. Adzman, Diagnosis of MV Oil Filled Cable Terminations with X-Ray Imaging and Infrared (IR) Thermography, American Journal of Applied Sciences, vol.4, issue.3, pp.168-170, 2007.
DOI : 10.3844/ajassp.2007.168.170

URL : http://thescipub.com/pdf/10.3844/ajassp.2007.168.170

. Aster, PARA- METER ESTIMATION AND INVERSE PROBLEMS, 2013.

M. Aubourg, Onde quasi-TEM des guides cylindriques blindés, Annales Des Télécommunications, vol.34, issue.12, pp.45-51, 1979.

F. Auzanneau, WIRE TROUBLESHOOTING AND DIAGNOSIS: REVIEW AND PERSPECTIVES, Progress In Electromagnetics Research B, vol.49, pp.253-279, 2013.
DOI : 10.2528/PIERB13020115

URL : http://www.jpier.org/PIERB/pierb49/12.13020115.pdf

. Auzanneau, Chaos Time Domain Reflectometry for Online Defect Detection in Noisy Wired Networks, IEEE Sensors Journal, vol.16, issue.22, pp.168027-8034, 2016.
DOI : 10.1109/JSEN.2016.2606567

A. Baden-fuller, Engineering Electromagnetism, 1993.

F. Bao, Sparse Overcomplete Representation applied to FMCW Reflectometry for Non-uniform Transmission Lines, 2015.

. Bao, Application of FMCW radar principle for fast inhomogeneity identification on transmission lines, 6th German Microwave Conference, 2011.

[. Hassen, On-line diagnosis using Orthogonal Multi-Tone Time Domain Reflectometry in a lossy cable, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), pp.1-6, 2013.
DOI : 10.1109/SSD.2013.6564144

. Berrabah, Estimation of distributed and lumped ohmic losses in electrical cables, 2016 IEEE Conference on Antenna Measurements & Applications (CAMA), 2016.
DOI : 10.1109/CAMA.2016.7815742

URL : https://hal.archives-ouvertes.fr/hal-01376833

. Buccella, Accurate detection of low entity cable faults by wavelet transform, 2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559), pp.936-941, 2004.
DOI : 10.1109/ISEMC.2004.1349951

. Buccella, Detection and Localization of Defects in Shielded Cables by Time-Domain Measurements With UWB Pulse Injection and Clean Algorithm Postprocessing, IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.4, pp.597-605, 2004.
DOI : 10.1109/TEMC.2004.837842

M. , Distributed Source Identification for Wave Equations : An offline Obeserver-Based Approach, IEEE Transactions on Automatic Control, issue.8, pp.572067-2073, 2012.

C. , Application of phase detection frequency domain reflectometry for locating faults in an F-18 flight control harness, IEEE Transactions on Electromagnetic Compatibility, issue.2, pp.47327-334, 2005.

R. E. Collin, Field theory of guided waves, 1991.

. Cozza, Echo Response of Faults in Transmission Lines: Models and Limitations to Fault Detection, IEEE Transactions on Microwave Theory and Techniques, vol.64, issue.12, 2016.
DOI : 10.1109/TMTT.2016.2608774

URL : https://hal.archives-ouvertes.fr/hal-01352701

. Cselko, . Berta, R. Cselko, and I. Berta, Comparison of failure detection capability of available low-voltage cable diagnostic methods, 2016 IEEE Electrical Insulation Conference (EIC), pp.346-349, 2016.
DOI : 10.1109/EIC.2016.7548598

. Daniel, Network analyzer measurement de-embedding utilizing a distributed transmission matrix bisection of a single THRU structure, ARFTG 63rd Conference, Spring 2004, pp.61-68, 2004.
DOI : 10.1109/ARFTG.2004.1387856

. Degerstrom, Accurate resistance, inductance, capacitance, and conductance (RLCG) from uniform transmission line measurements, 2008 IEEE-EPEP Electrical Performance of Electronic Packaging, pp.77-80, 2008.
DOI : 10.1109/EPEP.2008.4675881

L. Djaziri, Diagnostic de défauts d'isolement dans des lignes de transmission électriques : application aux cables de signalisation SNCF, 2015.

