J. Nougayrède, S. Homburg, and F. Taieb, Escherichia coli induces DNA double-strand breaks in eukaryotic cells, Science, vol.313, issue.5788, pp.848-851, 2006.

G. Cuevas-ramos, C. R. Petit, I. Marcq, M. Boury, E. Oswald et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells

, Proc Natl Acad Sci U S A, vol.107, issue.25, pp.11537-11542, 2010.

I. Marcq, P. Martin, and D. Payros, The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli, J Infect Dis, vol.210, issue.2, pp.285-294, 2014.

T. Secher, A. Samba-louaka, E. Oswald, and J. Nougayrède, Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells, PLoS One, vol.8, issue.10, p.77157, 2013.

A. Cougnoux, G. Dalmasso, and R. Martinez, Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype, Gut, vol.63, issue.12, pp.1932-1942, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101227

J. C. Arthur, E. Perez-chanona, and M. Mühlbauer, Intestinal inflammation targets cancerinducing activity of the microbiota, Science, vol.338, issue.6103, pp.120-123, 2012.

G. Dalmasso, A. Cougnoux, J. Delmas, A. Darfeuille-michaud, and R. Bonnet, The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment, Gut Microbes, vol.5, issue.5, pp.675-680, 2014.

M. Olier, I. Marcq, and C. Salvador-cartier, Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity, Gut Microbes, vol.3, issue.6, pp.501-509, 2012.

D. Payros, T. Secher, and M. Boury, Maternally acquired genotoxic Escherichia coli alters offspring's intestinal homeostasis, Gut Microbes, vol.5, issue.3, pp.313-325, 2014.

T. Secher, D. Payros, and C. Brehin, Oral tolerance failure upon neonatal gut colonization with Escherichia coli producing the genotoxin colibactin, Infect Immun, 2015.

P. Martin, I. Marcq, and G. Magistro, Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli, PLoS Pathog, vol.9, issue.7, p.1003437, 2013.

A. J. Mccarthy, P. Martin, E. Cloup, R. A. Stabler, E. Oswald et al., The genotoxin Colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection, Infect Immun, vol.83, issue.9, pp.3704-3711, 2015.

J. Putze, C. Hennequin, and J. Nougayrède, Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae, Infect Immun, vol.77, issue.11, pp.4696-4703, 2009.

C. A. Brotherton and E. P. Balskus, A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity, J Am Chem Soc, vol.135, issue.9, pp.3359-3362, 2013.

X. Bian, J. Fu, and A. Plaza, In vivo evidence for a prodrug activation mechanism during colibactin maturation, Chembiochem Eur J Chem Biol, vol.14, issue.10, pp.1194-1197, 2013.

M. I. Vizcaino, P. Engel, E. Trautman, and J. M. Crawford, Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules, J Am Chem Soc, vol.136, issue.26, pp.9244-9247, 2014.

C. A. Brotherton, M. Wilson, G. Byrd, and E. P. Balskus, Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity, Org Lett, 2015.

J. B. Kaper, J. P. Nataro, and H. L. Mobley, Pathogenic Escherichia coli, Nat Rev Microbiol, vol.2, issue.2, pp.123-140, 2004.

J. Nougayrède, S. Homburg, and F. Taieb, Escherichia coli induces DNA double-strand breaks in eukaryotic cells, Science, vol.313, issue.5788, pp.848-851, 2006.

G. Cuevas-ramos, C. R. Petit, I. Marcq, M. Boury, E. Oswald et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells, Proc Natl Acad Sci, vol.107, issue.25, pp.11537-11542, 2010.

S. T. Shulman, H. C. Friedmann, and R. H. Sims, Theodor Escherich: the first pediatric infectious diseases physician?, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.45, issue.8, pp.1025-1029, 2007.

O. Tenaillon, D. Skurnik, B. Picard, and E. Denamur, The population genetics of commensal Escherichia coli, Nat Rev Microbiol, vol.8, issue.3, pp.207-217, 2010.

J. D. Van-elsas, A. V. Semenov, R. Costa, and J. T. Trevors, Survival of Escherichia coli in the environment: fundamental and public health aspects, ISME J, vol.5, issue.2, pp.173-183, 2011.

U. Dobrindt, Patho-)Genomics of Escherichia coli, Int J Med Microbiol, vol.295, issue.67, pp.357-371, 2005.

M. A. Croxen and B. B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity, Nat Rev Microbiol, vol.8, issue.1, pp.26-38, 2010.

F. Orskov, I. Orskov, D. J. Evans, R. B. Sack, D. A. Sack et al., Special Escherichia coli serotypes among enterotoxigenic strains from diarrhoea in adults and children, Med Microbiol Immunol (Berl), vol.162, issue.2, pp.73-80, 1976.

H. Ochman and R. K. Selander, Standard reference strains of Escherichia coli from natural populations, J Bacteriol, vol.157, issue.2, pp.690-693, 1984.

D. Moissenet, B. Salauze, and O. Clermont, Meningitis caused by Escherichia coli producing TEM-52 extended-spectrum beta-lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain, J Clin Microbiol, vol.48, issue.7, pp.2459-2463, 2010.

F. Jaureguy, L. Landraud, and V. Passet, Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains, BMC Genomics, vol.9, p.560, 2008.

P. Escobar-páramo, K. Grenet, L. Menac'h, and A. , Large-scale population structure of human commensal Escherichia coli isolates, Appl Environ Microbiol, vol.70, issue.9, pp.5698-5700, 2004.

M. Touchon, C. Hoede, and O. Tenaillon, Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS Genet, vol.5, issue.1, p.1000344, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390293

D. Medini, C. Donati, H. Tettelin, V. Masignani, and R. Rappuoli, The microbial pan-genome, Curr Opin Genet Dev, vol.15, issue.6, pp.589-594, 2005.

R. Lan and P. R. Reeves, Intraspecies variation in bacterial genomes: the need for a species genome concept, Trends Microbiol, vol.8, issue.9, pp.396-401, 2000.

