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Résumé

Depuis leur introduction à la fin des années 1990, les attaques par canaux auxiliaires
sont considérées comme une menace majeure contre les implémentations cryptographiques.
Parmi les stratégies de protection existantes, une des plus utilisées est le masquage d’ordre
supérieur. Elle consiste à séparer chaque variable interne du calcul cryptographique en
plusieurs variables aléatoires. Néanmoins, l’utilisation de cette protection entraîne des pertes
d’efficacité considérables, la rendant souvent impraticable pour des produits industriels.
Cette thèse a pour objectif de réduire l’écart entre les solutions théoriques, prouvées sûres, et
les implémentations efficaces déployables sur des systèmes embarqués. Plus particulièrement,
nous nous intéressons à la protection des algorithmes de chiffrement par bloc tel que l’AES,
dont l’enjeu principal revient à protéger les boîtes-s avec un surcoût minimal.
Nous essayons tout d’abord de trouver des représentations mathématiques optimales pour
l’évaluation des boîtes-s en minimisant le nombre de multiplications (un paramètre détermi-
nant pour l’efficacité du masquage, mais aussi pour le chiffrement homomorphe). Pour cela,
nous définissons une méthode générique pour décomposer n’importe quelle boîte-s sur un
corps fini avec une complexité multiplicative faible. Ces représentations peuvent alors être
évaluées efficacement avec du masquage d’ordre supérieur. La flexibilité de la méthode de
décomposition permet également de l’ajuster facilement selon les nécessités du développeur.
Nous proposons ensuite une méthode formelle pour déterminer la sécurité d’un circuit évaluant
des schémas de masquages. Cette technique permet notamment de déterminer de manière
exacte si une attaque est possible sur un circuit protégé ou non. Par rapport aux autres outils
existants, son temps de réponse n’explose pas en la taille du circuit et permet d’obtenir une
preuve de sécurité quelque soit l’ordre de masquage employé. De plus, elle permet de diminuer
de manière stricte l’emploi d’outils coûteux en aléas, requis pour renforcer la sécurité des
opérations de masquages.
Enfin, nous présentons des résultats d’implémentation en proposant des optimisations tant
sur le plan algorithmique que sur celui de la programmation. Nous utilisons notamment une
stratégie d’implémentation bitslice pour évaluer les boîtes-s en parallèle. Cette stratégie nous
permet d’atteindre des records de rapidité pour des implémentations d’ordres élevés. Les
différents codes sont développés et optimisés en assembleur ARM, un des langages les plus
répandus dans les systèmes embarqués tels que les cartes à puces et les téléphones mobiles.
Ces implémentations sont, en outre, disponibles en ligne pour une utilisation publique.
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Abstract

Since their introduction at the end of the 1990s, side-channel attacks are considered to
be a major threat to cryptographic implementations. Higher-order masking is considered
to be one the most popular existing protection strategies against such attacks. It consists
in separating each internal variable in the cryptographic computation into several random
variables. However, the use of this type of protection entails a considerable efficiency loss,
making it unusable for industrial solutions.
The goal of this thesis is to reduce the gap between theoretical solutions, proven secure,
and efficient implementations that can be deployed on embedded systems. More precisely, I
analyzed the protection of block ciphers such as the AES encryption scheme, where the main
issue is to protect the s-boxes with minimal overhead in costs.
I have tried, first, to find optimal mathematical representations in order to evaluate the
s-boxes while minimizing the number of multiplications (an important parameter for masking
schemes, but also for homomorphic encryption). For this purpose, I have defined a generic
method to decompose any s-box on any finite field with a low multiplicative complexity.
These representations can then be efficiently evaluated with higher-order masking. The
flexibility of the decomposition technique further allows the developer to easily adapt it to
its needs.
Secondly, I have proposed a formal method for measuring the security of circuits evaluating
masking schemes. This technique allows to define with exact precision whether an attack
on a protected circuit is feasible or not. Unlike other tools, its computation time is not
exponential in the circuit size, making it possible to obtain a security proof regardless of the
masking order used. Furthermore, this method can strictly reduce the use of costly tools in
randomness required for reinforcing the security of masking operations.
Finally, I present some implementation results with optimizations at both algorithmic and
programming levels. I particularly employ a bitslice implementation strategy for evaluating
the s-boxes in parallel. This strategy leads to speed record for implementations protected at
high orders. The different codes are developed and optimized in ARM assembly, one of the
most popular programming language in embedded systems such as smart cards and mobile
phones. These implementations are also available online for public use.
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Chapter 1
Introduction