. Sahmarany, Novel Reflectometry Method Based on Time Reversal for Cable Aging Characterization, 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm), pp.1-6, 2012.
DOI : 10.1109/HOLM.2012.6336569

URL : https://hal.archives-ouvertes.fr/hal-00813260

. Sahmarany, Time Reversal for Soft Fault Diagnosis in Wire Networks. PIER M, pp.3145-58, 2013.

J. Fageon, Doctrine de maintenance : suivi du vieillissement des câbles électriques, 2013.

M. Fink, Time reversal of ultrasonic fields. I. Basic principles, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.39, issue.5, pp.555-566, 1992.
DOI : 10.1109/58.156174

W. Fischer, E. Fischer, and C. Weindl, Spatially-resolved Measurement and Diagnostic Method for Power Cables Using Interference Characteristics of Travelling Waves, 9th international Conference on Insulated Power Cables, 2015.

W. Fischer, E. Fischer, and C. Weindl, Experimental results of a diagnostic measurement method for power cables using interference characteristics of travelling waves, 2016 IEEE Electrical Insulation Conference (EIC), pp.392-395, 2016.
DOI : 10.1109/EIC.2016.7548621

. Fourneaud, Innovative HF extraction procedure of the characteristic impedance for embedded planar transmission line on high conductive Si substrate, Asia-Pacific Microwave Conference, pp.606-609, 2010.

. Franchet, The use of the Pseudo Wigner Ville Transform for detecting soft defects in electric cables, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2011.
DOI : 10.1109/AIM.2011.6026992

, Bibliographie

, Conference on Advanced Intelligent Mechatronics, AIM, pp.309-314

D. A. Frickey, Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances, IEEE Transactions on Microwave Theory and Techniques, vol.42, issue.2, pp.205-211, 1994.
DOI : 10.1109/22.275248

C. Furse, Down to the Wire, IEEE Spectrum, pp.34-39, 2001.

C. Furse, A critical comparison of reflectometry methods for location of wiring faults, Smart Structures and Systems, pp.25-46, 2006.
DOI : 10.12989/sss.2006.2.1.025

. Furse, Frequency-domain reflectometery for on-board testing of aging aircraft wiring, IEEE Transactions on Electromagnetic Compatibility, vol.45, issue.2, pp.45306-315, 2003.
DOI : 10.1109/TEMC.2003.811305

K. Furse, C. Furse, and N. Kamdar, An inexpensive distance measuring system for navigation of robotic vehicles. Microwave and Optical Technology Letters, pp.84-87, 2002.
DOI : 10.1002/mop.10241

. Furse, Feasibility of spread spectrum sensors for location of arcs on live wires, IEEE Sensors Journal, vol.5, issue.6, pp.1445-1449, 2005.
DOI : 10.1109/JSEN.2005.858900

. Furse, Spread spectrum sensors for critical fault location on live wire networks. Structural Control and Health Monitoring, pp.257-267, 2005.
DOI : 10.1002/stc.69

. Griffiths, The invisible fray: a critical analysis of the use of reflectometry for fray location, IEEE Sensors Journal, vol.6, issue.3, pp.697-706, 2006.
DOI : 10.1109/JSEN.2006.874017

J. Hadamard, Les probl??mes aux limites dans la th??orie des ??quations aux d??riv??es partielles, Journal de Physique Th??orique et Appliqu??e, vol.XXI, issue.1, pp.202-241, 1907.
DOI : 10.1051/jphystap:019070060020200

V. Herreng, P. Herreng, and J. Ville, Étude des irrégularités d'impédance des câbles coaxiaux par observation oscillographique des échos d'une impulsion, Annales Des Télécommunications, vol.3, issue.10, pp.317-331, 1948.

