A. Barth, A. Alvera-azcárate, M. Rixen, and J. Beckers, Two-way nested model of mesoscale circulation features in the Ligurian Sea, Progress in Oceanography, vol.66, issue.2-4, pp.171-189, 2005.
DOI : 10.1016/j.pocean.2004.07.017

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, vol.82, issue.1, pp.64-84, 1989.
DOI : 10.1016/0021-9991(89)90035-1

M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.53, issue.3, pp.484-512, 1984.
DOI : 10.1016/0021-9991(84)90073-1

A. Biastoch, C. W. Böning, and J. R. Lutjeharms, Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation, Nature, vol.13, issue.7221, pp.489-492, 2008.
DOI : 10.1038/nature07426

A. F. Blumberg and G. L. Mellor, A description of a three-dimensional coastal ocean circulation model, Three-Dimensional Coastal Ocean Models, p.208, 1987.
DOI : 10.1175/1520-0485(1978)008<0557:OTSADO>2.0.CO;2

F. Bryan, A numerical method for the study of the circulation of the world ocean, Journal of Computational Physics, vol.4, issue.3, pp.347-376, 1969.
DOI : 10.1016/0021-9991(69)90004-7

L. Debreu and E. Blayo, Two-way embedding algorithms: a review. Ocean Dyn, pp.415-428, 2008.
DOI : 10.1007/s10236-008-0150-9

URL : https://hal.archives-ouvertes.fr/hal-00387449

E. Deleersnijder, V. Legat, and P. F. Lermusiaux, Mutil-scale modelling of coastal, shelf and global ocean dynamics. Ocean Dyn, pp.1357-1359, 2010.

J. K. Dukowicz and R. D. Smith, Implicit free-surface method for the Bryan-Cox-Semtner ocean model, Journal of Geophysical Research, vol.97, issue.C4, pp.7991-8014, 1994.
DOI : 10.1029/92JC00911

P. J. Haley and P. F. Lermusiaux, Multiscale two-way embedding schemes for free-surface primitive-equations in the multidisciplinary simulation, estimation and assimilation system. Ocean Dyn, pp.1497-1537, 2010.

D. A. Ham, C. C. Pain, E. Hanert, J. Pietrzak, and J. Schröter, Special issue: the sixth international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows Ocean Model, p.1, 1921.

E. Hanert, D. Y. Roux, V. Legat, and E. Deleersnijder, Advection schemes for unstructured grid ocean modelling. Ocean Model, pp.39-58, 2004.
DOI : 10.1016/s1463-5003(03)00029-5

P. W. Hemker, On the order of prolongations and restrictions in multigrid procedures, Journal of Computational and Applied Mathematics, vol.32, issue.3, pp.423-429, 2001.
DOI : 10.1016/0377-0427(90)90047-4

P. D. Killworth, D. Stainforth, D. J. Webb, and S. M. Paterson, The Development of a Free-Surface Bryan???Cox???Semtner Ocean Model, Journal of Physical Oceanography, vol.21, issue.9, pp.1333-1348, 1991.
DOI : 10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2

. Fig, Mean and RMS SSH [cm] in the 2-WAY experiment with update_mix_low

V. B. Andreev, Splitting operator difference schemes for general second order p-dimensional parabolic equations with mixed derivatives, USSR Computational Mathematics and Mathematical Physics, vol.7, issue.2, pp.92-104, 1967.
DOI : 10.1016/0041-5553(67)90006-7

J. M. Beckers, H. Burchard, J. M. Campin, E. Deleersnijder, and P. P. Mathieu, -Coordinate Ocean Model???, Journal of Physical Oceanography, vol.28, issue.7, pp.1552-1559, 1998.
DOI : 10.1175/1520-0485(1998)028<1552:ARWSDO>2.0.CO;2

J. M. Beckers, H. Burchard, E. Deleersnijder, and P. P. Mathieu, Numerical Discretization of Rotated Diffusion Operators in Ocean Models, Monthly Weather Review, vol.128, issue.8, pp.2711-2733, 2000.
DOI : 10.1175/1520-0493(2000)128<2711:NDORDO>2.0.CO;2

F. Colas, X. Capet, J. C. Mcwilliams, and Z. Li, Mesoscale eddy buoyancy flux and eddy-induced circulation in eastern-boundary upwelling systems, J. Phys. Oceanogr. Under review, 2012.
DOI : 10.1175/jpo-d-11-0241.1

M. D. Cox, Isopycnal diffusion in a z-coordinate ocean model. Ocean Modell. (unpublished manuscripts, pp.1-5, 1987.

I. Craig and A. Sneyd, An alternating-direction implicit scheme for parabolic equations with mixed derivatives, Computers & Mathematics with Applications, vol.16, issue.4, pp.341-350, 1988.
DOI : 10.1016/0898-1221(88)90150-2

URL : https://doi.org/10.1016/0898-1221(88)90150-2

B. Cushman-roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 2011.

G. Danabasoglu and J. C. Mcwilliams, Sensitivity of the Global Ocean Circulation to Parameterizations of Mesoscale Tracer Transports, Journal of Climate, vol.8, issue.12, pp.2967-2987, 1995.
DOI : 10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2

G. Danabasoglu, J. C. Mcwilliams, and P. R. Gent, The Role of Mesoscale Tracer Transports in the Global Ocean Circulation, Science, vol.264, issue.5162, pp.1123-1126, 1994.
DOI : 10.1126/science.264.5162.1123

E. J. Delhez and E. Deleersnijder, Overshootings and spurious oscillations caused by biharmonic mixing. Ocean Modell, pp.183-198, 2007.
DOI : 10.1016/j.ocemod.2007.01.002

J. Douglas, Alternating direction methods for three space variables, Numerische Mathematik, vol.3, issue.1, pp.41-63, 1962.
DOI : 10.1007/BF01386295

J. Douglas and J. E. Gunn, A general formulation of alternating direction methods, Numerische Mathematik, vol.3, issue.1, pp.428-453, 1964.
DOI : 10.1090/surv/003

R. Ferrari, S. M. Griffies, A. J. Nurser, and G. K. Vallis, A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell, pp.143-156, 2010.

