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Abstracts

Consistance des statistiques dans les espaces quotient de
dimension in�nie

En anatomie computationnel, on suppose que les formes d'organes sont issues de
déformation d'un template commun. Les données peuvent être des images ou
des surfaces d'organes, les déformations peuvent être des di�éomorphismes. Pour
estimer le template, on utilise souvent un algorithme, appelé �max-max�, qui min-
imise parmi tous les template candidats, la somme des carrées des distances après
recalage entre les données et le template candidat. Le recalage étant une étape dans
l'algorithme qui trouve la meilleur déformation pour passer d'une forme à une autre.

Le but de cette thèse est d'étudier cet algorithme max-max d'un point de vue
mathématique. En particulier, on prouve que cet algorithme est inconsistant à
cause du bruit. Cela veut dire que même avec un nombre in�ni de données et avec
un algorithme de minimisation parfait, on estime le template original avec une
erreur. Pour prouver cette inconsistance, di�érentes hypothèses sont requises dans
di�érent résultats de cette thèse. Nous devons donc expliquer ces hypothèses, et
surtout produire des résultats avec les hypothèses les plus faibles possibles, pour
s'approcher du cadre utilisé dans les applications.

Pour prouver l'inconsistance, on formalise mathématiquement l'estimation de
template. On suppose que les déformations sont des éléments aléatoires d'un groupe
qui agit sur l'espace des observations. De plus, l'algorithme étudié est interprété
comme le calcul de la moyenne de Fréchet dans l'espace des observations quotienté
par le groupe des déformations. Dans cette thèse, on prouve que l'inconsistance est
dû à la contraction de la distance quotient par rapport à la distance dans l'espace
des observations. Dans cette thèse, les observations appartiennent à des espaces
comme les espaces de Hilbert ou les variétés Riemanniennes, l'inconsistance est
obtenue pour presque tous les bruits.

Un autre but de cette thèse est de quanti�er l'inconsistance. On estime l'erreur
entre le template originel et le template estimé. Cela met en évidence les paramètres
qui gouvernent l'inconsistance. On obtient un équivalent de biais de consistance en
fonction du niveau de bruit. Ainsi, l'inconsistance est inévitable quand le niveau de
bruit est su�samment grand.

Mots clés: Moyenne de Fréchet, action de groupe, espace quotient, consis-
tance, espace de Hilbert, variétés, recalage
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Consistency of statistics in in�nite dimensional quotient
spaces

In computational anatomy, organ shapes are assumed to be deformation of a
common template. The data can be organ images but also organ surfaces, and the
deformations are often assumed to be di�eomorphisms. In order to estimate the
template, one often uses the max-max algorithm which minimizes, among all the
prospective templates, the sum of the squared distance after registration between
the data and a prospective template. Registration is here the step of the algorithm
which �nds the best deformation between two shapes.

The goal of this thesis is to study this template estimation method from
a mathematically point of view. We prove in particular that this algorithm is
inconsistent due to the noise. This means that even with an in�nite number of data,
and with a perfect minimization algorithm, one estimates the original template
with an error. In order to prove inconsistency, various hypotheses are required
in di�erent results in this thesis. We are committed to explain these hypotheses,
and we aim at providing results with the weakest hypotheses possible, in order to
approach the frameworks used for applications.

In order to prove inconsistency, we formalize the template estimation into a
mathematical framework. Deformations are assumed to be random elements of a
group which acts on the space of observations. Besides, the studied algorithm is
interpreted as the computation of the Fréchet mean in the space of observations
quotiented by the group of deformations. In this thesis, we prove that the
inconsistency comes from the contraction of the distance in the quotient space
with respect to the distance in the space of observations. As a result, we consider
that observations belong to general spaces such as Hilbert spaces and Riemannian
manifolds, in these spaces, the inconsistency appears for general noise.

Another goal of this thesis is to quantify this inconsistency. We estimate the
error between the original template and the estimated template. This highlights
the parameters which govern the inconsistency. We obtained a Taylor expansion
of the consistency bias with respect to the noise level. As a consequence, the
inconsistency is unavoidable when the noise level is high.

Keywords: Fréchet mean, group action, quotient space, consistency, Hilbert
space, manifolds, registration, max-max



Notation

Les statistiques sont l'art d'utiliser toutes les lettres.

The following notations are commonly used in this thesis:

� " �": group action of G on M , for x PM , g PG, g � x PM .

� x ; y: dot product on M when M is a Hilbert space.

� } } : Hilbert norm on M when M is a Hilbert space.

� rms: orbit of m, rms � t g � m; g PGu.

� B px; r q: open ball of centerx and radius r .

� CB: consistency bias.

� Cpmq: cut locus of a point m belonging to a complete Riemannian manifold.

� Conept0q: the Voronoï Cone associated to the templatet0 de�ned as the set
of points of M closer fromt0 than the other points of rt0s.

� dM : distance in the ambient space, often given by the euclidean norm in
Hilbert space, or the Riemannian distance in complete Riemannian manifold.

� dQ (when dM is invariant under the group action): quotient (pseudo-)distance
between two orbits, dQpras; rbsq � inf

gPG
dM pa; g � bq.

� E : variance ofY (or X ) in the ambient spaceM , Epmq � Epd2
M pm; Y qq.

� eG: the identity element of G.

� E: expectation of a random variable inR or in a Hilbert space.

� " : a noise inM with Ep"q � 0 (sometimesEp}" }2q � 1).

� Exp: the Riemannian exponential map in complete Riemannian manifold.

� F : variance in the quotient space ofY (or X ), F pmq � Epd2
Qprms; rYsqq.

� FM: set of all the Fréchet means of a random variable in a metric spacepX ; dX q
FM pZ q � argminxPX Epd2

X px; Z qq.

� Fn : empirical variance in the quotient space ofY , Fnpmq � 1
n

n°

i � 1
d2

Qprms; rYi sq.

� FixpM q: set of �xed point under the group action,
Fixpmq � t m PM; @g PG g � m � mu.
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� � : a small positive number.

� � pvq: registration score of the unit vector v of the noise: � pvq �
E

�
supgPG xv; g � "y

�
.

� G: a group acting onM .

� gpa; bq: an element ofG which registersa to b.

� H : a subgroup ofG

� Isopmq: the isotropy group of m PM , Isopmq � t g PG; g � m � mu.

� Int: Int pAq is the interior of a set A.

� J : an auxiliary map used to minimize Fn :

J pm; g1; : : : ; gnq �
1
n

n¸

i � 1

}m � gi � Yi }2:

� Log the logarithm map in complete Riemannian manifold.

� L 2pR{Zq or L 2pr0; 1sq: set of measurable functions onr0; 1s or R{Z which are
squared integrable.

� � pvq: registration score of the unit vector v, � pvq � E
�
supgPG xv; g � Yy

�
.

� M : ambient space, most of the time a Hilbert space, sometimesM is a com-
plete Riemannian manifold.

� m� : an element which minimizesF .

� P: probability measure.

� � : projection in the quotient space� pxq � r xs.

� Q: quotient space ofM by G, Q � M {G � tr ms; m PM u.

� Reg: regularization term on the groupG.

� s: section of the quotient, s : Q Ñ M with � � s � Id .

� S : the image of the sectionS � spQq.

� S: the unit sphere in M .

� � : the noise level.

� t0: the template.

� � : time-shift.
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� v: an unit vector in M.

� w: parameter in the Gaussian noise,� � w
?

n in an Euclidean space of
dimension n.

� � : a random variable in G which deforms data.

� X � t0 � �" : noisy template.

� Y � � � t0 � �" or Y � � � pt0 � �" q the observable variable.
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16 Chapter 1. Introduction

1.1 Computational anatomy.

The visionary work of D'Arcy Thompson [Thompson 1942], in the beginning of the
20th century, consisted in the study of the form of animals. The main goal was to
create a classi�cation between two species. This raised the question of how to do
one study of the di�erence of form between two animal drawings. His answer was to
introduce a grid superimposed onto the image of the �rst animal, and deform this
grid to match to the second one. The more the grid needs to be deformed the more
di�erent the two species are.

Figure 1.1: Comparison between two �shes.

Since this pioneering work, which was not completely written mathematically,
computational anatomy has arisen [Grenander 1998]. This recent discipline aims
to build statistics on data with mathematical framework which can be numerically
implemented.

There are several reasons for the development of this newly created discipline:

� The increasing use of medical imaging, with high resolution images.

� These images are digitized and are accessible across the world.

� The increasing of computational power which allows us to work with a large
number of high resolutions images.

� The mathematical tools and theory have been developed in order to tackle
medical issues, for instance shape space theory [Kendall 1989].

One use of computational anatomy would be to predict disease. For instance,
one could imagine that we use this deformation model in order to compare a new
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patient to a known patient. However, as this known patient is singular, he may
not be representative among the population, this could bias the study. Moreover, a
doctor never compares a new patient to an old one. A doctor would rather want to
compare a new patient to all the previous patients. A doctor had synthesized the
common features of the previous patients who share the same illness. Computing the
mean patient (in this thesis we use the wordtemplate) would allow us to mime this
synthesis. This leads us to study statistics in computational anatomy, in particular,
the template estimation.

1.2 Statistics in computational anatomy

Once one has data like organs images, one wants to perform statistics on this data.
There are several levels we can think of:

� Given two elements (for instance two medical images), one can estimate the
amount of deformations to match the �rst image (the source image) to the
second one (the target image). This step is called registration and formal-
ize the idea of D'Arcy Thompson [Thompson 1942]. One active �eld of re-
search is to build admissible group of deformations in order to register ele-
ments [Trouvé 1995, Miller 2006].

� If we are able to perform the registration step, then we can estimate the
mean of images. Due to the deformation, data do not belong to an Eu-
clidean space, one can generalize the notion of mean with the Fréchet mean
introduced by Fréchet [Fréchet 1948]. Then we obtain an element which is
representative of our population images [Guimond 2000, Joshi 2004]. Many
names are given for this element: template, prototype, virtual patient etc;
in the following we will use the word template. This can be done for in-
stance with the LDDMM framework [Beg 2005] or with the Demons algo-
rithm [Thirion 1998, Vercauteren 2009, Lombaert 2013].

Note that in practice, we obtain both the template and the deformations
between the template and each images [Durrleman 2014, Durrleman 2013,
Allassonnière 2015]. The set of the template and the deformations is called an
atlas.

� The template estimation can be a useful step, but it does not explain
the variability of data. Then Principal Geodesic Analysis [Fletcher 2003,
Fletcher 2004, Sommer 2010, Sommer 2014] (PGA) orPrincipal Com-
posant Analysis [Huckemann 2010, Seiler 2012] (PCA), barycentric sub-
spaces [Pennec 2016, Rohé 2016] etc. can be developed in order to estimate
which directions best explain the data.

In this thesis we focus on the estimation of the template (the second level in the
previous list). One goal of this thesis is to study the consistency of the minimization
algorithm used to estimate the template. As a result, we prove that this method is
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not consistent. This means that even with the whole distribution (and not only a
sample), one does not �nd the original template, as soon as noise is added. Besides
we also focus on �nding the error between the original template and the estimated
template.

1.3 Geometrical framework of template estimation

1.3.1 A brief overview of manifolds and Riemannian manifolds

The goal of this section is not to recall some formal de�nitions but to just make a
brief recap on some notions used in this thesis. We refer to [do Carmo Valero 1992]
for precise de�nitions and proofs. In this thesis, we prove several properties of
the template estimation, where data belong to Hilbert spaces and Riemannian
manifold. Besides, in this thesis, deformations leads us to consider a kind of spaces
called quotient space which are not manifolds in general. However we will see
in chapter 5 that someway the quotient spaces behave as manifolds. Making an
analogy between quotient space and manifold will be a useful tool in to understand
the property of the template estimation in chapter 5.

We say that a setM is a �nite dimensional manifold of dimensionn if M locally
looks like an open set ofRn :

De�nition 1.1. Let M be a topological space. We say thatM is a di�erentiable
manifold of dimension n if there exists a family of injective maps' a : Ua € Rn Ñ
M , where for a P I , Ua is an open set ofRn such that:

M �
¤

aPI

' pUaq

and for any a P I , b P I , with W � ' apUaq X ' bpUbq � H , the sets
' � 1pW qand' � 1pW q are open sets ofRn and the map' � 1

b � ' a is di�erentiable.

With this de�nition, it is possible to de�ne for every point of a manifold M has a
tangent space.

In particular, at each point of a manifold m, the space can be approximated by
its tangent plan noted Tm M .

Moreover, we say that a manifoldM is a Riemannian manifold if on each tangent
plan m, we have a dot productx ; ym , which depends continuously of the pointm
(we note } } m the associated norm).

This allows us to di�erentiate curve included in the manifold. As a consequence,
we are able to de�ne the length of a curve of the manifold. Then, whenM is a
path-connected, (this means that given two pointsa and b, it exists a continuous
curve connectinga to b), we can de�ne the geodesic distance betweena and b as
the in�mum of the length of all the curves connecting a to b. One can prove that
this provide actually a distance called the geodesic distance (or the Riemannian
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Figure 1.2: Example of the unit sphere inR2, a Riemannian manifold.

distance) on M noted dM . From now on, we assume thatM is a connected path
space.

Besides, by considering that the geodesics are critical point of the energy, one
can prove that the geodesics are exactly the solution of a di�erential equation of
order 2. Due to the theory of di�erential equation, there is always one local solution
given one initial point m P M , and one initial vector speedv P Tm M . As a result,
there exists one geodesic curve
 :s � �; � rÑ M such that 
 p0q � m and 9
 p0q � v.

Let m be a point in M , let v be a vector belonging toTm M . If a geodesic curve

 which satis�es 
 p0q � m and 9
 p0q � v is de�ned, on an interval I such that 1 P I ,
then we de�ne the exponential map as Expm pvq � 
 p1q PM . Besides, it is possible
to prove that Exp m is a local di�eomorphism at 0 the null vector in Tm M . We call
Logm the inverse di�eomorphism. Besides we have:}Logm paq}m � dM pm; aq (see
�gure 1.2).

Next, we wonder if the geodesic curve can be extended globally to a map de�ned
on R. The Hopf-Rinow theorem give the answer:

Theorem 1.1 (Hopf-Rinow Theorem). Let M be a connected �nite dimensional
Riemannian manifold. Then the following statements are equivalent:

1. pM; dM q is a complete metric space wheredM is the geodesic distance.

2. M is geodesically complete this means that for everym P M , the exponential
map is de�ned on the entire tangent spaceTm M .

3. The closed and bounded subsets of M are compact;

From now on, we assume thatM is a complete connected Riemannian manifold.
Let 
 be such a geodesic curve, then it is possible that
 stops to be a minimal
geodesic at the timet0, in this case, we call
 pt0q a cut point of m. And we call cut
locus ofm, noted Cpmq the set of all cut point of m.

Finally we give a useful result, which allows to di�erentiate the square distance
in manifold:
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Proposition 1.1. Let M be a complete Riemannian manifolld, letx0; y P M . We
assume thaty R Cpx0q. Then x ÞÑ dM px; yq2 is di�erentiable at x0. Besides,
r 1d2

M px0; yq � � 2Logx0
pyq, where r 1 is the gradient of x ÞÑdM px; yq2.

This extends the well known result of the di�erentiation of the square Euclidean
norm in Hilbert space x ÞÑ }x � y}2 is di�erentiable at x0, and r 1}x0 � y}2 �
� 2py� x0q. This leads us to say that the Log map in complete Riemannian manifolds
is like the subtraction in Hilbert spaces.

1.3.2 Deformations and quotient space

Since we assume that there are some deformations of our images. We need to
provide a mathematical framework of this idea. In this thesis, we assume that the
deformations come from a group action de�ned below:

De�nition 1.2. We say that a gropupG acts on our ambient spaceM if there is
map G � M Ñ M , pg; mq ÞÑg � m s.t. eG � x � x and g � pg1� xq � p gg1q �x for every
g; g PG, x PM , where eG is the identity element ofG. For a point m PM we call
orbit of m, the set rms � t g � m; g P Gu. The orbits of M forms a partition of M .
Besides, we call quotient ofM by G, noted Q � M {G the set of all orbits.

Due to the deformations induced by the group action, statistics cannot be per-
formed in the ambient M , however its can be performed in the quotient space.

We want to insist on this point: the quotient space is not a manifold in general.
The di�erential structure of the quotient space is an orbifold (see [Thurston 1979] for
a de�nition of orbifold). However, we do not use the formal de�nition of an orbifold
in this thesis. One interesting idea about the di�erential structure of quotient spaces
or orbifolds is that the local dimension of the structure is not constant. This may
make the analysis more di�cult since it prevents us to apply any statistical theorems
involving linear spaces or manifolds.

1.3.3 What are the data?

� 1D/2D/3D images: f : RD Ñ R at the point/pixel/voxel p, f ppq is the in-
tensity of the images. For instance with D � 1, we obtain some signals
with D points, the study of this signal is important in ECG [Hitziger 2013,
Bigot 2013]

� Landmarks: set of points of interest, for instance, an organ can be encoded
numerically, by selecting some characteristic points of the surface of the or-
gan [Bookstein 1986, Joshi 2000]. This selection can been done manually or
automatically. One drawback of landmarks is that it is hard to compare two
shapes, when these two shapes are encoded with a di�erent number of points.
This means that all the data do not belong to the same space, which make
di�cult the comparison between two shapes.
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� Currents [Vaillant 2005] and varifolds [Charon 2013] circumvent this obstacle:
these two concepts embed surfaces into a Hilbert space. Then it is possible to
do statistical analysis in these frameworks [Durrleman 2014, Durrleman 2009].

1.3.4 What are the actions?

� Di�eomorphisms on images: if f : RD Ñ R is an image (in dimensionD), and
' a di�eomorphism, ' � f � f � ' deforms the image.

� Di�eomorphisms on landmarks: ' � px1; : : : ; xnq � p ' px1q; : : : ; ' pxnqq. Note
that there is the particular case of rigid transformations when' is a combi-
nation of rotations and translations.

� Di�eomorphisms on currents/varifolds.

As we will see it in this thesis, there are many actions which can be studied.
Each property of the action can be used in order to prove the inconsistency. One
important class of action, in this thesis, is the isometric actions in Hilbert spaces
(the action is linear, and the Hilbert norm is conserved), for instance:

Example 1.1 (horizontal translation). The action of continuous translation of
functions de�ned on a torus: we takeG � p R{ZqD acting on M � L 2ppR{ZqD ; Rq
with:

@� PG @f PM p� � f q : t ÞÑf pt � � q

Then f ÞÑ� � f is linear, besides}� � f } � } f } for } } the norm in M given by
}f }2 �

³
pR{Z qD f 2pxqdx.

Remark 1.1. In this thesis, translation is used in two di�erent context, one is the
translation of the variable in a function: f ÞÑf p � � q. This translation is linear
with respect with f . We call this translation, �horizontal translation� (because we
translate the variable). On the contrary there is the translation of a pointx by a
vector v: x ÞÑx � v. This map is no longer linear but only a�ne. We call this
translation �vertical translation.

Remark 1.2. In all this thesis, we use the expression isometric action for the action
on a Hilbert space with a linear action which lets the norm invariant. We are aware
that this is not the standard de�nition which would be "an action is isometric if
dM pm; m1q � dM pg � m; g � m1q for every m, m1 P M , for every g P G". We prefer
using the word isometric for thelinear isometries in linear spaces. And we say that
the distancedM is invariant if dM pm; m1q � dM pg � m; g � m1q for every m, m1 PM ,
for every g PG.

1.3.5 Distance in quotient space

We recall the de�nition of pseudo distance and distance on any setX .
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De�nition 1.3. Let X be a set, anddX : X � X Ñ R� be a map. We say that
dX is a distance in X (respectively a pseudo-distance) if the following properties are
satis�ed for every x; y; z PX :

� x � y ðñ dX px; yq � 0 (respectivelyx � y ùñ dX px; yq � 0)

� dX px; yq � dX py; xq symmetry

� dX px; yq ¤ dX px; zq � dX pz; yq triangular inequality

One assumes that the distancedM in the ambient spaceM is invariant with
respect to in the group action, this means that:

@g PG @m; n PM dM pg � m; g � nq � dM pm; nq

In this case, we can de�nedQ in the quotient space:

dQpras; rbsq � inf
gPG

dM pa; g � bq

Proposition 1.2. The map dQ is a pseudo-distance inQ.

Proof. First dQ is a well de�ned map, indeed, due to the invariant distance, one can
verify that

@h; j PG inf
gPG

dM pa; g � bq � inf
gPG

dM ph � a; g � pj � bqq:

Namely, that the de�nition of dQ does not depend on the chosen element in the
orbit of ras or rbs.

Secondly, let ras; rbs; rcs three points of Q:

� dQpras; rasq ¤ dM pa; eg � aq � dM pa; aq � 0 (becausedM is a distance). There-
fore dQpras; rasq � 0.

� dM pa; g � bq � dM pg� 1 � a; bq � dM pb; g� 1 � aq (becausedM is symmetric).
Therefore dQpras; rbsq � dQprbs; rasqby taking the in�mum in the previous
inequality and by using the fact that g ÞÑg� 1 is a bijective map in G.

� dM pa; g � bq ¤ dM pa; h � cq � dM ph � c; g � bq for every g; h P G by using the
triangular inequality in M . Besides we have:

dQpras; rbsq ¤ dM pa; g � bq ¤ dM pa; h � cq � dM pc;ph� 1gq �bq:

By taking the in�mum over g, we get:

dQpras; rbsq ¤ dM pa; h � cq � dQprcs; rbsq:

Finally, by taking the in�mum over h we get:

dQpras; rbsq ¤ dQpras; rcsq � dQprcs; rbsq:
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�

Proposition 1.3. When the orbits are closed set inM for the topology de�ned by
the distancedM , dQ is a distance in Q.

Proof. All we have to verify is if dQpras; rbsq � 0 implies ras � r bs. Let us assume
that dQpras; rbsq � 0, then for everyn PN it exists gn PG such that dM pa; gn �bq Ñ 0.
This means in particular that gn �b is a convergent sequence. Moreover this sequence
converges toa. As a consequencea is the limit of elements which are all in the orbit
of b. Thereforea is in the closeness ofrbs. Then, asrbsis a closed set (by assumption)
of M , we conclude thata P rbs and then ras � r bs. �

The orbits are automatically closed if the groupG is compact and acts continu-
ously on the ambient spaceM . In this thesis, when the distance is invariant under
a group action, we have a pseudo-distance in the quotient and not necessarily a
distance, however this is enough for the analysis of statistics we make. Besides, we
may call dQ quotient distance even if it is only a pseudo-distance.

Remark 1.3. For every a, b P M , dQpras; rbsq ¤ dM pa; bq. Moreover, whena and
b are in generic position we have:1

dQpras; rbsq   dM pa; bq:

In this thesis, we use several concepts which are similar, therefore we make a
brief recap to avoid any confusion:

� We say that the action is isometric if M is an Hilbert space and ifx ÞÑg� x is
a linear map which leaves the norm invariant: }g � x} � } x} for all g P G and
x PM .

� For M a metric space, we say that the distancedM is invariant under the
group action G if:

@x; y PM @g PG dM pg � x; g � yq � dM px; yq:

� Let pX ; dX q and pY; dY q be two sets with discrepancy measuresdX and dY ,
we only assume thatdX : X Ñ X Ñ R� same fordY . Let 	 : X Ñ Y be a
map, we say that 	 is congruent if:

@px; x 1q PX dX px; x 1q � dY p	 pxq; 	 px1qq:

1This childish remark contains all this thesis, since it is the cause of the presence of the incon-
sistency.
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1.4 Statistical estimation method

Since we are in a quotient space, the estimation of the mean by the empirical sum
does not apply. However one can use another approach known as the Fréchet mean
which can be de�ne in quotient spaces. Indeed, as soon as we have a measure of dis-
crepancy between orbits, one can de�ne and minimize a variance (if the discrepancy
is a distance) or a pre-variance (when one of the property of the quotient distance
is not ful�lled).

1.4.1 Fréchet mean in Hilbert space

Let M be a Hilbert space. We considerZ a random variable in M , such that
Ep}Z }2q   �8 . We consider the variance as the mapE : M Ñ R� de�ned as
Epmq � Ep}Z � m}2q. We call Fréchet mean ofZ the set of global minimizers ofE .
The empirical Fréchet means are de�ned as the global minimizer of the empirical

variance En : M Ñ R� with Enpmq � 1
n

n°

i � 1
}Z i � m}2 for Z1; : : : ; Zn n observations

of Z . The following proposition states that the Fréchet mean ofZ and the expected
value of Z are the same element:

Proposition 1.4. Let M be a Hilbert space, anddM the distance given by the eu-
clidean norm. Starting from Z a random variable such thatEp}Z }2q   �8 , then
m ÞÑ Epmq � Ep}Z � m}2q is well de�ned and m minimizes E if and only if
m � EpZ q.

Since the square norm is di�erentiable, it is easy to verify that EpZ q is the only
critical point of the map E, but this is not enough to show the property of being a
global minimum.

Proof. First it is easy to expand Epmq:

Epmq � } m}2 � 2xm; EpZ qy � Ep}Z }2q;

in particular we can compute the variance at the pointEpZ q:

EpEpZ qq � �} EpZ q}2 � Ep}Z }2q:

For all m PM , one gets:

Epmq ¥ }m}2 � 2}m} � } EpZ q} � Ep}Z }2q (1.1)

¥ �} EpZ q}2 � Ep}Z }2q � EpEpZ qq: (1.2)

The inequality (1.1) is the use of the Cauchy-Schwarz inequality. Besides, and
there is an equality in the Cauchy-Schwarz inequality if and only if m and EpZ q
are positively dependent (this means thatm � � EpZ q or EpZ q � �m for � ¥ 0).
Moreover x ÞÑx2 � 2x}EpZ q} reaches this minimum at an unique pointx � } EpZ q}.
This implies inequality (1.2).

This shows that EpZ qminimizes the mapE, and that any other minimizer should
be positively dependant toEpZ q and having the same norm thatEpZ q, this proves
the uniqueness. �
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We get the same result with empirical Fréchet mean in a Hilbert space, the

empirical Fréchet mean ofZ being 1
n

n°

i � 1
Z i .

As we have said, we want to perform statistics of data which are not in linear
spaces, but only in metric spaces. It requires to generalize the notion of Fréchet
mean in metric spaces.

1.4.2 Fréchet mean in metric spaces

De�nition 1.4. Let pM; dM q be a metric space. IfZ is a random variable in M ,
such that for everym PM EpdM pZ; mq2q   �8 , then we can de�ne the variance of
Z at any point m PM by:

Epmq � Epd2
M pZ; mqq:

We say that m is a Fréchet mean ofZ if m minimizes globallyE . Likewise, if we
have Z1; : : : ; Zn a sample ofZ (independent and identically distributed), we de�ne
the empirical variance of Z at the point m by:

Enpmq �
1
n

n¸

i � 1

Epd2
M pZ i ; mqq;

and we say thatmn is an empirical Fréchet mean ofZ if mn minimizes globallyEn .
If an element minimizes locallyE (respectively En ), we call it Karcher mean (re-
spectively empirical Karcher mean).

Proposition 1.5. Let pM; dM q be a metric space. IfZ is a random variable in
M , such that there existsm0 P M such that EpdM pZ; m0q2q   �8 then for every
m P M , EpdM pZ; mq2q   �8 . Therefore we can de�ne the varianceE, besides the
variance is a continuous map.

Proof. First, by the triangular inequality we have for all m PM :

d2
M pZ; mq ¤ pdM pZ; m0q � dM pm0; mqq2

¤ dM pZ; m0q2 � 2dM pm0; mqdM pZ; m0q � dM pm0; mq2

¤ dM pZ; m0q2 � 2dM pm0; mqpdM pZ; m0q2 � 1q � dM pm0; mq2:

In the left hand side, every term has a �nite expected value.

Secondly form and m1 we have, by the triangular inequality:

|Epmq � Epm1q| ¤ Ep|dM pZ; mq2 � dM pZ; m1q2|

¤ Ep|dM pZ; mq � dM pZ; m1q| � p dM pZ; mq � dM pZ; m1qqq

¤ dM pm; m1q � EpdM pZ; mq � dM pZ; m1qq;

proving the continuity of the map E.
�
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In all this thesis, we always consider random variableZ such that there exists
m0 PM satisfying EpdM pZ; m0q2q   �8 .

In order to �nd the global/local minima of the variance, one can show that, when
M is a complete Riemannian manifold and if the cut locus is a null set for the prob-
ability measure ofZ , then the variance is a di�erentiable map, and one can compute
its gradient (see [Pennec 2006] for instance, it will be also proven in lemma 3.9). As
global/local minimum of the variance, the Fréchet/Karcher means are critical point
of the variance. This leads to the following de�nition taken from [Émery 1991] (see
also �gure 1.3):

De�nition 1.5. Let M be a complete Riemannian manifold. LetZ be a random
variable in M , such thatEpdM pZ; m0q2q   �8 for somem0 PM . We say thatm is
an exponentiel barycenter ifPpZ PCpmqq � 0 and if the di�erential of the variance
at the point m is 0, namely if:

r Epmq � � 2EpLogm pZ qq � 0

M

Tm M


 Z



Logm Z


m

Logm Z


Z

Figure 1.3: If m is the Fréchet mean, then m is an exponentiel barycenter:
EpLogm pZ qq � 0. The length of the blue curve is equal to the length of the blue
segment (same with red).

In this thesis, we will deal with the Fréchet mean in the quotient space. This
means that we will consider the quotient distancedQ previously de�ned in order to
de�ne the Fréchet mean in quotient space.

One issue is that in metric spaces (including manifolds), the existence or the
uniqueness is not guarantied. Therefore existence or uniqueness of the Fréchet
mean is commonly studied with interesting results [Karcher 1977, Kendall 1990,
Afsari 2011, Arnaudon 2005, Arnaudon 2014, Charlier 2013] among many others.
These results are mainly proved for data living in manifolds. Besides, one the
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existence is ensured, methods are developed in order to estimate this Fréchet
mean [Le 2004].

Likewise the issue of convergence of Fréchet empirical mean to Fréchet mean is
studied [Ziezold 1977] (for data living in metric spaces). Besides, it is also possible
to get an evaluation of the speed of convergence provided in [Bhattacharya 2008,
Bhattacharya 2003, Bhattacharya 2005] with central limit theorem (for data living
in manifolds). It is also possible to study the speed of convergence for data living
in quotient space [Huckemann 2011].

In this thesis, we deal with quotient spaces of �nite or in�nite dimension, which
do not fall into the previous frameworks of manifold preventing us from most of
these results (except [Ziezold 1977], for instance).

1.4.3 Geometrical and statistical su�cient conditions for inconsis-
tency

In this thesis, we prove, in several di�erent contexts, the inconsistency of the tem-
plate estimation with the Fréchet mean in quotient space. In most of situations,
Theorems can be summarized in two steps:

1. First, due to the geometry, we can de�ne a geometrical set of points inM .

2. Secondly, we require that the support our random variableY , X or " is not
included in this particular set.

This structure of proof is also common, for instance in the study of stochastic
algoritms [Delyon 2000]. Let us review some results of this thesis when this sketch
of proof applies:

� Theorems 3.1 and 3.4, we de�ne the cone of the template as the set of points
closer from the template than any other points in the orbit of the template.
As soon as the support ofX is not included in this cone, there is inconsistency.

� Theorems 3.6 and 3.7 (when the template is a �xed point under the action of
G), the particular set is the �xed points. We require that the support of the
noisy template X is not included in this set, then there is inconsistency.

� Theorem 4.1, we require that the support of the noise" is not included in the
�xed point under the action of G, then there is inconsistency as soon as the
noise is large enough.

� Theorem 5.2, we require that the observableY takes value, with a non zero
probability, in the set of points which have a isotropy group reduced tot eGu.

To this end, we recall now the support a measure (or a random variable):

De�nition 1.6. Let P be a (probability) measure onpM; dM q a metric space, we
de�ne the support of P as:

supppPq � t x PM; @r ¡ 0 PpB px; r qq ¡ 0u;
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whereB px; r q is the open ball for the distancedM centred at x with a radius r . Let
be X a random variable with a lawP we de�ne the support ofX as the support of
P.

1.4.4 Noise and probability in Hilbert Spaces

Generally, there is no di�culty to generate noise. For instance in R, the Gaus-
sian noise is commonly used, and other noise can be considered. Gaussian noise
can easily be generalized in �nite dimensional space through the choice a covari-
ance matrix. Moreover it is also possible to generalize in �nite dimensional mani-
folds [Pennec 2006].

Let us talk about the noise in Hilbert spaces, since we will use often in this thesis
a noise in the Hilbert space.

Let us begin by a simple example:L 2pr0; 1s; Rq the set of square integrable real
functions de�ned on r0; 1s. If we want to simulate a noise in this space, one could
think that it is enough to chose for all t P r0; 1s f ptq randomly. However there is no
reasona priori for the resulting function f to be measurable. Thereforef does not
belong to L 2pr0; 1s; Rq.

One way to make it works, would be for instance to take the Fourier basis ofL 2

which is a one to one application formL 2 to l2 and de�ne the noise on the coe�cient.
Let p
 nqnPZ a random sequence, where
 n PC. We choose the law of
 n in order to
have

°
|
 n |2   �8 almost surely. We consider the random function:

X : t ÞÑ
¸

nPZ


 ne2�inx

This function has a sense as soon as
°

n |
 n |2   �8 . Moreover f will be a real
function as soon as
 n � 
 � n for all n PZ. The expected value will be (by linearity),
the function:

x ÞÑ
¸

nPZ

Ep
 nqe2�inx :

Likewise one can compute the variance of its random variable by
°

n E
�
|
 n |2

�
�

Ep|
 n |q2q
Note that we do not need to simulate an in�nity number of random variables.

Indeed, one can �rst to choose the number of frequenciesN randomly (a Poisson
distribution for instance), then random numbers: p1; : : : ; pN (the frequencies), sim-
ulate 
 1; : : : ; 
 N (the amplitude of each frequencies) and the random function would
be

X ÞÑ
Ņ

i � 1


 ne2�ip n x :

This kind of noise can be immediately generalized in any separable Hilbert space,
since it su�ces to choose penqnPN, an orthonormal Hilbert basis, and to choose
 n

randomly as previously, then the random point would be
°

n 
 nen
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1.4.5 Backward/forward model, backward/forward estimation

In this thesis, but also in the literature, there are two ways of considering deformed
objects:

� On the one hand, one can assume that the noise is added after deformation,
namely that the observable variable is� � t0 � " , where t0 is the template, �
the unknown and random deformation and" the additive noise. This is the
model introduced by [Grenander 1998] and often considered in computational
anatomy. Under this assumption the noise" is a noise in measurement. In
chapter 4, we study the consistency of the template estimation with the Fréchet
mean in quotient spaces when observations are created by this model. This
model is call forward model in opposition to the backward model de�ned
below.

� On the other hand, one can assume that the noise added before deformation,
namely that the observable variable is� � pt0 � "q. In this case the noise" is
rather a variability in the shape. Once this variability has been added, the
deformation operates on the sum. This is the backward model. In chapter 3,
we study the consistency of the template estimation with Fréchet mean in
quotient spaces when observations are sampled by this model .

In fact, the model which is the most realistic is probably a mixture of both models.
This leads to assume that the observations areY � � �pt0 � "q � "1, we will prove the
inconsistency of the template estimation with the Fréchet mean when observations
are generated by this model in chapter 5.

Once we have the observations, we have to choose between two methods of
estimation:

� On the one hand, the forward estimation method: one de�nes and minimizes
the variance

F pmq � E
�

inf
gPG

dM pg � m; Y q2



:

In other words, ones tries to �t the template to the data. This estimation
method will be studied, for non isometric action in chapter 4.

� On the other hand, the backward estimation method: we de�ne and minimize
the variance

F pmq � E
�

inf
gPG

dM pm; g � Yq2



:

In other words, ones tries to �t the data to the template. This estimation
method will be studied, for non isometric action in chapter 5.

When the distancedM is invariant under the group action the two methods of
estimation are equivalent, becausedQ is symmetric (since it is a pseudo-distance as
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we have see it in proposition 1.2). Therefore in this case, we do not have a choice to
make. When dM is no longer invariant, the forward estimation method may seem
more realistic, for example if you have computed a template, it may seem more
realistic to deform the template to the data, than the opposite if you have assumed
a forward generative model. But the backward estimation method is also easier to
implement.

All these questions are about points of view, which can be discussed, for instance,
in [Durrleman 2009]. One could think that the forward model is the true instead of
the backward (or vice versa). But at the end of the day, every statistical models are
wrong [Box 1976]. Therefore, to the best of our knowledge, this kind of choice are
rather philosophical than mathematical: there is no obvious choice because there is
no mathematical statements proving than one is better than the other.

1.5 Template estimation in this thesis and in related
works

The consistency was �rst studied in the particular case of Procustes means: Pro-
custes mean is the mean of data when rotations, translations (and sometimes scal-
ing) have been removed [Lele 1993, Kent 1997, Le 1998, Huckemann 2011]. Note
that Procustes means are related to Fréchet means as noticed in [Le 1998]. How-
ever, there is no contradiction between this work and, for instance, the article of
[Kent 1997]. Indeed, [Kent 1997] showed the consistency when the scaling parame-
ters were taken into account. In most of our work, we deal with isometric actions
which exclude this scaling e�ect.

Bigot and Charlier [Bigot 2011] studied the question of the template estimation
with a �nite sample in the case of translated signals or images by providing a
lower bound of the consistency bias. This lower bound was unfortunately not so
informative as it is converging to zero asymptotically when the dimension of the
space tends to in�nity.

Miolane [Miolane 2017] provided a general explanation of why the template is
badly estimated for a isometric group action thanks to a geometric interpretation.
She showed that the external curvature of the orbit of the template is responsible
for the inconsistency. This result was quanti�ed with Gaussian noise for general
manifolds.

