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Prévision d’ensemble par agrégation séquentielle appliquée
à la prévision de production d’énergie photovoltaïque.

Résumé : Notre principal objectif est d’améliorer la qualité des prévisions de
production d’énergie photovoltaïque (PV). Ces prévisions sont imparfaites à cause des
incertitudes météorologiques et de l’imprécision des modèles statistiques convertissant
les prévisions météorologiques en prévisions de production d’énergie. Grâce à une ou
plusieurs prévisions météorologiques, nous générons de multiples prévisions de produc-
tion PV et nous construisons une combinaison linéaire de ces prévisions de production.
La minimisation du Continuous Ranked Probability Score (CRPS) permet de calibrer
statistiquement la combinaison de ces prévisions, et délivre une prévision probabiliste
sous la forme d’une fonction de répartition empirique pondérée. Dans ce contexte, nous
proposons une étude du biais du CRPS et une étude des propriétés des scores propres
pouvant se décomposer en somme de scores pondérés par seuil ou en somme de scores
pondérés par quantile. Des techniques d’apprentissage séquentiel sont mises en oeuvre
pour réaliser cette minimisation. Ces techniques fournissent des garanties théoriques
de robustesse en termes de qualité de prévision, sous des hypothèses minimes. Ces mé-
thodes sont appliquées à la prévision d’ensoleillement et à la prévision de production
PV, fondée sur des prévisions météorologiques à haute résolution et sur des ensembles
de prévisions classiques.

Ensemble forecasting using sequential aggregation
for photovoltaic power applications.

Abstract: Our main objective is to improve the quality of photovoltaic power
forecasts deriving from weather forecasts. Such forecasts are imperfect due to meteoro-
logical uncertainties and statistical modeling inaccuracies in the conversion of weather
forecasts to power forecasts. First we gather several weather forecasts, secondly we gen-
erate multiple photovoltaic power forecasts, and finally we build linear combinations
of the power forecasts. The minimization of the Continuous Ranked Probability Score
(CRPS) allows to statistically calibrate the combination of these forecasts, and provides
probabilistic forecasts under the form of a weighted empirical distribution function. We
investigate the CRPS bias in this context and several properties of scoring rules which
can be seen as a sum of quantile-weighted losses or a sum of threshold-weighted losses.
The minimization procedure is achieved with online learning techniques. Such tech-
niques come with theoretical guarantees of robustness on the predictive power of the
combination of the forecasts. Essentially no assumptions are needed for the theoretical
guarantees to hold. The proposed methods are applied to the forecast of solar radia-
tion using satellite data, and the forecast of photovoltaic power based on high-resolution
weather forecasts and standard ensembles of forecasts.
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État de l’art et contributions

L’amélioration des prévisions de production d’énergie photovoltaïque (PV) contribue
à une meilleure intégration de l’énergie photovoltaïque. Les prévisions météorologiques,
les modèles de conversion météo-production et les techniques de post-traitement statis-
tiques constituent trois axes d’amélioration. Pour notre part, le problème est abordé de
la façon suivante : un prévisionniste, souhaitant fournir des prévisions probabilistes de
production PV, récupère des prévisions météorologiques (potentiellement de sources va-
riées). Dans ce cadre général, de multiples méthodes peuvent être testées et combinées.
Les prévisions météorologiques constituent la base de nos méthodes de post-traitement
qui impliquent des ensembles de prévisions. Un état de l’art des modèles statistiques
utilisés pour le PV est proposé par Bacher et al. [BMN09] et Inman et al. [IPC13]. La
récente revue de l’état de l’art [Ant+16] inclut une revue des techniques de prévision
probabiliste et de prévision d’ensemble appliquées pour le PV. Un nombre restreint
de publications mentionnent des techniques de post-traitement prenant en compte un
ensemble de prévisions météorologiques pour le PV [Zam+14 ; Ale+15 ; SAM16]. Par
ailleurs, Lorenz et al. [LKH12] combinent des prévisions météorologiques et des pré-
visions issues de données satellitaires.
Un prévisionniste disposant de multiples prévisions peut souhaiter les combiner de

façon optimale, par exemple par agrégation séquentielle. Le prévisionniste donne alors
un poids à chaque prévision et fournit la combinaison linéaire des prévisions. Ces poids
sont déterminés par une règle de mise à jour qui ne prend en compte que l’information
du passé disponible à chaque pas de temps. De plus, la prévision fournie dispose de
garanties théoriques de performance valables pratiquement sans hypothèses (sur un a
priori, un processus stochastique ou une distribution sous-jacente), cf. Cesa-Bianchi
et Lugosi [CL06], la revue de Shalev-Shwartz [Sha11] ou l’introduction de Stoltz
[Sto10] en français. Les garanties théoriques sont essentiellement des garanties théo-
riques de robustesse (borne de regret), assurant que la combinaison des prévisions est
sur le long terme au moins aussi performante que la meilleure prévision ou la meilleure
combinaison de prévisions à poids fixes. Ces techniques ont déjà été testées sur des jeux
de données variés : consommation d’électricité, concentration d’ozone, champs de vent
et de pression [Sto10 ; MSM09 ; Mal10 ; Bau15 ; GGN16].

Nous montrons que l’agrégation séquentielle permet d’améliorer les prévisions d’enso-
leillement au chapitre 2, d’après Thorey et al. [Tho+15]. Dans ce travail, nous étudions
les ensembles de prévisions de 6 centres de prévision météorologique : China Meteorolo-
gical Administration (CMA), European Centre for Medium-Range Weather Forecasts
(ECMWF), MetOffice (UKMO), Korea Meteorological Administration (KMA), Centro
de Previsao Tempo e Estudos Climaticos (CPTEC), et Météo France (M.-F.), pour
un total de 158 prévisions. Ces prévisions sont comparées aux observations d’origine
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satellitaire de la base de données HélioClim-3, sous forme d’un champ d’observations
sur la France métropolitaine. Les observations satellitaires de notre jeu de données ont
une résolution de 1/12◦, qui est plus fine que la résolution de 0.25◦ à laquelle nous récu-
pérons les prévisions. Nous trouvons que les ensembles de prévisions sont généralement
sous-dispersés. Nous utilisons l’agrégation séquentielle pour combiner linéairement les
158 prévisions avec des poids pouvant varier en temps et en espace. À chaque point de
grille i et pour chaque pas de temps t, nous utilisons une régression ridge escomptée
pour trouver les poids u(i)

t minimisant une certaine distance entre les prévisions x(i)
m,t′

et les observations y(i)
t′ passées. Les poids sont choisis de sorte qu’ils minimisent

J(u) = λ‖u−wref‖22 +
t−1∑
t′=1

(
1 + γ

(t− t′)2

)
(y(i)
t′ − u · x

(i)
t′ )2 ,

où wref est un vecteur de réference, λ est le paramètre de régularisation et γ est le
paramètre d’escompte. Cette méthode diminue l’erreur de prévision de 20% par rapport
à la prévision de référence HRES du ECMWF. De plus, cette méthode corrige les biais
locaux spatiaux et produit des motifs spatiaux plus réalistes de l’ensoleillement.
Dans la littérature météorologique, la minimisation du CRPS est une stratégie com-

mune pour calibrer les prévisions probabilistes [Gne+05 ; Sch14 ; JMA15]. Cependant,
les techniques classiques n’offrent pas de garantie théorique de robustesse et ont recours
à des hypothèses sur les distributions. Par exemple, le « Bayesian model averaging »
(BMA) fournit un mélange de distributions paramétriques, une somme de gaussiennes
[Gne+05] ou de distributions gamma [SGR10 ; Slo+07]. La régression non-homogène
cale les paramètres d’une distribution paramétrique en fonction des attributs d’un en-
semble de prévisions [Gne+05 ; Wil09 ; TG10]. Ainsi la moyenne et la variance d’une
distribution gaussienne sont calées par un modèle linéaire en fonction de la moyenne et
de la variance d’un ensemble de prévisions.
Pour fournir des prévisions probabilistes, nous proposons une approche innovante

fournissant un mélange de distributions [TMB16], au chapitre 3. L’originalité de notre
technique provient de l’utilisation de règles de mise à jour des poids issues de l’agréga-
tion séquentielle pour minimiser le CRPS de la distribution empirique pondérée. Grâce
à l’utilisation de l’agrégation séquentielle, nos prévisions bénéficient de garanties théo-
riques de robustesse. L’agrégation séquentielle a déjà été appliquée avec succès aux pré-
visions quantiles [GGN16 ; BP11], mais pas pour fournir directement une prévision en
loi, jusqu’aux travaux de cette thèse [TMB16], et de Baudin [Bau15] et Zamo [Zam16].
Les relations entre les prévisions quantiles et les prévisions en loi sont détaillées dans
la Section 1.3.
Par ailleurs, notre étude améliore la connaissance du biais du CRPS pour les distri-

butions empiriques. Le score S(GE , y) évalue la qualité de la prévision en loi GE de l’ob-
servation y. Supposons que GE dépende de variables aléatoires, alors le score S(GE , y)
est également une variable aléatoire. Le biais du score S(GE , y) est la différence entre le
score moyen E(S(GE , y)) et le score de la distribution moyenne S(E(GE), y). Nous géné-
ralisons les résultats du biais du CRPS calculé pour un ensemble uniforme de prévisions
[FRW08], et nous proposons une minimisation juste du CRPS, sans hypothèse sur des
distributions sous-jacentes. Cela est possible en groupant les prévisions par classes de
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Figure A – Description de notre approche des prévisions PV en loi.

membres échangeables, de façon assez similaire au travail de Fraley et al. [FRG10]
pour le BMA.

L’extension des résultats mentionnés ci-dessus est proposée au chapitre 4 pour des
pertes, autres que le CRPS, pouvant se décomposer par seuil ou par quantile. De telles
décompositions sont étudiées récemment par Gneiting et Ranjan [GR11] et Ehm
et al. [Ehm+16]. Le sujet n’est toutefois pas nouveau pour l’évaluation des prévisions
d’évènement binaire [SAE66]. La question de l’incertitude des observations est abordée
à la section 4.2. En assimilation de données, un compromis est généralement trouvé
entre de nouvelles observations et une ébauche en fonction de leurs niveaux de confiance
respectifs. Des observations possédant un fort niveau de bruit ne seront que peu prises
en compte dans la mise à jour du vecteur d’état. Le cas des observations bruitées est
également étudié par Yang [Yan04] en agrégation séquentielle. La perte quadratique
est normalisée par le niveau de bruit des observations, et une borne de regret par
rapport à l’espérance des observations est obtenue sur les pertes simples et sur les
pertes normalisées. Notre cadre est différent puisqu’il concerne la prévision probabiliste.
Notre objectif premier n’est pas d’obtenir des bornes de regret en espérance, mais de
prévoir au mieux la réalité en délivrant une prévision probabiliste. Au lieu de recevoir
une observation sans bruit (la réalité), nous considérons que le prévisionniste reçoit
de multiples observations ou une distribution. Nous développons cette idée par une
technique de moindres carrés généralisés appliquée au CRPS. Des liens sont établis
avec des statistiques de test.
Nos techniques sont testées sur des cas d’étude de prévisions en loi pour le PV dé-

crites aux chapitres 5, 6 et 7. Notre approche est résumée par la figure A. Tout d’abord,
nous fournissons des prévisions pour 219 parcs de production PV situés en France à la
résolution temporelle de 30 min, jusqu’à un horizon de 6 jours. Dans ce cas d’étude, nous
utilisons la prévision déterministe HRES et la prévision d’ensemble ENS du ECMWF,
Arpège (la prévision déterministe de Météo France) et PEARP (la prévision d’ensemble
issue de Arpège). Nous étudions la prévision probabiliste issue des modèles statistiques
opérationnels de conversion entre les données de production et les prévisions météorolo-
giques. Nous comparons les performances des ensembles de prévisions et des prévisions
quantiles issues de HRES et Arpège. De plus, nous montrons une amélioration de la
qualité des prévisions grâce à l’agrégation séquentielle des prévisions de production.
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Dans un second cas d’étude, nous étudions l’utilisation du système de prévision
AROME (prévision Météo France à haute résolution). La haute résolution spatio-
temporelle de AROME permet de générer de multiples prévisions. En plus des incerti-
tudes météorologiques, plusieurs modèles statistiques sont construits pour tenir compte
de la difficulté de convertir des prévisions météorologiques en prévisions de production.
Grâce à l’agrégation séquentielle, nous montrons qu’il est possible de fournir une pré-
vision de production calibrée issue des prévisions AROME.
Les systèmes de production photovoltaïque insulaires de La Réunion et de la Corse

sont étudiés dans un troisième cas d’étude, pour des horizons de prévision courts entre
30 min et 4 h. Nous explorons alors la possibilité de mises à jour infra-journalières grâce
à la construction de prévisions prenant en compte toute l’information disponible de
la journée. Nous travaillons avec les prévisions météorologiques usuelles ainsi qu’avec
des prévisions issues de données satellitaires estimant le mouvement des masses nua-
geuses. Ces prévisions satellitaires se montrent particulièrement intéressantes pour des
horizons de prévision inférieurs à 2 h, alors que les prévisions météorologiques usuelles
sont plus utiles pour les horizons de prévision plus longs. Dans tous nos cas d’étude,
nous montrons que nos techniques améliorent la qualité des prévisions selon des scores
d’évaluation déterministes et probabilistes.
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State of the art and contributions

Improved photovoltaic (PV) power integration needs better power forecasts. Forecast-
ers may pursue efforts to improve meteorological models, weather-based power models
or statistical post-processing methods. For our part, we focus on the following case: a
forecaster, willing to provide probabilistic PV power forecasts, retrieves meteorological
forecasts (possibly from various sources). In this general setting, numerous state-of-
the-art methods can be tested and combined. Weather forecasts are the basis of our
post-processing methods, involving ensembles of forecasts. State-of-the-art statistical
models for PV are described in Bacher et al. [BMN09] and Inman et al. [IPC13]. Also,
the recent state-of-the-art review [Ant+16] includes a review of probabilistic forecast-
ing and ensemble forecasting for PV applications. Only few publications mention post-
processing methods with an ensemble of weather forecasts for PV [Zam+14; Ale+15;
SAM16]. Interestingly, Lorenz et al. [LKH12] combines weather forecasts and short-
term prediction from satellite data.

A forecaster having multiple forecasts hopefully wishes to combine them in an optimal
way. To do so with online learning, also called sequential aggregation, the forecaster
gives a weight to each forecast and delivers the combination of the forecasts. The
combination rules stemming from online learning depend only on the available past
information of each forecast step and come with theoretical performance guarantees
under essentially no assumptions (concerning prior weights, underlying stochastic pro-
cesses or distributions), see the monograph Cesa-Bianchi and Lugosi [CL06], or the
gentle reviews Shalev-Shwartz [Sha11] or Stoltz [Sto10] in French. The theoretical per-
formance guarantees are essentially robustness guarantees (regret bounds), ensuring
that the combination of the forecasts performs on the long run at least as well as the
best forecast or the best fixed combination of forecasts. These techniques have already
been tested for several applications: electricity consumption, ozone concentration, wind
and geopotential fields [Sto10; MSM09; Mal10; Bau15; GGN16].

We show that online learning may be used to improve solar irradiance forecasts in
Chapter 2 based on Thorey et al. [Tho+15]. In this paper, maps of surface solar ir-
radiance are forecasted using ensembles of forecasts from the THORPEX Interactive
Grand Global Ensemble (TIGGE) with a 6-h timestep. First, we study ensemble fore-
casts from 6 meteorological centers: China Meteorological Administration (CMA), Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF), MetOffice (UKMO),
Korea Meteorological Administration (KMA), Centro de Previsao Tempo e Estudos
Climaticos (CPTEC), and Météo France (M.-F.), providing a total of 158 forecasts.
The forecasts are compared with observations derived from MeteoSat Second Gener-
ation (MSG) and provided by the HelioClim-3 database as gridded observations over
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metropolitan France. Satellite estimations of our data set have a resolution of 1/12◦
which is much finer than the 0.25◦ resolution at which the forecasts are retrieved. We
find that the ensemble forecasts are generally under-dispersed, even when grouped to-
gether. Secondly, we use online learning techniques to linearly combine all 158 forecasts
with weights that vary in space and time. For each grid point i and for each time t,
we apply a discounted ridge regression to find the weights u(i)

t minimizing a certain
distance between the past forecasts x(i)

m,t′ and the past observations y(i)
t′ . The weights

u
(i)
t are chosen as the minimizer of

J(u) = λ‖u−wref‖22 +
t−1∑
t′=1

(
1 + γ

(t− t′)2

)
(y(i)
t′ − u · x

(i)
t′ )2 ,

where wref is a reference vector, λ is the regularization parameter and γ is the discount
parameter. This method decreases the forecast error by 20% compared to the refer-
ence forecast HRES from ECMWF. Besides, this method also corrects the spatial local
biases and produces a more realistic spatial pattern of predicted irradiance.

In the meteorological literature, minimizing the CRPS is a common strategy to cal-
ibrate probabilistic forecasts [Gne+05; Sch14; JMA15]. However, standard techniques
do not offer theoretical guarantees of robustness and usually resort to strong assump-
tions on the distributions. For example, Bayesian model averaging (BMA) techniques
provide a mixture of parametric distributions, usually a Gaussian sum [Gne+05] or
gamma distributions sum for wind and precipitation applications [SGR10; Slo+07].
Non-homogeneous regression fits the parameter of a parameterized distribution using
characteristics of the ensemble of forecasts [Gne+05; Wil09; TG10]. For instance, a
Gaussian distribution is fitted using a linear model between the mean of the distribu-
tion and the mean of the forecasts. Likewise the standard deviation of the Gaussian
distribution is fitted according to the ensemble spread.
To provide probabilistic forecasts, we propose an innovative approach by combining

multiple forecasts in a linear opinion pool [TMB16], in Chapter 3. The originality of our
technique is to use combination rules deriving from online learning techniques in order
to minimize the CRPS of the weighted empirical distribution function. Because we use
online learning techniques, our forecasts come with theoretical guarantees of robustness.
Online learning techniques have already been applied successfully to quantile prediction
[GGN16; BP11], but not for directly delivering probabilistic forecasts, until this thesis
[TMB16], and the works of Baudin [Bau15] and Zamo [Zam16]. Relationships between
quantile losses and probabilistic forecasts are detailed in Section 1.3.
Our study also improves the knowledge of the CRPS expectation for linear opinion

pools. The score S(GE , y) evaluates the quality of the probabilistic forecast GE for
the observation y. Assume GE relies on random variables, the score S(GE , y) is also a
random variable. The bias of the score S(GE , y) is the difference between the average
score E(S(GE , y)) and the score for the average distribution S(E(GE), y). We general-
ize results on the bias of the CRPS computed with ensemble forecasts [FRW08], and
propose a new scheme to achieve fair CRPS minimization, without any assumption
on the distributions. This is achieved by grouping forecasts in classes of exchangeable

16



Statistical
Model(s)

Sequential
Aggregation

Weather
forecasts

(ex: solar radiation)

PV power forecasts
30-min production
Lead time: hours → days

Probabilistic
PV power forecasts

Figure B – Description of our approach to PV power forecasts.

members, quite similarly to the work of Fraley et al. [FRG10] for BMA.

Extension of the above results is proposed in Chapter 4 to other losses than the
CRPS, which admit a threshold decomposition or a quantile decomposition. Such
decomposition was recently studied by Gneiting and Ranjan [GR11] and Ehm et al.
[Ehm+16]. This topic is not new for the evaluation of binary event forecasts [SAE66].
The question of uncertainty in the observations is addressed in Section 4.2. In data
assimilation, a trade-off is commonly achieved between observational information and
the background state based on their respective level of confidence. Observations with a
high level of noise will not have much importance for the state update. Observational
noise is studied by Yang [Yan04] for online learning. They normalize the square loss by
the observation noise rate and obtain regret bounds on the normalized and unnormal-
ized losses computed against the distribution mean. Our work is slightly different since
we intend to provide probabilistic forecasts. Our first objective is not to obtain regret
bounds in expectation, but to forecast as best as possible the reality by delivering a
probabilistic forecast. Instead of receiving one single noiseless observation (the reality),
we consider that the forecaster receives multiple observations or a distribution. We
develop this idea using a generalized least-square method applied to the CRPS and
provide connections to test-statistics.

Our new techniques are tested in several case studies of probabilistic PV power fore-
casts described in Chapters 5, 6 and 7. Our approach is summarized in Figure B. First,
we provide forecasts for 219 photovoltaic (PV) power plants located in France with
a 30-min timestep, up to 6 days of lead time. In this case study, we use ECMWF
deterministic forecast HRES and ensemble ENS, Arpège (Météo France deterministic
forecast) and PEARP (Météo France ensemble forecast). We investigate PV probabilis-
tic forecasting with the operational statistical models between the production data and
the weather forecasts. We compare the predictive performance of ensemble forecasts
and quantile forecasts deriving from the deterministic HRES and Arpège. We also pro-
vide improvements on the calibration of the probabilistic forecasts by combining the
production forecasts.
In a second case study, we investigate the use of AROME forecasts (Météo France

high-resolution forecasts). The high spatio-temporal resolution of AROME enables
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to generate multiple forecasts accounting for various local scenarios. In addition to
weather uncertainties, several statistical models are built to account for the difficulty of
converting weather forecasts to production forecasts. Using online learning techniques,
we show that we can provide calibrated production forecasts using the single high-
resolution forecasting system AROME.
The insular PV power production of Réunion and Corsica are investigated in a third

case study focusing on short lead times from 30 min to 4 h. Here we explore the pos-
sibility of intraday updates with the generation of new members incorporating all the
available information of the day. Namely, new forecasts are built using regular PV
forecasts and available production data of the current day as inputs. We work with
usual weather forecasts as well as predictions from satellite data derived from cloud-
motion analysis. Prediction using satellite data are most useful for short lead times
below 2 h, while regular weather forecasts deliver the most useful information for longer
lead times. For all the case studies, we show that our technique provides forecast im-
provements for multiple evaluation tools both deterministic and probabilistic.
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1 Introduction

This chapter aims at providing background knowledge on this thesis. First,
we introduce photovoltaic power forecasts using weather forecasts, from the
industrial context to statistical learning challenges. The theoretical back-
ground of sequential aggregation, or online learning with multiple experts,
is then detailed. We also delineate our position on probabilistic forecasting
and introduce probabilistic forecasts evaluation.

Contents
1.1 Forecasting photovoltaic power production with meteoro-

logical forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.2 Weather forecasting . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.3 Solar radiation forecasting . . . . . . . . . . . . . . . . . . . . 23
1.1.4 PV power data and statistical modeling . . . . . . . . . . . . 24
1.1.5 Probabilistic forecasts of PV power with meteorological forecasts 26

1.2 Sequential aggregation . . . . . . . . . . . . . . . . . . . . . . 28
1.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Algorithm evaluation with regret bounds . . . . . . . . . . . 28
1.2.3 Online learning algorithms . . . . . . . . . . . . . . . . . . . 29
1.2.4 Examples of loss functions . . . . . . . . . . . . . . . . . . . . 32

1.3 Probabilistic forecasting with non-local strictly proper scor-
ing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3.1 Binary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.2 Ranked and continuous case . . . . . . . . . . . . . . . . . . . 35
1.3.3 Examples with the CRPS . . . . . . . . . . . . . . . . . . . . 36

1.1 Forecasting photovoltaic power production with
meteorological forecasts

1.1.1 Context

This thesis aims at improving forecasts of photovoltaic (PV) power production. To
be more specific, the company “Electricité de France” (EDF) is particularly interested
in forecasting PV power for several geographical areas, in metropolitan France or for
insular electric systems. For example, we model an estimation of the total production
of Metropolitan France, the total production of Corsica Island and the total production
of Réunion.
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Growth 2015 Growth 2016 Installed
capacity

Solar Power +0.9 +0.6 6.8
Wind Power +1.0 +1.3 11.7
Nuclear Power 63.1
Hydropower 25.5

Table 1.1 – Growth and installed capacity (in GW) for solar, wind, nuclear and hydro power.

The installed capacity of renewable electricity is growing in France. The
need for forecasts of renewable energy production grows with the amount of renewable
energy delivered to the electrical grid. Over the past decade, the installed capacity of
wind and solar power drastically increased. The current annual growth rate is close to
10%, see Table 1.1. Indeed, the installed capacity of solar power increased in France by
899 MW in year 2015 and 576 MW in 2016, to reach the amount of 6.8 GW. Over the
same periods, the installed capacity of wind power increased in France by 1011 MW in
year 2015 and 1345 MW in 2016, to reach the amount of 11.67 GW. This strong growth
is significant compared to the total installed capacity of 129 GW at the beginning of
2016, with above 63 GW of nuclear capacity and above 25 GW of hydropower capacity.
These numbers need to be put into perspective, because wind and solar are intermittent
energy sources. One gigawatt of PV power is not equivalent to one gigawatt of nuclear
power, at least in terms of load factor. The load factor is the ratio of the produced
energy and the energy that would have been produced if the production level was
maximal. In fact, the load factor of wind and solar power are quite low compared to the
load factor of nuclear power plants (around 75%). The average load factor of solar power
is of 15% with a strong seasonality (6% in December and 20% in summer). Besides, the
load factor of wind power is around 24% (30-33% in winter and 15-20% in summer). We
refer the interested reader to the periodic report “Overview of Renewable Electricity” ∗
(in French “Panorama de l’électricité renouvelable”), and to the “Forecast assessment of
electricity supply-demand balance” † (in French “Bilan prévisionnel de l’équilibre offre-
demande d’électricité en France”), both published by the French Transmission System
Operator “Réseau de Transport d’électricité” (RTE).
What is at stake in renewable energy forecasting ?
The production forecasts are achieved at various geographical and temporal scales,

depending on the production target. For example, the production can be local at
the scale of a production unit, or at a larger geographical scale, i.e. a sum of local
productions.
For operational purposes, Transmission System Operators and Distribution System

Operators need production forecasts to anticipate constraints on the electrical grid,
generated by supply-demand imbalances. For financial purposes, Balance Responsible
Entities (BR) also need production forecasts. A BR must declare its injections and
extractions of power on the grid, with constraints on its so-called balance perimeter.

∗. http://www.rte-france.com/sites/default/files/panorama_enr20161231.pdf
†. http://www.rte-france.com/sites/default/files/bp2016_complet_vf.pdf
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Control parameters Model Simulations
Predictions

Assimilation A priori knowledge

Observations

Figure 1.1 – Illustration of data assimilation.

These constraints ensure the whole system to be balanced. When injections and extrac-
tions do not match the BR declaration, the BR suffers financial penalties. The BRs can
trade electricity on the market to ensure the balance of its perimeter or take benefits
from the market price. Therefore, improved production forecasts on their perimeter
means better market positioning and avoided penalties for BRs. Historically in France,
EDF was the main BR with solar and wind production inside its balance perimeter due
to the mechanism of feed-in tariffs. The trends of the market evolution is that wind
and solar energy producers will introduce their own product on the market, or sell it
directly to a BR.
Renewable energy forecasts can also be integrated to maintenance planning. The

motivation behind is that the maintenance should be done

— when the production is low for renewable energy producers,
— without generating constraints on the grid for grid operators.

1.1.2 Weather forecasting

Wind and solar power productions are strongly dependent on the weather, hence
wind and solar forecasts resort to numerical weather predictions (NWPs) for lead times
between a few hours to several days.
How numerical weather predictions are generated ? NWPs are produced with

data assimilation schemes, the most famous being the Kalman filter [Kal60]. Data as-
similation integrates several elements: a state vector, a model, a priori knowledge,
observations, an observation function and control parameters, as represented in Fig-
ure 1.1. These elements are not perfect and possibly corrupted by noise. The purpose
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AROME Arpège PEARP HRES ENS

Spatial resolution 1.3 km 7.5 km 15.5 km 0.1◦ 0.2◦
Temporal resolution 1 h 1 h 3 h 3 h 3 h
Lead time 2 days 4 days 4 days 10 days 15 days

Table 1.2 – Meteorological forecasts and their resolutions over Europe in 2016. The lead time
is indicated for the forecast of the 00 UTC analysis. The temporal resolution of PEARP is only
of 6-h after the lead time of 48 h, and the temporal resolution of ECMWF forecasts is of 6-h
after the lead time of 150 h. The conversion from degrees to kilometers is roughly done with a
factor 100.

of data assimilation is the best evaluation of the state vector with the available informa-
tion. After the reception of new observations, the state vector is updated to take into
account this new information, given characteristics on observations errors, background
errors on the state and model errors.
For numerical weather predictions:
— The state vector describes the atmospheric state and includes several fields such

as horizontal wind speed and temperature.
— Atmospheric models are built from partial differential equations representing the

atmospheric motions and many simplifications (or parameterizations), which tend
to model the effect of a process rather than the process itself. The model is run
from a given state to create predictions of the evolution of this state.

— The observation function relates the state space to the observation space. In-
deed, the observations generally do not live in the same space as the state. For
example, satellite images are used as observations, but do not always have direct
counterparts in the model state.

— The size of the observation and state vectors are huge. They easily reaches 106

for the observations and 109 for the state vector, hence computational problems
arise.

Numerical weather predictions used in this thesis.
In practice, several meteorological forecasting systems are used in this thesis. Their

current characteristics are summarized in Table 1.2. Besides the model and the data
assimilation scheme, the forecasts may differ in their covered geographical areas, their
lead time, and their spatial and temporal resolutions. Ensemble forecasts are tradi-
tionally generated with the same model as a deterministic forecast, but at a coarser
resolution with slight changes in the model physics, in the parameterizations, or with
different perturbations of the initial conditions. Therefore ensemble forecasts integrate
different sources of errors and quantify the forecast uncertainty. All along this thesis,
we show the benefits of using several forecasts. This approach begins with the variety
of weather forecasts that we use as inputs.
Météo France generates the global model Arpège, from which the 34 ensemble fore-

casts PEARP are derived. Météo France also provides mainly for France the local
model AROME, designed to forecast severe weather events such as heavy rains in the
south of France. The resolutions of AROME are quite fine (currently 1.3 km, 1 h), at
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Figure 1.2 – Monthly maximum solar radiation (in W m−2) in 2012 for one location, according
to HRES. We recall that HRES data are 3-h averages.

the cost of limited geographical extension and limited lead time of two days. We also
use atmospheric forecasts from ECMWF: the deterministic forecast HRES and the en-
semble of forecasts ENS. For solar forecasting with a 6-h temporal resolution, TIGGE
(THORPEX Interactive Grand Global Ensemble) ensembles from several meteorolog-
ical centers were used. The detailed description of TIGGE ensembles is postponed to
Chapter 2.

1.1.3 Solar radiation forecasting

For PV applications, the main meteorological fields are irradiance (or solar radiation)
and 2-m temperature. Irradiance is directly related to the energy produced by the solar
panels and high temperature at ground-level decreases the panel efficiency.
The position of the Sun compared to the position of the Earth controls directly the

top-of-atmosphere irradiance. Along one year, the evolution of these positions generates
the diurnal and the seasonal cycles. The diurnal cycle facilitates solar forecasting, since
we know that every day begins with a null level of radiation. For a clear sky day, the
main challenge is to estimate the bell-shape of solar radiation and the maximal reached
value. The seasonal cycle is clearly depicted with monthly maximal value of solar
radiation, see Figure 1.2. The ratio between the maximal value of January and June
almost reach a factor 4. We highlight the fact that solar radiation data are time-
averaged, and usually indicate the average flux over the past period. For example,
solar radiation at 12:00 with a 3-h temporal resolution is the average flux between 9:00
and 12:00.
From top-of-atmosphere to ground-level, solar radiation encounters many processes

(absorption, scattering, reflection) mainly occurring in clouds. Hence irradiance maps
are closely related to nebulosity maps. Cloud cover and nebulosity are often used as a
proxy for solar radiation. Solar radiation maps of HelioClim (real-time estimations from
satellite data), AROME and HRES forecasts (12-h lead time) are shown in Figure 1.3,
for 2013-06-13 at 12:00 (UTC). Note that HelioClim and AROMEmaps are 1-h averages

23



−4 −2 0 2 4 6 8

42
44

46
48

50
la

tit
ud

e

Helioclim

−4 −2 0 2 4 6 8
longitude

AROME

−4 −2 0 2 4 6 8

ECMWF

20
0

40
0

60
0

80
0

10
00

12
00

Figure 1.3 – Maps of solar radiation for 2013-06-13 at 12:00 (UTC): HelioClim real-time esti-
mation (left), AROME forecast (center), HRES forecast (right).

while the HRES map is a 3-h average. The spatial variations of irradiance are quite
high since very cloudy areas may receive less than one third of the energy received by
clear-sky areas. These variations are seen by the forecasts at the scale of a few tens of
kilometers, or even less. The tremendous impacts of orographic effects in mountains
areas with many scattered clouds can be seen in Figure 1.3.
We see that spatial resolution is a key-issue in solar forecasting. At the scale of a grid-

point, one may ask whether the level of irradiance is correctly forecasted. However, at
the scale of a regional map, one may ask whether the clouds are modeled at the correct
time and location. Indeed, a cloud may be “seen” by the model, but located with an
error of 50 km. As a conclusion, we note that:

— Observations may be local (ground-station measurements) or estimated with
satellite data. Satellite data provide a better spatial representation, but may
be more prone to calibration errors than local measurements.

— We need a validation criterion to assess the quality of a forecast. This validation
criterion may depend on the spatial scale of the validation.

— The forecasted average over several grid points may be the best estimation for
comparisons at the grid-point scale.

Using high-resolution forecasts such as AROME is a delicate task, see our contribu-
tion in Chapter 6.

1.1.4 PV power data and statistical modeling

As opposed to irradiance maps, production data of a PV power plant are localized.
For lead times of several hours to several days, we usually work at a resolution of 30 min
or 1 h. Averaging in time production data smooths the variability of the data, as shown
in Figure 1.4, and facilitates the work of the forecaster. Indeed, the local production
peaks are barely seen after time-averaging. The forecaster faces a dilemma when the
production data show a large uncertainty. Should they attempt to forecast the average,
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Figure 1.4 – Production data of one plant, normalized by the installed capacity. The temporal
averages for 30-min, 1-h and 2-h resolutions are shown.

or should they attempt to forecast local peaks although the prediction may not be at
the correct time ?
Weather forecasts are converted to PV forecasts with statistical or physical models.

Besides weather variables, PV power production rely on the technology of the solar
panels and on the incident angle of solar radiation on the solar panels. Hence physi-
cal models include the panels orientation and inclination. Solar radiation data are a
good starting point to build a statistical model. Using solar radiation estimates from
HelioClim (and not forecasts), we see in Figure 1.5 that linear models are a good ap-
proximation of the relationship between solar radiation and PV production, for a period
of nearly 20 days. Here we simply applied a multiplicative factor to the solar radia-
tion estimates. Advanced models often use clear-sky production profiles and clear-sky
radiation profiles computed for each day of the year. In this setting, weather forecasts
provide indications on possible production decreases along the day. The production P
and solar forecasts I are converted respectively to the clear-sky indices τP and τI :

P = τPPcc and I = τIIcc ,

where clear sky production Pcc and clear sky solar radiation Icc are the production and
solar radiation in clear sky conditions. A statistical regression estimates the parameters
ai between weather forecasts and the forecasts τ̂P of clear-sky index:

τ̂P = a0 + a1τI + a2τ
2
I + a3Tcc .

In this example, the non-linear term τ2
I and the total cloud cover Tcc are added as

explanatory variables. The statistical models of our PV forecasts are detailed in Chap-
ter 5.
In practice, the forecaster encounters major difficulties:
— The forecaster cannot determine the best set of parameters for the current period,

but only for a past period. This may result in drifting effects or inaccurate
parameter estimates due to inter-year variability.
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Figure 1.5 – Time-series of Helioclim (red line) and production data (black dots), with simple
scaling of the data (for one plant in April 2013).

— Solar radiation forecasts may be quite far from the reality. Systematic biases such
as seasonal biases may be corrected with statistical models taking into account the
hour of the day, the time in the year and the lead time of the forecasts. However,
specializing the statistical model increases the amount of model parameters, or
reduces the available amount of data to fit several models.