H. Tettelin, D. Riley, C. Cattuto, and D. Medini, Comparative genomics: the bacterial pangenome, Curr Opin Microbiol, vol.11, issue.5, pp.472-477, 2008.

O. Lukjancenko, T. M. Wassenaar, and D. W. Ussery, Comparison of 61 Sequenced Escherichia coli Genomes, Microb Ecol, vol.60, issue.4, pp.708-720, 2010.

R. S. Kaas, C. Friis, D. W. Ussery, and F. M. Aarestrup, Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes, BMC Genomics, vol.13, p.577, 2012.

H. Hendrickson, Order and disorder during Escherichia coli divergence, PLoS Genet, vol.5, issue.1, p.1000335, 2009.

M. Juhas, Horizontal gene transfer in human pathogens, Crit Rev Microbiol, vol.41, issue.1, pp.101-108, 2015.

C. Gyles and P. Boerlin, Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease, Vet Pathol Online, vol.51, issue.2, pp.328-340, 2014.

O. Popa and T. Dagan, Trends and barriers to lateral gene transfer in prokaryotes, Curr Opin Microbiol, vol.14, issue.5, pp.615-623, 2011.

B. Stecher, L. Maier, and W. Hardt, Blooming" in the gut: how dysbiosis might contribute to pathogen evolution, Nat Rev Microbiol, vol.11, issue.4, pp.277-284, 2013.

J. Hacker and J. B. Kaper, Pathogenicity Islands and the Evolution of Microbes, Annu Rev Microbiol, vol.54, issue.1, pp.641-679, 2000.

U. Hentschel and J. Hacker, Pathogenicity islands: the tip of the iceberg, Microbes Infect, vol.3, issue.7, pp.545-548, 2001.

U. Dobrindt, B. Hochhut, U. Hentschel, and J. Hacker, Genomic islands in pathogenic and environmental microorganisms, Nat Rev Microbiol, vol.2, issue.5, pp.414-424, 2004.

V. S. Malik, Microbial secondary metabolism, Trends Biochem Sci, vol.5, issue.3, pp.68-72, 1980.

J. Clardy and C. Walsh, Lessons from natural molecules, Nature, vol.432, issue.7019, pp.829-837, 2004.

E. M. Nolan and C. T. Walsh, How nature morphs peptide scaffolds into antibiotics, Chembiochem Eur J Chem Biol, vol.10, issue.1, pp.34-53, 2009.

J. Li and J. C. Vederas, Drug discovery and natural products: end of an era or an endless frontier?, Science, vol.325, issue.5937, pp.161-165, 2009.

A. L. Harvey, Natural products in drug discovery, Drug Discov Today, vol.13, pp.894-901, 2008.

C. T. Walsh and M. A. Fischbach, Natural Products Version 2.0: Connecting Genes to Molecules, J Am Chem Soc, vol.132, issue.8, pp.2469-2493, 2010.

J. H. Crosa and C. T. Walsh, Genetics and assembly line enzymology of siderophore biosynthesis in bacteria, Microbiol Mol Biol Rev, vol.66, issue.2, pp.223-249, 2002.

M. A. Fischbach and C. T. Walsh, Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms, Chem Rev, vol.106, issue.8, pp.3468-3496, 2006.

S. Donadio, P. Monciardini, and M. Sosio, Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics, Nat Prod Rep, vol.24, issue.5, pp.1073-1109, 2007.

R. Finking and M. A. Marahiel, Biosynthesis of nonribosomal peptides, Annu Rev Microbiol, vol.58, pp.453-488, 2004.

R. H. Lambalot, A. M. Gehring, and R. S. Flugel, A new enzyme superfamily-the phosphopantetheinyl transferases, Chem Biol, vol.3, issue.11, pp.923-936, 1996.

J. Beld, E. C. Sonnenschein, C. R. Vickery, J. P. Noel, and M. D. Burkart, The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life, Nat Prod Rep, vol.31, issue.1, pp.61-108, 2013.

J. L. Meier and M. D. Burkart, The chemical biology of modular biosynthetic enzymes, Chem Soc Rev, vol.38, issue.7, pp.2012-2045, 2009.

B. S. Moore and C. Hertweck, Biosynthesis and attachment of novel bacterial polyketide synthase starter units, Nat Prod Rep, vol.19, issue.1, pp.70-99, 2002.

D. Schwarzer, H. D. Mootz, U. Linne, and M. A. Marahiel, Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases, Proc Natl Acad Sci U S A, vol.99, issue.22, pp.14083-14088, 2002.

H. Kleinkauf, J. Dittmann, and A. Lawen, Cell-free biosynthesis of cyclosporin A and analogues, Biomed Biochim Acta, vol.50, pp.219-224, 1991.

R. R. Crichton, S. Wilmet, R. Legssyer, and R. J. Ward, Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells, J Inorg Biochem, vol.91, issue.1, pp.9-18, 2002.

S. C. Andrews and A. K. Robinson, Rodríguez-Quiñones F. Bacterial iron homeostasis, FEMS Microbiol Rev, vol.27, issue.2-3, pp.215-237, 2003.

E. P. Skaar, The battle for iron between bacterial pathogens and their vertebrate hosts, PLoS Pathog, vol.6, issue.8, p.1000949, 2010.

I. Schröder, J. E. De-vries, and S. , Microbial ferric iron reductases, FEMS Microbiol Rev, vol.27, issue.2-3, pp.427-447, 2003.

M. Miethke and M. A. Marahiel, Siderophore-Based Iron Acquisition and Pathogen Control, Microbiol Mol Biol Rev, vol.71, issue.3, pp.413-451, 2007.

Y. Tong and M. Guo, Bacterial heme-transport proteins and their heme-coordination modes, Arch Biochem Biophys, vol.481, issue.1, pp.1-15, 2009.

V. Braun, Iron uptake mechanisms and their regulation in pathogenic bacteria, Int J Med Microbiol, vol.291, issue.2, pp.67-79, 2001.

A. Garénaux, M. Caza, and C. M. Dozois, The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli, Vet Microbiol, vol.153, issue.1-2, pp.89-98, 2011.

