. .. Quantum-simulators,

. .. Periodically-driven-systems,

B. E. Hamiltonian,

.. .. High,

. , Quantum simulator engineering and probing exotic states of matter 4.2.3 The role of interactions

A. , Magnetic fields under a resonance condition, p.124

. , Dynamical probe of the Zak phase in the photonic SSH model

A. , Numerical simulations at finite temperature, p.137

. , 4.5.3 Fock state spectroscopy and many-body localization, p.141

K. Plekhanov, G. Roux, and K. L. Hur, Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions, Phys. Rev. B, vol.95, p.45102, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01430616

K. Plekhanov, Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model, Physical Review Letters, vol.120, p.157201, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01795075

K. L. Hur, Many-body quantum electrodynamics networks: Nonequilibrium condensed matter physics with light, Comptes Rendus Physique, vol.17, pp.808-835, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01228030

T. Goren, Topological Zak phase in strongly coupled LC circuits, Phys. Rev. B, vol.97, p.41106, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01682277

B. Pandey, K. Plekhanov, and G. Roux, Purification spectroscopy, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01952908

V. L. Berezinski?iberezinski?berezinski?i, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems, Soviet Journal of Experimental and Theoretical Physics, vol.32, p.493, 1971.

V. L. Berezinski?iberezinski?berezinski?i, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Quantum Systems, Soviet Journal of Experimental and Theoretical Physics, vol.34, p.610, 1972.

J. and D. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, vol.6, p.1181, 1973.

N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models, Physical Review Letters, vol.17, pp.1133-1136, 1966.

P. C. Hohenberg, Existence of Long-Range Order in One and Two Dimensions, Physical Review, vol.158, pp.383-386, 1967.

K. V. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett, vol.45, pp.494-497, 1980.

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett, vol.48, pp.1559-1562, 1982.

J. P. Eisenstein and H. L. Stormer, The Fractional Quantum Hall Effect, Science 248, vol.4962, pp.1510-1516, 1990.

R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B, vol.23, pp.5632-5633, 1981.

A. Stern, Anyons and the quantum Hall effect-A pedagogical review, Annals of Physics, vol.323, pp.204-249, 2008.

L. N. Cooper, Bound Electron Pairs in a Degenerate Fermi Gas, Phys. Rev, vol.104, pp.1189-1190, 1956.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Phys. Rev, vol.108, pp.1175-1204, 1957.

P. Gennes, Superconductivity of Metals and Alloys. Advanced book classics, 1999.

, Mikio Nakahara. Geometry, topology and physics. Graduate student series in physics, 1990.

G. L. Naber and . Topology, Geometry and Gauge fields: Foundations. Texts in Applied Mathematics, 2010.

, Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School, vol.103, p.704, 2014.

S. Pancharatnam, Generalized theory of interference, and its applications, Proceedings of the Indian Academy of Sciences-Section A, vol.44, pp.247-262, 1956.

M. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.392, pp.45-57, 1984.

A. Messiah, Quantum Mechanics. Dover books on physics, 1961.

B. Simon, Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase, Phys. Rev. Lett, vol.51, pp.2167-2170, 1983.

J. Zak, Berry's phase for energy bands in solids, Phys. Rev. Lett, vol.62, pp.2747-2750, 1989.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett, vol.42, pp.1698-1701, 1979.

J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions, 2015.

A. Y. Kitaev, 6. QUANTUM COMPUTING: Unpaired Majorana fermions in quantum wires, Physics Uspekhi, vol.44, p.131, 2001.

C. W. Beenakker, Search for Majorana Fermions in Superconductors, Annual Review of Condensed Matter Physics, vol.4, pp.113-136, 2013.

J. E. Avron, R. Seiler, and B. Simon, Homotopy and Quantization in Condensed Matter Physics, Phys. Rev. Lett, vol.51, pp.51-53, 1983.

F. D. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly, Phys. Rev. Lett, vol.61, pp.2015-2018, 1988.

G. E. Volovik, Fermion zero modes on vortices in chiral superconductors, Soviet Journal of Experimental and Theoretical Physics Letters, vol.70, pp.609-614, 1999.

G. E. Volovik, The Universe in a Helium Droplet, International Series of Monographs on Physics. OUP Oxford, 2009.

D. J. Thouless, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett, vol.49, pp.405-408, 1982.

M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Annals of Physics, vol.160, pp.343-354, 1985.

R. Giles, Reconstruction of gauge potentials from Wilson loops, Phys. Rev. D, vol.24, pp.2160-2168, 1981.

A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B, vol.55, pp.1142-1161, 1997.

F. J. Dyson, The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics, Journal of Mathematical Physics, vol.3, pp.1199-1215, 1962.

A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conference Proceedings, vol.1134, pp.22-30, 2009.
DOI : 10.1063/1.3149495

URL : http://arxiv.org/pdf/0901.2686v2.pdf

A. P. Schnyder, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B, vol.78, p.195125, 2008.

A. P. Schnyder, Classification of Topological Insulators and Superconductors, AIP Conference Proceedings, vol.1134, pp.10-21, 2009.

S. Ryu, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New Journal of Physics, vol.12, p.65010, 2010.
DOI : 10.1088/1367-2630/12/6/065010

URL : http://iopscience.iop.org/article/10.1088/1367-2630/12/6/065010/pdf

A. Bernevig and T. Neupert, Topological Superconductors and Category Theory, 2015.
DOI : 10.1093/acprof:oso/9780198785781.003.0002

URL : http://arxiv.org/pdf/1506.05805

C. Chiu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys, vol.88, p.35005, 2016.

C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters 95, vol.22, p.226801, 2005.
DOI : 10.1103/physrevlett.95.226801

URL : http://arxiv.org/pdf/cond-mat/0411737

C. L. Kane and E. J. Mele, Z 2 Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett, vol.95, p.146802, 2005.

B. , A. Bernevig, T. L. Hughes, and S. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, vol.314, pp.1757-1761, 2006.
DOI : 10.1126/science.1133734

URL : http://arxiv.org/pdf/cond-mat/0611399

M. König, Quantum Spin Hall Insulator State in HgTe Quantum Wells, p.766, 2007.

Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett, vol.71, pp.3697-3700, 1993.
DOI : 10.1103/physrevlett.71.3697

X. Qi, Y. Wu, and S. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B, vol.74, p.45125, 2006.

A. M. Essin and V. Gurarie, Bulk-boundary correspondence of topological insulators from their respective Green's functions, Phys. Rev. B 84, vol.12, p.125132, 2011.

G. M. Graf and M. Porta, Bulk-Edge Correspondence for Two-Dimensional Topological Insulators, Communications in Mathematical Physics, vol.324, pp.851-895, 2013.
DOI : 10.1007/s00220-013-1819-6

URL : https://hal.archives-ouvertes.fr/hal-02049119

E. Prodan and H. Schulz-baldes, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics, 2015.
DOI : 10.1007/978-3-319-29351-6

URL : http://arxiv.org/pdf/1510.08744

N. Sedlmayr, Bulk boundary correspondence and the existence of Majorana bound states on the edges of 2D topological superconductors, Phys. Rev. B, vol.96, p.184516, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01626934

R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett, vol.50, pp.1395-1398, 1983.
DOI : 10.1007/978-94-010-9709-3_26

B. I. Halperin, Statistics of Quasiparticles and the Hierarchy of Fractional Quantized Hall States, Phys. Rev. Lett, vol.52, pp.1583-1586, 1984.

