A. , V. Brown, G. Larson, and L. E. , Linearization of CMOS LNA's via optimum gate biasing, IEEE International Symposium on Circuits and Systems, 2004.

A. , V. Larson, and L. E. , Modified derivative superposition method for linearizing FET low-noise amplifiers, IEEE Transactions on Microwave Theory and Techniques, vol.53, issue.2, pp.571-581, 2005.

B. , F. Hameau, F. Fournier, and J. , A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS, IEEE Journal of Solid-State Circuits, vol.47, issue.5, pp.1094-1103, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01025027

B. , L. Madanayake, A. Bruton, and L. , Wideband LNA With an Active-C Element, IEEE Microwave and Wireless Components Letters, vol.22, issue.10, pp.524-526

C. , P. Hsu, and S. , A Compact 0.1?14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13-CMOS, IEEE Transactions on Microwave Theory and Techniques, issue.58 10, pp.2575-2581, 2010.

C. , K. Liu, and S. , Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise- Canceling Technique, IEEE Transactions on Circuits and Systems I: Regular Papers, issue.59 2, pp.305-314

C. , R. Hashemi, and H. , A 0.5-to-3 GHz Software-Defined Radio Receiver Using Discrete-Time RF Signal Processing, IEEE Journal of Solid-State Circuits, issue.49 5, pp.1097-1111, 2014.

C. Inc, Apple iPhone 6s Complementary Teardown Report. [s.l: s.n.]. Available at: <http://www.chipworks.com/sites, 1509.

. Cisco, Visual Networking Index: Global Mobile Data Traffic Forecast, 2015.

. Available, com/c/en/us/solutions/collateral/service- provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html>. Accessed in: 1 nov, 2016.

D. Souza, M. Mariano, A. A. Taris, T. Devries, C. A. Mason et al., Inductorless low power wideband LNA in 130 nm CMOS Subsampling architecture for low power receivers, 13th IEEE International NEW Circuits and Systems Conference, NEWCAS 2015. Conference Proceedings Grenoble: 2015 Available at, pp.55-304, 2008.

D. , H. Meyer, R. G. Niknejad, and A. M. , Analysis and Design of RF CMOS Attenuators, IEEE Journal of Solid-State Circuits, issue.43 10, pp.2269-2283

E. , I. Muhammad, K. Balsara, and P. , I/Q mismatch compensation using adaptive decorrelation in a low-IF receiver in 90-nm CMOS process, IEEE Journal of Solid-State Circuits, issue.2, pp.41-395, 2006.

E. , O. Staszewski, and R. B. , Built-In Measurements in Low-Cost Digital-RF Transceivers, IEICE Transactions on Electronics, issue.6, pp.930-937, 2011.

E. , M. Sanchez-sinencio, E. Entesari, and K. , A CMOS Low-Noise Amplifier With Reconfigurable Input Matching Network, IEEE Transactions on Microwave Theory and Techniques, vol.57, issue.5, pp.1054-1062, 2009.

F. , L. E. Sandberg, and I. W. , An Alternative Approach to the Realization of Network Transfer Functions: The N-Path Filter, Bell System Technical Journal, pp.1321-1350, 1960.

G. , G. Palmisano, and G. , Noise figure and impedance matching in RF cascode amplifiers, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, pp.1388-1396, 1999.

G. Understanding and 5. , Available at: <https://gsmaintelligence, pp.141208-141213

H. , H. G. Jung, D. H. Kim, and T. W. , A 2.88 mW +9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback, IEEE Transactions on Microwave Theory and Techniques, issue.3, pp.63-1019
URL : https://hal.archives-ouvertes.fr/in2p3-00015872

I. , D. Lee, and I. Y. , A High IIP2 Broadband CMOS Low-Noise Amplifier With a Dual- Loop Feedback, IEEE Transactions on Microwave Theory and Techniques, vol.64, issue.7, pp.2068-2079, 2016.

K. , N. Aparin, V. Larson, and L. , Analysis of IM3 Asymmetry in MOSFET Small- Signal Amplifiers, IEEE Transactions on Circuits and Systems I: Regular Papers, pp.668-676, 2011.

