R. De and T. , 187 PARTIE I, 189 PARTIE II, p.219

C. Murray, D. Norris, and M. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715, 1993.
DOI : 10.1021/ja00072a025

W. Andreoni, M. Parrinello, K. J. Klabunde, C. M. Sorensen, S. I. Stoeva et al., (b) Henglein, A, Lin, X. M. Met. Nanoclusters Catal. Mater. Sci. Issue Size Control, pp.665-668, 1989.

A. P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, The Journal of Physical Chemistry, vol.100, issue.31, pp.13226-13239, 1996.
DOI : 10.1021/jp9535506

A. Tanvi-;-mahajan, R. K. Bedi, S. Kumar, V. Saxena, and D. K. Aswal, Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes, Journal of Applied Physics, vol.117, issue.8, pp.83111-83112, 2014.
DOI : 10.1021/nl303898y

M. A. Hines and P. Guyot-sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, The Journal of Physical Chemistry, vol.100, issue.2, pp.468-471, 1996.
DOI : 10.1021/jp9530562

B. L. Prasad, S. I. Stoeva, C. M. Sorensen, and K. Klabunde, Digestive-Ripening Agents for Gold Nanoparticles:?? Alternatives to Thiols, Chemistry of Materials, vol.15, issue.4, pp.935-942, 2003.
DOI : 10.1021/cm0206439

J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, Synthesis of Monodisperse Spherical Nanocrystals, Angewandte Chemie International Edition, vol.45, issue.25, pp.4630-4660, 2007.
DOI : 10.1002/3527602453

L. N. Lewis and N. Lewis, Platinum-catalyzed hydrosilylation - colloid formation as the essential step, Journal of the American Chemical Society, vol.108, issue.23, pp.7228-7231, 1986.
DOI : 10.1021/ja00283a016

M. Trépanier, A. K. Dalai, and N. Abatzoglou, Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer???Tropsch reactions, Applied Catalysis A: General, vol.374, issue.1-2, pp.79-86, 2010.
DOI : 10.1016/j.apcata.2009.11.029

H. Wang, X. Jiao, and D. Chen, Monodispersed Nickel Nanoparticles with Tunable Phase and Size: Synthesis, Characterization, and Magnetic Properties, The Journal of Physical Chemistry C, vol.112, issue.48, pp.18793-18797, 2008.
DOI : 10.1021/jp805591y

A. Rinaldi, J. Tessonnier, M. E. Schuster, R. Blume, F. Girgsdies et al., Gel??ster Kohlenstoff kontrolliert die erste Phase des Nanokohlenstoffwachstums, Angewandte Chemie, vol.242, issue.14, pp.3371-3375, 2010.
DOI : 10.1016/j.jcat.2006.05.030

I. Buslov, F. Song, and X. Hu, An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes, Angewandte Chemie International Edition, vol.123, issue.40, pp.12295-12299, 2016.
DOI : 10.1002/ange.201002767

URL : https://infoscience.epfl.ch/record/223276/files/SI.pdf

F. Alonso, P. Riente, J. A. Sirvent, M. F. Yus, P. Alonso et al., Nickel nanoparticles in hydrogen-transfer reductions: Characterisation and nature of the catalyst, Applied Catalysis A: General, vol.378, issue.1, pp.42-51, 2008.
DOI : 10.1016/j.apcata.2010.01.044

T. Hinotsu, B. Jeyadevan, C. N. Chinnasamy, K. Shinoda, K. Tohji et al., Size and structure control of magnetic nanoparticles by using a modified polyol process, Journal of Applied Physics, vol.93, issue.2, pp.7477-7479, 2001.
DOI : 10.1126/science.287.5460.1989

M. P. Zach and R. M. Penner, Nanocrystalline Nickel Nanoparticles, Advanced Materials, vol.12, issue.12, pp.878-883, 2000.
DOI : 10.1002/1521-4095(200006)12:12<878::AID-ADMA878>3.0.CO;2-X

C. Parada, E. Mora, and F. D. Qu?, Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials, Chemistry of Materials, vol.18, issue.11, pp.2719-2725, 2006.
DOI : 10.1021/cm0511365

H. Wang, X. Jiao, D. Chen, Y. Chen, X. Luo et al., Monodispersed Nickel Nanoparticles with Tunable Phase and Size: Synthesis, Characterization, and Magnetic Properties, The Journal of Physical Chemistry C, vol.112, issue.48, pp.18793-412, 1912.
DOI : 10.1021/jp805591y