In this thesis, we study the template estimation by computing the Fréchet
mean in quotient space of the observable variable. Our thesis is that this esti-
mation is not consistent, this means that the template is generally not a Fréchet
mean of the observable variable mapped in the quotient space. We call consis-
tency bias the distance between the template and the Fréchet means in the quo-
tient space of the observable variable. Contrarily to [Lele 1993, Kent 1997, Le 1998,
Huckemann 2011, Bigot 2011, Huckemann 2012], we study the template estimation
with an abstract action. Therefore, we use a general framework described, for in-
stance, in [Huckemann 2010].
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1.6 Heuristic of inconsistency

In this thesis, we want to prove that the template estimation is not consistent with
the Fréchet mean in the quotient space. Before giving any proofs, we can give an
heuristic: Let us take M a Hilbert space,G a group acting, such thatdM is invariant
under the group action, we note� : M Ñ Q � M {G the canonical projection in the
quotient space: � pmq � r ms. For Y � � � pt0 � �" q a random deformation of the
template added to the noise. We de�neX � t0 � �" , therefore Y � � � X . Thus,
there is consistency if and only if:

� pt0q PFMp� pYqq:

As t0 � EpX q (because we add a centred noise), and� pYq � � pX q, there is consis-
tency if and only if � pEpX qq PFMp� pX qq. As we have seen it, the Fréchet mean
of X is reduced toEpX q becauseX lives in M a Hilbert space. Therefore we can
state that:

� pFMpX qq PFMp� pX qqif and only if there is consistency.

Then, the question of consistency is reduced to know if the projection into the
quotient space commutes with the Fréchet mean. There are, at least, two trivial
cases where this is true:

� If � � 0, then X � t0 almost surely, and� pX q � � pt0q is a constant variable,
then FMp� pX qq � � pEpX qq, and there is consistency.

� If Q is a linear space, the notion of Fréchet mean is just the expectation,
therefore there is consistency if and only if� pEpX qq � Ep� pX qq. However,
it is a well know fact that in general f pEpX qq � Epf pX qq(then in this case
why we would have� pFMpX qq PFMp� pX qq? . One remarkable exception is
for f a a�ne map. As a result, if Q is a linear space and if� the canonical
projection is an a�ne, there is consistency.

Therefore when� � 0 and when the quotient space is not a linear space, there is no
reasona priori for � pFMpX qq PFMp� pX qq. And this thesis aims to provide proofs
of this heuristic.

1.7 Manuscript overview

� Chapter 3 establishes theorems which proves inconsistency in the case of
isometric action in a Hilbert space. This works has been partially pre-
sented in the Mathematical Foundations of Computational Anatomy work-
shop [Allassonnière 2015], then published in theSIAM imaging science jour-
nal [Devilliers 2017c].

� Chapter 4 establishes an asymptotic behaviour of the consistency bias in the
case of isometric action in a Hilbert space. Moreover the used method paves
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the way to the proof of inconsistency when the action is no longer isometric.
We prove in this chapter that the inconsistency appears as soon as the noise is
large enough for non isometric actions in the foreward estimation. It has been
partially published in the Information Processing in Medical Imaging confer-
ence [Devilliers 2017a] and extended in theEntropy journal [Devilliers 2017b].

� Chapter 5 is an opening to generalization. We �nd an implicit formula for the
Fréchet mean in quotient space used to provide new proofs of inconsistency.
In this chapter, we restrict ourselves in the case of a backward estimation. In
particular, we also prove inconsistency in complete Riemannian manifold. As
a result, we prove that the Fréchet mean in the quotient space is noisier than
the original template.
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2.1 Anatomie computationnelle

Au début du 20ème siècle, D'Arcy Thompson e�ectua un travail visionnaire en
étudiant les formes des animaux. Une des idées principales était de créer une clas-
si�cation entre deux espèces. Pour ce faire, il introduisit une grille sur l'image du
premier animal et déforma cette grille pour faire coïncider l'image du premier animal
sur le second. Plus la grille doit être déformée, plus les espèces sont di�érents.

Figure 2.1: Comparison entre deux poissons.

Ce travail n'avait pas été écrit complètement mathématiquement, mais a inspiré
une nouvelle discipline : l'anatomie computationnelle [Grenander 1998] Cette dis-
cipline récente cherche à construire des statistiques sur des données avec un cadre
mathématique qui peuvent être implantées sur un ordinateur.

Il y a plusieurs raisons qui ont conduit au développement de cette nouvelle
discipline:

� L'augmentation de l'utilisation des images médicales en haute résolution.

� Le fait que ces images sont numérisées et puissent être transmises dans le
monde entier.

� L'augmentation de la capacité de calcul des ordinateurs.

� Le développement d'outils et de théories mathématiques, par exemple la
théorie des espaces de formes [Kendall 1989].

L'anatomie computationelle pourrait être utilisée pour prédire l'apparition de
maladies. Par exemple, on peut imaginer utiliser ce modèle de déformation pour
comparer un nouveau patient avec un patient connu. Cependant, ce patient connu
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est singulier, il peut ne pas être représentatif de la population. Ceci pourrait bi-
aiser l'étude. De plus, un docteur ne compare jamais un nouveau patient avec un
ancien. Il compare plutôt ce patient avec tous les patients précédents qui parta-
gent la même maladie. Calculer le patient moyen (dans cette thèse on utilisera le
mot template) nous permettrait de faire mimer le processus mental qu'e�ectue le
médecin. Ceci nous conduit à étudier les statistiques en anatomie computationnelle,
et en particulier l'estimation de ce template.

2.2 Statistique en anatomie computationnelle

Lorsqu'on a des données comme des images d'organes, on veut e�ectuer des statis-
tiques sur ces données. On peut séparer cette analyse en plusieurs niveaux :

� Étant donné deux éléments (par exemple deux images médicales), on peut es-
timer la déformation qui permet de faire coller la première image à la seconde.
Cette étape, appelée �recalage�, formalise l'idée de D'Arcy Thompson. L'un
des champs de recherche est de construire des groupes de déformations pour
recaler ces éléments [Trouvé 1995, Miller 2006].

� Si on est capable d'e�ectuer la première étape, alors on peut estimer la
moyenne des images. À cause des déformations, les données n'appartiennent
plus à un espace euclidien, cependant on peut généraliser la notion de moyenne
avec la moyenne de Fréchet [Fréchet 1948]. Ainsi, on obtient un élément qui
est représentatif de notre population [Guimond 2000, Joshi 2004]. Cet élément
peut être appelé de di�érentes façons : template, prototype, patient virtuel
etc. Dans toute cette thèse, on utilisera le mot template. Cette estimation
peut être e�ectuée avec la méthode LDDMM [Beg 2005] ou avec l'algorithme
des Démons [Thirion 1998, Vercauteren 2009, Lombaert 2013].

� Dans la pratique, on obtient le template, et les déformations entre le template
et chacune des images [Durrleman 2014, Durrleman 2013, Allassonnière 2015].
L'ensemble formé par le template et ces déformations est appeléatlas.

� L'estimation de template peut être une étape utile, mais elle n'explique
pas la variabilité des données. Ainsi, Principal Composant Analy-
sis [Huckemann 2010, Seiler 2012] (PCA) ouPrincipal Geodesic Analy-
sis [Fletcher 2003, Fletcher 2004, Sommer 2010, Sommer 2014] (PGA), les es-
paces barycentriques [Pennec 2016, Rohé 2016] etc. peuvent être développés
pour estimer les directions qui expliquent le mieux les données.

Dans cette thèse, nous nous concentrons sur l'estimation de template (le second
niveau dans la liste ci-dessus). Un des buts de cette thèse est d'étudier la consistance
de l'algorithme de minimisation utilisé pour estimer le template. On prouve que
cette méthode n'est pas consistante. Cela veut dire que, même avec la distribution
entière (et non un échantillon), on ne trouve pas le template originel dès que du
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bruit a été ajouté. De plus, on cherche aussi à estimer l'erreur entre le template
originel et le template estimé.

2.3 Cadre géométrique pour l'estimation de template

2.3.1 Distance dans le quotient

Soit pM; dM q un espace métrique, on suppose queG est un groupe qui agit surM .
On suppose que la distancedM est invariante par l'action de groupe, cela veut dire
que :

@g PG @m; n PM dM pg � m; g � nq � dM pm; nq

Dans ce cas, on peut dé�nir une pseudo distance dans le quotientQ � M {G :

dQpras; rbsq � inf
gPG

dM pa; g � bq

Remarque 2.1. Pour tout a, b P M , dQpras; rbsq ¤ dM pa; bq. De plus, si a et b
sont en position générique, on a:1

dQpras; rbsq   dM pa; bq:

Lorsqu'on est dans un quotient, l'estimation de la moyenne par la moyenne
empirique ne s'applique pas. Cependant on peut utiliser la moyenne de Fréchet.

2.3.2 Moyenne de Fréchet dans les espaces de Hilbert

Soit M un espace de Hilbert et soitZ une variable aléatoire dansM telle que
Ep}Z }2q   �8 . On dé�nit la variance comme l'application E : M Ñ R� dé�nie par
Epmq � Ep}Z � m}2. On appelle moyenne de Fréchet l'ensemble des minimiseurs
globaux deE. La moyenne de Fréchet empirique est dé�nie comme les minimiseurs

globaux de la variance empiriqueEn : M Ñ R� avecEnpmq � 1
n

n°

i � 1
}Z i � m}2 pour

Z1; : : : ; Zn n observations deZ . La proposition suivante établit que la moyenne de
Fréchet deZ est l'espérance deZ :

Proposition 2.1. Soit M un espace de Hilbert, etdM la distance donnée par la
norme euclidienne. Soit Z une variable aléatoire telle queEp}Z }2q   �8 , alors
m ÞÑEpmq � Ep}Z � m}2q est bien dé�nie et m minimise E si et seulement si
m � EpZ q.

On obtient le même résultat avec les moyennes de Fréchet dans les espaces de

Hilbert, la moyenne de Fréchet empirique deZ étant 1
n

n°

i � 1
Z i .

Comme dit précédemment, nous voulons e�ectuer des statistiques sur des don-
nées qui ne vivent pas dans un espace vectoriel mais plutôt dans un espace métrique.
On généralise donc la notion de moyenne de Fréchet dans les espaces métriques.

1Cette remarque peut sembler innocente, mais en fait c'est ce fait là qui conduit à l'inconsistance.
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2.3.3 Moyenne de Fréchet dans les espaces métriques

De�nition 2.1. Soit pM; dM q un espace métrique. SoitZ une variable aléatoire
dans M , telle que pour toutm P M EpdM pZ; mq2q   �8 , alors on peut dé�nir la
variance deZ en tout point m PM par :

Epmq � Epd2
M pZ; mqq

On dit que m est une moyenne de Fréchet deZ si m minimise E. De même, pour
un échantillon Z1; : : : ; Zn un échantillon deZ , on dé�nit la variance empirique de
Z au point m par :

Enpmq �
1
n

n¸

i � 1

Epd2
M pZ i ; mqq

On dit que mn est une moyenne de Fréchet empirique deZ si mn minimise En .
Un élément minimisant localementE (respectivementEn ) est appelé moyenne de
Karcher (respectivement moyenne de Karcher locale).

Proposition 2.2. Soit pM; dM q un espaces métrique. SiZ est une variable aléa-
toire dans M telle qu'il existe mN P M telle queEpdM pZ; m0q2q   �8 , alors pour
tout m, la variance au point m - Epmq � EpdM pZ; mq2q est bien dé�nie, de plusE
est une application continue.

Pour trouver les minima locaux/globaux de la variance, on peut montrer que
lorsqueM est une variété Riemannienne complète et si le lieu de coupure est un en-
semble de mesure nulle, alors la variance est di�érentiable et on peut calculer son gra-
dient (voir [Pennec 2006] par exemple, ce résultat sera aussi prouvé au lemme 3.9).
Comme ce sont minima globaux/locaux les moyennes de Fréchet/Karcher sont les
points critiques de la variance. Cela conduit, dans [Émery 1991], à la dé�nition
suivante :

De�nition 2.2. Soit M une variété Riemannienne complète. SoitZ une variable
aléatoire dansM telle queEpdM pZ; m0q2q   �8 pour un certain m0 P M . On dit
quem est barycentre exponentiel siPpZ PCpmqq � 0 et si :

r Epmq � � 2EpLogm pZ qq � 0

Dans cette thèse, on va étudier la moyenne de Fréchet dans les espaces quotients.
Cela signi�e que l'on va utiliser la distancedQ dé�nie précédemment pour dé�nir la
moyenne de Fréchet dans les espaces quotients.

Dans les espaces métriques (y compris les variétés), l'existence ou l'unicité n'est
pas garantie. Par conséquent, l'existence ou l'unicité de la moyenne de Fréchet
est souvient étudiée avec des résultats intéressants par exemple [Karcher 1977,
Kendall 1990, Afsari 2011, Arnaudon 2005, Arnaudon 2014, Charlier 2013]. Ces
résultats sont souvent prouvés dans le cas des variétés. De plus, une fois que
l'existence est assurée, on peut développer des méthodes pour estimer la moyenne
de Fréchet [Le 2004].
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De même, on peut étudier la convergence de la moyenne de Fréchet em-
pirique [Ziezold 1977] (dans le cas des espaces métriques). On peut aussi évaluer la
vitesse de convergence [Bhattacharya 2008, Bhattacharya 2003, Bhattacharya 2005]
avec des théorèmes central limite dans le cas des variétés ou dans le cas des espaces
quotients [Huckemann 2011].

Dans toute cette thèse, on s'intéresse aux espaces quotients de dimension �nie ou
in�nie, ainsi on ne peut pas utiliser la plupart de ces résultats (excepté un résultat
comme celui de [Ziezold 1977] par exemple).

2.4 Estimation de template dans cette thèse et dans
d'autres travaux

La consistance a d'abord été étudiée dans le cas particulier des moyennes de Pro-
custe : La moyenne de Procuste est la moyenne des données quand les rotations,
translations (et parfois les homothéties) ont été enlevées [Lele 1993, Kent 1997,
Le 1998, Huckemann 2011]. Le [Le 1998] a remarqué que les moyennes de Pro-
custe sont reliées aux moyennes de Fréchet. Cependant il n'y a pas de contradiction
entre ce travail et par exemple l'article [Kent 1997]. En e�et, [Kent 1997] montre la
consistance quand le paramètre d'homothétie a été pris en compte. Dans ce travail,
on étudiera souvent les actions isométriques, ce qui exclut les homothéties.

Bigot et Charlier [Bigot 2011] ont étudié la question de l'estimation de tem-
plate avec un échantillon de taille �ni dans les cas des signaux/images translatés en
fournissant une minoration du biais de consistance. Cette minoration n'était mal-
heureusement pas assez informative car elle convergeait vers zéro quand la dimension
de l'espace tend vers plus l'in�ni.

Miolane [Miolane 2017] a expliqué de façon générale pourquoi le template était
aussi mal estimé lorsque la distance est invariante sous l'action de groupe grâce à
une interprétation géométrique. Elle a montré que la courbure externe de l'orbite
du template cause l'inconsistance. Ce résulat a été quanti�é avec un bruit gaussien
dans des variétés.

Dans cette thèse, on étudie l'estimation de template par le calcul de la
moyenne de Fréchet dans l'espace quotient de la variable aléatoire observable.
Notre thèse est que cette estimation n'est pas consistante. Cela veut dire que
le template n'est généralement pas une moyenne de Fréchet de la variable aléa-
toire observable projetée dans l'espace quotient. On appelle biais de consis-
tance la distance entre le template et les moyennes de Fréchet. Contrairement
à [Lele 1993, Kent 1997, Le 1998, Huckemann 2011, Bigot 2011, Huckemann 2012],
on étudie l'estimation de template avec une action de groupe abstraite. Par con-
séquent on utilise un cadre général, décrit par exemple dans [Huckemann 2010].
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2.5 Organisation du manuscrit

� Dans le chapitre 3, on établit des théorèmes qui prouvent le biais dans le cas
d'actions isométriques dans les espaces de Hilbert. Ce travail a été partielle-
ment présenté dans le workshopMathematical Foundations of Computational
Anatomy [Allassonnière 2015], puis publié dans la revueSIAM imaging sci-
ence [Devilliers 2017c].

� Dans le chapitre 4, on établit un comportement asymptotique du biais de con-
sistance dans le cas d'une action isométrique dans un espace de Hilbert. De
plus, la méthode utilisée permet de prouver l'inconsistance lorsque l'action
est non isométrique, en e�et on prouve dans ce chapitre l'inconsistance dès
lors que le niveau de bruit et su�samment grand. Ce travail a été par-
tiellement publié dans la conférenceInformation Processing in Medical Imag-
ing [Devilliers 2017a] et étendu dans la revueEntropy [Devilliers 2017b].

� Dans le chapitre 5, on tente de généraliser l'étude déjà faite. On trouve une
formule implicite de la moyenne de Fréchet dans les espaces quotients qu'on
utilise pour faire de nouvelles preuves de l'inconsistance. Dans ce chapitre, on
se restreint à l'estimation � backward�. On prouve notamment que la moyenne
de Fréchet dans l'espace quotient est plus bruitée que le template originel.
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A short version of this chapter has been presented in a work-
shop [Allassonnière 2015], then has been extended in theSIAM imaging sciences
journal [Devilliers 2017c]. Note that, comparing to this journal paper, we add
section 3.4.7 proving that the variance in the quotient space is not di�erentiable
everywhere.

Abstract: In this chapter, we study the consistency of the template estimation
with the Fréchet mean in quotient spaces. The Fréchet mean in quotient spaces is
often used when the observations are deformed or transformed by a group action.
We show that in most cases this estimator is actually inconsistent. We exhibit
a su�cient condition for this inconsistency, which amounts to the folding of the
distribution of the noisy template when it is projected to the quotient space. This
condition appears to be ful�lled as soon as the support of the noise is large enough.
To quantify this inconsistency we provide lower and upper bounds of the bias as a
function of the variability (the noise level). This shows that the consistency bias
cannot be neglected when the variability increases.

3.1 Introduction

In Kendall's shape space theory [Kendall 1989], in computational
anatomy [Grenander 1998], in statistics on signals, or in image analysis, one
often aims at estimating a template. A template stands for a prototype of the data.
The data can be the shape of an organ studied in a population [Durrleman 2014]
or an aircraft [Lefebvre 2012], an electrical signal of the human body, a MR
image, etc. To analyze the observations, one assumes that these data follow
a statistical model. One often models observations as random deformations of
the template with additional noise. This deformable template model proposed
in [Grenander 1998] is commonly used in computational anatomy. The concept of
deformation introduces the notion of group action: the deformations we consider
are elements of a group which acts on the space of observations, called here the
ambient space (also called top space). Since the deformations are unknown, one
usually considers equivalent classes of observations under the group action. In
other words, one considers the quotient space of the ambient space (or top space)
by the group. In this particular setting, the template estimation is most of the
time based on the minimization of the empirical variance in the quotient space
(for instance, [Kurtek 2011b, Joshi 2004, Sabuncu 2008] among many others).
The points that minimize the empirical variance are called the empirical Fréchet
mean. The Fréchet means introduced in [Fréchet 1948] is comprised of the elements
minimizing the variance. This generalizes the notion of expected value in nonlinear
spaces. Note that the existence or uniqueness of Fréchet mean is not ensured. But
su�cient conditions may be given in order to reach existence and uniqueness (for
instance, [Karcher 1977, Kendall 1990]).

Several group actions are used in practice: some signals can be shifted in time
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compared to other signals (action of horizontal translations [Hitziger 2013]), land-
marks can be transformed rigidly [Kendall 1989], shapes can be deformed by di�eo-
morphisms [Durrleman 2014], etc. In this paper we restrict to transformation which
leads the norm unchanged. Rotations, for instance, leave the norm unchanged, but
it may seem restrictive. In fact, the square root trick detailed in section 3.5, al-
lows one to build norms which are unchanged, for instance, by reparametrization of
curves with a di�eomorphism, where our work can be applied.

We raise several issues concerning the estimation of the template.

1. Is the Fréchet mean in the quotient space equal to the original template pro-
jected in the quotient space? In other words, is the template estimation with
the Fréchet mean in quotient space consistent?

2. If there is an inconsistency, how large is the consistency bias? Indeed, we may
expect the consistency bias to be negligible in many practicable cases.

3. If one gets only a �nite sample, one can only estimate the empirical Fréchet
mean. How far is the empirical Fréchet mean from the original template?

These issues originated from an example exhibited by Allassonnière, Amit, and
Trouvé [Allassonnière 2007]: they took a step function as a template and added
some noise and shifted in time this function. By repeating this process they created
a data sample from this template. With this data sample, they tried to estimate the
template with the empirical Fréchet mean in the quotient space. In this example,
minimizing the empirical variance did not succeed in estimating well the template
when the noise added to the template increases, even with a large sample size.

One solution to ensure convergence to the template is to replace this esti-
mation method with a Bayesian paradigm ([Allassonnière 2010, Bontemps 2014]
or [Zhang 2013]). But there is a need to have a better understanding of the failure
of the template estimation with the Fréchet mean. One can studied the incon-
sistency of the template estimation. Bigot and Charlier [Bigot 2011] �rst stud-
ied the question of the template estimation with a �nite sample in the case of
translated signals or images by providing a lower bound of the consistency bias.
This lower bound was unfortunately not so informative as it is converging to zero
asymptotically when the dimension of the space tends to in�nity. Miolane and co-
authors [Miolane 2015, Miolane 2017] later provided a more general explanation of
why the template is badly estimated for a general group action thanks to a geometric
interpretation. They showed that the external curvature of the orbits is responsible
for the inconsistency. This result was further quanti�ed with Gaussian noise. In this
chapter, we provide su�cient conditions on the noise for which inconsistency ap-
pears, and we quantify the consistency bias in the general (non necessarily Gaussian)
case. Moreover, we mostly consider a vector space (possibly in�nite dimensional) as
the ambient space while the article of Miolane and co-authors is restricted to �nite
dimensional manifolds.

This chapter is organized as follows. Section 3.2 details the mathematical terms
that we use and the generative model. In sections 3.3 and 3.4, we exhibit a su�cient
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condition that lead to an inconsistency when the template is not a �xed point under
the group action. This su�cient condition can be roughly understand as follows:
with a non zero probability, the projection of the random variable on the orbit of
the template is di�erent from the template itself. This condition is actually quite
general. In particular, this condition it is always ful�lled with the Gaussian noise
or with any noise whose support is the whole space. Moreover we quantify the
consistency bias with lower and upper bounds. We restrict our study to Hilbert
spaces and isometric actions. This means that the space is linear, the group acts
linearly and leaves the norm (or the dot product) unchanged. Section 3.3 is dedicated
to �nite groups. Then we generalise our result in section 3.4 to non-�nite groups.
To complete this study, we extend in section 3.5 the result when the template is a
�xed point under the group action and when the ambient space is a manifold. As
a result we show that the inconsistency exists for almost all noises. Although the
bias can be neglected when the noise level is su�ciently small, its linear asymptotic
behaviour with respect to the noise level show that it becomes unavoidable for large
noises.

3.2 De�nitions, notation and generative model

We denote by M the ambient space, which is the image/shape space, andG the
group acting on M . The action is a map:

G � M Ñ M
pg; mq ÞÑ g � m

;

satisfying the following properties: for all g; g1 P G, m P M pgg1q �m � g � pg1 � mq
and eG � m � m where eG is the neutral element ofG. For m P M we note by rms
the orbit of m (or the class ofm). This is the set of points reachable fromm under
the group action: rms � t g � m; g PGu. Note that if we take two orbits rms and rns
there are two possibilities:

1. The orbits are equal: rms � r ns i.e. Dg PG s.t. n � g � m.

2. The orbits have an empty intersection: rms X rns � H .

We call quotient of M by the group G the set all orbits. This quotient is noted by:

Q � M {G � tr ms; m PM u:

The orbit of an element m PM can be seen as the subset ofM of all elementsg � m
for g PG or as a point in the quotient space. In this chapter we use these two ways.
We project an elementm of the ambient spaceM into the quotient by taking rms.

Now we are interested in adding a structure on the quotient from an existing
structure in the ambient space: takeM a metric space, withdM its distance. Sup-
pose that dM is invariant under the group action which means that:

@g PG; @a; bPM dM pa; bq � dM pg � a; g � bq:
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Then we obtain a pseudo-distance onQ de�ned by:

dQpras; rbsq � inf
gPG

dM pg � a; bq: (3.1)

We remind that a distance on M is a map dM : M � M ÞÑR� such that for all
m; n; p PM the following hold:

1. dM pm; nq � dM pn; mq (symmetry).

2. dM pm; nq ¤ dM pm; pq � dM pp; nq (triangular inequality).

3. dM pm; mq � 0.

4. dM pm; nq � 0 ðñ m � n.

A pseudo-distance satis�es only the �rst three conditions. If we suppose that all
the orbits are closed sets ofM , then one can show thatdQ is a distance. In this
chapter, we assume thatdQ is always a distance, even if a pseudo-distance would be
su�cient. dQpras; rbsqcan be interpreted as the distance between the shapesa and
b, once one has removed the parametrisation by the groupG. In other words, a and
b have been registered. In this chapter, except in section 3.5, we suppose that the
the group acts isometrically on a Hilbert space, this means that the mapx ÞÑg� x is
linear, and that the norm associated to the dot product is conserved:}g � x} � } x}.
Then dM pa; bq � } a � b} is a particular case of invariant distance.

We now introducethe generative modelused in this chapter forM a vector space.
Let us take a template t0 P M to which we add a unbiased noise" : X � t0 � " .
Finally we transform X with a random shift � of G. We assume that this variable
� is independent ofX and the only observed variable is:

Y � � � X � � � pt0 � "q; with Ep"q � 0; (3.2)

while � , X and " are hidden variables.
Note that it is not the generative model de�ned by Grenander and often used in

computational anatomy. Where the observed variable is ratherY 1 � � � t0 � "1. But
when the noise is isotropic and the action is isometric, one can show that the two
models have the same law, since� � " and " have the same probability distribution.
As a consequence, the inconsistency of the template estimation with the Fréchet
mean in quotient space with one model implies the inconsistency with the other
model. Because the former model (3.2) leads to simpler computation we consider
only this model.

We can now set the inverse problem: given the observationY , how to estimate
the template t0 in M ? This is an ill-posed problem. Indeed for some element group
g PG, the template t0 can be replaced by the translatedg � t0, the shift � by � g� 1

and the noise " by g � " , which leads to the same observationY . So instead of
estimating the template t0, we estimate its orbit rt0s. By projecting the observation
Y in the quotient space we obtainrYs. Although the observation Y � � � X and
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the noisy template X are di�erent random variables in the ambient space, their
projections on the quotient space lead to the same random orbitrYs � r X s. That
is why we consider the generative model (3.2): the projection in the quotient space
remove the transformation of the groupG. From now on, we use the random orbit
rX s in lieu of the random orbit of the observation rYs.

The variance of the random orbit rX s (sometimes called the Fréchet functional
or the energy function) at the quotient point rms PQ is the expected value of the
square distance betweenrms and the random orbit rX s, namely:

Q Q rms ÞÑEpdQprms; rX sq2q (3.3)

An orbit rms PQ which minimizes this map is called a Fréchet mean ofrX s.
If we have ani.i.d sample of observationsY1; : : : ; Yn we can write the empirical

quotient variance:

Q Q rms ÞÑ
1
n

n¸

i � 1

dQprms; rYi sq2 �
1
n

n¸

i � 1

inf
gi PG

}m � gi � Yi }2: (3.4)

Thanks to the equality of the quotient variables rX s and rYs, an element which
minimises this map is anempirical Fréchet mean of rX s.

In order to minimize the empirical quotient variance (3.4), the max-max algo-

rithm 1 alternatively minimizes the function J pm; pgi qi q � 1
n

n°

i � 1
}m � gi � Yi }2 over a

point m of the orbit rms and over the hidden transformation pgi q1¤ i ¤ n PGn .
With these notations we can reformulate our questions as follows:

1. Is the orbit of the template rt0s a minimiser of the quotient variance de�ned
in (3.3)? If not, the Fréchet mean in quotient space is an inconsistent estimator
of rt0s.

2. In this last case, can we quantify the quotient distance betweenrt0s and a
Fréchet mean ofrX s?

3. Can we quantify the distance betweenrt0s and an empirical Fréchet mean of
a n-sample?

This chapter shows that the answer to the �rst question is usually "no" in the
framework of a Hilbert spaceM on which a groupG acts linearly and isometrically.
The only exception is theorem 3.6 where the ambient spaceM is a manifold. In
order to prove inconsistency, an important notion in this framework is the isotropy
group of a point m in the ambient space. This is the subgroup which leaves this
point unchanged:

Isopmq � t g PG; g � m � mu:

We start in section 3.3 with the simple example where the group is �nite and the
isotropy group of the template is reduced to the identity element (Isopt0q � t eGu, in

1The term max-max algorithm is used for instance in [Allassonnière 2007], and we prefer to
keep the same name, even if it is a minimization.
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this caset0 is called a regular point). We turn in section 3.4 to the case of a general
group and an isotropy group of the template which does not cover the whole group
(Isopt0q � G) i.e t0 is not a �xed point under the group action. To complete the
analysis, we assume in section 3.5 that the templatet0 is a �xed point which means
that Isopt0q � G.

In sections 3.3 and 3.4 we show lower and upper bounds of the consistency
bias which we de�ne as the quotient distance between the template orbit and the
Fréchet mean in quotient space. These results give an answer to the second question.
In section 3.4, we show a lower bound for the case of the empirical Fréchet mean
which answers to the third question.

As we deal with di�erent notions whose name or de�nition may seem similar,
we use the following vocabulary:

1. The variance of the noisy templateX in the ambient space is the function
E : m PM ÞÑEp}m� X }2q. The unique element which minimises this function
is the Fréchet mean ofX in the ambient space. With our assumptions it is
the template t0 itself.

2. We call variability (or noise level) of the template the value of the variance at
this minimum: � 2 � Ep}t0 � X }2q � Ept0q.

3. The variance of the random orbit rX s in the quotient space is the function
F : m ÞÑEpdQprms; rX sq2q. Notice that we de�ne this function from the
ambient space and not from the quotient space. With this de�nition, an orbit
rm� s is a Fréchet mean ofrX s if the point m� is a global minimiser ofF .

In sections 3.3 and 3.4, we exhibit a su�cient condition for the inconsistency,
which is: the noisy templateX takes value with a non zero probability in the set of
points which are strictly closer to g � t0 for someg P G than the template t0 itself.
This is linked to the folding of the distribution of the noisy template when it is
projected to the quotient space. The points for which the distance to the template
orbit in the quotient space is equal to the distance to the template in the ambient
space are projected without being folded. If the support of the distribution of the
noisy template contains folded points (we only assume that the probability measure
of X , noted P, is a regular measure), then there is inconsistency. The support of
the noisy template X is de�ned by the set of points x such that PpX PB px; r qq ¡ 0
for all r ¡ 0. For di�erent geometries of the orbit of the template, we show that
this condition is ful�lled as soon as the support of the noise is large enough.

The recent article of Cleveland et al. [Cleveland 2016] may seem contradictory
with our current work. Indeed the consistency of the template estimation with the
Fréchet mean in quotient space is proved under hypotheses which seem to satisfy
our framework: the norm is unchanged under their group action (isometric action)
and a noise is present in their generative model. However we believe that the noise
they consider might actually not be measurable. Indeed, their ambient space is:

L 2pr0; 1sq �
"

f : r0; 1s Ñ R such that f is measurable and
» 1

0
f 2ptqdt   �8

*
:
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The noisee is supposed to be inL 2pr0; 1sqsuch that for all t; s P r0; 1s, Epeptqq � 0
and Epeptqepsqq � � 21s� t , for � ¡ 0. This means that eptq and epsq are chosen
without correlation as soon ass � t. In this case, it is not clear for us that the
resulting function e is measurable, and thus that its Lebesgue integration makes
sense. Thus, the existence of such a random process should be established before
we can fairly compare the results of both works. Furthermore, no discrete version
of their theorem is given.

3.3 Study of consistency for �nite group

In this section, we consider a �nite group G acting isometrically and e�ectively
on M � Rn a �nite dimensional space equipped with the euclidean norm} } ,
associated to the dot productx ; y.

We say that the action is e�ective if x ÞÑg � x is the identity map if and only if
g � eG. Note that if the action is not e�ective, we can de�ne a new e�ective action
by simply quotienting G by the subgroup of the elementg P G such that x ÞÑg � x
is the identity map.

The template is assumed to be a regular point which means that the isotropy
group of the template is reduced to the neutral element ofG. Note that the measure
of singular points (the points which are not regular) is a null set for the Lebesgue
measure (see item 1 in section 3.3.2).

Example 3.1. The action of horizontal translation: this action is a simpli�ed set-
ting for image registration, where images can be obtained by the translation of one
scan to another due to di�erent poses. More precisely, we take the vector space
M � RT where G � T � p Z{N ZqD is the �nite torus in D-dimension. An element
of RT is seen as a functionm : T Ñ R, where mp� q is the grey value at pixel� .
When D � 1, m can be seen like a discretised signal withN points, when D � 2,
we can seem like an image withN � N pixels etc. We then de�ne the group action
of T on RT by:

� PT; m PRT � � m : x ÞÑmpx � � q:

This group acts isometrically and e�ectively onM � RT .

In this setting, if Ep}X }2q   �8 then the variance of rX s is well de�ned:

F : m PM ÞÑEpdQprX s; rmsq2q: (3.5)

In this framework, F is non-negative and continuous. Then we can prove the exis-
tence of the Fréchet mean in the quotient space:

Proposition 3.1. Let G be a group acting isometrically onM an Euclidean space,
then F has a minimizer.

Proof. Thanks to Cauchy-Schwarz inequality we have:

lim
}m}Ñ8

F pmq ¥ lim
}m}Ñ8

}m}2 � 2}m}Ep}X }q � Ep}X }2q � �8 :
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Thus for someR ¡ 0 we have: for all m P M if }m} ¡ R then F pmq ¥ F p0q � 1.
The closed ballB p0; Rq is a compact set (becauseM is a �nite vector space) then F
restricted to this ball reaches its minimum at some pointm� (sinceF is continuous).
Then for all m PM , we have:

If }m} ¤ R then F pmq ¥ F pm� q

If }m} ¡ R then F pmq ¥ F p0q � 1 ¡ F p0q ¥ F pm� q

Therefore rm� s is a Fréchet mean ofrX s in the quotient Q � M {G. �

Note that this ensure the existence of the Fréchet mean in quotient spaces but
not its uniqueness.

In this section, we show that as soon as the support of the distribution ofX
is big enough, the orbit of the template is not a Fréchet mean ofrX s. We provide
an upper bound of the consistency bias depending on the variability ofX and an
example of computation of this consistency bias.

3.3.1 Presence of inconsistency

0 t0

g � t0

g1� t0

Conept0q

Figure 3.1: Planar representation of a part of the orbit of the template t0. The
lines are the hyperplanes whose points are equally distant of two distinct elements
of the orbit of t0, Conept0q represented in points is the set of points closer fromt0

than any other points in the orbit of t0. Theorem 3.1 states that if the support (the
dotted disk) of the random variable X is not included in this cone, then there is an
inconsistency.

The following theorem gives a su�cient condition on the random variable X for
an inconsistency:

Theorem 3.1. Let G be a �nite group acting on M � Rn isometrically and ef-
fectively. Assume that the random variableX is absolutely continuous with respect
to the Lebesgue's measure, withEp}X }2q   �8 . We assume thatt0 � EpX q is a
regular point.
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We de�ne Conept0q as the set of points closer fromt0 than any other points of
the orbit rt0s, see �gure 3.1 or item 6 in section 3.3.2 for a formal de�nition.

In other words, Conept0q is de�ned as the set of points already registered witht0.
Suppose that:

PpX RConept0qq ¡ 0; (3.6)

then rt0s is not a Fréchet mean ofrX s.

Because the action is isometric, this set is really a cone (this point is proved in
section 3.3.2), this justi�es the name. Note that is the Voronoï cell associated to the
template. The Voronoï cells have been de�ned and used by Voronoï [Voronoi 1908]
and Dirichlet [Dirichlet 1850].

The proof of theorem 3.1 is based on two steps: �rst, di�erentiating the variance
F of rX s. Second, showing that the gradient at the template is not zero, therefore
the template can not be a minimum ofF . Theorem 3.2 makes the �rst step.

Theorem 3.2. The variance F of rX s is di�erentiable at any regular points. For
m0 a regular point, we de�ne gpx; m0q as the almost uniqueg P G minimizing
}m0 � g � x} (in other words, gpx; m0q �x P Conepm0q). This allows us to compute
the gradient of F at m0:

r F pm0q � 2pm0 � EpgpX; m 0q �X qq: (3.7)

Remark 3.1. It may seem that it is not obvious thatgpX; m 0q �X is measurable.
This is a natural requirement before taking the expected value. However,x ÞÑm0 �
gpX; m 0q � X is nothing else that the gradient of a measurable and di�erentiable
function which is m0 ÞÑd2

QprX s; rm0sq (if we admit theorem 3.2). Therefore its
measurability is obvious. In chapter 5, the group will be no longer �nite, and the
measurability will become an issue, which will be discussed.

This Theorem is proved in section 3.3.2. Then we show that the gradient ofF at
t0 is not zero. To ensure thatF is di�erentiable at t0 we suppose in the assumptions
of theorem 3.1 that t0 � EpX q is a regular point. Thanks to theorem 3.2 we have:

r F pt0q � 2pt0 � EpgpX; t 0q �X qq:

Therefore r F pt0q{2 is the di�erence between two terms, which are represented
on �gure 3.2: on �gure 3.2a there is a mass under the two hyperplanes outside
Conept0q, so this mass is nearer fromg � t0 for someg P G than from t0. In the fol-
lowing expressionZ � EpgpX; t 0q �X q, for X RConept0q, gpX; t 0qX PConept0qsuch
points are represented in red (grid-line) on �gure 3.2, (in this case, we say thatX is
folded). This suggests that the pointZ � EpgpX; t 0q�X qwhich is the mean of points
in Conept0q is further away from 0 than t0. Then r F pt0q{2 � t0 � Z should be not
zero, andt0 � EpX q is not a critical point of the variance of rX s. As a conclusion
rt0sis not a Fréchet mean ofrX s. This is turned into a rigorous proof in section 3.3.3.
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0 t0

g � t0

g1� t0

Conept0q

(a) Graphic representation of the tem-
plate t0 � EpX q mean of points of the
support of X .