K. , T. Kim, and B. , A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications, IEEE Journal of Solid-State Circuits, issue.4, pp.41-945, 2006.
DOI : 10.1109/jssc.2006.870744

L. , H. C. Wang, C. S. Wang, and C. K. , A 0.2-2.6 GHz wideband noise-reduction Gm-boosted LNA, IEEE Microwave and Wireless Components Letters, issue.5, pp.22-269, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00149778

A. Madan, Fully Integrated Switch-LNA Front-End IC Design in CMOS: A Systematic Approach for WLAN, IEEE Journal of Solid-State Circuits, vol.46, issue.11, pp.2613-2622, 2011.
DOI : 10.1109/JSSC.2011.2166216

M. , P. I. Martins, and R. , Design of an ESD-protected ultra-wideband LNA in nanoscale CMOS for full-band mobile TV tuners, IEEE Transactions on Circuits and Systems I: Regular Papers, issue.56 5, pp.933-942, 2009.

M. , C. Palicot, and J. , Software radio: A catalyst for wireless innovation, IEEE Communications Magazine, vol.53, issue.9, pp.24-30, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202578

P. , J. W. Razavi, and B. , Channel Selection at RF Using Miller Bandpass Filters, IEEE Journal of Solid-State Circuits, vol.49, issue.12, pp.3063-3078, 2014.

P. , M. Allidina, K. El-gamal, and M. N. , An Ultra-Low-Power Wideband Inductorless CMOS LNA with Tunable Active Shunt-Feedback, IEEE Transactions on Microwave Theory and Techniques, vol.64, issue.6, pp.1843-1853, 2016.

P. , M. Allidina, K. El-gamal, and M. N. , Short Channel Output Conductance Enhancement Through Forward Body Biasing to Realize a 0

P. , N. Rabaey, and J. M. , Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks, Electrical Engineering, vol.22, p.147, 2008.

R. , R. Andersson, and S. , A 1.4V 25mW Inductorless Wideband LNA in 0.13um CMOS. International Solid-State Circuits Conference, pp.7-9, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00005279

S. , D. K. Lee, and T. H. , A 1.5-V, 1.5-GHz CMOS low noise amplifier, IEEE Journal of Solid-State Circuits, vol.32, issue.5, pp.745-759, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00995626

S. , S. Walling, J. S. Allstot, and D. J. , Bandwidth extension techniques for CMOS amplifiers, IEEE Journal of Solid-State Circuits, issue.41 11, pp.2424-2438, 2006.

T. , T. Begueret, J. Deval, and Y. , A low voltage current reuse LNA in a 130nm CMOS technology for UWB applications. Microwave Integrated Circuit Conference, pp.2015-2018, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00178340

T. , T. Nga, and T. , Ultra low-power low-noise amplifier designs for 2.4 GHz ISM band applications, 2012.

W. , P. Sansen, W. M. Harlow, and U. K. , Distortion Analysis of Analog Integrated Circuits, 1998.

W. , H. Zhang, L. Yu, and Z. , A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications, IEEE Transactions on Circuits and Systems I: Regular Papers, issue.57 8, pp.1993-2005, 2010.

W. , Y. Lu, and L. , 7 GHz low-power variable-gain LNA in 0.18 um CMOS, Electronics Letters, issue.5 41 2, pp.11-12, 2005.

Z. , J. C. Taylor, and S. S. , A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications, IEEE International Solid State Circuits Conference Digest of Technical Papers, 2006.

Z. , F. Kinget, and P. , Low-power programmable gain CMOS distributed LNA, IEEE Journal of Solid-State Circuits, issue.41 6, pp.1333-1343, 2006.

Z. , H. Sanchez-sinencio, and E. , Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial, IEEE Transactions on Circuits and Systems I: Regular Papers, issue.58 1, pp.22-36, 2011.

Z. , J. Krishnaswamy, H. Kinget, and P. R. , Field-Programmable LNAs With Interferer-Reflecting Loop for Input Linearity Enhancement Plugging (A.27) into (A.25) the expression (A.28) is obtained. It links the linearity characteristics of a system, the IIP 3 , with the minimal acceptable quality of the data transmission of the system, the SNR min , which is directed related to the BER, 28) (B.30) (B.31) (B.32) (B.33) (B.34), pp.556-572

B. Figure, Model for the calculation of the noise contribution of, 45) (B.46) (B.47) (B.48) (B.49) (B.50) (B.51) (B.52) (B.53)