C. Ratledge and L. G. Dover, Iron metabolism in pathogenic bacteria, Annu Rev Microbiol, vol.54, pp.881-941, 2000.

J. P. Mchugh, F. Rodríguez-quinoñes, and H. Abdul-tehrani, Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis, J Biol Chem, vol.278, issue.32, pp.29478-29486, 2003.

P. I. Higgs, R. A. Larsen, and K. Postle, Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA, Mol Microbiol, vol.44, issue.1, pp.271-281, 2002.

C. M. Dozois, F. Daigle, and R. Curtiss, Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain, Proc Natl Acad Sci U S A, vol.100, issue.1, pp.247-252, 2003.

M. A. Fischbach, H. Lin, and L. Zhou, The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin-2, Proc Natl Acad Sci, vol.103, issue.44, pp.16502-16507, 2006.

F. Feldmann, L. J. Sorsa, K. Hildinger, and S. Schubert, The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro, Infect Immun, vol.75, issue.6, pp.3183-3187, 2007.

T. A. Russo, C. D. Mcfadden, U. B. Carlino-macdonald, J. M. Beanan, T. J. Barnard et al., IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli, Infect Immun, vol.70, issue.12, pp.7156-7160, 2002.

V. L. Nègre, S. Bonacorsi, S. Schubert, P. Bidet, X. Nassif et al., The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis, Infect Immun, vol.72, issue.2, pp.1216-1220, 2004.

C. Peigne, P. Bidet, and F. Mahjoub-messai, The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model, Infect Immun, vol.77, issue.6, pp.2272-2284, 2009.

S. Schubert, A. Rakin, H. Karch, E. Carniel, and J. Heesemann, Prevalence of the "highpathogenicity island" of Yersinia species among Escherichia coli strains that are pathogenic to humans, Infect Immun, vol.66, issue.2, pp.480-485, 1998.

S. Bach, A. De-almeida, and E. Carniel, The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae, FEMS Microbiol Lett, vol.183, issue.2, pp.289-294, 2000.

E. C. Garcia, A. R. Brumbaugh, and H. Mobley, Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection, Infect Immun, vol.79, issue.3, pp.1225-1235, 2011.

V. Hancock, L. Ferrières, and P. Klemm, The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine, Microbiol Read Engl, vol.154, pp.167-175, 2008.

A. Paauw, M. A. Leverstein-van-hall, K. Van-kessel, J. Verhoef, and A. C. Fluit, Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells, PLoS One, vol.4, issue.12, p.8240, 2009.

T. J. Johnson, K. E. Siek, S. J. Johnson, and L. K. Nolan, DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains, J Bacteriol, vol.188, issue.2, pp.745-758, 2006.

M. Valdebenito, A. L. Crumbliss, G. Winkelmann, and K. Hantke, Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917, Int J Med Microbiol, vol.296, issue.8, pp.513-520, 2006.

M. Caza, F. Lépine, and C. M. Dozois, Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli, Mol Microbiol, vol.80, issue.1, pp.266-282, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00720786

F. Taieb, C. Petit, J. Nougayrède, and O. E. , The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin, EcoSal Plus, vol.7, issue.1, pp.1-21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01603282

J. J. Mousa, Y. Yang, and S. Tomkovich, MATE transport of the E. coli-derived genotoxin colibactin, Nat Microbiol, vol.1, issue.1, p.15009, 2016.

D. Dubois, O. Baron, and A. Cougnoux, ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides, J Biol Chem, vol.286, issue.41, pp.35562-35570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00748957

N. Bossuet-greif, D. Dubois, and C. Petit, Escherichia coli ClbS is a colibactin resistance protein, Mol Microbiol, vol.99, issue.5, pp.897-908, 2016.

J. R. Johnson, B. Johnston, M. A. Kuskowski, J. Nougayrede, and O. E. , Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island, J Clin Microbiol, vol.46, issue.12, pp.3906-3911, 2008.

J. Putze, C. Hennequin, and J. Nougayrède, Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae, Infect Immun, vol.77, issue.11, pp.4696-4703, 2009.

V. Bondarev, M. Richter, S. Romano, J. Piel, A. Schwedt et al., The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis, Environ Microbiol, vol.15, issue.7, pp.2095-2113, 2013.

P. Engel, M. I. Vizcaino, and J. M. Crawford, Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways, Appl Environ Microbiol, vol.81, issue.4, pp.1502-1512, 2015.

D. Dubois, J. Delmas, and A. Cady, Cyclomodulins in urosepsis strains of Escherichia coli, J Clin Microbiol, vol.48, issue.6, pp.2122-2129, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01931345

J. N. Krieger, U. Dobrindt, D. E. Riley, and E. Oswald, Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes, Urology, vol.77, issue.6, pp.1420-1425, 2011.

F. L. Nowrouzian and E. Oswald, Escherichia coli strains with the capacity for long-term persistence in the bowel microbiota carry the potentially genotoxic pks island, Microb Pathog, vol.53, issue.3-4, pp.180-182, 2012.

D. Payros, T. Secher, and M. Boury, Maternally acquired genotoxic Escherichia coli alters offspring's intestinal homeostasis, Gut Microbes, vol.5, issue.3, pp.313-325, 2014.

J. Hacker, U. Hentschel, and U. Dobrindt, Prokaryotic chromosomes and disease, Science, vol.301, issue.5634, pp.790-793, 2003.

C. A. Brotherton and E. P. Balskus, A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity, J Am Chem Soc, vol.135, issue.9, pp.3359-3362, 2013.

X. Bian, J. Fu, and A. Plaza, In vivo evidence for a prodrug activation mechanism during colibactin maturation, Chembiochem Eur J Chem Biol, vol.14, issue.10, pp.1194-1197, 2013.

M. I. Vizcaino, P. Engel, E. Trautman, and J. M. Crawford, Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules, J Am Chem Soc, vol.136, issue.26, pp.9244-9247, 2014.

C. A. Brotherton, M. Wilson, G. Byrd, and E. P. Balskus, Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity, Org Lett, vol.17, issue.6, pp.1545-1548, 2015.