0 t0
Z

g � t0

g1� t0

Conept0q

(b) Graphic representation of Z �
EpgpX; t 0q � X q. The points X which
were outside Conept0q are now in
Conept0q (thanks to gpX; t 0q). This
part, in grid-line, represents the points
which have been folded.

Figure 3.2: Z is the mean of points in Conept0q where Conept0q is the set of points
closer fromt0 than g � t0 for g P GzeG. Therefore it seems thatZ is higher that t0,
therefore r F pt0q � 2pt0 � Z q � 0.

Note also that theorem 3.2 gives a criteria of the Fréchet means ofrX s; if rm� s
is a Fréchet mean ofrX s there are two cases:m� is not a regular point or

m� � EpgpX; m � q �X q: (3.8)

In the proof of theorem 3.1, we tookM an Euclidean space and we work with
the Lebesgue's measure in order to havePpX P H q � 0 for every hyperplaneH .
Therefore the proof of theorem 3.1 can be extended immediately to any Hilbert
spaceM , if we make now the assumption thatPpX P H q � 0 for every hyperplane
H , as long as we keep a �nite group acting isometrically and e�ectively onM .

Figure 3.2 illustrates the condition of theorem 3.1: if there is no mass beyond
the hyperplanes, then the two terms in r F pt0q are equal (because almost surely
gpX; t 0q �X � X ). Therefore in this case we haver F pt0q � 0. This does not prove
necessarily that there is no inconsistency, just that the templatet0 is a critical
point of F .

Moreover this �gure can give us an intuition on what the consistency bias (the
distance betweenrt0sand the set of all Fréchet mean in the quotient space) depends:
for t0 a �xed regular point, when the variability of X (de�ned by Ep}X � t0}2q)
increases the mass beyond the hyperplanes on �gure 3.2 also increases, the distance
between EpgpX; t 0q � X q and t0 (i.e. the norm of r F pt0q) augments. Therefore
q the Fréchet mean should be further fromt0, (because at this point one should
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have r F pqq � 0 or q is a singular point). Therefore the consistency bias appears
to increase with the variability of X . By establishing a lower and upper bound of
the consistency bias and by computing the consistency bias in a very simple case,
sections 3.3.5, 3.3.6, 3.4.3 and 3.4.4 investigate how far this hypothesis is true.

3.3.2 Proof of theorem 3.2: di�erentiation of the variance in the
quotient space

In order to show theorem 3.2 we proceed in three steps. First we see some following
properties and de�nitions which will be used. Most of these properties are the
consequences of the fact that the groupG is �nite. Then we show that the integrand
of F is di�erentiable. Finally we show that we can permute gradient and integral
signs.

1. The set of singular points in Rn , is a null set (for the Lebesgue's measure),
since it is equal to: ¤

g� eG

kerpx ÞÑg � x � xq;

a �nite union of proper linear subspaces ofRn thanks to the linearity and
e�ectively of the action and to the �nite group.

2. If m is regular, then for g; g1 two di�erent elements of G, we pose:

H pg � m; g1� mq � t x PRn ; }x � g � m} � } x � g1� m}u:

Moreover H pg � m; g1� mq � p g � m � g1� mqK is an hyperplane.

3. For m a regular point we de�ne the set of points which are equally distant
from two di�erent points of the orbit of m:

Am �
¤

g� g1

H pg � m; g1� mq:

Then Am is a null set. Form regular andx RAm the minimum in the de�nition
of the quotient distance :

dQprms; rxsq � min
gPG

}m � g � x}; (3.9)

is reached at a uniqueg PG, we call gpx; mq this unique element.

4. By expansion of the squared norm:g minimises }m � g � x} if and only if g
maximizesxm; g � xy.

5. If m is regular andx RAm then:

@g PGztgpx; mqu; }m � gpx; mq �x}   } m � g � x};
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by continuity of the norm and by the fact that G is a �nite group, we can �nd
� ¡ 0, such that for � PB pm; � q and y PB px; � q:

@g PGztgpx; mqu }� � gpx; mq �y}   } � � g � y}:

Therefore for suchy and � we have:

gpx; mq � gpy; � q:

6. For m a regular point, we de�ne Conepmq the convex cone ofRn :

Conepmq � t x PRn { @g PG }x � m} ¤ } x � g � m}u (3.10)

� t x PRn { @g PG xm; xy ¥ xgm; xyu:

This is the intersection of |G| � 1 half-spaces (some of them could be equal):
each half space is delimited byH pm; gmqfor g � eG (see �gure 3.1). Conepmq
is the set of points whose projection onrms is m, (where the projection of one
point p on rms is one point g� m which minimizes the sett} p� g� m}; g PGu).

7. Taking a regular point m allows us to see the quotient. For every pointx PRn

we have: rxs
“

Conepmq � H , cardprxs
“

Conepmqq ¥ 2 if and only if x PAm .
The borders of the cone are ConepmqzInt pConepmqq � Conepmq X Am (we
denote by IntpAq the interior of a part A). Therefore Q � Rn {G can be seen
like Conepmq whose borders have been glued together.

The proof of theorem 3.2 is the consequence of the following lemmas. The �rst
lemma studies the di�erentiability of the integrand, and the second allows us to
permute gradient and integral sign. Let us denote byf the integrand of F :

@m; x PM f px; mq � min
gPG

}m � g � x}2: (3.11)

Thus we have: F pmq � Epf pX; m qq. The min of di�erentiable functions is not
necessarily di�erentiable, however we prove the following result:

Lemma 3.1. Let m0 be a regular point, if x RAm0 then m ÞÑf px; mq is di�eren-
tiable at m0, besides we have:

Bf
Bm

px; m0q � 2pm0 � gpx; m0q �xq (3.12)

Proof. If m0 is regular andx RAm0 then we know from the item 5 of the section 3.3.2
that gpx; m0q is locally constant. Therefore aroundm0, we have:

f px; mq � } m � gpx; m0q �x}2;

which can di�erentiate with respect to m at m0. This proves the lemma 3.1. �

Now we want to prove that we can permute the integral and the gradient sign.
The following lemma provides us a su�cient condition to permute integral and
di�erentiation signs thanks to the dominated convergence theorem:
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Lemma 3.2. For every m0 P M � Rn , we have the existence of an integrable
function 	 : M Ñ R� (for Pthe law of X ) such that:

@m PB pm0; 1q; @x PM |f px; m0q � f px; mq| ¤ } m � m0}	 pxq; (3.13)

where 	 pxq � 2}m0} � 1 � 2}x} +

Proof. For all g PG, m PM we have:

}g � x � m0}2 � } g � x � m}2 � x m � m0; 2g � x � p m0 � mqy

¤ } m � m0} � p} m0 � m} � } 2x}q

min
gPG

}g � x � m0}2 ¤ } m � m0} p}m0 � m} � } 2x}q � } g � x � m}2

min
gPG

}g � x � m0}2 ¤ } m � m0} p}m0 � m} � } 2x}q � min
gPG

}g � x � m}2

min
gPG

}g � x � m0}2 � min
gPG

}g � x � m}2 ¤ } m � m0} p2}m0} � } m � m0} � } 2x}q

By symmetry we get also the same control off px; mq � f px; m0q, then:

|f px; m0q � f px; mq| ¤ } m0 � m} p2}m0} � } m � m0} � } 2x}q (3.14)

The function 	 should depend onx or m0, but not on m. That is why we take only
m PB pm0; 1q, then we replace}m � m0} by 1 in (3.14), which concludes. �

3.3.3 Proof of theorem 3.1: the gradient is not zero at the template

To prove it, we suppose thatr F pt0q � 0, and we take the dot product with t0:

xr F pt0q; t0y � 2EpxX; t 0y � x gpX; t 0q �X; t 0yq � 0: (3.15)

The item 4 of px; mq ÞÑgpx; mq seen at section 3.3.2 leads to:

xX; t 0y � x gpX; t 0q �X; t 0y ¤ 0 almost surely.

So the expected value of a non-positive random variable is null. Then

xX; t 0y � x gpX; t 0q �X; t 0y � 0 almost surely

xX; t 0y � x gpX; t 0q �X; t 0y almost surely.

Then g � eG maximizes the dot product almost surely. Therefore (as we know that
gpX; t 0q is unique almost surely, sincet0 is regular):

gpX; t 0q � eG almost surely,

which is a contradiction with Equation (3.6).



54 Chapter 3. Inconsistency in Hilbert space for isometric action

t 0

g � t0

g1� t0

Conept0q

O

y
Conepyq

Figure 3.3: y ÞÑConepyq is continuous. When the support of theX is bounded and
included in the interior of Conept0q the hatched cone. Fory su�ciently close to the
template t0, the support of the X (the ball in red) is still included in Conepyq (in
grey), then F pyq � p Ep}X � y}2). Therefore in this case,rt0s is at least a Karcher
mean of rX s.

3.3.4 Study of consistency when the support of X is included in
the cone of the template

We can also wonder if the converse of theorem 3.1 is true: if the support is included
in Conept0q, is there consistency? We do not have a general answer to that. In
the simple example section 3.3.6 it happens that condition (3.6) is necessary and
su�cient. More generally the following proposition provides a partial converse:

Proposition 3.2. If the support of X is a compact set included in the interior of
Conept0q, then the orbit of the templatert0s is at least a Karcher mean ofrX s (a
Karcher mean is a local minimum of the variance).

Sketch of the proof: If the support ofX is a compact set included in the interior
of Conept0q then we know that X -almost surely: dQprX s; rt0sq � } X � t0}. Thus
the variance at t0 in the quotient space is equal to the variance att0 in the ambient
space. Now if we assume a sort of continuity of the cone (see �gure 3.3) fory in
a small neighbourhood oft0, the support of X is still included in the interior of
Conepyq. We still have dQprX s; rysq � } X � y} X -almost surely. In other words,
locally around t0, the variance in the quotient space is equal to the variance in the
ambient space. Moreover we know thatt0 � EpX q is the only global minimiser of
the variance of X : m ÞÑEp}m � X }2q � Epmq. Therefore t0 is a local minimum
of F the variance in the quotient space (since the two variances are locally equal).
Therefore rt0s is at least a Karcher mean ofrX s in this case.

However, our notion of continuity of the cone is too vague, therefore we give a
more rigorous proof based on the same idea:
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Proof. We know that we have SupportpX q € Conept0q and we want to show that:

D� ¡ 0s.t.@y PB pt0; r q SupportpX q € Conepyq (3.16)

Let us assume that equation (3.16) does not hold. In this case we have:

@n PN Dyn PB pt0;
1
n

q Dzn PSupportpX q and zn RConepynq

We have that pynqn converges tot0. As the support of " is assumed to be compact,
by extraction, without loss of generality we can assume thatzn converges toz. First
z P SupportpX q (because SupportpX q is a closed set. Now aszn RConepynq, there
exists gn PG such that xzn ; yn � gn � yny   0. As G is a �nite group, by extraction,
without loss of generality, we can assume thatpgnqn is a constant sequence. Then
we havexzn ; yn � gyny   0. By taking the limit, we have that xz; t0 � gt0y ¤ 0. As a
consequencez is not in the interior of the cone of the template. This is absurd, since
z P SupportpX q € Int pConept0qq. Therefore we have proved that equation (3.16)
holds. As a consequence,

@y PB pt0; � q; F pyq � Ep}X � y}2q ¥ Ep}X � t0}2q � F pt0q:

Lastly for � su�ciently small we have B pt0; � q € Conept0q. This proves that rt0s is
a minimum of the variance restricted to B prt0s; � q (the open ball in Q of center rt0s
and radius � ). This proves that rt0s is a Karcher mean ofrX s.

�

Can the template be a Fréchet mean instead of being only a Karcher mean?
The following simple example show that the template can be Karcher mean without
being a Fréchet mean.

Example 3.2. Let us take M � R2 the euclidean plane. G � t I 2; � I 2u acts
isometrically on M . On this example, the quotient distance isdQpras; rbsq �
minp}a � b}; }a � b}q. Let us take A and B two points, let X a random variable
such that PpX � Aq � PpX � B q � 1

2 . Then X � t0 � " , where t0 � A� B
2 , and " is

a noise such thatEp"q � 0.
Now, all we have to do is to chose wiselyA and B . We proposeA � p 1; 2:7q

and B � p 1; 0:7q then t0 � p 1; 1q, A, B are inside the interior of Conept0q, (here
Conept0q � t x PR2; s.t. xx; t 0y ¥ 0u). The variance in the quotient space is de�ned
by:

F pmq �
1
2

�
minp}m � A}2; }m � A}2q � minp}m � B }2; }m � B }2q

�

On this example it easy to verify that2 � F pA� B
2 q   F pt0q � 2:89. And the Fréchet

mean of rX s is exactly rm� s � r A� B
2 s. Therefore it is possible that the template

estimation is inconsistent even if the random variableX is included into the cone
of the template.
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Figure 3.4: Representation of the templatet0, A, B , in gray the cone oft0.

3.3.5 Upper bound of the consistency bias

In this Subsection we show an explicit upper bound of the consistency bias.

Theorem 3.3. When G is a �nite group acting isometrically on M � Rn , we denote
|G| the cardinal of the groupG. If X is Gaussian vector: X � N pt0; w2Id Rn q, and
m� Pargmin F , then we have the upper bound of the consistency bias:

dQprt0s; rm� sq ¤ w
a

8 lnp|G|q: (3.17)

When X � N pt0; w2Id nq the variability of X is � 2 � Ep||X � t0||2q � nw2

and we can write the upper bound of the bias:dQprt0s; rm� sq ¤ �?
n

a
8 ln |G|. This

Theorem shows that the consistency bias is low when the variability ofX is small,
which tends to con�rm our hypothesis in section 3.3.1. It is important to notice
that this upper bound explodes very slowly when the cardinal of the group tends to
in�nity.

In order to show this Theorem, we use the following lemma:

Lemma 3.3. We write X � t0 � " where Ep"q � 0 and we make the assumption
that the noise " is a subgaussian random variable. This means that it existsc ¡ 0
and w ¡ 0 such that:

@m PM � Rn ; Epexppx"; m yqq ¤cexp
�

w2}m}2

2



: (3.18)

For m PM we note ~� � dQprms; rt0sq � inf
gPG

}g � m � t0}. If we have:

~� ¥ w
a

2 lnpc|G|q; (3.19)

then we have:
~� 2 � ~�w

a
8 lnpc|G|q ¤ F pmq � Ep}" }2q: (3.20)
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Figure 3.5: Variation of the variance m ÞÑF pmq.

Proof of lemma 3.3. First we expand the right member of the inequality (3.20):

Ep}" }2q � F pmq � E
�

max
gPG

p}X � t0}2 � } X � g � m}2q



We use the formula }A}2 � } A � B }2 � � 2xA; B y � } B }2 with A � X � t0 and
B � t0 � g � m:

Ep}" }2q � F pmq � E
�
max
gPG

�
� 2xX � t0; t0 � g � my � } t0 � gm}2�

�
� Epmax

gPG
� gq;

(3.21)
with � g � �} t0 � g � m}2 � 2x"; gm � t0y. Our goal is to �nd a lower bound of
F pmq � Ep}" }2q, that is why we search an upper bound ofEpmax

gPG
� gq with the

Jensen's inequality. We takex ¡ 0 and we get by using the assumption (3.18):

exppxEpmax
gPG

� gqq ¤ Epexppmax
gPG

x� gqq ¤ E

�
¸

gPG

exppx� gq

�

¤
¸

gPG

expp� x}t0 � gm}2qEpexppx"; 2xpgm � t0qyq

¤ c
¸

gPG

expp� x}t0 � gm}2qexpp2w2x2}gm � t0}2q

¤ c
¸

gPG

expp}gm � t0}2p� x � 2x2w2qq (3.22)
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Now if p� x � 2w2x2q   0, we can take an upper bound of the sum sign in (3.22)
by taking the smallest value in the sum sign, which is reached wheng minimizes
}g � m � t0} multiplied by the number of elements summed. Moreover:

p� x � 2x2w2q   0 ðñ 0   x  
1

2w2 :

Then we have:

exppxEpmax
gPG

� gqq ¤ c|G| expp~� 2p� x � 2x2w2qqas soon as0   x  
1

2w2 :

Then by taking the logarithm map:

Epmax
gPG

� gq ¤
ln c|G|

x
� p 2xw2 � 1q~� 2: (3.23)

Now we �nd the x which optimizes inequality (3.23). By di�erentiation, the right
member of inequality (3.23) is minimal for x � �

a
ln c|G|{2{pw~� q which is a valid

choice becausex � P p0; 1
2w2 q by using the assumption (3.19). With the equa-

tions (3.21) and (3.23) andx � we get the result. �

Proof of theorem 3.3. We take m� P argmin F , ~� � dQprm� s; rt0sq, and " � X � t0.
We have: F pm� q ¤ F pt0q ¤ Ep}" }2q then F pm� q � Ep}" }2q ¤ 0. If ~� ¡ w

a
2 lnp|G|q

then we can apply lemma 3.3 withc � 1. Thus:

~� 2 � ~�w
a

8 lnp|G|q ¤ 2F pm� q � Ep}" }2q ¤ 0;

which yields to ~� ¤ w
a

8 lnp|G|q. If ~� ¤ w
a

2 lnp|G|q, we have nothing to prove. �

Note that the proof of this upper bound does not use the fact that the action
is isometric, therefore this upper bound is true for every �nite group action. More
precisely, when the action is not isometric, ifm� minimizesm ÞÑF pmq � Epinf

gPG
}X �

g � m}2q then inf
gPG

}t0 � g � m� } ¤ w
a

8 ln |G|.

3.3.6 Study of the consistency bias in a simple example

In this Subsection, we take a particular case of example 3.1: the action of horizontal
translation with T � Z{2Z. We identify RT with R2 and we note by pu; vqT an
element ofRT . In this setting, one can completely describe the action ofT on RT :
0 � pu; vqT � p u; vqT and 1 � pu; vqT � p v; uqT . The set of singularities is the line
L � tp u; uqT ; u P Ru. We note HPA � tp u; vqT ; v ¡ uu the half-plane aboveL and
HPB the half-plane belowL.

This simple example will allow us to provide necessary and su�cient condition for
an inconsistency at regular and singular points. Moreover we can compute exactly
the consistency bias, and exhibit which parameters govern the bias. We can then
�nd an equivalent of the consistency bias when the noise tends to zero or in�nity.
More precisely, we have the following theorem:
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Proposition 3.3. Let X be a random variable such thatEp}X }2q   �8 and t0 �
EpX q.

1. If t0 P L, there is no inconsistency if and only if the support ofX is included
in the line L � tp u; uq; u P Ru. If t0 P HPA (respectively in HPB ), there
is no inconsistency if and only if the support ofX is included in HPA Y L
(respectively in HPB Y L).

2. If X is Gaussian: X � N pt0; w2Id 2q, then the Fréchet mean ofrX s exists and
is unique. This Fréchet meanrm� s is on the line passing throughEpX q and
perpendicular to L and the consistency bias~� � dQprt0s; rm� sqis the function
of s and d � distpt0; Lq given by:

~� pd; sq � w
2
�

» �8

d
w

r 2 exp
�

�
r 2

2



�

�
d

rw



dr; (3.24)

where� is a non-negative function onr0; 1s de�ned by � pxq � sinparccospxqq�
x arccospxq.

(a) If d ¡ 0 then w ÞÑ~� pd; wq has an asymptotic linear expansion:

~� pd; wq �
wÑ8

w
2
�

» �8

0
r 2 exp

�
�

r 2

2



dr: (3.25)

(b) If d ¡ 0, then ~� pd; wq � opwkq as w Ñ 0, for all k PN.

(c) w ÞÑ~� p0; wq is linear with respect to w (for d � 0 the template is a �xed
point).

Remark 3.2. Here, contrarily to the case of the action of rotation
in [Miolane 2017], it is not the ratio }EpX q} over the noise which matters to
estimate the consistency bias. Rather the ratio distpEpX q; Lq over the noise. How-
ever in both cases we measure the distance between the signal and the singularities
which wast 0u in [Miolane 2017] for the action of rotations, L in this case.

Proof. We suppose thatEpX q PHPA Y L. In this setting we call � px; mq one of
element of the groupG � T which minimizes }� � x � m} see (3.9) instead ofgpx; mq.
The variance in the quotient space at the pointm is:

F pmq � E
�

min
� PZ{2Z

}� � X � m}2



� Ep}� pX; m q �X � m}2q:

As we want to minimize F and F p1�mq � F pmq, we can suppose thatm PHPA Y L.
We can �nd the value of � px; mq for x PM :

� If x P HPA Y L we can set� px; mq � 0 (because in this casex; m are on the
same half plane delimited byL the perpendicular bisector ofm and � m).

� If x PHPB then we can set� px; mq � 1 (because in this casex; m are not on
the same half plane delimited byL the perpendicular bisector ofm and � m).
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The map rxs ÞÑgpx; mq �x will be called an congruent section in section 5.4.1. This
allows use to write the variance at the pointm PHPA :

F pmq �
�
E

�
}X � m}21t X PHP A Y L u

�
� E

�
}1 � X � m}21t X PHP B u

��

Then we de�ne the random variable Z by: Z � X 1X PHP A Y L � 1 � X 1X PHP B , such
that for m P HPA we have: F pmq � Ep}Z � m}2q and F pmq � F p1 � mq. Thus if
m� is a global minimiser ofF , then m� � EpZ q or m� � 1 � EpZ q. So the Fréchet
mean of rX s is rEpZ qs. Here instead of using theorem 3.1, we can work explicitly:
Indeed there is no inconsistency if and only ifEpZ q � EpX q, (EpZ q � 1 � EpX q
would be another possibility, but by assumption EpZ q; EpX q PHPA ), by writing
X � X 1X PHP A � X 1X PHP B Y L , we have:

EpZ q � EpX q ðñ Ep1 � X 1X PHP B Y L q � EpX 1X PHP B Y L q

ðñ 1 � EpX 1X PHP B Y L q � EpX 1X PHP B Y L q

ðñ EpX 1X PHP B Y L q PL

ðñ PpX PHPB q � 0;

Therefore there is an inconsistency if and only ifPpX P HPB q ¡ 0 (we remind
that we made the assumption that EpX q P HPA Y L). If EpX q is regular (i.e.
EpX q RL), then there is an inconsistency if and only ifX takes values inHPB ,
(this is exactly the condition of theorem 3.1, but in this particular case, this is a
necessarily and su�cient condition). This proves point 1.

Now we make the assumption thatX follows a Gaussian noise in order compute
EpZ q (note that we could take another noise, as long as we are able to compute
EpZ q). For that we convert to polar coordinates: we write pu; vqT , a vector of
RZ{2Z , under the form:

pu; vqT � EpX q � p r cos
; r sin 
 qT ;

where r ¡ 0 and 
 P r0; 2� s. We also de�ne: d � distpEpX q; Lq, EpX q is a regular
point if and only if d ¡ 0. We still suppose that EpX q � p �; � qT P HPA Y L. First
we parametrise in function ofpr; 
 q the points which are in HPB :

v   u ðñ � � r sin 
   � � r cos
 ðñ
� � �

r
 

?
2 cosp
 �

�
4

q

ðñ
d
r

  cosp
 �
�
4

q

ðñ 
 P
�
�

�
4

� arccospd{r q; �
�
4

� arccospd{r q
�

and d   r
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Then we computeEpZ q:

EpZ q � EpX 1X PHP A q � Ep1 � X 1X PHP B q

EpZ q �
» d

0

» 2�

0

�
� � r cos

� � r sin 



 exp
�

� r 2

2w2

	

2�w 2 rd
dr

�
» �8

d

» 2� � �
4 � arccospd

r q

arccospd
r q� �

4

�
� � r cos

� � r sin 



 exp
�

� r 2

2w2

	

2�w 2 rdrd


�
» �8

d

» � �
4 � arccospd

r q

� �
4 � arccospd

r q

�
� � r sin 

� � r cos



 exp
�

� r 2

2w2

	

2�w 2 rdrd


� EpX q �
» �8

d

r 2 expp� r 2

2w2 q

�w 2

?
2�

�
d
r



dr � p� 1; 1qT ;

We compute ~� � dQprEpX qs; rEpZ qsqwheredQ is the distance in the quotient space
de�ned in (3.1). As we know that EpX q; EpZ qare in the same half-plane delimited by
L , we have: ~� � dQprEpZ qs; rEpX qsq � }EpZ q � EpX q}. This proves equation (3.24),
note that items 2a to 2c are the direct consequence of equation (3.24) and basic
analysis. �

3.4 Inconsistency for �nite and in�nite group when the
template is not a �xed point

In the previous section, we prove the inconsistency when the group was �nite. Being
a �nite group was a restriction to applications, therefore we now extend to non
�nite group. However, we still assume isometric action. In section 3.3 we exhibited
su�cient condition to have an inconsistency, restricted to the case of �nite group
acting on an Euclidean space. We now generalize this analysis to Hilbert spaces
of any dimension included in�nite. Let M be such a Hilbert space with its dot
product noted by x ; y and its associated norm} } . In this section, we do not
anymore suppose that the groupG is �nite. In the following, we prove that there
is an inconsistency in a large number of situations, and we quantify the consistency
bias with lower and upper bounds.

Example 3.3. The action of continuous horizontal translation: We take G �
pR{ZqD acting on M � L 2ppR{ZqD ; Rq with:

@� PG @f PM p� � f q : t ÞÑf pt � � q

This isometric action is the continuous version of the example 3.1: the elements of
M are now continuous images in dimensionD.

3.4.1 Presence of an inconsistency

We state here a generalization of theorem 3.1:
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Theorem 3.4. Let G be a group acting isometrically onM a Hilbert space, andX
a random variable in M , Ep}X }2q   �8 and EpX q � t0 � 0. If:

PpdQprt0s; rX sq   } t0 � X }q ¡ 0; (3.26)

or equivalently:

P

�

sup
gPG

xg � X; t 0y ¡ x X; t 0y

�

¡ 0: (3.27)

Then rt0s is not a Fréchet mean ofrX s in Q � M {G.

The condition of this Theorem is the same condition of theorem 3.1: the support
of the law of X contains points closer fromg � t0 for some g than t0. Thus the
condition (3.27) is equivalent to EpdQprX s; rt0sq2q   Ep}X � t0}2q. In other words,
the variance in the quotient space att0 is strictly smaller than the variance in the
ambient space att0.

Proof. First the two conditions are equivalent by de�nition of the quotient distance
and by expansion of the square norm of}t0 � X } and of }t0 � gX } for g PG.

As above, we de�ne the variance ofrX s by:

F pmq � E
�

inf
gPG

}g � X � m}2



:

In order to prove this Theorem, we �nd a point m such that F pmq   F pt0q, which
directly implies that rt0s is not be a Fréchet mean ofrX s.

In the proof of theorem 3.1, we showed that under condition (3.6) we had
xr F pt0q; t0y   0. This leads us to studyF restricted to R� t0, we de�ne for � PR� :

f p� q � F p�t 0q � E
�

inf
gPG

}g � X � �t 0}2



:

Thanks to the isometric action we can expandf p� q by:

f p� q � � 2}t0}2 � 2� E

�

sup
gPG

xg � X; t 0y

�

� Ep}X }2q; (3.28)

and explicit the unique element ofR� which minimizes f :

� pt0q �

E

�

sup
gPG

xg � X; t 0y

�

}t0}2 : (3.29)

For all x P M , we havesup
gPG

xg � x; t 0y ¥ xx; t 0y and thanks to condition (3.27) we
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get:

E

�

sup
gPG

xg � X; t 0y

�

� E

�

sup
gPG

xg � X; t 0y1X PConept0q

�

� E

�

sup
gPG

xg � X; t 0y1X RConept0q

�

� E
�

xX; t 0y1X PConept0q

	

� E

�

sup
gPG

xg � X; t 0y1X RConept0q

�

¡ EpxX; t 0yq � x EpX q; t0y � } t0}2; (3.30)

which implies � pt0q ¡ 1. Then F p� pt0qt0q   F pt0q. �

Note that }t0}2p� pt0q� 1q � E
�
supgPG xg � X; t 0y

�
� EpxX; t 0yq(which is positive)

is exactly � x r F pt0q; t0y{2 in the case of �nite group, see Equation (3.15). Here we
�nd the same expression without having to di�erentiate the variance F , which may
be not possible in the current setting.

3.4.2 Analysis of the condition in theorem 3.4

We now look for general cases when we are sure that Equation (3.27) holds which
implies the presence of inconsistency. We saw in section 3.3 that when the group
is �nite, it is possible to have no inconsistency only if the support of the law is
included in a cone delimited by some hyperplanes. The hyperplanes were de�ned as
the set of points equally distant of the template t0 and g � t0 for g PG. Therefore if
the cardinal of the group becomes more and more important, one could think that
in order to have no inconsistency the space whereX should takes value becomes
smaller and smaller. At the limit it leaves only at most an hyperplane. In the
following, we formalise this idea to make it rigorous. We show that the cases where
theorem 3.4 cannot be applied are not generic cases.

First we can notice that it is not possible to have the condition (3.27) if t0 is a
�xed point under the action of G. Indeed in this casexg � X; t 0y �

@
X; g � 1t0

D
�

xX; t 0y). So from now, we suppose thatt0 is not a �xed point. Now let us see some
settings when we have the condition (3.26) and thus condition (3.27). First, let us
recall the de�nition of the Voronoï cell of a point t0:

Conept0q � t x PM; @g PG; }x � t0} ¤ } x � g � t0}u

The structure of this paragraph will be always the same, �rst we give, in some
lemmas, a property of this cone, then we deduce a case where we ensure inconsis-
tency.
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Lemma 3.4. Let G be a group acting isometrically on a Hilbert spaceM . Let t0

be a point in M . Assume that t0 is a limit point of rt0s, this means that t0 can be a
limit of a sequence belonging tort0sztt0u. In this case we have:

t0 RInt pConept0qq;

where IntpAq is the interior of A.

Proof. Let � be a positive number, we have to prove thatB pt0; � q, the open ball
centred at t0 with a radius � , is not included in the cone oft0. By density, one takes
g � t0 PB pt0; � qztt0u for someg PG, now if we take r such that

r   minp}g � t0 � t0}{ 2; � � } g � t0 � t0}q;

then B pg � t0; r q € B pt0; � q. Besides, for everyx PB pg � t0; r q we have}x � g � t0}  
}x � t0}. Then x RConept0q. �

Proposition 3.4. Let G be a group acting isometrically on a Hilbert spaceM , and
X a random variable in M , with Ep}X }2q   �8 and EpX q � t0 � 0. If:

1. The templatet0 is a limit point in rt0s.

2. There exists� ¡ 0 such that the support ofX contains a ballB pt0; � q.

Then condition (3.27) holds, and the estimator is inconsistent according to theo-
rem 3.4.

rt0s

t0

B pt0; � q

g � t0

O

Figure 3.6: The smallest disk is included in the support ofX and the points in
that disk is closer from g � t0 than from t0. According to theorem 3.4 there is an
inconsistency.

Proof. Thanks to lemma 3.4, the template t0 is not in the interior of Conept0q.
ThereforeB pt0; � q is not included in Conept0q. Then we verify condition (3.27), and
we can apply theorem 3.4. �
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Proposition 3.4 proves that there is a large number of cases where we can en-
sure the presence of an inconsistency. For instance whenM is a �nite dimensional
vector space and the random variableX has a continuous positive density (for the
Lebesgue's measure) att0, condition 2 of proposition 3.4 is ful�lled. Unfortunately
this proposition do not cover the case where there is no mass at the expected value
t0 � EpX q. This situation could appear if X has two modes for instance. The
following proposition deals with this situation:

Lemma 3.5. Let G be a group acting isometrically onM . If we assume that the
orbit of a point t0 contains a di�erential curve:

D' s.t. ' : p� a; aq Ñ r t0s is C1 with ' p0q � t0; ' 1p0q � v � 0:

In this case we have (we notevK , the set of points orthogonal tov).

Conept0q € vK :

Proof. In order to prove this lemma, we take a point not in vK and we prove that
this point is not in Conept0q: Let y R vK . We have also, thanks to the isometric
action: xt0; vy � 0. We make a Taylor expansion of the following square distance
(see also �gure 3.7) at0:

} ' pxq � y}2 � } t0 � xv � opxq � y}2 � } t0 � y}2 � 2x xy; vy � opxq:

Then: Dx � P p� a; aq s.t. }x � }   a, x xy; vy ¡ 0 and }' px � q � y}   } t0 � y}. For some
g PG, ' px � q � g � t0. By continuity of the norm we have:

Dr ¡ 0 s.t. @z PB py; rq }g � t0 � z}   } t0 � z}:

Proposition 3.5. Let G be a group acting isometrically onM . Let X be a random
variable in M , such that Ep}X }2q   �8 and EpX q � t0 � 0. If:

1. D' s.t. ' : p� a; aq Ñ r t0s is C1 with ' p0q � t0; ' 1p0q � v � 0:

2. The support ofX is not included in the hyperplanevK : PpX RvK q ¡ 0.

Then condition (3.27) is ful�lled, which leads to an inconsistency thanks to theo-
rem 3.4.

Proof. Thanks to lemma 3.5, we have:PpX RConept0qq ¥ PpX RvK q ¡ 0. There-
fore theorem 3.4 applies. �

Proposition 3.5 was a su�cient condition on inconsistency in the case of an orbit
which contains a curve. This brings us to extend this result for orbits which are
manifolds:

Lemma 3.6. Let G be a group acting isometrically on a Hilbert spaceM . If the
orbit of a point t0 is a manifold, then we have:

Conept0q € Tt0 rt0sK

whereTt0 rt0s the linear tangent space ofrt0s at t0.
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Proof. Once again, let us prove that a point which is not in Tt0 rt0sK is not in
Conept0q: Let y RTt0 rt0sK . Let us take v P Tt0 rt0s such that xy; vy � 0 and choose
' a C1 curve in rt0s, such that ' p0q � t0 and ' 1p0q � v. Applying lemma 3.5, we
get that y RConept0q. � .

Proposition 3.6. Let G be a group acting isometrically on a Hilbert spaceM , X
a random variable in M , with Ep}X }2q   �8 . AssumeX � t0 � �" , where t0 � 0
and Ep"q � 0, and Ep}" }q � 1. We suppose thatrt0s is a sub-manifold ofM and
write Tt0 rt0s the linear tangent space ofrt0s at t0. If:

PpX RTt0 rt0sK q ¡ 0; (3.31)

which is equivalent to:
Pp" RTt0 rt0sK q ¡ 0; (3.32)

then there is an inconsistency.

t0

rt0s Tt0 rt0s

Tt0 rt0sK

y
g � t0

O

Figure 3.7: y RTt0 rt0sK therefore y is closer fromg � t0 for someg PG than t0 itself.
In conclusion, if y is in the support of X , there is an inconsistency.

Proof. First equations (3.31) and (3.32) are equivalent, becauseX � t0 � " and
t0 P Tt0 rt0sK . Secondly, thanks to lemma 3.6 and equation (3.31) we get that
PpX R Conept0qq ¡ 0. Therefore, we have proved the inconsistency by applying
theorem 3.4. �

Note that Condition (3.31) is very weak, becauseTt0 rt0s is a proper linear sub-
space ofM .

3.4.3 Lower bound of the consistency bias

Under the assumption of theorem 3.4, we have an element� pt0qt0 such that
F p� pt0qt0q   F pt0q where F is the variance ofrX s. From this element, we deduce
lower bounds of the consistency bias:
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Theorem 3.5. Let � be the unique positive solution of the following equation:

� 2 � 2� p}t0} � E}X }q � } t0}2p� pt0q � 1q2 � 0: (3.33)

Let � � be the unique positive solution of the following equation:

� 2 � 2� }t0}
�

1 �
a

1 � � 2{} t0}2
	

� } t0}2p� pt0q � 1q2 � 0; (3.34)

where� 2 � Ep}X � t0}2q is the variability of X . Then � and � � are two lower bounds
of the consistency bias.

Proof. In order to prove this Theorem, we exhibit a ball around t0 such that the
points on this ball have a variance bigger than the variance at the point� pt0qt0,
where� pt0qwas de�ned in Equation (3.29): thanks to the expansion of the function
f we did in (3.28) we get :

F pt0q � F p� pt0qt0q � } t0}2p� pt0q � 1q2 ¡ 0; (3.35)

Moreover we can show (exactly like equation (3.14)) that for allx PM :

|F pt0q � F pxq| ¤ E
� �

�
�
� inf
gPG

}g � X � t0}2 � inf
gPG

}g � X � x}2
�
�
�
�




¤ } x � t0} p2}t0} � } x � t0} � Ep}2X }qq: (3.36)

With Equations (3.35) and (3.36), for all x PB pt0; � qwe haveF pxq ¡ F p� pt0qt0q.
No point in that ball mapped in the quotient space is a Fréchet mean ofrX s. So
� is a lower bound of the consistency bias. Now by using the fact thatEp}X }q ¤a

}t0}2 � � 2, we get:

2|F pt0q � F pxq| ¤ 2}x � t0} � } t0}
�

1 �
a

1 � � 2{} t0}2
	

� } x � t0}2

This proves that � � is also a lower bound of the consistency bias. �

� � is smaller than � , but the variability of X intervenes in � � . Therefore we pro-
pose to study the asymptotic behaviour of� � when the variability tends to in�nity.
We have the following proposition:

Proposition 3.7. Under the hypotheses of theorem 3.5, we writeX � t0 � �" , with
Ep"q � 0, and Ep}" }2q � 1 and note � pt0q � EpsupgPG xg � "; t 0{} t0}yq P p0; 1s, we
have that:

� � �
� Ñ�8

� p
a

1 � � pt0q2 � 1q;

In particular, the consistency bias explodes when the variability ofX tends to
in�nity. First let us proove the following lema which states that � pt0q P p0; 1s.