R. Ferrari, J. C. Mcwilliams, V. Canuto, and M. Dubovikov, Parameterization of Eddy Fluxes near Oceanic Boundaries, Journal of Climate, vol.21, issue.12, pp.2770-2789, 2008.
DOI : 10.1175/2007JCLI1510.1

B. Fox-kemper, R. Ferrari, and R. Hallberg, Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis, Journal of Physical Oceanography, vol.38, issue.6, pp.1145-1165, 2008.
DOI : 10.1175/2007JPO3792.1

P. R. Gent, The Gent-McWilliams parameterization: 20/20 hindsight. Ocean Modell, pp.2-9, 2011.
DOI : 10.1016/j.ocemod.2010.08.002

P. R. Gent and J. C. Mcwilliams, Isopycnal Mixing in Ocean Circulation Models, Journal of Physical Oceanography, vol.20, issue.1, pp.150-155, 1990.
DOI : 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0485%281990%29020%3C0150%3AIMIOCM%3E2.0.CO%3B2

A. Gnanadesikan, S. M. Griffies, and B. L. Samuels, Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modell, pp.1-16, 2007.

S. M. Griffies, Fundamentals of Ocean Climate Models, 2004.

S. M. Griffies, Elements of MOM4p1, 0444.

S. M. Griffies, A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz et al., -Coordinate Ocean Model, Journal of Physical Oceanography, vol.28, issue.5, pp.805-830, 1998.
DOI : 10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2

R. Hallberg and A. Adcroft, Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping, Ocean Modelling, vol.29, issue.1, pp.15-26, 2009.
DOI : 10.1016/j.ocemod.2009.02.008

M. W. Hecht, Cautionary tales of persistent accumulation of numerical error: Dispersive centered advection, Ocean Modelling, vol.35, issue.3, pp.270-276, 2010.
DOI : 10.1016/j.ocemod.2010.07.005

R. Hofmeister, H. Burchard, and J. M. Beckers, Non-uniform adaptive vertical grids for 3d numerical ocean models. Ocean Modell, pp.70-86, 2010.
DOI : 10.1016/j.ocemod.2009.12.003

W. Hundsdorfer, K. Hout, and B. Welfert, Accuracy and stability of splitting with Stabilizing Corrections, Applied Numerical Mathematics, vol.42, issue.1-3, pp.213-233, 2002.
DOI : 10.1016/S0168-9274(01)00152-0

M. Leclair and G. Madec, z~-coordinate, an arbitrary lagrangian-eulerian coordinate separating high and low frequency motions. Ocean Modell, pp.139-152, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00755153

F. Lemarié, J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas et al., Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell, pp.57-79, 2012.

M. Lengaigne, G. Madec, and C. Menkes, Impact of isopycnal mixing on the tropical ocean circulation, Journal of Geophysical Research, vol.115, issue.C4, 2003.
DOI : 10.1007/978-94-011-5096-5_10

URL : https://hal.archives-ouvertes.fr/hal-00154250

G. Madec, NEMO ocean engine, in: Note du Pole de modélisation No. 27, 2008.

G. Manfredi, M. Ottaviani, P. Leach, S. Bouquet, J. L. Rouet et al., Finite-difference schemes for the diffusion equation, Dynamical Systems, Plasmas and Gravitation, pp.82-92, 1999.
DOI : 10.1007/BFb0105915

P. Marchesiello, L. Debreu, and X. Couvelard, Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution, Ocean Modelling, vol.26, issue.3-4, pp.159-169, 2009.
DOI : 10.1016/j.ocemod.2008.09.004

URL : https://hal.archives-ouvertes.fr/hal-00409317

P. P. Mathieu and E. Deleersnijder, What is wrong with isopycnal diffusion in world ocean models?, Applied Mathematical Modelling, vol.22, issue.4-5, pp.367-378, 1998.
DOI : 10.1016/S0307-904X(98)10008-2

URL : https://doi.org/10.1016/s0307-904x(98)10008-2

P. P. Mathieu, E. Deleersnijder, and J. M. Beckers, Accuracy and stability of the discretised isopycnal-mixing equation, Applied Mathematics Letters, vol.12, issue.4, pp.81-88, 1999.
DOI : 10.1016/S0893-9659(99)00039-7

T. J. Mcdougall, Neutral Surfaces, Journal of Physical Oceanography, vol.17, issue.11, pp.1950-1964, 1987.
DOI : 10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2

M. H. Redi, Oceanic Isopycnal Mixing by Coordinate Rotation, Journal of Physical Oceanography, vol.12, issue.10, pp.1154-1158, 1982.
DOI : 10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0485%281982%29012%3C1154%3AOIMBCR%3E2.0.CO%3B2

A. Shchepetkin and J. C. Mcwilliams, The regional oceanic modeling system: a split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell, pp.347-404, 2005.