X. Bian, A. Plaza, Y. Zhang, and R. Müller, Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety, Chem Sci, vol.6, issue.5, pp.3154-3160, 2015.

M. I. Vizcaino and J. M. Crawford, The colibactin warhead crosslinks DNA, Nat Chem, vol.7, issue.5, pp.411-417, 2015.

Z. Li, Y. Li, and J. Lai, Critical Intermediates Reveal New Biosynthetic Events in the Enigmatic Colibactin Pathway, Chembiochem Eur J Chem Biol, vol.16, issue.12, pp.1715-1719, 2015.

L. Zha, M. R. Wilson, C. A. Brotherton, and E. P. Balskus, Characterization of Polyketide Synthase Machinery from the pks Island Facilitates Isolation of a Candidate Precolibactin, ACS Chem Biol, vol.11, issue.5, pp.1287-1295, 2016.

A. R. Healy, M. I. Vizcaino, J. M. Crawford, and S. B. Herzon, Convergent and Modular Synthesis of Candidate Precolibactins. Structural Revision of Precolibactin A, J Am Chem Soc, vol.138, issue.16, pp.5426-5432, 2016.

Z. Li, J. Li, and J. Gu, Divergent biosynthesis yields a cytotoxic aminomalonatecontaining precolibactin, Nat Chem Biol, vol.12, issue.10, pp.773-775, 2016.

P. Martin, I. Marcq, and G. Magistro, Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli, PLoS Pathog, vol.9, issue.7, p.1003437, 2013.

A. O. Brachmann, C. Garcie, and V. Wu, Colibactin biosynthesis and biological activity depend on the rare aminomalonyl polyketide precursor, Chem Commun Camb Engl, vol.51, issue.66, pp.13138-13141, 2015.

A. Cougnoux, L. Gibold, and F. Robin, Analysis of Structure-Function Relationships in the Colibactin-Maturating Enzyme ClbP, J Mol Biol, vol.424, issue.3-4, pp.203-214, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00748966

B. M. Kevany, D. A. Rasko, and M. G. Thomas, Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus, Appl Environ Microbiol, vol.75, issue.4, pp.1144-1155, 2009.

D. Reimer, E. Luxenburger, A. O. Brachmann, and H. B. Bode, A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila, Chembiochem Eur J Chem Biol, vol.10, issue.12, pp.1997-2001, 2009.

M. Tanasova and S. J. Sturla, Chemistry and Biology of Acylfulvenes: Sesquiterpene-Derived Antitumor Agents, Chem Rev, vol.112, issue.6, pp.3578-3610, 2012.

T. Secher, A. Samba-louaka, E. Oswald, and J. Nougayrède, Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells, PLoS One, vol.8, issue.10, p.77157, 2013.

A. Cougnoux, G. Dalmasso, and R. Martinez, Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype, Gut, vol.63, issue.12, pp.1932-1942, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101227

J. C. Arthur and C. Jobin, The complex interplay between inflammation, the microbiota and colorectal cancer, Gut Microbes, vol.4, issue.3, pp.253-258, 2013.

J. C. Arthur, E. Perez-chanona, and M. Mühlbauer, Intestinal inflammation targets cancerinducing activity of the microbiota, Science, vol.338, issue.6103, pp.120-123, 2012.

I. Marcq, P. Martin, and D. Payros, The genotoxin colibactin exacerbates lymphopenia and decreases survival rate in mice infected with septicemic Escherichia coli, J Infect Dis, vol.210, issue.2, pp.285-294, 2014.

A. J. Mccarthy, P. Martin, E. Cloup, R. A. Stabler, E. Oswald et al., The genotoxin Colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection, Infect Immun, vol.83, issue.9, pp.3704-3711, 2015.

T. Secher, D. Payros, and C. Brehin, Oral tolerance failure upon neonatal gut colonization with Escherichia coli producing the genotoxin colibactin, Infect Immun, vol.83, issue.6, pp.2420-2429, 2015.

M. Olier, I. Marcq, and C. Salvador-cartier, Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity, Gut Microbes, vol.3, issue.6, pp.501-509, 2012.

T. R. Jahn and S. E. Radford, Folding versus aggregation: polypeptide conformations on competing pathways, Arch Biochem Biophys, vol.469, issue.1, pp.100-117, 2008.

R. J. Ellis and A. P. Minton, Protein aggregation in crowded environments, Biol Chem, vol.387, issue.5, pp.485-497, 2006.

A. Mogk, D. Huber, and B. Bukau, Integrating protein homeostasis strategies in prokaryotes, Cold Spring Harb Perspect Biol, vol.3, issue.4, p.4366, 2011.

S. M. Doyle, O. Genest, and S. Wickner, Protein rescue from aggregates by powerful molecular chaperone machines, Nat Rev Mol Cell Biol, vol.14, issue.10, pp.617-629, 2013.

A. A. Komar, A pause for thought along the co-translational folding pathway, Trends Biochem Sci, vol.34, issue.1, pp.16-24, 2009.

C. Bruel, N. Genevaux, and P. , Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane, Biochim Biophys Acta, vol.1843, issue.8, pp.1442-1456, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00944970

Q. A. Valent, D. A. Kendall, S. High, R. Kusters, B. Oudega et al., Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides, EMBO J, vol.14, issue.22, pp.5494-5505, 1995.

A. Hoffmann, B. Bukau, and G. Kramer, Structure and function of the molecular chaperone Trigger Factor, Biochim Biophys Acta, vol.1803, issue.6, pp.650-661, 2010.

F. U. Hartl and M. Hayer-hartl, Converging concepts of protein folding in vitro and in vivo, Nat Struct Mol Biol, vol.16, issue.6, pp.574-581, 2009.

C. M. Kaiser, H. Chang, and V. R. Agashe, Real-time observation of trigger factor function on translating ribosomes, Nature, vol.444, issue.7118, pp.455-460, 2006.

E. Deuerling, A. Schulze-specking, T. Tomoyasu, A. Mogk, and B. Bukau, Trigger factor and DnaK cooperate in folding of newly synthesized proteins, Nature, vol.400, issue.6745, pp.693-696, 1999.