Lemma 3.7. Thanks to condition (3.27), we have� pt0q P p0; 1s.
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Proof of lemma 3.7. We have� pt0q ¥ Epx"; t 0{} t0}y � 0. By a reductio ad absurdum:
if � pt0q � 0, then sup

gPG
xg � "; t 0y � x "; t 0y almost surely. We have then almost surely:

xX; t 0y ¤ sup
gPG

xgX; t 0y ¤ } t0}2 � sup
gPG

� xg � "; t 0y � } t0}2 � � x"; t 0y ¤ xX; t 0y;

which is in contradiction with (3.27). Besides � pt0q ¤ Ep}" }q ¤
a

E}"}2 � 1. �

Proof of proposition 3.7. We exhibit equivalent of the terms in equation (3.34) when
� Ñ �8 :

2}t0}
�

1 �
a

1 � � 2{} t0}2
	

� 2�: (3.37)

Now by de�nition of � pt0q in Equation (3.29) and the decomposition ofX � t0 � �"
we get:

}t0}p� pt0q � 1q �
1

}t0}
E

�

sup
gPG

pxg � t0; t0y � x g � �"; t 0yq

�

� } t0}

}t0}p� pt0q � 1q ¤
1

}t0}
E

�

sup
gPG

xg � �"; t 0y

�

� �� pt0q (3.38)

}t0}p� pt0q � 1q ¥
1

}t0}
E

�

sup
gPG

xg � �"; t 0y

�

� 2}t0} � �� pt0q � 2}t0}; (3.39)

The lower bound and the upper bound of}t0}p� pt0q � 1q found in (3.38) and (3.39)
are both equivalent to �� pt0q, when � Ñ �8 . Then the constant term of the
quadratic Equation (3.34) has an equivalent:

� } t0}2p� pt0q � 1q2 � � � 2� pt0q2: (3.40)

Finallye if we solve the quadratic Equation (3.34), we write� � as a function of the
coe�cients of the quadratic equation (3.34). We use the equivalent of each of these
terms thanks to equation (3.37) and (3.40), this proves proposition 3.7.�

Remark 3.3. Thanks to inequality (3.39), if } t0 }
�   � pt0q

2 , then }t0}2p1 � � pt0qq2 ¥
p�� pt0q� 2}t0}q2, then we write� � as a function of the coe�cients of Equation (3.34),
we obtain a lower bound of the inconsistency bias as a function of}t0}, � and � pt0q
for � ¡ 2}t0}{ � pt0q:

� �

}t0}
¥ �p 1 �

a
1 � � 2{} t0}2q �

b
p1 �

a
1 � � 2{} t0}2q2 � p �� pt0q{}t0} � 2q2:

Although the constant � pt0q intervenes in this lower bound, it is not an explicit
term. We now explicit its behaviour depending ont0. We remind that:

� pt0q �
1

}t0}
E

�

sup
gPG

xg � "; t 0y

�

:
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To this end, we �rst note that the set of �xed points under the action of G is a
closed linear space, (because we can write it as an intersection of the kernel of the
continuous and linear functions: x ÞÑg � x � x for all g P G). We denote by p the
orthogonal projection on the set of �xed points FixpM q. Then for x P M , we have:
distpx; FixpM qq � } x � ppxq}. Which yields:

xg � "; t 0y � x g � "; t 0 � ppt0qy � x "; ppt0qy: (3.41)

The right hand side of Equation (3.41) does not depend ong as ppt0q PFixpM q.
Then:

}t0}� pt0q � E

�

sup
gPG

xg"; t0 � ppt0qy

�

� x Ep"q; ppt0qy:

Applying the Cauchy-Schwarz inequality and usingEp"q � 0, we can conclude that:

� pt0q ¤
1

}t0}
distpt0; FixpM qqEp}"}q � distpt0{} t0}; FixpM qqEp}" }q: (3.42)

This leads to the following comment: our lower bound of the consistency bias is
smaller when our normalized templatet0{} t0} is closer to the set of �xed points.

3.4.4 Upper bound of the consistency bias

In this section, we �nd an upper bound of the consistency bias. More precisely we
have the following Theorem:

Proposition 3.8. Let X be a random variable inM , such that X � t0 � �" where
� ¡ 0, Ep"q � 0 and Ep||" ||2q � 1. We suppose thatrm� s is a Fréchet mean ofrX s.
Then we have the following upper bound of the quotient distance between the orbit
of the templatet0 and the Fréchet mean ofrX s:

dQprm� s; rt0sq ¤ �� pm� q �
a

� 2� pm� q2 � 2}t0}�� pm� q; (3.43)

It is also possible to improve this inequality:

dQprm� s; rt0sq ¤ �� pm� � m0q �
a

� 2� pm� � m0q2 � 2distpt0; FixpM qq�� pm� � m0q;
(3.44)

where we have noted� pmq � EpsupgPG xg � "; m {} m}yq P r0; 1s if m � 0 and
� p0q � 0, and m0 the orthogonal projection oft0 on FixpM q.

Note that we made no hypothesis on the template in this proposition. We deduce
from Equation (3.44) that dQprm� s; rt0sq ¤ � �

a
� 2 � 2� distpt0; FixpM qqis a Op� q

when � Ñ 8 , but a Op
?

� q when � Ñ 0, in particular the consistency bias can be
neglected when� is small.

In order to prove equation (3.44), we give a useful lemma:

Lemma 3.8. Let m0 be a �xed point under the action ofG, then the translation
map

T : rxs ÞÑ rx � m0s; (3.45)
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is well de�ned on the quotient. Moreover, this map is a congruent map ofQ:

@pa; bq PQ2 dQpTpaq; Tpbqq � dQpa; bq:

Proof of lemma 3.8. First, we need to prove that this map is well de�ned: let us
assume thatx and y are in the same orbit, we need to prove thatrx � m0s � r y� m0s.
We know that y � g � x for someg PG, therefore:

y � m0 � g � x � gm0 � gpx � m0q;

indeedm0 is a �xed point, and G acts linearly on M . Therefore we havery � m0s �
rx � m0s.

Secondly, we need to prove that for everyx and y P M , we havedQprxs; rysq �
dQprx � m0s; ry � m0sq. This is the consequence of:

@g PG px � m0q � g � py � m0q � x � m0 � m0 � g � y � x � g � y;

once again, this equation is true becauseg acts linearly, and becausem0 is a �xed
point. By taking the in�mum over g PG, we prove that the map is congruent. �

Proof of proposition 3.8. First we have:

F pm� q ¤ F pt0q � Epinf
gPG

||t0 � gpt0 � �" q||2q ¤ Ep||�" ||2q � � 2: (3.46)

Secondly, we have for allm PM , (in particular for m� ):

F pmq � Epinf
gPG

p}m � g � t0}2 � � 2}" }2 � 2xg � �"; m � g � t0yqq

¥ dQprms; rt0sq2 � � 2 � 2Epsup
gPG

x�"; g � myq: (3.47)

With Inequalities (3.46) and (3.47) one gets:

dQprm� s; rt0sq2 ¤ 2Epsup
gPG

x�"; g � m� yq � 2�� pm� q||m� ||; (3.48)

note that at this point, if m� � 0 then EpsupgPG x�"; g � m� yq � 0 and � pm� q � 0
although equation (3.48) is still true even if m� � 0. Moreover with the triangular
inequality applied at rm� s; r0s and rt0s, one gets: }m� } ¤ } t0} � dQprm� s; rt0sqand
then:

dQprm� s; rt0sq2 ¤ 2�� pm� qpdQprm� s; rt0sq � } t0}q: (3.49)

We can solve inequality (3.49) and we get:

dQprm� s; rt0sq ¤ �� pm� q �
a

� 2� pm� q2 � 2}t0}�� pm� q; (3.50)

We note by FX instead of F the variance in the quotient space ofrX s, and we
want to apply inequality (3.43) to X � m0. As m0 is a �xed point, we have thanks
to lemma 3.8:

FX pmq � E
�
dQprX s; rmsq2

�
� Ep

�
dQprX � m0s; rm � m0s2q

�
� FX � m0 pm � m0q
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Then:
m� Pargmin FX ðñ m� � m0 Pargmin FX � m0 :

We apply Equation (3.43) to X � m0, with EpX � m0q � t0 � m0 and rm� � m0s
a Fréchet mean ofrX � m0s. We get:

dQprm� � m0s; rt0� m0sq ¤ �� pm� � m0q�
a

� 2� pm� � m0q2 � 2}t0 � m0}�� pm� � m0q:

MoreoverdQprm� s; rt0sq � dQprm� � m0s; rt0� m0sq(see lemma 3.8), which concludes
the proof. �

3.4.5 Empirical Fréchet mean

In practice, we never compute the Fréchet mean in quotient space, only the empirical
Fréchet mean in quotient space when the size of a sample is supposed to be large
enough. If the empirical Fréchet in the quotient space means converges to the Fréchet
mean in the quotient space then we can not use these empirical Fréchet mean in
order to estimate the template. In [Bhattacharya 2008], it has been proved that the
empirical Fréchet mean converges to the Fréchet mean with a1?

n convergence speed,
however the law of the random variable is supposed to be included in a ball whose
radius depends on the geometry on the manifold. Here we are not in a manifold,
indeed the quotient space contains singularities, moreover we do not suppose that the
law is necessarily bounded. However in [Ziezold 1977] the empirical Fréchet means
is proved to converge to the Fréchet means but no convergence rate is provided.

We propose now to prove that the quotient distance between the template and
the empirical Fréchet mean in quotient space have an lower bound which is the
asymptotic of the one lower bound of the consistency bias found in (3.33). Take
X; X 1; : : : ; X n independent and identically distributed (with t0 � EpX q not a �xed
point). We de�ne the empirical variance of rX s by:

m PM ÞÑFnpmq �
1
n

n¸

i � 1

dQprms; rX i sq2 �
1
n

n¸

i � 1

inf
gPG

}m � g � X i }2;

and we say thatrmn� sis a empirical Fréchet mean ofrX sif mn� is a global minimiser
of Fn .

Proposition 3.9. Let X; X 1; : : : ; X n independent and identically distributed ran-
dom variables, witht0 � EpX q. Let be rmn� s be an empirical Fréchet mean ofrX s.
Then � n is a lower bound of the quotient distance between the orbit of the template
and rmn� s, where � n is the unique positive solution of:

� 2 � 2

�

||t0|| �
1
n

n¸

i � 1

}X i }

�

� � } t0}2p� npt0q � 1q2 � 0:

� npt0q is de�ned like � pt0q in section 3.4.1 by:

� npt0q �

1
n

n°

i � 1
sup
gPG

xg � X i ; t0y

}t0}2 :
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We have that� n Ñ � by the law of large numbers.

The proof is a direct application of theorem 3.5, but applied to the empirical
law of X given by the realization of X 1; : : : ; X n .

3.4.6 Examples

In this Subsection, we discuss, in some examples, the application of theorem 3.4 and
see the behaviour of the constant� pt0q. This constant intervened in lower bound of
the consistency bias.

3.4.6.1 Action of horizontal translation on L 2pR{Zq

We take an orbit O � r f 0s, where f 0 PC2pR{Zq, non constant. We show easily that
O is a manifold of dimension1 and the tangent space atf 0 is2 Rf 1

0. Therefore a
su�cient condition on X such that EpX q � f 0 to have an inconsistency is:PpX R
f 1K

0 q ¡ 0 according to proposition 3.6. Now if we denote by1 the constant function
on R{Z equal to 1. We have in this setting: that the set of �xed points under the
action of G is the set of constant functions: FixpM q � R1 and:

distpf 0; FixpM qq � } f 0 � x f 0; 1y1} �

d
» 1

0

�
f 0ptq �

» 1

0
f 0psqds


 2

dt:

This distance to the �xed points is used in the upper bound of the constant� pt0q
in Equation (3.42). Note that if f 0 is not di�erentiable, then rf 0s is not necessarily
a manifold, and (3.6) does not apply. However proposition 3.4 does: iff 0 is not a
constant function, then rf 0sztf 0u is dense inrf 0s. Therefore as soon as the support
of X contains a ball aroundf 0, there is an inconsistency.

3.4.6.2 Action of discrete horizontal translation on RZ{NZ

We come back on example 3.1, withD � 1 (discretised signals). For some signalt0,
� pt0q previously de�ned is:

� pt0q �
1

}t0}
E

�
max

� PZ{NZ
x"; � � t0y



:

Therefore if we have a sample of sizeI of " iid , then:

� pt0q �
1

}t0}
lim

I Ñ�8

1
I

I¸

i � 1

max
� i PZ{N Z

x" i ; � i � t0y;

2 Indeed ' :
s � 1

2 ; 1
2 r Ñ O

t ÞÑ f 0p: � tq
is a local parametrisation of O: f 0 � ' p0q, and we check

that: lim
x Ñ 0

} ' pxq� ' p0q� xf 1
0}L 2 � 0 with Taylor-Lagrange inequality at the order 2. As a conclusion

' is di�erentiable at 0, and it is an immersion (since f 1
0 � 0), and D 0 ' : x ÞÑxf 1

0 , then O is a
manifold of dimension 1 and the tangent space of O at f 0 is: Tf 0 O � D 0 ' pRq � Rf 1

0 .
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By an exhaustive research, we can �nd the� i 's which maximise the dot product, then
with this sample and t0 we can approximate� pt0q. We have done this approximation
for several signalst0 on �gure 3.8. According the previous results, the bigger� pt0q
is, the more important the lower bound of the consistency bias is. We remark that
the � pt0q estimated is small, � pt0q ! 1 for di�erent signals.

Figure 3.8: Di�erent signals and their � pt0q approximated with a sample of size103

in RZ{100Z . " is here a Gaussian noise inRZ{100Z , such that Ep"q � 0 and Ep}" }2q � 1.
For instance the blue signal is a signal de�ned randomly, and when we approximate
the � pt0q which corresponds to that t0 we �nd � 0:25.

3.4.6.3 Action of rotations on Rn

Now we consider the action of rotations onRn with a Gaussian noise. TakeX �
N pt0; s2Id nq then the variability of X is ns2, then X has a decomposition:X �
t0 �

?
ns" with Ep"q � 0 and Ep}" }2q � 1. According to proposition 3.7 we have by

noting � � the lower bound of the consistency bias whens Ñ 8 :

� �

s
Ñ

?
np� 1 �

a
1 � � pt0q2q:

Now � pt0q � EpsupgPG xg � "; t 0qy {}t0} � Ep}" }q Ñ 1 when n tends to in�nity
(expected value of the Chi distribution) we have that for n large enough:

lim
sÑ8

� �

s
�

?
np

?
2 � 1q:

We compare this result with the exact computation of the consistency bias (noted
here CB) made by Miolane et al. [Miolane 2017], which writes with our current
notations:

lim
sÑ8

CB
s

�
?

2
� ppn � 1q{2q

� pn{2q
:

Using a standard Taylor expansion on the Gamma function, we have that forn large
enough:

lim
sÑ8

CB
s

�
?

n:
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As a conclusion, when the dimension of the space is large enough our lower bound
and the exact computation of the bias have the same asymptotic behaviour. It
di�ers only by the constant

?
2 � 1 � 0:4 in our lower bound, 1 in the work of

Miolane et al. [Miolane 2015].

3.4.7 Di�erentiability of the variance in the quotient space

In section 3.3.1, we study the consistency of the template estimation with the
Fréchet mean in quotient space, by assuming that the group is �nite. In order
to prove the inconsistency we establish that the variance is di�erentiable at some
points. Then, one natural question we ask is the following: is the variance always
di�erentiable?

In this section, we show that the variance in the quotient space is not di�eren-
tiable at 0 when the ambient space is an Hilbert spaces and for isometric action:
F pmq � Epinf

gPG
}Y � g � m}2q is not di�erentiable at 0.

This question matters, since one may want to compute the Fréchet mean in
quotient space with a gradient descent, but this requires, at least, that the variance
is di�erentiable. For instance what if the Fréchet mean of rYs is rm� s and that the
variance F is not di�erentiable at m� ?

First, we would to insist on this point: it is a well known fact that, for all y PM ,
m ÞÑ }m � y}2 is di�erentiable with a gradient equal to m � y. Then

m ÞÑdQprms; rysq � inf
gPG

}m � g � y}2

is de�ned as the in�mum of di�erentiable functions. There is no guarantee that
the resulting function is di�erentiable. x ÞÑ }x} � � minpx; � xq is a toy example of
the in�mum of di�erentiable functions which is not di�erentiable.

One could think that we could deal with sub-di�erentiability, however the vari-
ance is probably not convex nor concave.

If the group is compact then, we have an element which reaches this in�mum,
dQprms; rysq � } m � g� y}2 for some g� P G. In this case, one could think that
m ÞÑdQprms; rysqis di�erentiable with a gradient equal to 2pm � g� yq. However
this is more complicated than that. Indeedg� depends onm and y. We should call
this element gpm; yq rather than g� . One gets:

dQprms; rysq2 � } m � gpm; yq �y}2:

Now, gpm; yq�y depends onm, and it is more di�cult to show the di�erentiability
or to compute the gradient, since we have the existence of the elementgpm; yq
but we have not an explicit formula of this element. If one is not able to prove
the di�erentiability of the squared distance, then it will be harder to prove the
di�erentiablity of the variance (de�ned as the expectation of the squared distance).
In the proof of theorem 3.1, we proved that for �nite group gpm; yq was locally
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constant, that is why we could be able to di�erentiate the squared quotient distance
and the variance.

Example 3.4. Example of the action of rotation TakingM an Euclidean space, and
G the group of rotations ofM . Then the quotient distance is given by:dQpras; rbsq �
|}a} � } b}| . Therefore, the variance in the quotient space is equal to:

F pmq � Epp}Y } � } m}q2q;

by expansion one gets:

F pmq � Ep}Y }2q � 2}m}Ep}Y }q � } m}2;

now m ÞÑ }m}2 is di�erentiable everywhere, howeverm ÞÑ }m} is not di�erentiable
at 0. We can conclude thatF is not di�erentiable at 0.

This example can be generalized to any isometric group action:

Proposition 3.10. Let G acting isometrically on M a Hilbert space. We do not
assume thatG is a �nite group. Let us take Y a random variable in M such that
Ep}Y }2q   �8 . Let us assume that it exists a pointp PM such that

PpdQprps; rYsq   } p � Y }q ¡ 0;

then the variancem ÞÑF pmq � Epd2
Qprms; rYsqqis not di�erentiable at 0.

Note that it is easy to ful�ll proposition 3.10, for instance with p � t0, as we have
seen it in theorem 3.1.

Remark 3.4. We can prove at the same time that the squared distance is also not
di�erentiable: m ÞÑd2

Qprms; rysqis not di�erentiable at 0, if y is not a �xed point.
Indeed, let us takeY a random variable equal toy, then F pmq � Epd2prms; rYsqq �
d2prms; rysqis not di�erentiable at 0 according to proposition 3.10.

Proof of proposition 3.10. We �rst expand the variance:

F pmq � } m}2 � E

�

}Y }2q � 2Epsup
gPG

xm; g � Yy

�

;

then if this function is di�erentiable so is the function f : m ÞÑEpsup
gPG

xm; g � Yyq,

now by linearity of the action we remark that we havef p�m q � �f pmqfor all m PM
and � ¥ 0, then if f was di�erentiable, f would be a linear function. Let us assume
that f is linear. In this case we have form; m1 PM :

f pm � m1q � Ep

Ahkkkkkkkkkkkkikkkkkkkkkkkkj

sup
gPG

@
m � m1; g � Y

D
q

¤ Epsup
gPG

xm; g � Yy � sup
gPG

@
m1; g � Y

D

loooooooooooooooooooomoooooooooooooooooooon
B

q

¤ f pmq � f pm1q

¤ f pm � m1q;
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where the inequality comes from the fact that the supremum of the sum of two terms
is smaller than the sum of the two supremum. Then we have two random variables
A; B such that A ¤ B and EpAq � EpB q, when we can conclude thatA � B almost
surely. It comes that:

sup
gPG

@
m � m1; g � Y

D
q � sup

gPG
xm; g � Yyq � sup

gPG

@
m1; g � Y

D
q Y � a.s.:

Now let us choosem1 � � m we have:

sup
gPG

xm; g � Yy � sup
gPG

� x m; g � Yy � 0 Y � almost surely:

If we reformulate we have:

sup
gPG

xm; g � Yy � inf
gPG

xm; g � Yy Y � almost surely:

Then for any m PM we haveY-almost surely:

@g PG xm; Y y � x g � m; Y y:

Then we haveY-almost surely }m � Y } � dQprms; rYsq. Taking m � p shows the
contradiction with our hypothesis. �

In order to prove the remark remark 3.4, we can takeY a random variable which
is constantly equal to y a non �xed point, as y is not a �xed point it exists g P G
such that g � y � y. We can takem0 � g � y, this m0 ful�lls proposition 3.10. �

Remark 3.5. 0 is one �xed point among all the other, thanks to lemma 3.8, we can
also conclude that the variance is not di�erentiable at any other �xed points.

Proof. Let m0 be a �xed point. We can consider two random variablesX and
X � m0, if we note FX the variance ofX , thanks to lemma 3.8, we have:

FX pmq � Epd2
Qprms; rX sqq � Epd2

Qprm � m0s; rX � m0sqq � FX � m0 pm � m0q

Now we know that FX � m0 is not di�erentiable at 0 (proposition 3.10), therefore
m ÞÑFX � m0 pm � m0q is not di�erentiable at m0. We conclude that FX is not
di�erentiable at m0. �

One remaining question is: can we study the di�erentiability of the square dis-
tance for non �xed points?

3.5 Fréchet means ambient and quotient spaces are not
consistent when the template is a �xed point

In this section, we do not assume that the ambient spaceM is a vector space,
but rather a manifold. We need then to rewrite the generative model likewise: let
t0 PM , and X any random variable ofM such ast0 is a Fréchet mean ofX . Then
Y � � � X is the observed variable where� is a random variable whose value are
in G. In this section we make the assumption that the templatet0 is a �xed point
under the action of G.
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3.5.1 Result

Let X be a random variable onM and de�ne the variance ofX as:

Epmq � EpdM pm; X q2q:

We say that t0 is a Fréchet mean ofX if t0 is a global minimiser of the varianceE.
We prove the following result:

Theorem 3.6. Assume thatM is a complete �nite dimensional Riemannian man-
ifold and that dM is the geodesic distance onM . We suppose thatdM is invariant
under the group action. LetX be a random variable onM , with Epdpx; X q2q   �8
for some x P M . We assume thatt0 is a �xed point and a Fréchet mean ofX and
that PpX PCpt0qq � 0 whereCpt0q is the cut locus oft0. Suppose that there exists a
point in the support of X which is not a �xed point nor in the cut locus of t0. Then
rt0s is not a Fréchet mean ofrX s.

The previous result is �nite dimensional and does not cover interesting in�nite
dimensional setting concerning curves for instance. However, a simple extension to
the previous result can be stated whenM is a Hilbert vector space since then the
space is �at and some technical problems like the presence of cut locus point do not
occur.

Theorem 3.7. Assume thatM is a Hilbert space and thatdM is given by the Hilbert
norm on M . We suppose thatdM is invariant under the group action. Let X be a
random variable onM , with Ep}X }2q   �8 . We assume thatt0 � EpX q. Suppose
that there exists a point in the support of the law ofX that is not a �xed point for
the action of G. Then rt0s is not a Fréchet mean ofrX s.

Note that the reciprocal is true: if all the points in the support of the law of X
are �xed points, then almost surely, for all m PM and for all g PG we have:

dM pX; m q � dM pg � X; m q � dQprX s; rmsq:

Up to the projection on the quotient, we have that the variance ofX is equal to the
variance of rX s in M {G, therefore rt0s is a Fréchet mean ofrX s if and only if t0 is
a Fréchet mean ofX . There is no inconsistency in that case.

Example 3.5. Theorem 3.7 covers the interesting case of the Fisher Rao metric on
functions:

F � t f : r0; 1s Ñ R | f is absolutely continuousu:

Then considering for G the group of smooth di�eomorphisms' on r0; 1s such that
' p0q � 0 and ' p1q � 1, we have a right group actionG� F Ñ F given by' �f � f � ' .
The Fisher Rao metric is built as a pull back metric of theL 2pr0; 1s; Rqspace through

the mapQ : F Ñ L 2 given by: Qpf q � 9f {
b

| 9f |: This square root trick is often used,
see for instance [Kurtek 2011b]. Note that in this case,Q is a bijective mapping with
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inverse given byq ÞÑf with f ptq �
³ t
0 qpsq|qpsq|ds. We can de�ne a group action on

M � L 2 as: ' � q � q � '
?

9' , for which one can check easily by a change of variable
that:

} ' � q � ' � q1}2 � } q � '
a

9' � q1� '
a

9' }2 � } q � q1}2:

So up to the mappingQ, the Fisher Rao metric on curve corresponds to the situation
M where theorem 3.7 applies. Note that in this case the set of �xed points under the
action of G corresponds in the spaceF to constant functions.

We can also provide an computation of the consistency bias in this setting:

Proposition 3.11. Under the assumptions of theorem 3.7, we writeX � t0 � �"
wheret0 is a �xed point, � ¡ 0, Ep"q � 0 and Ep}" }2q � 1. Furthermore, we assume
that the group G acts isometrically on M . If there is a Fréchet mean ofrX s, then
the consistency bias is linear with respect to� and it is equal to:

� sup
}v}� 1

Epsup
gPG

xv; g � "yq:

Proof. For � ¡ 0 and }v} � 1, we compute the varianceF in the quotient space of
rX s at the point t0 � �v . Sincet0 is a �xed point we get:

F pt0� �v q � Epinf
gPG

}t0� �v � gX }2q � Ep}X }2q�} t0}2� 2� Epsup
gPG

xv; gpX � t0qyq� � 2:

Then we minimise F with respect to � , and after we minimise with respect to v
(with }v} � 1). Which concludes. �

3.5.2 Proofs of these theorems

3.5.2.1 Proof of theorem 3.6

We start with the following simple result, which aims to di�erentiate the variance
of X . This classical result (see [Pennec 2006] for instance) is proved again here to
be the more self-contained as possible:

Lemma 3.9. Let X a random variable onM such thatEpdpx; X q2q   �8 for some
x P M . Then the variance m ÞÑEpmq � EpdM pm; X q2q is a continuous function
which is di�erentiable at any point m PM such thatPpX PCpmqq � 0 whereCpmq
is the cut locus ofm. Moreover at such point one has:

r Epmq � � 2EpLogm pX qq;

where Logm : M zCpmq Ñ Tm M is de�ned for any x P M zCpmq as the unique
u PTm M such that Expm puq � x and }u}m � dM px; mq.

Proof of lemma 3.9. By triangle inequality it is easy to show that E is �nite and
continuous everywhere. Moreover, it is a well known fact thatx ÞÑdM px; zq2 is
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di�erentiable at any m PM zCpzq (i.e. z RCpmq) with derivative � 2Logm pzq. Now
since:

|dM px; zq2 � dM py; zq2| � | dM px; zq � dM py; zq}dM px; zq � dM py; zq|

¤ dM px; yqp2dM px; zq � dM py; xqq;

we get in a local chart � : U Ñ V € Rn at t � � pmq we have locally aroundt that:

h ÞÑdM p� � 1ptq; � � 1pt � hqq;

is smooth and |dM p� � 1ptq; � � 1pt � hqq| ¤ C|h| for a C ¡ 0. Hence for su�ciently
small h, |dM p� � 1ptq; zq2 � dM p� � 1pt � hq; zq2| ¤ C|h|p2dM pm; zq � 1q. We get
the result from dominated convergence Lebesgue theorem withEpdM pm; X qq ¤
EpdM pm; X q2 � 1q   �8 . �

We are now ready to prove theorem 3.6.

Proof. (of theorem 3.6) Let m0 be a point in the support of M which is not a
�xed point and not in the cut locus of t0. Then there exists g0 P G such that
m1 � g0m0 � m0. Note that as the distance is equivariant under the action ofG,
we have that m1 � g0 � m0 RCpg0 � t0q � Cpt0q (t0 is a �xed point under the action
of G). Let v0 � Logt0

pm0q and v1 � Logt0
pm1q. We havev0 � v1 and sinceCpt0q is

closed and the Logt0
is a continuous application onM zCpt0q we have:

lim
� Ñ 0

1
PpX PB pm0; � qq

Ep1X PB pm0 ;� qLogt0
pX qq � v0:

(we use here the fact that sincem0 is in the support of the law of X , PpX P
B pm0; � qq ¡ 0 for any � ¡ 0 so that the denominator does not vanish and the fact
that since M is a complete manifold, it is a locally compact space (the closed balls
are compacts) and Logt0

is locally bounded). Similarly:

lim
� Ñ 0

1
PpX PB pm0; � qq

Ep1X PB pm0 ;� qLogt0
pg0 � X qq � v1:

Thus for su�ciently small � ¡ 0 we have (sincev0 � v1):

EpLogt0
pX q1X PB pm0 ;� qq � EpLogt0

pg0 � X q1X PB pm0 ;� qq: (3.51)

By using using areductio ad absurdum, we suppose thatrt0sis a Fréchet mean ofrX s
and we want to �nd a contradiction with (3.51). In order to do that we introduce
simple functions as the functionx ÞÑ1xPB pm0 ;� q which intervenes in Equation (3.51).
Let s : M Ñ G be a simple function (i.e. a measurable function with �nite number
of values in G). Then x ÞÑhpxq � spxq � x is a measurable function3. Now, let

3 Indeed if: s �
n°

i � 1
gi 1A i where pA i q1¤ i ¤ n is a partition of M (such that the sum is always

de�ned). Then for any Borel set B € M we have: h� 1pB q �
n”

i � 1
g� 1

i pB q X A i is a measurable set

since x ÞÑgi x is a measurable function.
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Espxq � Epdpx; spX q �X q2qbe the variance of the variablespX q �X . Note that (and
this is the main point):

@g PG dM pt0; xq � dM pg � t0; g � xq � dM pt0; g � xq � dQprt0s; rxsq;

we have: Espt0q � Ept0q. Assume now that rt0s a Fréchet mean for rX s on the
quotient space and let us show thatEs has a global minimum at t0. Indeed for any
m, we have:

Espmq � EpdM pm; spX q �X q2q ¥ EpdQprms; rX sq2q ¥ EpdQprt0s; rX sq2q � Espt0q:

Now, we want to apply lemma 3.9 to the random variablesspX q �X and X at the
point t0. Since we assume thatX R Cpt0q almost surely and X R Cpt0q implies
spX q �X R Cpt0q we get PpspX q �X P Cpt0qq � 0 and the lemma 3.9 applies. As
t0 is a minimum, we already know that the di�erential of Es (respectively E) at t0

should be zero. We get:

EpLogt0
pX qq � EpLogt0

pspX q �X qq � 0: (3.52)

Now we apply Equation (3.52) to a particular simple function de�ned by spxq �
g01xPB pm0 ;� q � eG1xRB pm0 ;� q. We split the two expected values in (3.52) into two
parts:

EpLogt0
pX q1X PB pm0 ;� qq � EpLogt0

pX q1X RB pm0 ;� qq � 0; (3.53)

EpLogt0
pg0 � X q1X PB pm0 ;� qq � EpLogt0

pX q1X RB pm0 ;� qq � 0: (3.54)

By substrating (3.53) from (3.54), one gets:

EpLogt0
pX q1X PB pm0 ;� qq � EpLogt0

pg0 � X q1X PB pm0 ;� qq;

which is a contradiction with (3.51). Which concludes. �

3.5.2.2 Proof of theorem 3.7

Proof. The extension to theorem 3.7 is quite straightforward. In this setting many
things are now explicit sincedpx; yq � } x� y} , r xdpx; yq2 � 2px� yq, Logxpyq � y� x
and the cut locus is always empty. It is then su�cient to go along the previous proof
and to change the quantity accordingly. Note that the local compactness of the space
is not true in in�nite dimension. However this was only used to prove that the log
was locally bounded but this last result is trivial in this setting. �

3.6 Conclusion and discussion

In this chapter, we exhibit conditions which imply that the template estimation
with the Fréchet mean in quotient space is inconsistent. These conditions are rather
generic. As a result, without any more information, a priori there is inconsistency.
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Table 3.1: Behaviour of the consistency bias with respect to� 2 the variability of
X � t0 � �" . The constants K i 's depend on the kind of noise, on the templatet0

and on the group action.
Consistency bias noted CB G is any group Supplementary properties

for G a �nite group
Upper bound of CB CB ¤ � � 2

?
� 2 � K 1�

(proposition 3.8)
CB ¤ K 2� (theorem 3.3)

Lower bound of CB for � Ñ
8 when the template is not a
�xed point

CB ¥ L �
� Ñ8

K 3� (proposition 3.7)

Behavior of CB for � Ñ 0
when the template is not a
�xed point

CB ¤ U �
� Ñ 0

K 4
?

� CB �
0

op� kq, @k P N in the

section 3.3.6, can we extend
this result for �nite group?

CB when the template is a
�xed point

CB � � sup
}v}� 1

EpsupgPG xv; g � "yq(proposition 3.11)

The behaviour of the consistency bias is summarized in table 3.1. Surely future
works could improve these lower and upper bounds.

In a more general case: when we take an in�nite-dimensional vector space quo-
tiented by a non isometric group action, is there always an inconsistency? An
important example of such action is the action of di�eomorphisms. Can we esti-
mate the consistency bias? In this setting, one estimates the template (or an atlas),
but does not exactly compute the Fréchet mean in quotient space, because a regu-
larization term is added. In this setting, can we ensure that the consistency bias will
be small enough to estimate the original template? Otherwise, one has to recon-
sider the template estimation with stochastic algorithms as in [Allassonnière 2010]
or develop new methods [Kühnel 2017].
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A short version of this chapter has been published in a confer-
ence [Devilliers 2017a], then has been extend in theEntropy jour-
nal [Devilliers 2017b]. Compared to this journal paper, section 4.2.5 has been added.

Abstract: We tackle the problem of template estimation when data have been
randomly deformed under a group action in the presence of noise. In order to es-
timate the template, one often minimizes the variance when the in�uence of the
transformations have been removed (computation of the Fréchet mean in the quo-
tient space). The consistency bias is de�ned as the distance (possibly zero) between
the orbit of the template and the orbit of one element which minimizes the variance.
In a �rst part, we restrict ourselves to isometric group action, in this case the Hilbert
distance is invariant under the group action. We establish an asymptotic behavior
of the consistency bias which is linear with respect to the noise level. As a result
the inconsistency is unavoidable as soon as the noise is large enough. In practice,
the template estimation with a �nite sample is often done with an algorithm called
"max-max". In a second part, also in the case of isometric group action, we show
the convergence of this algorithm to an empirical Karcher mean. Our numerical
experiments show that the bias observed in practice can not be attributed to the
small sample size or to a convergence problem but is indeed due to the previously
studied inconsistency. In a third part, we also present some insights of the case
of a non invariant distance with respect to the group action. We will see that the
inconsistency still holds as soon as the noise level is large enough. Moreover we
prove the inconsistency even when a regularization term is added.

4.1 Introduction

4.1.1 General Introduction

The template estimation is a well known issue in di�erent �elds such as statistics
on signals [Kurtek 2011b], shape theory, computational anatomy [Guimond 2000,
Joshi 2004, Cootes 2004] etc. In these �elds, the template (which can be viewed
as the prototype of our data) can be (according to di�erent vocabulary) shifted,
transformed, wrapped or deformed due to di�erent groups acting on data. More-
over, due to a limited precision in the measurement, the presence of noise is almost
always unavoidable. These mixed e�ects on data lead us to study the consistency
of algorithms which claim to compute the template. A popular algorithm con-
sists in the minimization of the variance, in other words, the computation of the
Fréchet mean in quotient space. This method has been already proved to be in-
consistent [Bigot 2011, Miolane 2017, Devilliers 2017c]. In [Bigot 2011] the authors
proves the inconsistency with a lower bound of the expectation of the error between
the original template and the estimated template with a �nite sample, they deduce
that this expectation does not go to zero as the size of the sample goes to in�nity.
This work was done in a functional space, where functions only observed at a �nite
number of points of the functions were observed. In this case one can model these
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observable values on a grid. When the resolution of the grid goes to zero, one can
show the consistency [Panaretos 2016] by using the Fréchet mean with the Wasser-
stein distance on the space of measures rather than in the space of functions. But
in (medical) images the number of pixels or voxels is �nite.

In [Miolane 2017], the authors demonstrated the inconsistency in a �nite dimen-
sional manifold with Gaussian noise, when the noise level tends to zero.

In chapter 3, we focused our study on the inconsistency with Hilbert Space (in-
cluding in�nite dimensional case) as ambient space, for isometric action. Although
we gave some bounds of the consistency bias when the noise level tends to in�nity,
we did not gave an asymptotic behaviour of the consistency bias.

4.1.2 Settings and Notation

In this paper, we suppose that observations belong to a Hilbert spacepM; x�; �yq,
we denote by} � } the norm associated to the dot productx�; �y. We also consider a
group of transformation G which acts on M the space of observations. This means
that 1 g1 � pg � xq � p g1gq �x and eG � x � x for all x P M , g; g1 P G, where eG is the
identity element of G.

The generative model is the following: we transform an unknown tem-
plate t0 P M with � a random and unknown element of the groupG and we add
some noise. Let� be a positive noise level and" a standardized noise:Ep"q � 0,
Ep}" }2q � 1. Moreover we suppose that" and � are independent random variables.
Finally, the only observable random variable is:

Y � � � t0 � �": (4.1)

This generative model is commonly used in Computational anatomy in diverse
frameworks, for instance with currents [Durrleman 2014], but also in functional
data analysis [Kurtek 2011b].

For instance: if we assume that the noise is independent and identically dis-
tributed on each pixel or voxel with a standard deviation w on each pixel/voxel,
then � �

?
Nw, where N is the number of pixels/voxels. But the noise which we

consider can be more general: we do not require the fact that the noise is indepen-
dent over each region of the spaceM .

Note that the inconsistency of template estimation can be also studied with an
alternative generative model, called backward model whereY � � � pt0 � �" q chap-
ter 3. Some authors also use the termperturbation model see [Huckemann 2011,
Rohlf 2003, Goodall 1991].