J. R. Daniel-arovas, F. Schrieffer, and . Wilczek, Fractional Statistics and the Quantum Hall Effect, Phys. Rev. Lett, vol.53, pp.722-723, 1984.

R. B. Laughlin, The Quantum Hall Effect, Chap. Elementary Theory: the Incompressible Quantum Fluid, pp.233-301, 1987.

, Field Theories of Condensed Matter Physics, 2013.

L. Saminadayar, Observation of the e/3 Fractionally Charged Laughlin Quasiparticle, Phys. Rev. Lett, vol.79, pp.2526-2529, 1997.

R. De-picciotto, Direct observation of a fractional charge, Physica B Condensed Matter, vol.249, pp.395-400, 1998.

F. D. Haldane, Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States, Phys. Rev. Lett, vol.51, pp.605-608, 1983.

J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett, vol.63, pp.199-202, 1989.

J. K. Jain, Theory of the fractional quantum Hall effect, Phys. Rev. B, vol.41, pp.7653-7665, 1990.

K. Jainendra and . Jain, Composite Fermions, 2007.

C. Chang and J. K. Jain, Microscopic Origin of the Next-Generation Fractional Quantum Hall Effect, Physical Review Letters, vol.92, p.196806, 2004.

R. Willett, Observation of an even-denominator quantum number in the fractional quantum Hall effect, Physical Review Letters, vol.59, pp.1776-1779, 1987.

G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nuclear Physics B, vol.360, pp.362-396, 1991.

A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics, vol.303, pp.2-30, 2003.
DOI : 10.1016/s0003-4916(02)00018-0

URL : http://arxiv.org/pdf/quant-ph/9707021

C. Nayak, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys, vol.80, pp.1083-1159, 2008.
DOI : 10.1103/revmodphys.80.1083

URL : http://arxiv.org/pdf/0707.1889

A. Stern, H. Netanel, and . Lindner, Topological Quantum Computation-From Basic Concepts to First Experiments, Science, vol.339, pp.1179-1184, 2013.

A. Lopez and E. Fradkin, Fractional quantum Hall effect and ChernSimons gauge theories, Phys. Rev. B, vol.44, pp.5246-5262, 1991.

B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled Landau level, Phys. Rev. B, vol.47, pp.7312-7343, 1993.

X. G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons. Oxford Graduate Texts, 2004.

D. Tong, Lectures on the Quantum Hall Effect". In: ArXiv e-prints, 2016.

X. Wen, Topological order: from long-range entangled quantum matter to an unification of light and electrons, 2012.

T. Senthil, Symmetry-Protected Topological Phases of Quantum Matter, Annual Review of Condensed Matter Physics, vol.6, pp.299-324, 2015.

S. , Interacting Topological Insulators: a review, 2018.

X. G. Wen, Topological Order in Rigid States, Int. J. Mod. Phys, vol.4, p.239, 1990.

I. Affleck, Rigorous results on valence-bond ground states in antiferromagnets, Physical Review Letters, vol.59, pp.799-802, 1987.

F. D. Haldane, Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State, Phys. Rev. Lett, vol.50, pp.1153-1156, 1983.

F. D. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Physics Letters A, vol.93, issue.9, pp.464-468, 1983.

I. Affleck and F. D. Haldane, Critical theory of quantum spin chains, Phys. Rev. B, vol.36, pp.5291-5300, 1987.

I. Affleck, REVIEW ARTICLE: Quantum spin chains and the Haldane gap, Journal of Physics Condensed Matter, vol.1, pp.3047-3072, 1989.

F. Pollmann, Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B, vol.81, p.64439, 2010.

X. Chen, Z. Gu, and X. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B, vol.83, p.35107, 2011.

X. Chen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B, vol.87, p.155114, 2013.

G. Misguich, Quantum spin liquids, 2008.

L. Balents, Spin liquids in frustrated magnets, Nature, vol.464, p.199, 2010.

C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Springer Series in Solid-State Sciences, 2011.

L. Savary and L. Balents, Quantum spin liquids: a review, In: Reports on Progress in Physics, vol.80, p.16502, 2017.

Y. Zhou, K. Kanoda, and T. Ng, Quantum spin liquid states, Rev. Mod. Phys, vol.89, p.25003, 2017.

P. W. Anderson, Resonating valence bonds: A new kind of insulator?, In: Materials Research Bulletin, vol.8, issue.2, pp.153-160, 1973.

J. G. Bednorz and K. A. Müller, Possible high T c superconductivity in the BaLa-Cu-O system, Zeitschrift fur Physik B Condensed Matter, vol.64, pp.189-193, 1986.

P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, pp.1196-1198, 1987.

V. Kalmeyer and R. B. Laughlin, Equivalence of the resonating-valence-bond and fractional quantum Hall states, Phys. Rev. Lett, vol.59, pp.2095-2098, 1987.

X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and superconductivity, Phys. Rev. B, vol.39, pp.11413-11423, 1989.

X. G. Wen, Mean-field theory of spin-liquid states with finite energy gap and topological orders, Phys. Rev. B, vol.44, pp.2664-2672, 1991.
DOI : 10.1103/physrevb.44.2664

N. Read and S. Sachdev, Large-N expansion for frustrated quantum antiferromagnets, Phys. Rev. Lett, vol.66, pp.1773-1776, 1991.
DOI : 10.1103/physrevlett.66.1773

R. Moessner and S. L. Sondhi, Resonating Valence Bond Phase in the Triangular Lattice Quantum Dimer Model, Phys. Rev. Lett, vol.86, pp.1881-1884, 2001.

X. Wen, Quantum orders and symmetric spin liquids, Phys. Rev. B, vol.65, p.165113, 2002.
DOI : 10.1103/physrevb.65.165113

URL : http://arxiv.org/pdf/cond-mat/0107071v1.pdf

A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics, vol.321, pp.2-111, 2006.
DOI : 10.1016/j.aop.2005.10.005

URL : http://arxiv.org/pdf/cond-mat/0506438

S. Weinberg, The Quantum Theory of Fields, vol.1, 2005.

, The quantum theory of the electron, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.117, pp.610-624, 1928.

H. Weyl, Electron and gravitation, Z.Phys, vol.56, pp.330-352, 1929.

E. Majorana, Teoria simmetrica dell'elettrone e del positrone, Il Nuovo Cimento, vol.14, pp.171-184, 1937.
DOI : 10.1007/bf02961314

J. Cayssol, Introduction to Dirac materials and topological insulators, Comptes Rendus Physique, vol.14, issue.9, pp.760-778, 2013.
DOI : 10.1016/j.crhy.2013.09.012

URL : https://hal.archives-ouvertes.fr/hal-00942955

T. O. Wehling, A. M. Black-schaffer, and A. V. Balatsky, Dirac materials, Advances in Physics, vol.63, pp.1-76, 2014.
DOI : 10.1080/00018732.2014.927109

URL : http://arxiv.org/pdf/1405.5774

P. R. Wallace, The Band Theory of Graphite, Phys. Rev, vol.71, pp.622-634, 1947.

K. S. Novoselov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, pp.197-200, 2005.

A. H. Castro-neto, The electronic properties of graphene, Rev. Mod. Phys, vol.81, pp.109-162, 2009.

J. E. Moore and L. Balents, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B, vol.75, p.121306, 2007.

M. Z. Hasan and C. L. Kane, Colloquium : Topological insulators, Rev. Mod. Phys, vol.82, pp.3045-3067, 2010.
DOI : 10.1103/revmodphys.82.3045

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1043&context=physics_papers

X. Qi and S. Zhang, Topological insulators and superconductors, Rev. Mod. Phys, vol.83, pp.1057-1110, 2011.

M. Fruchart and D. Carpentier, An introduction to topological insulators, Comptes Rendus Physique, vol.14, pp.779-815, 2013.
URL : https://hal.archives-ouvertes.fr/ensl-00868307

C. L. Liang-fu, E. J. Kane, and . Mele, Topological Insulators in Three Dimensions, Phys. Rev. Lett, vol.98, p.106803, 2007.