— PV power observations are not always available, due to data corruption or lack
of metering.

Interestingly, the forecaster can use statistical methods as downscaling methods. For
example, statistical models are built between forecasts at a 3-h resolution and obser-
vations at a 30-min resolution in order to provide forecasts at the 30-min resolution.
Thanks to the fine resolution of the observations, it is possible to go under the resolution
of the forecasts. The same principle is applied by using HelioClim as solar radiation
observations to improve the spatial resolution of the forecasts in Chapter 2.

1.1.5 Probabilistic forecasts of PV power with meteorological
forecasts

Using multiple grid points gives a good insight into the spatial variability in the
irradiance maps, see Figure 1.6. We show production data and solar forecasts from
AROME, normalized by the daily maximum value. In a clear-sky situation (1.6(a)),
the forecasts of nearby grid-points are almost identical. But in a situation with large
uncertainties on the cloud cover (1.6(b)), the spatial variability of the solar forecasts is
very high. For this particular day, the information of cloud cover variability is correct
and noticeable in the production data. Our point here is to illustrate that using only
one single forecast may not be appropriate, and that solar forecasts integrate complex
spatio-temporal information.
Probabilistic forecasts acknowledge the inability of the forecaster to provide a priori

a perfect estimate of the observation, that we consider here noiseless. Probabilistic
forecasts are conveniently described by a Cumulative Distribution Function (CDF).
They give the probability (according to the forecaster) that the observation is below
a threshold. Confidence intervals are derived from the CDF of the forecaster. For
example, the forecaster says that there is 5% chance that the production is below the
number a and 95% chance that the observation is below the number b. The interval
[a, b] is then a 90% confidence interval.
We illustrate probabilistic forecasts for PV applications with a 30-min temporal res-

olution in Figure 1.7. For two consecutive days, the forecaster delivers a probabilistic
forecast and a deterministic forecast. The median of the probabilistic forecasts mainly
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Figure 1.6 – Production data (black line with white dots) and local solar radiation forecasts
(5× 5 nearby grid points from AROME). The data are normalized by the daily maximal value.
For the clear day situation (left), the solar forecasts of the 5× 5 nearby grid points are equal.

indicates a change in the level of production between the two days. With the median
only, one cannot know whether a large intraday variability is expected. This infor-
mation is clearly given by the confidence intervals, which are much larger for the first
day than for the second day. In this example, the observed production has indeed a
larger intraday variability during the first day. The large confidence intervals reflect
the inability of the forecaster to describe precisely the observation variations. Besides,
the deterministic forecast provides additional information, such as production decreases
during the first day. The integration of this information is possible thanks to sequential
aggregation, as described in Section 1.2.

PV
po

w
er

Time

Figure 1.7 – PV production (black), deterministic forecast (blue) and probabilistic forecasts
(confidence intervals in shaded gray, median in white) for two consecutive days.
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1.2 Sequential aggregation

1.2.1 Context

In this section, we introduce online learning in the expert setting. Just before time
t > 0, a forecaster aims to deliver the best possible prediction for the observation yt ∈ Y,
while an advice of M experts xm,t ∈ X is given to the forecaster. In other words, the
forecaster receives several forecasts (or experts) and wishes to make an optimal use of
this information. In real-world applications, the forecaster may also build experts and
not only receive them. The key-point of sequential aggregation is nevertheless to ensure
performance guarantees, given a set of arbitrary forecasts.
We work in the deterministic setting of individual sequences : no assumptions are

made on the observations yt or on the experts xm,t. This setting is particularly in-
teresting, because the performance guarantees described below are ensured no matter
the received data (observations and forecasts). The methods providing performance
guarantee with individual sequences are therefore intrinsically robust, see Cesa-Bianchi
and Lugosi [CL06] for an in-depth analysis.
In practice, the forecaster gives the weight um,t to the expert xm,t, and provides the

forecast st(ut,xt), where the function st can be arbitrarily chosen by the forecaster.
A simple combination of forecast st(ut,xt) = u>t xt =

∑M
m=1 um,txm,t is often chosen.

The general algorithm reads:
Initialization: u1;
For each time index t = 1, 2, ..., T
1. get the vector of predictions data xt,
2. compute the forecaster’s choice st(ut,xt),
3. get the verification yt and compute ut+1, based on the update rule.

The initial weight vector u1 is arbitrarily set, e.g., to [1/M, . . . , 1/M ]>. Several exam-
ples of update rules are given in Section 1.2.3. We highlight here the fact that X and
Y may be functional spaces. Hence it is possible to combine probabilistic forecasts (or
CDFs) as described in Section 1.2.4.

1.2.2 Algorithm evaluation with regret bounds

The forecaster is willing to make the best possible forecast, where “best” refers to
a real-valued loss function `, measuring the distance between the observation and the
forecast. The loss ` is negatively oriented, meaning that it should be as low as possible.
The loss `t(u) for time t is defined with implicit relationship with the experts xm,t and
the observation yt. This notation is used because the weight vector u is the forecaster’s
choice while the experts and observations are arbitrarily given to the forecaster.
The expression “best possible forecast” introduces the notion of algorithm evaluation.

The total loss of the forecaster may be divided into two terms:

T∑
t=1

`t(ut) = inf
u∈U

[
T∑
t=1

`t(u)
]

︸ ︷︷ ︸
approximation error

+
T∑
t=1

`t(ut)− inf
u∈U

[
T∑
t=1

`t(u)
]

︸ ︷︷ ︸
estimation error

,
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of approximation and estimation errors. The approximation error is the error of the best
possible forecast with fixed weights in U . While the approximation error is considered
as being unavoidable, the estimation error should be as low as possible. The estimation
error is referred to as the cumulated regret of the forecaster, who competes against the
best combination of experts. The cumulated regret of an algorithm A, generating the
weights ut, is defined by

RT (A) =
T∑
t=1

`t(ut)− inf
u∈U

[
T∑
t=1

`t(u)
]
.

Standard algorithms show a sublinearity of RT in T , expressed by limT→∞RT 6 o(T ).
This guarantees that the combination of the experts defined by the weights ut is asymp-
totically at least as good as the best fixed combination of experts. Consequently, the
combination of experts is also asymptotically at least as good as the best experts and
the best fixed subset of experts with uniform weights.

1.2.3 Online learning algorithms

In this section, we introduce several algorithms to find the weights ut. The update
rules are often described by a regularized regression. The weight vector ut is then the
minimizer of a cost function, with general formulation

ut = arg min
u∈U

Ψ0,t(u) +
t−1∑
s=1

Ψs,t(u,us)︸ ︷︷ ︸
Regularization

+
t−1∑
s=1

˜̀
s(u)︸ ︷︷ ︸

Loss


To obtain a general expression, we noted above ˜̀s(u) instead of `s(u) to indicate
that the terms `s(u) are eventually replaced by a linear or a quadratic approximation˜̀
s(u) of `s(u), for example around us [KW97; HAK07; McM11]. The losses ˜̀s(u) are
to be minimized with a trade-off against the regularization terms Ψs,t to control the
variations of ut from the previous weights us or from a reference weight vector uref (or
prior) implicitly defined in Ψ0,t. For example, regularization terms can be of 2-norm
type ‖u− uref‖22, of Kullback-Leibler type

∑
m um ln( um

uref
m

) or of χ2 type
∑
m

(um−uref
m )2

uref
m

[KW97]. The χ2 regularization may be seen as a second-order approximation around
uref of the Kullback-Leibler regularization.
Ridge Regression. A celebrated example is the ridge regression for the square loss

((u>xt)− yt)2. The weight vector ut ∈ RM is chosen as the minimizer of

J(u) = λ‖u‖22 +
t−1∑
t′=1

(yt′ − u>xt′)2 .

The parameter λ controls the trade-off between the losses and the 2-norm regularization.
The ridge regression has the following regret bound:

T∑
t=1

(yt − u>t xt)2 − min
u∈BM

T∑
t=1

(
yt − u>xt

)2
6 O (lnT ) ,
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under the assumption of bounded losses (yt − ŷt)2. The weight u is searched in a 2-
norm ball BM in RM . The assumption of bounded losses may not always hold, but this
difficulty is overcome with an additional regularization term (u>xt)2 [Vov01; AW01].
We refer the reader to the introduction of Gerchinovitz [Ger11] for a concise analysis.
Still, key points concerning the ridge regression are the logarithm regret bound, and
its quadratic formulation. From an optimization perspective, the ridge regression is a
very handy and powerful tool. A modified version of the ridge regression is used in
Chapter 2.
Exponentiated Weighted Average. A most standard algorithm, and among the

oldest, is the Exponentiated Weighted Average (EWA) [LW94]. This algorithm uses
linear losses

∑M
m=1 um,t`m,t with positive weights summing to one (defining the simplex

PM ), and bounded losses `m,t ∈ [a, b]. In EWA, the regularization is the Kullback-
Leibler divergence of ut from u. The update rule of EWA with learning rate η reads

ut+1 = argmin
u∈PM

M∑
m=1

um ln
(
um
um,t

)
+ ηum`m,t ,

giving the update rule

um,t+1 = um,t exp (−η`m,t)∑M
m′=1 um′,t exp

(
−η`m′,t

) .
The weight um,t+1 is derived from um,t with a multiplicative factor, accounting for the
loss `m,t. The idea is that the weight of a good expert (with a small loss compared
to the other losses) increases with time, and the learning rate controls the speed of
the variation of ut. Because the losses are linear, the best fixed combination of expert
is the best expert: infu∈U

[∑T
t=1

∑M
m=1 um`m,t

]
= mink

∑T
t=1 `k,t. In other words, the

forecaster competes against the best expert. The algorithm EWA admits the following
regret bound:

sup
[
T∑
t=1

M∑
m=1

um,t`m,t −min
k

T∑
t=1

`k,t

]
6

lnM
η

+ η
(b− a)2

8 T .

The algorithm EWA may also be used with any convex function `(u), thanks to
Jensen’s inequality ‡. Using the bound for linear losses and Jensen’s inequality, we
have

T∑
t=1

`(ut)−min
k

{
T∑
t=1

`k,t

}
6

T∑
t=1

M∑
m=1

um,t`m,t −min
k

{
T∑
t=1

`k,t

}

6
lnM
η

+ η
(b− a)2

8 T .

We see that a limitation of EWA is that the forecaster competes against the best expert,
but not again the best fixed combination of experts. The bound is minimized for the

‡. For a convex function ψ and a distribution D, we have ψ(Ez∼D(z)) 6 Ez∼D(ψ(z)). Roughly
speaking, the value of the expectation is inferior to the expectation of the values.
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optimal learning rate η? = (b−a)−1√8(lnM)/T , and the minimal value of the bounds,
reached with η?, is equal to (b − a)

√
(lnM)T/2 = o(T ). A forecaster may use several

learning rates according to the length of the experiment in order to circumvent the
dependency in T of η?. This is referred to as the doubling trick or its variants [CL06;
Bau15].
Exponentiated gradient (EG). Using EWA and the so-called gradient trick, the

forecaster can also compete against the best convex combination. The resulting algo-
rithm is Exponentiated Gradient, defined by the update rule

um,t+1 =
um,t exp

(
−η ˜̀m,t)∑M

m′=1 um′,t exp
(
−η ˜̀m′,t) .

Strictly speaking, EG is built by replacing `m,t by the loss gradient

˜̀
m,t = ∂`t

∂um
(ut) ,

in the update rule of EWA.
The gradient trick uses the convexity of ` to obtain:

`t(ut)− `t(u) 6 (ut − u)>∇`t(ut) = u>t
˜̀
t − u> ˜̀t .

for any two vectors ut,u ∈ PM . Summing over time, we get the following regret bound
inequalities:

T∑
t=1

`t(ut)− inf
u∈P

T∑
t=1

`t(u) = sup
u∈P

(
T∑
t=1

`t(ut)− `t(u)
)

6 sup
u∈P

(
T∑
t=1

M∑
m=1

um,t ˜̀m,t − um ˜̀m,t
)

=
T∑
t=1

M∑
m=1

um,t ˜̀m,t −min
k

T∑
t=1

˜̀
k,t

6
lnM
η

+ η
(b̃− ã)2

8 T .

The regret bound of EWA with the loss gradients gives the last inequality, with the
assumptions of bounded gradients ˜̀m,t ∈ [ã, b̃].
Polynomially weighted averages with multiple learning rates (ML-Poly).
The algorithm ML-Poly [GSE14], described in Table 1.3, enjoys two desirable proper-

ties: it has no parameters and adapts to the difficulty of the data. The algorithm relies
on the excess loss u>t ˜̀t− ˜̀m,t reflecting the regret of the forecaster to play the weighted
combination ut instead of the mth expert. Designed for linear losses, the algorithm
ML-Poly may be used with convex loss functions thanks to the gradient trick. The
regret bound of ML-Poly is expressed against the best member for the linearized losses.
For all sequences of losses ˜̀m,t ∈ [0, 1], the cumulated loss of ML-Poly is bounded:

T∑
t=1
u>t
˜̀
t 6 min

16m6M


T∑
t=1

˜̀
m,t +

√√√√M(1 + ln(1 + T ))
(

1 +
T∑
t=1

(u>t ˜̀t − ˜̀m,t)2

) .
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update the learning rate of each member ηm,t = 1/
(
1 +

∑t
t′=1(u>t′ ˜̀t′ − ˜̀m,t′)2

)
update the regret of each member Rm,t = Rm,t−1 + u>t ˜̀t − ˜̀m,t
compute the weights um,t+1 = ηm,t(Rm,t)+ / η>t (Rt)+

Table 1.3 – ML-Poly algorithm, at time t after yt is given. The vectors ηt and Rt have M
coordinates, respectively ηm,t and Rm,t. The notation (·)+ = max(·, 0) is used.

x− y

Lo
ss

-1 0 1

Figure 1.8 – Deterministic losses: quadratic loss (black), quantile loss of level 0.9 (gray), log
loss for y ∈ {0, 1} (dotted black).

As opposed to the aforementioned regret bounds, the bound of ML-Poly is of second-
order due to the term

∑T
t=1(u>t ˜̀t− ˜̀m,t)2. The interested reader is referred to Gaillard

et al. [GSE14] for a detailed analysis of second-order bounds, and to Koolen and Van
Erven [KV15], Luo and Schapire [LS15], andWintenberger [Win17] for further examples
of algorithms showing second-order bounds. These bounds are adaptive in the sense
that the algorithm performs well in the worst-case, but shows improved guarantees for
easy data. The worst case scenario gives a bound O(

√
MT lnT ), indicating that even

in the worst case, the weighted forecast will perform at least as well as the best forecast.
Besides, in the case of i.i.d. sequences of losses, with one expert significantly better
than the others, the regret bound is practically constant.

1.2.4 Examples of loss functions

In the most common approach, the forecaster provides a point forecast (X ,Y ⊂ R).
Noting s(u,x) = ŷ, the following losses are standard examples:

— Square loss: (ŷ − y)2.
— Quantile loss of level α: (H(ŷ − y)− α) (ŷ− y), where H is the unit step function

(H(x) = 1 if x > 0 and zero otherwise). Let y be a random variable described
by the CDF F, the quantile loss of level α is minimized in average over the
distribution of y by F−1(α). The absolute loss |s(u,x) − y| equals twice the
quantile loss of level 0.5.

— Log loss: −y ln(ŷ)− (1− y) ln(1− ŷ); often used in classification with X = [0, 1]
and Y = [0, 1] or Y = {0, 1}.

See Figure 1.8 for a graphical representation of the losses.

32



In a probabilistic forecasting, the probability density function (PDF) g and the re-
lated CDF G are delivered, while the value y ∈ R is observed. For linear models
G =

∑
m umGm, the forecaster delivers a so-called linear opinion pool. In this setting,

standard examples are

— Quadratic score: −2g(y) +
∫
g2.

— Logarithm loss: − log(g(y)).

— Hyvärinen score: 2
(
g′′(y)
g(y)

)
−
(
g′(y)
g(y)

)2
.

— Continuous ranked probability score (CRPS):
∫

(G(θ)−H(θ − y))2dθ.

In our contributions, we use the square loss in Chapter 2 to improve deterministic
forecasts of solar radiations, and the CRPS in Chapter 3 from a theoretical perspective
in online learning and in Chapter 5 for practical applications with PV forecasts. The
last section of this introduction is dedicated to a specific type of losses for probabilistic
forecasting, which includes the CRPS.

1.3 Probabilistic forecasting with non-local strictly
proper scoring rules

In this section, we introduce non local strictly proper scoring rules and explain why
we resort to them.
Strict propriety. We are interested in a strictly proper scoring rule in the context

of probabilistic forecasting, see Gneiting and Raftery [GR07]. Say a forecaster provides
a probabilistic forecast to predict y. We consider that y is a random variable described
by the CDF F. The quality of the forecast is measured by a score S(G, y), where G
is a CDF describing the probabilistic forecast. The scoring rule is said to be proper
if Ey[S(F, y)] 6 Ey[S(G, y)] and strictly proper if the strict inequality holds. In other
words, with a strictly proper scoring rule, the average score is minimized only by the
correct distribution F.
Locality. Let {A1, . . . , AK} be a partition of K possible events. By definition, two

events Ai and Aj cannot occur simultaneously. The forecaster delivers p = (p1, . . . , pK)
reflecting an opinion on the probability of occurrence of each event. If the event Ai
occurred, a local scoring rule of p depends only on pi . In other words, a scoring rule is
said to be local if the score only depends on the predicted probability of the event that
actually occurred. Locality of the scoring rule is not always a desired property [BS07b].
The logarithm score was shown to be a natural choice of strictly proper local scoring
rule in the non-binary case (K > 2), see Bernardo [Ber79] and Benedetti [Ben10] for
example.
Why do we use non local strictly proper scoring rules ? Our objective is to

provide probabilistic forecasts. To do so, we work with an ensemble of forecasts, which
is conveniently described by a CDF. The corresponding probability density function is
a combination of Dirac distributions, reaching 0 almost everywhere. The events “y is
between θk and θk + dθk” are therefore poorly predicted, and local scoring rules are
hardly applicable in our case.
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We introduce the case of binary events in Section 1.3.1, and probabilistic scores for
continuous variables in Section 1.3.2. We follow here Shuford et al. [SAE66], Schervish
[Sch89], and Buja et al. [BSS05] to give a simple explanation on the construction (but
not the choice) of non-local strictly proper scoring rules. A discussion on the choice
of strictly proper scoring rule may be found in Merkle and Steyvers [MS13] and Lerch
et al. [Ler+15]. A thorough analysis of non local strictly proper scoring rules and the
decomposition with quantile and thresholds is given by Ehm et al. [Ehm+16]. A simple
example is given in Section 1.3.3, to provide a better understanding of the evaluation
of a probabilistic forecast by the celebrated CRPS.

1.3.1 Binary case

We start from the binary case, where the forecaster wishes to predict the output of
a single event and delivers the probability p of occurence of the event according to his
opinion. A scoring rule ` for binary event is local and of the form

`(p) = 1evS1(p) + (1− 1ev)S0(1− p) ,

where 1ev = 1 if the event occurs and 0 otherwise. The forecaster suffers S1(p) when
the event occurs and S0(1− p) when the event does not occur.
The strict propriety imposes that the average score E(`(p)) is minimized if (and only

if) p is the true probability of occurrence f , and accordingly:

fS′1(f)− (1− f)S′0(1− f) = 0 , (1.1)

thanks to the stationnarity condition d`
dp(p = f) = 0. Equivalence between the station-

narity condition and strict propriety is demonstrated by Shuford et al. [SAE66].
The scoring rules may be taylored with respect to cost functions, and an infinite

number of scoring rules are strictly proper. We restrict the study to the symmetrical
case S0 = S1, where we have

fS′1(f) = (1− f)S′1(1− f) ,

according to Equation 1.1. We define ζ(p) = pS′1(p), with ζ being symmetrical with
respect to 1/2: ζ(p) = ζ(1− p). The strict propriety necessitates that ζ(p) is non-zero
for p 6= f because for p ∈]0, 1[:

d E(`(p))
dp = f

p
ζ(p)− 1− f

1− p ζ(1− p) = ζ(p)
p(1− p)(f − p) .

Losses are usually negatively oriented, meaning that `(p) should be as low as possible.
Since the loss should decrease when p gets closer to f , we have ζ(p) < 0.
This writing of the loss can also be interpreted with quantile losses. Let α be a

decision threshold. We consider the decision-thresholded loss where a false negative
costs 1 − α (for 1ev = 1 and p 6 α), and a false positive costs α (for 1ev = 0 and
α < p). The total loss `(p) is a weighted sum of decision-thresholded losses, where the
importance of the decision thresholds are given by ω(α):

`(p) = 1ev
∫ 1

p
ω(α)(1− α)dα+ (1− 1ev)

∫ p

0
ω(α)αdα .

34



ω(p) `(p)

(p(1− p))−3/2 1ev
√

1−p
p + (1− 1ev)

√
p

1−p
(p(1− p))−1/2 1ev arcsin(

√
1− p) + (1− 1ev) arcsin(√p)−

√
p(1− p)

p(1− p) 1ev( (1−p)3

3 − (1−p)4

4 ) + (1− 1ev)(p
3

3 −
p4

4 )

Table 1.4 – Example of scoring rules in the beta family ω(p) = pa−1(1− p)b−1.

We identify S1(p) =
∫ 1
p ω(α)(1 − α)dα and S0(1 − p) =

∫ p
0 ω(α)αdα. When ω(α) is

symmetrical with respect to 1/2 (S1 = S0), we find ζ(p) = pS′1(p) = −ω(p)p(1−p). We
see that the function ζ is closely related to the weighting function ω of the thresholds.
For any strictly proper score defined by S1, it is possible to define ω(p) = −S′1(p)/(1−p),
and consider the loss as a weighted sum of decision-thresholded losses.
Two classical examples are the quadratic (Brier) score and the logarithm score:

`sq(p) = 1ev(1− p)2 + (1− 1ev)p2 = (1ev − p)2

`ln(p) = −(1ev ln(p) + (1− 1ev) ln(1− p))

respectively obtained for ω(p) = 2 and ω(p) = 1
p(1−p) . Other examples from Buja et al.

[BSS05] are summarized in Table 1.4.

1.3.2 Ranked and continuous case

We now consider events of the type: “y is below the threshold θk”. With K threshold-
type events, the binary case of Section 1.3.1 easily extends to

`(p, y) =
K∑
k=1

φk [H(θk − y)S1(pk) + H(y − θk)S0(1− pk)] ,

where p is the list of predicted probabilities pk for the events, the weights φk > 0 define
the importance of the thresholds θk, and H is the Heaviside step function. We adopt
the bold notation p to describe the list or vector with coordinates pk. The events “y
is below the threshold θk” are not a partition of events, consequently this scoring rule
is not local. If the dimension of the weights φk and the dimension of the observation y
coincide, the loss `(p, y) has the same dimension as y.
In the continous case, for each threshold θ, the weighting φk is related to φ(θ)dθ.

The following continous score is written with the CDF notation:

`(G, y) =
∫
φ(θ) [H(θ − y)S1(G(θ)) + H(y − θ)S0(1−G(θ))] dθ .

Using a uniform weighting scheme over the decision thresholds φ(x) = 1 with the
quantile weighting ω(p) = 2 and ω(p) = 1

p(1−p) , we find the CRPS and the Continuous
Ranked Ignorance score (CRIGN) defined by:

CRIGN = −
∫

Hy lnG + (1−Hy) ln(1−G)

CRPS =
∫

Hy(1−G)2 + (1−Hy)G2 =
∫

(Hy −G)2 ,
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(a) Map of CRPS of normal distributions for
the observation y = 0, depending on the mean
and standard deviation of the distribution.

0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n

0.2
0.40.6

0.8

1.2
1.4

1.61.8
2.02.0
2.5
3.0
3.5
4.0
4.5

1.0

(b) Ratio of CRPS of normal distribution
defined by its mean and standard devia-
tion against the CRPS of N (1, 1).

Figure 1.9 – CRPS for normal distribution defined by its mean and standard deviation, for the
observation y = 0.

with Hy the Heaviside function centered on y. At last, the CRPS and the CRIGN are
two examples of non local strictly proper scoring rules. By construction, they enjoy
desirable properties of being strictly proper, compatible with ensemble forecasts, and
show decomposition properties [Her00; TA12].

1.3.3 Examples with the CRPS

In this section, we provide simple examples with the CRPS, as an evaluation tool.
The idea is that for a fixed value of the observation y, several CDFs may reach the
same score. We illustrate how these CDFs are related to each other.
In Figure 1.9(a), we show the map of the CRPS for CDF of normal distribution
N (µ, σ2) with mean µ and variance σ2, for the observation y = 0. For a fixed value
of the standard deviation σ, we see that the lowest value of the CRPS is reached for
µ = y = 0. Besides, for a fixed value of the mean µ, the lowest value of the CRPS is not
reached for the lowest spread σ = 0. Instead, the lowest CRPS value is reached when
the spread σ is slightly higher than the error |µ− y| on the mean. The idea behind is
that, for an incorrect forecast with an error on the mean, the spread of the distribution
lowers the effect of the error |µ− y| > 0.
We compare CRPS values with the case N (1, 1) in Figure 1.9(b). The same CRPS

values are obtained for ga = N (0.6022, 0), gb = N (1, 1) and gc = N (0, (2.577)2), with
respective CDFs Ga, Gb and Gc. The distribution ga has no spread and a small error
of 0.6 on the mean, while the distribution gc has a high spread but no error on the
mean. We give an illustration of the CDFs Ga, Gb and Gc, the PDFs ga, gb and gc and
the errors (Ga −Hy)2, (Gb −Hy)2, (Gc −Hy)2 in Figure 1.10. The strong effect of the
square in the CRPS is quite noticeable on the representation of (Gb −Hy)2, and more
generally on the domains where |G(θ)−H(θ− y)| � 1. Consequently, the CRPS is not
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Figure 1.10 – Representation of the PDFs ga = N (0.6022, 0), gb = N (1, 1) and gc =
N (0, (2.577)2) (top left), and their respective CDFs Ga, Gb and Gc (top right), reaching the
same CRPS of 0.602 at 0.001 precision (for y = 0). The squared difference between Hy the
Heaviside function centered on y and respectively Ga, Gb and Gc are shown at the bottom.

very sensitive to the distribution tails. On this subject, we address in Chapter 4 the
question of other scoring rules than the CRPS.
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Thesis outline
In Chapter 2, we study multiple ensembles of forecasts of solar radiation, and use

sequential aggregation to improve forecast maps of solar radiation.
In Chapter 3, we study the CRPS in the context of model mixture, specifically the

bias of the CRPS of an ensemble of forecasts. We introduce sequential aggregation
with the CRPS. In Chapter 4, we extend the results of Chapter 3 to other losses than
the CRPS admitting a threshold or a quantile decomposition. We also investigate the
question of noisy observations.
In Chapter 5 and 6, case studies of probabilistic forecasts of PV power are provided.

We show that the methods introduced in Chapter 3 improve the quality of the forecasts
for both deterministic and probabilistic evaluation tools. Chapter 7 focuses on PV
power forecasts with intraday updates for insular systems such as Réunion and Corsica.

Publications
Chapter 2 is based on the paper Thorey et al. [Tho+15]:
Thorey, J., Mallet, V., Chaussin, C., Descamps, L. and Blanc, P. (2015). Ensemble

forecast of solar radiation using TIGGE weather forecasts and HelioClim database.
Solar Energy, 120, 232-243.

Chapter 3 is based on the paper Thorey et al. [TMB16]:
Thorey, J., Mallet, V. and Baudin, P. (2017), Online learning with the Continu-

ous Ranked Probability Score for ensemble forecasting. Q.J.R. Meteorol. Soc., 143:
521–529.

Chapter 5 is submitted as a research article to the International Journal of Forecast-
ing.
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2 Ensemble forecast of solar radiation
using TIGGE weather forecasts and
HelioClim database

Medium-range forecasts (one day to two weeks) of solar radiation are com-
monly assessed with a single forecast at a given location. In this paper,
we forecast maps of surface solar irradiance, using ensembles of forecasts
from the THORPEX Interactive Grand Global Ensemble (TIGGE) with a
6-h timestep. We compare our forecasts with observations derived from Me-
teoSat Second Generation (MSG) and provided by the HelioClim-3 database
as gridded observations over metropolitan France. First, we study the en-
sembles from six meteorological centers. Second, we use sequential aggrega-
tion to linearly combine all the forecasts with weights that vary in space and
time. Sequential aggregation updates the weights before any forecast, using
available observations. We use the global numerical weather prediction from
the European Center for Medium-range Weather Forecasts (ECMWF) as a
reference forecast. The issue of spatial resolution is discussed because the
low resolution forecasts from TIGGE are compared to high resolution irra-
diance estimated from MSG data. We found that the TIGGE ensembles
are under-dispersed but rather different from one to another. Aggregation
decreases the forecast error by 20%, and produces a more realistic spatial
pattern of predicted irradiance.

This chapter was published as the paper: Thorey, J., Mallet, V., Chaussin, C.,
Descamps, L., and Blanc, P. « Ensemble forecast of solar radiation using TIGGE
weather forecasts and HelioClim database ». In: Solar Energy 120 (Oct. 2015), pp. 232–
243.
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2.1 Introduction

Solar radiation forecasts and especially global horizontal irradiance (GHI) forecasts
are needed for the integration of photovoltaic power (PV). The increasing installed
capacity of photovoltaic power requires that solar radiation forecasts be always more
accurate in terms of spatial and temporal resolutions.
Many meteorological centers provide solar radiation forecasts with two strategies:

either a single deterministic forecast, or ensemble forecasts generally with coarser reso-
lution. Deterministic forecasts have been extensively studied for solar and photovoltaic
forecasts. Inman et al. [IPC13] and Espinar et al. [Esp+10] review numerous modeling
techniques to generate solar and PV forecasts from meteorological variables. Deter-
ministic predictions from various meteorological centers are compared by Lorenz et al.
[Lor+09a] and Perez et al. [Per+13] in a broad range of sites. In the previously cited
papers, some forecasting techniques resort to combinations of forecasts. These combi-
nations are derived from a regression over a moving time-window and are applied to a
few members.
Vernay et al. [V+13] listed several available maps of solar radiation deriving from

cloud products of satellite observations. Even though solar radiation forecasts cover
large areas, they are usually compared to ground measurements (PV or solar) or to
satellite observations only at measurement sites [e.g., GDM80, among the firsts]. Indeed
maps of satellite observations are not broadly used to assess the accuracy of solar
radiation forecasts. Morcrette [Mor91] used satellite observations as reference to assess
the performance of numerical weather predictions (NWP), but not predictions of solar
irradiance (e.g., short-wave radiation). Perez et al. [PSZ97] studied the interactions
between satellite observations and measurement sites with respect to the distances
between sites. Due to the variety of error causes, Thelen and Edwards [TE13] restricted
the comparison between NWP and satellite observations to reflectance for short-wave
radiation. Dehghan et al. [Deh+14] give emphasis on the spatial resolution of both
NWP and satellite data at ground measurement sites.
Ensemble forecasts are classical in meteorology for any field with large uncertainty

and for uncertainty quantification. However, no article using ensemble forecast for solar
radiation was found in the literature, despite several conference presentations. Still,
Yokohata et al. [Yok+12] studied climatological ensembles of top atmosphere radiation
and radiation in cloud-free conditions.
In the framework of sequential aggregation, a single forecast is built as a linear com-

bination of the ensemble members. The weights of the combination may depend on
both time and space. The resulting aggregated forecast is hopefully more skillful than
the ensemble members. Cesa-Bianchi and Lugosi [CL06] detail the strong mathemat-
ical background of these methods, which is summarized and tested by Stoltz [Sto10]
and Mallet et al. [MSM09] and Mallet [Mal10] on forecasts of respectively electricity
consumption and ozone concentrations.
We propose here to compare the ensemble forecasts of solar radiation from TIGGE

(THORPEX Interactive Grand Global Ensemble [Bou+10]) and to combine them. The
satellite observations from HelioClim are used in this article as reference observations.
The use of both ensemble forecasts (from several sources) and satellite observations
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makes it possible to generate an aggregated forecast with local combinations on the
spatial grid. The Integrated Forecast System (IFS) from ECMWF produces our refer-
ence forecast.
In Section 2.2, we describe the TIGGE data sets and we study the performance of the

TIGGE ensembles. The HelioClim satellite observations are introduced in Section 2.2.4,
along with a detailed comparison with TIGGE forecasts. Our sequential-aggregation
strategy is introduced in Section 2.3. It is applied in Section 2.4, where the analysis of
the results includes the composition of the ensemble, the spatial patterns in the forecast
maps, the forecast time horizon and the sensitivity to the aggregation parameters.

2.2 Analysis of TIGGE solar radiation and HelioClim
database

2.2.1 Description of TIGGE data

Several meteorological centers provide free-of-charge ensemble forecasts of solar ra-
diation in TIGGE (Table 2.1). The data sets are available on TIGGE with a 2-day
delay after the model ran. Detailed studies of the ensemble forecasts from TIGGE
were achieved on geopotential height [Bui+05], and 850-hPa and 2-m temperatures
[Hag+12] for example. As far as we know, no such study exists for solar radiation.
The temporal resolution of TIGGE forecasts is 6 h with time horizon up to 15 days.

Most meteorological centers provide at least two forecast sets per day. For the sake of
clarity and because of the 6-h timestep of TIGGE forecasts, we focus on one forecast
set per day for each meteorological center. With these constraints, 6 meteorological
centers provide an ensemble: China Meteorological Administration (CMA), European
Centre for Medium-Range Weather Forecasts (ECMWF), MetOffice (UKMO), Korea
Meteorological Administration (KMA), Centro de Previsao Tempo e Estudos Climati-
cos (CPTEC), and Météo-France (M.-F.). We name “whole ensemble” the ensemble
including all 158 members without consideration of their origins, as opposed to the 6
TIGGE center ensembles.
While each center ensemble has a native spatial resolution, our TIGGE data sets are

obtained on a common regular grid with the spatial resolution of 0.25◦×0.25◦, which is
finer or close to the native resolutions. The resolution of the TIGGE data sets is coarser
than the 0.125◦ × 0.125◦ resolution of the ECMWF deterministic forecast. Our study
focuses on Metropolitan France and the surrounding areas for the 06:00–12:00 UTC
accumulation period of day D with model runs starting at 18:00 or 24:00 UTC in day
D-1. Thus we study the forecasts for either 12 h or 18 h of lead time. We do not study
daily radiation but focus on the shortest timestep available in TIGGE. The flux values
from TIGGE are averaged over the 6-h timestep so that the values of the forecasts for
12:00 UTC are expressed in W m−2 and correspond to the averaged flux between 06:00
and 12:00 UTC.
The nature of the solar radiation data sets in TIGGE is mostly net shortwave solar

radiation (SSR) as defined for classical meteorological fields. Net shortwave solar radi-
ation is the fraction of the downwards shortwave solar radiation (SSRD) absorbed by
the ground on an horizontal plane. Note that KMA data are different from the other
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Center Origin Number of members Run

CMA China 14 24:00
ECMWF UE 50 24:00
UKMO UK 23 24:00
KMA Korea 23 24:00
CPTEC Brazil 14 24:00
Météo-France France 34 18:00

Table 2.1 – Overview of TIGGE ensembles available for solar radiation, with forecasts starting
from 18:00 or 24:00 UTC for the following 108 to 360 hours (horizon). In total, there are
158 ensemble members.

TIGGE data sets and are SSRD data. In the context of photovoltaic production, we are
interested in SSRD. The well-known global horizontal irradiance (GHI) refers to SSRD.
The albedo coefficient α is the reflection coefficient of the ground. The albedo defines
a relationship between SSR and SSRD, where the incident flux is divided between the
absorbed flux and the reflected flux. Thus we deduce that:

SSRD = SSR
1− α . (2.1)

Depending on the ground surface, the albedo coefficient can vary in space and time.