Quotient space: the random transformation of the template by the group
leads us to project the observationY into the quotient space. The quotient space
is de�ned as the set containing all the orbit rxs � t g � x; g PGu for x PM . The set
which is constituted of all orbits is called the quotient spaceM by the group G and

1Note that in this chapter, g � x is the result of the action of g on x, and � should not to be
confused with the multiplication of real numbers noted � .
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is noted by:

Q � M {G � tr xs; x PM u:

As we want to do statistics on this space, we aim to equip the quotient with a metric.
One often requires thatdM the distance in the ambient space is invariant under the
group action G (see �gure 4.1), this means that

@m; n PM; @g PG dM pg � m; g � nq � dM pm; nq:

If dM is invariant and if the orbits are closed sets2, then

dQprxs; rysq � inf
gPG

dM px; g � yq;

is well de�ned, and dQ is a distance in the quotient space. The quotient distance
dQprxs; rysqis the distance betweenx and y1 where y1 is the registration of y with
respect to x. We say in this case thaty1 is in optimal position with respect to x.



0







p � p 0; 1q

q � p� 2; 0q dQprps; rqsq � 1

Figure 4.1: Due to the invariant action, the orbits are parallel. Here the orbits are
circles centred at0. This is the case when the groupG is the group of rotations.

One particular distance in the ambient spaceM , which we use in all this chapter,
is the distance given by the norm of the Hilbert space:dM pa; bq � } a� b}. Moreover
we say that G acts isometrically on M , if x ÞÑg � x is a linear map which leaves
the norm unchanged. In this casedM the distance given by the norm of the Hilbert
space is invariant under the group action. The quotient (pseudo)-distance is, in this
case,dQpras; rbsq � inf

gPG
}a � g � b}.

Remark 4.1. When G acts isometrically onM a Hilbert space, by expansion of the
squared norm we have:

dQpras; rbsq2 � } a}2 � 2sup
gPG

xa; g � by � } b}2

2 If the orbits are not closed sets, it is possible to have dQ pras; rbsq � 0 even if ras � r bs, in this
case we calldQ a pseudo-distance. Nevertheless, this has no consequence in this chapter ifdQ is
only a pseudo-distance.
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Thus, even if the quotient space is not a linear space, we have a "polarization
identity" in the quotient space:

sup
gPG

xa; g � by �
1
2

�
}a}2 � } b}2 � d2

Qpras; rbs
�

�
1
2

�
d2

Qpras; r0sq � d2
Qprbs; r0sq � d2

Qpras; rbsq
�

(4.2)

When the distance given by the norm is invariant under the group action, we
de�ne the variance of the random orbit rYs as the expectation of the (pseudo)-
distance between the random orbitrYs and the orbit of a point x in M :

F pxq � Epd2
Qprxs; rYsqq � Epinf

gPG
}g � x � Y }2q � Epinf

gPG
}x � g � Y }2q:

Note that F pxq is well de�ned for all x P M becauseEp}Y }2q is �nite. Moreover,
sinceF pg � xq � F pxq, for all x PM and g PG, the variance F is well de�ned in the
quotient space: rxs ÞÑF pxq does have a sense.

Besides, in presence of a sample of the observable variableY noted Y1; : : : ; Yn ,
one can de�ne the empirical variance of a pointx in M :

Fnpxq �
1
n

n¸

k� 1

�
inf
gPG

}g � x � Yi }2



�
1
n

n¸

k� 1

�
inf
gPG

}x � g � Yi }2



:

De�nition 4.1. The template estimation is performed by minimizingFn :

t̂0n � argminxPM Fnpxq:

In order to study this estimation method, one can look the limit of this estimator
when the number of datan tends to �8 , in this case, the estimation becomes:

t̂08 � argminxPM F pxq:

If m� PM minimizes F , then rm� s is called a Fréchet mean ofrYs.

De�nition 4.2. We say that the estimation is consistent ift0 minimizes F . More-
over the consistency bias, noted CB, is the (pseudo)-distance between the orbit of
the templatert0s and rm� s:

CB � dQprt0s; rm� sq:

If such a m� does not exists, then the consistency bias is in�nite.

Note that, if the action is not isometric and is not either invariant, a priori dQ

is no longer a (pseudo)-distance in the quotient space (this point is discussed in
section 4.3). However one can still de�neF and wonder if the minimization of F is
a consistent estimator oft0. In this case we callF a pre-variance.
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4.1.3 Questions and Contributions

This setting leads us to wonder about few things listed below:

Questions:

� Is t0 a minimum of the variance or the pre-variance?

� What is the behavior of the consistency bias with respect to the noise level?

� How to perform such a minimization of the variance? Indeed, in practice we
have only a sample and not the whole distribution.

Contribution: In the case of an isometric action, we provide a Taylor expansion
of the consistency bias when the noise level� tends to in�nity. As we do not have the
whole distribution, we minimize the empirical variance given a sample. An element
which minimizes this empirical variance is called an empirical Fréchet mean. We
already know that the empirical Fréchet mean converges to the Fréchet mean when
the sample size tends to in�nity [Ziezold 1977]. Therefore our problem is reduced to
�nding an empirical Fréchet mean with a �nite but su�ciently large sample. One
algorithm called the "max-max" algorithm [Allassonnière 2007] aims to compute
such an empirical Fréchet mean. We establish some properties of the convergence
of this algorithm. In particular, when the group is �nite, the algorithm converges
in a �nite number of steps to an empirical Karcher mean (a local minimum of the
empirical variance given a sample). This helps us to illustrate the inconsistency in
this very simple framework.

We would like to insist on this point: the noise is created in the ambient space
with our generative model and the computation of the Fréchet mean is done in the
quotient space, this interaction induces an inconsistency. On the opposite, if one
models the noise directly in the quotient space and compute the Fréchet mean in
the quotient space, we have no reason to suspect any inconsistency.

Moreover it is also possible to de�ne and use isometric actions on
curves [Hitziger 2013, Kurtek 2011b] or on surfaces [Kurtek 2011a] where our work
can be directly applied. The previous works related to the inconsistency of the
template estimation [Bigot 2011, Miolane 2017] and chapter 3 focused to isometric
action, which is a restriction to real applications. That is why, we provide, in sec-
tion 4.3, some insights of the non invariant case: the inconsistency also appears as
soon as the noise level is large enough.

This chapter is organized as follows: Section 4.2 is dedicated for isometric action.
More precisely, in section 4.2.1, we study the presence of the inconsistency and we
establish the asymptotic behavior when the noise parameter� tends to 8 . In
section 4.2.3 we detail the max-max algorithm and its properties. In section 4.2.4
we illustrate the inconsistency with synthetic data. In section 4.2.5, we see some
examples of the registration score surface. This surface, seen in section 4.2.1 is a
deformation of the unit sphere: for each unit vector, the amount of deformation of
this vector is given by the quality of registration of data with respect to this vector.
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Finally in section 4.3, we prove the inconsistency for more general group action,
when the noise level is large enough. We do it in two settings, �rstly, the group
contains a subgroup acting isometrically onM , secondly the group acts linearly on
the spaceM .

4.2 Inconsistency of the template estimation with an iso-
metric action when the noise level tends to in�nity.

4.2.1 Inconsistency and quanti�cation of the consistency bias

We start with theorem 4.1 which gives us an asymptotic behavior of the consistency
bias when the noise level� tends to in�nity. One key notion in theorem 4.1 is the
concept of �xed point under the action G: a point x P M is a �xed point if for all
g PG; g� x � x. We require that the support of the noise" is not included in the set
of �xed points. But this condition is almost always ful�lled. For instance in Rn the
set of �xed points under a linear group action is a null set for the Lebesgue measure
(unless the action is trivial: g � x � x for all g PG but this situation is irrelevant).

Theorem 4.1. Let us suppose that the support of the noise" is not included in the
set of �xed points under the group action. LetY be the observable variable de�ned in
Equation (4.1). If the Fréchet mean ofrYs exists, then we have the following lower
and upper bounds of the consistency bias noted CB:

�K � 2}t0} ¤ CB ¤ �K � 2}t0}; (4.3)

whereK � sup
}v}� 1

E

�

sup
gPG

xv; g � "y

�

P p0; 1s, K is a constant which depends only of

the standardized noise and of the group action. In particular,K does not depends of
the template. The consistency bias has the following asymptotic behavior when the
noise level� tends to in�nity:

CB � �K � op� q as � Ñ �8 : (4.4)

In the following we note by S the unit sphere of M . For v P S, we call � pvq �

E

�

sup
gPG

xv; g � "y

�

, so that K � sup
vPS

� pvq. The sketch of the proof is the following:

� K ¡ 0 because the support of" is not included in the set of �xed points under
the action of G.

� K ¤ 1 is the consequence of the Cauchy-Schwarz inequality.

� The proof of Inequalities (4.3) is based on the triangular inequalities:

}m� } � } t0} ¤ CB � inf
gPG

}t0 � g � m� } ¤ } t0} � } m� };

where m� minimizes F : having a piece of information about the norm ofm�

is enough to deduce a piece of information about the consistency bias.
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� The asymptotic Taylor expansion of the consistency bias (4.4) is the direct
consequence of inequalities (4.3).

Proof of theorem 4.1. We note S the unit sphere in M . In order to prove that
K ¡ 0, we take x in the support of " such that x is not a �xed point under the
action of G. There exists g0 P G such that g0 � x � x. We note v0 � g0 �x

}x} P S, we
have xv0; g0 � xy � } x} ¡ x v0; xy and by continuity of the dot product there exists
r ¡ 0 such that: @y P B px; r q xv0; g0 � yy ¡ x v0; yy as x is in the support of " we
have Pp" PB px; r qq ¡ 0, it follows:

P

�

sup
gPG

xv0; g � "y ¡ x v0; "y

�

¡ 0: (4.5)

Thanks to Inequality (4.5) and the fact that supgPG xv0; g � "y ¥ xv0; "y we have:

� pv0q � E

�

sup
gPG

xv0; g � "y

�

¡ Epxv0; "yq � x v0; Ep"qy � x v0; 0y � 0:

Then we getK ¥ � pv0q ¡ 0. Moreover, if we use the Cauchy-Schwarz inequality:

K ¤ sup
vPS

Ep}v} � } " }q ¤ Ep}" }2q
1
2 � 1:

In order to prove Inequalities (4.3), we use the "polar" coordinates of a point in
M , every point in M can be represented bypr; vq where r ¥ 0 is the radius, and v
belong to S the unit sphere in M , v represents the "angle". We computeF pmq as
a function of pr; vq. In a �rst step, we minimize this expression as a function ofr ,
in a second step we minimize this expression as a function ofv. This makes appear
the constant K (see �gure 4.2).

As we said, let us taker ¥ 0 and v PS, we expand the variance at the pointrv :

F prvq � E
�

inf
gPG

}rv � g � Y }2



� r 2 � 2r E

�

sup
gPG

xv; g � Yy

�

� Ep}Y }2q: (4.6)

Indeed }g � Y } � } Y } thanks to the isometric action. We note x � � maxpx; 0q the
positive part of x. Moreover we de�ne the two following functions:

� pvq � Epsup
gPG

xv; g � Yyq � Epsup
gPG

xg � Y; vyqand ~� pvq � � pvq� for v PS;

since that f : x P R� ÞÑx2 � 2bx � c reaches its minimum at the point r � b�

and f pb� q � c � p b� q2, the r � ¥ 0 which minimizes (4.6) is ~� pvq and the minimum
value of the variance restricted to the half lineR� v is:

F p~� pvqvq � Ep}Y }2q � ~� pvq2:
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�

Figure 4.2: We minimize the variance on each half-lineR� v where }v} � 1. The
element which minimizes the variance on such a half-line is~� pvqv, where ~� pvq ¥ 0.
We get a surface inM by S P v ÞÑ~� pvqv (which is a curve in this �gure since we
draw it in dimension 2). The proof of theorem 4.1 states that if rm� s is a Fréchet
mean then m� is an extreme point of this surface. On this picture there are four
extreme points which are in the same orbit: we took here the simple example of the
group of rotations of 0, 90, 180 and 270 degrees.

To �nd rm� s the Fréchet mean ofrYs, we need to maximize~� pvq2 with respect to
v PS:

m� � � pv� qv� with v� Pargmax
vPS

� pvq:

Note that we remove the positive part and the square because argmax� �
argmax p� � q2 indeed � takes a non negative value. In order to prove it let us
remark that:

� pvq ¥ Epxv; � � t0 � "yq � x v; Ep� � t0qy � 0;

then there are two cases: ifEp� � t0q � 0 then for any v P S we have� pvq ¥ 0, if

w � Ep� � t0q � 0 then we takev � w
}w} PS, and we get� pvq ¥

A
w

}w} ; w
E

� } w} ¥ 0.

As we said in the sketch of the proof we are interested in getting information
about the norm of }m� }:

}m� } � � pv� q � sup
vPS

�:

Let v PS, we have: �} t0} ¤ x v; g� � t0y ¤ } t0} because the action is isometric. Now
we decomposeY � � � t0 � �" and we get:

� pvq � E

�

sup
gPG

xv; g � Yy

�

� E

�

sup
gPG

pxv; g � �" y � x v; g� � t0yq

�

(4.7)

� pvq ¤ E

�

sup
gPG

pxv; g � �" y � } t0}q

�

� � E

�

sup
gPG

xv; g � "y

�

� } t0} (4.8)

� pvq ¥ E

�

sup
gPG

pxv; g � �" yq � } t0}

�

� � E

�

sup
gPG

xv; g � "y

�

� } t0}: (4.9)
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By taking the largest value in these inequalities with respect tov P S, we get by
de�nition of K :

� } t0} � �K ¤ } m� } � sup
vPS

� pvq ¤ } t0} � �K: (4.10)

Moreover we recall the triangular inequalities:

}m� } � } t0} ¤ CB � inf
gPG

}t0 � g � m� } ¤ } t0} � } m� }; (4.11)

Thanks to (4.10) and to (4.11), Inequalities (4.3) are proved. �

4.2.2 Remarks about theorem 4.1 and its proof

We can ensure the presence of inconsistency as soon as the signal to noise ratio
satis�es } t0 }

�   K
2 . Moreover, if the signal to noise ratio veri�es } t0 }

�   K
3 then the

consistency bias is not smaller than}t0} i.e.: CB ¥ } t0}. In other words, the Fréchet
mean in quotient space is too far from the template: the template estimation with
the Fréchet mean in quotient space is useless in this case. In chapter 3 we also gave
lower and upper bounds as a function of� but these bounds were less informative
than bounds given by theorem 4.1. These bounds did not give the asymptotic
behaviour of the consistency bias. Moreover, in chapter 3 the lower bound goes to
zero when the template becomes closed to �xed points. This may suggest that the
consistency bias was small for this kind of template. We prove here that it is not
the case.

Note that theorem 4.1 is not a contradiction with [Kurtek 2011b] where the
authors proved the consistency of the template estimation with the Fréchet mean in
quotient space for all � ¡ 0. Indeed their noise was included in the set of constant
functions which are the �xed points under their group action.

The constant K appearing in the asymptotic behaviour of the consistency
bias (4.4) is a constant of interest. We can give several (but similar) interpreta-
tions of K :

� It follows from Equation (4.3) that K is the consistency bias with a null
template t0 � 0 and a standardized noise (� � 1).

� From the proof of theorem 4.1 we know that0   K ¤ Ep}" }q ¤ 1. On the
one hand, ifG is the group of rotations then K � Ep}" }q, because for allv s.t.
}v} � 1, supgPG xv; g"y � } " }, by aligning v and " . On the other hand if G acts
trivially (which means that g � x � x for all g P G; x P M ) then K � 0. The
general case forK is between two extreme cases: the group where the orbits
are minimal (one point) and the group for which the orbits are maximal (the
whole sphere). We can state that the more the group action has the ability to
align the elements, the larger the constantK is and the larger the consistency
bias is.
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� The squared quotient distance between two points is:

dQpras; rbsq2 � } a}2 � 2 sup
gPG

xa; g � by � } b}2;

thus the larger supgPG xa; g � by, the smaller dQpras; rbsq. We get:

K � 1 �
1
2

inf
}v}� 1

Epd2
Qprvs; r"sqq

Therefore, the constant K encodes the level of contraction of the quotient
distance (or folding). The larger K is, the more contracted the quotient space
is.

� In chapter 3, we say that if the random variable was not included in the cone
of the template, there was inconsistency. However in theorem 4.1 there is
apparently no this notion of cone. In fact, this notion of cone appears, indeed
we have:

K ¡ 0 ðñ D v PM s.t. }v} � 1Supportp"q ‚ Conepvq:

Besides,K ¡ 0 is necessary to see inconsistency in theorem 4.1.

One disadvantage of theorem 4.1 is that it ensures the presence of inconsistency
for � large enough but it says nothing when� is small, in this case one can refer
to [Miolane 2017] or chapter 3. We can give a re�nement of theorem 4.1.

Corollary 4.1. Under the hypothesis of theorem 4.1, we have:

�K � 2distpt0; FixpM qq ¤ CB ¤ �K � 2distpt0; FixpM qq;

where FixpM q is the set of �xed points under the group action.

Proof. Indeed, in chapter 3 we have seen lemma 3.8 which states that we can trans-
late the random variable by a �xed point, besides this translation is a congruent
map. Therefore, it su�ces to apply theorem 4.1 to Y � m0 � � pt0 � m0q � �" where
m0 is the orthogonal projection of t0 on FixpM q. �

We deduce immediately from corollary 4.1 a result which was already proved in
chapter 3 (proposition 3.11):

Corollary 4.2. Under the hypothesis of theorem 4.1, ift0 is a �xed point, we have
an expression of the consistency bias:

CB � �K:

In the proof of theorem 4.1, we have seen that the minimum of the variance
restricted to the half-line R� v for v PS, was

Ep}Y }2q �

� �
E

�
inf
gPG

xv; g � Yy


 �

� 2

:
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therefore ~� pvq �
�

E
�

inf
gPG

xv; g � Yy


 �

is a registration score: ~� pvq tells you how

much it is a good idea to search the Fréchet mean ofrYs in the direction pointed by
v: the more ~� pvq is large, the morev is a good choice. On the contrary when this
value is equal to zero, it is useless to search the Fréchet mean in this direction.

Likewise, for v P S, � pvq � Epsup
gPG

xg � v; "yq is a registration score with respect

to the noise, the larger � pvq, the more the unit vector v looks like to the noise"
after registration.

If rm� s is a Fréchet mean ofrYs we have seen that its norm veri�es:

}m� } � sup
}v}� 1

Epsup
gPG

xv; g � Yyq:

Then if there are two di�erent Fréchet means of rYs noted rm� s and rn� s, we can
deduce that }m� } � } n� }. Even if there is no uniqueness of the Fréchet mean in the
quotient space, we can state that the representants of the di�erent Fréchet means
have all the same norm.

We can also wonder if the converse of theorem 4.1 is true: if" is a non biased
noise always included in the set of �xed points, isrt0sa Fréchet mean ofr� � t0 � �" s?

Proposition 4.1. Let G be a group acting isometrically onM an Hilbert space. We
consider a templatet0 and " a standardized noise. We de�ne the observable variable
Y by Y � � � t0 � �" , where � ¡ 0. If " belongs almost surely in the set of �xed
points, then t0 is a Fréchet mean ofrYs.

Proof. A simple computation show that t0 is a minimum of the variance:

F pmq � E
�

inf
gPG

}m � g � p� � t0 � �" q}2



� } m}2 � Ep}� � t0 � �" }2q � 2Epsup
gPG

xm; g� � t0y � x m; g � �" yq

� } m}2 � Ep}� � t0 � �" }2q � 2E

�

sup
gPG

xm; g � t0y

�

� 2xm; Ep�" qy

� } m}2 � Ep}� � t0 � �" }2q � 2E

�

sup
gPG

xm; g � t0y

�

(4.12)

We see that the elementm which minimizes (4.12) does not depend of� , in particular
we can assume� � 0, and wonder which elements minimizes

F pmq � Epinf
gPG

}m � g� � t0}2q � inf
gPG

}m � g � t0}2

it becomes clear that only the points in the closure of the orbit oft0 can minimize
this variance. �

Then when " is included in the set of �xed points, the estimation is always
consistent for all � . This is an alternative proof of the Theorem of consistency done
by Kurtek et al. [Kurtek 2011b].
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In the proof of theorem 4.1, we have seen that the direction of the Fréchet mean
of rYs is given by the supremum of this quantity (4.7):

E

�

sup
gPG

xv; g � �" y � x v; g� � t0y

�

:

This Equation is a good illustration of the di�culty to compute the Fréchet mean in
quotient space. Indeed, we have on one side the contribution of the noisexv; g � �" y
and on the other side the contribution of the templatexv; g� � t0y, and we take the
supremum of the sum of these two contributions overg P G. Unfortunately the
supremum of the sum of two terms is not equal to the sum of the supremum of each
of these terms. Hence, it is di�cult to separate these two contributions. However,
we can intuit that when the noise is large,xv; g � �" y prevails over xv; g� � t0y, and
the use of the Cauchy-Schwarz inequality in Equations (4.8) and (4.9) proves it
rigorously. We can conclude that, when the noise is large, the direction of the
Fréchet mean in the quotient space depends more on the noise than on the template.

4.2.3 Template estimation with the Max-Max Algorithm

4.2.3.1 Max-Max Algorithm Converges to a Local Minima of the Em-
pirical Variance

Section 4.2.1 can be understood as follows: if we want to estimate the template
by minimizing the Fréchet mean in the quotient space, then there is a bias. This
supposes that we are able to compute such a Fréchet mean. In practice, we can-
not minimize the exact variance in quotient space, because we have only a �nite
sample and not the whole distribution. In this section we study the estimation
of the empirical Fréchet mean with the max-max algorithm. We assume that the
group is �nite. In this case, the registration can always be found by an exhaustive
search. Hence, the numeric experiments which we conduct in section 4.2.4 lead to
an empirical Karcher mean in a �nite number of steps. In a compact group acting
continuously, the registration also exists but is not necessarily computable without
approximation.

If we have a sample:Y1; : : : ; YI of independent and identically distributed copies
of Y , then we de�ne the empirical variance in the quotient space:

M Qx ÞÑFI pxq �
1
I

I¸

i � 1

d2
Qprxs; rYi sq (4.13)

�
1
I

I¸

i � 1

min
gi PG

}x � gi � Yi }2

�
1
I

I¸

i � 1

min
gi PG

}gi � x � Yi }2:

The empirical variance is an approximation of the variance. Indeed thanks to the
law of large number we havelim

I Ñ8
FI pxq � F pxq for all x P M . One element which
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minimizes globally (respectively locally) FI is called an empirical Fréchet mean
(respectively an empirical Karcher mean). Forx P M and g P GI : g � p g1; : : : ; gI q
where gi PG for all i � 1::I we de�ne J an auxiliary function by:

J px; gq �
1
I

I¸

i � 1

}x � gi � Yi }2 �
1
I

I¸

i � 1

}g� 1
i � x � Yi }2:

The max-max algorithm (algorithm 1) iteratively minimizes the function J in the
variable x P M and in the variable g P GI (see also �gure 4.3). This algorithm
is nothing else than a gradient descent, it has also known as Procrustes Analysis
[Gower 1975, Goodall 1991].

Algorithm 1 Max-Max algorithm
Require: A starting point m0 PM , a sampleY1; : : : ; YI .

n � 0.
while Convergence is not reacheddo

Minimizing g PGI ÞÑJ pmn ; gq: we getgn
i by registering Yi with respect to mn .

Minimizing x PM ÞÑJ px; gnq: we get mn� 1 � 1
I

I°

i � 1
gn

i Yi .

n � n � 1.
end while
m̂ � mn

First, we note that this algorithm is sensitive to the the starting point. However
we remark that m1 � 1

I

° I
i � 1 gi � Yi for somegi PG, thus without loss of generality,

we can start from m1 � 1
I

° I
i � 1 gi � Yi for somegi P G. The empirical variance does

not increase at each step of the algorithm since:

FI pmnq � J pmn ; gnq ¥ J pmn� 1; gnq ¥ J pmn� 1; gn� 1q � FI pmn� 1q

Proposition 4.2. As the group is �nite, the convergence is reached in a �nite num-
ber of steps.
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x

g

m0 m1 m2 mn � 1 mn

g0

g1

gn � 1

gn

J pm0 ; g0q

J pm1 ; g0q

J pm1 ; g1q

J pmn � 1 ; gn � 1q J pmn ; gn � 1q

J pmn ; gn q

Figure 4.3: Iterative minimization of the function J on the two axes, the horizontal
axis represents the variable in the spaceM , the vertical axis represents the set of all
the possible registrationsGI . Once the convergence is reached, the pointpmn ; gnqis
the minimum of the function J on the two axis in green. Is this point the minimum
of J on its whole domain? There are two pitfalls: �rstly this point could be a saddle
point, it can be avoided with proposition 4.3, secondly this point could be a local
(but not global) minimum, this is discussed in section 4.2.4.3

Proof of proposition 4.2. The sequencepFI pmnqqnPN is non-increasing. Moreover
the sequencepmnqnPN takes value in a �nite set which is: t 1

I

° I
i � 1 gi � Yi ; gi P Gu:

Therefore, the sequencepFI pmnqqnPN is stationary. Let n P N such that FI pmnq �
FI pmn� 1q. Hence the empirical variance did not decrease between stepn and step
n � 1 and we have:

FI pmnq � J pmn ; g
n
q � J pmn� 1; g

n
q � J pmn� 1; g

n� 1
q � FI pmn� 1q;

as mn� 1 is the unique element which minimizesm ÞÑJ pm; g
n
q we conclude that

mn� 1 � mn . �

This proposition gives us a shuto� parameter in the max-max algorithm: we stop
the algorithm as soon asmn � mn� 1. Let us call m̂ the �nal result of the max-max
algorithm. It may seem logical that m̂ is at least a local minimum of the empirical
variance. However this intuition may be wrong: let us give a toy counterexample,
suppose that we observeY1; : : : ; YI , due to the transformation of the group it is
possible that

° n
i � 1 Yi � 0. We can start from m1 � 0 in the max-max algorithm, as

Yi and 0 are already registered, the max-max algorithm does not transformYi . At
step two, we still havem2 � 0, by induction the max-max algorithm stays at 0 even
if 0 is not a Fréchet or Karcher mean ofrYs. Because0 is equally distant from all the
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points in the orbit of Yi , 0 is called a focal point ofrYi s. The notion of focal point is
important for the consistency of the Fréchet mean in manifold [Bhattacharya 2008].
Fortunately, the situation where m̂ is not a Karcher mean is almost always avoided
due to the following statement:

Proposition 4.3. Let m̂ be the result of the max-max algorithm. If the registration
of Yi with respect to m̂ is unique, in other words, if m̂ is not a focal point of Yi for
all i P 1::I then m̂ is a local minimum of FI : rm̂s is an empirical Karcher mean of
rYs.

Note that, if we call z the registration of y with respect to m, then the registration
is unique if and only if xm; z � g � zy � 0 for all g P GzteGu. Once the max-max
algorithm has reached convergence, it su�ces to test this condition form̂ obtained
by the max-max algorithm and Yi for all i . This condition is in fact generic and is
always obtained in practice.

Proof of proposition 4.3. We call gi the unique element inG which register Yi with
respect to m̂, for all h P Gztgi u, }m̂ � gi � Yi }   } m̂ � hi � Yi }. By continuity of the
norm we have fora close enough tom: }a� gi � Yi }   } a� hi � Yi } for all hi � gi (note
that this argument requires a �nite group). The registrations of Yi with respect to
m and to a are the same:

FI paq �
1
I

I¸

i � 1

}a � gi � Yi }2 � J pa; gq ¥ J pm̂; gq � FI pm̂q;

becausem ÞÑJ pm; gq has one unique local minimumm̂. �

This condition of the unique registration may be seem, odd, in fact this is a
natural condition. Indeed, we can state a result which states that if rmn� s is a
empirical Fréchet mean, then the registration of the data is unique:

Proposition 4.4. Let G a group acting isometrically on M a Hilbert space, let
Y1; : : : ; Yn being a sample of a random variableY , let rmn� sbeing a empirical Fréchet

mean ofY . Then mn� � 1
n

n°

i � 1
gpYi ; mn� q �Yi , wheregpYi ; m� q Pargmin

gPG
}g� Yi � mn� }.

Furthermore, gpYi ; m� q is unique up to an element of IsopYi q, this means that:

gpYi ; mn� q; ~gpYi ; mn� q Pargmin
gPG

}gYi � mn� } ùñ gpYi ; mn� q �Yi � ~gpYi ; mn� q �Yi

Proof. We want to �nd:

argmin
g1 ;:::gn

argmin
mPM

1
n

n¸

i � 1

}m � gi � Yi }2:

Then, if rmn� s, we havemn� � 1
n

n°

i � 1
}m � gi � Yi }2. Then we need to minimize:

argmin
g1 ;:::gn

1
n

n¸

i � 1

�
�
�
�
�

�
1
n

n¸

i � 1

gi � Y

�

� gi � Yi

�
�
�
�
�

2

:
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Therefore mn� � 1
n

n°

i � 1
gpYi ; mn� q �Yi . For every j , let us consider:

gpYj ; mn� q �Yj ; ~gpYj ; mn� q �Y Pargmin
gPG

}g � Yj � mn� }:

Then we have:

mn� �
1
n

n¸

i � 1

gpYi ; mn� q �Yi �
1
n

�
n¸

i � 1;i � j

pgpYi ; mn� q �Yi q � ~gpYj ; mn� q �Yj

�

:

By simplifying the sum, we get gpYj ; mn� q �Yj � ~gpYj ; mn� q �Yj . �

In chapter 5, proposition 5.2, we generalize proposition 4.4, at the Fréchet mean
of rYs instead of the empirical Fréchet mean ofY1; : : : Yn .

Remark 4.2. We remark the max-max algorithm is in fact a gradient descent. The
gradient descent is a general method to �nd the minimum of a di�erentiable function.
Here we are interested in the minimum of the varianceF : let m0 PM and we de�ne
by induction the gradient descent of the variancemn� 1 � mn � � r F pmnq, where
� ¡ 0 and F the variance in the quotient space. In chapter 3, the gradient of the
variance in quotient space for �nite group and for a regular pointm was computed
(m is regular as soon asg � m � m implies g � e), this leads to:

mn� 1 � mn � 2� rmn � EpgpY; mnq �Yqs;

where gpY; mnq is the almost-surely unique element of the group which registersY
with respect to mn . Now if we have a set of dataY1; : : : ; Yn we can approximated
the expectation which leads to the following approximated gradient descent:

mn� 1 � mnp1 � 2� q � �
2
I

I¸

i � 1

gpYi ; mnq �Yi ;

now by taking � � 1
2 we getmn� 1 � 1

I

° I
i � 1 gpYi ; mnq � Yi . So the approximated

gradient descent with� � 1
2 is exactly the max-max algorithm. But the max-max

algorithm for �nite group, is proved to be converging in a �nite number of steps
which is not the case for gradient descent in general.

4.2.4 Simulation on synthetic data

In this section, we consider data in an Euclidean spaceRN equipped with its canon-
ical dot product x�; �y, and G � Z{NZ acts on RN by horizontal translation:

Z{N Z � RN Ñ RN

p�k; px1; : : : ; xN qq ÞÑ px1� k ; x2� k ; : : : xN � kq
;

where indexes are taken moduloN . This space models the discretization of func-
tions de�ned on r0; 1s with N points. This action is found in [Allassonnière 2007]
and used for neuroelectric signals in [Hitziger 2013]. The registration between two
vectors can be made by an exhaustive research but it is faster with the fast Fourier
transform [Cooley 1965].
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4.2.4.1 Max-max algorithm with a step function as template

(a) Example of a template (a step function)
and the estimated template m̂ with a sam-
ple size 105 in R64 , " is Gaussian noise and
� � 10. At the discontinuity points of the
template, we observe a Gibbs-like phenom-
ena.

(b) Variation of FI pt0q (in blue) and of
FI pm̂q (in red) as a function of I the size
of the sample. Since convergence is already
reached, F pm̂q, which is the limit of red
curve, is below F pt0q: F pt0q is the limit
of the blue curve. Due to the inconsis-
tency, m̂ is an example of point such that
F pm̂q   F pt0q.

Figure 4.4: Template t0 and template estimation m̂ on �gure 4.4a. Empirical vari-
ance at the template and the template estimation with the max-max algorithm as
a function of the size of the sample on �gure 4.4b.

We display an example of a template and the template estimation with the
max-max algorithm on �gure 4.4a. This experiment was already conducted
in [Allassonnière 2007], but no explanation of the appearance of the bias was pro-
vided. We know from section 4.2.3 that the max-max output is an empirical Karcher
mean, and that this result can be obtained in a �nite number of steps. Taking� � 10
may seem extremely high, however the standard deviation of the noise at each point
is not 10 but �?

N
� 1:25 which is reasonable.

The sample size is105, the algorithm stopped after 247 steps, andm̂ the esti-
mated template (in red on the �gure 4.4a) is not a focal points of the orbits rYi s,
then proposition 4.3 applies. We call empirical bias (noted EB) the quotient dis-
tance between the true template and the pointm̂ given by the max-max result. On
this experiment we haveEB

� � 0:11. Of course, one could think that we estimate the
template with an empirical bias due to a too small sample size which induces �uctu-
ation. To reply to this objection, we keep in memorym̂ obtained with the max-max
algorithm. If there was no inconsistency then we would haveF pt0q ¤ F pm̂q. We do
not know the value of the varianceF at these points, but thanks to the law of large
number, we know that:

F pt0q � lim
I Ñ8

FI pt0q and F pm̂q � lim
I Ñ8

FI pm̂q;
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Given a sample, we computeFI pt0q and FI pm̂q thanks to the de�nition of the
empirical variance FI (4.13). We display the result on �gure 4.4b, this tends to
con�rm that F pt0q ¡ F pm̂q. In other word, the variance at the template is larger
that the variance at the point given by the max-max algorithm.

4.2.4.2 Max-max algorithm with a continuous template

Figure 4.5: Example of an other template (here a discretization of a continuous
function) and the template estimation with a sample size103 in R64, " is Gaussian
noise and� � 10. Even with a continuous function the inconsistency appears.

Figure 4.4a shows that the main source of the inconsistency was the discontinuity
of the template. One may think that a continuous template would lead to a better
behaviour. But it is not the case as presented on �gure 4.5. Even with a large number
of observations created from a continuous template we do not observe a convergence
to the template. In the example of �gure 4.5, the empirical bias satis�esEB

� � 0:23.
In green we also display the mean of data knowing transformations. This means
that if the data are on the form Yi � � i � t0 � �" i , and if we know � i then we can
estimate the template by

1
n

n¸

i � 1

� � 1
i � Yi � t0 �

�
n

n¸

i � 1

� � 1
i " i ;

this produces a much better result, since that in this case we haveEB
� � 0:04. But

in practice, we do not know � i . A sample of size103 may seem a too small. Thus
we can do the same thing with a sample of size106 on �gure 4.6. We do not observe
a much better estimation.
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Figure 4.6: Example of the continuous template (here a discretization of a continuous
function) and the template estimation with a sample size106 in R64, " is Gaussian
noise and� � 10.

4.2.4.3 Does the max-max algorithm give us a global minimum or only
a local minimum of the variance?

Proposition 4.3 tells us that the output of the max-max algorithm is a Karcher mean
of the variance, but we do not know whether it is Fréchet mean of the variance. In
other words, is the output a global minimum of the variance? In fact,FI has a lot
of local minima which are not global. To illustrate this, we may use the max-max
algorithm with di�erent starting points and we observe di�erent outputs (which are
all local minima thanks to proposition 4.3) with di�erent empirical variances on
table 4.1.

Points t0 m̂1 m̂2 m̂3 m̂4 m̂5

Empirical variance at these points 97.068 96.073 96.074 96.074 96.074 96.074

Table 4.1: Empirical variances at the template and at5 di�erent outputs of the
max-max algorithm coming from the same sample of size105 pm̂i q1¤ i ¤ 5, but with
di�erent starting points. We use � � 10 and the action of horizontal translation in
R64. Conclusion: on these �ve points, onlym̂1 is an eventual global minima.

We observe that the variances at these points are very close. We also display
these local minima on �gure 4.7

Moreover we can compute all the quotient distances given two points in the
set t t0; m̂i u (table 4.2). We observe that all the Karcher means are concentrated
compared to the distance to the real template. One can intuit that the whole set of
Karcher means (including the Fréchet means) are concentrated in this neighborhood.

Of course all these results are sensitive to the size of the sample. In the following
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Figure 4.7: Several local minima computed from the same sample of size105, we
took the same step function as template. We zoomed in order to see better the
small di�erences between the di�erent outputs of the max-max algorithm given �ve
di�erent starting points.

we launch 100 times the max-max algorithm with 100 di�erent starting points. We
did it for a sample of size105 and with a sample of size104. In the �gure 4.8 we plot
an histogram of the distance between the template and the outputs of the max-max
algorithm. We observe that this distance depends less on the starting point with
a large sample. On this example, we can intuit that with an in�nite number of
observations the distance between the template and the Fréchet mean is unique:
whatever the starting point we would have the same bias.

4.2.5 Example of registration score surface

In the proof of theorem 4.1, we have seen that the direction of the Fréchet mean was

given by maximizing the ~� function on the sphere:S Qv ÞÑ

�

E

�

sup
gPG

xv; g � Yy

�� �

.

Through this process, we obtain a hyper-surface in the Hilbert spaceM which is
a deformation of the unit sphere. The current section aims to study such hyper-
surfaces on an example.

In order to obtain such a hyper-surface, we approximate the expectation in the
computation of ~� by the empirical expectation: we have an random hyper-surface
depending on the sample ofY we simulate. Then we can drawS Qv ÞÑ~� pvqv in
dimension 2 or 3. In dimension 2 for the action of rotation of angle 2�

n we observe
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Quotient distance t0 m̂1 m̂2 m̂3 m̂4 m̂5

t0 0 1.10584 1.10632 1.10589 1.10745 1.10584
m̂1 1.10584 0 0.09735 0.09807 0.13743 0.08668
m̂2 1.10632 0.09735 0 0.03114 0.20498 0.04093
m̂3 1.10589 0.09807 0.03114 0 0.20268 0.04140
m̂4 1.10745 0.13743 0.20498 0.20268 0 0.20398
m̂5 1.10584 0.08668 0.04093 0.04140 0.20398 0

Table 4.2: Quotient distance between two pairs of points among the template and
the �ve Karcher means, we remark that the di�erent Karcher means are closed to
each other compared to the distance between the template, in other words the set
of Karcher means seems localized in a small neighborhood far from the template

roughly a rose with n petals. Moreover this curve depends on the noise level.