Y. Hou and S. Gao, Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic propertiesElectronic supplementary information (ESI) available: XPS of Ni nanoparticles; plot of magnetization vs. applied field. See http://www.rsc.org/suppdata/jm/b3/b303226d/, Journal of Materials Chemistry, vol.13, issue.7, p.1510, 2003.
DOI : 10.1039/b303226d

S. Carenco, C. Boissiere, L. Nicole, C. Sanchez, P. Floch et al., Controlled Design of Size-Tunable Monodisperse Nickel Nanoparticles, Chemistry of Materials, vol.22, issue.4, pp.1340-1349, 2010.
DOI : 10.1021/cm902007g

URL : https://hal.archives-ouvertes.fr/hal-00457516

M. He, L. Protesescu, R. Caputo, and F. Krumeich, A General Synthesis Strategy for Monodisperse Metallic and Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and Their Alloys) via in Situ Formed Metal Long-Chain Amides, Chemistry of Materials, vol.27, issue.2, pp.635-647, 2015.
DOI : 10.1021/cm5045144

B. Tang, S. Xu, J. An, B. Zhao, W. Xu et al., Kinetic effects of halide ions on the morphological evolution of silver nanoplates, Physical Chemistry Chemical Physics, vol.24, issue.44, pp.10286-10292, 2009.
DOI : 10.1039/b912985e

S. Carenco, Doctoral Dissertation, l'Université Pierre et Marie Curie, 2011.

H. D. Jang, D. W. Hwang, D. P. Kim, H. C. Kim, B. Y. Lee et al., Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase, Materials Research Bulletin, vol.39, issue.1, pp.63-70, 2004.
DOI : 10.1016/j.materresbull.2003.09.023

I. Buslov, F. Song, and X. Hu, An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes, Angewandte Chemie International Edition, vol.123, issue.40, pp.12295-12299, 2016.
DOI : 10.1002/ange.201002767

URL : https://infoscience.epfl.ch/record/223276/files/SI.pdf

P. Liu, J. A. Rodriguez, Y. Takahashi, and K. Nakamura, Water???gas-shift reaction on a Ni2P(001) catalyst: Formation of oxy-phosphides and highly active reaction sites, Journal of Catalysis, vol.262, issue.2, pp.294-303, 2009.
DOI : 10.1016/j.jcat.2009.01.006

P. Liu and J. A. Rodriguez, P(001) Surface:?? The Importance of Ensemble Effect, Journal of the American Chemical Society, vol.127, issue.42, pp.14871-14878, 2005.
DOI : 10.1021/ja0540019

L. Stern, L. Feng, F. Song, and X. Hu, P nanoparticles, Energy & Environmental Science, vol.136, issue.8, pp.2347-2351, 2015.
DOI : 10.1021/ja502379c

X. Zhang, Q. Zhang, J. Guan, D. He, H. Hu et al., Hydrogenation of naphthalene on nickel phosphide supported on silica, Asia-Pacific Journal of Chemical Engineering, vol.231, issue.5, pp.574-580, 2009.
DOI : 10.1016/j.jcat.2005.01.020

A. E. Henkes, Y. Vasquez, and R. E. Schaak, Converting Metals into Phosphides:?? A General Strategy for the Synthesis of Metal Phosphide Nanocrystals, Journal of the American Chemical Society, vol.129, issue.7, pp.1896-1897, 2007.
DOI : 10.1021/ja068502l

R. K. Chiang and R. T. Chiang, P Nanoparticles Based on the Nanoscale Kirkendall Effect, Inorganic Chemistry, vol.46, issue.2, pp.369-371, 2007.
DOI : 10.1021/ic061846s

B. Lü, Y. J. Bai, X. Feng, Y. R. Zhao, J. Yang et al., Solvo-thermal synthesis of crystalline dinickel phosphide, Journal of Crystal Growth, vol.260, issue.1-2, pp.115-117, 2004.
DOI : 10.1016/j.jcrysgro.2003.08.003

X. F. Qian, X. M. Zhang, C. Wang, and W. Wang, A New Way to Prepare Nanocrystalline Dinickel Phosphide, Materials Research Bulletin, vol.33, issue.5, pp.669-672, 1998.
DOI : 10.1016/S0025-5408(98)00020-8

