Uncertainty learning for noise robust ASR - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Thèse Année : 2015

Uncertainty learning for noise robust ASR

Traitement de l'incertitude pour la reconnaissance de la parole robuste au bruit

Résumé

This thesis focuses on noise robust automatic speech recognition (ASR). It includes two parts. First, we focus on better handling of uncertainty to improve the performance of ASR in a noisy environment. Second, we present a method to accelerate the training process of a neural network using an auxiliary function technique. In the first part, multichannel speech enhancement is applied to input noisy speech. The posterior distribution of the underlying clean speech is then estimated, as represented by its mean and its covariance matrix or uncertainty. We show how to propagate the diagonal uncertainty covariance matrix in the spectral domain through the feature computation stage to obtain the full uncertainty covariance matrix in the feature domain. Uncertainty decoding exploits this posterior distribution to dynamically modify the acoustic model parameters in the decoding rule. The uncertainty decoding rule simply consists of adding the uncertainty covariance matrix of the enhanced features to the variance of each Gaussian component. We then propose two uncertainty estimators based on fusion to nonparametric estimation, respectively. To build a new estimator, we consider a linear combination of existing uncertainty estimators or kernel functions. The combination weights are generatively estimated by minimizing some divergence with respect to the oracle uncertainty. The divergence measures used are weighted versions of Kullback-Leibler (KL), Itakura-Saito (IS), and Euclidean (EU) divergences. Due to the inherent nonnegativity of uncertainty, this estimation problem can be seen as an instance of weighted nonnegative matrix factorization (NMF). In addition, we propose two discriminative uncertainty estimators based on linear or nonlinear mapping of the generatively estimated uncertainty. This mapping is trained so as to maximize the boosted maximum mutual information (bMMI) criterion. We compute the derivative of this criterion using the chain rule and optimize it using stochastic gradient descent. In the second part, we introduce a new learning rule for neural networks that is based on an auxiliary function technique without parameter tuning. Instead of minimizing the objective function, this technique consists of minimizing a quadratic auxiliary function which is recursively introduced layer by layer and which has a closed-form optimum. Based on the properties of this auxiliary function, the monotonic decrease of the new learning rule is guaranteed.
Cette thèse se focalise sur la reconnaissance automatique de la parole (RAP) robuste au bruit. Elle comporte deux parties. Premièrement, nous nous focalisons sur une meilleure prise en compte des incertitudes pour améliorer la performance de RAP en environnement bruité. Deuxièmement, nous présentons une méthode pour accélérer l'apprentissage d'un réseau de neurones en utilisant une fonction auxiliaire. Dans la première partie, une technique de rehaussement multicanal est appliquée à la parole bruitée en entrée. La distribution a posteriori de la parole propre sous-jacente est alors estimée et représentée par sa moyenne et sa matrice de covariance, ou incertitude. Nous montrons comment propager la matrice de covariance diagonale de l'incertitude dans le domaine spectral à travers le calcul des descripteurs pour obtenir la matrice de covariance pleine de l'incertitude sur les descripteurs. Le décodage incertain exploite cette distribution a posteriori pour modifier dynamiquement les paramètres du modèle acoustique au décodage. La règle de décodage consiste simplement à ajouter la matrice de covariance de l'incertitude à la variance de chaque gaussienne. Nous proposons ensuite deux estimateurs d'incertitude basés respectivement sur la fusion et sur l'estimation non-paramétrique. Pour construire un nouvel estimateur, nous considérons la combinaison linéaire d'estimateurs existants ou de fonctions noyaux. Les poids de combinaison sont estimés de façon générative en minimisant une mesure de divergence par rapport à l'incertitude oracle. Les mesures de divergence utilisées sont des versions pondérées des divergences de Kullback-Leibler (KL), d'Itakura-Saito (IS) ou euclidienne (EU). En raison de la positivité inhérente de l'incertitude, ce problème d'estimation peut être vu comme une instance de factorisation matricielle positive (NMF) pondérée. De plus, nous proposons deux estimateurs d'incertitude discriminants basés sur une transformation linéaire ou non linéaire de l'incertitude estimée de façon générative. Cette transformation est entraînée de sorte à maximiser le critère de maximum d'information mutuelle boosté (bMMI). Nous calculons la dérivée de ce critère en utilisant la règle de dérivation en chaîne et nous l'optimisons par descente de gradient stochastique. Dans la seconde partie, nous introduisons une nouvelle méthode d'apprentissage pour les réseaux de neurones basée sur une fonction auxiliaire sans aucun réglage de paramètre. Au lieu de maximiser la fonction objectif, cette technique consiste à maximiser une fonction auxiliaire qui est introduite de façon récursive couche par couche et dont le minimum a une expression analytique. Grâce aux propriétés de cette fonction, la décroissance monotone de la fonction objectif est garantie
Fichier principal
Vignette du fichier
DDOC_T_2015_0236_TRAN.pdf (1.24 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

tel-01754497 , version 2 (18-12-2015)
tel-01754497 , version 1 (30-03-2018)

Identifiants

  • HAL Id : tel-01754497 , version 1

Citer

Tien Dung Tran. Uncertainty learning for noise robust ASR. Other [cs.OH]. Université de Lorraine, 2015. English. ⟨NNT : 2015LORR0236⟩. ⟨tel-01754497v1⟩
368 Consultations
359 Téléchargements

Partager

Gmail Facebook X LinkedIn More