E. Martinez-hackert and W. A. Hendrickson, Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone, Cell, vol.138, issue.5, pp.923-934, 2009.

P. Genevaux, F. Keppel, F. Schwager, P. S. Langendijk-genevaux, F. U. Hartl et al., In vivo analysis of the overlapping functions of DnaK and trigger factor, EMBO Rep, vol.5, issue.2, pp.195-200, 2004.

P. Genevaux, C. Georgopoulos, and W. L. Kelley, The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions, Mol Microbiol, vol.66, issue.4, pp.840-857, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211365

J. F. Swain, G. Dinler, R. Sivendran, D. L. Montgomery, M. Stotz et al., Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker, Mol Cell, vol.26, issue.1, pp.27-39, 2007.

D. Brehmer, S. Rüdiger, and C. S. Gässler, Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange, Nat Struct Biol, vol.8, issue.5, pp.427-432, 2001.

M. P. Mayer and B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell Mol Life Sci CMLS, vol.62, issue.6, pp.670-684, 2005.

S. Rüdiger, L. Germeroth, J. Schneider-mergener, and B. Bukau, Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries, EMBO J, vol.16, issue.7, pp.1501-1507, 1997.

G. Calloni, T. Chen, and S. M. Schermann, DnaK Functions as a Central Hub in the E. coli Chaperone Network, Cell Rep, vol.1, issue.3, pp.251-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787591

O. Fayet, T. Ziegelhoffer, and C. Georgopoulos, The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures, J Bacteriol, vol.171, issue.3, pp.1379-1385, 1989.

H. R. Saibil, W. A. Fenton, D. K. Clare, and A. L. Horwich, Structure and allostery of the chaperonin GroEL, J Mol Biol, vol.425, issue.9, pp.1476-1487, 2013.

M. J. Kerner, D. J. Naylor, and Y. Ishihama, Proteome-wide analysis of chaperonindependent protein folding in Escherichia coli, Cell, vol.122, issue.2, pp.209-220, 2005.

A. L. Horwich and W. A. Fenton, Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding, Q Rev Biophys, vol.42, issue.2, pp.83-116, 2009.

Z. Lin, D. Madan, and H. S. Rye, GroEL stimulates protein folding through forced unfolding, Nat Struct Mol Biol, vol.15, issue.3, pp.303-311, 2008.

A. L. Horwich, K. B. Low, W. A. Fenton, I. N. Hirshfield, and K. Furtak, Folding in vivo of bacterial cytoplasmic proteins: role of GroEL, Cell, vol.74, issue.5, pp.909-917, 1993.

E. Guisbert, T. Yura, V. A. Rhodius, and C. A. Gross, Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response, Microbiol Mol Biol Rev, vol.72, issue.3, pp.545-554, 2008.

A. Mogk, T. Tomoyasu, and P. Goloubinoff, Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB, EMBO J, vol.18, issue.24, pp.6934-6949, 1999.

Y. Groemping and J. Reinstein, Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response, J Mol Biol, vol.314, issue.1, pp.167-178, 2001.

J. Winter, K. Linke, A. Jatzek, and J. U. , Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33, Mol Cell, vol.17, issue.3, pp.381-392, 2005.

J. Winter, M. Ilbert, P. Graf, D. Ozcelik, and J. U. , Bleach activates a redox-regulated chaperone by oxidative protein unfolding, Cell, vol.135, issue.4, pp.691-701, 2008.

A. Mogk, E. Deuerling, S. Vorderwülbecke, E. Vierling, and B. Bukau, Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation, Mol Microbiol, vol.50, issue.2, pp.585-595, 2003.

M. Haslbeck, T. Franzmann, D. Weinfurtner, and J. Buchner, Some like it hot: the structure and function of small heat-shock proteins, Nat Struct Mol Biol, vol.12, issue.10, pp.842-846, 2005.

J. Weibezahn, P. Tessarz, and C. Schlieker, Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB, Cell, vol.119, issue.5, pp.653-665, 2004.

T. Haslberger, A. Zdanowicz, and I. Brand, Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments, Nat Struct Mol Biol, vol.15, issue.6, pp.641-650, 2008.

R. Sabate, N. S. De-groot, and S. Ventura, Protein folding and aggregation in bacteria, Cell Mol Life Sci CMLS, vol.67, issue.16, pp.2695-2715, 2010.

L. I. Leichert, Proteomic methods unravel the protein quality control in Escherichia coli, Proteomics, vol.11, issue.15, pp.3023-3035, 2011.

J. G. Thomas and F. Baneyx, ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells, Mol Microbiol, vol.36, issue.6, pp.1360-1370, 2000.

F. Baneyx and M. Mujacic, Recombinant protein folding and misfolding in Escherichia coli, Nat Biotechnol, vol.22, issue.11, pp.1399-1408, 2004.

R. T. Sauer and T. A. Baker, AAA+ proteases: ATP-fueled machines of protein destruction, Annu Rev Biochem, vol.80, pp.587-612, 2011.

E. Maisonneuve, L. Fraysse, D. Moinier, and S. Dukan, Existence of abnormal protein aggregates in healthy Escherichia coli cells, J Bacteriol, vol.190, issue.3, pp.887-893, 2008.

A. B. Lindner, R. Madden, A. Demarez, E. J. Stewart, and F. Taddei, Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation, Proc Natl Acad Sci, vol.105, issue.8, pp.3076-3081, 2008.
DOI : 10.1073/pnas.0708931105

URL : http://www.pnas.org/content/105/8/3076.full.pdf

J. Winkler, A. Seybert, and L. König, Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing, EMBO J, vol.29, issue.5, pp.910-923, 2010.

M. Taipale, D. F. Jarosz, and S. Lindquist, HSP90 at the hub of protein homeostasis: emerging mechanistic insights, Nat Rev Mol Cell Biol, vol.11, issue.7, pp.515-528, 2010.

R. S. Gupta, Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species, Mol Biol Evol, vol.12, issue.6, pp.1063-1073, 1995.

F. C. Neidhardt, R. A. Vanbogelen, and V. Vaughn, The genetics and regulation of heat-shock proteins, Annu Rev Genet, vol.18, pp.295-329, 1984.