A. F. Shchepetkin and J. C. Mcwilliams, Accurate Boussinesq oceanic modeling with a practical, ''stiffened'' equation of state. Ocean Modell, pp.41-70, 2011.

R. D. Smith and P. R. Gent, Anisotropic Gent???McWilliams Parameterization for Ocean Models, Journal of Physical Oceanography, vol.34, issue.11, pp.2541-2564, 2004.
DOI : 10.1175/JPO2613.1

H. Solomon, On the Representation of Isentropic Mixing in Ocean Circulation Models, Journal of Physical Oceanography, vol.1, issue.3, pp.233-234, 1971.
DOI : 10.1175/1520-0485(1971)001<0233:OTROIM>2.0.CO;2

A. M. Treguier, I. M. Held, and V. D. Larichev, Parameterization of Quasigeostrophic Eddies in Primitive Equation Ocean Models, Journal of Physical Oceanography, vol.27, issue.4, pp.567-580, 1997.
DOI : 10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00268210

P. Van-der-houwen and J. Verwer, Einschritt Split-Methoden f??r semi-diskrete parabolische Gleichungen, Computing, vol.3, issue.4, pp.291-309, 1979.
DOI : 10.1007/978-3-642-65108-3

A. Borz-`-borz-`-i and V. Schulz, Multigrid Methods for PDE Optimization, SIAM Review, vol.51, issue.2, pp.361-395, 2009.
DOI : 10.1137/060671590

H. Bouwmeester, A. Dougherty, and A. Knyazev, Nonsymmetric multigrid preconditioning for conjugate gradient methods, 2012.
DOI : 10.1016/j.procs.2015.05.241

URL : https://doi.org/10.1016/j.procs.2015.05.241

A. Brandt, Guide to multigrid development, Lecture Notes in Mathematics, vol.16, pp.220-312, 1982.
DOI : 10.1016/0146-664X(81)90046-0

W. Briggs, V. Henson, and S. Mccormick, A multigrid tutorial, second edition, Society for Industrial and Applied Mathematics, 2000.
DOI : 10.1137/1.9780898719505

M. Carrier and H. Ngodock, Background-error correlation model based on the implicit solution of a diffusion equation, Ocean Modelling, vol.35, issue.1-2, pp.45-53, 2010.
DOI : 10.1016/j.ocemod.2010.06.003

A. Cioaca, A. Sandu, and E. De-sturler, Efficient methods for computing observation impact in 4D-Var data assimilation, Computational Geosciences, vol.134, issue.632, pp.975-990, 2013.
DOI : 10.1002/qj.228

P. Courtier, Dual formulation of four-dimensional variational assimilation, Quarterly Journal of the Royal Meteorological Society, vol.121, issue.544, pp.2449-2461, 1997.
DOI : 10.1034/j.1600-0870.1992.t01-3-00002.x

G. Desroziers and L. Berre, Accelerating and parallelizing minimizations in ensemble and deterministic variational assimilations, Quarterly Journal of the Royal Meteorological Society, vol.135, issue.667, pp.1599-1610, 2012.
DOI : 10.1002/qj.438

URL : http://onlinelibrary.wiley.com/doi/10.1002/qj.1886/pdf

G. Evensen, Data assimilation: The ensemble kalman filter, 2006.
DOI : 10.1007/978-3-642-03711-5

S. Gratton, P. Toint, and J. Tshimanga, Conjugate gradients versus multigrid solvers for diffusion-based correlation models in data assimilation, Quarterly Journal of the Royal Meteorological Society, vol.127, issue.675, 2013.
DOI : 10.1002/qj.49712757518

S. Haben, A. Lawless, and S. N. , Conditioning of incremental variational data assimilation, with application to the Met Office system, Tellus A: Dynamic Meteorology and Oceanography, vol.134, issue.124, pp.782-792, 2011.
DOI : 10.1175/1520-0493(1996)124<2562:APAFFD>2.0.CO;2

W. Hackbusch, Multi-grid methods and applications, 2003.
DOI : 10.1007/978-3-662-02427-0

P. Hemker, On the order of prolongations and restrictions in multigrid procedures, Journal of Computational and Applied Mathematics, vol.32, issue.3, pp.423-429, 1990.
DOI : 10.1016/0377-0427(90)90047-4

P. Lax and B. Wendroff, Systems of conservation laws, Communications on Pure and Applied Mathematics, vol.47, issue.2, pp.217-237, 1960.
DOI : 10.1145/320868.320871

L. Dimet, F. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1007/978-3-642-65024-6

R. Lewis and S. Nash, Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations, SIAM Journal on Scientific Computing, vol.26, issue.6, 2005.
DOI : 10.1137/S1064827502407792

I. Mirouze and A. Weaver, Representation of correlation functions in variational assimilation using an implicit diffusion operator, Quarterly Journal of the Royal Meteorological Society, vol.22, issue.651, pp.1421-1443, 2010.
DOI : 10.1137/1.9780898717921

E. Neveu, L. Debreu, L. Dimet, and F. , Multigrid methods and data assimilation, convergence study and first experiments on non-linear equations, pp.63-80, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01299425

Y. Notay, Flexible Conjugate Gradients, SIAM Journal on Scientific Computing, vol.22, issue.4, pp.1444-1460, 2000.
DOI : 10.1137/S1064827599362314

URL : http://mntek3.ulb.ac.be/pub/docs/reports/pdf/2000_SISC_3.pdf

C. Oostelee and T. Washio, On the use of multigrid as a preconditioner, 1998.

R. Purser, The Filtering of Meteorological Fields, TFOMF>2.0.CO, pp.1764-176910, 1987.
DOI : 10.1175/1520-0450(1987)026<1764:TFOMF>2.0.CO;2

T. Rees, H. Dollar, and A. Wathen, Optimal Solvers for PDE-Constrained Optimization, SIAM Journal on Scientific Computing, vol.32, issue.1, 2008.
DOI : 10.1137/080727154

J. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, 1994.