H. L. Su, Y. Xie, B. Li, X. M. Liu, and Y. T. Qian, A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P, Solid State Ionics, vol.122, issue.1-4, pp.157-160, 1999.
DOI : 10.1016/S0167-2738(99)00049-1

Y. Xie, H. L. Su, X. F. Qian, X. M. Liu, and Y. T. Qian, A Mild One-Step Solvothermal Route to Metal Phosphides (Metal=Co, Ni, Cu), Journal of Solid State Chemistry, vol.149, issue.1, pp.88-91, 2000.
DOI : 10.1006/jssc.1999.8499

S. Carenco, X. F. Goff, . Le, J. Shi, and L. Roiban, Magnetic Core???Shell Nanoparticles from Nanoscale-Induced Phase Segregation, Chemistry of Materials, vol.23, issue.8, pp.2270-2277, 2011.
DOI : 10.1021/cm200575g

URL : https://hal.archives-ouvertes.fr/hal-00694192

A. Jernelöv, Phosphorus: An Element that could have been called Lucifer, pp.13-18, 2013.

N. E. Bernhardt and A. M. Kasko, Nutrition for the Middle Aged and Elderly Southport: Nova Science Publishers, Inc. ISBN 1- 60456-146-7, pp.171-171, 2008.

B. Persson, N. Kolmeijer, C. Arne, T. Legard, H. Munk et al., Ullmann's Encycl. Ind. Chem ISBN: 9783527306732 Advanced Inorganic Chemistry, Fifth Ed, J. J. Am. Chem. Soc, vol.26, issue.11, pp.633-677, 1947.

H. Diskowski and T. R. Hoffman, Ullmann's Encycl ISBN: 9783527306732. [6] Emsley, John. The Shocking History of Phosphorus The Story of 100 years of Phosphorus Making, Ind. Chem. John Wiley & Sons, vol.26, pp.725-745, 2000.

O. Albright, &. Wilson-ltd-shriver, A. Abrantes, L. M. Correia, and J. P. , Inorganic Chemistry, Fifth Ed, J. Electrochem. Soc, issue.9, pp.167-185, 1951.

G. Bettermann, W. Krause, G. Riess, and T. Hofmann, Ullman's Encycl. Ind. Chem, pp.325-360, 2012.

J. Svara, N. Weferling, and T. Hofmann, Ullman's Encycl. Ind. Chem, pp.325-360, 2012.

A. Simon, H. Borrmann, and J. Horakh, On the Polymorphism of White Phosphorus, Chemische Berichte, vol.1987, issue.9, pp.1235-1240, 1997.
DOI : 10.1002/cber.19971300911

B. M. Cossairt, C. C. Cummins, P. Dapporto, S. Midollini, L. Sacconi et al., Doctoral Dissertation (d) Rios, I. d. l.; Hamon, J. Am. Chem. Soc. Angew. Chem. Organometallics J.-R, vol.91, issue.17, pp.510-510, 1979.

Y. A. Dorfman, M. M. Aleshkova, G. S. Polimbetova, L. V. Levina, T. V. Petrova et al., -phosphorylation of organic compounds by phosphorus and phosphides in the presence of metal complexes, Russian Chemical Reviews, vol.62, issue.9, pp.877-896, 1993.
DOI : 10.1070/RC1993v062n09ABEH000051

M. M. Rauhut and A. M. Semsel, Reactions of Elemental Phosphorus with Organometallic Compounds, The Journal of Organic Chemistry, vol.28, issue.2, pp.471-473, 1963.
DOI : 10.1021/jo01037a048

M. Baudler, C. Adamek, S. Opelia, H. Budzikiewicz, and D. Ouzounis, Alkali-Metal Hydrogen Tetraphosphides, MIHP4?the First Salts of Bicyclo[1.1.0]tetraphosphane, Angewandte Chemie International Edition in English, vol.37, issue.8, pp.1059-1061, 1988.
DOI : 10.1002/nadc.19870351106

O. J. Scherer, T. Hilt, and G. Wolmershäuser, )], Organometallics, vol.17, issue.18, pp.4110-4112, 1998.
DOI : 10.1021/om9801148

J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, and K. Lammertsma, Using a Lewis Acid Stabilized Bicyclo[1.1.0]tetraphosphabutane Anion, Angewandte Chemie International Edition, vol.84, issue.47, pp.12836-12839, 2014.
DOI : 10.1139/v05-245