G. E. Volovik, Exotic Properties of Superfluid 3He. Series in modern condensed matter physics, 1992.

X. Wan, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, vol.83, p.205101, 2011.

S. M. Young, Dirac Semimetal in Three Dimensions, Phys. Rev. Lett, vol.108, p.140405, 2012.
DOI : 10.1103/physrevlett.108.140405

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.108.140405

L. Huang, Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2, Letter, vol.15, pp.1155-1160, 2016.
DOI : 10.1038/nmat4685

URL : http://arxiv.org/pdf/1603.06482

N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Reviews of Modern Physics 90, vol.1, p.15001, 2018.
DOI : 10.1103/revmodphys.90.015001

URL : http://arxiv.org/pdf/1705.01111

G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett, vol.53, pp.2449-2452, 1984.
DOI : 10.1103/physrevlett.53.2449

Z. Wang, X. Qi, and S. Zhang, Equivalent topological invariants of topological insulators, New Journal of Physics, vol.12, p.65007, 2010.
DOI : 10.1088/1367-2630/12/6/065007

URL : http://iopscience.iop.org/article/10.1088/1367-2630/12/6/065007/pdf

D. Sticlet, Geometrical engineering of a two-band Chern insulator in two dimensions with arbitrary topological index, Phys. Rev. B, vol.85, p.165456, 2012.

G. Jotzu, Experimental realization of the topological Haldane model with ultracold fermions, Nature, vol.515, pp.237-240, 2014.
DOI : 10.1038/nature13915

URL : http://arxiv.org/pdf/1406.7874

N. Fläschner, Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, vol.352, pp.1091-1094, 2016.

A. Petrescu, A. A. Houck, and K. L. Hur, Anomalous Hall effects of light and chiral edge modes on the Kagome lattice, Phys. Rev. A, vol.86, p.53804, 2012.

T. Liu, B. Dou, and K. L. Hur, Anisotropic quantum spin Hall effect, spin-orbital textures, and the Mott transition, Phys. Rev. B, vol.88, p.245119, 2013.
DOI : 10.1103/physrevb.88.245119

URL : http://arxiv.org/pdf/1307.4597

C. Bena and L. Simon, Dirac point metamorphosis from thirdneighbor couplings in graphene and related materials, Phys. Rev. B, vol.83, p.115404, 2011.
DOI : 10.1103/physrevb.83.115404

URL : http://arxiv.org/pdf/1007.3907

G. Montambaux, A universal Hamiltonian for motion and merging of Dirac points in a two-dimensional crystal, The European Physical Journal B, vol.72, p.509, 2009.

K. Sun, Nearly Flatbands with Nontrivial Topology, Phys. Rev. Lett, vol.106, p.236803, 2011.
DOI : 10.1103/physrevlett.106.236803

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.106.236803

T. Neupert, Fractional Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett, vol.106, p.236804, 2011.
DOI : 10.1103/physrevlett.106.236804

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.106.236804

D. N. Sheng, Fractional quantum Hall effect in the absence of Landau levels, Nature Communications, vol.2, p.389, 2011.

Y. Wang, Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands, Physical Review Letters, vol.107, p.146803, 2011.

N. Regnault and B. A. Bernevig, Fractional Chern Insulator, Physical Review X, vol.1, p.21014, 2011.
DOI : 10.1103/physrevx.1.021014

URL : https://hal.archives-ouvertes.fr/hal-00649047

E. J. Bergholtz and Z. Liu, Topological Flat Band Models and Fractional Chern Insulators, International Journal of Modern Physics B, vol.27, p.1330017, 2013.

R. L. Doretto and M. O. Goerbig, Flat-band ferromagnetism and spin waves in topological Hubbard models, Phys. Rev. B 92, vol.24, p.245124, 2015.
DOI : 10.1103/physrevb.92.245124

URL : http://arxiv.org/pdf/1505.01685

T. Neupert, Fractional (Chern and topological) insulators, Physica Scripta Volume T 164.1, 014005, p.14005, 2015.

E. M. Spanton, Observation of fractional Chern insulators in a van der Waals heterostructure, 2017.

R. Sohal, L. H. Santos, and E. Fradkin, Chern-Simons composite fermion theory of fractional Chern insulators, Phys. Rev. B 97, vol.12, p.125131, 2018.

J. Struck, Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices, Phys. Rev. Lett, vol.108, p.225304, 2012.

K. Jiménez-garcía, Peierls Substitution in an Engineered Lattice Potential, Phys. Rev. Lett, vol.108, p.225303, 2012.

M. Atala, Observation of chiral currents with ultracold atoms in bosonic ladders, Nature Physics, vol.10, pp.588-593, 2014.

J. Struck, Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices, Science, vol.333, pp.996-999, 2011.

J. Struck, Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields, Nat Phys, vol.9, issue.11, pp.738-743, 2013.

C. J. Kennedy, Observation of Bose-Einstein condensation in a strong synthetic magnetic field, Nat Phys, vol.11, issue.10, pp.859-864, 2015.

A. Amo, Superfluidity of polaritons in semiconductor microcavities, Nat Phys, vol.5, issue.11, pp.805-810, 2009.

J. Klaers, Bose-Einstein condensation of photons in an optical microcavity, Nature, vol.468, pp.545-548, 2010.

L. Lim, A. Hemmerich, and C. Smith, Artificial staggered magnetic field for ultracold atoms in optical lattices, Phys. Rev. A, vol.81, p.23404, 2010.

G. Möller and N. R. Cooper, Condensed ground states of frustrated BoseHubbard models, Phys. Rev. A, vol.82, p.63625, 2010.

P. Michael and . Zaletel, Chiral bosonic Mott insulator on the frustrated triangular lattice, Phys. Rev. B, vol.89, p.155142, 2014.

I. Vasic, Chiral bosonic phases on the Haldane honeycomb lattice, Phys. Rev. B, vol.91, p.94502, 2015.

P. Fulde and R. A. Ferrell, Superconductivity in a Strong SpinExchange Field, Phys. Rev, vol.135, pp.550-563, 1964.

A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz, vol.47, pp.1136-1146, 1964.

A. Isacsson and S. M. Girvin, Multiflavor bosonic Hubbard models in the first excited Bloch band of an optical lattice, Phys. Rev. A, vol.72, p.53604, 2005.

A. B. Kuklov, Unconventional Strongly Interacting Bose-Einstein Condensates in Optical Lattices, Phys. Rev. Lett, vol.97, p.110405, 2006.

W. , V. Liu, and C. Wu, Atomic matter of nonzero-momentum Bose-Einstein condensation and orbital current order, Phys. Rev. A, vol.74, p.13607, 2006.

T. Müller, State Preparation and Dynamics of Ultracold Atoms in Higher Lattice Orbitals, Phys. Rev. Lett, vol.99, p.200405, 2007.

G. Wirth, M. Olschlager, and A. Hemmerich, Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice, Nat Phys, vol.7, issue.2, pp.147-153, 2011.

C. V. Parker, L. Ha, and C. Chin, Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice, Nat Phys, vol.9, pp.769-774, 2013.