W. Tang and W. W. , Sparse Approximate Inverse Smoother for Multigrid, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1236-1252, 2000.
DOI : 10.1137/S0895479899339342

URL : http://www-sccm.stanford.edu/pub/sccm/sccm99-07.ps.gz

O. Tatebe, The multigrid preconditioned conjugate gradient method, Proc. of Sixth Copper Moutain Conference on Multigrid Methods. NASA Conference Publication 3224, pp.612-634, 1993.

A. Thekale, T. Gradl, K. Klamroth, and U. Rüde, Optimizing the number of multigrid cycles in the full multigrid algorithm, Numerical Linear Algebra with Applications, vol.15, issue.6, pp.199-210, 2010.
DOI : 10.1002/9781118627372

A. Weaver and P. Courtier, Correlation modelling on the sphere using a generalized diffusion equation, Quarterly Journal of the Royal Meteorological Society, vol.108, issue.575, pp.1815-1846, 2001.
DOI : 10.1002/qj.49712455003

J. Zhang, Multi-level minimal residual smoothing: a family of general purpose multigrid acceleration techniques, 43th SPEEDUP Workshop on High-Performance Computing, pp.41-5110, 1998.
DOI : 10.1016/S0377-0427(98)00133-2

L. Debreu, F. Lemarié, and P. Marchesiello, Numerical delicacies associated with the use of isoneutral mixing operators in ocean models, The workshop on Partial Differential Equations on the Sphere. Boulder, United States. url, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00826006

J. Demange, Numerical advection and internal waves propagation schemes for ocean circulation models " . Theses, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01104703

D. Doyen and P. H. Gunawan, An Explicit Staggered Finite Volume Scheme for the Shallow Water Equations, pp.227-235978, 2014.
DOI : 10.1007/978-3-319-05684-5_21

N. Ducousso, J. L. Sommer, J. Molines, G. Madec, L. Debreu et al., Caveats in using the EEN momentum advection scheme: illustration with idealized experiments and sensitivity of ORCA025 solutions, DRAKKAR/MYOCEAN 2014 Annual Workshop, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00941032

C. Eden, L. Czeschel, and D. Olbers, Toward Energetically Consistent Ocean Models, Journal of Physical Oceanography, vol.44, issue.12, pp.3160-3184, 2014.
DOI : 10.1175/JPO-D-13-0260.1

URL : http://epic.awi.de/36666/1/jpo-d-13-0260.pdf

T. Haut and B. Wingate, An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs, SIAM Journal on Scientific Computing, vol.36, issue.2, pp.693-713, 2014.
DOI : 10.1137/130914577

F. Lemarié, L. Debreu, G. Madec, M. Honnorat, and J. Molines, Stability constraints for oceanic numerical models: implications for the formulation of time and space discretizations, 2014 AGU Ocean Sciences Meeting. Honolulu, United States. url, 2014.
DOI : 10.1016/j.ocemod.2015.06.006

F. Lemarié, P. Marchesiello, L. Debreu, and E. Blayo, Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method : Example of Tropical Cyclone Erica, 2014.

A. Majda and I. Grooms, New perspectives on superparameterization for geophysical turbulence, Journal of Computational Physics 271. Frontiers in Computational PhysicsModeling the Earth System, pp.60-77, 2014.
DOI : 10.1016/j.jcp.2013.09.014

E. Mémin, Fluid flow dynamics under location uncertainty, Geophysical & Astrophysical Fluid Dynamics, vol.45, issue.2, pp.119-146, 2014.
DOI : 10.1137/0726003

T. Rebollo, R. Chacon, and . Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01149312

J. Thuburn, J. Kent, and N. Wood, Cascades, backscatter and conservation in numerical models of two-dimensional turbulence, Quarterly Journal of the Royal Meteorological Society, vol.137, issue.679, pp.626-638, 2014.
DOI : 10.1175/2008MWR2587.1

S. Danilov, Ocean modeling on unstructured meshes, Ocean Modelling, vol.69, pp.195-210, 2013.
DOI : 10.1016/j.ocemod.2013.05.005

URL : http://epic.awi.de/33287/1/omod_unst.pdf

L. Debreu, Schwarz waveform relaxation for heterogeneous cluster computing: Application to numerical weather prediction, DD22 -22nd International Conference on Domain Decomposition Methods -2013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932898

B. Fox-kemper and D. Menemenlis, Can large eddy simulation techniques improve mesoscale rich ocean models?, pp.319-337, 2013.
DOI : 10.1007/978-1-4612-4636-7_4

F. Lemarié, L. Debreu, and P. Marchesiello, Numerical delicacies associated with the use of isoneutral mixing operators in ocean models, European Geosciences Union General Assembly 2013. EGU. Vienna, Austria. url, 2013.