Example 4.1. For the action of horizontal translation on R3. We
can change this noise level and observe the resulting movie on
http://loic.devilliers.free.fr/rosace3animation.gif.

For � � 0 we observe that the hyper-surface is three pieces of three spheres.
This can be shown and generalized in any dimension (including in�nite). Indeed for
� � 0 we have:

~� pvq � E

�

sup
gPG

xg� � t0; vy

� �

:

Since~� is invariant under the group action: ~� pvq � ~� pg�vq, without loss of generality
we can assume thatv belongs to the cone of the template. In this case we have
~�v � p xv; t0yq� . Then the point on the hyper-surface isxv; t0yv or 0 for v belonging
to Conept0q, and xv; t0y ¥ 0. Moreover:

t 0u
¤

txv; t0yv; v PSu €

#

p PR3
�
�
�
� p �

}t0}
2

�
�
�
�

2

�
}t0}2

4

+

:

In other words, these points are on the sphere of centert0
2 and radius } t0 }

2 . In
particular the segment r0; t0s is a diameter of this circle. We can conclude that,
when � � 0 this hyper-surface is a union of part of the spheres. There are as many
spheres as points in the orbits of the template.

When � ¡ 0, note that it is possible to have ~� pvq � 0. For instance assume that
the template is t0 P pR� q3, if the noise is su�ciently small, then Y belongs almost
surely in pR� q3. Let v P S be an unit vector in pR� q3 then supgPG xv; g � Yy   0
almost surely: the angle betweenv and g � Y is obtuse for everyg P G. Then
~�v � 0. This makes the hyper-surface singular to zero, since some vectors of the
sphere collapse to zero.

When � is not equal to zero, it is harder to interpret the resulting surface.
However, we believe that there is a link between the geometrical property of the
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Figure 4.8: Histogram of the quotient distance between the template and the output
of the max-max algorithm, in red we have the distribution of the distance of 100
max-max algorithm with the same sample of size105, in blue the distribution with
a sample of size104. The larger the size of the sample, the more concentrated the
distance is.

surface and the statistical property. We advocate, that the discovery of such a links
matters for a better understanding of the consistency bias.

4.3 Inconsistency in the case of non invariant distance
under the group action

4.3.1 Notation and hypothesis

In this section, data still come from a Hilbert spaceM . But we take a group of
deformation G which acts in a non invariant way on M . Starting from a template
t0 we consider a random deformation in the groupG namely a random variable�
which takes value in G and " an standardized noise inM independent of � . We
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Figure 4.9: Rose in the case of horizontal translation inR3 with a noise level� � 5:5,
we use a parametrization of a discretized of the sphere with2500points.

suppose that our observable random variable is:

Y � � � t0 � �" with � ¡ 0; Ep"q � 0; Ep}" }2q � 1;

where � is the noise level. We suppose thatEp}Y }2q   �8 , and we de�ne the
pre-variance ofY in M {G as the map de�ned by:

F pmq � E
�

inf
gPG

}g � m � Y }2



:

In this part we still study the inconsistency of the template estimation by minimizing
F .

We present two frameworks where we can ensure the presence of inconsistency:
in section 4.3.3 we suppose that the groupG contains a non trivial group H which
acts isometrically onM . But some groups do not satisfy this hypothesis, that is why,
in section 4.3.4 we do not suppose thatG contains a subgroup acting isometrically
but we require that G acts linearly on M . In both sections we prove inconsistency
as soon as the variance� 2 is large enough.

These hypothesis are not unacceptable as for example, deformations that are
considered in computational anatomy may include rotations which form a subgroup
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H of the di�eomorphic deformations which acts isometrically. Concerning the sec-
ond case, an important example is:

Example 4.2. Let G be a subgroup of the group ofC8 di�eomorphisms on Rn G
acts linearly on L 2pRnq with the map:

@' PG @f PL 2pRnq ' � f � f � ' � 1:

Note that this action is not isometric: indeed, f � ' � 1 has generally a di�erent
L 2-norm than f , because a Jacobian determinant appears in the computation of the
integral.

4.3.2 Where did we need an isometric action previously?

Let M be a Hilbert space, andG a group acting on M . Can we de�ne a distance
in the quotient space Q � M {G de�ned as the set which contains all the orbits?
When the action is invariant, the orbits are parallel in the sense wheredM pm; nq �
dM pg � m; g � nq for all m; n PM and for all g PG. This implies that:

dQprms; rnsq � inf
gPG

}m � g � n};

is a distance onQ. But it is not necessarily the case when the action is no longer
invariant. Let us take the following example:

Example 4.3. We call C8
di� pR2q the set of theC8 di�eomorphisms of M � R2.

We equipR2 with its canonical Euclidean structure. We takep � p� 1; � 1q, q � p 1; 1q
and r � p 2; 0q and we de�ne a groupG by:

G �
!

f PC8
di� pR2q |f pqq � p qq; f ppq � p pq; @x PR f px; 0q PRr

)
;

G acts onR2 by f �px; yq � f px; yq. In this casedQ (de�ne by dQpa; bq � inf
gPG

dM pa; g�

bq) is not a distance.

Indeed, �rst let us notice that q and p are �xed points under this group action and
the orbit of r is the horizontal line tpx; 0q; x PRu. On this example:

inf
gPG

}q � g � r } � } q � p 1; 0q} � 1 however inf
gPG

}r � g � q} � } r � q} �
?

2;

then the function dQ is not symmetric. One could think de�ne a distance by:

~dQprms; rnsq � inf
h;gPG

}h � m � g � n}:

Unfortunately, in this case we have:

~dQprps; rqsq � } p � q} � 2
?

2 and ~dQprps; rr sq � 1 � ~dQprr s; rqsq;

then we do not have ~dQprps; rqsq ¤ ~dQprps; rr sq � ~dQprr s; rqsq. In other words we do
not have the triangular inequality (see �gure 4.10).
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p

q

rrr s









~dQprps; rr sq � 1

~dQprqs; rr sq � 1

~dQprps; rqsq � 2
?

2

Figure 4.10: Example of three orbits, when~dQ does not satisfy the inequality tri-
angular.

Therefore when the action is no longer invariant,a priori one cannot de�ne
a distance in the quotient anymore. If Y is a random variable in M , F pmq �
Epinf gPG }g � m � Y }2q cannot be interpreted as the variance ofrYs.

However inf gPG }g � a � b} is positive and is equal to zero ifa � b, then inf gPG }g �
a � b} is a pre-distance inM . Then inf gPG }g � m � Y } measures the discrepancy
between the random point Y and the current point m. Even if the discrepancy
measure is not symmetric or does not satisfy the triangular inequality, we can still
de�ne F pxq � Epinf gPG }g � x � Y }2q and call it the pre-variance of the projection
of Y into M {G, if Ep}Y }2q   �8 . The elements which minimize this function are
the elements which orbit are the closest of the random pointY . Hence, we wonder
if the template can be estimated by minimizing this pre-variance. Note that, once
again F pxq � F pg� xqfor all x PM and g PG. Then the pre-variance is well de�ned
in the quotient space byrxs ÞÑF pxq.

It is not surprising to use a discrepancy measure which is not a distance, for
instance the Kullback-Leibler divergence [Kullback 1951] is not symmetric although
it is commonly used.

In the proof of inconsistency of theorem 4.1, we used that the action was isometric
in order to simplify the expansion of the variance in Equation (4.6):

F pmq � E
�

inf
gPG

}m � g � Y }2



� E
�

inf
gPG

�
}m}2 � x m; g � Yy � } g � Y }2�



;

with }g � Y }2 � } Y }2 there was only one term which depends ong: xg � m; Y y and
the two other terms could be pulled out of the in�mum. When the action is no
longer isometric we cannot do this trick anymore. To remedy this situation, in this
chapter we require that the orbit of the template is a bounded set.

4.3.3 Non invariant group action, with a subgroup acting isomet-
rically

In this Subsection, G acts on M a Hilbert space. We assume that there exists
a subgroup H € G such that H acts isometrically on M . As H is included in
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G, we deduce a useful link between the variance ofY projected in M {H and the
pre-variance ofY projected in M {G:

F pmq � E
�

inf
gPG

}g � m � Y }2



¤ E
�

inf
hPH

}h � m � Y }2



� FH pmq:

The orbit of a point m under the group actionG is rms � t g�m; g PGu, whereas the
orbit of the point m under the group actionH is rmsH � t h � m; h PH u. Moreover,
we call FH the variance ofrYsH in the quotient spaceM {H , and F the pre-variance
of rYs in the quotient spaceM {G.

4.3.3.1 Inconsistency when the template is a �xed point

We begin by assuming that the templatet0 is a �xed point under the action of G:

Proposition 4.5. Suppose thatt0 is a �xed point under the group actionG. Let "
be a standardized noise which support is not included in the �xed points under the
group action of H , and Y � � � t0 � �" � t0 � �" . Then t0 is not a minimum of the
pre-variance F

Proof. We have:

1. Thanks to corollary 4.2 of section 4.2.1 we know thatrt0sH � r EpYqsH is not
the Fréchet mean ofrYsH the projection of Y into M {H : we can �nd m PM
such that:

FH pmq   FH pt0q: (4.14)

Note that in order to apply corollary 4.2, we do not need that � is included
in H , becauset0 is a �xed point.

2. Because we take the in�mum over more elements we have:

F pmq ¤ FH pmq: (4.15)

3. As t0 is a �xed point under the action of G and under the action ofH :

FH pt0q � F pt0q � Ep}t0 � Y }2q: (4.16)

With Equations (4.14), (4.15) and (4.16), we conclude thatt0 does not minimizeF .
�

4.3.3.2 Inconsistency in the general case for the template

The following proposition 4.6 tells us that when� is large enough then there is an
inconsistency.
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Proposition 4.6. We suppose that the template is not a �xed point and that its
orbit under the groupG is bounded. We considerA ¥ sup

gPG

}g�t0 }
} t0 } and a ¤ inf

gPG

}g�t0 }
} t0 } ,

note that a ¤ 1 ¤ A and we have:

@g PG a}t0} ¤ } g � t0} ¤ A}t0}:

We note:

� pt0q �
1

}t0}
Epsup

gPG
xg � t0; "yqand � H �

1
}t0}

E
�

sup
hPH

xh � t0; "y



:

We suppose that� H ¡ 0. If � is bigger than a critical noise level noted� c de�ned
as:

� c �
}t0}
� H

�

�
�

� pt0q
� H

� A



�

d �
� pt0q
� H

� A

 2

� A2 � a2

�

� : (4.17)

Then we have inconsistency.

Note that in section 4.2.1 we have proved inconsistency in the isometric case as soon
as � ¡ 2} t0 }

K , where K ¥ � H , then we �nd in this theorem an analogical su�cient

condition on � where

�
�

� pt0q
� H

� A
	

�

c �
� pt0q
� H

� A
	 2

� A2 � a2

�

is a corrective term

due to the non invariant action.
We have shown in chapter 3 that if the orbit of the template rt0sH is a manifold,

then � H ¡ 0 as soon as the support of" is not included in Tt0 rt0sK (the normal
space of the orbit of the templatet0 at the point t0). If rt0s is not a manifold, we
have also seen in chapter 3 that� H ¡ 0 as soon ast0 is a limit point of rt0sH and
the support of " contains a ball B p0; � q for � ¡ 0. Hence,� H ¡ 0 is a rather generic
condition. Condition (4.17) can be reformulated as follows: as soon as the signal to
noise ratio } t0 }

� is su�ciently small:

}t0}
�

 
� H

�
� pt0q
� H

� A
	

�

c �
� pt0q
� H

� A
	 2

� A2 � a2

;

then there is inconsistency.
We remark the presence of the constants� pt0q and � H in proposition 4.6. This

kind of constants were already here in the isometric case under the form� p t0
} t0 } q �

1
} t0 } Epsup

gPG
xt0; g � "yq, due to the polarization identity (4.2), we can state that it

measures how much the template looks like to the noise after registration, but only
in the isometric case. However we can intuit that this constant plays a analogical
role in the non isometric case.

Example 4.4. Let G acting on M , we suppose thatG contains H � OpM q the
orthogonal group ofM . Assume that G can modify the norm of the template by
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multiplying its norm by at most 2. Then we can set upA � 2 and a � 0. By
aligning " and }t0} we have� H � Ep}" }q ¡ 0, and � pt0q � AEp}" }q then when
the signal to noise ratio } t0 }

� is smaller that Ep}" }q
4�

?
20

then there is inconsistency. By

Cauchy-Schwarz inequality we haveEp}" }q ¤ Ep}" }2q � 1, thus the signal to noise
ratio has to be rather small in order to ful�ll this condition.

4.3.3.3 Proof of proposition 4.6

We de�ne the following values:

� H �
1

}t0}2 E
�

sup
hPH

xh � t0; Yy



and � pt0q �
1

}t0}2 E

�

sup
gPG

xg � t0; Yy

�

:

Note that � H and � pt0q are registration scores which de�nitions are the same than
the registration score used in the proof of theorem 4.1 in section 4.2 (only the
normalization by }t0} is di�erent). The proof of proposition 4.6 is based on the
following Lemma:

Lemma 4.1. If:

� H ¥ 0; (4.18)

a2 � 2� pt0q � � 2
H ¡ 0; (4.19)

then t0 is not a minimizer of the pre-variance ofrYs in M {G.

How condition (4.19) can be understood? In order to answer to that question, let
us imagine that G � H acts isometrically, then a can be set up to1, and � pt0q � � H

the condition (4.19) becomes� 2
H � 2� H � 1 � p � H � 1q2 ¡ 0 and the condition (3.26)

of theorem 3.4 aimed to ensure that� H ¡ 1. Now let us return to the non invariant
case: ifH is strictly included in G such that a is closed enough to1 and � pt0qclosed
enough to � H , then on can think that condition (4.19) still holds. But the closed
enoughseems hard to be quanti�ed.

Proof of lemma 4.1. The proof is based on the following points:

1. F p� H t0q ¤ FH p� H t0q,

2. FH p� H t0q   F pt0q.

With items 1 and 2 we get that F p� H t0q   F pt0q. Item 1 is just based on the fact
that in the map F , we take the in�mum on a larger set than on FH . We now prove
item 2, in order to do that we expand the two quantities, �rstly:

FH p� H t0q � E
�

inf
hPH

}h � � H t0}2 � } Y }2 � 2xh � � H t0; Yy



(4.20)

� � 2
H }t0}2 � Ep}Y }2q � 2� H E

�
sup
hPH

xh � t0; Yy



(4.21)

� Ep}Y }2q � � 2
H }t0}2;
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We use the fact that H acts isometrically between Equations (4.20) and (4.21) and
the fact that � H ¥ 0 becauseinf aPA � �a � � � supaPA a is true for any A subset
of R if � ¥ 0. Secondly:

F pt0q � E
�

inf
gPG

}g � t0}2 � } Y }2 � 2xg � t0; Yy



¥ a2}t0}2 � Ep}Y }2q � 2E

�

sup
gPG

xg � t0; Yy

�

¥ a2}t0}2 � Ep}Y }2q � 2� pt0q}t0}2

Then:
F pt0q � FH p� H t0q ¥ } t0}2 �

a2 � 2� pt0q � � 2
H

�
¡ 0;

thanks to hypothesis (4.19). �

Proof of proposition 4.6. In order to prove proposition 4.6, all we have to do is
proving � H ¥ 0 and proving that Condition (4.19) is ful�lled when � ¡ � c. Firstly,
thanks to Cauchy-Schwarz inequality, we have:

� H �
1

}t0}2 E
�

sup
hPH

xh � t0; � � t0 � �" y



¥
1

}t0}2

�
� A}t0}2 � Epsup

hPH
xh � t0; �" yq

�
¥ � A � �

� H

}t0}

Note that as � ¡ � c ¥ A } t0 }
� H

we get � H ¥ 0, this proves (4.18). We also have:

� pt0q �
1

}t0}2 E

�

sup
gPG

xg � t0; � � t0 � �" y

�

¤
1

}t0}2

�

A2}t0}2 � � E

�

sup
gPG

xg � t0; "y

��

¤ A2 � �
� pt0q
}t0}

;

Then we can �nd a lower bound of a2 � 2� pt0q � � 2
H :

a2 � 2� pt0q � � 2
H ¥ a � 2

�
A2 � �

� pt0q
}t0}



�

�
�� H

}t0}
� A


 2

¥ a2 � A2 � 2
�� H

}t0}

�
� pt0q
� H

� A



�
�

�� H

}t0}


 2

:� Pp� q

For � ¡ � c where � c is the biggest solution of the quadratic EquationPp� q � 0,
we get a2 � 2� pt0q � � 2

H ¡ 0 and the template estimation is inconsistent thanks to
lemma 4.1. The critical � c is exactly the one given by proposition 4.6. �

4.3.4 Linear action

The result of the previous part has a drawback, it requires that the group of defor-
mations contains a non trivial subgroup which acts isometrically. Now, we remove
this hypothesis, but we require that the group acts linearly on data. This means
that for all g PG, m ÞÑg � m is a linear map.
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4.3.4.1 Inconsistency

In this Subsection we suppose that the groupG acts linearly on M . Once again, we
can give a criteria on the noise level which leads to inconsistency:

Proposition 4.7. We suppose that the orbit of the template is bounded, therefore
we can consider the following two constants:

Da ¥ 0; A ¡ 0 such that @g PG a}t0} ¤ } g � t0} ¤ A}t0}:

We suppose thatA  
?

2. In other words, the deformation of the template can
multiply the norm of the template by less than

?
2. We also suppose that:

� pt0q �
1

}t0}
E

�

sup
gPG

xg � t0; "y

�

¡ 0: (4.22)

There is inconsistency as soon as

� ¥ � c �
}t0}
� pt0q

�

A2 �
1 �

a
1 � a2p2 � A2q
2 � A2

�

:

Example 4.5. For instance if A ¤ 1:2, then there is inconsistency if� ¥ 7 } t0 }
� pt0q.

Once again we �nd a condition which is similar to the isometric case, but due to
the non invariant action we have here a corrective term which depends onA and a.
In chapter 3, we have seen lemma 3.7 which states that� pt0q ¡ 0. HoweverG does
not act isometrically, therefore we can no longer apply lemma 3.7 in order to ful�ll
Condition (4.22). However it is easy to ful�ll this Condition thanks to the following
Proposition:

Proposition 4.8. If t0 is not a �xed point, and if the support of " contains a ball
B p0; � q for � ¡ 0 then

� pt0q �
1

}t0}
E

�

sup
gPG

xg � t0; "y

�

¡ 0:

Remark 4.3. It is possible to remove the conditionA  
?

2 in proposition 4.7.
Indeed Let beh PG such that:

sup
gPG

}g � t0}

}h � t0}
 

?
2:

The template t0 can be replaced byh � t0 since � � t0 � �" is equal to � h� 1 � ht0

and applying proposition 4.7 to the new templateh � t0. We get that h � t0 does
not minimize the variance F with A ¤

?
2 (because the new template ish � t0q.

Since h � t0 does not minimize F , the original template t0 does not minimize the
pre-variance F neither, since F pt0q � F ph � t0q.

This changes the critical� c since we apply proposition 4.7 toh � t0 instead of t0

itself.
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4.3.4.2 Proofs of proposition 4.7 and proposition 4.8

As in section 4.3.3 we �rst prove a Lemma:

Lemma 4.2. We de�ne:

� pt0q �
1

}t0}2 E

�

sup
gPG

xg � t0; Yy

�

:

Suppose that� pt0q ¥ 0 and that:

a2 � 2� pt0q � � pt0q2p2 � A2q ¡ 0: (4.23)

Then t0 is not a minimum of F .

Proof of lemma 4.2. Since

@g PG a}t0} ¤ } g � t0} ¤ A}t0}; (4.24)

then by linearity of the action we get:

@g PG; � PR a}�t 0} ¤ } g � �t 0} ¤ A}�t 0}: (4.25)

We remind that:

F pmq � E
�

inf
gPG

}g � m}2 � 2xg � m; Y y � } Y }2



:

By using Equations (4.24) and (4.25) we get:

F pt0q ¥ a2}t0}2 � 2� pt0q}t0}2 � Ep}Y }2q;

We get:

F p� pt0qt0q ¤ E
�

A2}� pt0qt0}2 � } Y }2 � inf
gPG

p� 2� pt0q xg � t0; Yyq



(4.26)

¤ A2� pt0q2}t0}2 � Ep}Y }2q � 2� pt0q2}t0}2:

Note that we use the fact that the action is linear in Equation (4.26). We obtain
that t0 is not the minimum of the F :

F pt0q � F p� pt0qt0q ¥ } t0}2 �
a2 � 2� pt0q � � pt0q2p2 � A2q

�
¡ 0:

�

Proof of proposition 4.7. By solving the following quadratic inequality we remark
that:

a2 � 2� pt0q � p 2 � A2q� pt0q2 ¡ 0 if � pt0q ¡
1 �

a
1 � a2p2 � A2q
2 � A2 ;
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Besides, as in section 4.3.3.2 we can take a lower bound of� pt0qby decomposing
Y � � � t0 � �" and applying Cauchy-Schwarz inequalityx� � t0; g � t0y ¥ � A2}t0}2,
we get:

� pt0q ¥ � A2 �
�

}t0}
� pt0q: (4.27)

Thanks to Condition (4.27) and the fact that � ¡ � c we get:

� pt0q ¥ � A2 �
�

}t0}
� pt0q ¡

1 �
a

1 � a2p2 � A2q
2 � A2

Then � pt0q ¥ 0 and Condition (4.23) is ful�lled. Thus, there is inconsistency,
according to lemma 4.2. �

Proof of proposition 4.8. First we notice that:

}t0}� pt0q � E

�

sup
gPG

xg � t0; "y

�

¥ Epxt0; "yq � x t0; Ep"qy � 0: (4.28)

In order to have � pt0q ¡ 0, �rst we show that there exists x P B p0; � q and g0 P G
such that

sup
gPG

xg � t0; xy ¥ xg0 � t0; xy ¡ x t0; xy:

Let g0 P G such that g0 � t0 � t0. There are three cases to be distinguished (see
�gure 4.11:


 0


g0t0

t0


 x

B p0; � q

(a) Case 1: t0 and g� t0 are
linearly independent.


 0


g0t0


 t0


 x

B p0; � q

(b) Case 2: g� t0 is pro-
portional to t0 with a
factor ¡ 1.


 0

g0t0


 t0


 x

B p0; � q

(c) Case 3: g � t0 is pro-
portional to t0 with a
factor   1.

Figure 4.11: Representation of the three cases, on each we can �nd anx in the
support of the noise such asxx; g0 � t0y ¡ x x; t 0y and by continuity of the dot product
x"; g0 � t0y ¡ x "; t 0y with is an event with a non zero probability, (for instance the
ball in gray). This is enough in order to show that � pt0q ¡ 0.

1. The vectorsg0 � t0 and t0 are linearly independent. In this casetK
0 ‚ p g0 � t0qK ,

then we can �nd x P tK
0 and x R pg � t0qK . Then xt0; xy � 0 and xg � t0; xy � 0,
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without loss of generality we can assume thatxg � t0; xy ¡ 0 (replacing x by
� x if necessary). We also can assume thatx P B p0; � q (replacing x by x�

2}x} if
necessary). Then we havex PB p0; � q and:

xg0 � t0; xy ¡ 0 � x t0; xy:

2. If g0 � t0 � wt0 with w ¡ 1, we take x � �
2} t0 } t0 PB p0; � q and we have:

xg � t0; xy � w
�
2

}t0} ¡
�
2

}t0} � x t0; xy:

3. If g0 � t0 � wt0 with w   1 we take x � � �
2} t0 } t0 PB p0; � q and we have:

xg0 � t0; xy � � w
�
2

}t0} ¡ �
�
2

}t0} � xt0; xy:

In all these cases, we can �ndx such that xg0 � t0; xy ¡ x t0; xy By continuity there
exists r ¡ 0 such that for all y on this ball we have xg � t0; yy ¡ x t0; yy. Then the
event t supgPG xg � t0; "y ¡ x t0; "yuhas non zero probability, sincex is in the support
of " we havePp" PB px; r qq ¡ 0. Thus Inequality in (4.28) will be strict. This proves
that � pt0q ¡ 0. �

4.3.5 Example of a template estimation which is consistent

In order to underline the importance of the hypotheses, we give an example where
the method is consistent:

Example 4.6 (a�ne action). Let M be a Hilbert space andV a closed sub-linear
space ofM (see �gure 4.12). Then G � V acts on M by:

pv; mq PG � M ÞÑm � v:

This action is not isometric, indeed m ÞÑm � v is not linear (except if v � 0).
However the distance is invariant under this group action (}v � m � v � n} � } m � v}),
let us considerV K the orthogonal space ofV . The variance in the quotient space is:

F pmq � E
�

inf
vPV

}m � v � Y }2



� Ep}ppmq � ppYq}2q � Ep}ppmq � ppt0q � " }2q;

where p : M Ñ V K the orthogonal projection on V K . Then it is clear that t0

minimizes F .

The map rxs ÞÑppxq will be called an congruent section in section 5.4.1. Hence, is
there a contradiction with proposition 4.6 or proposition 4.7 which prove inconsis-
tency as soon as the noise level is large enough? In proposition 4.6, we require that
there is a subgroup acting isometrically, in this example the only element which acts
linearly is the identity element m ÞÑm � 0, then H � t 0u is the only possibility,
however the support of the noise should not be included in the set of �xed point
under the group action of H . Here, all points are �xed under H , hence it is not
possible to ful�ll this condition. Example 4.6 is not a contradiction with propo-
sition 4.6, it is also not a contradiction with proposition 4.7 since it does not act
linearly on data.
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V K

V


x

 y



ppxq



ppyq

dQprxs; rysq

rxs rys

Figure 4.12: In the case of vertical translation by vectors ofV , the orbits are a�ne
subspaces parallel toV . The distance between two orbitsrxsand rys is given by the
distance between the orthogonal projection ofx and y in V K . This is an example
where the template estimation is consistent.

4.3.6 Inconsistency with non invariant action and regularization

In practice people add a regularization term in the function they minimize in LD-
DMM [Beg 2005, Durrleman 2014], or in Demons [Lombaert 2013] etc. Because, if
one considers two points, one does not want necessarily to �t one with the other.
Indeed, even if one deformation matches exactly these two points, it may be an
unrealistic deformation. So far, we did not study the use of such a term in the
inconsistency.

4.3.6.1 Case of deformations close to the identity element of G

If we suppose that the deformations� of the template is closed to identity, it is
useless to take the in�mum overG becauseG contains big deformations. Perhaps
one of these big deformations can reache the in�mum inF , but this element is
not the one which deforme the template in the generative model. Then such big
deformations should not be taken into account. That is why, if we suppose thatG
can be equipped with a distancedG, then we can assume that there existsr ¡ 0
such that the deformation � belongs almost surely to

B � B pe; rq � t g PG; dGpe; gq   r u:

Instead of de�ning F pmq as Epinf gPG }g � m � Y }2q, one can de�ne F pmq �
Epinf gPB }g � m � Y }2q, and the previous proofs will still be true, when replacing
for instance � pt0q by � pt0q � 1

} t0 }2 EpsupgPB xg � t0; Yyqetc. Likewise we need to re-
place the hypothesis "the support of" is not included in the set of �xed points" by
"the support of " in not included is the set of �xed points under the action restricted
to B.

Note that restraining ourselves toB is equivalent to add a following regularization
on the function F :

F pmq � E
�

inf
gPG

}g � m � Y }2 � Regpgq



with Regpgq �
"

0 if g PB
�8 if g RB

:
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Moreover considering only the elements inB will automatically satisfy the con-
dition A  

?
2 in proposition 4.7 as long as the groupG acts continuously on the

template, if r is small enough.

4.3.6.2 Inconsistency in the case of a group acting linearly with a
bounded regularization

In this section we suppose that the groupG acts linearly. We also suppose that
A  

?
2. The regularization term is a bounded mapReg : G Ñ r 0; 
 s. With this

framework, we still able to prove that there is inconsistency as soon as the noise
level is large enough:

Proposition 4.9. Let G be a group acting linearly onM . We suppose that the orbit
of the templatet0 is bounded withA � sup

gPG

}g�t0 }
} t0 }  

?
2, the generative model is still

Y � � � t0 � �" . We de�ne the pre-variance as:

F pmq � E
�

inf
gPG

�
}Y � g � m}2 � Regpgq

�



:

Then as soon as the noise level is large enough, i.e.:

� ¡ � c �
}t0}
� pt0q

�

� A2 �
1 �

b
1 � p a2 � 


} t0 }2 qp2 � A2q

2 � A2

�

� :

Then t0 is not a minimizser of F .

The proof is exactly the same as the Proof of proposition 4.7, we take0 as a lower
bound of the the regularization term in the lower bound of F pt0q, and we take 

as a upper bound of the regularization term in the upper bound ofF p� pt0qt0q. We
solve a similar quadratic equation in order to �nd the critical � .

4.4 Conclusion and discussion

We provided an asymptotic behavior of the consistency bias when the noise level�
tends to in�nity in the case of isometric action. As a consequence, the inconsistency
can not be neglected when� is large. When the action is no longer isometric,
inconsistency has been also shown when the noise level is large.

However we have not answered this question: can the inconsistency be ne-
glected? When the noise level is small enough, then the consistency bias is
small [Miolane 2017] or chapter 3, hence it can be neglected. Note that the quotient
space is not a manifold, this prevents us to usea priori the Central Limit theorem
for manifold proved in [Bhattacharya 2008]. But if the Central Limit theorem could
be applied to quotient space, the �uctuations induces an error which would be ap-
proximately equal to �?

I
and if K ! 1?

I
, then the inconsistency could be neglected

because it is small compared to �uctuation. One way to avoid the inconsistency is
to use another framework, for a instance a Bayesian paradigm [Cheng 2016].



4.4. Conclusion and discussion 119

In the numerical experiments we presented, we have seen that the estimated
template is more crispy that the true template. The intuition is that the estimated
template in computational anatomy with a group of di�eomorphisms is also more
detailed. But the true template is almost always unknown. It is then possible that
one think that the computation of the template succeeded to capture small details
of the template while it is just an artifact due to the inconsistency. Moreover in
order to tackle this question, one needs to have a good modelisation of the noise,
for instance in [Kurtek 2011b], the observations are curves, what is a relevant noise
in the space of curves?

In this chapter, we have considered actions which do not let the distance in-
variant. Although we have only shown the inconsistency as soon as the noise level
is large enough, the inequality used where not optimal at all, surely future works
could improve this work and prove that inconsistency appears for small noise level.
Moreover a quanti�cation of the inconsistency should be established.
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5.1 Introduction

Let us make a brief overview of what we did so far. In chapter 3, we established
inconsistency for isometric action in Hilbert space. In chapter 4, we provided an
asymptotic behaviour of the consistency bias when the noise level goes to in�nity
also for isometric action in Hilbert space. Besides, we extended the study of the
consistency for non isometric action in Hilbert space. As a result, we saw that the
inconsistency also appears when the noise level was large enough. Therefore, our
previous results have two �aws. The �rst one is that those results say nothing in
the case of small noise level for non isometric action. The second one is that our
results are restricted to ambient spaces which are assumed to be Hilbert spaces.
But ambient spaces are not always Hilbert spaces. This chapter gathers some
results which complete our previous study, to solve the two �aws mentioned below.
In this chapter, we consider only backward estimation.

In section 5.2, we concentrate on compact and continuous group action. We
�nd an implicit expression of an element which minimizes the variance/pre-variance
in the quotient space which is used this implicit expression in order to prove
inconsistency in the Hilbert space in the case of a invariant distance under the
group action. Moreover this work can be generalized to Riemannian manifolds
contrary to most of our previous works.

Section 5.3 is a conjecture to generalize the presence of inconsistency when data
belong to ambient space which can be metric spaces (including in�nite dimensional
manifold) restricted to compact group action.

In section 5.4, we discuss the existence of a section of the quotient which
satis�es geometrical properties. The �rst property is that the section is a congruent
map between the quotient and the ambient space. When such a section exists,
the quotient space can be embedded into the ambient space. The section is said
to be congruent, when the distance is preserved though the section. Moreover we
can �nd an explicit equation of the Fréchet mean in the quotient space. However,
we advocate that the congruent section does not exists often. We give some
examples and we provide an algorithm which is able to dismiss the existence of a
congruent section. The second property is that the section is a measurable map.
The existence of a measurable map which registers elements with respect to a
point is a cornerstone in order to complete the proofs of Theorems seen in section 5.2.

In section 5.5 we prove that the template estimation can be inconsistent even
for small � for non isometric action which are a perturbation of an isometric action.
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5.2 Implicit equation of an element which minimizes the
variance/pre-variance and proofs of inconsistency

In this section, we consider a compact group. We also assume that the group
acts continuously on our ambient space. This implies that the registration between
two points has always a solution (non necessarily unique). We exhibit an implicit
equation of an element which minimizes the variance/pre-variance in the quotient
space. We use this expression to show inconsistency for isometric action in Hilbert
space, but also in more general spaces as complete Riemannian manifolds.

One di�culty in all this thesis is that we do not have an explicit equation of
the Fréchet mean in the quotient space. Therefore, proving the consistency or the
inconsistency cannot be reduced to show that the template is a solution of this
possible explicit equation. In order to overcome this di�culty, we have worked with
inequalities in chapter 4 and we have studied the variance restricted to an half-
line in chapter 3 (theorem 3.4). But these two strategies were based on avoiding
the di�culty. On the contrary in theorem 3.1, we have found the gradient of the
variance in the quotient space. Solving this gradient equal to zero gives an implicit
equation of the Fréchet mean in the quotient space. In this section, we aim to do
the same: we want to have an implicit (or even better an explicit) equation of the
elements which minimize the variance in the quotient space.

In the following, we will use the theoretical advantages of the backward es-

timation method: minimizing F pmq � E
�

inf
gPG

}m � g � Y }2q



. This estima-

tion di�ers from the forward estimation method namely minimizing F pmq �

E
�

inf
gPG

}g � m � Y }2



, used in section 4.3. However, these two estimations are the

same in the case of a invariant distance under the group action. Note that both
estimation methods are used in practice, see [Glaunes 2006, Joshi 2004, Du 2014,
Glasbey 2001] for instance.

5.2.1 Implicit equation of an element which minimizes the
variance/pre-variance in quotient spaces

Let M be our ambient space; we just assume thatM is a metric space, withdM its
metric. Let G be a group acting onM and Y be a variable in M . We de�ne the
pre-variance ofY in the quotient space as:

F pmq � E
�

inf
gPG

dM pm; g � Yq2



:

If dM is invariant under the group action, then we say that F is the variance in
the quotient space For the moment, we make no assumption of the random variable
Y , except that EpdM pm; Y q2q   �8 for at least onem in M . Therefore F is well
de�ned, thanks to the triangular inequality.

We assume the existence of a minimum of the pre-variance (otherwise the tem-
plate estimation is necessarily inconsistent). We denote bym� one minimizer of
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the pre-variance F . We assume that the groupG is compact and that the action
is continuous (namelyg ÞÑg � x is a continuous map for allx P M ). Therefore the
registration of Y with respect to m� does exist. Then it existsgpY; m� q PG such
that:

F pm� q � Epd2
M pm� ; gpY; m� q �Yqq:

We de�ne by E the variance ofgpY; m� q �Y :

Epmq � Epd2
M pm; gpY; m� q �Yqq:

For Z a random variable in M , we de�ne FMpZ q as the set of all Fréchet means
of Z :

FMpZ q � argmin
mPM

Epd2
M pm; Z qq:

Proposition 5.1. Let pM; dM q be a metric space,G a compact group acting con-
tinuously on M . We assume that the variance/pre-variance, de�ned by

F pmq � E
�

inf
gPG

dM pm; g � Yq2



for m PM;

reaches its minimum a point m� . We assume that there exitsy ÞÑgpy; m� q � y a
deterministic measurable function such that:

@y PM gpy; m� q Pargmin
gPG

dM pm� ; g � yq:

Then, the set FMpgpY; m� q �Yq is non empty, besides we have:

m� PFMpgpY; m� q �Yq (5.1)

Remark 5.1. Note that we do not need the distance to be invariant under the group
action. However it requires a backward estimation. It requires also a compact group
contrarily to previous results as theorem 3.4 for instance.
When the ambient spaceM is a Hilbert space andZ a squarred integrable variable,
FMpZ q exists, and is unique and equalsEpZ q (proposition 1.4), in this case we can
conclude that:

m� � EpgpY; m� q �Yq: (5.2)

Note that equation (5.2) was already obtained in the case of the �nite and isometric
group action (see equation(3.8)). However, this was done by di�erentiating the
variance, which is not possible everywhere as we have already see it (section 3.4.7).
In the case of a �nite sampleY1; : : : ; Yn , we de�ne the empirical pre-variance by:

Fnpmq �
1
n

n¸

i � 1

inf
gPG

}m � g � Yi }2

if m� is a minimizer of the empirical pre-varianceFn , we can also deduce that:

m� �
1
n

n¸

i � 1

gpY; m� q �Y
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Proof of proposition 5.1. We have two things to prove: FMpgpY; m� q � Yq is not
empty as a �rst step and m� PFMpgpY; m� q �Yq as a second step.

� First, let us prove that the set FMpgpY; m� q � Yq is not empty. If
FMpgpY; m� q �Yqwas empty, then in particular, m� would not minimize E the
variance ofgpY; m� q�Y . Therefore, we can �ndz PM such that Epzq   Epm� q
in this case we have:

F pm� q � Epm� q

¡ Epzq

¡ E
�

inf
gPG

d2
M pz; g � Yq




¡ F pzq;

which is a contradiction, sincem� minimizes F .