C. A. Mason, J. Dünner, P. Indra, and T. Colangelo, Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment, Appl Environ Microbiol, vol.65, issue.8, pp.3433-3440, 1999.

J. C. Bardwell and E. A. Craig, Ancient heat shock gene is dispensable, J Bacteriol, vol.170, issue.7, pp.2977-2983, 1988.
DOI : 10.1128/jb.170.7.2977-2983.1988

URL : http://jb.asm.org/content/170/7/2977.full.pdf

Q. Huai, H. Wang, Y. Liu, H. Kim, D. Toft et al., Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding, Struct Lond Engl, vol.13, issue.4, pp.579-590, 1993.

S. F. Harris, A. K. Shiau, and D. A. Agard, The crystal structure of the carboxy-terminal dimerization domain of HtpG, the Escherichia coli Hsp90, reveals a potential substrate binding site, Struct Lond Engl, vol.12, issue.6, pp.1087-1097, 1993.

A. K. Shiau, S. F. Harris, D. R. Southworth, and D. A. Agard, Structural Analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements, Cell, vol.127, issue.2, pp.329-340, 2006.

L. H. Pearl and C. Prodromou, Structure and mechanism of the Hsp90 molecular chaperone machinery, Annu Rev Biochem, vol.75, pp.271-294, 2006.

O. Genest, M. Reidy, and T. O. Street, Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast, Mol Cell, vol.49, issue.3, pp.464-473, 2013.

C. Graf, M. Stankiewicz, G. Kramer, and M. P. Mayer, Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine, EMBO J, vol.28, issue.5, pp.602-613, 2009.

K. A. Krukenberg, F. Förster, L. M. Rice, A. Sali, and D. A. Agard, Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90, Struct Lond Engl, vol.16, issue.5, pp.755-765, 1993.

K. A. Krukenberg, D. R. Southworth, T. O. Street, and D. A. Agard, pH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation, J Mol Biol, vol.390, issue.2, pp.278-291, 2009.

D. R. Southworth and D. A. Agard, Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle, Mol Cell, vol.32, issue.5, pp.631-640, 2008.

O. Genest, J. R. Hoskins, J. L. Camberg, S. M. Doyle, and S. Wickner, Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling, Proc Natl Acad Sci, vol.108, issue.20, pp.8206-8211, 2011.

K. Richter and J. Buchner, Hsp90: twist and fold, Cell, vol.127, issue.2, pp.251-253, 2006.
DOI : 10.1016/j.cell.2006.10.004

URL : https://doi.org/10.1016/j.cell.2006.10.004

T. O. Street, L. A. Lavery, and D. A. Agard, Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone, Mol Cell, vol.42, issue.1, pp.96-105, 2011.
DOI : 10.1016/j.molcel.2011.01.029

URL : https://doi.org/10.1016/j.molcel.2011.01.029

S. K. Wandinger, K. Richter, and J. Buchner, The Hsp90 chaperone machinery, J Biol Chem, vol.283, issue.27, pp.18473-18477, 2008.

G. Butland, J. M. Peregrín-alvarez, and J. Li, Interaction network containing conserved and essential protein complexes in Escherichia coli, Nature, vol.433, issue.7025, pp.531-537, 2005.

M. Arifuzzaman, M. Maeda, and A. Itoh, Large-scale identification of protein-protein interaction of Escherichia coli K-12, Genome Res, vol.16, issue.5, pp.686-691, 2006.

Y. Motojima-miyazaki, M. Yoshida, and F. Motojima, Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity, Biochem Biophys Res Commun, vol.400, issue.2, pp.241-245, 2010.

A. M. Grudniak, K. Markowska, and K. I. Wolska, Interactions of Escherichia coli molecular chaperone HtpG with DnaA replication initiator DNA, Cell Stress Chaperones, vol.20, issue.6, pp.951-957, 2015.

I. Yosef, M. G. Goren, R. Kiro, R. Edgar, and U. Qimron, High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, Proc Natl Acad Sci, vol.108, issue.50, pp.20136-20141, 2011.

A. M. Grudniak, K. Pawlak, K. Bartosik, and K. I. Wolska, Physiological consequences of mutations in the htpG heat shock gene of Escherichia coli, Mutat Res, pp.745-746, 2013.

T. Inoue, R. Shingaki, S. Hirose, K. Waki, H. Mori et al., Genome-wide screening of genes required for swarming motility in Escherichia coli K-12, J Bacteriol, vol.189, issue.3, pp.950-957, 2007.

M. O. Press, H. Li, and N. Creanza, Genome-scale co-evolutionary inference identifies functions and clients of bacterial Hsp90, PLoS Genet, vol.9, issue.7, p.1003631, 2013.

T. O. Street, X. Zeng, and R. Pellarin, Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone, J Mol Biol, vol.426, issue.12, pp.2393-2404, 2014.

H. Li and V. Sourjik, Assembly and stability of flagellar motor in Escherichia coli, Mol Microbiol, vol.80, issue.4, pp.886-899, 2011.

T. Sato, S. Minagawa, E. Kojima, N. Okamoto, and H. Nakamoto, HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942, Mol Microbiol, vol.76, issue.3, pp.576-589, 2010.

E. Vivien, S. Megessier, and I. Pieretti, Xanthomonas albilineans HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin, FEMS Microbiol Lett, vol.251, issue.1, pp.81-89, 2005.

K. Washio, S. P. Lim, N. Roongsawang, and M. Morikawa, Identification and characterization of the genes responsible for the production of the cyclic lipopeptide arthrofactin by Pseudomonas sp. MIS38, Biosci Biotechnol Biochem, vol.74, issue.5, pp.992-999, 2010.

N. Roongsawang, K. Washio, and M. Morikawa, Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants, Int J Mol Sci, vol.12, issue.1, pp.141-172, 2010.

M. Saito, S. Watanabe, H. Yoshikawa, and H. Nakamoto, Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942, Biosci Biotechnol Biochem, vol.72, issue.5, pp.1394-1397, 2008.