S. Heinl, S. Reisinger, C. Schwarzmaier, . Bodensteiner, and M. Scheer, by Metal-Mediated C???P Bond Formation, Angewandte Chemie International Edition, vol.45, issue.29, pp.7639-7642, 2014.
DOI : 10.1021/ma3001719

J. D. Masuda, W. W. Schoeller, B. Donnadieu, and G. Bertrand, Cluster, Journal of the American Chemical Society, vol.129, issue.46, pp.14180-14181, 2007.
DOI : 10.1021/ja077296u

. Commun, Experiments with LiBH 4 performed by S. Dreyfuss, Adamek, C.; Opelia, S.; Budzikiewicz, H, vol.52, issue.292, pp.5179-5182, 2016.

S. A. Kosarev and S. J. Collier, Tris(trimethylsilyl)phosphine. e-EROS Encyclopedia of Reagents for Organic Synthesis, 2011.
DOI : 10.1002/047084289x.rn01332

A. Schäfer, T. Jurca, J. Turner, J. R. Vance, K. Lee et al., Iron-Catalyzed Dehydropolymerization: A Convenient Route to Poly(phosphinoboranes) with Molecular-Weight Control, Angewandte Chemie International Edition, vol.25, issue.16, pp.4836-4841, 2015.
DOI : 10.1021/om0604324

C. Marquardt, T. Jurca, K. Schwan, A. Stauber, A. V. Virovets et al., : A Route to Poly(alkylphosphinoboranes), Angewandte Chemie International Edition, vol.23, issue.46, pp.13782-13786, 2015.
DOI : 10.1063/1.555949

URL : http://onlinelibrary.wiley.com/doi/10.1002/anie.201507084/pdf

G. B. Consiglio, P. Queval, A. Harrison-marchand, A. Mordini, J. Lohier et al., )Li: From Ditopicity to Dual Reactivity, Journal of the American Chemical Society, vol.133, issue.16, pp.6472-6480, 2011.
DOI : 10.1021/ja201760c

URL : https://hal.archives-ouvertes.fr/hal-00991604

F. Exp5, Extensive drying in vacuo at 80 °C resulted in the partial decomposition of the product, as shown by the appearance of a new signal at ?1

C. M. Sorensen, S. I. Stoeva, B. L. Prasad, A. B. Smetana, X. M. Lin et al., [5] Carenco, S. Doctoral Dissertation, l'Université Pierre et Marie Curie (c) Astruc, D. Transition-Metal Nanoparticles in Catalysis : From Historical Background to the State-of-the Art, Nanoclusters Catal. Mater. Sci. Issue Size Control Chem. Mater. Polte, J. CrystEngComm Z. ACS Appl. Mater. Interfaces Acc. Chem. Res. Cuenya, B. R. Thin Solid Films J.-M Inorg. Chem. Appl. Catal. A, vol.2, issue.3179, pp.233-249, 2003.

H. Wang, X. Jiao, and D. Chen, Monodispersed Nickel Nanoparticles with Tunable Phase and Size: Synthesis, Characterization, and Magnetic Properties, The Journal of Physical Chemistry C, vol.112, issue.48, pp.18793-18797, 2008.
DOI : 10.1021/jp805591y

M. Sharon and G. Tamizhmani, Transition metal phosphide semiconductors for their possible use in photoelectrochemical cells and solar chargeable battery (Saur Viddyut Kosh V), Journal of Materials Science, vol.13, issue.6, pp.2193-2201, 1986.
DOI : 10.1007/BF00547969

M. He, L. Protesescu, R. Caputo, and F. Krumeich, A General Synthesis Strategy for Monodisperse Metallic and Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and Their Alloys) via in Situ Formed Metal Long-Chain Amides, Chemistry of Materials, vol.27, issue.2, pp.635-647, 2015.
DOI : 10.1021/cm5045144

S. Carenco, C. Boissiere, L. Nicole, C. Sanchez, and P. Le-floch, Controlled Design of Size-Tunable Monodisperse Nickel Nanoparticles, Chemistry of Materials, vol.22, issue.4, pp.1340-1349, 2010.
DOI : 10.1021/cm902007g