Y. Maday, M. Riahi, and J. S. English, Parareal in Time Intermediate Targets Methods for Optimal Control Problems, International Series of Numerical Mathematics, pp.79-92, 2013.
DOI : 10.1007/978-3-0348-0631-2_5

A. Vidard, L. Debreu, and E. Neveu, Multi Resolution Variational Data Assimilation Schemes With Application to a Realistic Ocean Model, Sixth WMO Symposium on Data Assimilation. College Park, United States. url, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877893

G. Desroziers and L. Berre, Accelerating and parallelizing minimizations in ensemble and deterministic variational assimilations, Quarterly Journal of the Royal Meteorological Society, vol.135, issue.667, 2012.
DOI : 10.1002/qj.438

URL : http://onlinelibrary.wiley.com/doi/10.1002/qj.1886/pdf

S. Gratton, V. Malmedy, and P. L. Toint, Using approximate secant equations in limited memory methods for??multilevel unconstrained optimization, Computational Optimization and Applications, vol.24, issue.1, 2012.
DOI : 10.1090/S0025-5718-1970-0274029-X

URL : http://www.unamur.be/pdf/publications/69329.pdf

M. Illicak, A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, Spurious dianeutral mixing and the role of momentum closure, Ocean Modelling, vol.45, issue.46, pp.45-46, 2012.
DOI : 10.1016/j.ocemod.2011.10.003

J. Kent, J. Thuburn, and N. Wood, Assessing implicit large eddy simulation for two-dimensional flow, Quarterly Journal of the Royal Meteorological Society, vol.128, issue.663, pp.365-376, 2012.
DOI : 10.1256/qj.02.69

URL : http://onlinelibrary.wiley.com/doi/10.1002/qj.925/pdf

F. Lemarié, J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas et al., Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models?, Ocean Modelling, vol.42, issue.0, pp.57-79, 2012.
DOI : 10.1016/j.ocemod.2011.11.007

A. Melet, J. Verron, and J. Brankart, Potential outcomes of glider data assimilation in the Solomon Sea: Control of the water mass properties and parameter estimation, Journal of Marine Systems, vol.94, issue.0, pp.232-246, 2012.
DOI : 10.1016/j.jmarsys.2011.12.003

. Cushman-roisin, J. Benoit, and . Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 2011.

L. Debreu, E. Simon, and E. Blayo, 4D variational data assimilation for locally nested models: optimality system and preliminary experiments, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00607177

P. R. Gent, The Gent?McWilliams parameterization: 20/20 hindsight In: Ocean Modelling 39, pp.1-2, 2011.

S. Gratton, A. Sartenaer, and J. Tshimanga, On A Class of Limited Memory Preconditioners For Large Scale Linear Systems With Multiple Right-Hand Sides, SIAM Journal on Optimization, vol.21, issue.3, pp.912-935, 2011.
DOI : 10.1137/08074008

F. Lemarié, L. Debreu, and E. Blayo, Optimized Schwarz Methods in the Context of Ocean-Atmosphere Coupling, DD 20 -20th International Conference on Domain Decomposition Methods, 2011.

J. R. Maddison, D. P. Marshall, C. C. Pain, and M. D. Piggott, Accurate representation of geostrophic and hydrostatic balance in unstructured mesh finite element ocean modelling, Ocean Modelling, vol.39, issue.3-4, pp.248-261, 2011.
DOI : 10.1016/j.ocemod.2011.04.009

P. Marchesiello, X. Capet, C. Menkes, and S. C. Kennan, Submesoscale dynamics in tropical instability waves, Ocean Modelling, vol.39, issue.1-2, pp.31-46, 2011.
DOI : 10.1016/j.ocemod.2011.04.011

URL : https://hal.archives-ouvertes.fr/hal-00690791

E. Neveu, Multigrids methods applied to variationnal data assimilation in geophysics models, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00574221

A. F. Shchepetkin and J. C. Mcwilliams, Accurate Boussinesq oceanic modeling with a practical, ???Stiffened??? Equation of State, Ocean Modelling, vol.38, issue.1-2, pp.41-70, 2011.
DOI : 10.1016/j.ocemod.2011.01.010

D. Sidorenko, Q. Wang, S. Danilov, and J. Schröter, FESOM under coordinated ocean-ice reference experiment forcing, Ocean Dynamics, vol.48, issue.2???3, pp.61-881, 2011.
DOI : 10.1016/S0079-6611(01)00003-9

J. Verron, P. Brasseur, J. Brankart, E. Cosme, E. Blayo et al., Assimilation of SARAL/AltiKa data for physical ocean prediction and ecosystem monitoring, Second SARAL/AltiKa Science Workshop, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00769114

E. Deleersnijder, V. Legat, and P. F. Lermusiaux, Mutil-scale modelling of coastal, shelf and global ocean dynamics, pp.60-1357, 2010.
DOI : 10.1007/s10236-010-0363-6

URL : https://link.springer.com/content/pdf/10.1007%2Fs10236-010-0363-6.pdf

E. Mason, J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. Mcwilliams et al., Procedures for offline grid nesting in regional ocean models, Ocean Modelling, vol.35, issue.1-2, pp.1-2, 2010.
DOI : 10.1016/j.ocemod.2010.05.007

E. Neveu, L. Debreu, and F. Dimet, Méthodes multigrilles pour le 4D-VAR " . In: Colloque National sur l'Assimilation de Données, 2010.