� Secondly, let us takez PFMpgpY; m� q �Yq, we get:

F pm� q � E
�

inf
gPG

d2
M pg � m; Y q




� Epm� q

¥ Epzq � Epd2
M pz; gpY; m� q �Yqq

¥ E
�

inf
gPG

d2
M pz; g � Yq




¥ F pzq

¥ F pm� q;

Then we conclude thatEpm� q � Epzq � min E , then:

m� PFMpgpY; m� q �Yq:

�

It may seem odd, that we get an implicit equation of m� which depends on
the choice we made on the elementgpY; m� q of G which registers Y with respect
to m� . Indeed, there isa priori no uniqueness of the element which registerY to
m� . What if there are such two elementsgpY; m� q and ~gpY; m� q? The following
proposition prove that gpY; m� q �Y � ~gpY; m� q �Y almost surely. In other words, if
there is no uniqueness in the registration ofY to m, then the choice of the element
gpY; m� q, has no consequence:
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Proposition 5.2. Let G be a compact group acting continuously onM a Hilbert
space, letY be a random variable, andm� an element which minimizes the pre-
variance (de�ned in section 5.2.1). We assume that there are two random variables
gpY; m� q and ~gpY; m� q which minimize dM pm� ; g � Yq. In this case we have almost
surely:

gpY; m� q �Y � ~gpY; m� q �Y

Proof. Applying equation (5.2) to gpY; m� q and ~gpY; m� q leads to:

m� � EpgpY; m� q �Yq � Ep~gpY; m� q �Yq:

Now we mix g and ~g: let us chooseA a measurable set, and de�ne the following
random variable:

Z � gpY; m� q �Y1Y PA � ~gpY; m� q �Y1Y RA :

For every Y , Z is an element which reach the minimum indM pm� ; yq for y P rYs.
Once again, we can apply equation (5.2) toZ , we get m� � EpZ q, we can deduce
that:

m� � E pgpY; m� q �Y1Y PA � ~gpY; m� q �Y1Y RA q � E p~gpY; m� q �Yq:

By splitting the second expectation into two parts and simplifying, we have:

EpgpY; m� q �Y1Y PA q � Ep~gpY; m� q �Y1Y PA q;

and we do it for any measurable setA, which yields

gpY; m� q �Y � ~gpY; m� q �Y; Y-almost surely:

�

We can generalize the uniqueness of the registration variablegpY; m� q�Y in the case
of complete Riemannian manifolds:

Proposition 5.3. Let G be a compact group acting continuously onM a complete
Riemannian manifold, let Y be a random variable andm� an element which mini-
mizes the pre-variance. We assume that

gpY; m� q Pargmin
gPG

dM pm� ; g � Yq and ~gpY; m� q Pargmin
gPG

dM pm� ; g � Yq;

for gpY; m� q and ~gpY; m� q two random variables inG. We assume that

PpgpY; m� q �Y PCpm� qq � Pp~gpY; m� q �Y PCpm� qq � 0:

Where Cpm� q is the cut locus ofm� . In this case we have:

gpY; m� q �Y � ~gpY; m� q �Y almost surely:
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Proof. Applying equation (5.1) to gpY; m� q and ~gpY; m� q leads to:

m� � FMpgpY; m� q �Yq � FMp~gpY; m� q �Yq:

Now we can mixg and ~g: let us chooseA a measurable set, and de�ne:

Z � gpY; m� q �Y1Y PA � ~gpY; m� q �Y1Y RA ;

The random variable Z reaches the in�mum which is in the de�nition of F pm� q.
Then from equation (5.1), we getm� � FMpZ q. By di�erentiation of the variance
at m� (because of the probability to fall in the cut locus is zero), we have:

EpLogm �
gpY; m� q �Y1Y PA q � EpLogm �

~gpY; m� q �Y1Y PA q;

and we do it for any measurable sets which yields

Logm �
gpY; m� q �Y � Logm �

~gpY; m� q �Y; Y-almost surely:

This proves that gpY; m� q �Y � gpY; m� q �Y , Y -almost surely. �

5.2.2 Interpretation of equation (5.2) in Hilbert spaces


rm� s



rYs


 Qlogm �
pYq

Q

M

Figure 5.1: Representation of the quotient as if it was a manifold, withM the
tangent plane. If rm� s is a Fréchet mean ofrYs then EpQlogm �

pYqq � 0, where Qlog
is a quotient logarithm function.

In the previous subsection, we have found an implicit equation of the elements
which minimize the pre-variance in the quotient spaces. Can we explain this equa-
tion? First, we suppose that the ambient space is an Hilbert space. We can rewrite
equation (5.2) as follows:

EpgpY; m� q �Y � m� q � 0:

Then, if we de�ne a quotient logarithm function as:

Qlogm �
pyq � gpy; m� q �y � m� :
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We have the equationEpQlogm �
pYqq � 0 in M . Then even ifQ is not a manifold and

M is not the tangent plane ofQ at the point m� , equation (5.2) can be reinterpreted
as the equation of a exponential barycenter:EpQlogm �

pYqq � 0 when m� is one
element which minimizes the pre-variance (see �gure 5.1). This equation looks
like the one �nd for the Fréchet mean in a manifold, when Fréchet mean are, in
particular, exponential barycenter (see de�nition 1.5).

5.2.3 Interpretation of equation (5.1) in complete Riemannian
manifolds

Now, we want to �nd also an explanation of equation (5.1) when the ambient space
is a complete Riemannian manifold. Contrarily to Hilbert space, there is no easy
expression of FMpZ q for Z a random variable in M when M is a manifold. This
may complicate our analysis of equation (5.1). However we can adapt our previous
interpretation. We call Qlog of Y the element gpY; m� q � Y , then we have m� �
FMpQlogm �

pYq. Therefore m� is a critical point of the variance of Qlogm �
pYq. By

di�erentiating the variance of Qlog m �
pYq (de�ned as m ÞÑEpd2pm; Qlogm �

pYqqq
(see lemma 3.9) we have that:

E
�
Logm� pQlogm �

pYqq
�

� 0:

In other words, m� is a double exponential barycenter, since it is the expectation of
the log of the log which is equal to zero (see �gure 5.2).


rm� s



rYs



gpY; m� q �Y


 Logm �
pgpY; m� q �Yq

Q

M
Tm � M

Figure 5.2: Representation of the quotient,M acts as an intermediary between the
quotient space and the tangent plan atm� . If m� is a minimizer of the pre-variance
in the quotient space, then EpLogm �

pQlogm �
qYq � 0. Where Qlogm �

pYq is the
registration of Y to m� and Logm �

is the Riemannian logarithm map.

Note that this interpretation has been done without di�erentiating the pre-
variance in the quotient space. Because, we have already seen that it may not
be possible. MoreovergpY; m� q may be not unique, this is an analogy with the cut
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locus issue in manifolds. In manifold when points are in the cut locus, the di�er-
entiability fails because, for instance, of the non uniqueness of the geodesics. How-
ever, the non uniqueness in this case, is not really an issue, indeed ifgpY; m� q �Y
and ~gpY; m� q � Y are two choices in order to registerY with respect to m� , then
EpgpY; m� q � Yq � Ep~gpY; m� q � Yq � m� for any measurable choice ofgpY; m� q.
Therefore, we have avoided the di�culty of di�erentiating the pre-variance in the
quotient space. Without di�erentiating the pre-variance, we have found that if m�

minimizes the pre-variance, thenm� satis�es a certain implicit equation, which is
an analogy with the implicit equation r F pm� q � 0 found in section 3.3 for �nite
group.

Remark 5.2. Let f be the function de�ned by:

f pmq PFMpgpY; mq �Yq (5.3)

then starting from a point m0, we de�ne the sequencemn� 1 � f pmnq. If this
sequence is well de�ned and converge to a point̂m, and if f is continuous at m̂, this
point will satis�ed:

m̂ PFMpgpY;m̂q �Yq;

in other words the limit of this sequence is a good candidate to be a Fréchet mean
of rYs. This sequence is nothing else than the max-max algorithm. Indeed, we have
seen in chapter 4, that the max-max algorithm is the repetition of two steps, the �rst
one registers data to a current point, the second one takes the mean of the registered
data in order to update the current point. This is exactly what the sequencepmnqn

de�ned by equation (5.3) does. The only di�erence is that the max-max algorithm
seen in chapter 4 was restricted to a �nite sample. Equation(5.3) deals with the
whole distribution.

5.2.4 Inconsistency in Hilbert space thanks to equation (5.2)

In this subsubsection we give an alternative proof of theorem 3.4 based on equa-
tion (5.2).

The �rst advantage of this current proof is that the point which variance is
strictly smaller than the variance at the template is not proportional to the tem-
plate. The second advantage is that this proof works with forward generative model
contrarily to theorem 3.4 which was stated and proved for backward generative
model only.

Theorem 5.1. Let M be a Hilbert space, andG a compact group acting isometri-
cally and continuously. We assume a forward model:Y � � � t0 � �" , where " is a
standardized noisepEp"q � 0 and Ep}" }2q � 1) and � ¡ 0. We assume that there
exits y ÞÑgpy; t0q �y a deterministic measurable function such that:

@y PM gpy; t0q Pargmin
gPG

dM pt0; g � yq:

We assume thatPpY RConep� � t0qq ¡ 0. Then rt0s is not a Fréchet mean ofrYs in
the quotient space.
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Proof. Thanks to equation (5.2), in order to show inconsistency, all we have to do
is proving that the following equation is not true:

t0 � EpgpY; t0q �Yq: (5.4)

By a reductio ad absurdum, if we assume that this equation holds. By taking the
dot product of (5.4) with t0, one get:

}t0}2 � Epsup
gPG

xY; g� t0yq

Indeed, because the action is isometric we have that maximizing the dot product is
the same thing than minimizing the distance: xgpY; t0q �Y; t0y � maxgPG xg � Y; t0y.
By replacing g by � , and thanks to PpY RConep� � t0qq ¡ 0, we get:

}t0}2 ¡ EpxY;� � t0y � Epx� � t0 � �"; � � t0yq � } t0}2 � 0:

Thus we have a contradiction,EpgpY; t0q �Yq is di�erent of t0, then t0 does not
satisfy equation (5.2). We can conclude thatt0 does not minimize the variance in
the quotient space.

This proves the inconsistency of the template estimation by computing the
Fréchet mean in quotient space when the observable variable veri�es a forward
model. �

Moreover, we know that the varianceF at the point EpgpY; t0q �Yq is strictly
smaller than the variance at the template. In the proof of theorem 3.4 (for Hilbert
spaces) we also found� pt0qt0, a point which variance was smaller than the variance at
the template. By reading the proof of theorem 3.4, one could argue that: "If the only
points which variance is smaller than the variance at the template are proportional to
the template, inconsistency is not really an issue. Because the estimated template
would be the real template up to a scaling.". This results exhibits an example
of point with a smaller variance than at the template, which is not necessairly
proportional to t0.

5.2.5 Inconsistency: variation of the isotropy group

We use equation (5.2) in order to prove inconsistency, by studying the isotropy group
of the template, of the observationsY and of m� . Indeed, we want to prove that the
template t0 is not equal to m� the Fréchet mean ofrYs. One way to prove that two
quantities are not equal, is to prove that these two quantities do not share the same
properties. Here we prove thatt0 and m� do not share the same isotropy group.
We remind that the isotropy group of a point m is the group of elementg PG such
that g � m:

Isopmq � t g PG g � m � mu:

Let us take a simple example. LetM � C0pr0; 1s; Rq be the set of continuous
real fonctions de�ned on r0; 1s. Then the group G de�ned by

G � t ' : r0; 1s Ñ r0; 1s such as' is an increasing homeomorphismu;
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acts on M by:
p'; f q ÞÑf � ':

Starting from a template t0, there can be bijective maps which leave this template
invariant: any bijection which lets every isolevel invariant, in this case Isopt0q � 0.
An isolevel associated to a fonctionf de�ned on 
 and a real y is de�ned as:

isolevelpf; y q � t x P 
 ; such asf pxq � yu

Now by adding some noise, it is likely that the observationsY with IsopYq � t eGu
almost surely. Then it is no longer possible to �nd a bijective map inG which lets
every isolevel invariant except for the identity map. We give this explanation for 1D
functions, but we could also explain it in 2D ou 3D. For an image, we can �nd many
di�eomorphisms which leaves the isolevel invariant, when such isolevel are smooth
enough: it is su�cient to follow the tangent at each point of the isolevel.

If we prove that m� have the same property Isopm� q � t eGu then it will become
obvious that t0 � m� , in other words t0 does not minimize the variance.

(a) The original template has a large isotropy
group: any bijective map which is equal to
identity on p0; 0:2q Y p0:8; 1q.

(b) Due to the noise, there is no more bi-
jective map which leaves invariant this noisy
template.

Figure 5.3: Example of signals, which are 1D images.

Theorem 5.2. Let G be a compact group acting continuously onM . We assume
that M is a Hilbert space or a complete Riemannian manifold. We suppose that the
distance dM (the Hilbert norm or the Riemannian distance) is invariant under the
group action G.
Let Y be a random variable inM , we assume that it existsm0 P M such that
Epd2

M pm0; Yqq   �8 . Suppose that

PpIsopYq � t eGuq ¡ 0 (5.5)

Let us note m� a minimizer of the variance F pmq � E
�

inf
gPG

dM pm; g � Yq2



. We

assume that it exists a deterministic and measurable functiony ÞÑgpy; m� q such
that:
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gpy; m� q Pargmin
gPG

dM pm� ; g � yq:

In the case of a complete Riemannian manifoldM , we make the extra assumption
that

PpgpY; m� q �Y PCpm� qq � 0;

whereCpm� q is the cut locus ofm� .

Then m� satis�es Isopm� q � t eGu.

Corollary 5.1. Under the same hypotheses as theorem 5.2, we take a templatet0

such that Isopt0q � t eGu. Then we create an observable variableY from this tem-
plate, (for instance in a Hilbert spaceY � � pt0 � �" q � � 1"1: a mixture of back-
ward/forward model). Then the template t0 is not a minimizer of the variance in
the quotient space (since Isopt0q � t eGu � Isopm� q for any m� minimizer of the
variance.

We can understand corollary 5.1 as follows:m� , obtained by minimization of
the variance, looses all symmetry due to the noise. In a sense we can state thatm�

looks like Y and do not look like t0; m� is noisy.
Note that Huckemann [Huckemann 2012] has already proved that the Fréchet

mean never lie on a singular orbit, in �nite dimensional Riemannian manifolds for
Lie group proper action (stability theorem). However, the proof we give here, works
also in in�nite dimensional Hilbert spaces. It is our understanding that the proof
of Huckemann relies, for instance, on the fact that the set of singular points in
the quotient space is a null set. Such results are not that obvious to generalize in
in�nite dimensional spaces. However, we should point out that Huckemann proves
the measurability of the congruent section. This last result may be generalizable in
our current setting.

Proof of theorem 5.2. The detail of the proof is based on these two steps:

� If Isopmq � t eGu then it exist h PGzteGu such that h � m � m. We have:

F pm� q � EpdM pm� ; gpY; m� q �Yqq2q:

As m� � h �m� , we also havem� � h� 1 �m� . Thanks to the invariant distance:

dM pm� ; gpY; m� q �Yq � dM ph� 1 � m� ; gpY; m� q �Yq � dM pm� ; hgpY; m� q �Yq:

Therefore, hgpY; m� q also reaches the in�mum in the computation of F pm� q,
which proves that we have two di�erent ways for reaching this minimum.
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� Thanks to propositions 5.2 and 5.3, we get a relation between the two regis-
tration variables which reach the in�mum:

gpY; m� q �Y � hgpY; m� q �Y Y � almost surely

gpY; m� q� 1hgpY; m� q �Y � Y Y � almost surely

gpY; m� q� 1hgpY; m� q PIsopYq Y � almost surely

gpY; m� q� 1hgpY; m� q � eG with a non zero probability (5.5)

h � eG with a non zero probability

This is a contradiction, because we supposedh � eG.

Conclusion: Isopm� q � t eGu. Thus t0 � m� , the estimation of the template is
inconsistent. �

Remark 5.3. We also need to prove thatgpY; m� q �Y is a measurable variable, if
not m ÞÑEpd2

M pm; gpY; m� q �Yqqcould have no sense. At this moment, we do not
have a proof thatgpY; m� q �Y is a measurable variable. This technical point will be
discussed in section 5.4.3.

Remark 5.4. When M is a Hilbert space, and whenG � V is a closed linear sub-
space ofM acting by vertical translation, we have seen that the template estimation
is consistent. However,dM is invariant under the group action. Therefore, is there
a contradiction with corollary 5.1? First G is not a compact set, but as previously
said, this is not a problem, indeed the compacity was used in order to have an ele-
ment in the group which reaches the in�mum in}m � g� n}. In the a�ne action, we
have the existence of suchg PG � V : this is ppmq � ppnq, wherep is the orthogonal
projection into V .

For this action, we have Isopmq � t eGu for every m P M . Therefore on this
example, it is not possible to choose a templatet0 with Isopt0q � t eGu, this example
is not a counter example of corollary 5.1.

5.2.6 Towards an extension to other spaces

We previously assumed that the ambient space was a Hilbert or a complete Rie-
mannian manifold only to have this result: if Z and Z 1 are two random variables in
M such that the Fréchet mean ofZ 1A � Z 11A c does not depend of the measurable
set A, then Z � Z 1 almost surely. Here we notedAc the complementary of the
measurable setA. In other words, if all possible mixture of Z and Z 1 have the same
Fréchet mean, thenZ � Z 1.

This leads us to the following de�nition.

De�nition 5.1. Let pM; dM q a metric space, we say thatM is a space with good
mixtures if we have the following property:

@Z; Z 1 PL 2p
 ; M q
�
@A measurable FMpZ 1A � Z 11A c q � FMpZ q

�
ùñ Z � Z 1 a.s.;



5.3. Conjecture of inconsistency for metric space with non invariant
distance under the group action. 133

where L 2p
 ; M q is the set of all random variable which takes value inM and such
that Epd2

M pm; X qq   �8 for one m P M (and thus for all m P M by triangular
inequality).

Theorem 5.2 can be immediately generalized inany spaces with good mixture.
Can we exhibit other spaces with good mixturesdi�erent from Hilbert spaces, for
instance metric spaces?

5.3 Conjecture of inconsistency for metric space with
non invariant distance under the group action.

This section is an attempt to generalize the proof of inconsistency in spaces which
are not Hilbert spaces anymore but just metric spaces. We do not suppose that the
distance in the ambient space is invariant under the group action.

Although we do not give a proof, we provide an intuition that it will not be
consistent either. We state two conjectures: the �rst one is dedicated to metric space
when no regularization is added. On the contrary, the second one is a generalization
when a regularization term is added. Working in a metric space with a regularization
term is the real framework of applications.

5.3.1 Conjecture 1: in metric space without regularization

Let pM; dM q be a metric space,G a compact group acting continuously. We do not
suppose that the distancedM is invariant under the group action. In particular,
inf
gPG

dM px; g � yq will not de�ne a distance in the quotient space.

In this section, we consider the backward model:Y � � �X where� is a random
variable in G, X is a random variable de�ned as a noisy version of the template:
the template is t0, the unique Fréchet mean ofX :

t0 � argmin
mPM

Epd2
M pm; X qq:

We also assume that� and X are independent random variables.
We are interested in the template estimation given the observationY by the

minimization of the pre-variance:

F pmq � E
�

inf
gPG

d2
M pm; g � Yq



:

BecauseX � � � Y we have also:

F pmq � E
�

inf
gPG

d2
M pm; g � X q



:

We use the term pre-variance, because it is not a variance (because we do not
have a quotient distance). As the group is compact and the action is continuous
inf gPG dM pm; g � X q is reached for someg PG; we note gpX; t 0q one element which
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reaches the in�mum. Therefore, F pt0q � Epd2
M pt0; gpX; t 0q � X qq. We de�ne the

variance of the random variablegpX; t 0q �X :

m ÞÑEpmq � Epd2
M pm; gpX; t 0q �X qq:

We de�ne the Voronoï cell associated to the pointx de�ned as the set of elements
closer to x than to all the point in the orbit of x:

VCpxq � t t PM s.t. @g PG dM px; t q ¤ dM pg � x; t qu:

Conjecture 5.1. Let pM; dM q be a metric space, letG be a compact group acting
continuously on M . We assume that a pointt0 is the unique Fréchet mean ofX .
Let us suppose that the templatet0 does not always belong to VCpX q:

Ppt0 RVCpX qq ¡ 0:

In this case, we think thatt0 is not a minimizer of the pre-varianceF .

Unfortunately, this conjecture is false, indeed, there is a counter example: the
action of vertical translation pv; mq ÞÑv � m is a counter example form PM (M a
Hilbert space), and v P V (V is a closed linear sub-space. It may be possible to �x
this conjecture by adding an hypothesis which excludes this counter-example.

This hypothesis is very similar to the one in theorems 3.1 and 3.4 (the theorems
of inconsistency in chapter 3). Indeed in these theorems, the condition wasPpX R
Conept0qq ¡ 0, where Conept0q � VCpt0qwas the Voronoï cell associated tot0, (this
cell was a cone, due to the isometric action). In theorems 3.1 and 3.4, the action was
isometric, and this condition could be also written Ppt0 R VCpX qq ¡ 0. Therefore
in conjecture 5.1, we have the same condition, however, as the space is no longer a
linear space, the voronoï cell associated toX is no longer a cone.

Let us detail why we think that this conjecture may be true:

Proposition 5.4. There are two cases:

� If gpX; t 0q �X does not have a Fréchet mean inM , then t0 does not minimize
F : the template estimation is inconsistent.

� If z is one Fréchet mean ofgpX; t 0q �X , then F pzq ¤ F pt0q. Therefore z is a
good candidate to show thatt0 does not minimizeF .

Proof of proposition 5.4. � Let us prove the �rst point: if gpX; t 0q �X does not
have a Fréchet mean inM , this means in particularly that t0 does not minimize
E. In this case, it exists z1 PM such that Epz1q   Ept0q. Then once again:

F pt0q � Ept0q

¡ Epz1q

¡ Epd2
M pz1; gpX; t 0q �X qq

¡ E
�

inf
gPG

d2
M pz1; g � X q




¡ F pz1q;
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� For the second point, if z is one Fréchet mean ofgpX; t 0q �X , then:

F pt0q � E
�

inf
gPG

d2
M pt0; g � X q




� Ept0q

¥ Epzq

¥ Epd2
M pz; gpX; t 0q �X qq

¥ E
�

inf
gPG

d2
M pz; g � X q




¥ F pzq;

�

Is it possible that t0 P FMpgpX; t 0q �X q ? In this caset0 would minimize two
functions:

m ÞÑEpd2
M pm; X qqand m ÞÑE2pd2

M pm; gpX; t 0q �X qq:

In the case wheregpX; t 0q � eG X -a.s. It is obvious that t0 minimizes these two
functions. This would mean that t0 belongs almost surely in the Voronoï Cone of
X . Therefore, as we have assumed that it is not the case, we can conclude that
gpX; t 0q � eG with a non zero probability. Therefore, the only thing remaining to
prove that t0 does not minimize the pre-variance, is proving thatz � t0, for every
z PFMpgpX; t 0q �X q. Maybe, this can be done by adding extra assumptions.

The di�culty, in order to �nish the proof of this conjecture, is that we are not
able to compute the minimum of the varianceE.

Note that we require a compact group acting continuously so that the registration
problem with respect to the template has at least a solution. Therefore an immediate
extension for non compact group is when the registration problem has at least a
solution.

Remark 5.5. As in section 5.2.5, we also need to prove thatgpX; t 0q �X is a mea-
surable variable, if not m ÞÑEpd2

M pm; gpX; t 0q �X qqcould have no sense. At this
point, we do not have a proof thatgpX; t 0q�X is a measurable variable. This technical
point will be discussed in section 5.4.3.

5.3.2 Conjecture 2: metric space with regularization

Let pM; dM q be a metric space,G a compact group acting continuously. We take
Y � � � X whereX is a noisy template: the template ist0 the unique Fréchet mean
of X :

t0 � argmin
mPM

Epd2
M pm; X qq:



136 Chapter 5. Study of consistency with a backward estimation

We are interested in the template estimation given the observationY with the
minimization of the regularized pre-variance de�ned by:

F pmq � E
�

inf
gPG

d2
M pm; g � Yq � Regpgq



;

where Reg is a regularization over the group. Here we suppose that

G Ñ R�

g ÞÑ Regpgq

is a continuous map, and that RegpeGq � 0. In most non linear registration
algorithm, for instance, in LDDMM framework [Beg 2005], one makes a trades o�
between an inexact matching thanks to the termd2

M pm; g � Yq, and a realistic se-
lection of the chosen deformation via the regularization term Regpgq. In LDDMM,
the regularization is the squared norm of the vector which de�ned the �ow equation
satisfying by the chosen di�eomorphim. For a point x P M and an elementh P G,
we de�ne the regularized Voronoï cell ofx as the element closer fromx than the
other element of the orbit of x. However, here the "closer" needs to be understood
as the distancedM regularized by Reg, the regularization term:

VC regpx; hq � t t PM; s.t.@g PG dM pt; x q � Regph� 1q ¤ dM pt; g � xq � Regpgh� 1qu

The de�nition is similar to the de�nition of the Voronoï cell, but here, the regular-
ization acts as a deformation of the metricdM . As RegpeGq � 0, and Regpgq ¥ 0, it
is easy to see that: VCpxq € VC regpx; eGq, in other words, the regularized Voronoï
cell is bigger than the original Voronoï cell.

Conjecture 5.2. Let X be a random variable, we assume thatt0 is the unique
Fréchet mean of X . Y � � � X , where � is a random variable in G, X and �
are assumed to be independant. We suppose thatt0 does not belong almost surely
to the random regularized Voronoï cell VCr pX; � q. Then we think that t0 is not a
minimizer of F .

Note that a priori for x and h, VCregpx; hq is a strictly subset of M . Therefore, it
is possible to ful�ll the condition t0 does not belong almost surely in VCregpX; � q.

Once again, let us explain why we think that this conjecture may be true: As
the group G is compact and acts continuously, we have the existence of an element
which reaches the in�mum in the regularized pre-variance:

F pt0q � Epinf
gPG

d2
M pt0; g � Yq � Regpgqq

� Epd2
M pt0; gpY; t0q �Yq � RegpgpY; t0qq

� Epd2
M pt0; gpY; t0q �Yq � RegpgpY; t0qq

¥ Epd2
M pz; gpY; t0q �Yqq � EpRegpgpY; t0qqq

¥ Epinf
gPG

d2
M pz; g � Yq � Regpgqq

¥ F pzq;
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wherez is one minimizer of the functionm ÞÑEpd2
M pm; gpY; t0q �Yq. The point z is

then a serious candidate which variance is smaller than the variance at the template.
Note that the gpY; t0q is the element which minimizesg ÞÑd2

M pt0; g � Yq � Regpgq,
contrarily to conjecture 1, where gpY; t0q minimized g ÞÑd2

M pt0; g � Yq.
Is it possible to havet0 PargminmPM Epd2

M pm; gpY; t0q�Yq? If true, t0 minimizes
two functions:

m ÞÑEpd2
M pm; � � 1Yqqand m ÞÑE2pd2

M pm; gpY; t0q �Yqq:

In the case wheregpY; t0q � � � 1 Y-a.s. it is obvious that it is the case, since that
the two functions are equal. By de�nition of gpY; t0q, if gpY; t0q � � � 1 Y-a.s., this
means that:

@g PG d2
M pt0; g � Yq � Regpgq ¥ d2

M pt0; X q � Regp� � 1q:

BesidesY � � � X , this leades to:

@g PG d2
M pt0; g � X q � Regpg� � 1q ¥ d2

M pt0; X q � Regp� � 1q:

This means that the template t0 belongs almost surely to VCregpX; � q, which is
exactly the hypothesis we excluded. The only thing we need to prove is thatt0 is
not a Fréchet mean ofgpY; t0q �Y . Because in this case, forz PFMpgpY; t0q �Yq, we
would have F pzq   F pt0q proving the inconsistency.

The di�culty in order to prove that t0 does not minimize FMpgpY; t0q�Yqis that
we do not know gpY; t0q therefore it hard to know if t0 minimize FMpgpY; t0q �Yq.

5.4 Congruent and measurable sections

In this section, we discuss the existence of a section of the quotient space satisfying
a certain property (being congruent or being measurable). First, a section of the
quotient space is a map which associate at each orbit an element of this orbit. Note
that a section always exists: it su�ces, for each orbit, to chose one element in the
orbit (with the axiom of choice).

In sections 5.4.1 and 5.4.2, we discuss the existence of congruent section, this
means that this section leaves the distance invariant. We see that if such a section
exists, then computing the Fréchet mean in the quotient space, and the consistency
bias is straightforward. For instance, for the group of rotations acting onRn a
congruent section exists, and this way, we are able to have an explicit formula of the
consistency bias. Unfortunately, we show that a congruent section does not always
exists.

In section 5.4.3, we discuss the existence of a measurable section such that the
image of this section is included in a Voronoï cell. If a measurable section exists,
then we solve the missing technical details of sections 5.2 and 5.3: we needed to
prove that gpY; t0q �Y and gpY; m� q �Y are measurable variables,Y is the observable
variable, t0 the template, and m� the element which minimizes the pre-variance,
and gpa; bq is one element which registersa with respect to b.
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5.4.1 Congruent section and Computation of Fréchet Mean in
Quotient Space

Let M be an Hilbert space. Given pointsm P M and y P M , there is a priori no
closed-form expression in order to compute the quotient distanceinf

gPG
}g � m � y}.

Therefore computing and minimizing the variance in the quotient does not seem
straightforward. There is one case where it may be possible: the existence of a
congruent section. We say thats : Q Ñ M is a section if � � s � Id , where
� : M Ñ Q is the canonical projection into the quotient space. Moreover we say
that the section s is congruent if:

@o; o1 PQ }spoq � spo1q} � dQpo; o1q:

Then the image of the quotient by the sectionS � spQq is a part of M which has
an interesting property:

@p; q PS; }p � q} � dQprps; rqsq:

In other words, the section gives us a part ofM containing a point of each orbit such
that all points in S are already registered. Moreover, ifs is a section,s1 : rms ÞÑ
g�sprmsqis also a section, without loss of generality we can assume thatt0 � sprt0sq.

In this case, the variance is equal to:

F pmq � Ep}sprmsq � sprYsq}2q;

where we recognize the variance of the random variablesprYsq. As we know that
the element which minimizes the variance in a linear space is given by the expected
value, we have that:

F pmq ¥ F pEpsprYsqqq:

Moreover this inequality is strict if and only if m and EpsprYsqqare not in the same
orbit.

Therefore, we have a method to determine if the estimation is consistent or not:
computing EpsprYsqqand verifying if t0 and EpsprYsqqare in the same orbit, and
the consistency bias is given bydQprt0s; rEpsprYsqqsq. Moreover if we take m P S,
we haveF pmq � Ep}m � sprYsq}2qand it is now straightforward that the restriction
of F to S, noted F |S, is di�erentiable 1 on S, and that r F |Spmq � m � EpsprYsq.
In particular }r F |Spt0q} � } t0 � EpsprYsqq}gives us the value of the bias.

Note that in this thesis, we have already seen two examples of action with a con-
gruent section see section 3.3.6 and example 4.6. Each time, we were able to compute
the bias, as in the following example of rotations (studied in [Miolane 2017]):

1We say that F |S is di�erentiable on S, even if S is not open, becausem ÞÑEp}m � sprY sq}2q
is de�ned and di�erentiable on M , and is equal to F |S .
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Example 5.1. The action of rotations: G � SOpnq acts isometrically onM � Rn .
We notice that the quotient distance isdQprxs; rysq � |} x} � } y}| . We can check that
sprxsq � } x}v is a section for an unitary vector v . Therefore the computation of
the bias is given bydQprt0s; rEpsprYsqsq � |Ep}Y }q � } t0}q|.

Unfortunately, the congruent section generally does not exist. Let us give an
example:

Example 5.2. Taking N PN with N ¥ 3, we consider the action ofG � Z{N Z on
M � RZ{N Z � RG by horizontal translation: for � P Z{N Z, and px1; x2; : : : ; xN q �
RG:

� � px1; x2; : : : ; xN q � p x1� � ; x2� � ; : : : ; xN � � q;

Let us take three pointsp1, p2 and p3 in M de�ned by:

p1 � p 0; 5; 0; : : : ; 0q; p2 � p 0; 3; 2; 0; : : : ; 0q and p3 � p 2; 3; 0; : : : ; 0q:

By hand we can check that there is nox P rp1s, y P rp2s and z P rp3s such that
}x � y} � dQprp1s; rp2sq, }x � z} � dQprp1s; rp3sq, and }y � z} � dQprp2s; rp3sq. Thus,
a congruent section inQ � M {G does not exists.

We can generalize this simple example by taking a non �nite group:

Example 5.3. Let us takeM � L 2pR{Zq the set of 1-periodic functions such that³1
0 f 2ptqdt   �8 (this example was already introduced in 3.3).G � R{Z acts on

L 2pR{Zq by horizontal translation:

� PR{Z; f PL 2pR{Zq ÞÑf � with f pxq � f px � � q:

Then a congruent section inQ � M {G does not exists.

Proof. Let us take f 1 � 1r 1
4 ; 3

4 s, f 2 � f 1 � 21r 1
4 ; 1

4 � � s and f 3 � f 1 � 21r 1
4 � �; 1

4 � 2� s for

some� P p0; 1
4q (see �gure 5.4). Let us suppose that a congruent sections exists.

Without loss of generality we can assume thatsprf 1sq � f 1, we should have

}f 1 � sprf 2sq} � } sprf 1sq � sprf 2sq} � dQprf 1s; rf 2sq:

In other words, sprf 2sqshould be registered with respect tof 1. For � PR{Z we can
verify that }f 1 � � � f 2} ¥ } f 1 � f 2} and that this inequality is strict as soon as� � 0.
Then f 2 is the only element of rf 2s registered with f 1 then sprf 2sq � f 2. Likewise
for sprf 3sq � f 3, then we should have:

dQprf 2s; rf 3sq � } f 2 � f 3}:

However it is easy to verify that

d2
Qprf 2s; rf 3sq ¤ }� � f 2 � f 3}2 � 2�   8� � } f 2 � f 3}2 � dQprf 2s; rf 3sq

This is a contradiction. Therefore, a congruent section does not exist. �
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(a) f 1 (b) f 2 (c) f 3

Figure 5.4: Representation of the three functionsf 1, f 2 and f 3 with � � 0:05. the
functions f 2 and f 3 are registered with respect tof 1. However f 2 and f 3 are not
registered with each other, since it is more pro�table to shift f 2 in order to align
the highest parts of f 2 and f 3.

This can be done for every� ¡ 0, therefore, we can also conclude that a local
congruent section aroundf 1 does not exist either: becauselim

� Ñ 0
f 2 � lim

� Ñ 0
f 3 � f 1.

Ziezold [Ziezold 1977] had already noticed that being registered (he uses the
expression "optimal position" instead of registered) was not always a transitive
relation in other examples.

The existence of a congruent section indicates us that the quotient space is
not so complicated. Indeed when a congruent section exists, the quotient space is
embedded in the ambient space with respect to the distances in the quotient space
and in the ambient space. The computation of the Fréchet mean would be easier,
it su�ces to project data on S and to take the mean. When such a congruent
section does not exist, computing the Fréchet mean in quotient space is not so easy.
However, we can established proofs of inconsistency which are less tight.

Remark 5.6 (Link between congruent section and equation (5.2)). When
M is a Hilbert space, equation (5.2) is an implicit equation which gives the
expression of m� , an element which minimizes the pre-variance in the quotient
space:

m� � EpgpY; m� q �Yq:

If we knewm� , we could computegpY; m� q. Therefore we could computeEpgpY; m� qq
and therefore we could computem� . The serpents eats it own tail. However, if there
is a congruent sections, things will become much easier. Indeed let us assume that
a congruent sections exists, if m� minimizes F . Without loss of generality we can
assume thatsprm� sq � m� , then gpY; m� q �Y � sprYsqdoes not depend onm� , and
equation (5.2) becomesm� � EpsprYsqq: �nding m� is just the computation of an
expected value.
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5.4.2 Congruent section in Euclidean space

We have seen that the existence of a congruent section is useful to compute an
element which minimize the variance. In section 5.4.1, we were able to prove by an
example that for horizontal translation action in Rd a discrete space orL 2pr0; 1sqa
continuous space, we do not have the existence of a congruent section. But, for a
given action, what if we are not able to �nd such an example to reject the existence
of a congruent section by ourselves? In this section we propose an algorithm which
is able to reject the existence of such a congruent section.

Let G be a group acting onM (a Hilbert space). First, we can notice that,
if dQpras; rbsq � inf gPG }a � g � b} is not a distance in a quotient space, then a
section can not exist. Indeed if we havedM a distance in the ambient space and
s a congruent section, every property of the distancedM would be veri�ed by dQ

through the congruent section. Therefore in the following, we restrict ourselves to
isometric action.

Now, we propose a simple algorithm which can reject the existence of a congruent
section in Euclidean space. LetM � Rd be an Euclidean space. Taking random
points in the ambient spacepy1; : : : ; ynq. If there is a congruent section, in particular
we have:

@i PJ1; nK Dx i P ryi s s.t. @j PJ1; nK }x i � x j }2 � dQpryi s; ryj sq2: (5.6)

By expanding the square norms, we get:

xx i � xn ; x j � xny �
1
2

�
}x i � xn }2 � } x j � xn }2 � } x i � x j }2�

: (5.7)

Even if we do not know the family of vectorspx i � xnq1¤ i ¤ n� 1, thanks to the chosen
vectorspyi qi , and thanks to equations (5.6) and (5.7), we can computeA PM n� 1pRq,
the Gram matrix associated to the family of vectorspx i � xnq1¤ i ¤ n� 1 (if these vectors
px i q exist):

@pi; j q PJ1; nK2 A ij � x x i � xn ; x j � xny

�
1
2

�
dQpryi s; rynsq2 � dQpryj s; rynsq2 � dQpryi s; ryj sq2

�
:

If we denote by B the matrix such that the i -th column of B are the coordinate
of x i � xn , we haveA � p B qT B , moreover the rank of B is equal to the rank of
A. Then we should have rankpAq � rankpB q ¤ dim M (since the vectorsx i � xn

belongs toM ).

