK and SNPsys.

4.7 Conclusion

In this chapter, various e�ective methods are presented to implement a graphic
software for visualization of SNP combinations in the whole genome. The software
applies discriminative pattern mining algorithms to discover high-order SNP com-
binations in large genetic datasets and visualize them with a GUI. The interactive
GUI is an e�cient and easy-to-use genetic-analysis tool that is required to support
biologists in their search for relations between genotype and phenotype. Currently,
the software is made of two separated modules and data preparation step for each
SNP dataset. One perspective for further work is to integrate these steps in a single
GUI. Another perspective is to improve the performance of the software to e�-
ciently work with larger number of patterns. A last direction for future work is to
investigate e�cient method to represent the pattern groups.
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Conclusions and Perspectives

5.1 Contributions summary

Discovering SNPs association with diseases is an important task of bioinformatics.
Once new genetic variant associations are identi�ed, they can be used to develop bet-
ter strategies to detect, treat and prevent the disease. However, discovering multiple
SNP combinations is still a challenge since the number of SNP combinations is huge.
The major problems of this issue include association strength evaluation, SNP com-
binations discovery, multiple hypothesis testing and interesting SNP combinations
visualization.

To address these challenges this thesis has advanced the state-of-the-art of dis-
criminative pattern mining techniques to discover SNP combinations associated with
interesting phenotype. Di�erent solutions have been proposed in this thesis to e�-
ciently support all steps of GWAS analysis.

First, an e�cient evaluation method has been proposed to assess the association
strength between SNP combinations and diseases. The proposed method is based on
the skypattern technique which allows multiple measures to be used to evaluate the
importance of a pattern without giving speci�c thresholds. Experiment on various
real SNP datasets demonstrate that this evaluation method is e�cient for identifying
genetic variant combinations associated with diseases.

Second, an e�cient algorithm has been proposed to address the problems of
computation and multiple hypothesis testing. The algorithm applies risk measures
such as risk di�erence, risk ratio and odds ratio combined with con�dence inter-
vals to directly discover statistically signi�cant discriminative pattern in two-class
datasets. Experiment on various large genetic variant datasets demonstrate that the
investigated algorithm e�ciently discovers high-order SNP combinations in a short
execution time. Many of them contain SNPs which are already known as associated
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with diseases.
Third, to visualize the interesting SNP combinations, an interactive graphical

tool has been implemented. This tool is used to regroup similar SNP combinations
into sensible groups and present them on the whole genome. This is an e�cient
and easy-to-use genetic-analysis tool that supports biologists in their search for the
relations between genetic variant combinations and interesting phenotype.

In addition, although this thesis focuses on GWAS, other bioinformatics tasks
can also bene�t from the proposed techniques.

5.2 Perspectives

In general, the techniques proposed in this thesis e�ciently discover high-order SNP
combinations associated with an interesting phenotype. However, to more e�ciently
tackle GWAS, several directions should be explored in future work.

Skypattern is a promising approach for association strength evaluation. However,
applying this technique to identify interesting genetic variant combinations associ-
ation with diseases remains challenging. To �nd skypatterns, a two-step approach
is used: �rst discovering all SNP combinations which satisfy a given minimum sup-
port threshold. Then using Skycube software to �nd skypatterns over the generated
patterns. This approach is time-consuming and is only suitable for small genetic
variant datasets. Thus to e�ciently use the skypattern technique to measure the
association strength between SNP combinations and a disease, one perspective is to
directly discover skypatterns in one stage.

The SSDPS algorithm uses a search strategy which allows a combination of
measures to be used to prune the search space. However the pruning process is
mainly done in the negative procedure. Whereas, the positive procedure has to
compute all closed patterns in the positive class based on the LCM principles. This
task is still time-consuming since it cannot early prune the search space. Thus
another perspective is to investigate novel strategies to early prune the search space
parts which will not create discriminative patterns.

Global discriminative pattern mining algorithms have been proposed to e�ec-
tively discover non-redundant discriminative patterns [49, 80]. They are very promis-
ing for discovering discriminative patterns in various biological datasets. However,
there exist very few studies that using global discriminative pattern mining tech-
niques to handle bioinformatics problems. This would be a direction for future work
for applying these data mining techniques to bioinformatics.

Discovering less patterns but which are highly statistically signi�cant and dis-
criminative is a very important task. The existing approaches have combined mul-
tiple hypothesis testing and pattern mining in one stage to discover statistically sig-
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ni�cant patterns. These are potential approaches to deal with bioinformatics tasks.
However, the available approaches are still time-consuming. To handle large biolog-
ical datasets such as genetic variant, further research on this direction is needed.