M. A. Khamehchi, Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins, Nature Communications, vol.7, p.10867, 2016.
DOI : 10.1038/ncomms10867

URL : http://www.nature.com/articles/ncomms10867.pdf

C. L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet, Phys. Rev. Lett, vol.62, pp.2056-2059, 1989.
DOI : 10.1103/physrevlett.62.2056

Y. Kuno, T. Nakafuji, and I. Ichinose, Phase diagrams of the Bose-Hubbard model and the Haldane-Bose-Hubbard model with complex hopping amplitudes, Phys. Rev. A, vol.92, p.63630, 2015.

S. Furukawa and M. Ueda, Excitation band topology and edge matter waves in Bose-Einstein condensates in optical lattices, New Journal of Physics, vol.17, p.115014, 2015.
DOI : 10.1088/1367-2630/17/11/115014

URL : http://iopscience.iop.org/article/10.1088/1367-2630/17/11/115014/pdf

F. D. Haldane, Effective Harmonic-Fluid Approach to Low-Energy Properties of One-Dimensional Quantum Fluids, Phys. Rev. Lett, vol.47, pp.1840-1843, 1981.
DOI : 10.1103/physrevlett.47.1840

A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems, 2004.

T. Giamarchi, Quantum Physics in One Dimension, International Series of Monographs on Physics, 2003.

M. A. Cazalilla, One dimensional bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys, vol.83, pp.1405-1466, 2011.
DOI : 10.1103/revmodphys.83.1405

URL : https://hal.archives-ouvertes.fr/ensl-00647350

E. Orignac and T. Giamarchi, Meissner effect in a bosonic ladder, Phys. Rev. B, vol.64, p.144515, 2001.
DOI : 10.1103/physrevb.64.144515

URL : https://hal.archives-ouvertes.fr/hal-00138243

A. Dhar, Bose-Hubbard model in a strong effective magnetic field: Emergence of a chiral Mott insulator ground state, Phys. Rev. A, vol.85, p.41602, 2012.

A. Petrescu and K. L. Hur, Bosonic Mott Insulator with Meissner Currents, Phys. Rev. Lett, vol.111, p.150601, 2013.
DOI : 10.1103/physrevlett.111.150601

URL : http://arxiv.org/pdf/1306.5986

A. Tokuno and A. Georges, Ground states of a Bose-Hubbard ladder in an artificial magnetic field: field-theoretical approach, New Journal of Physics, vol.16, p.73005, 2014.

M. Piraud, Vortex and Meissner phases of strongly interacting bosons on a two-leg ladder, Phys. Rev. B, vol.91, p.140406, 2015.
DOI : 10.1103/physrevb.91.140406

URL : https://link.aps.org/accepted/10.1103/PhysRevB.91.140406

S. Greschner, Spontaneous Increase of Magnetic Flux and Chiral-Current Reversal in Bosonic Ladders: Swimming against the Tide, Phys. Rev. Lett, vol.115, p.190402, 2015.

A. Kele¸skele¸-kele¸s and M. Ö. Oktel, Mott transition in a two-leg Bose-Hubbard ladder under an artificial magnetic field, Phys. Rev. A, vol.91, p.13629, 2015.

E. Orignac, Incommensurate phases of a bosonic two-leg ladder under a flux, New Journal of Physics, vol.18, p.55017, 2016.
DOI : 10.1088/1367-2630/18/5/055017

URL : https://hal.archives-ouvertes.fr/hal-01322889

S. Greschner and F. Heidrich-meisner, Quantum phases of strongly interacting bosons on a two-leg Haldane ladder, Phys. Rev. A, vol.97, p.33619, 2018.
DOI : 10.1103/physreva.97.033619

URL : http://arxiv.org/pdf/1710.08109

F. Pollmann, Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B, vol.85, p.75125, 2012.
DOI : 10.1103/physrevb.85.075125

URL : https://link.aps.org/accepted/10.1103/PhysRevB.85.075125

A. Petrescu and K. L. Hur, Chiral Mott insulators, Meissner effect, and Laughlin states in quantum ladders, Phys. Rev. B, vol.91, p.54520, 2015.
DOI : 10.1103/physrevb.91.054520

URL : http://arxiv.org/pdf/1410.6105

A. Petrescu, Precursor of the Laughlin state of hard-core bosons on a two-leg ladder, Phys. Rev. B 96, vol.1, p.14524, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01597459

M. C. Strinati, Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders, Phys. Rev. X, vol.7, p.21033, 2017.

C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky, Fractional Quantum Hall Effect in an Array of Quantum Wires, Phys. Rev. Lett, vol.88, p.36401, 2002.
DOI : 10.1103/physrevlett.88.036401

URL : http://arxiv.org/pdf/cond-mat/0108445

C. Y. Jeffrey, C. L. Teo, and . Kane, From Luttinger liquid to non-Abelian quantum Hall states, Phys. Rev. B, vol.89, p.85101, 2014.

T. Neupert, Wire deconstructionism of two-dimensional topological phases, Phys. Rev. B, vol.90, p.205101, 2014.
DOI : 10.1103/physrevb.90.205101

URL : https://link.aps.org/accepted/10.1103/PhysRevB.90.205101

P. Huang, Non-Abelian topological spin liquids from arrays of quantum wires or spin chains, Phys. Rev. B, vol.93, p.205123, 2016.
DOI : 10.1103/physrevb.93.205123

URL : https://link.aps.org/accepted/10.1103/PhysRevB.93.205123

L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B, vol.76, p.45302, 2007.
DOI : 10.1103/physrevb.76.045302

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1173&context=physics_papers

L. Fu and C. L. Kane, Time reversal polarization and a Z 2 adiabatic spin pump, Phys. Rev. B, vol.74, p.195312, 2006.
DOI : 10.1103/physrevb.74.195312

URL : http://arxiv.org/pdf/cond-mat/0606336

S. Lee and S. Ryu, Many-Body Generalization of the Z 2 Topological Invariant for the Quantum Spin Hall Effect, Physical Review Letters, vol.100, p.186807, 2008.

S. Rachel and K. L. Hur, Topological insulators and Mott physics from the Hubbard interaction, Phys. Rev. B, vol.82, p.75106, 2010.
DOI : 10.1103/physrevb.82.075106

URL : http://arxiv.org/pdf/1003.2238

C. Griset and C. Xu, Phase diagram of the Kane-Mele-Hubbard model, Phys. Rev. B, vol.85, p.45123, 2012.

W. Wu, Quantum spin Hall insulators with interactions and lattice anisotropy, Phys. Rev. B, vol.85, p.205102, 2012.
DOI : 10.1103/physrevb.85.205102

URL : https://link.aps.org/accepted/10.1103/PhysRevB.85.205102

J. Reuther, R. Thomale, and S. Rachel, Magnetic ordering phenomena of interacting quantum spin Hall models, Phys. Rev. B, vol.86, p.155127, 2012.
DOI : 10.1103/physrevb.86.155127

URL : http://arxiv.org/pdf/1206.3103

M. Hohenadler, Quantum phase transitions in the Kane-Mele-Hubbard model, Phys. Rev. B, vol.85, p.115132, 2012.
DOI : 10.1103/physrevb.85.115132

URL : http://arxiv.org/pdf/1111.3949

M. Hohenadler, F. Fakher, and . Assaad, Rashba coupling and magnetic order in correlated helical liquids, Phys. Rev. B, vol.90, p.245148, 2014.
DOI : 10.1103/physrevb.90.245148

URL : http://arxiv.org/pdf/1411.0719

M. Laubach, Rashba spin-orbit coupling in the Kane-Mele-Hubbard model, Phys. Rev. B, vol.90, p.165136, 2014.
DOI : 10.1103/physrevb.90.165136

URL : https://authors.library.caltech.edu/53249/2/PhysRevB.90.165136.pdf

J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians, Physical Review, vol.149, pp.491-492, 1966.