Cryptography is the science of secret, being both an ancient art from the antiquity and a
new science for which scientific research has grown popular since the seventies. From ancient
history, its use was essential to allow different military entities to communicate about vital
information (army positions or numbers, resource disposal, etc.) without risking any leakage
in case enemies intercept a message. Its ground goal is hence to guarantee the confidentiality
of the information, namely the fact that only the authorized parties (namely that possess
a certain cryptographic key) can understand encrypted information. With the rise of new
technologies and the Internet, protecting communications and sensible data has become a
crucial issue. Modern cryptography has then transitioned to answer the needs of the society
as much as in democratising itself to no longer only serve military purposes but also to
protect anyone’s privacy, as well as in diversifying its utility. Nowadays, cryptography can
provide confidentiality (only the sender and the receiver can understand the communication),
authenticity (the receiver can verify from who he received the communication) and data
integrity (the communication has not been altered during its transfer).
Since the 1970’s, we distinguish two types of cryptography: secret-key cryptography and

public-key cryptography. The former allows to establish secure communication when the two
representatives share a secret private key that is used for both encryption and decryption
(hence its other designation of symmetric cryptography), whereas the latter uses a pair of
different keys, a public key and a private key, where the public key is used for encryption
and the private key for decryption (hence its other designation of asymmetric cryptography).
In this thesis, we will mainly focus on symmetric cryptography, and more particularly on
cryptographic schemes called block ciphers. One of the most prevailing and deployed block
ciphers is the Advanced Encryption Standard (AES) proposed by Daemen and Rijmen in
1998 and standardized by the National Institute of Standards and Technology (NIST) in 2001.
Based on a substitution-permutation network, this encryption scheme is very efficient both
in hardware and software. The security of this scheme, as for most symmetric cryptographic
solutions, does not rely on formal security proofs but on the fact that since its release in the
public domain 20 years ago no attack that performs better than an exhaustive search of the
secret key has been found.
In order to render cryptographic applications easy and transparent for day to day usage,

industry opted in the middle of the 1980’s for a hardware solution that could fit inside a
pocket: the smart card. Those cards are tiny computers that store secret keys and can
perform cryptographic operations such as encryption, personal identification or authentication.
The most famous ones are credit cards, the French Carte Vitale or SIM cards in our mobile
phones. This solution represents a difficult cryptographic challenge as once deployed in the
wild, it should guarantee the protection of the stored secrets from malicious adversaries that

— 1 —
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can have a total control of the hardware.
In the late 1980’s, Kocher introduced the first physical attack against cryptographic

hardware such as embedded systems. This kind of attack differs from the one in the classical
model, namely the black-box model, where the adversary can only access the input and the
output of the cryptosystem to recover its secret key. Through physical access to the device
evaluating cryptographic operations, the adversary can obtain information on intermediate
computations that directly depends on the secret key, and can hence break the underlying
cryptosystem. In particular, the adversary can exploit side channels of the hardware such as
the computation time, the power consumption of the device or its electro-magnetic emanation
during the computation. Those attacks are particularly efficient and disastrous since one can
easily get access to the target device such as smart cards, and utilize those side-channels.
Among the existing countermeasures against physical attacks to protect block cipher

implementations, the most widely used is (higher-order) masking. It consists in splitting
every sensitive variable in the cryptographic computation into several random values, denoted
shares, so that at the end of the computation the sum of all the shares is equal to the expected
result. This is a sound countermeasure as it has been formally proven that the higher the
number of shares, the more difficult for the attacker to recover the secret key. However,
applying higher-order masking to protect a cryptographic implementation implies a strong
overhead in performance which can make its deployment in an industrial context unrealistic.
In fact, the performance losses come from the fact that elementary arithmetic operations are
replaced with tools that perform secure operations on encodings of sensitive variables. The
linear operations, such as addition, have a computation time that is linear in the number
of masks, whereas the computation time of non-linear operations such as multiplication is
quadratic in the number of masks. Hence, the bottleneck of protecting encryption schemes
with higher-order masking is to efficiently compute those non-linear operations, which in a
standard block cipher are the substitution boxes (s-boxes). Many theoretical schemes have
been proposed to tackle the issue of efficient masking schemes. However most of them are
still considered impracticable as soon as the masking order grows.
In the last couple of years, a first step towards efficient implementation of higher-order