N. Tanaka and H. Nakamoto, HtpG is essential for the thermal stress management in cyanobacteria, FEBS Lett, vol.458, issue.2, pp.117-123, 1999.

M. M. Hossain and H. Nakamoto, Role for the cyanobacterial HtpG in protection from oxidative stress, Curr Microbiol, vol.46, issue.1, pp.70-76, 2003.

S. Versteeg, A. Mogk, and W. Schumann, The Bacillus subtilis htpG gene is not involved in thermal stress management, Mol Gen Genet, vol.261, issue.3, pp.582-588, 1999.

M. S. Mann, Z. Dragovic, G. Schirrmacher, and T. Lütke-eversloh, Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress, Biotechnol Lett, vol.34, issue.9, pp.1643-1649, 2012.

W. Dang, Y. Hu, and L. Sun, HtpG is involved in the pathogenesis of Edwardsiella tarda, Vet Microbiol, vol.152, issue.3-4, pp.394-400, 2011.

S. Choi, K. Jang, S. Choi, H. Yun, and D. Kang, Identification of the Vibrio vulnificus htpG gene and its influence on cold shock recovery, J Microbiol Seoul Korea, vol.50, issue.4, pp.707-711, 2012.

L. García-descalzo, A. Alcazar, F. Baquero, and C. Cid, Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria, Cell Stress Chaperones, vol.16, issue.2, pp.203-218, 2011.

D. S. Weiss, A. Brotcke, T. Henry, J. J. Margolis, K. Chan et al., In vivo negative selection screen identifies genes required for Francisella virulence, Proc Natl Acad Sci, vol.104, issue.14, pp.6037-6042, 2007.

A. M. King, G. Pretre, and T. Bartpho, High-temperature protein G is an essential virulence factor of Leptospira interrogans, Infect Immun, vol.82, issue.3, pp.1123-1131, 2014.

E. Verbrugghe, A. Van-parys, B. Leyman, F. Boyen, F. Haesebrouck et al., HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs, Vet Res, vol.46, p.118, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01341428

O. Genest, J. R. Hoskins, A. N. Kravats, S. M. Doyle, and S. Wickner, Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling, J Mol Biol, vol.427, issue.24, pp.3877-3889, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432234

M. Kumar and V. Sourjik, Physical map and dynamics of the chaperone network in Escherichia coli, Mol Microbiol, vol.84, issue.4, pp.736-747, 2012.

H. Nakamoto, K. Fujita, and A. Ohtaki, Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins, J Biol Chem, vol.289, issue.9, pp.6110-6119, 2014.

S. E. Jackson, Hsp90: structure and function, Top Curr Chem, vol.328, pp.155-240, 2013.

K. Jhaveri, T. Taldone, S. Modi, and G. Chiosis, Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers, Biochim Biophys Acta, vol.1823, issue.3, pp.742-755, 2012.

L. M. Luheshi and C. M. Dobson, Bridging the gap: from protein misfolding to protein misfolding diseases, FEBS Lett, vol.583, issue.16, pp.2581-2586, 2009.

L. Neckers and U. Tatu, Molecular chaperones in pathogen virulence: emerging new targets for therapy, Cell Host Microbe, vol.4, issue.6, pp.519-527, 2008.

S. O. Angel, M. Matrajt, and P. C. Echeverria, A review of recent patents on the protozoan parasite HSP90 as a drug target, Recent Pat Biotechnol, vol.7, issue.1, pp.2-8, 2013.

A. Veri and L. E. Cowen, Progress and prospects for targeting Hsp90 to treat fungal infections, Parasitology, vol.141, issue.9, pp.1127-1137, 2014.

C. W. Tabor and H. Tabor, Polyamines in microorganisms, Microbiol Rev, vol.49, issue.1, pp.81-99, 1985.

P. Shah and E. Swiatlo, A multifaceted role for polyamines in bacterial pathogens, Mol Microbiol, vol.68, issue.1, pp.4-16, 2008.

A. J. Michael, Biosynthesis of polyamines and polyamine-containing molecules, Biochem J, vol.473, issue.15, pp.2315-2329, 2016.

S. Miyamoto, K. Kashiwagi, K. Ito, S. Watanabe, and K. Igarashi, Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli, Arch Biochem Biophys, vol.300, issue.1, pp.63-68, 1993.

S. S. Cohen, A Guide to the Polyamines, 1998.

K. Igarashi and K. Kashiwagi, Modulation of cellular function by polyamines, Int J Biochem Cell Biol, vol.42, issue.1, pp.39-51, 2010.

D. T. Dubin and S. M. Rosenthal, The acetylation of polyamines in Escherichia coli, J Biol Chem, vol.235, pp.776-782, 1960.

D. Charlier and N. Glansdorff, Biosynthesis of Arginine and Polyamines, EcoSal Plus, vol.3, issue.6, pp.1-55, 2004.
DOI : 10.1128/ecosalplus.3.6.1.10

J. Fukuchi, K. Kashiwagi, K. Takio, and K. Igarashi, Properties and structure of spermidine acetyltransferase in Escherichia coli, J Biol Chem, vol.269, issue.36, pp.22581-22585, 1994.

N. Watson, D. S. Dunyak, E. L. Rosey, J. L. Slonczewski, and E. R. Olson, Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH, J Bacteriol, vol.174, issue.2, pp.530-540, 1992.

M. Barbagallo, D. Martino, M. L. Marcocci, and L. , A new piece of the Shigella Pathogenicity puzzle: spermidine accumulation by silencing of the speG gene
URL : https://hal.archives-ouvertes.fr/pasteur-00975894

, PLoS One, vol.6, issue.11, p.27226, 2011.

K. Igarashi and K. Kashiwagi, Characteristics of cellular polyamine transport in prokaryotes and eukaryotes, Plant Physiol Biochem, vol.48, issue.7, pp.506-512, 2010.

T. Furuchi, K. Kashiwagi, H. Kobayashi, and K. Igarashi, Characteristics of the gene for a spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome, J Biol Chem, vol.266, issue.31, pp.20928-20933, 1991.