S. Bravyi, D. P. Divincenzo, and D. Loss, Schrieffer-Wolff transformation for quantum many-body systems, Annals of Physics, vol.326, pp.2793-2826, 2011.
DOI : 10.1016/j.aop.2011.06.004

URL : http://arxiv.org/pdf/1105.0675

C. N. Varney, Kaleidoscope of Exotic Quantum Phases in a Frustrated XY Model, Phys. Rev. Lett, vol.107, p.77201, 2011.

C. Varney, Quantum phases of hard-core bosons in a frustrated honeycomb lattice, New Journal of Physics, vol.14, p.115028, 2012.

J. Carrasquilla, Nature of the phases in the frustrated XY model on the honeycomb lattice, Phys. Rev. B, vol.88, p.241109, 2013.

A. Di-ciolo, Spiral antiferromagnets beyond the spin-wave approximation: Frustrated XY and Heisenberg models on the honeycomb lattice, Phys. Rev. B, vol.89, p.94413, 2014.

A. Tigran, L. I. Sedrakyan, A. Glazman, and . Kamenev, Spontaneous Formation of a Nonuniform Chiral Spin Liquid in a Moat-Band Lattice, Phys. Rev. Lett, vol.114, p.37203, 2015.

T. Nakafuji and I. Ichinose, Phase diagrams of Bose-Hubbard model and antiferromagnetic spin-1/2 models on a honeycomb lattice, Phys. Rev. A, vol.96, p.13628, 2017.

Z. Zhu, D. A. Huse, and S. R. White, Unexpected z-Direction Ising Antiferromagnetic Order in a Frustrated Spin-1/2 J 1 ? J 2 XY Model on the Honeycomb Lattice, Phys. Rev. Lett, vol.111, p.257201, 2013.

Z. Zhu and S. R. White, Quantum phases of the frustrated XY models on the honeycomb lattice, Modern Physics Letters B, vol.28, p.1430016, 2014.

R. F. Bishop, P. H. Li, and C. E. Campbell, Frustrated spin-1 2 J 1-J 2 isotropic XY model on the honeycomb lattice, Phys. Rev. B, vol.89, p.214413, 2014.

N. Goldman, Realistic Time-Reversal Invariant Topological Insulators with Neutral Atoms, Phys. Rev. Lett, vol.105, p.255302, 2010.

C. J. Kennedy, Spin-Orbit Coupling and Quantum Spin Hall Effect for Neutral Atoms without Spin Flips, Phys. Rev. Lett, vol.111, p.225301, 2013.

J. Struck, J. Simonet, and K. Sengstock, Spin-orbit coupling in periodically driven optical lattices, Phys. Rev. A, vol.90, p.31601, 2014.

Z. Yan, A General Time-Periodic Driving Approach to Realize Topological Phases in Cold Atomic Systems, In: Scientific Reports, vol.5, p.16197, 2015.

X. Liu, K. T. Law, and T. K. Ng, Realization of 2D Spin-Orbit Interaction and Exotic Topological Orders in Cold Atoms, Physical Review Letters, vol.112, p.86401, 2014.

V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Review Article, vol.494, p.49, 2013.

N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat Phys, vol.12, pp.639-645, 2016.

L. Zhang and X. Liu, Spin-orbit coupling and topological phases for ultracold atoms, 2018.

L. Huang, Experimental realization of two-dimensional synthetic spinorbit coupling in ultracold Fermi gases, Nature Physics, vol.12, pp.540-544, 2016.

Z. Wu, Realization of two-dimensional spin-orbit coupling for BoseEinstein condensates, pp.83-88, 2016.

M. Hafezi, Robust optical delay lines with topological protection, Nat Phys, vol.7, issue.11, pp.907-912, 2011.

V. G. Sala, Spin-Orbit Coupling for Photons and Polaritons in Microstructures, Physical Review X 5, vol.1, p.11034, 2015.
DOI : 10.1103/physrevx.5.011034

URL : https://hal.archives-ouvertes.fr/hal-01275245

L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological photonics, Nat Photon, vol.8, pp.821-829, 2014.
DOI : 10.1038/nphoton.2014.248

URL : http://arxiv.org/pdf/1408.6730

A. H. Macdonald, S. M. Girvin, and D. Yoshioka, t U expansion for the Hubbard model, Phys. Rev. B, vol.37, pp.9753-9756, 1988.

R. Flint and P. A. Lee, Emergent Honeycomb Lattice in LiZn 2 Mo 3 O 8, Physical Review Letters, vol.111, p.217201, 2013.
DOI : 10.1103/physrevlett.111.217201

URL : http://arxiv.org/pdf/1308.2642

J. B. Fouet, P. Sindzingre, and C. Lhuillier, An investigation of the quantum J 1-J 2-J 3 model on the honeycomb lattice, Eur. Phys. J. B, vol.20, pp.241-254, 2001.

F. Wang, Schwinger boson mean field theories of spin liquid states on a honeycomb lattice: Projective symmetry group analysis and critical field theory, Phys. Rev. B, vol.82, p.24419, 2010.
DOI : 10.1103/physrevb.82.024419

URL : http://arxiv.org/pdf/1004.2693

A. Mulder, Spiral order by disorder and lattice nematic order in a frustrated Heisenberg antiferromagnet on the honeycomb lattice, Phys. Rev. B, vol.81, p.214419, 2010.

B. K. Clark, D. A. Abanin, and S. L. Sondhi, Nature of the Spin Liquid State of the Hubbard Model on a Honeycomb Lattice, Phys. Rev. Lett, vol.107, p.87204, 2011.

A. F. Albuquerque, Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation, Phys. Rev. B, vol.84, p.24406, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00625596

D. C. Cabra, C. A. Lamas, and H. D. Rosales, Quantum disordered phase on the frustrated honeycomb lattice, Phys. Rev. B, vol.83, p.94506, 2011.
DOI : 10.1103/physrevb.83.094506

URL : http://arxiv.org/pdf/1003.3226

J. Reuther, A. Dmitry, R. Abanin, and . Thomale, Magnetic order and paramagnetic phases in the quantum J 1-J 2-J 3 honeycomb model, Phys. Rev. B, vol.84, p.14417, 2011.

F. Mezzacapo and M. Boninsegni, Ground-state phase diagram of the quantum J 1 ? J 2 model on the honeycomb lattice, Phys. Rev. B, vol.85, p.60402, 2012.

H. Zhang and C. A. Lamas, Exotic disordered phases in the quantum J 1-J 2 model on the honeycomb lattice, Phys. Rev. B, vol.87, p.24415, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00998145

R. Ganesh, J. Van-den, S. Brink, and . Nishimoto, Deconfined Criticality in the Frustrated Heisenberg Honeycomb Antiferromagnet, Phys. Rev. Lett, vol.110, p.127203, 2013.
DOI : 10.1103/physrevlett.110.127203

URL : http://arxiv.org/pdf/1301.0853

S. Gong, Phase diagram of the spin-1 2 J 1-J 2 Heisenberg model on a honeycomb lattice, Phys. Rev. B, vol.88, p.165138, 2013.