A. Borz-`-borz-`-i and V. Schulz, Multigrid Methods for PDE Optimization, 2009.

P. G. Ciarlet, R. Temam, and J. Tribbia, Computational Methods for the Atmosphere and the Oceans: Special Volume. Handbook of Numerical Analysis, 2009.

D. A. Ham, C. Christopher, E. Pain, J. Hanert, J. Pietrzak et al., Special Issue: The sixth international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows. Imperial College London, pp.1-1, 2007.

V. M. Kamenkovich and D. A. Nechaev, On the time-splitting scheme used in the Princeton Ocean Model, Journal of Computational Physics, vol.228, issue.8, pp.2874-2905, 2009.
DOI : 10.1016/j.jcp.2008.12.033

A. F. Shchepetkin and J. C. Mcwilliams, Computational Kernel Algorithms for Fine-Scale, Multiprocess, Longtime Oceanic Simulations, Ciarlet, vol.14, pp.121-183, 2009.
DOI : 10.1016/S1570-8659(08)01202-0

E. Simon, L. Debreu, and E. Blayo, 4D-Variational data assimilation for locally nested numerical models, European Geophysical Union General Assembly, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00795819

A. Bennis, T. Chacón-rebollo, M. G. Marmol, and R. Lewandowski, Stability of some turbulent vertical models for the ocean mixing boundary layer, Applied Mathematics Letters, vol.21, issue.2, pp.128-133, 2008.
DOI : 10.1016/j.aml.2007.02.016

URL : https://hal.archives-ouvertes.fr/hal-00121202

A. Biastoch, C. W. Boning, and J. R. Lutjeharms, Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation, Nature, vol.13, issue.7221, pp.489-492, 2008.
DOI : 10.1038/nature07426

J. Chanut, B. Barnier, W. Large, L. Debreu, T. Penduff et al., Mesoscale eddies in the Labrador Sea and their contribution to convection and re-stratification, pp.1617-1643, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00266980

E. Deleersnijder, E. Hanert, H. Burchard, and H. English, On the mathematical stability of stratified flow models with local turbulence closure schemes, Ocean Dynamics, vol.11, issue.C5, 2008.
DOI : 10.1007/s10236-008-0145-6

J. Jouanno, J. Sheinbaum, B. Barnier, J. Molines, L. Debreu et al., The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model, Ocean Modelling, vol.23, issue.3-4, pp.82-101, 2008.
DOI : 10.1016/j.ocemod.2008.04.002

URL : https://hal.archives-ouvertes.fr/hal-00658107

F. Lemarié, Schwarz algorithms and ocean-atmosphere coupling " . Theses. Université Joseph-Fourier -Grenoble I. url: https, 2008.

F. Lemarié, L. Debreu, and E. Blayo, Optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients, 2008.

Y. Morel, R. Baraille, and A. Pichon, Time splitting and linear stability of the slow part of the barotropic component, Ocean Modelling, vol.23, issue.3-4, pp.73-81, 2008.
DOI : 10.1016/j.ocemod.2008.04.001

E. Simon, E. Blayo, and L. Debreu, 4D-Variational data assimilation for locally nested numerical models " . In: GODAE Final Symposium, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00795819

A. Barth, A. Alvera-azcárate, J. Beckers, M. Rixen, and L. Vandenbulcke, Multigrid state vector for data assimilation in a two-way nested model of the Ligurian Sea, Journal of Marine Systems, vol.65, issue.1-4, pp.41-59, 2007.
DOI : 10.1016/j.jmarsys.2005.07.006

E. Blayo, L. Debreu, F. Dumas, V. Garnier, J. Marin et al., Investigation of 2-D and 3-D characteristic-based open boundary conditions for regional ocean models " . In: European Geophysical Union General Assembly, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00385256

L. Debreu, Two-way nesting " . In: Workshop on Numerical Methods in Ocean Models, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00795799

M. J. Gander and L. Halpern, Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, vol.45, issue.2, pp.666-697, 2007.
DOI : 10.1137/050642137

S. D. Griffiths and R. H. Grimshaw, Internal Tide Generation at the Continental Shelf Modeled Using a Modal Decomposition: Two-Dimensional Results, Journal of Physical Oceanography, vol.37, issue.3, 2007.
DOI : 10.1175/JPO3068.1

F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 2007.
DOI : 10.1017/CBO9780511618604

F. Lemarié and L. Debreu, NEMO/AGRIF, theoretical and practical aspects In: Workshop on the DRAKKAR global ocean model at 1/4 ? resolution, 2007.

F. Lemarié, L. Debreu, and E. Blayo, Méthodes mathématiques et numériques pour le couplage océan-atmosphèrè a ´ echelle régionale " . In: SMAI 2007 - 3e congrès national de mathématiques appliquées et industrielles. Praz-sur, 2007.

E. Simon, Assimilation variationnelle de données pour des modèles embo??tésembo??tés " . Theses. Université Joseph-Fourier -Grenoble I. url: https, 2007.