D. G. Vassylyev, H. Tomitori, K. Kashiwagi, K. Morikawa, and K. Igarashi, Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity, J Biol Chem, vol.273, issue.28, pp.17604-17609, 1998.

K. Higashi, H. Ishigure, and R. Demizu, Identification of a Spermidine Excretion Protein Complex (MdtJI) in Escherichia coli, J Bacteriol, vol.190, issue.3, pp.872-878, 2008.

L. Reitzer and . Catabolism, Amino Acids and Related Compounds. EcoSal Plus, vol.3, issue.4, pp.1-56, 2005.

F. Antognoni, D. Duca, S. Kuraishi, and A. , Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD, J Biol Chem, vol.274, issue.4, pp.1942-1948, 1999.

S. Cunningham-rundles and W. K. Maas, Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase, J Bacteriol, vol.124, issue.2, pp.791-799, 1975.

K. Igarashi, K. Ito, and K. Kashiwagi, Polyamine uptake systems in Escherichia coli, Res Microbiol, vol.152, issue.3, pp.271-278, 2001.

K. Igarashi and K. Kashiwagi, Modulation of protein synthesis by polyamines, IUBMB Life, vol.67, issue.3, pp.160-169, 2015.

T. A. Keating, C. G. Marshall, and C. T. Walsh, Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains, Biochemistry (Mosc), vol.39, issue.50, pp.15513-15521, 2000.

W. Tan, V. Verma, and K. Jeong, Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore, Front Microbiol, vol.5, p.1, 2014.

T. D. Nusca, Y. Kim, and N. Maltseva, Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis, J Biol Chem, vol.287, pp.16058-16072, 2012.

M. Aouida, R. Poulin, and D. Ramotar, The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5, J Biol Chem, vol.285, issue.9, pp.6275-6284, 2010.

H. Koepsell, The SLC22 family with transporters of organic cations, anions and zwitterions, Mol Aspects Med, vol.34, issue.2-3, pp.413-435, 2013.

B. Henderson, A. E. Coates, and A. , Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection, Infect Immun, vol.74, issue.7, pp.3693-3706, 2006.

K. Richter, M. Haslbeck, and J. Buchner, The heat shock response: life on the verge of death, Mol Cell, vol.40, issue.2, pp.253-266, 2010.

C. Garcie, S. Tronnet, and A. Garénaux, The Bacterial Stress-Responsive Hsp90 Chaperone (HtpG) Is Required for the Production of the Genotoxin Colibactin and the Siderophore Yersiniabactin in Escherichia coli, J Infect Dis, vol.214, issue.6, pp.916-924, 2016.

U. Dobrindt, M. G. Chowdary, G. Krumbholz, and J. Hacker, Genome dynamics and its impact on evolution of Escherichia coli, Med Microbiol Immunol (Berl), vol.199, issue.3, pp.145-154, 2010.

H. Schmidt and M. Hensel, Pathogenicity Islands in Bacterial Pathogenesis, Clin Microbiol Rev, vol.17, issue.1, pp.14-56, 2004.

E. Carniel, The Yersinia high-pathogenicity island: an iron-uptake island, Microbes Infect, vol.3, issue.7, pp.561-569, 2001.

S. Schubert, A. Rakin, and J. Heesemann, The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects, Int J Med Microbiol, vol.294, issue.2-3, pp.83-94, 2004.

J. Chen and J. Xie, Role and regulation of bacterial LuxR-like regulators, J Cell Biochem, vol.112, issue.10, pp.2694-2702, 2011.

S. Tronnet, C. Garcie, N. Rehm, U. Dobrindt, E. Oswald et al., Iron homeostasis regulates the genotoxicity of Escherichia coli producing colibactin, Infect Immun, vol.84, issue.12, pp.3358-3368, 2016.

T. Faïs, A. Cougnoux, G. Dalmasso, F. Laurent, J. Delmas et al., Antibiotic activity of Escherichia coli against Multiresistant Staphylococcus aureus, Antimicrob Agents Chemother, 2016.

C. Köhler and U. Dobrindt, What defines extraintestinal pathogenic Escherichia coli?, Int J Med Microbiol, vol.301, issue.8, pp.642-647, 2011.

C. Frank, D. Werber, and J. P. Cramer, Epidemic Profile of Shiga Toxin-Producing Escherichia coli O104:H4 Outbreak in Germany, N Engl J Med, vol.365, pp.1771-1780, 2011.

N. Soysal, P. Mariani-kurkdjian, and Y. Smail, Enterohemorrhagic Escherichia coli Hybrid Pathotype O80:H2 as a New Therapeutic Challenge, Emerg Infect Dis, vol.22, issue.9, pp.1604-1612, 2016.

A. M. Gehring, K. A. Bradley, and C. T. Walsh, Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate, Biochemistry (Mosc), vol.36, issue.28, pp.8495-8503, 1997.

T. J. Hudson, Genome variation and personalized cancer medicine, J Intern Med, vol.274, issue.5, pp.440-450, 2013.

S. Minagawa, Y. Kondoh, K. Sueoka, H. Osada, and H. Nakamoto, Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity, Biochem J, vol.435, issue.1, pp.237-246, 2011.

E. E. Gill, O. L. Franco, and R. Hancock, Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens, Chem Biol Drug Des, vol.85, issue.1, pp.56-78, 2015.

D. Martino, M. L. Campilongo, R. Casalino, M. Micheli, G. Colonna et al., Polyamines: Emerging players in bacteria-host interactions, Int J Med Microbiol, vol.303, issue.8, pp.484-491, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01044932

L. Jelsbak, L. E. Thomsen, I. Wallrodt, P. R. Jensen, and J. E. Olsen, Polyamines Are Required for Virulence in Salmonella enterica serovar Typhimurium, PLoS One, vol.7, issue.4, p.36149, 2012.

C. Schroll, J. P. Christensen, and H. Christensen, Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes, Vet Microbiol, vol.170, issue.1-2, pp.144-150, 2014.

I. C. Espinel, P. R. Guerra, and L. Jelsbak, Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium, Microb Pathog, vol.95, pp.117-123, 2016.