H. Hubin, Recherche de défauts sur câbles d'énergie. Eyrolles, 1987.

J. Idier, Approche Bayésienne Pour les Problèmes Inverses Assessment and management of ageing of major nuclear power plant components important to saftey : PWR vessel internals, Lavoisier. [International Atomic Energy Agency International Atomic Energy Agency (IAEA), 1999.

M. Jaulent, The inverse scattering problem for L C R G transmission lines, Journal of mathematical physics, pp.2286-2290, 1982.
DOI : 10.1063/1.525307

, Locating Faults With High Resolution Using Single-Frequency TR-MUSIC Processing, IEEE Transactions on Instrumentation and Measurement, issue.10, pp.652342-2348, 2016.

, Locating Multiple Soft Faults in Wire Networks Using an Alternative DORT Implementation, IEEE Transactions on Instrumentation and Measurement, vol.65, issue.2, pp.399-406, 2016.

H. Kuzyk, Câbles d'énergie : Théorie de l'échométrie, 2006.

G. L. Lamb, Elements of soliton theory, 1980.

. Lee, Diagnostics of control and instrumentation cables in nuclear power plant via time-frequency domain reflectometry with optimal reference signal, 9th international Conference on Insulated Cables, 2015.

. Leidenberger, Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR) Hydrology and Earth System Sciences, pp.209-232, 2006.
DOI : 10.5194/hess-10-209-2006

URL : https://www.hydrol-earth-syst-sci.net/10/209/2006/hess-10-209-2006.pdf

A. Lelong, Méthodes de diagnostic filaire embarqué pour des réseaux complexes, 2010.

A. Lelong and M. O. Carrion, On line wire diagnosis using Multicarrier Time Domain Reflectometry for fault location, 2009 IEEE Sensors, pp.751-754, 2009.
DOI : 10.1109/ICSENS.2009.5398542

I. Lindell, On the Quasi-TEM Modes in Inhomogeneous Multiconductor Transmission Lines, IEEE Transactions on Microwave Theory and Techniques, vol.29, issue.8, pp.812-817, 1981.
DOI : 10.1109/TMTT.1981.1130452

F. Lo, C. Lo, and C. Furse, Noise-Domain Reflectometry for Locating Wiring Faults, IEEE Transactions on Electromagnetic Compatibility, vol.47, issue.1, pp.97-104, 2005.
DOI : 10.1109/TEMC.2004.842109

. Loete, Inverse Scattering Experiments for Electric Cable Soft Fault Diagnosis and Connector Location, PIERS Online, pp.1932-1936, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00776082

. Loete, Experimental Validation of the Inverse Scattering Method for Distributed Characteristic Impedance Estimation, IEEE Transactions on Antennas and Propagation, vol.63, issue.6, pp.632532-2538, 2015.
DOI : 10.1109/TAP.2015.2417215

URL : https://hal.archives-ouvertes.fr/hal-01231807

. Bibliographie, . Lundstedt, . He, J. Lundstedt, and S. He, A time-domain optimization technique for the simultaneous reconstruction of the characteristic impedance, resistance and conductance of a transmission line, Journal of Electromagnetic Waves and Applications, vol.10, issue.4, pp.581-601, 1996.