E. Blayo, L. Debreu, F. Dumas, V. Garnier, J. Marin et al., Investigation of 2-D and 3-D characteristic open boundary conditions for regional ocean models " . In: Coastal Operational Oceanography conference, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00385256

C. Levin, M. Iskandarani, and D. B. Haidgovel, To continue or discontinue: Comparisons of continuous and discontinuous Galerkin formulations in a spectral element ocean model, Ocean Modelling, vol.15, issue.1-2, pp.15-56, 2006.
DOI : 10.1016/j.ocemod.2005.10.001

P. Ngnepieba, M. Y. Désiré, L. Hussaini, and . Debreu, Optimal Control and Stochastic Parameter Estimation, Monte Carlo Methods and Applications, 2006.
DOI : 10.1117/12.431119

URL : https://hal.archives-ouvertes.fr/hal-00171447

F. Parrenin, Conjonction de modèles de données pour l'´ etude des calottes polaires " . In: Colloque national sur l'assimilation de données, 2006.

P. Sagaut, S. Deck, and M. Terracol, Multiscale and Multiresolution Approaches in Turbulence, 2006.
DOI : 10.1142/9781860948978

URL : https://hal.archives-ouvertes.fr/hal-01313533

E. Simon, L. Debreu, and E. Blayo, 4D variational data assimilation for locally nested models " . In: European Geophysical Union General Assembly, 2006.
DOI : 10.1002/fld.2244

URL : https://hal.archives-ouvertes.fr/hal-00795819

J. Thuburn, Vertical discretizations giving optimal representation of normal modes: Sensitivity to the form of the pressure-gradient term, Quarterly Journal of the Royal Meteorological Society, vol.128, issue.621, 2006.
DOI : 10.1256/qj.02.1951

R. Lewis, S. G. Michael, and . Nash, Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations, SIAM Journal on Scientific Computing, vol.26, issue.6, 2005.
DOI : 10.1137/S1064827502407792

A. F. Shchepetkin and J. C. Mcwilliams, The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, vol.9, issue.4, pp.347-404, 2005.
DOI : 10.1016/j.ocemod.2004.08.002

J. Sheng, R. Greatbatch, X. Zhai, and L. Tang, A new twoway nesting technique for ocean modeling based on the smoothed semi-prognostic method, English. In: Ocean Dynamics, vol.55, pp.10236-10241, 2005.

S. M. Griffies, Fundamentals of Ocean Climate Model, 2004.

E. Hanert, D. Y. Le-roux, V. Legat, and E. Deleersnijder, Advection schemes for unstructured grid ocean modelling, Ocean Modelling, vol.7, issue.1-2, pp.39-58, 2004.
DOI : 10.1016/S1463-5003(03)00029-5

R. D. Smith, R. Peter, and . Gent, Anisotropic Gent???McWilliams Parameterization for Ocean Models, Journal of Physical Oceanography, vol.34, issue.11, pp.2541-2564, 2004.
DOI : 10.1175/JPO2613.1

W. Hackbusch, Multi-Grid Methods and Applications, 2003.
DOI : 10.1007/978-3-662-02427-0

M. Lengaigne, G. Madec, C. Menkes, and G. Alory, Impact of isopycnal mixing on the tropical ocean circulation, Journal of Geophysical Research: Oceans 108.C11. 3345, 2003.
DOI : 10.1007/978-94-011-5096-5_10

URL : https://hal.archives-ouvertes.fr/hal-00154250

L. Debreu and E. Blayo, AGRIF: Adaptive grid refinement in Fortran, Computers & Geosciences, vol.34, issue.1, 2002.
DOI : 10.1016/j.cageo.2007.01.009

URL : https://hal.archives-ouvertes.fr/inria-00069912

P. K. Kundu and I. M. Cohen, Fluid Mechanics. Second Academic Press. Lions A parareal in time discretization of PDEs, C.R. Acad. Sci, pp.661-668, 2001.

A. Weaver and P. Courtier, Correlation modelling on the sphere using a generalized diffusion equation, Quarterly Journal of the Royal Meteorological Society, vol.108, issue.575, pp.1815-1846, 2001.
DOI : 10.1002/qj.49712455003

S. C. Baden, N. P. Chrisochoides, D. B. Gannon, and M. L. Norman, Structured Adaptive Mesh Refinement (SAMR) Grid Methods, The IMA Volumes in Mathematics and its Applications, pp.10-1007, 2000.
DOI : 10.1007/978-1-4612-1252-2

J. Beckers, H. Burchard, E. Deleersnijder, and P. Mathieu, Numerical Discretization of Rotated Diffusion Operators in Ocean Models, 128%3C2711: NDORDO%3E2.0.CO, pp.2711-27331520, 2000.
DOI : 10.1175/1520-0493(2000)128<2711:NDORDO>2.0.CO;2

W. L. Briggs, S. F. Van-emden-henson, and . Mccormick, A Multigrid Tutorial , Second Edition, Second. Society for Industrial and Applied Mathematics, 2000.
DOI : 10.1137/1.9780898719505

E. Blayo, L. Debreu, G. Mounié, and D. Trystram, Dynamic Load Balancing for Ocean Circulation Model with Adaptive Meshing, Lecture Notes in Computer ScienceLNCS), vol.1685, pp.303-312, 1999.
DOI : 10.1007/3-540-48311-X_39

URL : https://hal.archives-ouvertes.fr/hal-00003948

F. Delcayre, Etude par simulation des grandeséchellesgrandeséchelles d'unécoulementunécoulement décollé : la marche descendante, 1999.