masking has been made. The solution is to look at the s-box as a polynomial over a finite
field and to find an efficient way to represent it so that the number of multiplications required
for its evaluation is minimized. Two main approaches have been studied in the literature.
The first one targets specific s-boxes (such as the one of the AES) to exploit the particularity
of their algebraic structure and get very efficient representation in terms of number of
multiplications involved. The second one tackles this issue on any kind of functions and
aims to get a generic decomposition technique. For both approaches, a new problem quickly
arose. In fact, once the representation of the s-box has been found, its evaluation requires
several compositions of masked operations which can introduce security flaws due to multiple
manipulations of a same encoding. To thwart such security flaws, the solution is to generate
new fresh encodings of the intermediate variables at carefully chosen positions in the masking
scheme evaluation. However, this requirement introduces new overheads in efficiency as
generating fresh encodings requires a large amount of randomness. Hence, an other issue of
masking schemes is to reduce the randomness requirements.
This is why this thesis will be focusing on producing efficient secure implementations of

block ciphers against physical attacks and bridging the gap between theoretical masking
schemes and concrete practical implementations for which the overhead in efficiency is lowered
such that the underlying implementation can be deployed in industrial solutions. To solve
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this problem, I have first started doing an implementation case study of all existing masking
schemes in ARM assembly. This study resulted in the first concrete comparisons between
all the polynomial solutions proposed in the state-of-the-art. I have also investigated an
alternative to polynomial methods for specific block ciphers such as the AES which is based
on bitslicing at the s-box level. This led to significantly faster implementations compared to
polynomial solutions. Following this line of work, I studied the use of bitslicing for random
s-boxes and proposed a method to get a representation of Boolean circuit with a minimalized
multiplicative complexity. This new method led to implementation that are asymptotically
faster than the classical polynomial approach but less efficient for small masking orders. Hence,
I proposed a more generic framework that allows to decompose any polynomial over any finite
field of characteristic two and encapsulating the previous methods (the polynomial approach
and the Boolean approach). In all produced implementations, and more specifically for the
AES s-box with a bitslice strategy, I have chosen a very conservative approach of inserting
a refresh gadget after each multiplication to guarantee the security of the implementation.
This conservative choice was backed up by the state-of-the-art tools that analyze the security
of a circuit. However, these tools happen to produce false negatives and can hence lead to
overkill in security gadgets. Therefore, I proposed a formal verification tool that can exactly
check the security of an s-box implementation for any masking order. This allows to reduce
by a factor of two the randomness requirement for the implementation of the AES s-box.

1.1 Personal Contributions

The detailed list of my personal publications with full names, authors, and conferences is
given at the end of the introduction. Here I briefly describe the goal of each of these papers,
as well as the results they achieve.

1.1.1 Contributions in this Thesis

[GR16] In this paper, we present a generic method to find a Boolean representation of an
s-box with efficient bitsliced higher-order masking. Specifically, we propose a method
to construct a circuit with low multiplicative complexity. Compared to previous
works on this subject, our method can be applied to any s-box of common size and
not necessarily to small s-boxes. We use it to derive higher-order masked s-box
implementations that achieve important performance gain compared to optimized
state-of-the-art implementations.

[GR17] In this paper, we investigate efficient higher-order masking techniques by conducting
a case study on ARM architectures (the most widespread architecture in embedded
systems). We follow a bottom-up approach by first investigating the implementation of
the base field multiplication at the assembly level. Then we describe optimized low-level
implementations of the ISW scheme and its variant (CPRR) due to Coron et al. (FSE
2013). Finally we present improved state-of-the-art polynomial decomposition methods
for s-boxes with custom parameters and various implementation-level optimizations.
We also investigate an alternative to these methods which is based on bitslicing at
the s-box level. We describe new masked bitslice implementations of the AES and
PRESENT ciphers. These implementations happen to be significantly faster than
(optimized) state-of-the-art polynomial methods.
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[GRVV17] In this paper, we propose a generalized decomposition method for s-boxes that
encompasses several previously proposed methods while providing new trade-offs. It
allows to evaluate nλ-bit to mλ-bit s-boxes for any integers n,m, λ ≥ 1 by seeing it a
sequence of m n-variate polynomials over F2λ and by trying to minimize the number of
multiplications over F2λ .