Example 5.4. Let us choseG � t I 2; � I 2u acting isometrically on M � R2, an
orbit of a point m is rms � t m; � mu, the quotient distance is:

dQprms; rnsq � minp}m � n}; }m � n}q

We chosey1 � p 1; 0q, y2 � p 1
2 ;

?
3

2 q, y3 � p� 1
2 ;

?
3

2 q, y4 � p 0; 0q(see �gure 5.5). Then
we havedQpryi s; ryj sq � 1 for every pi; j q PJ1; 4K2 (except if i � j ; dQpryi s; ryi sq � 0).



142 Chapter 5. Study of consistency with a backward estimation


 y1
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y2



� y2



y3



� y3


y4

(a) The four orbits in R2 , the segments
are the lines which realize the quotient
distance.



ry1s



ry4s


 ry2s
ry3s

(b) Representation of the four or-
bits in the quotient space, the quo-
tient space can not be embedded
into R2 in a congruent way.

Figure 5.5: Representation of the four points inR2 and representation of the four
orbits

Therefore, if a congruent section exists, it should be possible to �nd 4 points in
R2 such that any two di�erent points among these 4 points would have a distance
equal to 1. Of course, this is not possible, in order to prove it, we compute the
matrix A as explained above, we �nd:

A �
1
2

�

�
2 1 1
1 2 1
1 1 2

�


 ;

then rankpAq � 3 ¡ dim M . In order to build a regular tetrahedron, we need to be
at least in R3.

Let us return to a general isometric action on a general Euclidean space. By
choosing they1

i s randomly, if we get an example where rankpAq ¡ dim M , then
we reject the existence thex i such that }x i � x j }2 � dQpryi s; ryj sq2 for every
pi; j q P J1; nK2. Therefore, we reject the existence of a congruent section for the
chosen group action.

Note that the rank of A is very sensitive to error in the computation of the
squared quotient distance. That is why it is preferable to chose some vectorsyi

with coordinates which are integer.
We implement this algorithm, with the action of horizontal translation in R64.

For instance, if we take 100 random points we �nd that the rank of the matrix
A is 99. In other words, in order to embed the quotient spaceR64{pZ{64Zq with
respect to the quotient and Euclidean distances, we need at least an Euclidean space
of dimension 99. But if we take more points for instance 500 we �nd that we need a
at least an Euclidean space of dimension 499. The more we take points the larger the
dimension must be. In other words it is probably not possible to embed the quotient
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space in an Euclidean space with respect to the quotient distance. In particular,
the original ambient space of dimension64 is not su�cient: there is no congruent
section.

Remark 5.7. Here, we can notice that the Nash embedding theorem [Nash 1956]
states that any Riemannian manifold can be included inRd with d P N su�ciently
large. Furthermore, this embedding is cconsistent with the Riemannian metric.
Then, if the embedded Riemannian manifold is totally geodesic inRd. Then the
quotient distance is given by the Euclidean norm inRd. Here the situation is more
complex, indeed the quotient spaceQ is not a manifold, and even if we remove some
points in Q to obtain a Riemannian manifold Q� , we do not want to embedQ� into
Rd with d su�ciently large, we want to embedQ� into M with an application s such
that sprxsq P rxs.

5.4.3 Measurable section

We now assume thatpM; dM q is a metric set, andG a compact group acting con-
tinuously on M . We have seen in sections 5.2 and 5.3 that we need to prove the
existence of the measurable variablesgpY; t0q �Y and gpY; m� q �Y , where gpa; bq is
one element which registersa to b (see remarks 5.3 and 5.5). In fact, in these pre-
vious sections, we have admitted the existence of such measurable variables. This
technical detail matters because we need it in order to make the proof of theorem 5.2
rigorous. In this section we make the link between this problem and the existence
of an measurable section.

De�nition 5.2. Let � be a point in M (� could be t0 or m� depending on the
context). We say thats is a � -measurable-section if:

� s is a section namely,s is a map; s : M {G Ñ M with � � s � Id (where � is
the canonical projection into the quotient space).

� s is a measurable map.

� S � spM {Gq is included in the Voronoï cell of � :

s :
M {G Ñ VCp� q
rxs ÞÑ y wherey P rxs

:

Once again, it is easy to show that a sections : M {G Ñ VCp� qexists: for every
orbit, it su�ces to choose one element among the element of the orbit which are the
closest to � . As the group is compact and acts continuously, the existence of this
element is ensured. Therefore, by the axiom of choice,s exits. However, nothing in
this argument ensure the measurability of the section. On the contrary, using the
axiom of choice is the best thing to do in order to build non measurable functions
or non measurable sets.

When such a� -measurable-section exists, thengpY; � q�Y � spYqis a measurable
variable becauseY and s are measurable. Therefore in order to solve the technical
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problem seen in sections 5.2 and 5.3, all we have to do is reduced to prove the
existence of� -measurable-section.

If we have the existence of a congruent section, the result is straightforward: lets
be a congruent section, without loss of generally we can assume thatspr� sq � � ,
then for every point x PS � spQq we havedQprxs; r� sq � dM px; � q, then x PVCp� q
therefore S € VCp� q, then s : Q Ñ VCp� q is measurable since continuous since
congruent. Unfortunately, we have already seen that a congruent section does not
always exists.

Fortunately, being measurable is much weaker assumption that being congruent.
Then, it should be possible to show that a� -measurable-section exists even if there
is no congruent section.

5.5 Inconsistency for non isometric action by perturba-
tion of an isometric group action

In this Section, we exhibit a su�cient condition in order to prove inconsistency even
for non isometric action. However, knowing if this condition is satis�ed is di�cult,
except if the action is isometric. Therefore, we propose to prove that this condition
is only veri�ed for action which are small perturbation of an isometric action.

5.5.1 Notation, hypothesis and theorem of inconsistency

Let M be a Hilbert space,G acting on M , Y a random variable such thatEp}Y }2q  
�8 . The observable variableY is built with a template t0 added to unbiased noise
" and a random transformation � in the group G. The random deformation � and
the noise" are independent variables. This leads to two di�erent generative models:

Y � � � t0 � ";

which is called forward model. Or

Y � � � pt0 � "q;

which is called a backward model.
In this Section we exhibit results for this two models, however in the case of a

forward model we will need an extra hypothesis: the action is linear which means
that x ÞÑg � x is linear for all g PG.

In this Section, we suppose that there exists some non negative constants
A; a; B; b such that:

@x PM @g PG a}x}2 � b ¤ } g � x}2 ¤ A}x}2 � B; (5.8)

This can be seen as a relaxation of the isometric action (previously studied) where
we had:

@x PM @g PG }x}2 � } g � x}2:
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Note that it is always possible to take a � b � 0, but we will see that it is
possible to have a more precise result ifa and b are greater than0.

Example 5.5. Let us give three examples where(5.8) is veri�ed:

� For an isometric action we haveA � a � 1 and B � b � 0.

� More generally, if one has a compact group of linear operators for the euclidean
norm } } , we can take:

A � sup
gPG

~g~2 a �
1
A

B � b � 0;

where~g~ is the subordinate norm of the linear applicationx ÞÑg � x.

� In Example (4.2), this condition is ful�lled as soon as the di�eomorphims in
the groupG has a Jacobian determinant uniformly bounded since:

}f � � � 1}2
2 �

»

Rn
f pxq2|Jacx |dx� ¤ A}f }2

2:

We can de�ne the function m ÞÑF pmq � Epinf gPG }m � g � Y }2q and provide
frameworks in which t0 does not always minimizeF . As we do not suppose an
isometric action, F is a called pre-variance instead of being called variance. We
de�ne

� pt0q �

E

�

sup
gPG

xt0; g � Yy

�

}t0}2 :

Proposition 5.5. Let G a group acting onM a Hilbert space. We assume thatY
satis�es a backward or forward generative model from a templatet0 (with the extra
assumption thatG acts linearly in the case of a forward model). We suppose that:

r} t0}p� pt0q � 1qs2 ¡ p A � aqEp}Y }2q � B � b: (5.9)

We also assume that� pt0q ¡ 1. Then t0 does not minimizeF .

Condition (5.9) can be understood as follows: the non isometric action leads to
some constantsA; a; B; b such that A and a are closed enough and so areB and b.
In the case of an isometric actionB � b � 0 and A � a � 1 and the right member
is equal to 0, besides we have seen that� pt0q ¡ 1 as soon as the quotient distance
is a contraction with respect to the ambient distance (see chapter 3). Therefore,
condition (5.9) is a generalization of the su�cient condition for inconsistency in the
case of isometric action.

Proof. We de�ne for � ¥ 1, f p� q � F p�t 0q. Then we have:

f p� q � � 2}t0}2 � E
�

inf
gPG

}g � Y }2 � 2� xt0; g � Yy



:
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�

Pp� q

F p�t 0q
pp� q

1

Pp1q

F pt0q
pp1q

� �

Pp� � q

F p� � t0q

pp� � q

Figure 5.6: Sketch of the proof: thanks to condition (5.8) we �nd two parabolaP
and p such that pp� q ¤ F p�t 0q ¤ Pp� qfor all � ¥ 0. P and p reach their minimum at
� pt0q ¡ 1. Condition (5.9) ensures that Pp� pt0qq   pp1q. Then F p� pt0qt0q   F pt0q
as a conclusiont0 is not the minimum of F . In chapter 3, the action was isometric
and Pp� q � pp� q � F p�t 0q for all � ¡ 0 leading to a simpler proof.

By using condition (5.8), we get:

f p� q ¤ � 2}t0}2 � 2� Epsup
gPG

xt0; g � Yy � AEp}Y }2q � B � Pp� q:

Similarly,

f p� q ¥ � 2}t0}2 � 2� Epsup
gPG

xt0; g � Yy � aEp}Y }2q � b � pp� q:

This allows us to determine the unique� PR� which minimizes P and p:

� pt0q � argmin P � argmin p �

Epsup
gPG

xt0; g � Yyq

}t0}2 :

Now, we know that:
"

F pt0q � f p1q ¥ pp1q
F p� pt0qt0q � f p� pt0qq ¤ Pp� pt0qq

:

thus if pp1q ¡ Pp� pt0qq, we haveF pt0q ¡ F p� pt0qt0q. So the only thing we have to
prove is pp1q ¡ Pp� pt0qq:

Pp� pt0qq � � pt0q2}t0}2 � 2� pt0q}t0}2� pt0q � AEp}Y }2q � B; (5.10)

pp1q � } t0}2 � 2}t0}2� pt0q � aEp}Y }2q � b: (5.11)
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Now we can computepp1q � Pp� pt0qq, thanks to equations (5.10) and (5.11):

pp1q � Pp� pt0qq � r} t0}p� pt0q � 1qs2 �
�
pA � aqEp}Y }2q � B � b

�
¡ 0;

by using Condition (5.9). This concludes that t0 does not minimizeF . �

5.5.2 Is it possible to ful�ll condition (5.9)?

As we have seen, we need condition (5.9) in order to prove thatpp1q ¡ Pp� pt0qq
which su�ces to prove that t0 do not minimizes F . But is it possible to have this
condition? First, we can notice that when the action is isometric we can always take
A � a � 1 and B � b � 0 then as soon ast0 � 0 and � pt0q � 1 (and we have seen
that � pt0q ¡ 1 ) we have the condition (5.9), since the left member of condition (5.9)
is positive whereas its right member is equal to zero.

So in fact, in the case of isometric action we just prove again what we proved
in chapter 3. However let us suppose that we have a isometric which satis�es (5.9)
then the left hand side is strictly greater than the right hand side. Now if it was
possible to deform our group action on a continuous way, such that the left and
right member are continuous with respect to the group action, then starting from
an isometric group action we can deform a little this group action to have a non
isometric group action which still satis�es (5.9).

However, we need to specify what is meant by deforming our group action in a
continuous way.

De�nition 5.3. We suppose that for all� P r0; 1s we haveG� a group acting on
M . Moreover we suppose thatG0 acts isometrically on M . We say that the group
action is continuous with respect to� if for all � 0 P r0; 1s we have:

lim
� Ñ � 0

sup
g� PG� 0

inf
g� 0 PG� 0

sup
xPM zt0u

}g� � x � g� 0 � x}
}x}

� 0: (5.12)

This means that for � su�ciently close to � 0, g� � x will behave like a g� 0 � x for some
g� 0 PG� 0 . Note that a priori we do not know how to �nd this g� 0 .

In particular, if G� acts linearly for all � , condition (5.12) is equivalent to:

@� 0 P r0; 1s lim
� Ñ � 0

sup
g� PG�

inf
g� 0 PG� 0

~g� � g� 0 ~ � 0; (5.13)

where ~ ~ is the subordinate norm associated to the euclidean norm} } . Let us
give an example:

Example 5.6. We take M � Rn , let be G a compact group of the linear group
GL npRq which linearly. We assume additionally thatG do not acts isometrically.
In other words G is not included in OnpRq the orthogonal group. A classical re-
sult [Bourbaki 2012] on maximal compact subgroup states that it existsS a symmet-
ric de�nite positive matrix such that:

S� 1GS € OnpRq:



148 Chapter 5. Study of consistency with a backward estimation

Now, the space of symmetric and de�nite positive matrices is path connected. There-
fore we can �nd � P r0; 1s ÞÑS� such that S0 � S and S1 � I n . We de�ne then
G� � S� 1

� GS� . In particular, G0 � S� 1GS € OnpRq and G1 � G. For every
� P r0; 1s G� acts linearly on M . It is possible that, for some� , G� is included
in OnpRq but we can remove these� in order that G0 is the only group which acts
isometrically: We de�ne � � P r0; 1p as:

� � � sup t t P r0; 1s such that Gt € OnpRqu:

Then by the fact that OnpRq is a closed set we have thatG� � € OnpRq. Then we
can considerG� only for r� � ; 1s and re-scale the� parameter so that� � � 0 then G�

acts linearly but not isometrically as soon as� ¡ 0.

Now let us prove that equation (5.13) is satis�ed:

Proof. Let g� � S� 1
� gS� PG� with g PG. We have S�

� 1gS� PG� 0 then we have:

inf
g� 0 PG� 0

~g� � g� 0 ~ ¤ ~ g� � S� 0
� 1gS� 0 ~

¤ ~ S�
� 1gpS� � S� 0 q~ � ~p S�

� 1 � S� 0
� 1qgS� 0 ~

sup
g� PG�

inf
g� 0 PG� 0

~g� � g� 0 ~ ¤ ~ S�
� 1~N ~S� � S� 0 ~ � ~ S�

� 1 � S� 0
� 1~N ~S� 0 ~ Ñ

� Ñ � 0
0:

because it existsN such that for all g PG ~g~ ¤ N (the group is compact). �

Now, if one have a continuous path of group actionpG� ; �q� Pr0;1s such that G0

acts isometrically on M then (5.9) is a inequality between two terms which are
continuous maps with respect of� . When (5.9) is ful�lled for � � 0 (in chapter 3
we have seen that this condition is ful�lled as soon as the quotient distance to the
template is contracted compared to the ambient distance), then this condition (5.9)
will be still ful�lled for � P r0; cs for some c ¡ 0 by continuity. Besides, if the
condition � pt0q ¡ 1 is true for � � 0 (the isometric action), � pt0q ¡ 1 for a small
interval r0; c1s.

Conclusion: if is possible to connect a non isometric action to an isometric
one with a continuous path and if the template estimation is inconsistent for the
isometric group, then it will also be inconsistent for a few non isometric groups
among the path connecting the two groups. The inconsistency appears even for
small � and for non isometric groups. However, we do not know how to estimate
the c P p0; 1s such that the action of G� leads to inconsistency for�   c.

5.6 Conclusion

In section 5.2, we have found an implicit equation of an element which minimizes
the variance/pre-variance. This implicit equation was used in order to prove that
the element which minimize the variance in Hilbert space have less symmetry than
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the original template in theorem 5.2. In section 5.3, we have provided a conjecture
of inconsistency. This conjecture is based on the Voronoï cell, this concept is similar
to the notion of the cone of the template seen in chapter 3. It is important to
notice that, we do neither suppose an invariant distance under the group action
nor that the ambient space is a Hilbert space in this conjecture,. Besides, in this
conjecture, we could add a regularization term in the template estimation. Finally,
in section 5.5, we do not assume a isometric action, and we give a condition which
leaves to inconsistency. Unfortunately, this condition is not easy to verify. However,
we can state that when the action is su�ciently closed to an isometric one, then
inconsistency holds.
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6.1 Synthesis of contributions

6.1.1 Hypotheses leading to inconsistency

In this thesis, we have considered the estimation of the template in computational
anatomy with the Fréchet mean in quotient space in the case where data in the
ambient space were deformed and noisy. We have mathematically proved that the
presence of the noise and the presence of the deformation on data leads to an incon-
sistent estimator of the template. In chapter 3 we proved the inconsistency mostly
for isometric action in Hilbert space. Chapter 4 generalized the inconsistency in
more general action in Hilbert space, but we restrict ourselves on the case where
the noise level was high. We extended our results in chapter 5 for nonlinear spaces,
where we proved in theorem 5.2 that the Fréchet mean in quotient space can be more
noisy than the original template. Table 6.1, summaries of the main assumptions of
the di�erent results leading to inconsistency.

We have highlighted the origin of the inconsistency: it is the contraction
of the quotient distance with respect to the distance in the ambient space (see
theorems 3.1, 3.4 and 4.1 for instance). We have also provided a quanti�cation of
the consistency bias (theorem 4.1 for instance). As a result, the consistency bias is
asymptotically linear with respect to the noise level� , when � Ñ �8 in the case
of an isometric action in Hilbert spaces.

Besides, we have done a little bit more than providing quanti�cation of the
consistency bias. We have proved that the estimated element is less symmetric
than the original template (theorem 5.2).
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Results Property of the
action

Generative
Model

Esti-
mation

Note

Theorem 3.1 isometric B B/F in HS, �nite group, tem-
plate is a regular point

Theorem 3.4 isometric B B/F in HS template is a non
�xed point

Theorem 3.6 invariant dis-
tance

B B/F in CRM, template is a
�xed point

Theorem 4.1 isometric action F B/F in HS, Taylor expansion
of the consistency bias

Proposition 4.6 subgroup acting
isometrically

F F in HS, when the noise
level is large enough

Proposition 4.7 linear action F F in HS, when the noise
level is large enough

Theorem 5.2 invariant dis-
tance

general
model

B in HS or CRM

Proposition 5.5 inconsistency
when the action
is closed enough
to an isometric
one.

both
model

B in HS

Table 6.1: Recapitulation of the main hypotheses in the di�erent results on this
thesis which leads to inconsistency. B stands for backward, F stands for forward,
HS for Hilbert space, CRM for complete Riemannian manifold.

In this thesis, we have divided the proofs of inconsistency in several results with
all di�erent hypothesis on the action or on the template. On �gure 6.1 we draw a
Venn diagram of some properties of the action with a few examples that we have seen
in this thesis. One important property was the fact that the distance was invariant
under the group action, a particular case was the isometric action in Hilbert spaces.
The most advanced results was for isometric action in Hilbert spaces. Even if we
were able to prove inconsistency for non isometric action, but for a large enough
noise level (propositions 4.6 and 4.7).

6.1.2 The role played by the constants

One important constant in the consistency bias is the noise level� . Indeed, in
theorem 4.1 (for isometric action in Hilbert space), we have seen that the consistency
bias was asymptotically linear with respect to� . Besides for non isometric action,
we were able to show inconsistency as soon as the noise level was above a certain
threshold (propositions 4.6 and 4.7).

But � is not the only constant which appears in the study of the consistency:
there were also the constantsK , � pt0q, � pm� qand � pt0q. Let us make a brief overview
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ACTION WITH CS

ISOMETRIC ACTION

ACTION

LINEAR ACTION


 di�eo. on landmarks


 di�eo. on images


 horizontal translation N points, N ¥ 3

 continuous horizontal translation


 rotations
 horizontal translation two points


 vertical translation

Figure 6.1: Di�erent kind of actions according to their property, the actions in bul-
let are examples of each cases. The de�nition and the existence of such congruent
section (CS) was discussed in section 5.4.1, isometric actions were studied in chap-
ters 3 and 4, linear actions in section 4.3.4. The examples of the di�eomorphism
on landmarks or images were described in section 1.3.3, the vertical translation in
example 4.6, the horizontal translation on two points in section 3.3.6, the horizontal
translation on more than two points in examples 3.1 and 5.2, the continuous horizon-
tal translation in examples 3.3 and 5.3, rotations in section 3.4.6.3 and example 5.1

of the signi�cance of these constants and how they are related to each other:

� In theorem 3.5, we have found a lower bound of the consistency bias which
depended on� pt0q. We recall, that � pmq � 1

}m}2 Epsup
gPG

xm; g � Yyq. This quan-

tity indicates how much the observable variableY looks like the template t0

after registration. Later, in proposition 3.7, we take a Taylor expansion of the
lower bound found in theorem 3.5 when� tends to in�nity. This Taylor expan-
sion was linear with respect to� . And the linearity constants was depending
on � pt0q de�ned as � pt0q � 1

} t0 } Epsup
gPG

x"; g � t0yq. This quantity indicates how

much the template t0 looks like the standardized noise" after registration. In
proposition 3.8, we found an upper bound of the consistency bias, this upper
bound depends on� pm� q � 1

}m � } Epsup
gPG

x"; g � m� yq, where m� is a minimizer

of the variance.
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� Therefore, in chapter 3, we have seen that we could have lower and upper
bounds of the consistency bias. However the Taylor expansion of these two
bounds were di�erent (since they depends on two di�erent constants� pt0q
and � pm� q), this prevent us to �nd a Taylor expansion of the consistency
bias. This �aw is �xed in chapter 4, as we found in the proof of theorem 4.1
new lower and upper bounds. These bounds are also asymptotically linear
with respect to � , but with the same constant K � sup

vPS
� pvq, where S is

the unit sphere, and � pvq � Epsup
gPG

xv; g � "yq. Therefore K is bigger than

� pt0q and � pm� q. Therefore we were able to establish a Taylor expansion of
the consistency bias for isometric action with respect to� when � tends to
in�nity: CB � K� � op� q. This result is complementary with the one of
[Miolane 2017] which provides a Taylor expansion of CB when� Ñ 0.

� In propositions 4.6 and 4.7, we found that the threshold for the noise level,
depends on� pt0q, besides the proofs make� pt0q intervenes.

� Finally, in proposition 5.5, we have also give a su�cient condition for incon-
sistency where� pt0q also appeared.

6.2 Questions to be investigated

In order to conclude this thesis, we give some questions which need to be solved.
We can classify the questions to be investigated into two parts: on the one hand,
there are statistically issues directly related to the template estimation with the
Fréchet mean in quotient space. On the other hand, there are also geometrical
questions, which can be solved independently from the template estimation. But
whose solutions would bring new answers to the template estimation issue.

6.2.1 Statistical questions on the template estimation

� What is the behaviour of the consistency bias for� Ñ 0 in Hilbert space for
isometric action or in in�nite dimensional manifolds?

� How can we prove that the inconsistency appears for all� for non isometric
action? Solving conjectures 5.1 and 5.2, for instance?

� What is the behaviour of the consistency bias with respect to� when a reg-
ularization term is added? Solving this issue could tell which regularization
minimizes the inconsistency.

� In all this thesis, the consistency bias was studied under the condition that
the Fréchet mean in quotient space exists. If not, the consistency is, by con-
vention, in�nite. Can we given some results ensuring such existence? In-
deed, the theorems on the existence or the uniqueness of the Fréchet means
[Kendall 1989, Karcher 1977] are all, (to the best of our knowledge), restricted
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to random variable with a support included in a ball which is small enough.
Therefore these interesting results applies only in the case of small noise level.

6.2.2 Geometrical questions

� Given a metric space and a group action on this metric space, is it possible
to obtain a criteria which indicates the existence (or the non existence) of
a congruent section? Indeed, we have seen in chapter 5, than when such
a congruent section exists, computing the bias is just a computation of an
expectation.

� Is it possible to establish that there exists a measurable section of the quotient
space which takes value in the Voronoï cell of a certain point? This would make
the proof of theorem 5.2 perfectly rigorous.

� Can we �nd spaces with good mixtures(de�ned in de�nition 5.1) di�erent from
Hilbert space? This question may matter since we have seen that theorem 5.2
can be directly extended to this kind of space.
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7.1 Synthèse des contributions

Dans cette thèse, nous avons étudié l'estimation de template en anatomie computa-
tionnelle avec la moyenne de Fréchet dans les quotients dans le cas où les données ont
été déformées et bruitées. Mathématiquement, nous avons prouvé que la présence de
ce bruit et des déformations conduit à l'inconsistance de l'estimateur du template.

Dans le chapitre 3, nous avons montré l'inconsistance pour les actions
isométriques dans les espaces de Hilbert. Dans le chapitre 4, nous avons généralisé
l'inconsistance pour des actions plus générales mais seulement quand le niveau de
bruit était su�samment grand.

Dans le chapitre 5 nous avons étendu cette étude dans des espaces non linéaires.
Dans le théorème 5.2, nous avons prouvé que la moyenne de Fréchet dans l'espace
quotient était plus bruitée que le template original. Dans le tableau 7.1, nous avons
résumé les di�érents résultats qui conduisent à l'inconsistance.

Nous avons de plus mis en valeur l'origine du bruit : c'est la contraction de la
distance quotient par rapport à la distance dans l'espace ambiant. Par exemple
dans les théorèmes 3.1, 3.4, et 4.1. Nous avons aussi fourni une quanti�cation
du biais de consistance (théorème 4.1 par exemple) : Le biais de consistance est
asymptotiquement linéaire par rapport au niveau de bruit � quand � Ñ �8 dans
le cas d'une action isométrique dans un espace de Hilbert.

De plus, nous avons fait un peu plus que fournir une quanti�cation du biais de
consistance. Nous avons prouvé que l'élément estimé est moins symétrique que le
template original (théorème 5.2).
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Résultat Type d'action Modèle
Generatif

Esti-
mation

Note

Théorème 3.1 isométrique B B/F dans les EH, groupe �ni,
template est un point
régulier

Théorème 3.4 isométrique B B/F in EH, template n'est
pas un point �xe

Théorème 3.6 distance invari-
ante

B B/F in VRC, template est un
point �xe

Théorème 4.1 action
isométrique

F B/F in EH, équivalent du bi-
ais quand� Ñ �8

Proposition 4.6 sous-groupe
agissant
isométrique-
ment

F F dans EH quand le
niveau de bruit est
grand

Proposition 4.7 action linéaire F F dans EH quand le
niveau de bruit est
grand

Théorème 5.2 distance invari-
ante

modèle
général

B dans EH ou VRC

Proposition 5.5 inconsistance
quand l'action
est su�-
isamment
isométrique.

B/F B dans EH

Table 7.1: Récapitulatif des hypothèses principales dans les di�érents résultats de
cette thèse qui conduisent à l'inconsistance. Avec les abréviations suivantes, B :
backward, F : forward, EH : espace de Hilbert, VRC : variété riemannienne complète.

Dans cette thèse, on a divisé les preuves d'inconsistances en plusieurs résultats
avec di�érentes hypothèses sur l'action ou sur le template. Sur la �gure 7.1, on
a dessiné un diagramme de Venn de certaines propriétés de l'action avec quelques
exemples vus dans cette thèse.
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ACTION AVEC SC

ACTION ISOMÉTRIQUE

ACTION

ACTION LINÉAIRE


 di�eo. sur les landmarks


 di�eo. sur images


 translation horizontale de N points, N ¥ 3

 translation horizontale continue


 rotations
 translation horizontal de 2 points


 translation verticale

Figure 7.1: Di�érents types d'actions selon leurs propriétés. Les actions représen-
tées par des points sont des exemples de chaque case. La dé�nition et l'existence
des sections congruentes (SC) a été discuté dans la sous-section 5.4.1, les actions
isométriques ont été étudiées aux chapitres 3 et 4, les actions linéaires en sous-
section 4.3.4.

7.2 Questions ouvertes

Pour conclure cette thèse, on peut donner quelques questions ouvertes concernant
les problèmes statistiques et géométriques.

7.2.1 Questions statistiques reliées à l'estimation de template

� Quel est le comportement du biais de consistance lorsque� Ñ 0 dans des
espaces de Hilbert pour des actions isométriques ou dans des variétés de di-
mension in�nie ?

� Comment prouver l'inconsistance pour tout � ¡ 0 et pour toute action
isométrique. En résolvant les conjectures 5.1 et 5.2, par exemple ?

� Quel est le comportement du biais quand un terme de régularisation est
ajouté ? Ainsi on pourrait dire quel type de régularisation il est préférable de
considérer.
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� Dans toute cette thèse, le biais de consistance a été étudié à la condition
que la moyenne de Fréchet dans l'espace quotient existait. Sinon le bi-
ais de consistance est par convention in�nie. Peut-on assurer cette exis-
tence ? En e�et les théorèmes d'existence et d'unicité de la moyenne de
Fréchet [Kendall 1989, Karcher 1977] sont tous restreints (nous semble-t'il ) à
des variables aléatoires dont le support est contenu dans une boule su�sam-
ment petite. Donc, ces résultats ne s'appliquent que dans le cas des niveaux
de faible bruit.

7.2.2 Questions géométriques

� Pour un certain espace métrique et une certaine action de groupe, est-ce possi-
ble de trouver un critère indiquant l'existence (ou la non-existence) d'une sec-
tion congruente ? En e�et, au chapitre 5, nous avons vu que lorsqu'une section
congruente existe, le calcul du biais est réduit au calcul d'une espérance.

� Est-il possible de montrer qu'il existe une section mesurable de l'espace quo-
tient dont l'image est incluse dans la cellule de Voronoï d'un certain point ?
Cela simpli�erait le théorème 5.2.

� Peut-on trouver des espaces à bons mélanges(dé�nition 5.1) di�érents des
espaces de Hilbert ? En e�et, nous avons vu que le théorème 5.2 peut être
directement étendu à ce type d'espaces.
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8.1 Cadre de la thèse

Le but de cette thèse est de démontrer l'inconsistence de l'estimation de template
en calculant la moyenne de Fréchet dans l'espace quotient. Pour cela on se place
dans un espace de départ notéM . On suppose souvent queM est un espace de
Hilbert. On considère G un groupe agissant surM . On dé�nit alors l'orbite d'un
élément m PM par :

rms � t g � m; g PGu

De plus on dé�nit le quotient de M par G noté M {G comme l'ensemble des orbites.
Si on suppose que la distancedM de M est invariante sous l'action deG, c'est-

à-dire que :

@g PG @m PM @n PM dM pg � m; g � nq � dM pm; nq

Alors on peut munir dQ d'une (pseudo)-distance dé�nie par dQprms; rnsq �
inf
gPG

dM pa; g � bq.

Soit t0 un élément deM , que l'on nomme template, partant de ce template on
crée des données en déformant ce template par l'action de groupe et en ajoutant
du bruit. Suivant que l'on ajoute le bruit avant ou après la déformation on obtient
deux modèles génératifs :

Y � � � t0 � �"

ou

Y � � � pt0 � �" q

Où on a notét0 le template, � une variable aléatoire dansG, " une variable aléatoire
centrée réduite (Ep"q � 0 et Ep}" }2q � 1, on suppose également que� et " sont deux
variables aléatoires indépendantes.

Le premier modèle est appelé �forward� et le second � backward�. Une fois que
l'on a généréY , on s'intéresse au problème inverse : on cherche à estimer le template,
ou plus précisément on cherche à estimer son orbite. Une méthode souvent utilisée
est le calcul de la moyenne de Fréchet dans l'espace quotient, c'est-à-dire que l'on
minimise :

m ÞÑF pmq � EpdQprms; rYsq2q � Epinf
gPG

}m � g � Y }2q

On obtient donc un estimateur du template. Dans cette thèse, on étudie donc
les propriétés statistiques de cet estimateur.

Dans cette thèse, on va montrer que généralement cet estimateur est inconsistant.
De plus on cherche à estimer le biais de consistance, c'est-à-dire la distance entre le
template et la moyenne de Fréchet dans le quotient.

8.2 Simulation sur des données synthétiques

Avant d'étudier de manière théorique l'estimation de template, on peut essayer de
faire des expériences numériques pour se donner une intuition de la (in)consistance
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de l'estimation du template. Pour ce faire, on prend par exemple des signaux vus
comme des fonctions discrétisées der0; 1s dans R avec N points. On dé�nit une
action de groupe par translation :

� PZ{N Z; px1; : : : ; xnq PRn ÞÑ px1� � ; : : : ; xn� � q

Partant d'un template t0 �xé, on crée un échantillon Y1; : : : YI en agissant sur ce
template et en y ajoutant du bruit; Yk � � k � t0 � " k . Ainsi avec cet échantillon, on
peut dé�nir la variance empirique :

m ÞÑFI pmq �
1
I

I¸

i � 1

dQprms; rYi sq

Puis en minimisant cette variance (via un algorithme de minimisation alternée ap-
pelé �max-max�), on peut comparer la moyenne de Fréchet empirique au vrai tem-
plate :

Figure 8.1: Exemple d'un template (une fonction escalier) et du template estimé
avec un échantillon de taille105 dans R64, " est un bruit gaussien et� � 10.

8.3 Preuve d'inconsistance pour des actions
isométriques

On appelle action isométrique sur un espace de HilbertM , toute action d'un groupe
G tel que pour tout g P G, m ÞÑg � m soit linéaire et que}g � m} � } m} pour tout
m PM .
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Pour étudier la consistance on peut commencer par se restreindre aux groupes
�nis. On a le résultat suivant :

Théorème 8.1. Soit G un groupe �ni agissant sur M � Rn e�ectivement et
isométriquement. Supposons que la variable aléatoireX est absolument continue
par rapport à la mesure de Lebesgue. On suppose aussi queEp}X }2q   �8 et que
t0 � EpX q est un point régulier (son groupe d'isotropie est réduit àt 0u).

On dé�nit Conept0q comme l'ensemble des points plus proches det0 que des
autres points gt0 pour g P G (voir �gure 8.2). Cone pt0q est en fait dé�nit comme
l'ensemble des points déjà recalés avect0. Si:

PpX RConept0qq ¡ 0; (8.1)

alors rt0s n'est pas une moyenne de Fréchet derX s.

0 t0

g � t0

g1� t0

Conept0q

Figure 8.2: Conept0q en gris.

Théorème 8.2. Soit G un groupe agissant isométriquement sur un espace de
Hilbert M . Soit X une variable aléatoire dansM telle queEp}X }2q   �8 . On
suppose quet0 � EpX q � 0. Si:

PpdQprt0s; rX sq   } t0 � X }q ¡ 0 (8.2)

ou de manière équivalente

P

�

sup
gPG

xg � X; t 0y ¡ x X; t 0y

�

¡ 0 (8.3)

Alors rt0s n'est pas une moyenne de Fréchet derX s dans Q � M {G.

De plus, on peut prouver que la condition 8.2 est souvent véri�ée. Par exemple,
lorsque l'orbite du template est une sous variété deM , il su�t que le support de X
ne soit pas inclus dans l'orthogonal de l'espace tangent dert0s au point t0.
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8.4 Quanti�cation du biais pour les actions isométriques

Dans cette thèse, on prouve également le théorème suivant qui fournit un équivalent
du biais lorsque le niveau de bruit diverge vers�8 :

Théorème 8.3. Soit M un espace de Hilbert, etG agissant isométriquement sur
M . Soit Y � � � t0 � �" , t0 est le template,� une variable aléatoire dansG, " une
variable aléatoire centrée réduite (Ep"q � 0 et Ep}" }2q � 1. Si le support du bruit "
n'est pas inclus dans l'ensemble des points �xes, alors on a l'encadrement du biais
de consistance suivant :

�K � 2}t0} ¤ CB ¤ �K � 2}t0}; (8.4)

où K � sup
}v}� 1

E

�

sup
gPG

xv; g � "y

�

P p0; 1s. La constante K dépend seulement du

bruit standardisé et de l'action de groupe mais pas du template. On obtient alors
l'équivalent du biais suivant quand� tend vers plus l'in�ni :

CB � �K � op� q as � Ñ �8 : (8.5)

8.5 Actions non isométriques

Lorsque les actions sont non isométriques, les preuves des théorèmes vues précédem-
ment ne s'appliquent pas. Cependant, si on suppose que l'orbite du template est
bornée, on peut montrer l'inconsistance dès que le niveau de bruit est su�samment
grand. On prouve, en particulier, la proposition suivante :

Proposition 8.1. Soit G un groupe agissant surM un espace de Hilbert. On
suppose que le templatet0 n'est pas un point �xe, et que son orbite sous l'action
du groupe G est bornée. On suppose queG contient un sous-groupeH agissant
isométriquement. On considèreA ¥ sup

gPG

}g�t0 }
} t0 } et a ¤ inf

gPG

}g�t0 }
} t0 } . Notons que

a ¤ 1 ¤ A et on a :
@g PG a}t0} ¤ } g � t0} ¤ A}t0}:

On pose :

� pt0q �
1

}t0}
Epsup

gPG
xg � t0; "yqet � H �

1
}t0}

E
�

sup
hPH

xh � t0; "y



:

On suppose que� H ¡ 0. Si � est plus grand qu'un certain niveau de bruit critique
noté � c dé�ni par :

� c �
}t0}
� H

�

�
�

� pt0q
� H

� A



�

d �
� pt0q
� H

� A

 2

� A2 � a2

�

� : (8.6)

Alors l'estimation est inconsistante.
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8.6 Variation du groupe d'isotropie

Un autre résultat de cette thèse, est la preuve que sous certaines conditions le
groupe d'isotropie de la moyenne de Fréchet dans le quotient est plus petit que le
template. Ce théorème est prouvé dans les espaces de Hilbert ainsi que les variétés
riemanniennes complètes lorsque la distance est invariante sous l'action de groupe,
ce résultat est similaire à celui de [Huckemann 2012].

Cela prouve non seulement une nouvelle fois l'inconsistance mais aussi que le
template et la moyenne de Fréchet dans le quotient n'ont pas les mêmes propriétés
géométriques.
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