2.2.2 Analysis of the TIGGE ensembles of forecasts

Now we analyze and compare the ensembles of forecasts over the area spanning 41◦
to 51.50◦ in latitude and −5.50◦ to 10◦ in longitude. Two data sets are used in our
study. The main data set consists of 350 consecutive days starting on 2012-01-02. The
secondary data set is dated from 2011-06-09 to 2011-09-05 due to data availability and
includes only 100 random locations. The secondary data set is only used as learning
data set. An example of the annual average of the 6-hour forecasts at 12:00 UTC for one
center (KMA) is provided in Figure 2.1, in order to show the large spatial variability
of the average forecast.
We propose two sorting procedures so as to consistently number the forecasts in time.

This step is required for the weights in our aggregation to be clearly associated with
a given ensemble member and therefore to be meaningful. The two sorting procedures
rely on the rank at each grid point. At any time and location, the first member of a
sorted ensemble always provides the lowest value, and the last member gives the highest
value. The first sorting procedure is applied to the 158 members of the whole ensemble,
and the second sorting procedure is applied separately in each center ensemble.
Correlation coefficients between members are computed in order to quantify the sim-

ilarities between the members (Figure 2.2). In the correlation matrices, the rectangles
and squares materialize some separation between the different ensembles. Indeed the
correlation matrices reveal that the members are especially close to one another within
the same ensemble. In other words, one member from a given meteorological center
ensemble is more correlated to another member of the same ensemble than to another
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Figure 2.1 – Annual average of 6-hour forecasts at 12:00 UTC in W m−2, for the KMA ensemble
mean in year 2012. The white circles exhibit the locations of ground observation sites for
HelioClim evaluation.
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Figure 2.2 – Matrices of correlation between members (R2 matrices). Each row and column of
the correlation matrices is dedicated to one given member. The rows and columns appear in
the same order. Each matrix entry is the correlation coefficient between the merged data (all
timesteps, 100 random locations) of a pair of members. On the left, the correlations are shown
between raw members, as they are retrieved from TIGGE. In the middle, the correlations are
computed after sorting within each center ensemble. On the right, the correlations are obtained
after a full sorting of the forecasts.

44



member from a different ensemble. The CPTEC ensemble is very distinguishable due
to the extremely high correlations between its own members and also due to the low
resemblance between its members and the others.
Sorting has generally two effects on the ensembles. First, the sorted members with

close ranks have higher correlations among them than non-sorted members. Second,
the pairs of members with the lowest correlation coefficient are found between sorted
members of extreme rank.

2.2.3 Reference performance measures

The strengths and weaknesses of the statistical indicators commonly used in solar
forecasting are developed in Hoff et al. [Hof+13]. The well-known root mean square
error (RMSE) and mean absolute error (MAE) are classical performance indicators.
The RMSE of the predictions ŷ with respect to the observations y over the set S is
given by

RMSE =
√√√√ 1
|S|

∑
s∈S

(ŷs − ys)2 , (2.2)

where |S| is the number of elements (cardinality) in S, and s indexes space or time
or both. In case s describes all locations at one single timestep, the spatial RMSE is
computed. The MAE is calculated in a similar way as

MAE = 1
|S|

∑
s∈S
|ŷs − ys| . (2.3)

It is noticeable that the errors ŷs − ys are computed independently for each s, hence
errors due to geographical or temporal shifts are not detected as such. In case of missing
predictions, the missing indices are excluded from the set S.
The average observed value is introduced to define relative indicators; e.g. for the

relative RMSE:
rRMSE = RMSE

1
|S|

∑
s∈S

ys

, (2.4)

where rRMSE and RMSE are computed over the same set S. Except for the scores
of Table 2.2, HelioClim is used as the observation ys. Because our main interest is to
provide information over land and not over sea, all scores and regression coefficients
are given for land locations only.

2.2.4 Comparison with HelioClim

Description of HelioClim data

Provided by Transvalor (Armines), HelioClim satellite observations are based on
MSG satellite data (Meteosat Second Generation). The operational version HC3-v4
is used here. The HelioSat2 method [RLW04] has been deployed to generate this He-
lioClim database [Bla+11]. The satellite estimations rely on instantaneous reflectance
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Station Bias RMSE MAE

Camborne -1.4 % (-3.3) 10.6 % (25.6) 8.3 % (20.0)
Palaiseau 3.4 % (8.5) 10.7 % (26.9) 8.6 % (21.5)
Payerne -6.9 % (-18.3) 14.4 % (38.3) 10.9 % (29.1)
Carpentras 1.3 % (4.6) 8.3 % (28.9) 6.7 % (23.3)
Cener 2.9 % (9.7) 9.5 % (32.0) 7.6 % (25.6)

Table 2.2 – Evaluation of HelioClim-3 estimation of SSRD compared to in-situ measurements
(daily average of daytime data). The relative scores are given, followed by the absolute scores
in brackets (in W m−2).

measurements. Data are acquired every 15 min, converted to an estimation of the in-
cident radiation flux, and averaged over the 15-min timestep. The spatial resolution
of HelioClim over France is natively between 3 and 5 kilometers; our HelioClim data
were retrieved with a spatial resolution of 1/12◦, which is already much finer that the
resolution of the forecasts.
Our zone of interest includes five BSRN stations (Baseline Surface Radiation Net-

work) [Ohm+98] for the evaluation of HelioClim performance. The stations are located
in Camborne (United Kingdom), Cener (Spain), Carpentras (South France), Palaiseau
(North France), and Payerne (Switzerland), as exhibited in Figure 2.1. The evaluation
results (Table 2.2) are computed over several years and show an average relative RMSE
of 10.7% and an average relative MAE of 8%.
In Section 2.4, we wish to produce our own forecasts based on the previously described

ensembles and we wish our forecasts to be at the finest available resolution, which is
the spatial resolution of our HelioClim data. Consequently our study is carried out at
the resolution of HelioClim. All the forecasts are interpolated by bilinear interpolation
to reach the same resolution of 1/12◦, for a total amount of 127× 187 grid points. On
the high-resolution grid, the forecasts vary spatially slowly compared to the satellite
observations.

TIGGE ensembles and HelioClim

The difference of nature between the HelioClim incident radiation (SSRD) and the
ground-absorbed radiation from TIGGE (SSR) prevents a direct comparison. Therefore
we test several conversion methods in Appendix 2.A. The method of linear conversion
(lin) based on historical data shows the best RMSE. This method is used until the end
of the section.
The monthly RMSEs are impacted by the seasonal variability (Figure 2.3). Solar

radiation forecasting is more difficult between April and July, during the brightest days
with large variability. It is worthy of notice that the ranking of the ensemble means is
steady over time. The ensemble means of KMA and UKMO (after linear conversion)
show better scores than the reference forecast, while their spatial resolution is natively
poorer. An improved forecast, called TIGGE-mean, may be built as the mean of the
TIGGE ensemble means (CPTEC excluded) with linear conversion. The score of the
TIGGE-mean lies at 66.9 W m−2, which is better than any TIGGE ensemble mean.
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Figure 2.3 – Monthly RMSEs of TIGGE ensemble means in W m−2, after linear conversion
(lin); (blue: CMA), (green: ECMWF), (red: UKMO), (cyan: KMA), (magenta: CPTEC) and
(yellow: Météo-France). The dashed line is the score of the reference forecast. The dashed-
dotted line is the score of a typical aggregated forecast (see Section 2.4.2).

The same analysis was undertaken with the MAE (not shown) and reveals similar
trends: 54.4 W m−2 (reference forecast MAE), 50.2 W m−2 (UKMO ensemble mean
with linear conversion MAE), 48.0 W m−2 (TIGGE-mean MAE).
We highlight the fact that no center ensemble is steadily the closest to the satellite

observations, whatever the score discrepancy described above. If we track over the
consecutive timesteps the origin of the best member at each location, we find that
this origin changes from one timestep to the next with a frequency of 75%. Further-
more, the proportion of times and locations where the best member belongs to a given
center is reported here: reference ECMWF 3%, CMA 10%, ensemble ECMWF 26%,
UKMO 19%, KMA 18%, CPTEC 2%, Météo-France 23%. Considering the fact that
the ECMWF reference forecast is one single member compared to 158 members, its
frequency of being the closest member to the observation is rather high. On the oppo-
site, the CPTEC ensemble and, to a lesser extent, the CMA ensemble show the lowest
frequencies.
Rank histograms [And96; TVS99; HC97] evaluate the quality of the spread of an

ensemble. Each observation is given a rank, which corresponds to the number of mem-
bers with lower values than the considered observation. Then the distribution of rank
frequencies can reveal the presence of under-dispersion (U-shaped histogram), over-
dispersion, and biases. The rank histograms of the center ensembles and the rank
histogram of the whole 158-member ensemble are shown in Figure 2.4 and 2.5, for data
converted by center (lin). The values of the bars of each histogram are normalized with
respect to the total number of observations, so that the height of the bars of the ideally
flat histogram is always 1. There are clear outliers on all histograms, which is a clear
sign of general under-dispersion [Ham01]. The frequencies with which observations fall
within an ensemble envelop are: CMA 34%, ECMWF 45%, UKMO 58%, KMA 56%,
CPTEC 1%, Météo-France 59%, whole ensemble 89%.
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Figure 2.4 – Rank histograms of the center ensembles. In the ideal case of a flat histogram, the
height of all the bars would be equal to 1.

2
4
6
8

10
12

0 50 100 150
rank

0.0
0.5
1.0
1.5
2.0

ra
nk

 fr
eq

ue
nc

y

Figure 2.5 – Rank histograms for the whole ensemble. In the ideal case of a flat histogram,
the height of all the bars would be equal to 1. The gray scale indexes the number of ensembles
whose spread contains the observation, from black (no ensemble) to white (all ensembles, but
not observed because of the very low dispersion of CPTEC).
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The whole ensemble is less under-dispersed than each center ensemble and exhibits
a rank structure with peaks. The ranks of the major inner peaks (14, 28, 37, 78, 112,
121, 135 and 144) correspond to combinations of ensemble sizes, starting from either
extreme peak. For example, the peak at rank 28 corresponds to the combination of the
ensemble sizes of CPTEC and CMA (both 14). The peak at rank 135 corresponds to an
ensemble of 23 members (UKMO or KMA) starting from the outer peak at rank 158.
The peaks are generated by the 4% share of the observations (inner black bars) which
do not fall within any of the center ensemble envelops. Indeed these observations are
necessarily indexed at ranks related to combinations of ensemble sizes. We conclude
that the peaks are due to the variety of the under-dispersed ensembles.

2.3 Ensemble forecast strategy: sequential aggregation
In this section we detail the principles of sequential aggregation. In particular, we

explain the method of discounted ridge regression. The performance and robustness of
discounted ridge regression have been tested for the case of air quality [MSM09]. While
time series of scalar fields were considered above, in this section we only consider scalar
time series.

2.3.1 Notation

Let xm,t describe them-th member of our forecast ensemble at time t, withm ∈ {1, . . . ,M}
indexing the members and t ∈ {1, . . . , T} indexing the forecast timesteps. The vector
xt refers to the ensemble of forecasts [x1,t, x2,t, . . . , xM,t]>. At each timestep, the mem-
bers should be conveniently combined with the weights wm,t to generate the forecast

ŷt =
M∑
m=1

wm,txm,t (2.5)

of the observation yt.

2.3.2 Sequential aggregation: method

The aggregation weights wm,t are updated before the forecast step t, using only past
observations y1, y2, . . . , yt−1 and past simulations x1, x2 and xt−1. For the discounted
ridge regression with parameters (λ, γ), the weight vector wt = [w1,t, w2,t, ..., wM,t]> is
found through minimization of

J(u) = λ‖u−wref‖22 +
t−1∑
t′=1

βγ(t− t′)× (yt′ − u · xt′)2 (2.6)

with
βγ(t− t′) = 1 + γ

(t− t′)2 (2.7)

and wref a reference weight vector chosen by the operator and constant in time. The
parameter λ affects the distance between w and the reference vector wref (usually set
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to zero or to [1/M, . . . , 1/M ]>, following the ensemble mean). The function βγ gives
higher importance to the most recent timesteps. When both λ and γ are set to zero, a
simple recursive least-square regression is achieved.
The classical ridge regression without discount provides the theoretical guarantee

that the final score of the aggregated forecast will be close to the final score of the best
constant linear combination. Indeed we have

T∑
t=1

1
T

(yt − ŷt)2 − min
u∈BM

T∑
t=1

1
T

(yt − u · xt)2 6 O
( lnT
T

)
, (2.8)

under the assumption of bounded losses (yt − ŷt)2. The condition u ∈ BM , where BM
is a 2-norm ball in RM , means that ‖u‖22 is bounded. The best linear combination
with constant weights (implicitly defined above by the second term in the left hand
side) is named the oracle. The oracle is found by least-square regression over the
whole set. By definition, the oracle shows better performance than any member in
the ensemble. Consequently the aggregated forecast is more skillful in the long run
than the best member. The discounted ridge regression provides asymptotically this
guarantee, which is verified for each sequence of discounted regret.

2.3.3 Algorithm

Parameters: λ, γ, wref ;
Initialization: w1;
For each time index t = 1, 2, ..., T
1. get the predictions xt,
2. compute ŷt, with xt and wt,
3. get the observation yt and compute wt+1.

The initial weight vector w1 is arbitrarily set, e.g., to [1/M, . . . , 1/M ]>.

2.4 Application

2.4.1 Experiment setup

The sequential aggregation with discounted ridge regression as described in 2.3.2 is
applied independently at each location of the 127 × 187 grid. In a similar fashion to
the study of Section 2.2, the forecast variable is the incident radiation flux integrated
between 06:00 and 12:00 UTC. The TIGGE forecasts are available at 18:00 or 24:00 on
day D-1 to forecast the quantity of interest for day D at 12:00, also named (D, 12:00).
The ensemble data are SSR data from TIGGE without any SSR-SSRD conversion

because the aggregation does not depend on any multiplicative coefficient applied to
the members. In other words, the weights of the aggregation produce multiplicative
corrections and solve the issue of the nature of TIGGE data.
The aggregation parameters (λ, γ) are respectively set to 6× 106 and 20 by default

(see Section 2.4.2 for the assessment of the parameters). The values of the reference
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vectorwref are set to 1/M in order to drive the aggregated forecast towards the ensemble
mean. Even though the ensemble mean may not be the most appropriate reference
vector, the vector wref mostly impacts the beginning of the aggregation so that the
critical parameters are truly (λ, γ).
The aggregation may be achieved in a single step by choosing members from all of

the center ensembles. Another approach involves two steps: a first aggregation within
each center ensemble and a second aggregation with the resulting forecasts as members.
Both procedures have been tested and only the procedure achieved in a single step is
presented here since the second procedure did not lead to significantly different results.
In order to study the impact of the number of members M , the same amount of

members are chosen from each meteorological center, but the center ensembles do not
have the same size. Therefore, the members are chosen in a way that their ranks are
linearly spaced and centered on the median of each center ensemble. The full sorting
procedure is not impacted by this member selection because in this case the members
are mixed up before sorting and rank selection. It is possible to realize aggregation
with one single member, such as the reference forecast. In this case the weight plays
the role of a local correction factor.
Missing data (only CPTEC ensemble) are replaced by the ensemble mean of the

available members.

2.4.2 Results

Aggregation example with one center ensemble

In this section, the aggregation is first run with the ensemble KMA only (without
sorting) and then with an additional deterministic member. In the first case, we indicate
that the RMSE of the SSRD ensemble mean is 75.0 W m−2, whereas the RMSE of the
ensemble mean with linear conversion is 72.1 W m−2. The RMSE of the aggregated
forecast equals 70.0 W m−2 and may decrease when data from another source is included
in the ensemble. For example, when the ECMWF deterministic forecast is added as
a member, the RMSE reaches 67.5 W m−2. The scores are to be compared to the
58.9 W m−2 RMSE of the oracle of the same ensemble and to the 65.1 W m−2 RMSE
of the oracle with only KMA data.
One question is whether the improvement due to the deterministic member origi-

nates from its high spatial resolution. We therefore include the ECMWF deterministic
forecast at the lower resolution of 0.25◦× 0.25◦ which is obtained by averaging the fine
0.125◦ × 0.125◦ forecast. In that case, the RMSE is also equal to 67.5 W m−2, which
means that the resolution of the reference forecast is not the key factor. For compar-
ison, the RMSE of the reference forecast corrected by discounted ridge regression is
equal to 68.0 W m−2.

Oracles with orthogonal members

We now want to quantify the potential improvements brought by sequential aggre-
gation with all members, using a relevant oracle. The problem of overfitting can arise
because of the large number of members (158) compared to the length T = 350 of the
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Figure 2.6 – RMSE (solid line with disks, left axis) and explained variance (dashed-dotted line,
right axis) of oracles with orthogonal members plotted against number of orthogonal members.

time sequence. In that case, the score of the oracle is artificially good, and the competi-
tion against the oracle does not carry any meaning. We present here oracles computed
with the help of principal component analysis (PCA), so as to avoid overfitted ora-
cles. The PCA generates orthogonal modes, and consequently orthogonal members.
The 158 members are sorted within each center ensemble and then orthogonalized by
PCA, independently at each grid point. We compute the oracle of the ensemble of
size M ′, by selecting M ′ orthogonal members based on the M ′ modes explaining the
largest variance share of the ensemble. In Figure 2.6 the RMSE of the oracle and the
total amount of variance explained by its members are plotted against the number
of orthogonal members. An indication of possible overfitting is shown in Figure 2.6,
because the RMSE still decreases with the number of PCA modes while the share of
unexplained variance is small. Indeed the 32 first orthogonal members explain 95% of
the variance and generate an oracle with an RMSE of 54.4 W m−2, whereas the RMSE
of the oracle with all PCA modes (100% of explained variance) equals 33.9 W m−2.
Consequently, the 32-member oracle is considered as the relevant oracle; its score is
a relevant evaluation of the best score that may be achieved by linear combination
without overfitting.

Typical aggregation

In this paper, the “typical aggregation” refers to the aggregation with 30 members
(5 per sorted center ensemble), with default parameters λ = 6× 106 and γ = 20. The
resulting forecast is simply referred to as typical aggregated forecast and is used below
to illustrate spatial and temporal features resulting from sequential aggregation. Note
that the typical aggregation is compared to all members in Figure 2.13 and to the
ensemble means for each month in Figure 2.3. We highlight the fact that the typical
aggregated forecast performs better than any of the individual members, steadily over
time.
The maps of scores of RMSE, MAE and relative RMSE are shown in Figure 2.7. The

MAE and RMSE maps show very similar patterns. The relative MAE is not shown
for it is similar to the relative RMSE. The maps indicate that the topographic relief of
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Figure 2.7 – Maps of statistical scores for the typical aggregated forecast (unitless for rRMSE,
in W m−2 for MAE and RMSE).
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Figure 2.8 – Annual averaged estimation for 12:00 UTC in W m−2. Although it is based on
individual members with low resolution, the aggregated forecast shows fine structures that are
comparable to those of HelioClim.
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Figure 2.9 – Sorted spatial RMSE in W m−2 along 350 days; ECMWF deterministic forecast
(red and used to sort the days), typical aggregated forecast (blue), ECMWF deterministic
forecast corrected by discounted ridge regression (green).

mountains severely degrades the forecast accuracy. Indeed the absolute largest errors
are found in the region of the Alps and in the region of the Pyrenees. The coarse
resolution of the members may explain the poor performance in the regions of complex
terrain. Also, in the mountainous regions, the albedo shows higher temporal variations,
which is difficult to catch for the aggregation. On the opposite, the best scores are
steadily achieved in the inner lands of Spain and in the south-east of France. High
relative errors are numerous in the northern area especially during the spring-summer
period, because of the low values of the observations combined with large errors. For
example in spring and summer period, the British area shows a relative RMSE higher
than 20%, whereas the south-east of France reaches a relative RMSE below 12.5%,
even though the two areas are associated with similar RMSEs over the same period.
We recall here that the relative RMSE of the satellite observations compared to BSRN
stations is worth 10.7% on average.

Most of the members are computed with a low spatial resolution and do not show
fine long-term spatial structures. On the contrary, the aggregated forecast is built
independently at each location, which allows the procedure to adapt locally and to
finally show fine structures, that are resolved by HelioClim. These structures are finer
than any structures found in the ensemble members (due to their low resolutions), even
in the ECMWF deterministic forecasts (Figure 2.8).

In order to compare predictions performance at each date, the spatial RMSE of
various predictions are temporally sorted according to the performance of the ECMWF
reference forecast (Figure 2.9). The overall trend is the same for the three forecasts.
The aggregated forecast often shows the best performance, but it does not always
perform better than the aggregation applied to the reference forecast only. One benefit
of aggregation is that large improvements are achieved at the most difficult timesteps,
even with one single member in the ensemble.
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Figure 2.10 – RMSE in W m−2 against the maximal number of members chosen from each
center ensemble; (blue: no sorting), (green: sorting full ensemble), (red: sorting by center),
(magenta: sorting by center and reference forecast included in the ensemble).

Members selection and sorting

The performance of the aggregated forecast is impacted by the number of members
up to a certain extent (Figure 2.10). Beyond a total amount of roughly 60 members
(10 members from each center ensemble), the scores reach a plateau. The full sorting
procedure is the first to reach its own plateau, which may be caused by the merger
process of the members with sorting. Besides, the sorting procedures impact the scores
with limited consequences (less than 1 W m−2) for large enough ensembles. According
to the observed performance, the sorting procedure by center should be preferred if
more than 5 members per center are chosen. It is noticeable that the reference forecast
brings a score improvement whatever the number of aggregated members. The best
score achieved with default (λ, γ) equals 61.5 W m−2 for the RMSE and 43.6 W m−2 for
the MAE. Compared to the scores of reference forecast, the improvements brought by
the aggregation equal 21.2% for the RMSE and 19.8% for the MAE. Besides, compared
to the scores of TIGGE-mean, these improvements are worth 8.1% for the RMSE and
9.1% for the MAE.
The aggregation ensemble may also be built with only 5 out of 6 center ensembles.

We compare the aggregated forecast of 30 members, so that 6 members are chosen in
each of 5 center ensembles. In this case, the reference aggregated forecast is the typical
aggregated forecast with 5 members chosen in each of the 6 center ensembles. Either
way, the members are sorted per ensemble. We found that the aggregated forecast
with 5 centers performs better than the typical aggregated forecast, when the omitted
members are from CMA or CPTEC. The largest improvement occurs when the CPTEC
is excluded with a benefit of only 0.3 W m−2. On the opposite, the score is the most
severely degraded when the members from KMA are left out, generating the RMSE of
64.1 W m−2, while the RMSE of the typical aggregated forecast equals 62.5 W m−2. To
conclude, not using all center ensembles to build the aggregation ensemble can generate
both benefits and loss in terms of score. However, these benefits are lower than the loss
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Figure 2.11 – Impact of the horizon up to 42 h on the RMSE of the aggregated forecast and
ensemble mean (lin); (dash dot: aggregated with 60 members), (blue: CMA), (green: ECMWF),
(red: UKMO), (cyan: KMA), and (yellow: Météo-France).

caused by leaving out skillful forecasts. In practice, one may arguably keep all center
ensembles.

Time horizon

We consider an ensemble forecast delivered at time t for the k next steps. The
weights of the sequential aggregation are commonly used for the first step ahead (see
the algorithm, in Section 2.3.3), but can also be used for the following timesteps t+ k,
where k > 1. In fact, the weights can even be used for timesteps that are not included
in the sequential aggregation, such as the forecast for 18:00 UTC. This new framework
allows us to generate the aggregated forecast for (D, 18:00), (D+1, 12:00) and (D+1,
18:00) with the weights initially computed for the prediction (D, 12:00). In terms of
time horizon, the prediction for (D, 12:00) corresponds to the 12 h horizon, (D, 18:00)
to 18 h, (D+1, 12:00) to 36 h and (D+1, 18:00) to 42 h. The time horizons of Météo-
France forecasts are actually 6 h longer, because its predictions start at 18:00 and not
24:00. The night time predictions steps are skipped because of their very low values.
The RMSE of the ensemble means and the scores the typical aggregated forecast are

shown in Figure 2.11, depending on the time horizon. The scores of CPTEC ensemble
mean are not shown, because of their high values. The six presented forecasts share the
same trends. The scores of predictions for 18:00 beat the scores for predictions 12:00
of the same day, by less than 4 W m−2 on average, which is consistent with the fact
that the forecasts for 12:00 have higher values than the forecasts for 18:00. Further-
more, the predictions for day D+1 show an average degradation of more than 5 W m−2

compared to the prediction for day D. Additionally, we notice that the ensemble mean
from ECMWF shows the steadiest performance over time and that the benefits of the
aggregated forecast are retained for longer time horizons.
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Figure 2.12 – RMSE grid (W m−2) depending on the aggregation parameters, aggregating a
134-member ensemble using at most 30 sorted members from each center ensemble.

Influence of the aggregation parameters

We searched the best set of parameters (λ, γ) that provides the lowest RMSE for
the data set of year 2011, already presented in Section 2.2.2. We found that at most
3 W m−2 were to be gained in terms of RMSE on a wide range of parameters (Fig-
ure 2.12(a)). Our default parameters (6.106, 20) produce the score of 67.1 W m−2,
which is close to the best score achieved on the grid of Figure 2.12(a) (e. g. 66.7 W m−2

with λ = 6.106 and γ = 5). Furthermore, we found that the best set of parameters
varies in terms of space and time. Indeed, if we exclude the 50 first timesteps in the
RMSE, then the most appropriate parameters are λ = 107 and γ = 20. If we choose a
posteriori the optimal (λ, γ) for each grid point, only 1 W m−2 is to be gained from de-
fault parameters. The minor variations of performance guarantee that we may choose
our default parameters within one order of magnitude, and test them on another data
set without significant loss of performance.

We produce the same analysis for the data set of year 2012 in Figure 2.12(b). In this
case, the best parameters are λ = 5.106 and γ = 10, with the score of 61.5 W m−2 that
is very similar to the score of 61.7 W m−2 obtained with default parameters. Therefore,
the order of magnitude of the parameters for year 2012 can be deduced from the data
set of year 2011. Besides we also found that if we choose the best (λ, γ) for each grid
point, the gain does not exceed 1 W m−2. As stated with the data set of year 2011,
once the relevant order of magnitude for the parameters (λ, γ) is known, only little
improvement is possible by adjusting them.
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2.5 Conclusion

The ensemble forecasts from TIGGE provide a wide range of meteorological fields
including net short-wave solar radiation, with the large timestep of 6 h. After conversion
based on a constant albedo, the resulting ensembles are under-dispersed, even when
grouped together. The performance of the ensemble means is assessed with RMSE
and MAE and compared to the deterministic forecast from ECMWF. The reference
forecast has higher resolution than the best TIGGE ensemble means, but produces
similar scores. Sequential aggregation brings improvements to the TIGGE ensembles on
several features, including RMSE and MAE, with theoretical guarantees. In this study,
the aggregated forecast performs better than any member of the ensembles and any
ensemble mean. On average, the aggregated forecast retrieves all spatial patterns, even
at a much finer resolution than any of the members. Besides, the members combination
proves to be consistent with the time horizon. Finally sequential aggregation is easy-
to-use for its parameters do not need accurate values.
Practical applications of the aggregation algorithm should investigate higher tem-

poral resolutions, especially the hourly timestep. Next developments may focus on
the study of uncertainty with sequential aggregation, which is possible using filtering
[MNZ13], but without the same theoretical robustness as in this paper. The intro-
duction of multiple model runs per day with temporal interpolations may result in
a robust framework for intraday forecasting. Furthermore, new procedures are to be
developed to explore sequential aggregation with spatial dependencies between grid
points, with the objective of better forecasting daily spatial patterns. There is also a
need for quantifying the possible resolution improvements brought by the aggregation.

Appendix 2.A Conversion from SSR to SSRD and
reference forecast

2.A.1 Methods

Several conversion methods allowing the estimation of the albedo are tested. Even
though the KMA data set is already SSRD and does not need data conversion, the
below methods are also tested on the KMA data set, for the sake of completeness.
First, we infer three conversions from our reference forecast. The SSR and SSRD

forecasts from ECMWF are used to provide three SSR-SSRD empirical conversions
(Table 2.3): with a constant 1.18 coefficient (glob), with local multiplicative coefficients
(mult), and with local additive coefficients (add). The local multiplicative conversion
is in fact the local estimation (in space and time) of the factor 1/(1 − α) based on
ECMWF continuous forecast.
Although it may lead to local large errors due to seasonal changes in snow cover

and vegetation, we model a constant albedo in space and time (glob). The linear
relationship (Eq. (2.1)) between SSR and SSRD forecasts from ECMWF is found by
linear regression on data from 100 random locations and for 350 days in year 2012.
The resulting slope value (supposed to be equal to 1/(1−α)) is 1.18 and the intercept
value equals 13 W m−2. The squared correlation coefficient R2 of 0.968 shows that

58



Label Conversion formula

glob xtigge × 1.18

mult xtigge ×
xssrdecmwf

xssrecmwf

add xtigge −
(
xssrecmwf − xssrdecmwf

)
lin xtigge × acenter + bcenter

Table 2.3 – Empirical conversion formula of TIGGE data xtigge from SSR to SSRD. The deter-
ministic forecasts from ECMWF are named xecmwf .

Center Slope acenter Intercept bcenter R2

(W m−2)

CMA 1.11 18 0.72
ECMWF 1.18 −21 0.78
UKMO 1.10 19 0.81
KMA 0.91 18 0.81
CPTEC 0.82 41 0.48
Météo-France 1.07 37 0.76

Table 2.4 – Linear regression SSR-SSRD, based on data from year 2011.

SSR and SSRD forecasts are strongly correlated in practice. According to the ratio
between ECMWF SSRD and SSR forecasts, the relative standard deviation (standard
deviation divided by mean) of the coefficient 1/(1−α) is equal to 8.8% on average over
all the grid points. Consequently the local variations of the ratio 1/(1− α) are rather
small compared to its local mean value. Besides, more than 90% of the values of the
coefficient 1/(1− α) are comprised between 1.13 and 1.48.

Second, a constant albedo is computed for each center ensemble. This method is
referred to as “lin” in Table 2.3 and is also referred to as the linear conversion below,
because the method is based on linear regressions. Taking HelioClim observations as
SSRD data and TIGGE ensemble means as SSR data, linear regressions are carried out
on past data sets of year 2011 described in Section 2.2.2. The results of the regressions
(Table 2.4) show two slopes lower than one (KMA and CPTEC), and intercepts ranging
from −21 W m−2 to 41 W m−2. Remind that KMA data is already SSRD data so that
its slope is not related to the albedo. The diversity of slopes and intercepts values
suggest that the albedo coefficient should be evaluated independently for each center
ensemble.
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Figure 2.13 – Annual RMSEs of all members in W m−2 according to SSR-SSRD conversion
method; (blue: no conversion), (green: add), (red: mult), (cyan: glob) and (magenta: lin).
The abscissa is the member label and the members are grouped by origin. The dashed line is
the score of the reference forecast. The dashed-dotted line is the score of a typical aggregated
forecast (see Section 2.4.2).

2.A.2 Numerical results

The deterministic forecasts from ECMWF provide several scores. We build another
deterministic forecast, called SSRD-lin, based on deterministic SSR and the linear
conversion method. Compared to HelioClim, the RMSE of the ECMWF SSRD deter-
ministic forecast equals 78.0 W m−2 while the RMSE of SSRD-lin equals 76.9 W m−2.
When the largest error percentiles of SSRD and SSRD-lin forecasts are compared, we
see that the largest errors belong to SSRD-lin only beyond the 99th percentile. On the
one hand, the physical approach with local albedos (as opposed to SSRD-lin) does not
generate the largest errors. On the other hand, local albedos do not provide the best
score.
Furthermore, the resolution of the ECMWF deterministic forecast does not impact

its performance. Indeed the ECMWF deterministic forecast at degraded resolution of
0.25◦ × 0.25◦, by interpolation, shows the RMSE of 77.7 W m−2 when compared to
HelioClim, which is below the RMSE of the reference forecast. The two predictions
at different resolutions have similar performance, since the distance between them,
measured with a root mean square discrepancy (in time and space), equals 3.0 W m−2.
The RMSEs are shown in Figure 2.13 for all members without sorting procedures.

The RMSEs between individual members and satellite observations are at least twice as
big as the RMSEs between satellite observations and ground measurements (Table 2.2).
It is noteworthy that members of a same center ensemble perform similarly. The scores
strongly depend on the conversion methods and on the origin of each forecast. We
highlight again the fact that the nature of KMA data is already SSRD.
The linear conversion (lin) is the best conversion method tested here except for the
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CPTEC ensemble. The multiplicative conversion method was supposed to provide
accurate forecasts. However, here is confirmed the need for the conversion method to
adapt to each center ensemble.
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3 Online learning with the CRPS for
ensemble forecasting
Ensemble forecasting resorts to multiple individual forecasts to produce a
discrete probability distribution which accurately represents the uncertain-
ties. Before every forecast, a weighted empirical distribution function is
derived from the ensemble, so as to minimize the Continuous Ranked Prob-
ability Score (CRPS). We apply online learning techniques, which have pre-
viously been used for deterministic forecasting, and we adapt them for the
minimization of the CRPS. The proposed method theoretically guarantees
that the aggregated forecast competes, in terms of CRPS, against the best
weighted empirical distribution function with weights constant in time. This
is illustrated on synthetic data. Besides, our study improves the knowledge
of the CRPS expectation for model mixtures. We generalize results on the
bias of the CRPS computed with ensemble forecasts, and propose a new
scheme to achieve fair CRPS minimization, with essentially no assumption
on the distributions.

A slightly different version of this chapter was published as the paper: Thorey, J.,
Mallet, V., and Baudin, P. « Online learning with the CRPS for ensemble forecasting ».
In: Quarterly Journal of the Royal Meteorological Society (2016).
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Introduction

The minimization of the CRPS is a common way to drive probabilistic forecasts
[Gne+05; JMA15]. From diagnostic tools to modeling techniques, Gneiting and Katz-
fuss [GK14] review the state of the art of probabilistic forecasting. Using several fore-
casts, based on various models and perturbed input data, is a common way to produce
probabilistic forecasts [LP08]. The roots of this framework known as ensemble fore-
casting is reviewed by Lewis [Lew05]. Ensemble of forecasts is the raw material of the
techniques proposed in this paper.
Sequential aggregation targets optimal combinations, as thoroughly introduced in the

monograph Cesa-Bianchi and Lugosi [CL06]. These techniques, also known under the
scope of online learning, come with attractive theoretical guarantees of performance.
Stoltz [Sto10] and Mallet et al. [MSM09] and Mallet [Mal10] summarized and tested
these techniques on forecasts of respectively electricity consumption and ozone concen-
trations. Usually focused on scalar forecasting, sequential aggregation was applied to
the Brier score and the quantile score by respectively Vovk and Zhdanov [VZ09] and
Biau and Patra [BP11]. In this paper, we use sequential aggregation in order to target
the best CRPS, with theoretical guarantees that require essentially no assumption on
the forecast or observation distributions. In this sense, our method is a non-parametric
post-processing method. Our techniques generate weights for each ensemble member
so as to produce a linear opinion pool, also known as model mixture [GM90; CW99].
Ranjan and Gneiting [RG10] provide mathematical grounds on these combinations.
Our technique was first designed to work with an ensemble of scalar forecasts. Still, it
can be applied when a parameterized distribution is associated to each forecast.
In Section 3.1, we describe the mathematical background on the CRPS. We provide

contributions related to ensemble forecasting with discrete Cumulative Distribution
Functions (CDFs). Our contributions are mainly generalizations of existing results to
the case of combinations of forecasts with unequal weights, in a probabilistic frame-
work. We also provide a framework to work with classes of members, compatible with
fair probabilistic evaluations. In Section 3.2, we detail online learning techniques, with
adaptation for probabilistic ensemble forecasting based on the CRPS. In Section 3.3,
we illustrate the notions of Section 3.1 with numerical experiments, and we demon-
strate our algorithms with numerical examples. We summarize several useful identities
involving CDFs in Appendix 3.A.