Z. Zhu, D. A. Huse, and S. R. White, Weak Plaquette Valence Bond Order in the S=1/2 Honeycomb J 1 ?J 2 Heisenberg Model, Phys. Rev. Lett, vol.110, p.127205, 2013.
DOI : 10.1103/physrevlett.110.127205

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.110.127205

S. Gong, Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice, Phys. Rev. B, vol.91, p.75112, 2015.

F. Ferrari, S. Bieri, and F. Becca, Competition between spin liquids and valencebond order in the frustrated spin-1/2 Heisenberg model on the honeycomb lattice, Phys. Rev. B, vol.96, p.104401, 2017.

H. S. Nair, Short range order in the quantum XXZ honeycomb lattice material BaCo_2(PO_4)_2", 2017.
DOI : 10.1103/physrevb.97.134409

URL : http://arxiv.org/pdf/1712.06208

E. Fradkin, Jordan-Wigner transformation for quantum-spin systems in two dimensions and fractional statistics, Phys. Rev. Lett, vol.63, pp.322-325, 1989.
DOI : 10.1103/physrevlett.63.322

J. Ambjørn and G. W. Semenoff, Fermionized spin systems and the bosonfermion mapping in (2+1)-dimensional gauge theory, Physics Letters B, vol.226, pp.107-112, 1989.

A. Lopez, A. G. Rojo, and E. Fradkin, Chern-Simons theory of the anisotropic quantum Heisenberg antiferromagnet on a square lattice, Phys. Rev. B, vol.49, pp.15139-15158, 1994.

K. Sun, K. Kumar, and E. Fradkin, Discretized Abelian ChernSimons gauge theory on arbitrary graphs, Phys. Rev. B, vol.92, p.115148, 2015.

E. Rastelli, A. Tassi, and L. Reatto, Non-simple magnetic order for simple Hamiltonians, Physica B+C 97, vol.1, pp.1-24, 1979.

P. W. Anderson, Infrared Catastrophe in Fermi Gases with Local Scattering Potentials, Phys. Rev. Lett, vol.18, pp.1049-1051, 1967.

P. Zanardi and N. Paunkovi´cpaunkovi´c, Ground state overlap and quantum phase transitions, Phys. Rev. E, vol.74, p.31123, 2006.
DOI : 10.1103/physreve.74.031123

URL : http://arxiv.org/pdf/quant-ph/0512249

S. Gu, Fidelity approach to quantum phase transitions, 2008.

C. N. Varney, Interaction effects and quantum phase transitions in topological insulators, Phys. Rev. B, vol.82, p.115125, 2010.

K. Kumar, K. Sun, and E. Fradkin, Chiral spin liquids on the kagome lattice, Phys. Rev. B, vol.92, p.94433, 2015.

P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot, Zeitschrift für Physik, vol.47, pp.631-651, 1928.
DOI : 10.1007/978-3-662-02781-3_9

D. J. Thouless, Level crossing and the fractional quantum Hall effect, Phys. Rev. B, vol.40, pp.12034-12036, 1989.

C. Hickey, Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid, Phys. Rev. Lett, vol.116, p.137202, 2016.

K. Kumar, Numerical evidence for a chiral spin liquid in the XXZ antiferromagnetic Heisenberg model on the kagome lattice at m = 2 3 magnetization, Phys. Rev. B, vol.94, p.134410, 2016.

Q. Niu, D. J. Thouless, and Y. Wu, Quantized Hall conductance as a topological invariant, Phys. Rev. B, vol.31, pp.3372-3377, 1985.

Y. Hatsugai, Explicit Gauge Fixing for Degenerate Multiplets: A Generic Setup for Topological Orders, Journal of the Physical Society of Japan, vol.73, pp.2604-2607, 2004.

Y. Hatsugai, Characterization of Topological Insulators: Chern Numbers for Ground State Multiplet, Journal of the Physical Society of Japan, vol.74, pp.1374-1377, 2005.

R. Yu, Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection, Phys. Rev. B, vol.84, p.75119, 2011.

H. Shapourian and B. K. Clark, Variational identification of a fractional Chern insulator in an extended Bose-Hubbard model, Phys. Rev. B, vol.93, p.35125, 2016.

E. Altman and R. Vosk, Universal Dynamics and Renormalization in Many-Body-Localized Systems, Annual Review of Condensed Matter Physics, vol.6, pp.383-409, 2015.

R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics, vol.6, pp.15-38, 2015.

F. Alet and N. Laflorencie, Many-body localization: an introduction and selected topics, 2017.
DOI : 10.1016/j.crhy.2018.03.003

URL : https://doi.org/10.1016/j.crhy.2018.03.003

R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics, vol.21, pp.467-488, 1982.
DOI : 10.1007/bf02650179

URL : http://www.cs.dartmouth.edu/~ney/cosc185-S96/shor.ps

D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Annals of Physics, vol.315, pp.52-79, 2005.
DOI : 10.1016/j.aop.2004.09.010

URL : http://arxiv.org/pdf/cond-mat/0410614v1.pdf

M. Lewenstein, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Advances in Physics, vol.56, pp.243-379, 2007.
DOI : 10.1080/00018730701223200

URL : https://ddd.uab.cat/pub/artpub/2007/66278/PREI2008_advinphy.pdf

I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys, vol.80, pp.885-964, 2008.
DOI : 10.1103/revmodphys.80.885

URL : https://hal.archives-ouvertes.fr/hal-00195515

I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nature Physics, vol.8, p.267, 2012.
DOI : 10.1038/nphys2259

M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys, vol.82, pp.2313-2363, 2010.
DOI : 10.1103/revmodphys.82.2313

URL : http://arxiv.org/pdf/0909.4777

R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nature Physics, vol.8, p.277, 2012.
DOI : 10.1364/icqi.2011.qwb1

B. Gadway and B. Yan, Strongly interacting ultracold polar molecules, Journal of Physics B Atomic Molecular Physics, vol.49, p.152002, 2016.
DOI : 10.1088/0953-4075/49/15/152002

A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum simulation with superconducting circuits, Nature Physics, vol.8, p.292, 2012.
DOI : 10.1038/nphys2251

I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod. Phys, vol.85, pp.299-366, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913374

X. Gu, Microwave photonics with superconducting quantum circuits, Physics Reports, vol.718, pp.1-102, 2017.
DOI : 10.1016/j.physrep.2017.10.002

URL : https://doi.org/10.1016/j.physrep.2017.10.002

I. Buluta and F. Nori, Quantum Simulators, Science, vol.326, pp.108-111, 2009.
DOI : 10.1126/science.1177838

I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys, vol.86, pp.153-185, 2014.

C. Chin, Feshbach resonances in ultracold gases, Rev. Mod. Phys, vol.82, pp.1225-1286, 2010.

W. S. Bakr, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, vol.462, pp.74-77, 2009.

J. H. Shirley, Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time, Phys. Rev, vol.138, pp.979-987, 1965.

H. Sambe, Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field, Phys. Rev. A, vol.7, pp.2203-2213, 1973.

F. Gesztesy and H. Mitter, A note on quasi-periodic states, Journal of Physics A: Mathematical and General, vol.14, p.79, 1981.
DOI : 10.1088/0305-4470/14/4/003

W. Magnus, On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics, vol.7, pp.649-673, 1954.

S. Blanes, The Magnus expansion and some of its applications, Physics Reports, vol.470, issue.5-6, pp.151-238, 2009.

E. B. Feldman, On the convergence of the magnus expansion for spin systems in periodic magnetic fields, Physics Letters A, vol.104, pp.479-481, 1984.