J. Lundstedt and M. Norgren, Comparison between Frequency Domain and Time Domain Methods for Parameter Reconstruction on Nonuniform Dispersive Transmission Lines, Progress In Electromagnetics Research, vol.43, pp.1-37, 2003.
DOI : 10.2528/PIER03020301

K. D. Marx, Propagation Modes, Equivalent Circuits, and Characteristic Terminations for Multiconductor Transmission Lines with Inhomogeneous Dielectrics, IEEE Transactions on Microwave Theory and Techniques, vol.21, issue.7, pp.450-457, 1973.
DOI : 10.1109/TMTT.1973.1128032

D. L. Maskell and G. S. Woods, The discrete-time quadrature subsample estimation of delay, IEEE Transactions on Instrumentation and Measurement, vol.51, issue.1, pp.133-137, 2002.
DOI : 10.1109/19.989916

. Nagel and J. R. Nagel, The Finite-Difference Time-Domain ( FDTD ) Algorithm

, Review of Federal Programs for Wire System Safety, National Science and Technology Council National Science and Technology Council, 2000.

W. Nocedal, J. Nocedal, and S. J. Wright, Numerical optimization, 2006.
DOI : 10.1007/b98874

H. Norgren, M. Norgren, and S. He, An optimization approach to the frequency-domain inverse problem for a nonuniform LCRG transmission line, IEEE Transactions on Microwave Theory and Techniques, vol.44, issue.8, pp.441503-1507, 1996.
DOI : 10.1109/22.536038

S. J. Orfanidis, Electromagnetic Waves and Antennas, Orfanidis, 2008.

C. R. Paul, Analysis of multiconductor transmission lines, 2008.
DOI : 10.1109/9780470547212

]. Santos and L. A. , Développement d'un nouvelle méthode de détermination des profils de teneur en eau dans les sols par inversion d'un signal TDR, 1997.

F. Prada, C. Prada, and M. Fink, Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media, Wave Motion, vol.20, issue.2, pp.20151-163, 1994.
DOI : 10.1016/0165-2125(94)90039-6

. Razzaghi, Assessment of the Influence of Losses on the Performance of the Electromagnetic Time Reversal Fault Location Method, IEEE Transactions on Power Delivery, issue.i, pp.89771-89772, 2016.

. Rumiantsev, . Ridler, A. Rumiantsev, and N. Ridler, VNA calibration, IEEE Microwave Magazine, vol.9, issue.3, pp.86-99, 2008.
DOI : 10.1109/MMM.2008.919925

M. K. Sampath, On addressing the practical issues in the extraction of RLGC parameters for lossy multiconductor transmission lines using S-parameter models, 2008 IEEE-EPEP Electrical Performance of Electronic Packaging, pp.259-262, 2008.
DOI : 10.1109/EPEP.2008.4675929

S. Schlaeger, A fast TDR-inversion technique for the reconstruction of spatial soil moisture content, Hydrology and Earth System Sciences, vol.9, issue.5, pp.481-492, 2005.
DOI : 10.5194/hess-9-481-2005

URL : https://hal.archives-ouvertes.fr/hal-00298659

R. O. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, vol.34, issue.3, pp.276-280, 1986.
DOI : 10.1109/TAP.1986.1143830

S. Schuet, Wiring Diagnostics Via $\ell_1$-Regularized Least Squares, IEEE Sensors Journal, vol.10, issue.7, pp.1218-1225, 2010.
DOI : 10.1109/JSEN.2009.2037823

. Schuet, A Model-Based Probabilistic Inversion Framework for Characterizing Wire Fault Detection Using TDR, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.5, pp.1654-1663, 2011.
DOI : 10.1109/TIM.2011.2105030

. Sekiguchi, On the validity of bisection-based thru-only de-embedding, 2010 International Conference on Microelectronic Test Structures (ICMTS), pp.66-71, 2010.
DOI : 10.1109/ICMTS.2010.5466857

. Shumaker, Remaining Useful Life Estimation of Electric Cables in Nuclear Power Plants, Chemical Engineering Transactions, vol.33, pp.877-882, 2013.