[GJRS18] In this paper, we optimize the performance and compare several recent masking
schemes in bitslice representation on 32-bit ARM devices, with a focus on multiplication.
Our main conclusion is that efficiency (or randomness) gains always come at a cost,
either in terms of composability or in terms of resistance against horizontal attacks.
Our evaluations should therefore allow a designer to select a masking scheme based
on implementation constraints and security requirements. They also highlight the
increasing feasibility of (very) high-order masking that are offered by increasingly
powerful embedded devices, with new opportunities of high-security devices in various
contexts.

[BGR18] In this paper, we exhibit the first method able to clearly state whether a shared
circuit composed of standard gadgets (addition, multiplication and refresh) is t-probing
secure or not. Given such a composition, our method either produces a probing-security
proof (valid at any order) or exhibits a security flaw that directly imply a probing
attack at a given order. Compared to the state-of-the-art tool maskComp, our method
can drastically reduce the number of required refresh gadgets to get a probing security
proof, and thus the randomness requirement for some secure shared circuits. We apply
our method to a recent AES implementation secured with higher-order masking in
bitslice and we show that we can save all the refresh gadgets involved in the s-box layer,
which results in a significant performance gain.

1.1.2 Other contributions

[GRV16] In this paper, we extend existing attacks that exploit a few bits of the nonce
to fully recover the secret key of elliptic-curve signature implementations protected
with common countermeasures. Specifically, we extend the famous Howgrave-Graham
and Smart lattice attack when the nonces are blinded by the addition of a random
multiple of the elliptic-curve group order or by a random Euclidean splitting. We
then assume that noisy information on the blinded nonce can be obtained through a
template attack targeting the underlying scalar multiplication and we show how to
characterize the obtained likelihood scores under a realistic leakage assumption. To
deal with this scenario, we introduce a filtering method which given a set of signatures
and associated likelihood scores maximizes the success probability of the lattice attack.
Our approach is backed up with attack simulation results for several signal-to-noise
ratio of the exploited leakage.

[GJR18] In this paper, we show how to compute in the presence of noisy leakage with a
leakage rate up to Õ(1) in complexity Õ(n). We use a polynomial encoding allowing
quasilinear multiplication based on the fast Number Theoretic Transform (NTT). We
first show that our scheme is secure in the random-probing model with leakage rate
O(1/ logn). Using the reduction by Duc et al. this result can be translated in the
noisy leakage model with a O(1/|F|2 logn) leakage rate. However, as in the work of
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Andrychowicz et al. [ADF16], our construction also requires |F| = O(n). In order
to bypass this issue, we refine the granularity of our computation by considering the
noisy leakage model on logical instructions that work on constant-size machine words.
We provide a generic security reduction from the noisy leakage model at the logical-
instruction level to the random-probing model at the arithmetic level. This reduction
allows us to prove the security of our construction in the noisy leakage model with
leakage rate Õ(1).

1.2 Organization of this Thesis

In Chapter 2, I first detail all of the state-of-the-art solutions for masking schemes and some
overview of the software choices we made throughout this thesis. In Chapter 3, I propose a
generic decomposition method for any s-boxes to obtain efficient implementations. In Chapter
4, I formally define how the security of a circuit protected with higher-order masking can be
reduced to problem of linear algebra. Then, I propose a formal verification tool that given
a circuit outputs if an attack exists or not for any masking order. In Chapter 5, I detail
optimisations at the algorithmic and assembly levels and give implementation results for
the state-of-the-art methods as for the different schemes proposed in this thesis. Finally, I
conclude in Chapter 6 with a brief summary of what I achieved and open questions that
remain to be answered after this work.
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2.1 Higher-Order Masking

Among the existing protection strategies against physical attacks, one of the most widely used
relies on applying secret sharing at the implementation level, which is known as (higher-order)
masking. This strategy achieves provable security in the so-called probing security model
[ISW03] and noisy leakage model [PR13; DDF14], which makes it a prevailing way to obtain
secure implementations against side-channel attacks.

2.1.1 Description

Higher-order masking consists in sharing each internal variable x of a cryptographic compu-
tation into d random variables x1, x2, . . . , xd, called the shares and satisfying

x1 + x2 + · · ·+ xd = x, (2.1)

for some group operation +, such that any set of d− 1 shares is randomly distributed and
independent of x. In this manuscript, we will consider the prevailing Boolean masking which
is based on the bitwise addition of the shares. It has been formally demonstrated that in the
noisy leakage model, where the attacker gets noisy information on each share, the complexity
of recovering information on x grows exponentially with the number of shares [CJRR99;
PR13]. This number d, called the masking order, is hence a sound security parameter for the
resistance of a masked implementation.