3.1 Mathematical background

3.1.1 Bibliographical remarks

The evaluation of probabilistic forecasts is a long range discussion going on since
Winkler and Murphy [WM68] and Savage [Sav71]; see Dawid [Daw08] for a detailed
bibliographical analysis, and more recently Gneiting and Raftery [GR07] and Candille
and Talagrand [CT05] for detailed analyses. The Brier score was introduced by Brier
[Bri50] and Good [Goo52] to evaluate probabilistic forecasts for a given threshold and a
binary observation. The Continuous Ranked Probability Score (CRPS) can be viewed
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as a continuous version of the Brier score [Eps69; Mur71] for any threshold.

3.1.2 The Continuous Ranked Probability Score (CRPS)

We want to forecast a scalar quantity y called the verification and we suppose that
y admits an underlying distribution that is described by the CDF F . The CRPS is
considered as a realization of a random variable, and it is defined as

CRPS(G, y) =
∫

(G−Hy)2 , (3.1)

where G is a CDF that is chosen by the forecaster in order to predict F , H is the
unit (or Heaviside) step function, and Hy(x) indicates a centered Heaviside function
H(x − y). The CRPS is negatively oriented, meaning that lower scores imply better
performance. Gneiting and Raftery [GR07] show that the CRPS may also be written
as

CRPS(G, y) = E(|X− y|)− 1
2 E(|X−X′|) , (3.2)

where E is the expectation, and both X and X′ are two random variables drawn from
G. A decomposition of the average CRPS was introduced by Hersbach [Her00]. The
decomposition of scores into divergence and uncertainty terms is explained in Bröcker
[Brö09]. The average CRPS is decomposed as follows:∫

CRPS(G, y)dF(y) =
∫

(G− F)2 +
∫

F(1− F) , (3.3)

where y is integrated over the values defined by F (using Equation 3.28 of Appendix 3.A).
The CRPS is a strictly proper score, which means that it is minimized on average if
and only if the forecaster’s choice G is equal to F. This is a straightforward observation
from Equation 3.3.
The strict propriety of the CRPS can be compared to the non-strict propriety of the

square loss [BS07b], which reads

(y − E(X))2 =
(∫

G−Hy
)2

, (3.4)

according to Equation 3.31 of Appendix 3.A. We see that minimizing the square loss
and minimizing the CRPS (Equation 3.1) are rather different objectives, due to the
location of the square function inside or outside the integral expression. The CRPS
objective is more demanding, because in this case the integration is applied to a positive
function.

3.1.3 The ensemble CRPS

In the case of ensemble forecasting, the forecaster relies on an ensemble ofM members
xm, m ∈ {1, . . . ,M}, to construct a CDF. The empirical CDF GE of the ensemble is
a step function with jumps of heights um (called weights) at the members values xm.
Thus we write GE(x) =

∑M
m=1 umH(x − xm). In order to satisfy the definition of a

CDF, the weights um should be nonnegative and sum to one, so that they produce a
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convex combination. Such weight vectors define the simplex PM of RM . The weights
um are to be optimized in order to minimize the CRPS.

The computation of the integral of Equation 3.1 is easy on step functions GE . When
the CDF is a step function, we refer to the score as the ensemble CRPS:

CRPS(GE , y) =
M∑
m=1

um|xm − y| −
1
2

M∑
m,k=1

umuk|xm − xk| . (3.5)

The derivation of Equation 3.1 is detailed in Appendix 3.B.

Without further information, the members are assumed to be i.i.d., thus the fore-
caster may arguably choose all weights equal to 1/M . By definition, a scoring rule
depending on the verification y and i.i.d. members xm is fair if the average score is
minimized when the members and the verification are sampled from the same distribu-
tion. Ferro et al. [FRW08] show that the ensemble CRPS is unfair due to the finite size
of the ensemble. In the next section, we generalize this result to the case of unequal
weights, with non identically distributed members.

The bias of the score is an important topic in our optimization framework. Indeed
if our objective function is intrinsically biased, then the resulting probabilistic forecast
cannot be calibrated.

3.1.4 Bias of the ensemble CRPS with underlying mixture model

We consider that the members xm are independent samples from the CDFs Gm, and
that y is fixed. The purpose of this section is to compare the score obtained with the
step function GE averaged according to the CDFs Gm and the score obtained with the
mixture model described by the average CDF G =

∑
umGm.

Taking the expectation with respect to the members xm, we show that

E(CRPS(GE , y)) =
∫

Hy − 2
M∑
m=1

umGmHy +
M∑
m6=k

umukGmGk +
M∑
m=1

u2
mGm , (3.6)

using Equation 3.28. The trick is that H2(x−xm) = H(x−xm), thus the average CRPS
does not include G2

m terms but Gm terms instead. We conclude by introducing the terms
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∑M
m=1 umGm and

∑M
m=1 u

2
mG2

m in conjunction with Equation 3.29, 3.33 and 3.34:

E(CRPS(GE , y)) =
∫

Hy +
M∑
m=1

umGm − 2
M∑
m=1

umGmHy

+
M∑
m 6=k

umukGmGk −
M∑
m=1

umGm +
M∑
m=1

u2
mGm

= E(|X− y|) +
∫ M∑

m 6=k
umukGmGk −

M∑
m=1

umGm +
M∑
m=1

u2
mGm

= E(|X− y|) +
∫ M∑

m,k

umukGmGk −
M∑
m=1

umGm +
M∑
m=1

u2
mGm −

M∑
m=1

u2
mG2

m

= E(|X− y|)− 1
2 E(|X−X′|) + 1

2

M∑
m=1

u2
m E(|Xm −X′m|) .

where X and Xm are random variables with CDFs G and Gm respectively. Therefore,
we have

E(CRPS(GE , y)) = CRPS(G, y) + 1
2

M∑
m=1

u2
m E(|Xm −X′m|) . (3.7)

In the expectation of the ensemble CRPS, the diagonal terms u2
m E

(
|Xm −X′m|

)
are

missing, because the spread of each member is assumed to be null. The absence of
the diagonal terms is the cause of the bias of the ensemble CRPS. One consequence
of Equation 3.7 is that the expected ensemble score is never smaller than the score
obtained with G. This fact also follows from the convexity of the CRPS, as pointed
out by an anonymous reader.
As a consequence, the minimization of the ensemble CRPS should not be targeted

because the solution of this optimization problem is not the underlying CDF of the
verification. There is no contradiction with the strict propriety of the CRPS because, for
the ensemble CRPS, the solution is only searched in a subspace made of step functions.
In the case of equal weights with i.i.d. members, Fricker et al. [FFS13] detailed

in their Appendix why minimizing the ensemble CRPS is misleading as stated above.
Ferro et al. [FRW08] exhibit a fair adjusted CRPS score, which includes correction
terms to counteract the bias:

CRPSa(GE , y) = 1
M

M∑
m=1
|xm − y| −

1
2

M∑
m,k=1

|xm − xk|
M(M − 1) (3.8)

= CRPS(GE , y)− 1
2M

M∑
m,k=1

|xm − xk|
M(M − 1) . (3.9)

We see that rather than being a new score, the adjusted ensemble CRPS is a better
estimation of the original CRPS, where the underlying distributions of the members
are taken into account. In Equation 3.8, the dispersion of the ensemble E(|X− X′|) is
estimated by

∑M
m,k=1 |xm−xk|/(M(M−1)). In other terms, the bias terms u2

m E(|Xm−
X′m|) of Equation 3.7 are taking into account in Equation 3.9 as E(|X − X′|)/M2, by
considering that E(|Xm −X′m|) = E(|X−X′|).
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3.1.5 Mixture model described by classes of members

We propose in this section a framework compatible with both ensemble forecasting
and unbiased scores. In a standard model mixture design, a forecaster will assign
weights to known parametric distributions [Raf+05; Gri+06]. We do not want to make
assumptions on distributions, thus we use a standard ensemble forecasting framework,
where the members are usually assumed to be sampled from unknown CDFs. The goal
of this section is to show that despite the finite size of the ensemble, it is possible to use
the CRPS by counteracting the discretization-induced bias. This framework is close
to what is introduced in Fraley et al. [FRG10], however this previous work focused on
Bayesian Model Averaging (BMA), and did not include considerations on the CRPS.
We assume that ensemble members are grouped into classes within which members

are i.i.d. In this new setting, a class C has a weight WC uniformly distributed among
its members. The weight um =WC/MC is assigned to the mth member of the ensem-
ble, assuming that it belongs to class C and that class C has MC members. As an
example, classes may be defined according to the rank of the members. Assuming that
10 members are available, two classes may be built by assigning the 5 members with
the lowest values to the first class and the remaining members to the second class.
We introduce the CRPS using the classes. We call this score the class CRPS, and

denote it

CRPSC(GC, y) =
∑
C∈C
WCÊ(|XC − y|)−

1
2
∑

C,D∈C
WCWDÊ(|XC −X′D|) . (3.10)

The terms of the class CRPS are detailed below.
For the class C, with MC members xCc associated to the random variables XC and

X′C , we have

Ê(|XC − y|) =
MC∑
c=1
|xCc − y|/MC , (3.11)

Ê(|XC −X′D|) =
MC∑
c=1

MD∑
d=1
|xCc − xDd |/(MCMD) , (3.12)

where class D is different from class C, and

Ê(|XC −X′C |) =
MC∑
c,c′=1

|xCc − xCc′ |/(MC(MC − 1)) . (3.13)

This last quantity can be seen as the dispersion associated to the i.i.d. members of
class C. Note the bias correction of Ê(|XC −X′C |) with the factor MC(MC − 1).
Now we show how the ensemble CRPS and the class CRPS are related. Summing

among classes (which belong to the partition C of the set of the members), we have

∑
C∈C
WC

MC∑
c=1
|xCc − y|/MC =

M∑
m=1

um|xm − y| . (3.14)
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Then we sum inter- and intra-class dispersions to link them to inter-member differences
|xm − xk|. The key point is that inter-member differences for i.i.d. members comprise
the intra-class dispersions. We note that

W2
C

MC∑
c,c′=1

|xCc − xCc′ |
MC(MC − 1) = MC

MC − 1

MC∑
c,c′=1

(WC

MC

)2
|xCc − xCc′ | , (3.15)

and MC/(MC − 1) = 1 + 1/(MC − 1) to obtain∑
C,D∈C

WCWDÊ(|XC −X′D|) =
∑

C 6=D∈C
WCWDÊ(|XC −X′D|) +

∑
C∈C
W2
CÊ(|XC −X′C |)

=
M∑

m,k=1
umuk|xm − xk|+

∑
C∈C

1
MC − 1

MC∑
c,c′=1

W2
C

M2
C

|xCc − xCc′ |

=
M∑

m,k=1
umuk|xm − xk|+

∑
C∈C

W2
C

MC
Ê(|XC −X′C |)

=
M∑

m,k=1
umuk|xm − xk|+

M∑
m=1

u2
mÊ(|XCm −X′Cm

|) ,

where Cm is the class in which xm falls. To obtain the last equation, consider that
Ê(|XC −X′C |) is counted MC times.
Compared to the ensemble CRPS, the class CRPS admits M additional terms cor-

responding to the dispersion of each member and resulting from the classes definition:

CRPSC(GC, y) = CRPS(GE , y)− 1
2

M∑
m=1

u2
m E(|XCm −X′Cm

|) . (3.16)

In the case of a single class, the class CRPS is equal to the adjusted ensemble CRPS
described in Section 3.1.4.
The i.i.d. assumption on the members can be seen as too strong. The exchange-

ability of the members is a relaxation of the i.i.d. assumption. By definition, the
joint distribution function of exchangeable members is invariant under permutation of
the arguments, thus the members are indistinguishable. We refer the reader to Ferro
[Fer14] for an analysis of fair scoring rules with the exchangeability assumption. In
a few words, the user must investigate the (generally unknown) dependence structure
and taylor the appropriate scoring rule accordingly. The simple case of pairwise un-
correlated members is however tractable. For the ensemble CRPS, the case of pairwise
uncorrelated members is in practice equivalent to the case of i.i.d. members, because
the terms |xm − xk| rely on pairwise correlations only. In the same way for the class
CRPS, the assumption of pairwise uncorrelated members within each class and inde-
pendent members between classes leads to similar results than i.i.d. members. Under
the more general assumption of exchangeable members within each class, the definition
of Ê(|XC −X′C |) should take into account the dependence between members.
Also note that these assumptions are only needed to counter the bias in the ensemble

CRPS. Our aggregation methods still remain applicable without such correction. The
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theoretical bounds described in the next section do not rely on any stochastic assump-
tion on the prediction data and the verifications. The assumptions of i.i.d. members
and the use of the class CRPS should only guide the choice of a loss function.

3.2 Online learning methods

3.2.1 Theoretical background

Up to this section, a single time t was considered. Now we introduce online learning
techniques. In this setting, the forecaster receives prediction data Dt and wishes to
produce the best prediction of yt. In our case, prediction data are ensemble members
and the algorithm gives a rule to compute the weights um,t before each forecast time t.
This rule takes into account only past information, and is therefore called the update
rule. The goal of a given online learning algorithm is to provide the best possible
weights according to a chosen loss function, for example the ensemble CRPS

`CRPSEt (u) =
∫ ( M∑

m=1
umHm,t −Hyt

)2

, (3.17)

written above for time t. The notation `t(u) emphasizes the importance of the weights,
as opposed to the ensemble members and the verifications which are assumed to be
given to the forecaster.
In practice, the algorithm reads

Initialization: u1;
For each time index t = 1, 2, ..., T
1. get prediction data Dt,
2. compute the forecaster’s choice with Dt and ut,
3. get the verification yt and compute ut+1, based on the update rule.

The initial weight vector u1 is arbitrarily set, e.g., to [1/M, . . . , 1/M ]>.
The performance of an update rule comes with theoretical guarantee, where the fore-

caster’s results are assessed against a reference, which is usually the best forecast with
weights constant in time, called the oracle. An important aspect of these theoretical
guarantees is that they come with essentially no stochastic assumption on the predic-
tion data and the verifications. In this paper, the theoretical guarantees are regret
bounds of the form

T∑
t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u) 6 o(T ) , (3.18)

where `t is assumed to be bounded. The bound of `t can be arbitrarily small or large, so
that this restriction is compatible with essentially all real world applications. Averaging
the losses in time (i.e., dividing by T ) shows that an algorithm giving the weights ut
is guaranteed to perform at least as well as any mixture model with weights constant
in time and based on the same prediction data. This includes any individual forecast
and any subset ensemble with uniform weights.
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We now consider two algorithms: the online ridge regression and the exponentiated
gradient method (EG). We introduce these methods in a general framework, and we
show how the methods can be applied to the case of the CRPS. For the algorithm
run with ensemble CRPS, a weight is explicitly given to each member. The quantities
|xm,t − yt| and |xm,t − xk,t| are explicitly used in the minimization process. For the
algorithm run with class CRPS, equal weights are given to all the members within a
class. The weightsWC,t are computed using the terms Ê(|XC,t−yt|) and Ê(|XC,t−XD,t|).
Combining parameterized distributions is also possible with online learning techniques.
It necessitates to compute the quantities E(|Xm,t − yt|) and E(|Xm,t − Xk,t|). These
quantities are tractable from the CDFs using Equation 3.29. They are computed in
Grimit et al. [Gri+06] for a Gaussian mixture distribution.

3.2.2 Ridge regression

The approach of the ridge regression can be directly expressed in terms of minimiza-
tion. The update rule for time t+ 1 and based on the loss ` is

ut+1 = argmin
w∈RM

λw>w +
t∑

t′=1
`t′(w) . (3.19)

The regularization term with parameter λ > 0 controls the 2-norm of the weight vector.
It is possible to add discount factors in the sum of the past losses, in order to give
more importance to recent timesteps. At first sight, the ridge regression does not
constrain the weights to be positive or sum to one. In practice, for the CRPS, we
observed that these constraints are approximately satisfied after a spin up period.
Other regularization terms of the form λ(w − u1)>(w − u1) may also be used with
arbitrary reference vector u1 ∈ PM . The reader interested in recent advances in online
regularized regression is addressed to Orabona et al. [OCC15].
For a given experiment length T , for any vector u ∈ PM , and if the CRPS losses

`t(ut) are bounded, we have:

RT (u) =
T∑
t=1

`t(ut)−
T∑
t=1

`t(u) 6 O (lnT ) , (3.20)

so that the so-called regret RT (u) is sublinear.
The Appendix 3.C details technical aspects, such as the proof for the bound 3.20, as

well as guidelines to compute the weights. The ridge regression applied to the square
loss (E(X) − y)2 gives a similar regret bound in terms of square losses. Our proof for
the CRPS is inspired from the proof of the regret bound for the square loss, concisely
described by Cesa-Bianchi and Lugosi [CL06]. We were helped by the work of Mallet
et al. [MMS07], who demonstrated the case of multiple verification locations (also called
stations) for the square loss. Our work transposes the results for the square loss with
multiple locations to multiple Brier score with different thresholds, and to the CRPS.
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Method Gradient loss

Ensemble CRPS ˜̀
m,t = |xm,t − yt| −

M∑
k=1

uk,t|xm,t − xk,t|+ yt −
M∑
k=1

uk,txk,t

Class CRPS ˜̀
C,t = Ê(|XC,t − yt|)−

∑
D∈C

WD,tÊ(|XC,t −XD,t|) + yt − Ê(Xt)

CRPS for general mixture models ˜̀
m,t = E(|Xm,t − yt|)−

M∑
k=1

uk,t E(|Xm,t −Xk,t|) + yt − E(Xt)

Table 3.1 – Formulae of the loss gradients. Equations from Appendix 3.A are used for the
simplifications. The terms of the form yt−E(Xt) do not impact the computation of the weights
for EG, because they are independent of the member m or the class C.

3.2.3 Exponentiated gradient

Let the learning rate η be strictly positive, EG follows a multiplicative update rule
of the form:

um,t+1 =
um,t exp

(
−η ˜̀m,t)∑M

m′=1 um′,t exp
(
−η ˜̀m′,t) , (3.21)

where ˜̀
m,t = ∂`t

∂um
(ut) . (3.22)

This update relates to Bayesian inference [Cat04; Aud09]. The algorithm EG admits a
formulation in terms of cost function minimization, where the regularization function
is the entropy function, also known as the Kullback-Leibler divergence [KW97]. The
EG algorithm reads:

ut+1 = argmin
w∈PM

M∑
m=1

wm ln( wm
um,t

) + ηwm ˜̀m,t . (3.23)

Examples of loss gradients are provided in Table 3.1. The loss gradient ˜̀m,t of the
CRPS has two main terms: (i) E(|Xm,t − yt|) accounting for the distance between the
verification and the mth random variable Xm,t, and (ii) the weighted sum of E(|Xm,t−
Xk,t|) accounting for distances between Xm,t and the Xk,t. The first term controls
a deviation from the median of the underlying distribution of the verifications, and
the second term controls the dispersion of the mixture model. On average (on the
verifications), the loss gradients are null if the verifications are correctly described by
the forecaster’s CDF.
The advantage of using the loss gradients is described (at least) in Devaine et al.

[Dev+13]. In a few words, using the loss gradients makes the algorithm competitive
against the best convex combination with constant weights, whereas simply using the
loss `m,t = E(|Xm,t−yt|)−0.5 E(|Xm,t−X′m,t|) would make the algorithm compete only
against the best member. We insist on the fact that using the loss gradients provides
the terms E(|Xm,t −Xk,t|) which are critical for the control of the ensemble spread.
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Table 3.2 – Parameters of the numerical experiment.

s1 s2 A B ω1 ω2 T

0.3 0.3 1.68 0.336 1/365.25 1/11 730

The theoretical guarantee for EG states that, if the loss function ` is convex with
respect to u and admits a subgradient, and if the losses ˜̀m,t are bounded within a
constant interval [−a, a], then we have:

sup
[
T∑
t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u)
]
6

lnM
η

+ η
a2

2 T , (3.24)

where the supremum is taken for all possible values of the members xm,t and the verifi-
cations yt, and η is the learning rate [Dev+13]. For optimized values of η proportional
to 1/

√
T , the regret is sublinear. The theoretical guarantee of Equation 3.24 is verified

for the square loss and for the CRPS.

3.3 Numerical example

3.3.1 Simple model

We use the simple model described in Bröcker [Brö12]. The model is supposed to
mimic local temperatures. We chose this model because the uncertainty terms are
known, consequently we can easily draw conclusions from numerical tests.
We built the verifications yt from the exact time series

at = (Asin(πω1t) +Bsin(πω2t))2 , (3.25)

combined with multiplicative and additive perturbation terms:

yt ∼ at(1 + s1N (0, 1)) + s2N (0, 1) . (3.26)

Each term N (0, 1) represents an independent Gaussian noise with zero mean and a
variance of one. The perturbation terms are sampled independently at each timestep.
The parameters are summarized in Table 3.2.
The members are sampled as

xm,t ∼ at(1 + s1N (0, dens)) + s2N (0, dens) (3.27)

analogously to the verification distribution, but the standard deviation dens describing
the perturbations terms may differ from its optimal value (i.e., 1). The parameter dens
is also referred to as the dispersion parameter.

3.3.2 Experiments without online learning

In this first experiment, ensembles are built for different values of the dispersion
parameter dens. The members are drawn independently, and the weights of the members
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Figure 3.1 – Ensemble CRPS (dotted gray) and adjusted ensemble CRPS (solid black), for
ensembles of various sizes (10, 20, 50) from light gray to dark gray. The dispersion parameter
(x-axis) is dens. The scores are averaged over nearly 200 years of data (73,000 timesteps). The
(solid black) lines of the adjusted CRPS are approximately at the same location for all ensemble
sizes.

are taken constant and all equal to 1/M . As expected, the adjusted ensemble CRPS
gets the lowest value when the ensemble shows the correct spread (i.e., for dens = 1),
see Figure 3.1. On the contrary, the best (non adjusted) ensemble CRPS is obtained
for under-dispersed ensembles dens < 1. The shift of the ensemble CRPS minimum
from the ideal location dens = 1 is larger for ensembles of small size, because the bias
of the ensemble CRPS is proportional to 1/M . This is a direct illustration of the bias
due to the limited size of the ensemble explained in Section 3.1.4.

3.3.3 Experiments with weight updates

Now we test online learning techniques and more specifically their ability to discrim-
inate between members. We build an ensemble of M = 10 members, that is composed
of two subensembles, or classes, of equal size. The first subensemble is defined by the
same distribution than the verifications. The second subensemble follows a distribution
controlled by dens. If dens = 1, then the whole ensemble is correctly dispersed. In other
words, half of the members follow the correct distribution, while the second half can
follow a different distribution.
An example of the temporal evolution of the weights is given in Figure 3.2. We used

the algorithm EG (η = 0.05) with the gradients of the ensemble CRPS. At the middle of
the experiment, we swap the dispersion parameters of the members. Correct members
become incorrect members and conversely. The members with incorrect dispersion
parameter (dens = 1.5) see their weights decrease on average. After the swap, the
weights of the newly incorrect members also decrease on average. The impact of the
learning rate is shown in Figure 3.3, where a larger value η = 0.2 leads to a faster
evolution of the weights. Note the difference of scales between Figures 3.2 and 3.3.
Now we show the average weight of the second subensemble parameterized by dens
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Figure 3.2 – Temporal evolution of the weights um,t, with learning rate η = 0.05. The weights
of members with correct dispersion are in black, and the weights of members with the incorrect
dispersion dens = 1.5 are in gray.
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Figure 3.3 – Temporal evolution of the weights um,t, with learning rate η = 0.2. The weights of
members with correct dispersion are in black, and the weights of members with the incorrect
dispersion dens = 1.5 are in gray.
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Figure 3.4 – Average cumulated weights of the members with (possibly) incorrect dispersion
parameter dens (x-axis). The black crosses indicate that the CRPS of each member are used in
EG (i). The light gray triangles indicate that the square loss gradients are used in EG (ii). This
figure shows that not using the CRPS gradients favors the less dispersed members, even though
they do not show the correct dispersion. The experiment of roughly ten years is repeated 200
times for each dispersion parameter. We used the learning parameters η = 0.05 and λ = 0.5.

for different learning algorithms. Here we did not include a change of the dispersion
parameter at mid-experiment. The first subensemble therefore remains the correct
one all the time. The discrimination procedure tests whether the algorithm makes
a difference between the subensembles and whether the incorrect members are given
lower weights than the correct members.
We show the importance of the CRPS gradients in EG for probabilistic forecasting.

We show in Figure 3.4 the average weights of EG using: (i) `m,t = |xm,t − yt|, using
the CRPS without the gradients; or (ii) ˇ̀

m,t = 2(u>t xt− yt)xm,t, using the gradients of
the square loss (u>t xt− yt)2, instead of the CRPS gradients ˜̀m,t. We see that in either
case, the members with the lowest dispersion parameter are the most weighted. The
members with the correct distribution receive the highest weights when the incorrect
members are over-dispersed (dens > 1). Formulation (i) and (ii) do not tend to forecast
the distribution of the verifications, but only the mean or the median of the distribu-
tion of the verifications. These formulations are therefore not suited for probabilistic
forecasting, as opposed to the CRPS gradients (see below). Note that we can rewrite
ˇ̀
m,t = (xm,t− yt)2− (xm,t−u>t xt)2 plus terms independent of m. Thus using the gra-
dients (or equivalently trying to get the best combination) is a diversification strategy
compared to simply using (xm,t − yt)2.
Using the same representation, the algorithms EG and the ridge regression are tested

with the ensemble CRPS and the class CRPS, see Figure 3.5. The algorithms based on
the class CRPS show correct discrimination: whatever the dispersion parameter of the
wrongly dispersed members, the class with incorrect dispersion shows smaller weights
on average. The sum of the weights attributed to the incorrect members stays below 0.5
(equal weights between the two subensembles). On the contrary, the algorithms based
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Figure 3.5 – Average cumulated weights of the members with (possibly) incorrect dispersion
parameter. Both learning algorithms based on the CRPS are tested: EG (solid line) and ridge
(dotted lined). The white circles indicate that the algorithm is run for class CRPS (equal weights
within the class) and the black squares indicate that the weights are computed explicitly for
each member.

on the ensemble CRPS does not give a correct discrimination. When the dispersion
parameter dens is close to 0.70, the under-dispersed members receive larger weights than
the correct members. We see that the minimization of the ensemble CRPS is misleading
for an ensemble of small size. We interpret these results as direct consequences from
the bias of the ensemble CRPS described in Section 3.1.4.

Conclusion
We introduced new tools for probabilistic forecasting using an ensemble of forecasts.

Our algorithms use online learning techniques to produce forecast combinations that
tend to minimize the CRPS. In the long run, they guarantee that the performance of the
weighted ensemble is at least as good as the performance of the best weighted ensemble
with weights constant in time. This theoretical guarantee holds with essentially no
assumption on the distributions of the forecasts and verifications. In this sense, our
method is a non-parametric post-processing method.
A new framework using classes of members is introduced in order to counteract

the bias in the ensemble CRPS. With this framework and the proposed algorithms,
numerical tests showed that our online learning techniques tend to give higher weights
to the forecasts with the same distribution as the verifications.
The algorithms should now be tested against real data, in order to assess their po-

tential in operational applications against Bayesian model averaging (BMA) or other
post-processing techniques. The work of the forecaster is then to obtain numerous
forecasts to combine. The methods do not require any assumptions on the forecasts to
be applied (bias, spread, or any other stochastic or deterministic assumptions), except
the loss boundedness. However, some good practices may be applied to improve the
overall performance. For example, the forecasts can be altered before their inclusion
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in the ensemble, or additional forecasts may be derived from the raw ensemble. Also,
it is recommended to draw ensembles with enough spread, so that they encompass the
verifications. We argue that for most applications, the use of a multimodel ensemble
combined with several post-processing techniques is an efficient way to obtain an en-
semble to be calibrated with our algorithms. From a meteorological point of view, new
members can be added to the ensemble by using nearby grid-points or time-shifted
forecasts. This approach may be particularly efficient to account for the ability of a
forecasting system to predict an event, but at the wrong time or location.
On theoretical side, a next step could be the inclusion of the uncertainty in the

verifications. Also, other non local strictly proper scoring rules could serve as loss
function.

Appendix 3.A Identities implying CDFs

Let the random variable Z be described by the probability density function K′ and
the CDF K. We have for any real number x:

E(H(x− Z)) =
∫

K′(Z)H(x− Z)dZ = K(x) , (3.28)

or equivalently E(HZ) = K. The demonstration of the strict propriety of the CRPS
uses this property for the integration over the CDF of the verifications.
Let X and Z be two random variables described respectively by the CDFs G and K.

We have:
E(|X− Z|) =

∫
G(1−K) + K(1−G) . (3.29)

For G = K, the above quantity is the Gini mean difference, which is thoroughly intro-
duced in the monograph of Yitzhaki and Schechtman [YS12].
The product GK of CDFs is itself the CDF of the random variable max(X,Z). This

can be used to explain simply Equation 3.29, using:

2 max(a, b) = |a− b|+ a+ b , (3.30)

for any (a, b) ∈ R2, and

E(Z) =
∫ +∞

−∞
(H(x)−K(x))dx . (3.31)

Let G =
∑I
i=1 uiGi and K =

∑J
j=1wjKj be CDFs of mixture models with respectively

I and J components, i.e., the Gi and Kj are CDFs, and the weight vectors u and w
respectively belong to the simplexes PI and PJ . Let X, Xi, Z and Zj be random
variables respectively following G, Gi, K, and Kj . We have

E(|X− Z|) =
I∑
i=1

J∑
j=1

uiwj E(|Xi − Zj |) , (3.32)
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based on Equation 3.29. Indeed,
I∑
i=1

J∑
j=1

uiwj

∫
(Gi(1−Kj) + Kj(1−Gi)) =

∫ I∑
i=1

uiGi(1−
J∑
j=1

wjKj) +
J∑
j=1

wjKj(1−
I∑
i=1

uiGi)

= E(|X− Z|) ,

because the weights wi and uj respectively sum to one, and using the linearity of
integration.
It is straightforward to use Equation 3.32 to show to that

E (|X− y|) =
M∑
i=1

ui E (|Xi − y|) , (3.33)

and that

E
(
|X−X′|

)
=

M∑
i=1

ui E (|Xi −X|) =
M∑
i,j=1

uiuj E
(
|Xi −X′j |

)
, (3.34)

with X′ and X′j being random variables respectively described by G and Gj .

Appendix 3.B Computation of the ensemble CRPS
We have

CRPS(GE , y) =
∫  M∑

m,k=1
umukH(x− xm)H(x− xk)

−2
M∑
m=1

umH(x− xm)H(x− y) + H(x− y)
)

dx

=
M∑

m,k=1
umuk(Γ−max(xm, xk))− 2

M∑
m=1

um(Γ−max(xm, y)) + Γ− y

= −
M∑

m,k=1
umuk max(xm, xk) + 2

M∑
m=1

um max(xm, y)− y ,

where Γ is the upper bound of the integral. Because the weights sum to one, we get
the last simplification.
We rewrite the above expression using Equation 3.30:

CRPS(GE , y) = −1
2

 M∑
m,k=1

umuk|xm − xk|+ 2
M∑
m=1

umxm


+

M∑
m=1

um|xm − y|+
M∑
m=1

um(xm + y)− y

=
M∑
m=1

um|xm − y| −
1
2

M∑
m,k=1

umuk|xm − xk| , (3.35)
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because the weights um sum to one. We highlight the fact that the diagonal terms
u2
m|xm−xm| are null, so that the double sum of Equation 3.35 is computed for m 6= k.
The calculus of this section can also be written with expectations and random vari-

ables using the content of Appendix 3.A.

Appendix 3.C Regret bound of the ridge regression with
the CRPS

This section is written for general model mixtures Gm, t and for general CDF Ft
for the verifications. For simplicity, we assume that the integrals of the CRPS can be
computed on an interval [γ,Γ] of limited size. All the considered CDFs hit 0 at γ and
1 at Γ, which formalizes the assumption of bounded values for the members and the
verifications. Thus the considered CDFs verify

∫
Gm,t 6 Γ− γ .

This appendix is structured as follows: (i) we exhibit an update rule between ut+1
and ut; (ii) we bound the regret against a constant vector

∑T
t=1 `t(ut) −

∑T
t=1 `t(u)

by the regret against the best a posteriori vector
∑T
t=1 `t(ut)−

∑T
t=1 `t(ut+1); (iii) we

provide an interpretable regret bound by using the update rule and the convexity of `t.
The CRPS has a quadratic form

`t(u) = u>
(∫

GtG>t
)
u− 2u>

∫
FtGt +

∫
F2
t , (3.36)

where Ft(x) = H(x− yt) and Gt(x) is the vector of the CDFs Gm,t(x).
The cost function Jt(u) = λu>u +

∑t
t′=1 `t′(u) is written in a quadratic matricial

form with:

Jt(u) = u>At+1u− 2u>bt+1 +
t∑

t′=1

∫
F2
t′ , (3.37)

where the vector bt is defined by:

bt =
t−1∑
t′=1

∫
Ft′Gt′ , (3.38)

and the matrix At of size M ×M is symmetrical positive-definite:

At = λIM +
t−1∑
t′=1

∫
Gt′G>t′ , (3.39)

with IM the identity matrix. The matrixAt admits an inverse which is also symmetrical
positive-definite. Note the trivial recurrence relation Jt+1 = `t+1 + Jt.
The weight ut+1 is by definition the minimizer of Jt. Simple derivation gives the

equality Atut = bt. In practice, the weights are found via matrix inversion. Besides, a
recurrence relation can be obtained. We successively deduce:

At+1ut+1 = bt+1 = bt +
∫

FtGt ,

= Atut +
∫

FtGt ,

=
(
At+1 −

∫
GtG>t

)
ut +

∫
FtGt .
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The recurrence relation holds for any quadratic definition of the loss `, and is expressed
as:

ut+1 − ut = A−1
t+1

∫ (
Ft − u>t Gt

)
Gt

= −1
2A
−1
t+1∇`t(ut) . (3.40)

Demonstration of the regret bound
We iteratively use the fact that ut+1 is the minimizer of Jt to get

JT (u) > JT (uT+1) = `T (uT+1) + JT−1(uT+1)
> `T (uT+1) + JT−1(uT )

>
T∑
t=1

`t(ut+1) + λu>1 u1 . (3.41)

The nonnegativity of λu>1 u1 gives:

T∑
t=1

`t(u) >
T∑
t=1

`t(ut+1)− λu>u . (3.42)

Thus the regret can be bounded:

RT (u) =
T∑
t=1

`t(ut)− `t(u)

6 λu>u+
T∑
t=1

`t(ut)− `t(ut+1)

6 λu>u+
T∑
t=1

(∇`t(ut))> (ut − ut+1)

= λu>u+ 1
2

T∑
t=1

(∇`t(ut))>A−1
t+1∇`t(ut) , (3.43)

where we have used Equation 3.42, the convexity of the functions `t and Equation 3.40.
At this point of the demonstration, one may have the feeling that a logarithm bound can
be obtained, because the matrix At is a sum of t matrices, and because the logarithmic
function is the primitive of the inverse function.
We define Qt = A−1/2

t+1 Gt and st = (u>t Gt − Ft), so that the symmetry of A−1/2
t+1

gives
1
2 (∇`t(ut))>A−1

t+1∇`t(ut) = 2
(∫

stQt

)> (∫
stQt

)
.
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The inequality of Cauchy-Schwartz gives(∫
stQt

)> (∫
stQt

)
=

M∑
m=1

[(∫
stQt

)
m

]2

6
M∑
m=1

∫
s2
t

∫
[(Qt)m]2

=
∫
s2
t

(∫
Q>t Qt

)
= `t(ut)

(∫
G>t A−1

t+1Gt

)
. (3.44)

We continue with ∫
G>t A−1

t+1Gt = Tr
(∫

A−1
t+1GtG>t

)
= Tr

(
A−1
t+1

∫
GtG>t

)
= Tr

(
IM −A−1

t+1At

)
6 ln detAt+1

detAt
. (3.45)

The first equality holds with the linearity of the integration and because z>1 Az2 =
Tr(Az2z

>
1 ) for any vectors z1, z2 and matrix A. The inequality holds because A−1

t+1At

is positive definite and 1− 1/x 6 ln x for any x > 0.
At this step of the proof, we have shown that:

RT (u) 6 λu>u+ 2
T∑
t=1

`t(ut) ln detAt+1
detAt

. (3.46)

We assume that the losses `t(ut) are bounded by a > 0. Then we easily reach:

RT (u) 6 λu>u+ 2a ln detAT+1
λM

. (3.47)

The inequality of arithmetic and geometric means applied to the eigenvalues of AT+1
leads to the conclusion

det(AT+1) 6
(TrAT+1

M

)M
=
(
Mλ+

∑T
t=1 Tr

∫
GtG>t

M

)M

6
(
Mλ+MT (Γ− γ)

M

)M
, (3.48)

from which we conclude that

RT (u) 6 λu>u+ 2aM ln
(

1 + T (Γ− γ)
λ

)
6 λu>u+O(lnT ) . (3.49)
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We logically compete against any constant vector u on the simplex so that

sup
u∈PM

RT (u) 6 O(lnT ) . (3.50)

�
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4 Scoring and learning forecasts
densities

The purpose of this chapter is the generalization of the results of Chapter 3.
In a first part, we generalize our results to non-local strictly proper scoring
rules, other than the CRPS. We focus our attention on scoring rules ad-
mitting a threshold or a quantile decomposition. Relationships between this
decomposition, score biases and model mixtures are investigated. The ques-
tion of noisy observations is addressed in the second part of this chapter.
We include uncertainty information in the CRPS and apply a generalized
least-square procedure. Interestingly, the expectation of the derived loss is
related to Pearson’s χ2 statistic.
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4.1 Extension to threshold-weighted and
quantile-weighted scoring rules

As introduced in Section 1.3, various ways exist to evaluate forecasts of binary events.
A infinite amount of strictly proper scoring rules can be written as a sum of elementary
quantile losses. Besides, a second summation on event thresholds allows to evaluate
probabilistic forecasts of a scalar variable. In this section, the notation α refers to
levels of quantile and the notation θ refers to thresholds. The interested reader is
referred to the work of Buja et al. [BSS05], Gneiting and Ranjan [GR11], and Ehm
et al. [Ehm+16] for state-of-the-art articles on this subject, and Dawid [Daw08] for
a detailed bibliographical analysis of assessments of probabilistic forecasts. General
conditions ensuring strict propriety are not new since they were addressed by Shuford et
al. [SAE66], Savage [Sav71], and Schervish [Sch89], among others. The choice between
these scoring rules was also recently addressed by Merkle and Steyvers [MS13] and
Lerch et al. [Ler+15].
In the remaining of this short introduction, we briefly review the score decomposition

of Ehm et al. [Ehm+16] for the celebrated CRPS. In Section 4.1.1, we generalize the
results of Thorey et al. [TMB16] to threshold-weighted scoring rules. Quantile-weighted
scoring rules are analyzed in the context of mixture models in Section 4.1.2.
Let G be a CDF delivered to forecast the observation y. The CRPS can be written

CRPS(G, y) = 2
∫∫

Sα,θ(G−1(α), y)dαdθ , (4.1)

if G is an invertible function. The integration holds on the levels α ∈ [0, 1] of quantile
and on the thresholds θ ∈ R. The function Sα,θ(x, y) is defined by

Sα,θ(x, y) = (H(x− y)− α)(H(x− θ)−H(y − θ)) (4.2)

=


1− α if y 6 θ < x ,
α if x 6 θ < y ,
0 otherwise.