M. K. Smail, Développement d'une méthodologie dédiée à la réflectométrie en vue du diagnostic filaire, 2010.

. Smail, Detection of Defects in Wiring Networks Using Time Domain Reflectometry, IEEE Transactions on Magnetics, vol.46, issue.8, pp.462998-3001, 2010.
DOI : 10.1109/TMAG.2010.2043720

URL : https://hal.archives-ouvertes.fr/hal-00447317

. Smith, Analysis of spread spectrum time domain reflectometry for wire fault location, IEEE Sensors Journal, vol.5, issue.6, pp.1469-1478, 2005.
DOI : 10.1109/JSEN.2005.858964

. Bibliographie and . Smith, Fault Location on Aircraft Wiring Using Spread Spectrum Time Domain Reflectometry, 2005.

. Song, A de-embedding technique for interconnects, Topical Meeting on Electrical Performance of Electronic Packaging, pp.129-132, 2001.

R. F. Stengel, Optimal State Estimation, Optimal Control and Estimation, pp.299-419, 1994.

. Taflove, . Hagness, A. Taflove, and S. C. Hagness, , 2005.

. Tang, . Zhang, H. Tang, and Q. Zhang, AN EFFICIENT INVERSE SCATTERING ALGORITHM AND ITS APPLICATION TO LOSSY ELECTRIC TRANSMISSION LINE SYNTHESIS, Progress In Electromagnetics Research Letters, vol.24, pp.77-90, 2011.
DOI : 10.2528/PIERL11010706

URL : https://hal.archives-ouvertes.fr/hal-00777380

. Tang, . Zhang, H. Tang, and Q. Zhang, An Inverse Scattering Approach to Soft Fault Diagnosis in Lossy Electric Transmission Lines, IEEE Transactions on Antennas and Propagation, vol.59, issue.10, pp.593730-3737, 2011.
DOI : 10.1109/TAP.2011.2163772

URL : https://hal.archives-ouvertes.fr/hal-00777454

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, 2004.
DOI : 10.1137/1.9780898717921

, The MathWorks, 2017.

D. Vautrin, F. Taillade, . Edf, and . R\&d, Estimation non destructive d ' un profil de teneur en eau dans un ouvrage en béton par réfléctométrie fréquentielle Circuit de validation Pré-diffusion, 2015.

. Wang, Health Monitoring of Power Cable via Joint Time-Frequency Domain Reflectometry, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.3, pp.1047-1053, 2011.
DOI : 10.1109/TIM.2010.2058730

W. T. Weeks, Multiconductor Transmission-line Theory in the TEM Approximation, IBM Journal of Research and Development, vol.16, issue.6, pp.604-611, 1972.
DOI : 10.1147/rd.166.0604

K. S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media, Antennas and Propagation, vol.14, issue.3, pp.302-307, 1966.

. Zhang, ($f$) Models for Transmission Lines From Measured $S$ -Parameters, IEEE Transactions on Electromagnetic Compatibility, vol.52, issue.1, pp.189-198, 2010.
DOI : 10.1109/TEMC.2009.2035055

B. Zhang, Q. Zhang, and M. Basseville, Statistical detection and isolation of additive faults in linear time-varying systems, Automatica, vol.50, issue.10, pp.502527-2538, 2014.
DOI : 10.1016/j.automatica.2014.09.004

URL : https://hal.archives-ouvertes.fr/hal-01081899

. Zhang, Inverse Scattering for Soft Fault Diagnosis in Electric Transmission Lines, IEEE Transactions on Antennas and Propagation, vol.59, issue.1, pp.141-148, 2011.
DOI : 10.1109/TAP.2010.2090462

URL : https://hal.archives-ouvertes.fr/inria-00365991

Q. Zhang and H. Tang, Diagnosis of inhomogeneous insulation degradation in electric cables by distributed shunt conductance estimation, Control Engineering Practice, vol.21, issue.9, pp.1195-1203, 2013.
DOI : 10.1016/j.conengprac.2013.04.006

URL : https://hal.archives-ouvertes.fr/hal-00776924

, Table des figures 1

.. , Différents types de câbles et leurs domaine d'application (Source : nexans.fr)

