Caractérisation et modélisation de UTBB MOSFET sur SOI pour les technologies CMOS avancées et applications en simulations circuits - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Thèse Année : 2017

Electrical characterization and modeling of advanced nano-scale ultra thin body and buried oxide MOSFETs and application in circuit simulations

Caractérisation et modélisation de UTBB MOSFET sur SOI pour les technologies CMOS avancées et applications en simulations circuits

Résumé

Τhe motivation for this dissertation is two of the main issues brought up by the scaling of new-era devices in contemporary MOSFET design: the development of an analytical and compact drain current model, valid in all regions of operation describing accurately the transfer and output characteristics of short-channel FDSOI devices and the investigation of reliability and variability issues of such advanced nanoscale transistors. Chapter II provides a theoretical and technical background for the better understanding of this dissertation, focusing on the critical MOSFET electrical parameters and the techniques for their extraction. It demonstrates the so-called Y-Function and Split-CV methodologies for electrical characterization in diverse types of semiconductors. The influence of AC signal oscillator level on effective mobility measurement by split C-V technique in MOSFETs is also analyzed. A new methodology based on the Lambert W function which allows the extraction of MOSFET parameters over the full gate voltage range, enabling to fully capture the transition between subthreshold and above threshold region, despite the reduction of supply voltage Vdd is presented. Finally, some basic elements concerning the low frequency noise (LFN) on MOSFETs characterization are described. Chapter III presents the analytical drain current compact modeling in nanoscale FDSOI MOSFETs. Simple analytical models for the front and back gate threshold voltages and ideality factors have been derived in terms of the device geometry parameters and the applied bias voltages with back gate control. An analytical compact drain current model has been developed for lightly doped UTBB FDSOI MOSFETs with back gate control, accounting for small geometry and other significant in such technologies effects and implemented via Verilog-A code for simulation of circuits in Cadence Spectre. Chapter IV is dealing with reliability issues in FDSOI transistors. The hot-carrier degradation of nanoscale UTBB FDSOI nMOSFETs has been investigated under different drain and gate bias stress conditions. The degradation mechanisms have been identified by combined LFN measurements at room temperature in the frequency and time domains. Based on our analytical compact model of Chapter III, an HC aging model is proposed enabling to predict the device degradation stressed under different bias conditions, using a unique set of few model parameters determined for each technology through measurements. Finally, the NBTI stress characteristics and the recovery behavior under positive bias temperature stress of HfSiON gate dielectric UTBB FDSOI pMOSFETs have been investigated. A model for the NBTI has been developed by considering hole-trapping/detrapping mechanisms, capturing the temperature and bias voltage dependence. In Chapter V studies of variability issues in advanced nano-scale devices are presented. The main sources of drain and gate current local variability have been thoroughly studied. In this aspect, a fully functional drain current mismatch model, valid for any gate and drain bias condition has been developed. The main local and global variability MOSFET parameters have been extracted owing to this generalized analytical mismatch model. Furthermore, the impact of the source-drain series resistance mismatch on the drain current variability has been investigated for 28nm Bulk MOSFETs. A detailed statistical characterization of the drain current local and global variability in sub 15nm Si/SiGe Trigate nanowire pMOSFETs and 14nm Si bulk FinFETs has been conducted. Finally, a complete investigation of the gate and drain current mismatch in advanced FDSOI devices has been performed. Finally, the impact of drain current variability on circuits in Cadence Spectre is presented. An overall summary of this dissertation is presented in Chapter VI, which highlights the key research contributions and future research directions are suggested.