URL : https://hal.archives-ouvertes.fr/hal-00457516

A. Mansikkamäki, P. Vasko, M. M. Olmstead, H. M. Tuononen, F. Grandjean et al., Chemie -Int, pp.54-12914, 2015.

H. D. Jang, D. W. Hwang, D. P. Kim, H. C. Kim, B. Y. Lee et al., Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase, Materials Research Bulletin, vol.39, issue.1, pp.63-70, 2004.
DOI : 10.1016/j.materresbull.2003.09.023

I. Buslov, F. Song, and X. Hu, An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes, Angewandte Chemie International Edition, vol.123, issue.40, pp.12295-12299, 2016.
DOI : 10.1002/ange.201002767

A. E. Henkes, Y. Vasquez, and R. E. Schaak, Converting Metals into Phosphides:?? A General Strategy for the Synthesis of Metal Phosphide Nanocrystals, Journal of the American Chemical Society, vol.129, issue.7, pp.1896-1897, 2007.
DOI : 10.1021/ja068502l

R. K. Chiang and R. T. Chiang, P Nanoparticles Based on the Nanoscale Kirkendall Effect, Inorganic Chemistry, vol.46, issue.2, pp.369-371, 2007.
DOI : 10.1021/ic061846s

R. Wang and K. J. Smith, Hydrodesulfurization of 4,6-dimethyldibenzothiophene over high surface area metal phosphides, Applied Catalysis A: General, vol.361, issue.1-2, pp.18-25, 2009.
DOI : 10.1016/j.apcata.2009.03.037

B. Lü, Y. J. Bai, X. Feng, Y. R. Zhao, J. Yang et al., Solvo-thermal synthesis of crystalline dinickel phosphide, Journal of Crystal Growth, vol.260, issue.1-2, pp.115-117, 2004.
DOI : 10.1016/j.jcrysgro.2003.08.003

X. F. Qian, X. M. Zhang, C. Wang, and W. Wang, A New Way to Prepare Nanocrystalline Dinickel Phosphide, Materials Research Bulletin, vol.33, issue.5, pp.669-672, 1998.
DOI : 10.1016/S0025-5408(98)00020-8

H. L. Su, Y. Xie, B. Li, X. M. Liu, and Y. T. Qian, A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P, Solid State Ionics, vol.122, issue.1-4, pp.157-160, 1999.
DOI : 10.1016/S0167-2738(99)00049-1

Y. Xie, H. L. Su, X. F. Qian, X. M. Liu, and Y. T. Qian, A Mild One-Step Solvothermal Route to Metal Phosphides (Metal=Co, Ni, Cu), Journal of Solid State Chemistry, vol.149, issue.1, pp.88-91, 2000.
DOI : 10.1006/jssc.1999.8499

F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry

B. M. Cossairt, C. Cummins, S. Heinl, and M. Scheer, Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P4, New Journal of Chemistry, vol.690, issue.8, pp.1533-1536, 2010.
DOI : 10.1071/CH9941631

M. Peruzzini, J. A. Ramirez, F. Vizza, . Angewb, P. Barbaro et al., Chemie Int, Organometallics Chem. Eur. J, vol.37, issue.9, pp.2255-2257, 1998.

A. Par-exemple-huber, A. Kuschel, T. Ott, G. Santiso-quinones, D. Stein et al., Phosphorous-Functionalized Bis(acyl)phosphane Oxides for Surface Modification, Angewandte Chemie International Edition, vol.205, issue.19, pp.4648-4652, 1997.
DOI : 10.1016/j.surfcoat.2011.01.006

M. Podewitz, J. D. Van-beek, M. Wörle, T. Ott, D. Stein et al., Ion Dynamics in Confined Spaces: Sodium Ion Mobility in Icosahedral Container Molecules, Hölderich, W. Z. Anorg. Allg, pp.7465-7469, 2010.
DOI : 10.1002/anie.201003441

C. Marquardt, T. Jurca, K. Schwan, A. Stauber, A. V. Virovets et al., : A Route to Poly(alkylphosphinoboranes), Angewandte Chemie International Edition, vol.23, issue.46, pp.13782-13786, 2015.
DOI : 10.1063/1.555949

URL : http://onlinelibrary.wiley.com/doi/10.1002/anie.201507084/pdf

G. B. Consiglio, P. Queval, A. Harrison-marchand, A. Mordini, J. Lohier et al., )Li: From Ditopicity to Dual Reactivity, Journal of the American Chemical Society, vol.133, issue.16, pp.6472-6480, 2011.
DOI : 10.1021/ja201760c

URL : https://hal.archives-ouvertes.fr/hal-00991604