M. M. Maricq, Application of average Hamiltonian theory to the NMR of solids, Phys. Rev. B, vol.25, pp.6622-6632, 1982.

T. P. Grozdanov and M. J. Rakoví, Quantum system driven by rapidly varying periodic perturbation, Phys. Rev. A, vol.38, pp.1739-1746, 1988.

I. Saar-rahav, S. Gilary, and . Fishman, Effective Hamiltonians for periodically driven systems, Phys. Rev. A, vol.68, p.13820, 2003.

I. Saar-rahav, S. Gilary, and . Fishman, Time Independent Description of Rapidly Oscillating Potentials, Phys. Rev. Lett, vol.91, p.110404, 2003.

N. Goldman and J. Dalibard, Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields, Phys. Rev. X, vol.4, p.31027, 2014.
DOI : 10.1103/physrevx.4.031027

URL : https://hal.archives-ouvertes.fr/hal-01340120

A. Eckardt and E. Anisimovas, Consistent high-frequency approximation for periodically driven quantum systems, 2015.

M. Bukov, A. Luca-d'alessio, and . Polkovnikov, Universal highfrequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering, Advances in Physics, vol.64, pp.139-226, 2015.

A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys, vol.89, p.11004, 2017.

A. Eckardt and M. Holthaus, Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves, Phys. Rev. Lett, vol.101, p.245302, 2008.

M. Heyl and S. Kehrein, Nonequilibrium steady state in a periodically driven Kondo model, Phys. Rev. B, vol.81, p.144301, 2010.

A. Luca-d'alessio and . Polkovnikov, Many-body energy localization transition in periodically driven systems, Annals of Physics, vol.333, pp.19-33, 2013.

M. Luca-d'alessio and . Rigol, Long-time Behavior of Isolated Periodically Driven Interacting Lattice Systems, Phys. Rev. X, vol.4, p.41048, 2014.

P. Ponte, Periodically driven ergodic and many-body localized quantum systems, Annals of Physics, vol.353, pp.196-204, 2015.

M. Bukov, Heating and many-body resonances in a periodically driven two-band system, Phys. Rev. B, vol.93, p.155132, 2016.

A. Russomanno, A. Silva, and G. E. Santoro, Periodic Steady Regime and Interference in a Periodically Driven Quantum System, Phys. Rev. Lett, vol.109, p.257201, 2012.

A. Lazarides, A. Das, and R. Moessner, Periodic Thermodynamics of Isolated Quantum Systems, Phys. Rev. Lett, vol.112, p.150401, 2014.

V. Gritsev and A. Polkovnikov, Integrable Floquet dynamics". In: SciPost Phys, vol.2, p.21, 2017.

R. Citro, Dynamical stability of a many-body Kapitza pendulum, Annals of Physics, vol.360, pp.694-710, 2015.

P. Ponte, Many-Body Localization in Periodically Driven Systems, Phys. Rev. Lett, vol.114, p.140401, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01099147

A. Lazarides, A. Das, and R. Moessner, Fate of Many-Body Localization Under Periodic Driving, Phys. Rev. Lett, vol.115, p.30402, 2015.

D. A. Abanin, W. De-roeck, and F. Huveneers, Theory of many-body localization in periodically driven systems, Annals of Physics, vol.372, pp.1-11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01099150

M. Bukov, Prethermal Floquet Steady States and Instabilities in the Periodically Driven, Weakly Interacting Bose-Hubbard Model, Phys. Rev. Lett, vol.115, p.205301, 2015.

T. Kuwahara, T. Mori, and K. Saito, Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems, Annals of Physics, vol.367, pp.96-124, 2016.

T. Mori, T. Kuwahara, and K. Saito, Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems, Phys. Rev. Lett, vol.116, p.120401, 2016.

A. Dmitry, W. D. Abanin, F. Roeck, and . Huveneers, Exponentially Slow Heating in Periodically Driven Many-Body Systems, Phys. Rev. Lett, vol.115, p.256803, 2015.

D. A. Abanin, Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems, Phys. Rev. B 95, vol.1, p.14112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524458

E. Canovi, M. Kollar, and M. Eckstein, Stroboscopic prethermalization in weakly interacting periodically driven systems, Phys. Rev. E, vol.93, p.12130, 2016.

T. Iadecola, T. Neupert, and C. Chamon, Occupation of topological Floquet bands in open systems, Phys. Rev. B, vol.91, p.235133, 2015.

D. Vorberg, Nonequilibrium steady states of ideal bosonic and fermionic quantum gases, Phys. Rev. E, vol.92, p.62119, 2015.

G. Goldstein, C. Aron, and C. Chamon, Driven-dissipative Ising model: Meanfield solution, Phys. Rev. B, vol.92, p.174418, 2015.
DOI : 10.1103/physrevb.92.174418

URL : https://link.aps.org/accepted/10.1103/PhysRevB.92.174418

T. Shirai, Effective Floquet-Gibbs states for dissipative quantum systems, New Journal of Physics, vol.18, p.53008, 2016.

T. Qin and W. Hofstetter, Spectral functions of a time-periodically driven Falicov-Kimball model: Real-space Floquet dynamical mean-field theory study, Phys. Rev. B, vol.96, p.75134, 2017.

N. Goldman, Periodically driven quantum matter: The case of resonant modulations, Phys. Rev. A, vol.91, p.33632, 2015.

T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B, vol.79, p.81406, 2009.

L. Hernán and . Calvo, Tuning laser-induced band gaps in graphene, Applied Physics Letters, vol.98, p.232103, 2011.

T. Kitagawa, Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels, Phys. Rev. B, vol.84, p.235108, 2011.

E. S. Morell and L. E. Torres, Radiation effects on the electronic properties of bilayer graphene, Phys. Rev. B, vol.86, p.125449, 2012.

H. Netanel, G. Lindner, V. Refael, and . Galitski, Floquet topological insulator in semiconductor quantum wells, Nat Phys, vol.7, issue.6, pp.490-495, 2011.

H. Netanel and . Lindner, Topological Floquet spectrum in three dimensions via a two-photon resonance, Phys. Rev. B, vol.87, p.235131, 2013.

J. Cayssol, Floquet topological insulators, physica status solidi (RRL)-Rapid Research Letters, vol.7, pp.101-108, 2013.
DOI : 10.1002/pssr.201206451

URL : https://hal.archives-ouvertes.fr/hal-00820826

P. Delplace, Á. Gómez-león, and G. Platero, Merging of Dirac points and Floquet topological transitions in ac-driven graphene, Phys. Rev. B, vol.88, p.245422, 2013.

Á. Gómez-león, P. Delplace, and G. Platero, Engineering anomalous quantum Hall plateaus and antichiral states with ac fields, Phys. Rev. B, vol.89, p.205408, 2014.

Y. H. Wang, Observation of Floquet-Bloch States on the Surface of a Topological Insulator, Science, vol.342, pp.453-457, 2013.