P. Mathieu, E. Deleersnijder, and J. Beckers, Accuracy and stability of the discretised isopycnal-mixing equation, Applied Mathematics Letters, vol.12, issue.4, pp.81-88, 1999.
DOI : 10.1016/S0893-9659(99)00039-7

J. Beckers, H. Burchard, J. M. Campin, E. Deleersnijder, and P. Mathieu, -Coordinate Ocean Model???, 028%3C1552:ARWSDO%3E2.0.CO, pp.1552-15591520, 1998.
DOI : 10.1175/1520-0485(1998)028<1552:ARWSDO>2.0.CO;2

S. M. Griffies, A. Gnanadeskian, R. C. Pacanowski, V. Larichev, J. K. Dukowicz et al., -Coordinate Ocean Model, Journal of Physical Oceanography, vol.28, issue.5, pp.805-830, 1998.
DOI : 10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2

J. C. Hunt, A. A. Wray, and P. Moin, Eddies, stream and convergence zones in turbulent flows, 1998.

P. Mathieu and E. Deleersnijder, What is wrong with isopycnal diffusion in world ocean models?, Applied Mathematical Modelling, vol.22, issue.4-5, pp.367-378, 1998.
DOI : 10.1016/S0307-904X(98)10008-2

URL : https://doi.org/10.1016/s0307-904x(98)10008-2

M. J. Cullen, T. Davies, M. H. Mawson, J. A. James, S. C. Coulter et al., An Overview of Numerical Methods for the Next Generation U.K. NWP and Climate Model, Atmosphere-Ocean 35.sup1, pp.425-444, 1997.
DOI : 10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2

R. Hallberg, Stable Split Time Stepping Schemes for Large-Scale Ocean Modeling, Journal of Computational Physics, vol.135, issue.1, pp.54-65, 1997.
DOI : 10.1006/jcph.1997.5734

R. L. Higdon and R. A. De-szoeke, Barotropic-Baroclinic Time Splitting for Ocean Circulation Modeling, Journal of Computational Physics, vol.135, issue.1, pp.30-53, 1997.
DOI : 10.1006/jcph.1997.5733

B. T. Nadiga, M. W. Hecht, L. G. Margolin, P. K. Smolarkiewicz, and . English, On Simulating Flows with Multiple Time Scales Using a Method of Averages, Theoretical and Computational Fluid Dynamics 9.3-4, pp.281-292, 1997.
DOI : 10.1007/s001620050045

G. Danabasoglu and J. C. Williams, Sensitivity of the Global Ocean Circulation to Parameterizations of Mesoscale Tracer Transports, SOTGOC%3E2.0.CO, pp.2967-2987, 1995.
DOI : 10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2

G. Danabasoglu, J. C. Mcwilliams, and P. R. Gent, The Role of Mesoscale Tracer Transports in the Global Ocean Circulation, Science, vol.264, issue.5162, pp.1123-1126, 1994.
DOI : 10.1126/science.264.5162.1123

L. M. Leslie and R. J. Purser, A comparative study of the performance of various vertical discretization schemes, Meteorology and Atmospheric Physics, vol.56, issue.1-3, pp.61-73, 1992.
DOI : 10.1007/978-94-009-3041-4_3

J. Lions, R. Temam, and S. Wang, On the equations of the large-scale ocean, Nonlinearity, vol.5, issue.5, p.1007, 1992.
DOI : 10.1088/0951-7715/5/5/002

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid???scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics, vol.3, issue.7, 1989.
DOI : 10.1017/S0022112087000892

P. D. Killworth, J. David, D. Webb, S. M. Stainforth, and . Paterson, The Development of a Free-Surface Bryan???Cox???Semtner Ocean Model, TDOAFS%3E2.0.CO, pp.1333-13481520, 1991.
DOI : 10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2

P. R. Gent and J. C. Mcwilliams, Isopycnal Mixing in Ocean Circulation Models, 020%3C0150:IMIOCM%3E2.0.CO, pp.150-155, 1990.
DOI : 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0485%281990%29020%3C0150%3AIMIOCM%3E2.0.CO%3B2

A. Arakawa and S. Moorthi, Baroclinic Instability in Vertically Discrete Systems, BIIVDS%3E2.0.CO, pp.1688-1708, 1988.
DOI : 10.1175/1520-0469(1988)045<1688:BIIVDS>2.0.CO;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281988%29045%3C1688%3ABIIVDS%3E2.0.CO%3B2

M. D. Cox, Isopycnal diffusion in a z-coordinate ocean model, In: Ocean Modelling, vol.74, pp.1-5, 1987.

L. Dimet, O. François-xavier, and . Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1007/978-3-642-65024-6

M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.533, pp.484-512, 1984.
DOI : 10.21236/ada130162

A. Brandt, Guide to multigrid development, Lecture Notes in Mathematics, vol.16, pp.220-312, 1982.
DOI : 10.1016/0146-664X(81)90046-0

M. H. Redi, Oceanic Isopycnal Mixing by Coordinate Rotation, OIMBCR%3E2.0.CO, pp.1154-1158, 1982.
DOI : 10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0485%281982%29012%3C1154%3AOIMBCR%3E2.0.CO%3B2

A. Harten and P. D. Lax, A Random Choice Finite Difference Scheme for Hyperbolic Conservation Laws, SIAM Journal on Numerical Analysis, vol.18, issue.2, pp.289-315, 1981.
DOI : 10.1137/0718021

P. J. Houwen, J. G. Van-der, and . Verwer, One-step splitting methods for semi-discrete parabolic equations, pp.291-309, 1979.