QTL analysis aims to detect chromosome regions which are correlated with in-
teresting traits. The existing approaches use statistical methods which can detect
individual QTLs on a short region of chromosome. However, in a biological context,
these regions may be correlated to a�ect the trait. Identifying these region inter-
actions is thus very interesting. Using discriminative pattern mining techniques to
tackle this issue is a promising future work since it can discover high-order SNP
combinations across multiple chromosomes. These SNP combinations can be used
to analyze the correlation of QTLs.

Last but not least, discovering genetic variant combinations and presenting them
as an easily to understand way is necessary for biologists. However, the available
algorithms often generate a large number of patterns which contain many redun-
dant ones. Represent these patterns as a small set of non-redundant patterns is a
challenge. Thus, to provide better data visualization of patterns, collaborate with
researchers in data visualization and biologists is an appropriate approach. To re-
duce number of patterns to show, di�erent approaches can be considered such as
post processing with clustering algorithm, using global pattern set mining techniques
to �nd immediately few patterns. In addition, investigate the optimization measure
for the set of patterns is also an important work.
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Glossary

AMD Age-Related Macular Degeneration

ARR Absolute Risk Reduction

AVX2 Advanced Vector Extensions 2

BC Breast Cancer

BD Bipolar Disorder

BFS Breadth-First Search

CAD Coronary Artery Disease

CD Crohn's Disease

CI Con�dence Interval

CII Co-Information Index

CMH Cochran-Mantel-Haenszel

DFS Depth-First Search

EMBL-EBI European Bioinformatics Institute

FACS Fast Automatic Conditional Search

FWER Family Wise Error Rate

GUI Graphical User Interface

GWAS Genome-Wide Association Study

HT Hypertension
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LAMP Limitless Arity Multiple-testing Procedure

LCI Lower Con�dence Interval

NCBI National Center for Biotechnology Information

OR Odds Ratio

QTL Quantitative Trait Locus

RA Rheumatoid Arthritis

RR Risk Ratio

SIMD Single instruction multiple data

SNP Single Nucleotide Polymorphism

SSDPS Statistically Signi�cant Discriminative Pattern Search

T1D Type 1 Diabetes

T2D Type 2 Diabetes

TFs Transcription Factors

UCI Upper Con�dence Interval

UKBS UK Blood Services
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Abstract
Genome-wide association studies (GWAS) is designed to discover single nu-

cleotide polymorphism (SNP) combinations associated with diseases. Once new
genetic associations are identi�ed, they can be used to develop better strategies to
detect, treat and prevent the diseases. Recently, GWAS has been tackled with dis-
criminative pattern mining algorithms. However, discovering of SNP combinations
in large genetic variant datasets remains challenging. To address these challenges
this thesis advances the state-of-the-art of discriminative pattern mining techniques
to discover SNP combinations associated with interesting phenotype. Di�erent so-
lutions have been proposed in this thesis. They focus on major problems of GWAS
such as association strength evaluation, SNP combinations discovery and interest-
ing SNP combinations visualization. The proposed solutions in this thesis are also
promising for other tasks of bioinformatics such as di�erential gene expression dis-
covery, phosphorylation motifs detection and regulatory motif combination mining.

Keywords: Genome-wide association studies, single nucleotide polymorphism,
discriminative pattern mining, association strength measure, visualization.

R�esum�e
Les �etudes d'association sur un g�enome complet (GWAS) sont con�cues pour

d�ecouvrir les combinaisons de points de polymorphisme (SNP) associes �a des mal-
adies. La d�ecouverte de ces associations permet d'�elaborer de meilleures strat�egies
pour d�etecter, traiter ou pr�evenir les maladies. R�ecemment, l'utilisation de tech-
niques d'extraction de patterns discriminatif a �et�e investigu�ee dans le cadre de
probl�ematiques GWAS. Toutefois, la d�ecouverte de combinaisons de SNP dans de
grands jeux de donn�ees GWAS est encore di�cile �a cause de la complexit�e des algo-
rithmes utilis�es. La th�ese se propose donc d'am�eliorer l'�etat de l'art des approches
d'extraction de motifs discriminants, dans le cadre d'extraction de combinaisons
de SNP corr�el�ees �a un ph�enotype d'int�erêt. Plusieurs solutions ont �et�e propos�ees,
s'attaquant aux probl�emes majeurs en GWAS : �evaluation de la force d'association,
d�ecouverte e�cace de combinaisons de SNP et visualisation de ces combinaisons. Les
approches propos�ees sont �egalement prometteuses pour d'autres tâches de bioin-
formatique comme la d�ecouverte d'expressions g�enique, la d�etection de motifs de
phosphorylation et la d�etection de motifs de r�egulation.

Mot cl�e: etudes d'association sur genome complet, points de polymorphisme,
extraction de motifs discriminants, mesure de force d'association, visualisation