. Longueur-de-câbles-dans-quelques-systèmes........, , p.11

E. Câbles-localement-endommagés, , p.13

.. , Quelques Exemple de défauts visibles dans l'aéronautique (National Business Aviation Association -USA), p.14

.. , Définition de la tangente delta : tan(?), p.16

L. Principe-de, , p.17

.. , Simulation d'un réflectogramme (TDR) pour un câble affecté d'un défaut d'impédance

, Simulation d'un réflectogramme (TDR) avec des réflexions multiples 20

.. Elément-de-ligne-de-longueur-dz-dans-un-modèle-À-constantes-réparties, , p.30

.. , Modèle RLCG(z) pour une ligne non-uniforme, p.30

C. and .. , , p.31

. Coupe-longitudinale-d-'un-câble-coaxial.........., , p.31

]. , Discrétisation du domaine de calcul pour la méthode FDTD (Source : [Smail, p.37, 2010.

L. Simulation-dans-le-domaine-temporelr, G. , and ). , Graphe supérieur : profil de la capacité C(z) d'un câble. Graphe inférieur : simulation du réflectogramme pour ce câble, p.38

.. , Simulation dans le domaine temporel (méthode FDTD) -Tension et réflectogramme au cours du temps dans un câble de 5 m possédant une discontinuité du paramètre C, p.40

.. , Algorithme de simulation de la propagation des ondes et du réflectogramme dans le domaine temporel, p.41

L. Simulation-de, z) dans le domaine fréquentiel (f = 200M Hz) Graphe inférieur : Module (bleu) et phase (rouge) de la tensionûtension?tensionû(z, ?) Graphe supérieur : profil de l'impédance caractéritique, p.43

, Table des figures

, Coefficient de réflexion ?(z, ?) simulé pour 0 Hz ? f ? 200 MHz sur un câble de 20 m affecté par un défaut entre 5 m et 6 m (capacité linéique cinq fois plus grande que la capacité nominale), p.44

.. , Algorithme de simulation de la propagation des ondes et du coefficient de réflexion dans le domaine fréquentiel, p.45

P. Schéma-de, diagnostic de câbles par résolution d'un problème inverse, p.51

I. Algorithme, , p.59

.. , signal injecté (succession de deux impulsions), p.74

G. Paramètre, , p.74

G. Paramètre and .. Et-Énergie-dissipée, , p.75

, R(x)) sur l'impédance apparente (Z(z)), Effet des pertes, p.81

, Méthode d'estimation du profil de résistance linéique R(z), p.82

7. , Expérience 1 : câble RG214 de 40 m affecté d'un défaut résistif localisé de 49, p.84

1. , , p.84

3. , Expérience 2 : câble RG214 de 25 m affecté d'un défaut résistif localisé de 18, p.85

2. , , p.86

, Résultat pour l'estimation d'un défaut résistif réparti, p.86

.. , Profil de résistance linéique simulé pour l'estimation des paramètres S avec trois mesures, p.93

, Estimation de S 22 et S 12 S 21 à partir de mesures à un port, p.93

, Représentation d'un quadripôle et notation des tensions et courants 96

, Estimation du profil R(z) sans réadaptation ni usage du zero-padding101

, Estimation du profil R(z) sans réadaptation et avec zero-padding 101

.. , Estimation du profil R(z) avec réadaptation et sans usage du zeropadding, p.102

, Estimation du profil R(z) avec réadaptation et usage du zero-padding103

.. , Effet de la procédure de réadaptation sur l'estimation du profil de résistance linéique R(z)

C. Quadripôles-en, , p.104

. .. Représentation-abcd-d-'un-câble-et-ses-deux-connecteurs, , p.105

". Connecteurs-"-dos-À-dos, , p.106

.. Modèles-classiques-de-quadripôles, , p.107

.. Notations-des-courants-et-tensions,

.. , Optimisation du paramètre S 11 (? = 0), p.113