The forecast x of the observation y is evaluated with the score Sα,θ(x, y) for the event
y < θ. The quantity α is the cost of a false positive, and 1 − α is the cost a false
negative.
Integrating over the levels α gives the standard formulation of the CRPS, indeed

2
∫
Sα,θ(G−1(α), y)dα =

{
2
∫
θ(1−G(x))g(x)dx if y 6 θ ,

2
∫ θG(x)g(x)dx if θ < y ,

= (H(θ − y)−G(θ))2 ,

with the change of variable G(x) = α.
Integrating over the thresholds relates the CRPS to the quantile score QSα(x, y) (or

pinball loss) of level α [KB78]. The quantile decomposition of the CRPS was found
by Laio and Tamea [LT07], and developed by Bröcker [Brö12] for ensemble forecasts.
Using

∫
(H(x− θ)−H(y − θ))dθ = x− y, we have∫

Sα,θ(x, y)dθ = (H(x− y)− α)(x− y) = QSα(x, y) ,
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thus
CRPS(G, y) = 2

∫
QSα(G−1(α), y)dα .

In the following, we elaborate on the impact of adding weighting functions φ(θ) or
ω(α) in Equation 4.1 instead of uniform weighting schemes.

4.1.1 Effect of threshold-weighting

Here, we show how our analysis on the bias of the ensemble CRPS and on the class
CRPS is easily extended to the threshold-weighted CRPS. The results of Section 3.1
hold up to a change of variables, suggested by Ehm et al. [Ehm+16].
The CRPS, seen as a sum of Brier scores can be extended to the threshold-weighted

CRPS [MW76], where different weights are used for each threshold. Using the strictly
positive function φ, the threshold-weighted CRPS is defined by:

wCRPS(G, y) =
∫

(G−Hy)2 φ . (4.3)

Let Φ be the antiderivative function of φ, the function Φ is strictly increasing and
invertible because the function φ is strictly positive.
We now get into further details by generalizing Equation 3.29 and Equation 3.31 of

Appendix 3.A. Let X and Z be independent random variables respectively described by
the CDFs G and K, and let H be the unit step function centered on 0. We have∫

(H−K)φ = E(Φ(Z))− Φ(0) , (4.4)

using integration by parts, and, as proved below,

E(|Φ(X)− Φ(Z)|) =
∫
φ(G + K− 2GK) . (4.5)

We see that weighting thresholds with φ is equivalent to a data transformation with Φ.
We now demonstrate Equation 4.5:∫

φ(G + K− 2GK) =
∫
φ(G + K− 2H + 2H− 2GK)

= 2 E(Φ(max(X,Z)))− E(Φ(X))− E(Φ(Z))
= 2 E(max(Φ(X),Φ(Z)))− E(Φ(X))− E(Φ(Z))
= E(|Φ(X)− Φ(Z)|) .

We have successively used the fact that GK is the CDF of max(X,Z), Equation 4.4, the
fact that for any x, z ∈ R, Φ(max(x, z)) = max(Φ(x),Φ(z)) because Φ is an increasing
function, and 2 max(x, z) = |x− z|+ x+ z.
With the same notation as in Section 3.1.4, we show that the bias of the ensemble

threshold-weighted CRPS with underlying mixture model is therefore similar to the
unweighted case of Equation 3.7 up to the data transformation with Φ. Let GE be
the weighted CDF described by the members xm and the weights um. The members
are assumed to be samples from the independent random variables Xm. The CDF
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Figure 4.1 – Illustration of the step function φ.

G = E(GE), where the expectation is taken over the members, describes the random
variable X. With Equation 4.5, we swap the members xm for Φ(xm) and the verification
y for Φ(y) in the expression of the weighted CRPS:

wCRPS(GE , y) =
M∑
m=1

um|Φ(xm)− Φ(y)| − 1
2

M∑
m,k=1

umuk|Φ(xm)− Φ(xk)| . (4.6)

Therefore, the bias of the threshold-weighted CRPS is explicitly found in

E(wCRPS(GE , y)) = E(|Φ(X)− Φ(y)|)− 1
2 E(|Φ(X)− Φ(X′)|)

+ 1
2

M∑
m=1

u2
m E(|Φ(Xm)− Φ(X′m)|)

= wCRPS(G, y) + 1
2

M∑
m=1

u2
m E(|Φ(Xm)− Φ(X′m)|) .

Also for the class CRPS, our results are extended to the class threshold-weighted
CRPS by introducing the quantities of interest

∑MC
c=1 |Φ(xCc )−Φ(y)|/MC ,

∑MC
c=1

∑MD
d=1 |Φ(xCc )−

Φ(xDd )|/(MCMD), and
∑MC
c,c′=1 |Φ(xCc )− Φ(xCc′)|/(MC(MC − 1)).

In order to give a better understanding on the effect of the Φ-transformation, we give
the following example. Consider the case of a step function φ defined by:

φ(x) =


1 if 0 6 x < z0
κ if z0 6 x 6 1
0 otherwise ,

with κ < 1, z0 ∈ [0, 1] (see Figure 4.1). We assume that all observations and members
are in [0, 1]. Roughly speaking, in our example, errors in [0, z0] cost more than errors
in [z0, 1]. In this setting, we have

Φ(x) =
{

x if 0 6 x < z0
z0 + κ(x− z0) if z0 < x 6 1 ,
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and

|Φ(xm)− Φ(xk)| =


|xm − xk| if 0 6 xk, xm 6 z0
κ|xm − xk| if z0 6 xk, xm 6 1

|z0 − xm|+ κ|xk − z0| if 0 6 xm 6 z0 6 xk 6 1 .

In this simple example, it is easy to see that the distance |Φ(xm) − Φ(xk)| is high
when xm and xk are in the domain of high value of φ. And conversely, the distance
|Φ(xm) − Φ(xk)| is low when xm and xk are in the domain of low value of φ. This
is consistent with the intuition that the function φ defines domains with high or low
importance.

4.1.2 Effect of quantile-weighting

We prove in this section that quantile weighting can also be understood as a data
transformation, at least for the score gradients. We show that the data transformation
due to the quantile weighting is related to both the weighting function ω and the
forecaster’s CDF G. We begin this section by rewriting quantile-weighted scores in a
convenient way and studying the quantile-weighted score of an ensemble of forecasts.

Rewriting quantile-weighted scoring rules

Let the score S(G, y) be a quantile-weighted score defined by

S(G, y) =
∫

QSα(G−1(α), y)ω(α)dα

=
∫

QSG(X)(X, y)ω(G(X))dG(X)

= EX
[
QSG(X)(X, y)ω(G(X))

]
,

where ω is strictly positive on open intervals in [0, 1]. Propriety is retained since the
minimizer of EY[S(G,Y)] verifies G(α) = F(α) for each 0 < α < 1, where Y is a random
variable described by the CDF F.
From the definition of Sα,θ in Equation 4.2, we have

S(G, y) =
∫ (

H(θ − y)
[∫ 1

G(θ)
(1− α)ω(α)dα

]
+ H(y − θ)

[∫ G(θ)

0
αω(α)dα

])
dθ .

(4.7)
We used the conditions y 6 θ < x or equivalently G(y) 6 G(θ) < α for the left term,
and the conditions x 6 θ < y or equivalently α 6 G(θ) < G(y) for the right term.
The score S(G, y) can therefore be expressed as

S(G, y) =
∫

Hyβ1(G) + (1−Hy)β0(1−G) , (4.8)

by identifying

β1(G) =
∫ 1

G
(1− α)ω(α)dα and β0(1−G) =

∫ G

0
αω(α)dα .
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For example with the CRPS, we have β1(G) = (1 − G)2 and β0(1 − G) = G2. If ω is
symmetrical with respect to 1/2, then β1 = β0. Equation 4.7 proposes a formulation
for quantile-weighted scoring rules emphasizing the interplay between ω and G. This
formulation is particularly useful when analytical expressions of β1 and β0 are available.
The linearity in Hy is convenient to derive the uncertainty term of F and the diver-

gence term between F and G in:

EY[S(G,Y)] =
∫

Fβ1(G) + (1− F)β0(1−G)

=
∫

F(β1(G)− β1(F)) + (1− F)(β0(1−G)− β0(1− F))︸ ︷︷ ︸
divergence = d(F,G)

+
∫

Fβ1(F) + (1− F)β0(1− F)︸ ︷︷ ︸
uncertainty = e(F)

.

We highlight the fact that β1(G)−β1(F) may be rewritten under the form
∫ F

G (1− α)ω(α)dα
and similarly for β0(1 − G) − β1(1 − F). This gives an explicit formulation of the di-
vergence term. Besides, the uncertainty term is equal to EY[S(F,Y)].
By considering a distribution on the forecasts G, the above decomposition may be

led further, as for any strictly proper scoring rule [Brö09]. To do so, we note F = EG[F]
the climatological distribution, where the expectation is taken with respect to the
frequency at which G is predicted (F is implicitly conditioned on G). The reliability
EG[d(F,G)] measures the match between the forecasted probabilities G(θ) and the
conditional frequencies F(θ). The resolution EG[d(F,F)] is the distance between the
climatology F(θ) and the conditional frequencies F(θ). Such separation dates back to
Murphy [Mur73] for the Brier score, Hersbach [Her00] for the CRPS, and Bentzien and
Friederichs [BF14] for quantile scores. The decomposition writes

EG,Y[S(G,Y)] = e(F)︸ ︷︷ ︸
uncertainty

+ EG[d(F,G)]︸ ︷︷ ︸
reliability

−EG[d(F,F)]︸ ︷︷ ︸
resolution

.

For any quantile-weighted scoring rule, the explicit formulations of the uncertainty
e and the divergence d give the score decomposition into uncertainty, reliability and
resolution.
We finish this section with examples of quantile-weighted scoring rules. Several

weighting functions ω of the beta family including the CRPS are defined in Table 4.1,
and represented in Figure 4.2. The consequence of the choice of ω is shown in Figure 4.3,
which illustrates the functions Hyβ1(G) + (1−Hy)β0(1−G) in two situations: G(1) is
the CDF of a Gaussian distribution with mean µ = 1 and variance σ2 = 1, and G(2) is
the CDF of a Gaussian distribution with mean µ = 0 and variance σ2 = (2.577)2. In
both cases, a null observation y = 0 is considered. Higher importance is given to the
distribution tails when ω assigns higher weights to the extreme quantile levels near 0
and 1. Conversely, higher importance is given to the distribution center when ω assigns
higher weights to the quantile levels close to 0.5.
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ω(α) β1(α)

(α(1− α))−1 − ln(α) (CRIGN)
(α(1− α))−1/2 arcsin(

√
1− α)−

√
α(1− α)

2 (1− α)2 (CRPS)
α(1− α) (1−α)3

3 − (1−α)4

4

Table 4.1 – Examples of scoring rules in the symmetrical beta family ω(α) = αa−1(1− α)a−1.

a = 0 a = 1/2

a = 1

a = 2

ω
(α

)/
ω

(0
.5

)

α
0 0.2 0.4 0.6 0.8 1

0

1

2

3

Figure 4.2 – Scaled weighting function ω/ω(0.5) in the symmetrical beta family ω(α) = αa−1(1−
α)a−1.
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Figure 4.3 – Illustration of the error function Hyβ1(G) + (1−Hy)β0(1−G) for y = 0 and G the
CDF of a Gaussian distribution with mean µ = 1 and variance σ2 = 1 (left), and y = 0 and G
the CDF of a Gaussian distribution with mean µ = 0 and variance σ2 = (2.577)2 (right). The
weighting functions ω belong to the symmetrical beta family, ω(α) = αa−1(1 − α)a−1: a = 0
(violet), a = 1/2 (red), a = 1 (black), a = 2 (cyan). The functions are scaled to reach the same
value at G−1(0.5).
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Optimal quantiles locations for an ensemble of forecasts

In this section, we derive the optimal quantile positions of the M members xm with
fixed weights um when the combination GE of unit step functions is evaluated by a
quantile-weighted scoring rule. Without lack of generality, we assume that the members
are labeled according to their rank, i.e xm−1 < xm for any integer m ∈ [2,M ]. We note
Um =

∑
k6m uk with the convention U0 = 0. The optimal location of the members

is well-known for the CRPS [Brö12]. The CRPS expectation over the observations
is minimized by members verifying F(xm) = Um − um

2 . We show that the optimal
locations for the CRPS are close to the optimal locations found for other quantile-
weighted scoring rules, except for the outer members x1 and xM . For simplicity, the
distribution of the observations is assumed to be bounded.
We recall that

EY[S(GE ,Y)] =
∫

Fβ1(GE) + (1− F)β0(1−GE) . (4.9)

Since GE is piecewise constant, the term depending on xm in EY[S(GE ,Y)] is

β1(Um−1)
∫ xm

xm−1
F+β1(Um)

∫ xm+1

xm

F+β0(1−Um−1)
∫ xm

xm−1
(1−F)+β0(1−Um)

∫ xm+1

xm

(1−F) ,

(4.10)
for any integer m ∈ [2,M − 1]. This expression is also valid for x1 and xM if β1
and β0 are bounded because β1(0) = β0(0) = 0. In this case, we use the convention
x0 = supF(x)=0 x and xM+1 = infF(x)=1 x. If β1 and β0 are not bounded, the optimal
location of the extreme members lies at the bounds of the observational distribution,
i.e. x1 = supF(x)=0 x and xM = infF(x)=1 x.
After differentiating Expression 4.10 with respect to xm, and setting the derivative

to 0, the optimal location of the members are found with

F(xm) = β0(1− Um)− β0(1− Um−1)
β0(1− Um)− β0(1− Um−1) + β1(Um−1)− β1(Um) . (4.11)

A safety check for the CRPS indicates that Equation 4.11 is consistent with the results
of Bröcker [Brö12]:

F(xm) = U2
m − (Um − um)2

U2
m − (Um − um)2 + (1− Um + um)2 − (1− Um)2

= um
um
× 2Um − um

2Um − um + 2− 2Um + um

= Um −
um
2 ,

with β1(α) = (1− α)2 and β0(1− α) = α2.
The optimal quantiles of several scoring rules are shown in Figure 4.4. The location

of the optimal members do not vary much depending on the scoring rule, except for the
position of x1 and xM . Larger variations are observed for a small amount of members
M . The location of the members are barely distinguishable for M = 20.
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Figure 4.4 – Optimal quantile levels F(xm) of the members forM = 5 (left) andM = 20 (right)
with weighting functions ω belonging to the symmetrical beta family, ω(α) = αa−1(1− α)a−1:
a = 0 (violet), a = 1/2 (red), a = 1 (black), a = 2 (cyan).

Model mixture and quantile-weighted scoring rules

Now we investigate the relationships between quantile-weighted scores and their gra-
dients for model mixtures. Let G =

∑
m6M umGm be a model mixture. We compute

the gradients of S(G, y) with Equation 4.7:

∂S(G, y)
∂um

=
∫

Hy[−Gm(1−G)ω(G)] + (1−Hy)GmGω(G)

=
∫

Gm(G−Hy)ω(G)

= 1/2
∫

[(Hy + Gm − 2HyGm)− (G + Gm − 2GGm) + G−Hy]ω(G) .

(4.12)

We check that we find the CRPS for ω = 2. In the Expression 4.12 of ∂S
∂um

, we
find a balance between how close Gm is to Hy against how close Gm is to G. The
distance is measured by terms of the form

∫
(K1 + K2 − 2K1K2)ω(G), which can be

seen as a generalization of the Gini mean difference with the additional ω(G) term (see
Equation 4.5). Similarly to the CRPS, the distance between Gm and G is a weighted
distance between the mth members and the other members. Indeed we have∫

(G + Gm − 2GGm)ω(G) =
M∑
k=1

uk

∫
(Gk + Gm − 2GkGm)ω(G) . (4.13)

The quantile weighting can therefore be understood as a data transformation for the
score gradients, recalling the results obtained for threshold-weighted scoring rules in
Section 4.1.1. For quantile-weighted scoring rules, the weighting φ = ω(G) is applied in
Equation 4.12 to the scores gradients. The data transformation related to the weighting
ω(G) is its antiderivative

∫ x ω(G). Note that this data transformation depends on G.
To conclude this section, we study the effect of the quantile-weighting for ensemble

forecasting, where GE and ω(GE) are piecewise constant functions. This case is close to
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Figure 4.5 – Illustration of the quantile-weighting function ω (black), for a convex function ω =
1√

α(1−α)
. The members xm and the weighting function ω(GE) (red) are shown to illustrate the

importance of the intervals [xm, xm+1] in two cases: uniform weights u1 = u2 = u3 = u4 = 0.25
(left) and non uniform weights u1 = 0.3, u2 = 0.3, u3 = 0.3, u4 = 0.1 (right).

the example provided for threshold-weighted score in Section 4.1.1, with the piecewise
constant weighting function φ.
Let (z, z′) ∈ R2 play the role of (xm, y) or (xm, xk). We have

∫
(H(x− z) + H(x− z′)− 2H(x− z)H(x− z′))ω(GE(x))dx = |

∫ z′

z
ω(GE)| , (4.14)

because the quantity (H(x− z) + H(x− z′)− 2H(x− z)H(x− z′)) = 1 if x is between
z and z′, and zero otherwise. Recalling that ω(GE) is piecewise constant, we see that
the gradient ∂S(GE ,y)

∂um
is controlled by terms |

∫ z′
z ω(GE)| which are piecewise affine in z

and z′. The slope ω(GE(x)), with x ∈ [xm, xm+1], can be seen as the importance given
to the interval [xm, xm+1].
In practice, the gradients may be computed as a sum of terms (xm+1 − xm)ω(Um),

accompanied by (xm∗+1 − y)ω(Um∗) and (y − xm∗)ω(Um∗), where xm∗ and xm∗+1 are
the closest members to the observation, i.e. xm∗ 6 y 6 xm∗+1.
We illustrate our example for M = 4 members, in Figure 4.5. We consider that

x1 < x2 < x3 < x4, without loss of generality. For this example, the function ω is
convex. Higher importance is given to the levels of quantile close to 0 or 1 than those
close to 0.5. The step function ω(GE) gives a variable importance to the 3 intervals
[x1, x2], [x2, x3] and [x3, x4]. For uniformly distributed members u1 = u2 = u3 = u4 =
0.25, the importance ω(GE) reaches the values ω(0.25) on the interval [x1, x2], ω(0.5)
on the interval [x2, x3] and ω(0.75) on the interval [x3, x4]. In our case where ω is
symmetrical function (ω(α) = ω(1−α)), the interval [x2, x3] has the lowest importance
and the importance of the intervals [x1, x2] and [x3, x4] are equal. We also show the
case of non-uniform weights u1 = 0.3, u2 = 0.3, u3 = 0.3, u4 = 0.1, where the interval
[x1, x2] has a lower importance than the interval [x3, x4]. Compared to the example
of Section 4.1.1 with threshold-weighted score, the quantile-weighted score also gives a
variable importance to domains of R. While the domains of variable importance are
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Figure 4.6 – Centered loss gradients ˜̀m − ∑M
k=1 uk

˜̀
k of the CRPS (top) and the CRIGN

(bottom) for M=101 linearly spaced members in [-2, 2] with observations y = 0 (blue), y = 1.2
(green) and y = 1.9 (red).

fixed for threshold-weighted score, the domains of variable importance rely on both um
and xm for quantile-weighted scores.
Illustrations of the loss gradients are proposed in Figure 4.6. We picked M = 101

linearly spaced members between −2 and 2 and show the loss gradients of the CRPS
and the CRIGN for 3 observations y ∈ {0, 1.2, 1.9}. We see that the extreme levels of
quantile receive relatively lower losses with the CRPS than with the CRIGN due to
the higher concavity of the CRPS gradient loss (see the case y = 0). Besides, when the
observation reaches a distribution tail (see the case y = 1.9), the relative magnitude of
the CRIGN gradients is higher than the relative magnitude of the CRPS gradients. In
other words, the weights um learned by CRIGN minimization are more influenced by
observations reaching the observations tails.
The study of the bias of quantile-weighted scores is left for future research. Using

the notation G = E(GE), the difficulty of the study of the bias in the general case is
the comparison of E(β1(GE)) and E(β0(1−GE)) to β1(G) and β0(1−G).
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Convexity of quantile-weighted scores

In order to use quantile-weighted scoring rules in sequential aggregation, we study
the convexity of the score

S(G, y) =
∫

Hyβ1(G) + (1−Hy)β0(1−G) ,

with respect to the weight vector u defining G =
∑
m6M umGm. We recall that convex

loss functions are necessary to get regret bounds against the best fixed combination
of experts. The convexity cannot be obtained by claiming a sum of convex functions,
because the sum depends on the variable u which is concerned by the convexity.
From the mth gradient

∫
Gm(G−Hy)ω(G), we deduce the (m, k) component of the

Hessian matrix A

Am,k = ∂2S(G, y)
∂um∂uk

=
∫

GmGk(ω(G) + (G−Hy)ω′(G)) , (4.15)

with ω′ being the derivative of ω. The score is convex if the Hessian matrix is positive
definite, namely if for any vector w ∈ RM , w>Aw > 0.
The condition ω(G) + (G − Hy)ω′(G) > 0 is sufficient to prove the convexity since

we have

w>Aw =
M∑

m,k=1
wmwkAm,k

=
∫  M∑

m,k=1
wmwkGmGk

 (ω(G) + (G−Hy)ω′(G))

=
∫ ( M∑

m=1
wmGm

)2

(ω(G) + (G−Hy)ω′(G)) .

We find the convexity of the CRPS in the case ω = 2. Besides, we prove the convexity
of the CRIGN, obtained in the case ω(α) = 1/(α(1−α)) = 1/α+ 1/(1−α). We recall
the CRIGN definition:

CRIGN = −
∫

Hy lnG + (1−Hy) ln(1−G) .

We have
ω′(α) = −1

α2 + 1
(1− α)2 = 2α− 1

α2(1− α)2 ,

and

ω(G) + (G−Hy)ω′(G) = 1
G(1−G) + (G−Hy)

2G− 1
G2(1−G)2

= 1
G2(1−G)2 (G(1−G) + (G−Hy)(2G− 1))

= 1
G2(1−G)2 (Hy −G)2 ,

> 0 ,
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which concludes the proof. The last equality holds since Hy is either equal to 0 or 1.
The intermediate situation of ω(α) = 1/

√
α(1− α) lies between the CRPS and the

CRIGN. The related score is defined by∫
Hy arcsin(

√
1−G) + (1−Hy) arcsin(

√
G)−

√
G(1−G) . (4.16)

We also show convexity in this situation. Indeed we have

ω′(α) = −(1− 2α)(α(1− α))−3/2

2 ,

from what we deduce that

ω(G) + (G−Hy)ω′(G) = (G(1−G))−3/2(G(1−G)− 1
2(G−Hy)(1− 2G)

= (G(1−G))−3/2(Hy(1−G)/2 + (1−Hy)G/2)
> 0 ,

using the same trick that Hy is either equal to 0 or 1.

Conclusion

Threshold-weighted and quantile-weighted scores allow to focus on specific areas of
interest on the real line or in the forecaster’s distribution. We showed that the results of
Thorey et al. [TMB16] can be generalized to threshold-weighted scoring rules. Indeed,
the effect of the threshold-weighting is equivalent to a simple data transformation. The
bias of the ensemble CRPS and the definition of the class CRPS therefore apply to
the transformed data. Besides, we demonstrated several results for quantile-weighted
scoring rules. After rewriting the score definition, the optimal locations for an ensemble
of forecasts were derived. The loss gradients of a quantile-weighted score can be in-
terpreted with a data transformation, but contrarily to the threshold-weighted scoring
rules, the data transformation depends on the forecaster’s distribution. However, the
study of the bias of quantile-weighted scoring rules is left for future research.
Other areas of further work include the study of quantile-weighted scoring rules for

extreme value verification, with a focus on the distribution tails. The CRIGN may not
be a viable option because this score is not bounded even with bounded observational
distribution. A similar study would of interest based on expectiles instead of quantiles.
Besides, analytic expressions of the scores for parametric distributions and mixture of
parametric distributions would facilitate the testing of these new scores. Evaluation
and statistical learning with quantile-weighted scoring rules for real world data sets are
shown in Appendix 7.A.
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4.2 Probabilistic forecasting with observational noise

Bibliographical remarks

We investigate how a forecaster can take into account some knowledge about noise
or perturbed observations in the setting of ensemble forecasting. A major issue in this
field of investigation is that the noise distribution is generally unknown. The topic of
noisy observations is widely studied in the data assimilation community, where a cen-
tral question is to provide the best trade-off between new observations and background
knowledge, both imperfect. When the observation errors are uncorrelated, the obser-
vation errors are often scaled by the standard deviation of the noise, such as for the
Kalman filter. Besides, taking into account the noise by either perturbing the obser-
vation or perturbing the members at the corresponding level of noise can improve the
forecasts verification [Sae+04; CT08]. In the case of independent additive noise on the
observations, Bowler [Bow06] and Bowler [Bow08] demonstrate deconvolution methods
to denoise the received observations. They rely on the fact that the distribution of a
sum of independent random variables is the convolution of their PDFs.
We emphasize that the setting of noisy observations is seldom investigated in the

framework of online learning with experts advice. The losses of each expert are usually
considered i.i.d. or noiseless, but rarely with time-varying noise distributions. Still,
Yang [Yan04] shows regret bounds on the loss against the observation expectations (and
not against the noisy observations) for the square loss. Interestingly, a normalization
of the loss by the observation standard deviation is proposed, as in penalized least
square regression. Cesa-Bianchi et al. [CSS11] focus mainly on expert noise and obtain
unbiased estimates of the loss gradients for regret bounds in expectation. We discuss
below the interest of the loss expectation in the context of probabilistic forecasting
with noisy observations. In online classification with label noise, the work of Ben-
David et al. [BPS09] shows regret bounds in expectation by considering the probability
that the label shown to the forecaster is correct or not. Similar approaches are also
studied in the batch setting [Nat+13], see Frénay and Verleysen [FV14] for a review of
classification with label noise.

Context

Say the forecaster receives a distribution or multiple observations instead of a single
observation. A basic idea would be to switch from the CRPS to the average CRPS,
where the expectation is taken according to the distribution of the observations. Let
G be the forecasted CDF, F be the CDF of the observations received by the forecaster
and Y be a random variable described by F. The average CRPS is equal to the squared
difference between F and G, plus the uncertainty term of F:

E(CRPS(G,Y)) =
∫

(F−G)2 +
∫

F(1− F) .

Two elements should be considered:
(i) the reality, that we note yt, is not a random variable, but a fixed value. The
superscript t here stands for “true”. We emphasize that the distribution G should
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reflect the inability of the forecaster to provide perfect estimations of yt, whatever
the level of observational noise. The assumed distribution of yt is in fact the most
informative distribution that a forecaster could deliver.
(ii) the observation y may be corrupted by some noise, from an inaccurate sensor
for instance. If this noise is very large, the forecaster may not be willing to depict
such a large uncertainty in its forecasts. In any case, the forecaster wishes to
predict the reality yt and not the observation y.

Consequently, the forecaster may look for a different objective than targeting the ob-
servational CDF F to compute the weights of the model mixture G =

∑
m6M umGm.

We now give thought on strategies for the forecaster wishing both to apply ensem-
ble post-processing methods and evaluate the resulting predictions. We include the
aforementioned strategies in our list:
— Empirical normalization: scale the members and the observations by an empirical

value reflecting the level of noise, such as the standard deviation of the noise. Less
weight is attributed to time steps with large inaccuracy. Besides Yang [Yan04],
we did not find theoretical guarantee and online learning algorithms taking these
normalizing factors into account. For probabilistic forecasting, we suggest to
normalize the data by the uncertainty term of the loss function, which is the Gini
mean difference of the observations for the CRPS.

— Forecasting noisy observations: playing the distribution of the noisy observations
F, with the loss

∫
(F − G)2. This strategy is of limited interest because of the

above point (ii).
— Perturbing ensemble members: generate perturbed ensemble members according

to the observational noise, and work with the perturbed members. However, if
the perturbed distribution of the members match the observational distribution,
it is not ensured that the distribution of the unperturbed members match the
underlying distribution of the truth, as stated by Bröcker and Smith [BS07b] in
terms of scoring rules.

— Noise deconvolution: generate denoised observations from deconvolution of the
observational distribution.

— Forecasting reality and not the observations: try to forecast samples from F, and
not directly F. The motivation behind is that the reality yt is most likely located
in domains with high observational density. We introduce a method to do so in
Section 4.2.1.

4.2.1 Generalized least square with the CRPS

Let M forecasts be described by the CDFs Gm, and YCDF be the space of the CDFs.
In common data assimilation formulations, the observation state contains several scalar
observations, while our observation state describes the occurrence of threshold exceed-
ing of only one observation. An observation y is described by the unit step function
Hy ∈ YCDF centered on y. The CRPS between G =

∑
m6M umGm and y defined by∫

(Hy −G)2 can be written with the inner product on functions:

(Hy −G)>(Hy −G) =
∫

(Hy −G)2 . (4.17)
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We wish to obtain the best estimate of u∗ defined by the model

Hy =
∑
m6M

u∗mGm + eo , (4.18)

where eo is the observational error. We emphasize that in this model, the first objective
of the forecaster is to be close to the CDF of a unit step function. In this sense, the
forecaster targets samples from the distribution described by F and not directly F.
The assumption of model unbiasedness forces the equality

∑
m6M u∗mGm = F because

E(Hy) = F. Consequently, eo = Hy−F, and the covariance matrix of the observational
errors R = E

[
eo(eo)>

]
is fully determined by F, whose knowledge is required.

We now choose a rule to find a good estimate of u∗, in the form of a minimization
solution. Let R−1 be the matrix inverse of R, then a good estimate of u is given by
the minimizer of the generalized least squares (Hy − G)>R−1(Hy − G), as derived by
[Ait36]. The idea is to shift the minimization problem in a space with uncorrelated,
homoscedastic errors, and apply ordinary least square (OLS) in this space. Therefore,
the theoretical guarantees of OLS apply in the transformed space. For example, the
OLS estimator is unbiased and efficient. The solution of the OLS minimization has the
minimum variance compared to other unbiased linear estimators. In data assimilation,
the matrix R is commonly assumed to be diagonal, i.e. the errors are uncorrelated.
This assumption does not hold in our case, see below the formula of R.
As we show below, this new method allows to target the distribution of the obser-

vations, while being quite different from minimizing the average CRPS. We relate the
score expectation to the value of Pearson’s χ2 test statistic. We inform the reader that
many open questions remain at the end of this chapter, which is present in this thesis
because our preliminary theoretical results look promising.

Observational error covariance matrix R

Now we derive formulas for R and R−1. In a continuous observation space, R is a
symmetrical covariance operator such that

R(x, z) = EY [(HY(x)− F(x))(HY(z)− F(z))]
= EY [HY(x)HY(z)]− F(x)F(z)
= EY [HY(min(x, z))]− F(x)F(z)
= F(min(x, z))− F(x)F(z)
= F(min(x, z))(1− F(max(x, z))) ,

using EY(HY) = F. We note that the quantity R(x, z) reaches a maximum for F(x) =
F(z) = 0.5 and that the diagonal terms R(x, x) are higher than the off-diagonal terms
R(x, z) for any x and z 6= x.
Interestingly, the covariance operator is related to the Gini mean difference and to

the variance of the random variable Y described by F:

Tr(R) =
∫

R(x, x)dx =
∫

F− F2 = 1
2 EY,Y′(|Y−Y′|) , (4.19)
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and ∫∫
R(x, z)dxdz = 1

2 EY,Y′((Y−Y′)2) = EY∼F((Y− Ȳ)2) , (4.20)

where Ȳ = E(Y). Equation 4.20 was found in González Abril et al. [Gon+10].
For the sake of simplicity, we now consider a grid z1 < z2 < ... < zS discretizing the

real line, with 0 < F(z1) < · · · < F(zj) < · · · < F(zS) < 1. Working in this simplified
discrete case where YCDF has a finite dimension allows us to derive expressions for
both R and R−1. A natural choice is to pick regularly spaced quantiles verifying
F(zj+1)−F(zj) = 1/(S+1). We describe the symmetrical matrix R by its components:

Ri,j = min(Fi,Fj)(1−max(Fi,Fj)) , (4.21)

with the notation Fj = F(zj). The said inverse R−1 is tridiagonal with the following
components on the ith line:

0 . . . 0 −1
Fi − Fi−1︸ ︷︷ ︸

i−1

1
Fi − Fi−1

+ 1
Fi+1 − Fi︸ ︷︷ ︸

i

−1
Fi+1 − Fi︸ ︷︷ ︸

i+1

0 . . . 0


with a slight difference for the first and the last line, respectively:

[ F2
F1(F2 − F1)

−1
F2 − F1

0 . . . 0
]
,

and [
0 . . . 0 −1

FS − FS−1

1− FS−1
(1− FS)(FS − FS−1)

]
.