La motivation de cette thèse est deux des principaux problèmes soulevés par la mise à l'échelle des appareils de la nouvelle ère dans la conception MOSFET contemporaine: le développement d'un modèle de courant de drain analytique et compact, valable dans toutes les régions d'opération, décrivant précisément les caractéristiques Id-Vg et Id-Vd des dispositifs FDSOI à canaux courts et l'étude des problèmes de fiabilité et de variabilité de ces transistors évolués à l'échelle nanométrique. Le chapitre II fournit une base théorique et technique pour une meilleure compréhension de cette thèse, en mettant l'accent sur les paramètres électriques MOSFET critiques et les techniques d'extraction. Il démontre les méthodologies de Y-Function et de Split-CV pour la caractérisation électrique dans divers types de semiconducteurs. L'influence du niveau de l'oscillateur du signal AC sur la mesure de la mobilité efficace par la technique Split-CV dans MOSFET est également analysée. Une nouvelle méthodologie basée sur la fonction Lambert W qui permet d'extraire les paramètres MOSFET sur la gamme de tension de grille complète, permettant de décrire la transition entre les regions en dessous et au dessus du seuil, malgré la réduction de la tension d'alimentation. Enfin, certains éléments de base concernant le bruit à basse fréquence (LFN) sur la caractérisation MOSFET sont décrits. Le chapitre III présente la modélisation analytique et compacte du courant de drain dans les MOSFET FDSOI à l'échelle nanométrique. Des modèles analytiques simples pour les tensions de seuil de la grille avant et arrière et les facteurs d'idéalité ont été développés en termes de paramètres de géométrie du dispositif et de tensions de polarisation appliquées avec contrôle de la grille arrière. Un modèle analytique et compact de courant de drain a été développé pour les MOSFET FDSOI UTBB légèrement dopés avec contrôle de la grille arrière, prenant en compte la géométrie réduite et d'autres effets importants dans ces technologies et implémenté en Verilog-A pour la simulation des circuits dans Cadence Spectre. Le chapitre IV traite des problèmes de fiabilité dans les transistors FDSOI. La dégradation par des porteurs chauds des nMOSFET UTBB FDSOI decananométrique a été étudiée dans différentes conditions de stress de drain et de grille. Les mécanismes de dégradation ont été identifiés grâce à des mesures LFN à température ambiante dans les domaines de la fréquence et du temps. Un modèle de vieillissement HC est proposé permettant de prédire la dégradation du dispositif stressé dans différentes conditions de polarisation, en utilisant de paramètres uniques déterminés pour chaque technologie extraits par des mesures. Enfin, les caractéristiques de stress NBTI et le comportement de relaxation après stress sous la polarisation positive des pMOSFET UTBB FDSOI de grille HfSiON ont été étudiés. Un modèle pour le NBTI a été développé en considérant les mécanismes de piégeage/dépiégeage des trous, en fonction de la température et de la tension de polarisation. Le chapitre V présente des études sur les problèmes de variabilité dans les dispositifs décananométriques. Les principales sources de courant de drain et de grille de la variabilité locale ont été étudiées. Dans cet aspect, un modèle de courant de drain de la variabilité locale, valable pour toute condition de polarisation de grille et de drain, a été développé. Les principaux paramètres MOSFET de variabilité locale et globale ont été extraits par ce modèle pour différentes technologies CMOS (Bulk 28nm, FDSOI 14nm, Si bulk FinFET 14nm, nanofils Si/SiGe sous 15nm). L’impact de la variabilité du courant de drain sur les circuits de Cadence Spectre est présenté. Un résumé de cette thèse est présenté au chapitre VI, qui souligne les principales contributions à la recherche et les orientations de recherche futures sont suggérées.
Fichier principal
Vignette du fichier
KARATSORI_2017_archivage.pdf (10.31 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01690112 , version 1 (22-01-2018)

Identifiants

  • HAL Id : tel-01690112 , version 1

Citer

Theano Karatsori. Caractérisation et modélisation de UTBB MOSFET sur SOI pour les technologies CMOS avancées et applications en simulations circuits. Micro et nanotechnologies/Microélectronique. Université Grenoble Alpes; Université Aristote (Thessalonique, Grèce), 2017. Français. ⟨NNT : 2017GREAT035⟩. ⟨tel-01690112⟩
391 Consultations
476 Téléchargements

Partager

Gmail Facebook X LinkedIn More