A. G. Grushin, Á. Gómez-león, and T. Neupert, Floquet Fractional Chern Insulators, Phys. Rev. Lett, vol.112, p.156801, 2014.
DOI : 10.1103/physrevlett.112.156801

URL : https://digital.csic.es/bitstream/10261/98863/1/Floquet%20fractional.pdf

L. Jiang, Majorana Fermions in Equilibrium and in Driven ColdAtom Quantum Wires, Phys. Rev. Lett, vol.106, p.220402, 2011.
DOI : 10.1103/physrevlett.106.220402

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.106.220402

G. Liu, Topological superfluid transition induced by a periodically driven optical lattice, Phys. Rev. A, vol.86, p.13639, 2012.
DOI : 10.1103/physreva.86.013639

URL : https://link.aps.org/accepted/10.1103/PhysRevA.86.013639

Q. Tong, Generating many Majorana modes via periodic driving: A superconductor model, Phys. Rev. B, vol.87, p.201109, 2013.
DOI : 10.1103/physrevb.87.201109

URL : https://link.aps.org/accepted/10.1103/PhysRevB.87.201109

M. Thakurathi, Floquet generation of Majorana end modes and topological invariants, Phys. Rev. B, vol.88, p.155133, 2013.
DOI : 10.1103/physrevb.88.155133

URL : http://arxiv.org/pdf/1303.2300

A. Kundu and B. Seradjeh, Transport Signatures of Floquet Majorana Fermions in Driven Topological Superconductors, Phys. Rev. Lett, vol.111, p.136402, 2013.
DOI : 10.1103/physrevlett.111.136402

Z. Wang, Floquet Majorana fermions in driven hexagonal lattice systems, Solid State Communications, pp.18-26, 2015.
DOI : 10.1016/j.ssc.2015.04.019

URL : http://arxiv.org/pdf/1404.3029

M. Thakurathi, D. Loss, and J. Klinovaja, Floquet Majorana fermions and parafermions in driven Rashba nanowires, Phys. Rev. B 95, vol.15, p.155407, 2017.
DOI : 10.1103/physrevb.95.155407

URL : https://edoc.unibas.ch/60928/1/PhysRevB.95.155407.pdf

J. Klinovaja, P. Stano, and D. Loss, Topological Floquet Phases in Driven Coupled Rashba Nanowires, Phys. Rev. Lett, vol.116, p.176401, 2016.
DOI : 10.1103/physrevlett.116.176401

URL : http://edoc.unibas.ch/53464/1/PhysRevLett.116.pdf

N. Fläschner, Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science, vol.352, pp.1091-1094, 2016.

M. C. Rechtsman, Photonic Floquet topological insulators, pp.196-200, 2013.

K. Fang, Z. Yu, and S. Fan, Photonic de Haas-van Alphen effect, Opt. Express, vol.21, pp.18216-18224, 2013.
DOI : 10.1364/oe.21.018216

URL : http://arxiv.org/pdf/1311.2860

K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nat Photon, vol.6, pp.782-787, 2012.

P. Roushan, Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat Phys, 2016.

J. Koch, Time-reversal-symmetry breaking in circuit-QED-based photon lattices, Phys. Rev. A, vol.82, p.43811, 2010.
DOI : 10.1103/physreva.82.043811

URL : http://arxiv.org/pdf/1006.0762

M. H. Devoret, ;. S. Reynaud, E. Giacobino, and J. Zinn-justin, Quantum Fluctuations in Electrical Circuits, Fluctuations Quantiques/Quantum Fluctuations, p.351, 1997.

N. Jia, Time Reversal Invariant Topologically Insulating Circuits, Phys. Rev. X, p.21031, 2015.

V. Victor, L. I. Albert, L. Glazman, and . Jiang, Topological Properties of Linear Circuit Lattices, Phys. Rev. Lett, vol.114, p.173902, 2015.

M. Serra-garcia, Observation of a phononic quadrupole topological insulator, 2017.

S. Imhof, Topolectrical circuit realization of topological corner modes, 2017.

C. W. Peterson, Demonstration of a quantized microwave quadrupole insulator with topologically protected corner states, 2017.

A. Michael, I. L. Nielsen, and . Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 2010.

F. Verstraete, J. J. García-ripoll, and J. I. Cirac, Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems, Phys. Rev. Lett, vol.93, p.207204, 2004.

A. E. Feiguin and S. R. White, Finite-temperature density matrix renormalization using an enlarged Hilbert space, Phys. Rev. B, vol.72, p.220401, 2005.

T. Barthel, U. Schollwöck, and S. R. White, Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group, Phys. Rev. B, vol.79, p.245101, 2009.

A. Nocera and G. Alvarez, Symmetry-conserving purification of quantum states within the density matrix renormalization group, Phys. Rev. B, vol.93, p.45137, 2016.

R. Steven and . White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett, vol.69, pp.2863-2866, 1992.

R. Steven and . White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, vol.48, pp.10345-10356, 1993.

U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics, vol.326, pp.96-192, 2011.

T. Prosen, T. H. Seligman, and M. Znidaric, Theory of Quantum Loschmidt Echoes, Progress of Theoretical Physics Supplement, vol.150, pp.200-228, 2003.

A. Goussev, Loschmidt Echo, ArXiv e-prints, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00998026

E. Sjöqvist, Geometric Phases for Mixed States in Interferometry, Phys. Rev. Lett, vol.85, pp.2845-2849, 2000.

O. Viyuela, A. Rivas, and M. A. Martin-delgado, Uhlmann Phase as a Topological Measure for One-Dimensional Fermion Systems, Phys. Rev. Lett, vol.112, p.130401, 2014.

B. Swingle, Measuring the scrambling of quantum information, Phys. Rev. A, vol.94, p.40302, 2016.

O. Viyuela, Observation of topological Uhlmann phases with superconducting qubits, 2016.

R. Islam, Measuring entanglement entropy through the interference of quantum many-body twins, 2015.
DOI : 10.1038/nature15750

. Luca-d'alessio, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Advances in Physics, vol.65, pp.239-362, 2016.

F. Borgonovi, Quantum chaos and thermalization in isolated systems of interacting particles, Physics Reports, vol.626, pp.1-58, 2016.

T. Kitagawa, Topological characterization of periodically driven quantum systems, Phys. Rev. B, vol.82, p.235114, 2010.
DOI : 10.1103/physrevb.82.235114

URL : http://arxiv.org/pdf/1010.6126

A. Gómez-león and G. Platero, Floquet-Bloch Theory and Topology in Periodically Driven Lattices, Phys. Rev. Lett, vol.110, p.200403, 2013.

M. S. Rudner, Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems, Phys. Rev. X, vol.3, p.31005, 2013.
DOI : 10.1103/physrevx.3.031005

URL : http://link.aps.org/pdf/10.1103/PhysRevX.3.031005

F. Nathan and . Mark-s-rudner, Topological singularities and the general classification of Floquet-Bloch systems, New Journal of Physics, vol.17, p.125014, 2015.
DOI : 10.1088/1367-2630/17/12/125014

URL : http://iopscience.iop.org/article/10.1088/1367-2630/17/12/125014/pdf

L. J. Maczewsky, Observation of photonic anomalous Floquet topological insulators, Nature Communications, vol.8, p.13756, 2017.
DOI : 10.1038/ncomms13756

URL : http://www.nature.com/articles/ncomms13756.pdf

C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. B, vol.45, pp.255-282, 1950.
URL : https://hal.archives-ouvertes.fr/hal-01712947

E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Journal of Computational Physics, vol.17, pp.87-94, 1975.

J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics, vol.82, pp.277-306, 2010.
DOI : 10.1103/revmodphys.82.277

URL : http://arxiv.org/pdf/0808.3773

U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics, vol.326, pp.96-192, 2011.

R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics, vol.349, pp.117-158, 2014.

J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive dance: an introductory course on tensor networks, Journal of Physics A Mathematical General, vol.50, p.223001, 2017.
DOI : 10.1088/1751-8121/aa6dc3

URL : http://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3/pdf

J. Shiing-shen-chern and . Simons, Characteristic Forms and Geometric Invariants, Annals of Mathematics, vol.99, pp.48-69, 1974.

E. Witten, Topological quantum field theory, Communications in Mathematical Physics, vol.117, pp.353-386, 1988.