The general expression of the diagonal term is valid for all indices i with the notation,
F0 = 0, FS+1 = 1, z0 = −∞, and zS+1 = +∞. Appendix 4.A exhibits a derivation of
the general term of R−1. The term Fj+1−Fj is the probability of the event “Y ∈ Bj”,
where Bj is the bin [zj , zj+1]. The presence of such terms in R−1 suggests that our
penalized least square procedure is related to the occurrence of the events “Y ∈ Bj”.
Examples of R and R−1 are shown in Figure 4.7 in the cases of uniform, piecewise

uniform and Gaussian distributions for linearly spaced thresholds. We see that R is
determined by F, while R−1 is determined by the slope of F. Steep gradients of F are
related to low values in R−1, while moderate gradients are related to high values in R−1.
The example of the Gaussian distribution shows the huge impact of very low gradients
in the tails of the distribution. The case of the uniform distribution also illustrates the
situation of linearly spaced quantiles (instead of thresholds), where equal probability
is given to each bin (F(zj+1)− F(zj) = 1/(S + 1)).
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Figure 4.7 – Visualization of R (left) and R−1 (right) in the cases of uniform (top), piecewise
uniform (middle) and Gaussian distribution (bottom) for linearly spaced thresholds. The CDFs
of the uniform (solid black), piecewise uniform (dashed black) and Gaussian distribution (solid
grey) are also shown.
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A new loss related in expectation to the χ2 test

Now we compute the loss `R−1(u) = (e)>R−1(e), where e is a difference of discretized
CDFs verifying e0 = eS+1 = 0. We have

`R
−1

(u) =
S∑
j=1
ej

[
ej − ej+1
Fj+1 − Fj

+ ej − ej−1
Fj − Fj−1

]

=
S∑
j=1
ej
ej − ej+1
Fj+1 − Fj

+
S∑
j=1
ej+1

ej+1 − ej
Fj+1 − Fj

+ e2
1

F1

=
S∑
j=1

(ej+1 − ej)2

Fj+1 − Fj
+ e2

1
F1

=
S∑
j=0

(ej+1 − ej)2

Fj+1 − Fj
.

In the last line, the term j = 0 is e2
1

F1
and the term j = S is e2

S
(1−FS) . We emphasize

that this expression is valid for any e verifying e0 = eS+1 = 0, hence the errors ei may
be defined by either ei = Hy(zi)−G(zi) or ei = F(zi)−G(zi). When F describes the
climatological distribution and an observation y is received, the forecaster may be more
willing to compare G with Hy than with F.
At first look, the new loss could seem to be closely related to the CRPS, up to

normalization factors Fj+1 − Fj . A normalized Ranked Probability Score (RPS) may
be obtained by taking only the diagonal terms of R−1, giving

∑S
j=1

(ej)2

Fj(1−Fj) . However,
the loss `R−1(u) is minimized when the difference ej+1 − ej of errors is equal to the
difference Fj+1 − Fj for each j. We explain below why this is a major difference with
the CRPS.
We restrict our study to the case of ensemble forecasting, where the CDF GE is

a sum of unit step functions centered on the members xm. The difference of errors
ej+1 − ej is then related to the presence of xm and y in the bin Bj . Let 1Bj be the
indicator function of Bj (1Bj (z) = 1 if z ∈ Bj and zero otherwise), and let u(j) =
GE(zj+1) − GE(zj) =

∑
m6M 1Bj (xm)um be the cumulated weights of the members in

Bj . For example, if x4, x7 and y are in the bin Bj and no other members are in this
bin, then ej+1 − ej = 1− u4 − u7. If x2 is the only member in Bj and the observation
is not in Bj , then ej+1 − ej = −u2.
The loss may be rewritten as

`R
−1

(u) =
S∑
j=0

(
1Bj (y)− u(j)

)2

Fj+1 − Fj
=

S∑
j=0

1Bj (y)
(
1− u(j)

)2
+ (1− 1Bj (y))

(
u(j)

)2

Fj+1 − Fj
(4.22)

This score can be seen as a discretized quadratic score ∗ (taking only the numerators)
with normalizing factors.

∗. The quadratic score of the PDF g against the observation y is −2g(y) +
∫
g2.
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According to the location of the members and the location of the observation, the
loss `R−1(u) simplifies to:

`R
−1

(u) =

(
1− u(j∗)

)2

F(zj∗+1)− F(zj∗)
+

S∑
j=0

j 6=j∗

(
u(j)

)2

F(zj+1)− F(zj)
, (4.23)

where the bin Bj∗ contains the observation. In terms of weight optimization, two
different situations may occur:
— Case 1: the bin Bj∗ contains the observation and at least one member. The

optimal weights verify u(j∗) = 1 and u(j 6=j∗) = 0. In other words, the members
outside of the correct bin should receive a null weight.

— Case 2: the bin Bj∗ contains the observation, but does not contain any member
(u(j∗) = 0). The loss is minimized when u(j) = F(zj+1)−F(zj) for all j such that
the bin Bj contains at least one member. Interestingly, the optimal weights do
not depend on the location of the observation.

To summarize the above cases, the members should try to be in the correct bin, but
if no member is good enough to be in the correct bin, then the weights should be in
agreement with F. We emphasize that the penalization of the members lying outside
of the correct bin is not sensitive to the distance to the observation, which is in sharp
contrast with the CRPS. Besides, the normalizing factors scale the loss related to
u(j) with the probability that the observation is in Bj . Interestingly, the tridiagonal
structure [−1, 2,−1] of R−1 recalls two differentiations, one for each e in `R−1(u) one
may say. We see that the generalized least square procedure shifts the problem from
the CDF point of view to the PDF point of view.
We now check that the score is proper. Strict propriety is not obtained because

of the discretization, but we show that the score is minimized by a CDF G verifying
G(zj) = F(zj). Indeed, by taking the expectation over the observational distribution:

E
[
(e)>R−1(e)

]
=

S∑
j=0

(Fj+1 − Fj)
(
1− u(j)

)2
+ (1− (Fj+1 − Fj))

(
u(j)

)2

Fj+1 − Fj

=
S∑
j=0

(
Fj+1 − Fj − u(j)

)2

Fj+1 − Fj
+ (Fj+1 − Fj) (1− (Fj+1 − Fj))

Fj+1 − Fj

=
S∑
j=0

(
Fj+1 − Fj − u(j)

)2

Fj+1 − Fj
+ S .

The proof is complete since the optimal distribution G verifies G(zj+1) − G(zj) =
F(zj+1)− F(zj) and G(z0) = F(z0) = 0. The uncertainty term of the score is equal to
S, which depends only on the grid resolution, and not on the observational distribution.
Besides, the divergence term of E

[
(e)>R−1(e)

]
is equal to Pearson’s χ2 test-statistic.

Connections between χ2 statistics and generalized least squares are not new [Rao02].
To the best of our knowledge, the approach of generalized least squares applied to
discretized CDFs is innovative. The question of score bias is addressed in Appendix 4.A.
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4.2.2 Discussion and further work

Assessing the flatness of the rank histogram is possible with the χ2 statistic [And96],
even though such verification tool may not be adequate because it treats all bins equally
and forgets the rank structure [Elm05]. In any case, minimizing the new loss `R−1(u)
may be seen as a rank histogram optimization procedure.

The χ2 statistic is quite celebrated. Providing new insights on this statistic therefore
seemed of interest to us. Further work could investigate connections with Cramer-von
Mises criterion

∫
(G − F)2dF and Anderson-Darling statistic

∫ (G−F)2dF
F(1−F) . Indeed, they

appear to be related to simplifications of the χ2 statistic by not taking R−1 into account
or only partially with the diagonal only.

The distribution of the observations F is in general unknown. We emphasize that the
lack of knowledge of F does not change the score non-strict propriety. Indeed, if the loss
is built with the CDF Fguess and the observations follow the CDF F, the scoring rule
is still minimized in average if the forecaster’s CDF follows F and not Fguess. Using an
incorrect Fguess may not impair the scoring rule.

It would be interesting to test this new loss, for both learning (in online learning for
example) and evaluating probabilistic forecasts. For real world data sets, the first task
would be to determine the observational distribution. The climatological distribution
of the observations could be a good starting point. Secondly, the forecaster should
determine the appropriate thresholds zj or equivalently the bins Bj . A rule of thumb for
Pearson’s test states that each bin should contain at least 5 observations. Photovoltaic
power data sets may not be a good starting point, because observational uncertainty
is seldom taken into account contrarily to other variables such as geopotential heights
or temperature [Sae+04; CT08]. Further work may investigate the integration of such
climatological knowledge in the loss function, and up to which level the forecaster may
benefit from the integration of this knowledge.

We conjecture that theoretical results may possibly be obtained by using this new
loss in sequential aggregation, for example showing a reduced variance of the weights
due to the knowledge of observation uncertainty.

Appendix 4.A Supplementary material

Proof of R inverse formula in the discretized case:

Here we demonstrate that the matrix noted R−1 is indeed the inverse of R. We make
an intensive use of Ri,j = Fmin(i,j)(1 − Fmax(i,j)) and of the matrix product formula
(AB)i,j =

∑
k6S Ai,kBk,j .
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First we compute (RR−1)i,j for 1 < j < i 6 S,

(RR−1)i,j = Ri,j−1R−1
j−1,j + Ri,jR−1

j,j + Ri,j+1R−1
j+1,j

= −Fj−1(1− Fi)
Fj − Fj−1

+ Fj(1− Fi)(Fj+1 − Fj−1)
(Fj+1 − Fj)(Fj − Fj−1) −

Fj+1(1− Fi)
Fj+1 − Fj

= 1− Fi
(Fj+1 − Fj)(Fj − Fj−1)
× (−Fj−1(Fj+1 − Fj) + Fj(Fj+1 − Fj−1)− Fj+1(Fj − Fj−1))

= 0 ,

and for 1 6 i < j < S,

(RR−1)i,j = Ri,j−1R−1
j−1,j + Ri,jR−1

j,j + Ri,j+1R−1
j+1,j

= −Fi(1− Fj−1)
Fj − Fj−1

+ Fi(1− Fj)(Fj+1 − Fj−1)
(Fj+1 − Fj)(Fj − Fj−1) −

Fi(1− Fj+1)
Fj+1 − Fj

= Fi
(Fj+1 − Fj)(Fj − Fj−1)
× (−(1− Fj−1)(Fj+1 − Fj) + (1− Fj)(Fj+1 − Fj−1)− (1− Fj+1)(Fj − Fj−1))

= 0 .

The above derivations are also valid for j = 1 with F0 = 0 and for j = S with
FS+1 = 1. Indeed

(RR−1)i,1 = Ri,1R−1
1,1 + Ri,2R−1

2,1

= F1(1− Fi)F2
(F2 − F1)F1

− F2(1− Fi)
F2 − F1

= 0 ,

and

(RR−1)i,S = Ri,S−1R−1
S−1,S + Ri,SR−1

S,S

= −Fi(1− FS−1)
FS − FS−1

+ Fi(1− FS)(1− FS−1)
(1− FS)(FS − FS−1)

= 0 .

Second we compute (RR−1)i,i for 1 < i < S. We have

(RR−1)i,i = Ri,i−1R−1
i−1,i + Ri,iR−1

i,i + Ri,i+1R−1
i+1,i

= −Fi−1(1− Fi)
Fi − Fi−1

+ Fi(1− Fi)(Fi+1 − Fi−1)
(Fi+1 − Fi)(Fi − Fi−1) −

Fi(1− Fi+1)
Fi+1 − Fi

= 1
(Fi+1 − Fi)(Fi − Fi−1)
× [−Fi−1(1− Fi)(Fi+1 − Fi) + Fi(1− Fi)(Fi+1 − Fi−1)− Fi(1− Fi+1)(Fi − Fi−1)]

= 1 ,
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using Fi(1− Fi−1)− Fi−1(1− Fi) = Fi − Fi−1.
The terms (RR−1)1,1 and (RR−1)S,S are also equal to one:

(RR−1)1,1 = R1,1R−1
1,1 + R1,2R−1

2,1

= F1(1− F1)F2
(F2 − F1)F1

− F1(1− F2)
F2 − F1

= 1 ,

and

(RR−1)S,S = RS,S−1R−1
S−1,S + RS,SR−1

S,S

= −FS−1(1− FS)
FS − FS−1

+ FS(1− FS)(1− FS−1)
(1− FS)(FS − FS−1)

= 1 ,

which completes the proof.
Bias of (e)>R−1(e).
Let the members Xm be independent random samples described by the CDF Gm,

and let P (j)
m be the probability that the mth member is in the bin Bj . The derivations

for the ensemble CRPS bias of Section 3.1.4 were achieved for the events Xm 6 θ, while
in the current case, the events are of the type zj 6 Xm 6 zj+1. We show that similar
derivations can be produced to show that (e)>R−1(e) is a biased score.
We recall Equation 4.22:

`R
−1

(u) =
S∑
j=0

(
1Bj (y)− u(j)

)2

Fj+1 − Fj
.

By taking the expectation over the members,

E
[
u(j)

]
= E

[∑
m

um1Bj (Xm)
]

=
∑
m

umP
(j)
m

= G(zj+1)−G(zj) .

Besides,

E
[(
u(j)

)2
]

= E

∑
m,k

umuk1Bj (Xm)1Bj (Xk)


=
∑
m6=k

umukP
(j)
m P

(j)
k +

∑
m

u2
mP

(j)
m

=
(
E
[
u(j)

])2
+
∑
m

u2
m

(
P (j)
m −

(
P (j)
m

)2
)
.
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Note that P (j)
m ∈ {0, 1} if the mth member lies always in the same bin. The lesser the

variability of each member, the lesser the bias (like for the ensemble CRPS bias).
Consequently, each term E

[(
u(j)

)2
]
generates an additional

∑
m u

2
m

(
P

(j)
m −

(
P

(j)
m

)2
)

in Equation 4.22. They accumulate to the bias of the score, which is equal to

∑
m

u2
m

S∑
j=0

P
(j)
m −

(
P

(j)
m

)2

Fj+1 − Fj
.

Unbiased estimates of the score can be delivered by counteracting the bias. An in-
terpretation of the bias counteraction with classes of i.i.d. members is left for future
research.
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5 Application of online CRPS learning
to probabilistic PV power forecasting

We provide probabilistic forecasts of photovoltaic (PV) production, for sev-
eral PV plants located in France up to 6 days of lead time, with a 30-min
timestep. First, we derive multiple forecasts from numerical weather predic-
tions (ECMWF and Météo France), including ensemble forecasts. Second,
our parameter-free online learning technique generates a weighted combina-
tion of the production forecasts for each PV plant. The weights are computed
sequentially before each forecast using only past information. Our strategy
is to minimize the Continuous Ranked Probability Score (CRPS). We show
that our technique provides forecast improvements for both deterministic and
probabilistic evaluation tools.

This chapter is a research paper written with Christophe Chaussin and Vivien Mallet,
and submitted to International Journal of Forecasting.
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Introduction

Improved photovoltaic power integration needs better power forecasts. Forecasters
may pursue efforts to improve meteorological models, weather-based power models or
statistical post-processing methods. For our part, we focus on the following case: a
forecaster, willing to provide probabilistic PV power forecasts, retrieves multiple mete-
orological forecasts (possibly from various sources). In this general setting, numerous
state-of-the-art methods can be tested and combined.
Meteorological forecasts can either be deterministic single forecasts or an ensemble

of forecasts, usually at coarser resolution. Inman et al. [IPC13] provide a review of
PV forecasting methods with deterministic forecasts. Ensemble forecasting and more
generally probabilistic forecasting has been widely covered in the meteorological com-
munity [GK14]. Only recently, ensemble-based forecasting techniques are tested for
PV [Zam+14], while these techniques are more common for wind and wind power
forecasting [RSS15].
A recent benchmark of deterministic and probabilistic PV forecasts is analyzed in

Sperati et al. [Spe+15], along with classical diagnostic tools. Probabilistic forecasts
rely on the estimation of quantiles of the predicted probability density function (PDF).
Quantile regression [APN15] and analogs [Ale+15; HP15] are amongst most popular
techniques for quantile estimation in PV. These techniques do not require an ensemble
of forecasts as they can rely only on the historical variability of the forecasts and
production data.
A forecaster having multiple forecasts hopefully wishes to combine them in an optimal

way. Online learning techniques provide rules for combining forecasts, see the mono-
graph Cesa-Bianchi and Lugosi [CL06]. The combination rules stemming from online
learning depend only on the available past information at each forecast step and come
with theoretical performance guarantee under essentially no assumptions (concerning
prior weights, underlying stochastic process or distributions). These techniques have
been tested for several applications: electricity consumption, ozone concentration, wind
and geopotential fields, and solar irradiance [Sto10; MSM09; Mal10; Dev+13; Bau15;
Tho+15].
This paper presents application results with our innovative approach [TMB16], whose

purpose is to combine multiple forecasters in a linear opinion pool [GM90; GA11]. The
originality of our technique is to use combination rules deriving from online learning
techniques in order to minimize the CRPS of the weighted empirical distribution func-
tion. We stress here the fact that our method provides theoretical guarantee and that it
does not rely on distribution assumptions. Besides, the algorithm has a low computa-
tional cost and is parameter-free. Our framework is inspired from the work of Gaillard
et al. [GGN16], which focuses on quantile scoring functions.
Minimizing the CRPS is a common strategy in the meteorological literature to obtain

calibrated probabilistic forecasts. However, standard techniques do not offer theoretical
guarantees of robustness and usually resort to strong assumptions on the distributions.
For example, Bayesian model averaging (BMA) techniques provide a mixture of para-
metric distributions, usually a Gaussian sum [Gne+05] or gamma distributions sum for
wind and precipitation applications [SGR10; Slo+07]. Non-homogeneous regression fits
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Label Nature Origin Timestep Resolution Base time # of forecasts

HRES deterministic ECMWF 3 h 0.13◦ 0 h 1
ARPEGE deterministic Météo France 1 h 0.10◦ 0 h 1

ENS ensemble ECMWF 3 h 0.25◦ 0 h 50
PEARP ensemble Météo France 3 h 0.20◦ 18 h 34

Table 5.1 – Forecast weather data. The indicated resolutions may change for further lead times
than those of the present article.

D D + 1 D + 2 D + 3 D + 4 D + 5
PEARP PEARP x x x x
Det Det Det Det x x
ENS ENS ENS ENS ENS ENS

Table 5.2 – Forecast availability with lead time. PEARP is the Météo France ensemble, Det
defines the deterministic forecasts Arpège and HRES, and ENS is the ECMWF ensemble.

the parameters of a parameterized distribution using characteristics of the ensemble of
forecasts [Gne+05; Wil09; TG10]. For instance, a Gaussian distribution is fitted using
a linear model between the mean of the distribution and the mean of the forecasts.
Besides, likelihood maximization with the logarithm loss is not an appropriate tool in
our setting since it fails to produce satisfactory scores for a mixture of Dirac distribu-
tions. A discussion on local scores such as the logarithm loss is adressed by Bröcker
and Smith [BS07b].
In Section 5.1, we introduce the production data sets and the forecasts from ECMWF

and Météo France. We also detail our method to generate PV forecasts from meteo-
rological data. The evaluation tools are described in Section 5.2. Our statistical post-
processing method is explained in Section 5.3. Numerical results and discussions are
developed in Section 5.4.

5.1 Methods

5.1.1 Production and meteorological data

The production data cover 219 PV power plants in metropolitan France with 21
consecutive months (January 2012 to October 2013). The total power of the plants
is referred to as France production. We wish to provide production forecasts for each
power plant and for France production. The data are shown as load factor, i.e. scaled
by the installed capacity. France production forecasts are the weighted sums of the
plant forecasts w.r.t. the installed capacity of each plant.
Forecast data are summarized in Table 5.1 and 5.2. We use data from two me-

teorological centers (ECMWF and Météo France), both deterministic forecasts and
ensembles of forecasts: HRES and ENS for ECMWF, and ARPEGE and PEARP for
Météo France [Cou+91; Des+15; Pal+09], up to a lead time of 6 days. Note that the
deterministic forecasts are not the unperturbed members of the ensembles of forecasts
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but different forecasts, with better resolution.
We are interested in predicting the 30-min average power output of the plants. We

only show results for the following hours of the day 0600, 0900, 1200, 1500, and 1800
(where 0600 refers to 6:00 UTC) in order to save computation time and to avoid the
issue of temporal interpolation of our forecast data. Ensemble forecasts are only solar
irradiance forecasts while deterministic forecasts also include total cloud cover and 2-m
temperature. The ensemble PEARP is available for longer lead times but only with a
time step of 6 (and not 3) hours. Consequently, for our application we restricted the
use of PEARP up to 2 days.

5.1.2 Conversion of meteorological forecasts to production forecasts

Our regression technique is inspired from Bacher et al. [BMN09] and Lorenz et al.
[Lor+09b]. This regression technique has been successfully applied in the benchmark
of Sperati et al. [Spe+15], where the technique ranked first in the deterministic PV
forecasting competition. For a given deterministic forecast, the following technique is
applied for each time of the day and for each power plant independently. The training
set ranges from early 2012 to February 2013 (nearly 400 days). The testing set with
the remaining days of 2013 is about 240-day long.
First, clear sky indices τP and τI are generated from the production P and the solar

forecasts I:
τP = P

Pcc
and τI = I

Icc
, (5.1)

where clear sky production Pcc and clear sky solar radiation Icc are the production and
solar radiation in clear sky conditions. The clear sky profiles Pcc and Icc are respectively
estimated from the production P and the solar forecasts I thanks to quantile regression
introduced in Section 5.1.3.
The core of the statistical analysis is a linear regression between the production

index τP and the meteorological variables (the clear sky index τI , the total cloud cover
Tcc, and the temperature T2m). Non-linear dependencies are taken into account by
introducing several terms such as the squared clear sky index τ2

I and cross terms between
variables τI(T2m − T 2m). The quantity T2m − T 2m is the deviation of the temperature
T2m from its local average value T 2m. The linear regression estimates the coefficients
ai to produce

τ̂P = a0 + a1τI + a2τ
2
I + a3Tcc+ a4τI(T2m − T 2m) . (5.2)

A secondary statistical model is then fitted on the residuals τ̂P − τP . The objective
of this secondary model is to reduce the seasonal biases and other remaining errors of
the first model. We use the elapsed time s from January 1st of the current year, and
the production forecasts τ̂P as inputs to build

̂̂τP = b0τ̂P +
∑
λ

bλ sin(λs) + b′λ cos(λs) , (5.3)

a linear additive model on τ̂P and trigonometric polynomials of s, see Lorenz et al.
[Lor+09b].
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The model parameters of the first two steps are set with the forecasts whose lead
times are inferior to 24 h. The motivation behind is that the forecasts with short lead
times are presumably the most accurate forecasts to fit the main parameters. Still,
forecasting long lead times may necessitate slight corrections compared to short lead
times, hence we introduce a third step, which takes into account the lead time of the
forecasts. The third step is a multiplicative correction λ applied to ̂̂τP , such that λ̂̂τP /τP
is equal to 1 on average.
The statistical regression scheme is slightly different for ensemble and deterministic

forecasts. For ensemble forecasts, the input variable of the linear regression is simply
the solar irradiance of the unperturbed member without other weather variables. The
same conversion model is used for all the members of a given ensemble.

5.1.3 Quantile forecasts

For each deterministic production forecast, we build 19 quantile forecasts (of order
5 to 95) for a total of 38 additional forecasts. They are referred to as deterministic
quantiles as opposed to the ensemble members. The idea is to train (on the training
data set) a pick-up rule that gives production quantile forecasts according to the value
of the deterministic production forecast, see [NMN06]. We follow the idea that we
should first precisely estimate the mean of the distribution and only then estimate the
quantiles.
Quantile regression uses a piecewise linear asymmetric loss function QSα(x, y) called

the quantile score (or pinball loss) of level α [KH01]:

QSα(x, y) = α(y − x)+ + (1− α)(x− y)+ , (5.4)

where (·)+ = max(·, 0). The expectation (over y) of QSα(x, y) is minimized if x correctly
estimates the quantile of level α of y.
We apply quantile regressions on the residuals of the deterministic forecast obtained

at the end of Section 5.1.2. The inputs are the deterministic forecast and trigonometric
polynomials of s, similarly to the seasonal bias reduction of the deterministic forecasts
(step 2 in Section 5.1.2). The quantile regressions are carried out independently for
each lead time.
The clear sky profiles Pcc and Icc are also based on quantile regressions but with only

trigonometric polynomials of s as inputs. The chosen levels of quantiles to build clear
sky profiles are close to 90%.
Concerning France production deterministic quantiles, they are not set to a weighted

sum of quantiles of the plants, but they are determined from the deterministic forecast
of France production. In other words, the deterministic forecasts of the plants are
summed to generate France production forecast, and this forecast is used to generate
quantile forecasts for France production.
At this point, the forecaster has a total of 50 + 34 + 2× 19 + 2 = 124 forecasts up to

the lead time of 48 hours, 90 forecasts up to the lead time of 96 hours, and 50 forecasts
up to the lead time of 138 hours.
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Figure 5.1 – Illustration of weighted CDFs. The CDFs G and G̃ are built with the same locations
xm. However the weight um or ũm given to a member is different for G and G̃.

5.1.4 Linear opinion pools

Let the xm beM forecasts (or members). The unit Cumulative Distribution Function
(CDF) Hm(x) = H(x− xm) equals 0 before xm and 1 otherwise. The forecaster’s CDF
G =

∑
m umHm is designed as a weighted combination of unit step functions. The mth

step of G is centered on xm and its height equals the weight um. The weights um are
non-negative and sum to one (u in PM the simplex of RM ). This weighted CDF is also
known as model mixture or linear opinion pool. Using a discrete CDF based on several
forecasts allows us to model any CDF without distribution assumption.
The impact of the weights um are illustrated in Figure 5.1 and 5.2. Two CDFs G

and G̃ using the same locations xm are shown in Figure 5.1. The CDF G is built with
uniform weights um = 1/M , while the weights ũm of G̃ are not uniform. We show in
Figure 5.2 an illustration of probabilistic forecasts in two different cases: with equal
weights for all members and with possibly different weights given by our online learning
algorithm. A visual inspection indicates that the online learning algorithm provides a
better estimation of the median and a larger spread of the distribution. We emphasize
that methods involving weighted empirical distribution functions necessitate that the
forecasts xm are sufficiently dispersed.

5.2 Evaluation
In the following we describe classical diagnostic tools used in Section 5.4, see for

example the monograph of Jolliffe and Stephenson [JS12] for further references.
We begin by describing the CRPS as it is at the heart of our learning method.

5.2.1 The CRPS

The CRPS is a classical scoring function in meteorology [Her00; CT05]. The CRPS is
the generalization over all thresholds of the Brier score [Bri50]. Let G be the cumulative
distribution function of a forecaster describing the i.i.d. random variables X and X′,
and y be the observation revealed to the forecaster. The CRPS is defined as

CRPS(G, y) =
∫

(G−Hy)2 = E(|X− y|)− 1
2 E(|X−X′|) , (5.5)
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Figure 5.2 – Time series of France production forecasts scaled by the installed capacity (12
hours of lead time, for several consecutive days). Top: equal weights for all members, (b): our
forecast with online learning of the weights. Real production is in red and the median of the
forecasted distribution is in white.

where Hy(x) = H(x − y) is the CDF assigned to y, the unit step function H centered
on y. The CRPS reduces to the absolute error for deterministic forecasts.
Assuming that y is a random variable, described by the CDF F, the averaged quantity

Ey(CRPS(G, y)) (on the observation) is minimized only for F = G. This property makes
the CRPS a strictly proper scoring rule [GR07], and as such it explains why the CRPS
is a classical evaluation tool for probabilistic forecasts.
We highlight the fact the CRPS can also be written as a sum of quantile scores

[GR11]:

CRPS(G, y) = 2
∫ 1

0
QSα(G−1(α), y)dα . (5.6)

The strategies of minimizing the CRPS or minimizing several quantile losses are there-
fore closely related.
For a CDF step function, the corresponding CRPS is computed as:

CRPS
(

M∑
m=1

umHm, y
)

=
M∑
m=1

um|xm − y| −
1
2

M∑
m,k=1

umuk|xm − xk| . (5.7)

which is also concisely noted `(u) in Section 5.3.

5.2.2 Other diagnostic tools

The scores are all presented only for the test period, usually averaged over time.
Besides the CRPS, we also show results for the celebrated RMSE and MAE for which
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our forecast is the weighted average
∑M
m=1 umxm. The RMSE of the predictions ŷ with

respect to the observations y is given by

RMSE =

√√√√ 1
T

T∑
t=1

(ŷt − yt)2 , (5.8)

and for the MAE:

MAE = 1
T

T∑
t=1
|ŷt − yt| . (5.9)

We use daily scores to show the deterioration of the scores with the increasing lead
time. To keep the range of the daily score consistent, the daily score is weighted by the
average production of the related hour of the day ȳh. For a score Sh depending on the
lead time h, the daily score

S(d) =

∑
h
Sh × ȳh∑
h
ȳh

(5.10)

is computed with summation over the available lead times h corresponding to the same
daily lead time.
Skill scores are useful to compare prediction performance. In this paper, the reference

prediction chosen for skill scores is our forecast. Skill scores for a given score S are
written

Sskillpred = Sref − Spred
Sref

, (5.11)

so that our forecast shows better scores when the skill scores of the other forecasts are
negative.

5.3 Online learning with the CRPS

5.3.1 Background

Our objective is to produce an optimal combination (of step functions), or more pre-
cisely, to minimize the regret due to unavoidable loss w.r.t. the best learning algorithm
for a given class of algorithms. A learning algorithm, along with its weight update
rule, is used to find weights for each time step using only available past information.
In other words, we want to use an update rule that indicates the value of the weights
um,t and relies only on the values of the past forecasts and observations xm,t′ and yt′
with t′ < t.
Online learning algorithms come with a theoretical guarantee of long term perfor-

mance. The guarantee is often expressed under the form of a regret bound:

sup
[
T∑
t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u)
]
6 o(T ) , (5.12)

where the supremum is taken over all possible values of xm,t and yt. The notation `t
refers to the CRPS as in Equation 5.7 with a highlighted dependency on the weight.
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In the sense of the theoretical guarantee, our algorithm competes against the best
combination with weights constant in time, which can be known only at the end of
the experiment and is called the oracle. By definition, the oracle has a better score
than individual forecasts (MAE of each forecast), and than any subset ensemble with
uniform weights.
It is common practice in online learning to use linearized losses, by computing the

loss gradients w.r.t. the weights. For the CRPS, the loss gradient ˜̀m,t of the mth
forecaster can be written as

˜̀
m,t = ∂`t

∂um
(ut) = |xm,t − yt| −

M∑
k=1

uk,t|xm,t − xk,t|+ yt −
M∑
k=1

uk,txk,t . (5.13)

The last two terms are identical for all forecasters and appear due to terms 1−
∑M
m=1 um

hidden in the expression of the CRPS, see Appendix B of Thorey et al. [TMB16]. The
loss gradient is balanced between the distance of xm,t to yt and the weighted distance of
xm,t to the ensemble members. A very good member is therefore close to the observation
and far from the other members. A neutral member is equally distant to the observation
and the other members.
The loss linearization shifts a regret against the best combination as Equation 5.12

to a regret against the best member only, as we now detail (see also Devaine et al.
[Dev+13]). The convexity and the differentiability of `t gives

`t(ut)− `t(u) 6 (ut − u)>∇`t(ut) = u>t
˜̀
t − u> ˜̀t . (5.14)

for any two vectors ut,u ∈ PM . Summing over time, we get the following regret bound
inequalities:

T∑
t=1

`t(ut)− inf
u∈P

T∑
t=1

`t(u) = sup
u∈P

(
T∑
t=1

`t(ut)− `t(u)
)

(5.15)

6 sup
u∈P

(
T∑
t=1
u>t
˜̀
t − u> ˜̀t

)
(5.16)

=
T∑
t=1
u>t
˜̀
t − min

expert k

T∑
t=1

˜̀
k,t . (5.17)

As a consequence, an algorithm formulated for linear losses
∑M
m=1 um

˜̀
m and coming

with theoretical guarantee (on the expression 5.17) may be used with any convex differ-
entiable loss, by applying the algorithm on the gradient losses. A theoretical guarantee
for the non linear losses `t(u) is then obtained. In other word, knowing a regret bound
for expression 5.17 provides a regret bound for expression 5.15.

5.3.2 Example of general algorithm

Initialization: u1;
For each time index t = 1, 2, ..., T
1. get the vector of predictions data xt,
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update the learning rate of each member ηm,t = 1/
(
1 +

∑t
t′=1(u>t′ ˜̀t′ − ˜̀m,t′)2

)
update the regret of each member Rm,t = Rm,t−1 + u>t ˜̀t − ˜̀m,t
compute the weights um,t+1 = ηm,t(Rm,t)+ / η>t (Rt)+

Table 5.3 – ML-Poly algorithm, at time t after yt is given. The vectors ηt and Rt have M
coordinates, respectively ηm,t and Rm,t. The functions (·)+ applied to a vector are applied to
all the vector’s components.

2. compute the forecaster’s choice Gt with xt and ut,
3. get the verification yt and compute ut+1, based on the update rule.

The initial weight vector u1 is arbitrarily set, e.g., to [1/M, . . . , 1/M ]>.

5.3.3 ML-Poly

In this article we use a learning algorithm from [GSE14] called ML-Poly for Polynomi-
ally weighted averages with multiple learning rates. The algorithm ML-Poly, described
in Table 5.3, has no parameters. The algorithm relies on terms u>t ˜̀t − ˜̀m,t that com-
pare the performance of each member to the performance of the weighted ensemble.
The learning rate ηm,t checks whether a forecaster’s performance is in average close
to the performance of the weighted forecast, and the regret Rm,t quantifies the regret
for not having given higher weights to a forecaster. The ideas behind ML-Poly are
on the one hand an adaptation of the algorithm Prod of Cesa-Bianchi et al. [CMS05]
to multiple learning rates, and on the other hand the introduction of the polynomial
potential described in Cesa-Bianchi and Lugosi [CL03] and giving the terms (Rm,t)+.
The regret bound of ML-Poly is expressed against the best member for the lin-

earized losses. For all sequences of losses ˜̀m,t ∈ [0, 1], the cumulated loss of ML-Poly
is bounded:

T∑
t=1
u>t
˜̀
t 6 min

16m6M


T∑
t=1

˜̀
m,t +

√√√√M(1 + ln(1 + T ))
(

1 +
T∑
t=1

(u>t ˜̀t − ˜̀m,t)2

) .

(5.18)
As opposed to the bound of Equation 5.12, the bound of ML-Poly is of second

order due to the term
∑T
t=1(u>t ˜̀t − ˜̀m,t)2. The worst case scenario gives a bound

O(
√
MT lnT ), indicating that even in the worst case, the weighted forecast will perform

at least as well as the best forecast. In the case of i.i.d. sequences of losses, the regret
bound is practically constant. A detailed analysis of second-order bounds can be found
in [GSE14]. Besides, other algorithms showing second order bounds are described in
Koolen and Van Erven [KV15], Luo and Schapire [LS15], and Wintenberger [Win17].

5.4 Application

5.4.1 Experiment setup

Local production data may be unfortunately unavailable for given days and plants. In
such cases we removed the related data. However we did not modify France production
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capacity factor to account for local unavailability, because in our opinion, a challenging
task for online learning technique is to reduce biases which may be caused by local null
production.
The algorithm is run independently for each lead time and production site (including

France production). We run the algorithm as if production data is available at the end
of each day. For long lead times h where several observations arrive between the delivery
of a forecast and the reception of the corresponding observation, we use shifted weights.
At time t we compute ut+h to predict yt+h by using the weights ut+h−1 instead of ut
in Table 5.3. For example with the shorthand notation ulead time, day and with a lead
time of 36 h, the weights u36 h,d were delivered at d− 1 to forecast y12:00,d. The weights
u36 h,d are updated to u36 h,d+1 after y12:00,d−1 is known at the end of d − 1. The key
point is that the weight update uses u36 h,d instead of u36 h,d−1 to check the combination
performance against y12:00,d−1.
The production forecasts from PEARP and ENS are sorted by rank in order to

associate clearly a weight with an ensemble member. As a result, all the members
belong to one of the four sorted subensembles, except for the two deterministic forecasts.
We define a climatological reference for diagnostic purposes, called climatology fore-

cast. For time t, we use 2 months of production data centered on t to estimate a
so-called climatological mean and 19 quantiles of climatological production. The cli-
matological mean is used for deterministic evaluations (bias, RMSE, MAE) and the
quantiles are used for the CRPS. This method produces a rather ’skilled’ reference
because the climatology is not only evaluated on the training period but on a rolling
period.
We define the raw forecast as the forecast with uniform weights. We use this forecast

to assess the gain brought by our online learning algorithm.
The results are shown for PV production forecasts only, and not meteorological

variables.

5.4.2 Results

In this section we only show the results for the individual plants. The results obtained
for France production are quite similar to those obtained for the plants and are shown
in Appendix 5.A.

Scores and skill scores

First we show the classical scores RMSE, MAE, CRPS and bias in Figure 5.3 on
a daily average, see Equation 5.10. The confidence intervals indicate the variability
of the scores obtained for the plants. The scores are shown for our weighted forecast
as well as the raw forecast, the ECMWF deterministic forecast and the climatology
forecast. Our weighted forecast gets the best scores up to a lead time of 4 days. Note
that our forecast has a quite low bias. For days 5 and 6 the ENS members are the
only members available in our study, hence a change of slope in the daily scores. Even
for a lead time of 6 days, the climatological forecasts is the worst forecast. Therefore
numerical weather predictions may be used to forecast plants productions for a lead
time of several days at the 30-min timestep. It is noticeable that our regression scheme
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Figure 5.3 – RMSE, MAE, CRPS and bias for the daily scores, for all sites. The results
are shown for 3 forecasts: our weighted forecast, the raw forecast (all members with uniform
weights), the deterministic forecast of the ECMWF (and its quantiles for the CRPS). The
climatology scores are the following : bias = −0.001, CRPS = 0.089, MAE = 0.139, RMSE =
0.167. The confidence intervals are derived from the scores of all sites.
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minimizes the CRPS and also achieves improvements on the other scores (RMSE, MAE
and bias). We tried to identify situations where our algorithm provides a particular
improvement over the raw ensemble, but we did not find discriminatory criteria. For
example, the installed capacity of the plant or the CRPS of the raw ensemble are not
explanatory statistics of the CRPS skill scores of the raw ensemble.
The CRPS skill scores of 5 ensembles (with uniform weights) are shown in Figure 5.4.

The skill scores are assessed against our weighted forecast. The 5 ensembles are the
4 subensembles of our complete ensemble and the complete ensemble as well. Our
weighted forecast performs better than any of the 5 ensembles. The best ensemble
with uniform weights is (in average) the complete ensemble. This may be due to the
variety of the forecasts in the complete ensemble. Although the quantile ensemble from
HRES (quantile det ECMWF) performs well before 24 hours of lead time, it is beaten
by the complete ensemble afterwards and its skill decreases with time. The skill of the
ECMWF ensemble (ENS) increases notably with time, from the worst skill for day 1
to a satisfactory skill for day 4.

Diagnostic tools

Improvements are also shown for several other diagnostic tools but only for a lead
time of 36 h (1200, D+1) for the sake of brevity. Better results are obtained for shorter
lead times and conversely worst results are obtained for longer lead times. By better
we mean improvement of our weighted forecast over the raw ensemble.
The spread-skill diagram checks whether the spread of an ensemble (binned into

categories) is consistent with the error of the ensemble mean. The squared spread∑
um(xm −u>x)2 and the square error (u>x− y)2 are averaged in each bin and their

rooted square are plotted against each other. The spread and the error should be
ideally equal [For+14]. On the graph, the curves should match the first diagonal. The
spread-skill diagram of the ensembles of our study is shown on Figure 5.5. We see that
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Figure 5.5 – Spread skill diagrams for 36 h of lead times for all sites.
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Figure 5.6 – Rank histograms for 36 h of lead times for all sites; (a) the raw ensemble; (b) our
weighted forecast. The dotted line illustrates the ideal case of a flat rank histogram.

our weighted forecasts are closer to the first diagonal than any other subensemble with
uniform weights. Our weighted forecasts for plants are still under-dispersive, while the
correction is better in the case of France production as shown in Appendix 5.A. The
weights provided by the online learning algorithm are larger for the outer members
of the ensemble, and especially the lowest members. Consequently the spread of the
weighted ensemble is larger than the spread of the raw ensemble and the positive bias
of the raw ensemble is mitigated. Besides, the ECMWF ensemble shows the lowest
spread and the ensemble PEARP presents very large and very small spreads. However,
when the ensemble PEARP shows a small spread, the error is quite larger than the
spread.
The rank histogram [And96; TVS99; HC97] or Probability Integral Transform (PIT)

is built with the values of the CDFs of the forecaster reached by the verifications along
an experiment. The ideal rank histogram is flat. The rank histogram of our weighted
forecast and the raw ensemble are shown in Figure 5.6. The rank histogram of our
weighted forecast is closer to the ideal rank histogram than the rank diagram of the
raw ensemble. The raw ensemble is under-dispersive, since it presents a U-shape. This
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Figure 5.7 – Reliability diagrams for lead times 36 hours for all sites; black circle: the raw
ensemble; magenta triangles: our weighted forecast.

is consistent with the results shown on Figure 5.5.
For a given binary event, the reliability diagram checks whether the observed fre-

quency and the forecasted frequency of the event match [Atg04; BS07a]. The fore-
casted probabilities of the event are binned into categories. The observed frequency of
the event for each category is the share of occurence of the event. The ideal reliability
diagram shows a curve along the first diagonal. We use the following event “the pro-
duction level is lower than the average production”, where we use the climatological
production defined above as local average production. We show the reliability diagrams
of our weighted forecast and the raw ensemble in Figure 5.7. We see that our weighted
forecast is very well calibrated for event with low probability, but tends to overpredict
the occurence of the event when the event is highly likely.

Conclusion

We have applied the algorithm ML-Poly for the minimization of the CRPS, in order
to provide probabilistic forecasts. The algorithm does not depend on any parameter or
assumptions on distributions such as Gaussianity, and comes with theoretical guarantee
of performance. The regret bound ensures our forecast to perform at least as well as
the best forecast in the ensemble.
Our case study investigated the PV production of several power plants in France and

the total production of the plants. We have shown that our weighted forecast improves
on the raw ensemble, which is the best ensemble with uniform weights. Interestingly, we
show that CRPS minimization brings improvement on classical scores for the ensemble
mean and probabilistic diagnostic tools. Indeed, the forecasting capability measured
by classical scores (RMSE, MAE, CRPS and bias) are improved by our online learning
algorithm up to a lead time of 4 days. Besides, the online learning algorithm provides
a spread correction as shown on the spread-skill diagrams and on the rank histograms.
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The results obtained for France production forecasts and plants forecasts are quite
similar.
Future work should investigate the generation of specialized experts on meteorological

regimes. For example, an expert specialized in clear sky production could improve the
forecasting capability of the ensemble. The quantiles are already specialized, but the
ensemble members from ENS and PEARP are converted to production using the same
model as for the control member. The investigation of weights prior may also be of
interest. The update rule ML-Poly does not use the value of the upcoming forecasts
xm,t for computation of the weights um,t, while weights prior may take this additional
information into account.

Appendix 5.A Results for France production

In this Appendix, we show the results for France production, while the results for the
individual sites are shown in Section 5.4. The results of France production forecasts
and plants forecasts are roughly similar. Our online learning algorithm provides im-
provements over the raw ensemble up to a lead time of a few days. Because it is easier
to forecast the power output of the total production, the forecast quality is better than
for individual sites. This statement is verified for all diagnostic tools shown below.
We show in Figure 5.8 the average bias, CRPS, MAE and RMSE for France produc-

tion. We see the scores of the sites are more than twice as large as the score of France
production, but for the bias. Our online learning algorithm provides improvement for
bias, CRPS, MAE and RMSE up to a lead time of 4 days.
The CRPS skill scores are shown in Figure 5.9. Once again, the score trends are

mostly equivalent to those obtained for the sites. The quantile ensemble from HRES
(quantile det ECMWF) has good scores for short lead times and the raw ensemble is
the best ensemble with uniform weights after 24 h of lead time. Our online learning
algorithm provides an improvement of roughly 10% over the raw ensemble for the first
24 h of lead time. This improvement decreases with time quickly than for the sites. It is
remarkable that the CRPS skill score of the quantile ensemble from Arpège (“quantile
det Arpège”) shows much better results for the plants than for France production.
Indeed the skill score of “quantile det Arpège” is around -15% for the plants and is
stable, while it is at least below -24% for France production. For days 5 and 6, the
weights brought by our algorithm do not vary much from the uniform distribution.
Consequently, the skill scores are close to one.
The following probabilistic diagnostic tools are only for 0900, 1200, and 1500 of day 2

(lead times 33, 36, 39 hours). In Figure 5.10, we compare the rank histogram for the
raw ensemble and our weighted forecast. The raw ensemble is largely under-dispersive
with a positive bias (over-estimation). Our online learning algorithm manages to reduce
the under-dispersion of the raw ensemble. This statement is verified on the spread skill
diagram in Figure 5.11. We see that the spread and errors of our weighted forecasts
match approximately, while the other ensembles (with uniform weights) are under-
dispersive with respect to their errors.
A correction of the forecast reliability is illustrated in Figure 5.12. The event “the

production level is lower than the average production” is used (same as for the sites).
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weighted forecast. The dotted line illustrates the ideal case of a flat rank histogram.

A visual inspection shows that the raw ensemble tends to underpredict the occurence
of low production for a forecasted frequency between 0.3 and 0.7, when the event is
likely to occur. Our weighted forecast does not show this tendency and is symmetrical
with respect to the first diagonal although not perfectly aligned.
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6 PV probabilistic forecasts with the
AROME high resolution forecasts

The high-resolution forecasting system AROME delivers dense spatio-temporal
information for short lead times. In this chapter, we generate numerous
PV forecasts using AROME solar radiation forecasts by leveraging multiple
statistical models and exploiting the available spatio-temporal information.
These forecasts are then combined with online learning techniques. We study
the calibration of the resulting forecasts and improve the calibration thanks
to additional quantile predictions. Finally, AROME forecasts are combined
with other forecasts from Météo France and ECMWF.

The work was jointly carried out with Clément Dolou, whose internship at EDF R&D
was supervised by the author of this PhD thesis and Christophe Chaussin.
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Figure 6.1 – Maps of solar radiation (in W m−2) for 2013-06-13 at 12:00 (UTC): HelioClim
real-time estimation (left), AROME forecast (center), ECMWF HRES forecast (right).

Besides Arpège, Météo France also provides for France the local model AROME,
designed to forecast severe weather events such as heavy rains in the south of France
[Sei+11]. AROME forecasts are operational since the end of 2008. Examples of solar
radiation maps are provided in Figure 6.1 for satellite estimations HelioClim, AROME
and the ECMWF deterministic forecast called HRES. We clearly see the differences in
resolution in the three maps. We recall that HRES data have a 3-h resolution while
AROME and HelioClim maps are shown here with a 1-h resolution. The weather
forecasting system AROME provides high-resolution forecasts with a 2.5-km spatial
resolution for our period of study in 2012-2013. In this chapter, we study how AROME
forecasts can be used to provide probabilistic forecasts of PV power. This question is of
interest for us for the following reasons. The high-resolution of AROME provides rich
spatio-temporal information. How can we exploit it? AROME forecasts are designed for
shorter lead times than those of HRES, ENS, Arpège and PEARP as used in Chapter 5.
How does the predicting performance of AROME compare with other weather forecasts?
Does using AROME forecasts as additional members improve the overall predicting
performance? We recall that HRES is the ECMWF deterministic forecast, ENS is the
ECMWF ensemble of forecasts, Arpège is a deterministic forecast from Météo France
at a coarser spatial resolution than AROME, and PEARP is the ensemble of forecasts
of Météo France based on Arpège.
For this study, we chose 10 power plants from the 219 power plants introduced in

Chapter 5. The 10 sites were chosen to test the methods on plants with large capacities
and to ensure a geographical coverage of metropolitan France. Compared to the study
of Chapter 5, only little changes are to be noticed. The study period still runs from
January 2012 to October 2013. Data are still shown after normalization by the plant
installed capacity and are consequently dimensionless. Climatological estimations are
still generated from a rolling period of 2 months. The statistical models providing
conversion between weather forecasts and production forecasts are again trained during
the period January 2012 to February 2013, and the remaining time of 2013 is our test
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period. AROME forecasts of the 00 UTC analysis are used. We work at the 30-
min temporal resolution with clear-sky interpolation of the solar forecasts. Statistical
models are built for each lead time (11:00, 11:30, 12:00, ...), which coincides with the
hour of the day in this chapter. The main differences with the previous case study are
the limited number of 10 sites, the limited lead time of 24 h, and the larger amount of
half-hourly models (not only 06:00, 09:00, 12:00, 15:00 and 18:00).
In the following, we introduce how we generate several forecasts thanks to AROME

high-resolution. These forecasts are then combined with ML-Poly and CRPS mini-
mization, which is the same online learning technique than previously.

6.1 Building an ensembles of forecasts from AROME
forecasts

PV models are trained using almost the same model as in Section 5.1 with only solar
radiation forecasts of AROME as input. A reference model is built with the following
features: (i) clear-sky normalization of PV power and solar radiation, (ii) smoothing of
solar radiation within a 100×100 km2 square, (iii) linear regression between normalized
PV production and solar radiation augmented with non-linear transformations such as
square root and square, and (iv) multiplicative bias reduction. The main difference
with Section 5.1 is that our reference model for AROME does not include seasonal bias
reduction, which failed to provide satisfactory results with AROME.

6.1.1 Leveraging the high spatio-temporal resolution

Spatial smoothing. First, we compare our reference forecasts against models us-
ing the almost same features but smoothing areas of 50 × 50 km2 and 25 × 25 km2.
The predictive performance of the 3 forecasts are compared against each other in Fig-
ure 6.2 for all sites and all lead time. The MAEs ∗ of the reference forecast beats the
50× 50 km2 forecast by less than 2%, and the 25× 25 km2 forecast by more than 4%.
Consequently, the smoothed area of 25× 25 km2 is too narrow for AROME to provide
accurate forecasts. We check in Figure 6.3 the difference between the forecasts time
series for three consecutive days with high production variability. Graphically we see
that all 3 forecasts are quite close from one another. Besides, for homogeneous fore-
casts during clear sky or very cloudy days, the 3 spatial averages are almost identical.
Strategies are described below to obtain a wider variety in the forecasts.
Nearby data in time and space. Since AROME may forecast the presence of a

cloud, but not at the correct time or location, an interesting way to leverage this spatio-
temporal information is to somehow translate it. For instance, we use the (normalized)
solar radiation forecasts for 11:30 as inputs in the 12:00 model to provide additional
forecasts for 12:00. We emphasize that this is not equivalent to simply using 11:30
power forecasts for 12:00. Thrice more forecasts than before are hence available thanks
to shifts of respectively +30 min and −30 min. Figure 6.4 shows the exact time and

∗. MAE = Mean absolute error of the forecasts ŷt compared to the observations yt, MAE =
1
T

∑T

t=1 |ŷt − yt| .
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Figure 6.2 – Comparisons of the predictive performance in MAE of the 100× 100, 50× 50 and
25× 25 km2 models.
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Figure 6.3 – Time series of the forecasts with smoothing areas of 100 × 100, 50 × 50 and
25× 25 km2 for one power plant.
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Figure 6.4 – Nearby experts using +30 min and −30 min solar forecasts.

+30 min and −30 min forecasts for several days. We see that the time-shifted forecasts
may make up for inaccurate forecasts of ramp events. This is especially true for the
second day in Figure 6.4. Yet, the mean production level and the amplitude of the
production variations are not correctly described at this point.
In a similar manner, space-shifted forecasts are built using spatial information. Be-

sides the spatial average of the region of averaging, the 0.25, 0.50 and 0.75 spatial quan-
tiles of the region are also used as inputs of the statistical model built with the average
solar radiation. In other words for the 100×100 km2 region, we sort the 40×40 = 1600
solar radiation forecasts of each 2.5 km. Then the median, the 0.25-quantile and the
0.75-quantile solar radiation values are picked to generate three additional production
forecasts. Another option would be to generate forecasts for all the grid-points of the
region, but this option is obviously too costly. We show for several consecutive days the
production forecasts corresponding to spatial quantiles in Figure 6.5. The mean fore-
cast is flanked by the spatial quantile forecasts. We see that this method may generate
forecast peaks, which illustrate the sharp spatial variations of AROME solar radiation.
Model parameterization. Our ensemble of forecasts already comprises

3 (smoothing areas)× 3 (time-shifted)× 4 (spatial estimates) = 36 forecasts, and yet
only 3 statistical models were built with different smoothing radii. We kept the 3
smoothing areas because the temporal and the spatial variations seen over the 3 areas
differ with the area extension. Depending on the power plant, forecasts focusing on
either small-scale or large-scale variations may be of higher interest. The following
configurations are also generated:
— Statistical model without clear sky normalization.
— Seasonal bias reduction, described in Section 5.1.
— Clear-sky model with timeshift-optimistic calibration. After clear-sky normaliza-

tion, we pick the normalized solar radiation in the 3 time-shifted estimates being
the closest to the normalized production to train the model. The motivation be-
hind is that such statistical model is presumably built with an artificially good
training data set, less sensitive to weather forecasts inaccuracies.
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Figure 6.5 – Nearby experts using the 0.25, 0.50 and 0.75 spatial quantiles of the region.

— Cross validation with training blocks of 5 days spaced with buffer blocks of 3 days
for a total of 8 training subsets.

A total amount of 336 forecasts are generated with all possible configurations de-
scribed above.

6.1.2 First sequential aggregation results with AROME
meteorological experts

For each lead time, the 336 forecasts are combined with ML-Poly in a similar way as
in Section 5.3.
A graphical check with time series. The raw ensemble (with uniform weights)

and the weighted ensemble are shown with prediction intervals in Figure 6.6 for France
production and also for one of the 10 sites. Four typical days are selected to illustrate
a wide variety of situations. The algorithm ML-Poly seems to handle quite nicely the
large amount of members. We note that France production appears much smoother
than the power plant production, even though France production is here the sum of
only 10 sites. For the single power plant production forecasts, strong variations may
appear from one time step to another, even though time-shifted experts reduce the
amplitude of these variations. Besides, the weighted ensemble seems at least to provide
a better estimation of the median of the PDF than the raw ensemble. Both raw and
weighted ensembles appear to be under-dispersed for these typical days.
Scores of the combination of AROME forecasts. The bias, MAE, RMSE and

CRPS of several forecasts are summarized in Table 6.1 for France production. Once
again, the bias of our weighted forecast is quite small, below 0.005. Compared to the
raw ensemble (with uniform weights), we show score improvements of 11% for the MAE
and the RMSE and 12% for the CRPS. Only little gain is achieved thanks to online
learning for MAE and RMSE against AROME reference forecast (1% for the MAE and
3% for the RMSE). We emphasize that our method proceeds to CRPS minimization
to generate probabilistic forecasts and not MAE or RMSE minimization for point-
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Figure 6.6 – Four typical days of AROME probabilistic forecasts (shaded gray): raw (a) and
weighted (b) forecasts for one power plant (above) and for France production (below). Produc-
tion observations are shown in red.
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Pond Raw Climato AROME Ref

Bias 0.002 0.013 −0.0 0.0
MAE 0.048 0.054 (−11%) 0.089 (−83%) 0.049 (−1%)
RMSE 0.062 0.069 (−11%) 0.110 (−76%) 0.064 (−3%)
CRPS 0.036 0.040 (−12%) 0.061 (−70%)

Table 6.1 – Forecasts daily scores (bias, MAE, RMSE and CRPS) of France production for our
weighted forecast (Pond), the raw ensemble (Raw), the climatological forecast (Climato) and
AROME reference forecast (AROME Ref). Score skills against our weighted forecast for France
PV power are indicated in parentheses. We emphasize that a skill of -10% means that the score
is 10% worst than the corresponding score of our weighted forecast.

forecasts. Similar results are more finely observed with the bias, MAE and CRPS
of each lead time for a single power plant and France production in Figures 6.7, 6.8,
and 6.9. We clearly see that AROME reference forecast and our weighted forecast
are amongst the best forecasts available. Interestingly, our weighted forecast provides
larger improvements against the raw ensemble around noon when the production and
level of errors are at their highest level.
Other probabilistic verification tools are shown below after additional members are

included in the ensemble.
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Figure 6.7 – Bias for each half-hour of our weighted forecast (Pond), the forecast with uniform
weights (Raw), the climatological forecast (Climato) and AROME reference forecast (AROME
Ref) for one power plant and for France production. All 336 forecasts scores are shown in gray.
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Figure 6.8 – MAE for each half-hour of our weighted forecast (Pond), the forecast with uniform
weights (Raw), the climatological forecast (Climato) and AROME reference forecast (AROME
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Figure 6.9 – CRPS for each half-hour of our weighted forecast (Pond), the forecast with uni-
form weights (Raw), the climatological forecast (Climato) for one power plant and for France
production.

6.1.3 Adding rolling quantiles experts

Until this point, the experts of our ensemble of forecasts are mainly built using
spatio-temporal information of AROME and several parameterizations of our statistical
model. The under-dispersion of the raw and the weighted ensemble encourages us to
improve our set of experts, by including new experts. This is why we include 2 × 10
quantile experts in this section using quantile regression (10 experts) and quantile
random forests (10 experts). These new experts are learned with rolling training periods
of 90 days in order to take advantage of the recent available information. We recall
that the previous models are static, trained on 13 months. We target the quantiles
α ∈ {0.05, 0.15, . . . , 0.95} which are optimal for ensemble CRPS minimization [Brö12].
The new quantile experts are learned by using the best former experts as input

variables. The former experts are ranked according to their average weight given by
ML-Poly during a period of 20 days in January 2013, corresponding to the end of the
training period. This criterion is chosen to define the added value of the expert for the
ensemble, and to realize a model selection. The 5 experts with highest weights are the
input variables to train quantile experts. The motivation behind is that we want to
improve upon the already good experts, instead of going again through the statistical
modeling process with the meteorological input variables. Also, the members with a
very low weight are assumed not to help the weighted forecast. Unnecessary experts
with very low weight are hence removed from the ensemble. This concerns about 40% of
the experts whose average weight is below 0.001. The daily CRPS of the raw ensemble
is improved by removing the least weighted members (6% gain for France production
and 4% gain in average for all sites). Further work may investigate the use of online
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learning algorithms to build additional quantile experts as in Gaillard et al. [GGN16].
Lasso-penalized quantile regression. Ten new experts are trained with Lasso-

penalized quantile regression, inducing sparsity in the model thanks to the L1-norm
regularization. In practice, a quantile expert of level α is obtained as a combination
(aαt )>xbest

t of the best members selected above and nonlinear transformations of these
experts (square, square root and inverse-logit). The parameters aαt are found through
minimization of a cost function:

aαd,h = arg min
b

 d−1∑
d′=d−90

QSα(b>xbest
d′,h , yd′,h) + λ||b||1

 . (6.1)

The notation QSα(x, y) refers to the quantile score of level α between the prediction
x and the observation y, see Equation 5.4. We adopt here the notation “(day=d,
hour=h)” instead of the regular “time=t” to emphasize that quantile experts are learned
independently for each half-hour of the day. The parameter λ of the regularization is
taken with the default value 0.50.
Quantile random forest. A major difference between random forests and quantile

regression is that regression trees resort exclusively to analogue searches, and do not
estimate linear or nonlinear effects of the input variables. Random forests [Bre01]
introduce randomization compared to regular binary regression trees. A large amount
of regression trees are built using random training subsets (500 for example). Besides,
only a random subset of the input variables are used at each node tree to find the
splitting rule. Given new inputs, the output is commonly the average over the trees of
the average value of the observations attached to the final leaf of each tree. Quantile
random forest [Mei06] enables to provide estimation of quantiles and not only the mean.
To do so, the past observations of the final leaves are gathered to construct a CDF,
from which a quantile is deduced.

6.2 Sequential aggregation results with AROME
statistically calibrated experts

6.2.1 Improvements with rolling quantile experts

We run the same experiment as described in Section 6.1.2, but with changes in the
set of experts. The previous weighted forecast is referred to as Pond.0, while the new
weighted forecast is referred to as Pond.1. The new ensemble comprises 3 subsets: the
remaining forecasts from AROME, quantile regression experts and quantile random
forest.
Half-hourly scores. The CRPS of each half-hour of the new ensemble and its

subsets are shown in Figure 6.10. We see that Pond.1 gives better scores than its
subsets, and quantile regression experts constitute the second best expert subset.
Average CRPS skill scores. The average CRPS skills against Pond.1 are summa-

rized in Figure 6.11. All subsets of the ensemble taken with uniform weights are beaten
by the weighted forecast Pond.1, by 5% for the quantile regression experts, 7% for
the raw ensemble, and above 11% for the quantile random forest experts and remain-
ing AROME experts. Besides, the score is improved by 7% compared to the previous
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Figure 6.10 – For the ensemble with rolling quantile experts, CRPS for each half-hour of our
weighted forecast (Pond.1), the forecast with uniform weights (Raw.1), the climatological fore-
cast (Climato), selected AROME forecasts (Ens.arome.1) quantile regression experts (Quan-
tile.Reg), and quantile random forest experts (Forest) for one power plant and for France
production.
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Figure 6.11 – Daily CRPS skill against our new weighted forecast: previous weighted forecast
with 336 members (Pond.0) and corresponding raw ensemble (Raw.0), current raw ensemble
with added quantile members and removed unnecessary experts (Raw.1), remaining AROME
experts (ens_AROME.1), quantile random forest experts (Forest) and quantile regression ex-
perts (Quantile.reg). Black squares indicate scores for France production and the score vari-
ability is computed with the 10 power plants.

weighted forecast without quantile experts Pond.0. The poor performance of quantile
random forest experts, especially for France production, may be due to an insufficient
amount of learning data (90 points). These scores and the weight distribution clearly
point out that the 20 quantile experts help the weighted forecast Pond.1. Indeed, the
weights given to the new experts are more than twice higher than the uniform weight
1/M for both quantile regression and quantile random forest experts.
Comparison of Pond.0 with Pond.1. Half-hourly skills of Pond.0 against Pond.1

indicate that our new setting does not improve the MAE, but slightly improves the
RMSE around 2%, and CRPS gains are much higher, up to 10%, see Figure 6.12.
Hence a major difference between Pond.0 and Pond.1 is the improvement of the spread
of the probabilistic forecasts, since the mean of the probabilistic forecast is only slightly
improved. A graphical verification of time series supports this statement. We clearly
see a spread correction between Pond.1 and Pond.0 in Figure 6.13. Now we check the
calibration of Pond.0 and Pond.1. The new weighted forecast shows a rank histogram
closer to a flat rank histogram, see Figure 6.14, mainly by reducing the height of the
outer bars. This is consistent with the increase of the forecast spread. Also, spread
skill diagrams of Pond.1 show a better agreement with the first diagonal than those of
Pond.0, thanks to the wider spread of Pond.1 in Figure 6.15. Reliability diagrams for
the event “the production is below the climatological median” of Pond.0 and Pond.1
appear to be quite similar in Figure 6.16. The forecast Pond.0 provides better reliability
for predicting events with probability below 0.4, and both forecasts tend to over-predict
the occurrence of low production with probability between 0.5 and 0.9.
We also investigated the effect of removing the unnecessary experts. The online

learning algorithm was run with all 336 + 20 experts. Interestingly, this weighted
combination gives very close results than the weighted combination where unnecessary
experts are removed (not shown). Consequently, the online learning algorithm handles
quite nicely a large amount of poor experts.
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Figure 6.12 – Hourly skill of the weighted forecast with 336 forecasts against the weighted
forecast computed rolling quantile experts for the MAE, RMSE and CRPS. Negative skills
indicate that better performance are reached thanks to the quantile experts.
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Figure 6.13 – Four typical days of AROME probabilistic forecasts (shaded gray): Pond.0 (a)
and Pond.1 (b) forecasts for one power plant. Production data are shown in red.
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Figure 6.14 – Rank histograms of Pond.0 (a) and Pond.1 (b), computed for the 10 sites and
France production for midday hours.
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Figure 6.15 – Spread skill of Pond.0 (red) and Pond.1 (black) for each site, computed for the
10 sites and France production for midday hours.
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(a) Reliability diagrams of Pond.0.
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(b) Reliability diagrams of Pond.1.

Figure 6.16 – Comparison of reliability diagrams between the weighted forecasts, computed for
midday hours for each site.

As a conclusion, we used the high-resolution of AROME forecasts to build a large
amount of forecasts and deliver probabilistic forecasts. We demonstrated that adding
rolling quantile members in the ensemble set improves the quality of the weighted fore-
casts, mainly for the CRPS thanks to adjustments of the ensemble spread. The online
learning algorithm proved its efficiency for the tasks of member selection and improv-
ing the calibration of probabilistic forecasts. Further work may investigate the best
ensemble of forecasts that one may build with AROME to provide perfectly calibrated
forecasts.

6.2.2 Comparison of AROME with other forecasts from
Météo France and ECMWF

We now combine the production forecasts introduced in the previous Chapters 5
and 6, from the weather forecasts Arpège, HRES, PEARP, ENS on the one hand and
AROME on the other hand. We compare four probabilistic forecasts:
— Pond.smooth derived from Arpège, HRES, PEARP, ENS and quantile forecasts

(at a coarser resolution than AROME) in Chapter 5.
— Pond.1 derived from AROME and quantile forecasts in the current Chapter 6.
— Pond.all whose set of experts is the union of the sets of expert of Pond.1 and

Pond.all.
— Raw.all the uniformly weighted ensemble of Pond.all.

We emphasize that the algorithm ML-Poly with CRPS gradients is again used to gener-
ate the weights of Pond.all. The study is restricted to the 10 PV power plants selected
above and the hour 12:00 UTC. Differences in previously shown score are due to the
selected hour of verification.
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Figure 6.17 – Bias, MAE and RMSE by power plant for the production forecasts from Arpège
(green), HRES (dark green), AROME (blue), Raw.all (red) and Pond.all (black). The sites are
labeled according to the MAE of Pond.all.

AROME Ref Arpège ECMWF

Skill MAE -9.8% -15.5% -7.5%
Skill RMSE -9.8% -20.2% -10.9%

Table 6.2 – Skill score against Pond.all of the three main deterministic production forecasts.

Comparison of deterministic forecasts. First, we compare the production fore-
casts derived from AROME, Arpège, HRES, Raw.all and Pond.all in Figure 6.17. We
recall that AROME reference forecast is described at the beginning of Section 6.1.
The bias of Pond.all is quite low, which is a frequent feature observed with weighted
combinations. Besides, for each power plant, the lowest MAE and RMSE is almost
always reached by Pond.all. The production forecast from Arpège shows the worst
performance in average especially for difficult situations, i.e. for sites with high MAE
and RMSE. The sites labeled 1 and 2 correspond to easy situations for Pond.all, espe-
cially since AROME forecasts show satisfactory results. The overall weights given to
AROME forecasts is indeed higher for these 2 sites than for the other sites (not shown).
Score skills against Pond.all are summarized in Table 6.2. The forecast Pond.all shows
score improvements of MAE and RMSE above 7.5% compared to HRES, 9% compared
to AROME.ref, and 15% compared to Arpège.
Comparison of probabilistic forecasts according to the seasonality and

the forecasted level of production. Secondly, we compare the weighted forecasts
Pond.1, Pond.smooth and Pond.all. For MAE, RMSE and CRPS, skill scores of Pond.1
and Pond.smooth are worst than -5% against Pond.all, see Table 6.4. The performance
of Pond.1 and Pond.smooth vary largely from one power plant to another as shown in
Figure 6.18. Indeed, the MAE, RMSE and CRPS of Pond.1 and Pond.smooth show a
relative difference higher than 10% for the sites 2 and 4, but Pond.1 beats Pond.smooth
at site 2 and Pond.smooth beats Pond.1 at site 4. The scores of Pond.all are almost
always lower than those of Pond.1 and Pond.smooth. Hence merging all forecasts
improves the weighted forecasts in a wide variety of situations. This statement is
supported by the MAE depending on the seasonality and forecasted level of production
in Table 6.3. The detailed comparison of Pond.1 and Pond.smooth highlights specific
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regimes. During the spring period, we see that it is much harder to forecast correctly
for the sites 3-10 than sites 1-2. For the sites 1 and 2, a high level of production is
more often forecasted and Pond.smooth is the worst forecast. However, a different
regime is observed for the other sites 3-10, where Pond.1 provides better results than
Pond.smooth for high level of forecasted production between February and May, but
not for low level of forecasted production. Interestingly the converse is observed during
summer where Pond.smooth provides much better results than Pond.1 for high level
of forecasted production. Although Pond.all is seldom the best forecast with a large
margin, Pond.all is very often amongst the best forecasts within a 0.003 MAE margin,
which validates its robustness. The only exception concerns the sites 1 and 2 for high
level of production during late winter and spring, where Pond.1 clearly beats Pond.all.
The online learning algorithm helps once more to improve the rank histogram of the

weighted forecast against the raw forecast, as one can see in Figure 6.19. The added
value of the online learning algorithm is also noticeable on the score gains above 4%
for the RMSE, 5% for the MAE and 8% for the CRPS, when comparing Pond.all and
Raw.all.
Best minimal ensemble subset. To conclude this analysis, we study the best min-

imal ensemble subset that compares favorably against Pond.all. The online learning
experiment was run several times with subset ensembles. We excluded the ensem-
bles PEARP and ENS from this analysis, because we want to show the achievable
performance of a weighted forecast using only deterministic forecasts and their re-
lated quantile forecasts. The following four subsets were tested {AROME, HRES,
ARPEGE}, {AROME, HRES}, {AROME, ARPEGE}, {HRES, ARPEGE}. In other
words, adding PEARP and ENS members in the subset {AROME, HRES, ARPEGE}
generates the full ensemble of the members that was used for Pond.all, or adding
PEARP and ENS members in the subset {HRES, ARPEGE} generates the ensem-
ble used for Pond.smooth. The weighted forecasts from the subsets {AROME, HRES,
ARPEGE} and {AROME, HRES} provide very similar results than Pond.all. We found
a relative difference inferior to 1% in terms of MAE, RMSE and CRPS between these
three weighted forecasts. Consequently, the weather forecasts AROME and HRES seem
sufficient to predict as accurately as possible PV power production. Indeed, including
information from Arpège, PEARP and ENS does not improve the quality of the fore-
casts. We note again that adding unnecessary members do not degrade the forecast
quality of the weighted ensemble. Other weighted forecasts generated without HRES
or without AROME show lower prediction skills, but their performance are still quite
close to those of Pond.all. Indeed, we find relative score differences below 8% in terms
of MAE, RMSE and CRPS.

6.3 Discussion and perspectives

Probabilistic PV power forecasts are built with the high-resolution weather fore-
casts AROME. First, multiple forecasts were generated to take advantage of the rich
spatio-temporal information of AROME. Secondly, we added rolling quantile forecasts
in our ensemble thanks to quantile regression and quantile random forests. These fore-
casts were combined with online learning techniques so as to minimize the CRPS. We
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MAE for sites 1-2
Pond.1 Pond.smooth Pond.all Number of points

Feb-May level>0.6 0.055 0.058 0.055 68
Feb-May level<0.6 0.087 0.108 ∗ 0.090 132
May-Oct level>0.6 0.068 0.067 0.066 203
May-Oct level<0.6 0.117 ? 0.150 ∗ 0.125 59

MAE for sites 3-10
Pond.1 Pond.smooth Pond.all Number of points

Feb-May level>0.6 0.086 0.091 ∗ 0.085 177
Feb-May level<0.6 0.146 ∗ 0.139 0.135 ? 583
May-Oct level>0.6 0.079 ∗ 0.062 0.064 556
May-Oct level<0.6 0.135 0.143 ∗ 0.132 484

Table 6.3 – MAE according to seasonality and forecasted level of production of Pond.all. The
asterisk ∗ and the star ? respectively indicate the worst and best score by line. These signs are
attributed in case of a clear score difference (above 0.003) .
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Figure 6.18 – MAE, RMSE and CRPS of the weighted forecasts Pond.1 (blue), Pond.smooth
(green), Raw.all (red) and Pond.all (black). The sites are labeled according to the MAE of
Pond.all.

Raw.all Pond.1 Pond.smooth

Skill MAE -5.6% -5.2% -5.3%
Skill RMSE -4.7% -5.7% -6.2%
Skill CRPS -8.2% -7.8% -6.8%

Table 6.4 – Skill scores of the probabilistic forecasts against Pond.all.
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Figure 6.19 – Rank histograms of Raw.all (a) and rank histogram of Pond.all (b).

showed that statistically calibrated members provide a help in the calibration com-
pared to purely meteorological members. Indeed, the rolling quantiles greatly help the
calibration of the weighted forecast, even though little improvement is brought to the
MAE and the RMSE. We also studied the predictive power of the weighted forecasts
including Arpège, AROME, HRES, PEARP and ENS data. We showed that using
multiple weather forecasts improves the weighted combination. A minimal subset en-
semble of HRES and AROME forecasts proved to deliver accurate forecasts. The online
learning algorithm proved to be a serious advantage in the forecast calibration. Indeed,
the weighted forecast showed improved calibration compared to its raw ensemble in all
cases shown above.
Further work may investigate the calibration of the probabilistic PV forecast with

only AROME in order to avoid forecast peaks. Providing an in-depth analysis of the
predictive power of the weighted combination using only HRES and AROME data may
be of independent interest. An ensemble built with specialized experts based on mete-
orological regimes could take benefits from the multiple weather forecasts. This raises
the questions of which weather forecast and which quantile should be emphasized and
under what circumstances. In an other setting, we also could combine solar radiation
forecasts first with HelioClim maps or ground data as observation, and then convert
the improved solar forecasts to production forecasts. This is left for future research.
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7 PV probabilistic forecasts with
intraday updates for insular systems

Operational forecasts of Corsica and Réunion include intraday updates of
the forecasts with satellite-derived forecasts. These forecasts do not use in-
traday PV power observations, but only satellite information. We wish to
go one step further to improve insular systems PV power forecasts by: (i)
generating new predictions with intraday PV power observations, (ii) com-
bining these newly built forecasts with day-to-day predictions and satellite
predictions. We show that these new predictions greatly help to improve the
quality of the forecasts, and we estimate the accuracy improvement brought
by satellite data.
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The insular electric systems of Corsica and Réunion are under the responsability of
EDF-SEI. According to the 2016 yearly report on insular electricity production from
EDF ∗, the install PV capacity in Réunion and Corsica are respectively of 187 MWc
and 117 MWc, covering respectively 8.50% and 6.60% of the total production of each
island. No interconnection is available for Réunion while Corsica is only connected
to Italy. Consequently, the stability of these electric systems may largely suffer from
inaccurate PV power forecasts. Réunion and Corsica are two different situations. It
is easier to forecast for Corsica, which receives from many clear sky days, while Réu-
nion weather is subject to numerous micro-climates and tropical atmospheric dynamics
[LLD16; Bad+15].
In this chapter, we intend to build seamless probabilistic forecasts using operational

satellite forecasts and day-to-day forecasts for the total production of each island. Fore-
casting solar radiation with satellite images is not a new idea [Ham+99], for example
tested with HelioClim data [Dam+14]. Besides, combinations of satellite and day-to-
day forecasts were found in Lorenz et al. [LKH12], but not for probabilistic forecasting
and not with an online learning algorithm. We focus on lead times between 30 min and
several hours to bridge the gap between day-to-day forecasts and satellite forecasts, at a
30-min temporal resolution. The operational forecasts may be biased and not correctly
calibrated, hence we generate new forecasts using real-time production data and the
available forecasts. We emphasize that we rely on a stronger assumption than opera-
tional forecasts: the availability of real-time production data. We show that real-time
updates make it possible to improve greatly the prediction accuracy compared to day-
to-day forecasts. Online CRPS learning is used again to built forecasts combinations.
For very short lead times, the challenge is to beat the persistence forecast, which is the
projection at time t − ∆t of the latest available production data yt−∆t to time t, by
taking into account the clear sky evolution:

ŷpersistence(t) = y(t−∆t)× Pcc(t)
Pcc(t−∆t) ,

where Pcc(t) is the clear sky production profile for time t.

7.1 Intraday PV updates experimental setup

7.1.1 Operational forecasts

Satellite forecasts of PV power are already operational, using data from the satellite
Meteosat 10 for Corsica and Meteosat 7 for Réunion (soon replaced by Meteosat 8).
The images are available every 15 min at a 3-km resolution for Corsica for both the
visible and infrared spectrums. For Réunion, the resolutions of 2.50 km are available
for visible images and 5 km for infrared images every 30 min. We now describe how
these images are processed to deliver PV power forecasts. The procedure is applied at
over 130 production sites in Réunion and over 20 production sites in Corsica. The total
production of each island is the sum of the production of these sites.

∗. https://one.edf.gp/sites/default/files/SEI/Panorama%20des%20ENR/panorama_enr_
corse_et_outre-mer_2015.pdf
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Albedo images from the visible spectrum are transformed into cloud indices after
scaling:

cloud index = albedo − albedomin
albedomax − albedomin

,

to clear the images from information on the ground state and on the hour of the day.
The extreme albedomin and albedomax are found with the 3% and 97% quantiles of the
30 previous days. For morning forecasts up to the solar elevation angle of 5◦, infrared
images of brightness temperature are used. Brightness temperature is the temperature
of a black body with the same radiation intensity for this bandwidth. Infrared images
are not processed to derive a cloud index.
The forecasting procedure resorts only to image processing and statistical learning

but no physics. One statistical model for each site and for each month is trained with
spline regression between production data and the pixel of the site in real-time images.
In the model, the output production data are normalized by a clear sky profile. We
emphasize that the same model with visible images is used for several hours of the
day and all lead times. PV power forecasts are generated with these statistical models
and cloud index forecasts that we now describe. First, a block-matching algorithm is
applied to the last two cloud index images to estimate the cloud motion. Secondly, the
cloud motion estimation defines a zone of interest in the last image. The average pixel
value of the zone of interest gives the forecasted cloud index. The zone of interest is a
triangle with one vertex at the site location and a 20◦ angle. The triangle direction is
the upstream cloud motion and its height is set by the lead time and the cloud motion
speed.
We emphasize again that the operational satellite forecasts uses real-time data from

satellites but no real-time PV power observations. Production data are not perfectly
reliable, because data transmission from production meters to grid operators may fail.
Operational day-to-day production forecasts are also available. They rely on solar

radiation, total cloud cover and 2-m temperature HRES forecasts from ECMWF of
the 00 UTC analysis. Statistical models are built to deliver a deterministic production
forecast using ECMWF data and quantile predictions associated with the deterministic
forecast. These statistical models are similar to those of Chapter 5.
In the following, the operational satellite forecast is referred to as “prevsat” and the

operational HRES forecast is referred to as the day-to-day forecast or “prevenir”.

7.1.2 Building new forecasts with intraday updates

As in Chapter 6 with AROME forecasts, we generate rolling quantile predictions
with Lasso-penalized quantile regression and quantile random forests. These quantile
forecasts are trained with 5 major input variables:
— the last production forecast from either “prevenir” or “prevsat”,
— the last production data available,
— their corresponding cumulated value over the current day to indicate the average

level of production and forecast for this day,
— the production data of the same hour of the previous day.
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Name Description

Pond weighted forecast
Raw raw ensemble with uniform weights
prevenirQ quantile day-to-day forecasts
qr_prevsat rolling quantile regression with satellite forecasts
qrforest_prevsat rolling quantile random forests with satellite forecasts
qr_prevenir rolling quantile regression with day-to-day forecasts
qrforest_prevenir rolling quantile random forests with day-to-day forecasts

Table 7.1 – Summary of probabilistic forecasts in the set of experts.

Past day production data is especially interesting to predict very low level of production
during sunrise and sunset. The statistical models use normalized data by a clear sky
production profile, and the cumulated values are normalized by a cumulated clear sky
profile. We generate models for each lead time and each half-hour of the day with a
rolling training period of 3 months. For quantile regressions, nonlinear transformations
(square, square root and inverse logit) of the 5 major input variables are included in
the model to reach the total of 20 input variables.
A total of 60 new forecasts are generated with 15 level of quantiles, 2 statistical

methods (quantile regression and random forests) and 2 input variable sets (day-to-day
and satellite forecasts). Larger training sets are obtained with available data of nearby
half-hour of the day. For instance, the (12:00 UTC, 1-h lead time) model is trained
with the data initially gathered for the (11:30 UTC, 1-h lead time), (12:00 UTC, 1-h
lead time) and (12:30 UTC, 1-h lead time) models.
In the full ensemble of experts, the following 82 forecasts are present:
— 1 deterministic satellite forecast “prevsat”,
— 1 deterministic day-to-day production forecast “prevenir” and 19 corresponding

(non-rolling) quantiles “prevenirQ”,
— 60 rolling quantiles introduced in this section,
— 1 persistence forecast “Persistence”.

The forecasts are summarized in Table 7.1 with notation for each subensemble. Cli-
matological productions (Climato) are also shown in the figures to illustrate the gain
brought by forecasts.

7.1.3 Online learning experiment

The data sets range from May 2014 to June 2015 for Corsica and from Septem-
ber 2015 to September 2016 for Réunion. The online learning experiment starts at
the beginning of these periods. The test periods begin 3 months later due to first
rolling period. The satellite statistical models are trained in 2010-2011 for Réunion
and 2013-2015 for Corsica. The day-to-day statistical models are trained in 2012-2014
for Réunion and from 2012 to June 2015 for Corsica. Our experiment is therefore not
fully operational since the training and the testing periods of “prevsat” and “prevenir”
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overlap for Corsica. We show that the rolling quantile predictions are critical to improve
the forecast accuracy. Since the rolling quantile predictions do not have any overlap
between training and testing, we think that the conclusions of this chapter are rather
robust.
We use the algorithm ML-Poly with CRPS gradients, as in Chapter 6 and 5. The

weights were initially updated once per day for each lead time and half-hour of the day.
As an example the weight of the mth member with 30-min for the 12:00 UTC PV pro-
duction of day d that we note here um,12:00,+30min,d was updated to um,12:00,+30min,d+1
after y12:00,d is received. Because the testing periods last less than a year, we use a trick
for the weights to see more data. For a fixed lead time, the available data of nearby
half-hour the day also produce a weight update. For instance, the observations and
the forecasts of 1-h lead time of 11:30 UTC, 12:00 UTC and 12:30 UTC contribute to
the update of the (12:00 UTC, 1-h lead time) weights. This setting is still operational
because the weight updates can be achieved at the end of each day. The weighted
combination of the forecasts is referred to as the weighted forecast.

7.2 Results

7.2.1 Time-series, spread and weights

Time-series of the weighted forecasts of Réunion and Corsica are shown in Figure 7.1
and 7.2. The day-to-day forecasts are also shown to illustrate their large spread and
their smooth aspect. The error and the spread of the weighted forecasts increase with
the lead time, hence more accurate forecasts are delivered for short lead times. Pro-
duction sharp variations affect the weighted forecasts after the delay corresponding to
the forecast lead time. The forecasts sharp variations are due to the rolling quantile
forecasts and not to the weight updates, which occur at the end of the day.
The evolution of the probabilistic forecasts spreads in Figure 7.3 clearly indicates the

level of uncertainty associated to each subensemble. For short lead times, the spread of
rolling quantile forecasts is quite small thanks to the production data within the model
inputs. For long lead times of a few hours, the spread of satellite-based forecasts are
much larger than the spread of day-to-day forecasts, providing hints on the predictive
power of satellite-derived forecasts for such long lead times. We also observe that
quantile random forests deliver forecasts with larger spread than quantile regression
while the same model inputs were used, and that probabilistic forecasts have a larger
spread for Réunion than for Corsica. Besides, the raw ensemble shows quite a large
spread, compared to those of our weighted forecast.
The average weight given to each member according to the lead time highlights the

predictive power of the subensembles, see Figure 7.4 for Réunion and Figure 7.5 for
Corsica. The small spread of the weighted ensemble at short lead times is due to the
high weights given to forecasts with small spread, i.e. rolling quantile predictions. The
weights given to the day-to-day forecasts increase with lead time, while the weights of
the persistence forecast decrease with the lead time. This illustrates a trade-off between
daily weather information and production information. The forecasts resulting from
quantile random forests often receive lower weights for their extreme quantiles. This
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Figure 7.1 – Time series of our weighted probabilistic forecast for 3 consecutive days for Réunion
PV production (observation in red). The differences in the time series of intraday lead times
of 3 hours, 1 hour and 30 minutes show the evolution of the forecast sharpness and precision.
The day-to-day forecast (above) does not benefit from intraday updates.
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Figure 7.2 – Time series of our weighted probabilistic forecast for 3 consecutive days for Corsica
PV production (observation in red). The differences in the time series of intraday lead times
of 3 hours, 1 hour and 30 minutes show the evolution of the forecast sharpness and precision.
The day-to-day forecast (above) does not benefit from intraday updates.
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Figure 7.3 – Evolution of the average spread of probabilistic forecasts with the lead time for
Réunion (left) and Corsica (right). Morning and evening data are not included in these spread
averages.

may be due to the larger spread observed for quantile random forest subensembles.
Moreover, satellite-derived forecasts receive higher weights for Corsica than for Réunion.
To conclude this analysis, we note that quantile regression forecasts are more prone to
receive lower weights than quantile random forest forecasts, while the former exhibit
better performance than the latter. We also highlight the difficulty to interpret the
average weights of one forecast, because they heavily rely on the behaviour of the other
members. For example, 2 median forecasts with similar quality may either share the
overall weight that would have been attributed if only one median forecast is present
in the ensemble, or one median forecast may prevail over the other one, the latter
receiving a very low weight compared to the former.

7.2.2 Probabilistic forecasts performance and calibration

Results for the 30-min lead time. We now focus on the scores obtained for the
30-min lead time, when satellite forecasts are possibly at their best, see Figure 7.6
and 7.7. Rolling quantiles, using real-time production, obviously predict much better
than the initial forecasts, both satellite and day-to-day forecasts. This is verified for
the rolling subensembles with the CRPS and for the rolling median quantiles for the
MAE. We note the difficulty to beat the persistence forecast for this short lead time,
while it is part of the rolling median inputs. The large MAE of the satellite forecast
“prevsat” in the morning at Réunion (worst than climatology) are due to large biases
in the forecasts. Moreover, the satellite forecasts at Corsica are not better than day-to-
day forecasts for midday hours. The fact that a single model is used for all half-hours of
the day may explain the poor performance of “prevsat”, and supports our motivation
to build models for each half-hour. Besides, the high weights given to satellite-derived
quantile forecasts at Corsica encourages us not to drop satellite forecasts, but supports
the need to improve the initial forecast “prevsat”. Our weighted ensemble is amongst
the best forecasts, but is beaten in MAE by the persistence forecast at Réunion.
Score daily averages. Daily scores are average scores over all half-hours weighted
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Figure 7.4 – Weight boxplot of each member according to the lead time for Réunion. The
boxplot bounds are the first and third quartiles. Morning and evening data are not included in
these weight averages.

157



3-h lead time

1 7 14 22 30 38 46 54 62 70 78

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Member index

W
ei

gh
t

prevenirQ
qr_prevsat
qrforest_prevsat
qr_prevenir
qrforest_prevenir
Persistence

prevsat
prevenir

1-h lead time

1 7 14 22 30 38 46 54 62 70 78

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Member index

W
ei

gh
t

prevenirQ
qr_prevsat
qrforest_prevsat
qr_prevenir
qrforest_prevenir
Persistence

prevsat
prevenir

30-min lead time

1 7 14 22 30 38 46 54 62 70 78

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Member index

W
ei

gh
t

prevenirQ
qr_prevsat
qrforest_prevsat
qr_prevenir
qrforest_prevenir
Persistence

prevsat
prevenir

Figure 7.5 – Weight boxplot of each member according to the lead time for Corsica. The boxplot
bounds are the first and third quartiles. Morning and evening data are not included in these
weight averages.
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Figure 7.6 – MAE (top) and CRPS (bottom) half-hourly scores for 30-minute lead time at
Réunion. The MAE of all individual forecasts are shown in gray.
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Corsica. The MAE of all individual forecasts are shown in gray.
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by the mean observation as introduced in Equation 5.10. Our weighted forecast ranks
first for almost all lead times and scores. As expected, the quality of the forecasts gets
worse with increasing lead time, see Figures 7.8, 7.9, 7.10 and 7.11. The higher difficulty
of forecasting for Réunion is seen with the scores of the weighted forecast. The MAE
for Réunion lies between 0.029 (30 min) and 0.057 (3 h), while the MAE for Corsica
lies between 0.021 (30 min) and 0.046 (4 h), producing a score relative difference above
20%. The satisfactory performance of the persistence forecast is tempered by its poor
quality for lead times longer than 90 min.
The satellite-derived quantile forecasts “qr_prevsat” are better suited for short lead

times, especially for Corsica where they largely beat “qr_prevenir” and “qrforest_prevenir”
quantile forecasts deriving from day-to-day forecasts (about 10% better). However, they
show worst performance than day-to-day forecasts (with no updates) for lead times
longer than 2 h in both Réunion and Corsica. In fact, day-to-day forecasts are amongst
the best forecasts for long lead times, because little information is added from observa-
tions dating from several hours earlier. Interestingly, quantile regressions “qr_prevenir”
and “qr_prevsat” provide respectively better results than the corresponding forecasts
with quantile random forests, but they receive lower weights than their random forests
counterparts.
The raw ensemble is always amongst best forecasts in terms of CRPS, but not for

the MAE especially for short lead times. Consequently, including day-to-day forecasts
in the ensemble set seems to degrade the distribution mean, but to improve the dis-
tribution spread for short lead times. In other words, the raw ensemble takes benefits
from the large ensemble spread of day-to-day forecasts for the CRPS but not for the
MAE, which depends only on the ensemble mean.
For Corsica at intermediate lead times of 120 min and 180 min, we observe noticeable

effects of model blending since the raw ensemble and the weighted forecasts have better
scores than other forecasts. These high gains may be due to the high diversity between
the individual forecasts. Although it is difficult to show causality, we highlight the
correlation between these two facts through the higher difference in Corsica between
rolling quantile forecasts from day-to-day and satellite data. We checked the average
absolute difference between the median quantiles of “qr_prevenir” and “qr_prevsat”,
and found that this average absolute difference is twice higher for Corsica than Réunion
for the lead time of 30 min and 30% higher for the lead time of 3 h.
Added value of satellite information. In order to assess the utility of day-to-day

and satellite forecasts, we run the online learning experiment on two ensemble subsets,
either using satellite information or day-to-day forecasts. The persistence forecast is
included in each subset. The first subset comprises “prevsat”, “qr_prevsat”, “qrfor-
est_prevsat” and “Persistence”, while the second subset comprises “prevenir”, “pre-
venirQ”, “qr_prevenir”, “qrforest_prevenir” and “Persistence”. The weighted forecast
without satellite information is referred to as “Pond.prevenir” and the weighted forecast
without day-to-day forecasts is referred to as “Pond.prevsat”. Results are shown in Fig-
ure 7.12. For Réunion, we find that satellite forecasts do not bring a significant amount
of information since very similar forecasts are obtained with and without them. On the
contrary, satellite forecasts are quite useful for Corsica. Indeed, they allow a 10% gain
up to 2 h of lead time against the weighted forecast “Pond.prevenir” (without satellite
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Figure 7.8 – Evolution of the MAE with lead time for all half-hours at Réunion, net values
(left), skill scores against the weighted forecast (right).
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Figure 7.9 – Evolution of the MAE with lead time for all half-hours at Corsica, net values (left),
skill scores against the weighted forecast (right).

information). Besides for Corsica, the weighted forecast without satellite information
“Pond.prevenir” takes advantage of the persistence forecast for short lead times, which
demonstrates once again the importance of real-time PV power observations for short
lead times.
Probabilistic forecasts calibration. The calibration of the weighted forecasts and

the raw ensemble are now checked to validate the help brought by the online learning
algorithm. Rank histograms are shown in Figure 7.13. We see that the weighted fore-
casts have much flatter rank histograms, compared to the over-dispersed raw ensemble.
This statement is especially true for short lead times. Yet, our weighted forecasts show
a light under-dispersion, clearly seen at the outer bars. Including a finer description of
the rolling quantiles (61 quantiles instead of 15 quantiles) did not improve the weighted
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Figure 7.10 – Evolution of the CRPS with lead time for all half-hours at Réunion, net values
(left), skill scores against the weighted forecast (right).
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Figure 7.11 – Evolution of the CRPS with lead time for all half-hours at Corsica, net values
(left), skill scores against the weighted forecast (right).
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Figure 7.12 – CRPS skills of the weighted forecasts with restricted subsets for Réunion (left)
and Corsica (right) against Pond.all (the weighted forecast with all members).

forecast calibration (not shown).
The spread-skill diagrams validate many aforementioned statements from the rank

histograms, from the evolution of the spread and from the evolution of the scores with
the lead time. We see the strong error increase between the lead times of 30 min and 3 h
for several level of errors in Figure 7.14. Here the over-dispersion of the raw ensemble
is exposed, especially for short lead times. The light under-dispersion of our weighted
forecast concerns small level of errors for Réunion, while an over-dispersion of our
weighted forecasts is revealed for large levels of errors at Corsica. The improvements
brought by online learning are clearly demonstrated, since the spread-skill diagrams of
our weighted forecasts match better the first diagonal. The case of Réunion at long
lead times mitigates this statement.
We conclude this analysis with reliability diagrams for the event “production is be-

low the climatological production”. They show satisfactory agreement with the first
diagonal, especially for long lead times in Figure 7.15. The questionable reliability of
our weighted forecast for short lead times may be due to the tighter spreads of the
subensembles.

Conclusion and perspectives

Probabilistic PV power forecasts were built for Réunion and Corsica for lead times of
30 min to several hours. They relied on multiple forecasts based on day-to-day forecasts,
satellite forecasts and real-time PV power observations. The multiple forecasts were
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Figure 7.15 – Reliability diagrams of the raw ensemble (red) and weighted ensemble (black) for
midday hours: 30-min lead time Réunion (top left), 3-h lead time Réunion (top right), 30-min
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combined with an online learning algorithm to calibrate the weighted forecast, which
outperformed almost always the individual forecasts. Consequently, we have shown
that sequential aggregation enabled a seamless blending of the multiple sources of
information for each lead time. For short lead times, the large improvement of the
forecast quality was due to the rolling quantiles estimated with real-time production
data. Satellite information proved to be very useful for Corsica, especially below 2 h of
lead time. In contrast, we did not identify a gain brought by satellite information for
Réunion.
Further work may focus on statistical modeling of satellite data. Indeed, the single

statistical model used for all hours and lead times could be refined. Improved per-
sistence forecast with ARMA (autoregressive moving average) models could also be
of interest to quantify the gains brought by satellite data. Such study may include
the identification of scenarios where satellite information demonstrates its value over
time series analysis of production data. Furthermore, probabilistic forecasting of ramp
events as already achieved for wind power in Bossavy et al. [BGK13] or in the review
Gallego-Castillo et al. [GCL15] would give new indicators to grid operators, going be-
yond the confidence intervals of each half-hour of the day. Additional studies could
also investigate other information sources such as AROME very short term forecasts
(updated every hour) or sky cameras data.

Appendix 7.A Empirical results of quantile-weighted
scoring rules with real-world data

Quantile weighted scoring rules, introduced in Chapter 4, offer an alternative to
the CRPS. They allow higher focus on either the distribution tails or the distribution
center. Examples of quantile-weighted scores are shown in Table 7.2, with the notation
of Chapter 4. In this appendix, we provide empirical results on quantile-weighted
scoring rules with real-world data. We focus on the data set of Réunion, because
similar results were found for Corsica and for the data set mixing ECMWF, AROME
and other Météo France forecasts of Chapter 6.
First, we investigate whether similar results are obtained with the quantile-weighted

scoring rules described in Table 7.2. In the remaining of this thesis, the CRPS is
the main score for probabilistic forecasts evaluation. Hence we wish to know whether
the same conclusions may be drawn with other evaluation tools. Skill scores against

ω(α) Score S(G, y)

(α(1− α))−1 −
∫
Hy lnG + (1−Hy) ln(1−G) (CRIGN)

(α(1− α))−1/2 ∫
Hy arcsin(

√
1−G) + (1−Hy) arcsin(

√
G)−

√
G(1−G) (arcsin-CRPS)

2
∫

(Hy −G)2 (CRPS)
α(1− α)

∫
Hy( (1−G)3

3 − (1−G)4

4 ) + (1−Hy)(G3

3 −
G4

4 ) (cubic-CRPS)

Table 7.2 – Example of quantile-weighted scores S(G, y) with weighting functions ω. We plateau
the log terms in the CRIGN to -log(0.001) (rounded to 6.908) to avoid infinite-valued scores.
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Figure 7.16 – Skill scores against our weighted forecast Pond for the cubic-CRPS, the CRPS, the
arcsin-CRPS and the CRIGN. The subensembles Raw (top), “qr_prevenir” with 15 quantiles
(bottom left) and “qr_prevenir” with 61 quantiles (bottom right) are evaluated.

our weighted forecasts Pond are shown for several quantile-weighted scoring rules in
Figure 7.16 for the Réunion data set. Only little variation is noticed in the skill scores of
the raw ensemble, whatever the chosen evaluation metrics. This results is an indicator
of the robustness of the results obtained with the CRPS. In the skill scores of the
subensemble “qr_prevenir”, we find a difference up to 10% between the evaluation
with the cubic-CRPS and with the CRIGN, indicating that the subensemble provides
a better description of the distribution central quantiles than the distribution tails.
A better discretization of the distribution tails of “qr_prevenir” mainly improves the
CRIGN skill score. This is shown by increasing the subensemble size to 61 quantiles
instead of the initial 15 quantiles. Increasing the subensemble size also decreases the
difference in the skill scores between the CRIGN and the cubic-CRPS to 5%. As already
mentioned, we did not find any advantage of running sequential aggregation algorithms
with 61 rolling quantiles in each sub ensembles.
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Evaluation CRPS
Optimization CRPS arcsin-CRPS CRIGN

0.50 h 0.0213 0.0213 0.0214
1.00 h 0.0287 0.0288 0.0290
1.50 h 0.0332 0.0333 0.0337
2.00 h 0.0365 0.0368 0.0372
2.50 h 0.0390 0.0393 0.0397
3.00 h 0.0409 0.0410 0.0415

Evaluation arcsin-CRPS
Optimization CRPS arcsin-CRPS CRIGN

0.50 h 0.0267 0.0266 0.0266
1.00 h 0.0355 0.0355 0.0357
1.50 h 0.0409 0.0410 0.0414
2.00 h 0.0450 0.0452 0.0457
2.50 h 0.0481 0.0483 0.0487
3.00 h 0.0504 0.0504 0.0510

Evaluation CRIGN
Optimization CRPS arcsin-CRPS CRIGN

0.50 h 0.0733 0.0727 0.0726
1.00 h 0.0965 0.0962 0.0967
1.50 h 0.1115 0.1112 0.1122
2.00 h 0.1226 0.1226 0.1236
2.50 h 0.1313 0.1313 0.1322
3.00 h 0.1381 0.1374 0.1387

Table 7.3 – Daily averages of quantile-weighted scores according to the optimization criterion
and the lead time.

Secondly, we run online learning experiment with gradients of quantile-weighted
scores as loss function. We recall that these gradients are introduced in Section 4.1.2.
We generate new weighted forecasts based on the optimization of the arcsin-CRPS and
the CRIGN. The algorithm ML-Poly is run because it is parameter-free and its weight
update scales well with the order of magnitude of the loss. For the CRIGN gradients,
the terms 1/(α(1−α)) are clipped between between 4 and 20. Consequently, quantiles
of order below 5% and above 95% are equally weighted by the weighting function ω.
Without surprise, we found differences in the weights of each member depending on the
loss function, but without significant impact on the weighted forecast. Indeed, weighted
forecasts learned with the CRPS, the arcsin-CRPS or the CRIGN show relative score
differences below 1% in terms of CRPS, arcsin-CRPS and the CRIGN, as indicated in
Table 7.3. Other evaluation tools such as the rank histogram or the reliability diagram
did not help us to discriminate the weighted forecasts.
As a conclusion, the results of this Appendix are mainly robustness of the results in

favor of the CRPS for both evaluation and learning. Indeed, the comparison of the raw
ensemble against the weighted forecast (learned with the CRPS) indicates similar skill
scores for various performance metrics. Besides, online learning with the CRPS, the
arcsin-CRPS and the CRIGN provided very similar weighted distributions. Further
study should investigate a wider range of data sets, concerning for example extreme-
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value verification with quantile-weighted scores focusing on the distribution tails. Score
sensitivity to correct quantile estimation is another direction for future research as well
as the impact of the ensemble size.
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8 Thesis conclusions

Our case studies demonstrate that combining forecasts derived from several meteo-
rological centers or postprocessing techniques enables to improve the accuracy of solar
radiation and PV power forecasts. To do so, we resorted to online learning techniques
providing update rules of the combination weights. These techniques come with theo-
retical performance guarantees on the predictive power of the combination of the fore-
casts, under essentially no assumptions. These methods do not depend on the nature
of the output variable, but their implementation on weather-related variables (solar
radiation and PV power) are particularly interesting under at least two aspects: the
large uncertainty of the forecasts due to the difficulty to forecast clouds at the correct
time and location, and the spatial structure of the forecasts.
The following practical results are emphasized in our case studies:
— The weighted combination of forecasts more than often outperforms uniform av-

erages of a subset of forecasts.
— Including forecasts of poor quality in the ensemble does not degrade the accuracy

of the weighted forecasts.
— Online learning techniques minimizing the CRPS improve the calibration and the

reliability of probabilistic forecasts, as verified for several evaluation tools (CRPS,
rank histogram, spread skill diagram, and reliability diagram).

We now briefly review more specific results obtained for each case study. Chapter 2
focuses on non-probabilistic forecasting of solar radiation. Several TIGGE ensembles
of solar forecasts are compared against satellite-derived HelioClim maps. This work
is among the first examples of sequential aggregation techniques applied to maps of
forecasts with the work of Baudin [Bau15] and Zamo [Zam16]. Our forecast favorably
compares against HRES (ECMWF reference forecast) and spatial patterns are more
finely described.
For PV power forecasting, statistical models between meteorological and production

data are built, which brings an additional challenge. Both the meteorological and the
conversion model inaccuracies should be taken into account when delivering proba-
bilistic forecasts of PV power. Chapter 3 details a proof-of-concept case study with
ECMWF and Météo France forecasts, where online learning techniques meet CRPS
minimization and the calibration of probabilistic forecasts. This case study covers 219
PV sites, with the high 30-min temporal resolution. Even for the long lead time of 6
days, the superiority of weather forecasts over climatological averages is verified.
We include AROME forecasts in our study in Chapter 6. A large amount of members

are generated to take into account the rich spatio-temporal information of AROME.
Statistically calibrated forecasts from quantile regressions greatly improve the CRPS of
the weighted forecasts. Besides, for short lead times below 24 h, the weighted combina-
tion of PV power forecasts generated with only AROME and HRES weather forecasts
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shows almost the same performance as the weighted forecast including all available
power forecasts.
The study of intraday updates for insular systems is undertaken in Chapter 7 for Réu-

nion and Corsica, where intraday satellite-derived forecasts and day-to-day weather-
derived forecasts are blended. The major impact of integrating the latest available
information is demonstrated. Besides, satellite information proves to enhance the fore-
cast accuracy for Corsica but not for Réunion.
Online learning methods face practical limitations due to data unavailability. While it

is always possible to replace missing data with moving averages, other ideas for missing
data imputations are described below. In case of missing PV power observations,
the average of nearby power plants productions may be used as replacing value. If
the forecaster is only interested in the total production, adjusting the total installed
capacity is an easy-to-implement solution. In case of missing forecasts, it may be
possible to run the online learning experiment since its beginning by including only
the available experts. Besides, the setting of sleeping (or specialized) experts is well-
studied, especially for the algorithm ML-Poly. In a few words, the weights are allowed
to incorporate prior knowledge through the arbitrary confidences Im,t, which are also
integrated in the regret bound. The weight um,t becomes proportional to Im,tum,t, and
the loss `m,t becomes Im,t`m,t + (1− Im,t)

∑
k6M uk,t`k,t.

In our case studies, we encountered several open questions that we summarize below
and leave for future research. Several of them concern the multidimensionality of the
output variable.

1. In Chapter 2, it is shown that sequential aggregation improves solar forecasts. A
new expert for PV forecasts can therefore be built using improved solar forecasts.
What is the gain in PV power performance that is achievable thanks to this new
expert, and for which spatio-temporal scales?

2. Can statistical errors from the conversion model and meteorological errors be
separated? A first step would be to build a perfect statistical model with weather
observations or satellite observations. However, observational noise and represen-
tativeness errors prevent from building this perfect model.

3. Better solar forecasts are obtained by running sequential aggregations indepen-
dently at each grid point. Could spatial patterns be included in this setting?
An idea would be to apply sequential aggregation over spatial averages covering
specific regions. The definition of such spatial subsets and their evolution over
time is however unclear.

4. We focused on the marginal distribution of each time step. Can we extend our
framework to include forecast trajectories and probability of ramp events as in
Bossavy et al. [BGK13] or in the review Gallego-Castillo et al. [GCL15] for wind
power? This may require multivariate experts in the time dimension.

5. The CRPS generalizes to the energy score for multivariate probabilistic forecasts
[Sze03; GR07]. Probabilistic multivariate forecasting therefore seems compat-
ible with online learning, provided that multivariate experts are available. We
showed that quantile forecasts greatly improve the quality of the forecasts. Could
multivariate quantile forecasts be generated? Possible applications include the
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challenging task of joint forecasting wind, PV and the electricity demand.
6. Say expert k performs significantly better than expert m in situation Ak, and

conversely say expert k performs significantly worst than expert m in situation
Am. How should this prior knowledge be integrated? The forecaster may give
prior weights to the experts m and k according to its opinion that situation Ak
or Am will occur, or the forecaster may build a new expert that is a combination
of the experts m and k. This new expert should be closer to expert k in situation
Ak and closer to expert m in situation Am. Our opinion is that the latter setting
allows for a greater flexibility.

Non-local strictly proper scoring rules are investigated in Chapter 3 for the CRPS
and more generally in Chapter 4. Explanations for the CRPS bias and the definition
of a fair CRPS with classes of members are proposed. Besides, we introduced im-
proved formulations for threshold-weighted and quantile-weighted scoring rules, as well
as better understanding of these scores for model mixtures. In the case study of Ap-
pendix 7.A, results obtained with the CRPS or other scoring rules are not significantly
different. This is a robustness argument in favor of the CRPS. For the verification of ex-
treme events, it might be of interest to compare strongly asymmetric quantile-weighted
scoring rules and simple quantile scores.
We defined a generalized least-square alternative to the CRPS in Section 4.2, which

includes the observational distribution. New perspectives are brought on the connec-
tions between Pearson’s χ2, the Anderson-Darling test, and Cramer-von Mises test.
This work appears as a starting point to further theoretical analysis. Case studies are
needed to compare this new loss against common learning and verification procedures.
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