When dth-order masking is involved to protect a block cipher, a so-called dth-order masking
scheme must be designed to enable the computation on masked data. To be sound, a dth
order masking scheme must satisfy the two following properties:

• completeness: at the end of the encryption/decryption, the sum of the d shares must
give the expected result;

• probing security: every tuple of d−1 or less intermediate variables must be independent
of any sensitive variable.

2.1.2 Masking Block Ciphers

Most block cipher structures are composed of one or several linear transformation(s), and a
non-linear function, the s-box (where the linearity is considered w.r.t. the bitwise addition).
Computing a linear transformation x 7→ `(x) in the masking world can be done in O(d)
complexity by applying ` to each share independently. This clearly maintains the probing
security and the completeness holds by linearity since we have `(x1)+`(x2)+· · ·+`(xd) = `(x).
On the other hand, the non-linear operations (such as s-boxes) are more tricky to compute
on the shares while ensuring completeness and probing security.

The state-of-the-art solutions to perform a multiplication between two masked variable x
and y are all based on the following rationale:

1. Compute the d2 cross products xiyj , for 1 ≤ i, j ≤ d;

2. Combine the cross products to get d output shares (in order to keep completeness);

3. Interleave fresh randomness in the previous step to avoid security flaws (in order to
keep the probing security).
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The main differences between all the solution in the literature are on how to implement
this three different stages (see for instance [ISW03; BBP+16; BCPZ16; BDF+17]).

2.1.3 Implementation Transformation

We now describe how to transform the implementation of a block cipher into a secure
implementation with higher-order masking.

2.1.3.1 Encoding

Let us first detail how to encode every input of the block cipher into masked variables. Let d
be the masking order. A random d-sharing of an element x ∈ F2n is defined as follows:

Definition 2.1.1. Let x ∈ F2n and d ∈ N. A d-sharing of x is a tuple (xi)di=1 ∈ Fd2n satisfying∑d
i=1 xi = x.

A d-sharing is said to be uniform if, for a given x, it is uniformly distributed over the
subspace of tuples satisfying x = ∑d

i=1 xi. A uniform sharing of x is such that any m-tuple of
its shares xi is uniformly distributed over Fm2 for any m ≤ d. We further denote by Enc the
probabilistic algorithm that maps an element x ∈ F2n to a random uniform d-sharing of x:

Enc(x) 7→ (x1, x2, . . . , xd) . (2.2)

The corresponding decoding function Dec is defined as:

Dec
(
x1, x2, . . . , xd

)
:=

d∑
i=1

xi (2.3)

It is easy to check that we have Pr(Dec(Enc(x)) = x) = 1 for every x ∈ F2n .

2.1.3.2 Gadgets

To perform operations on masked variables, we define new building blocks called gadgets
that perform a given operation on d-sharings. For instance, for some two-input operation
∗, a ∗-gadget takes two input sharings Enc(x1) and Enc(x2) and it outputs a sharing Enc(y)
such that y = x1 ∗ x2. In this thesis, we will only consider gadgets that take one input
(refresh, squaring, or evaluation of a quadratic function) or two inputs (addition, subtraction,
multiplication). Specifically, a gadget performs several elementary operation on the shares of
the inputs in order to get the desired outputs. We give in the following some examples of the
most used gadgets in this thesis.

• Addition gadget. Let (xi)di=1 be a d-sharing of x and (yi)di=1 be a d-sharing of y. To
compute a d-sharing (zi)di=1 of z = x+ y, we simply compute:

(z1, z2, . . . , zd)← (x1 + y1, x2 + y2, . . . , xd + yd)

• Field squaring gadget. Let (xi)di=1 be a d-sharing of x. To compute a d-sharing
(zi)di=1 of z = x2, we simply compute:

(z1, z2, . . . , zd)← (x2
1, x

2
2, . . . , x

2
d)
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• Field multiplication gadget. Let (xi)di=1 be a d-sharing of x and (yi)di=1 be a
d-encoding of y. To compute a d-sharing (zi)di=1 of z = x · y, we simply compute:

(z1, z2, . . . , zd)← IswMult((x1, x2, . . . , xd), (y1, y2, . . . , yd))

where IswMult denotes the secure multiplication proposed by Ishai, Sahai and Wager
and described in the following section (Section 2.2). Other algorithms for this operation
are described in Chapter 5.

Finally, another type of gadget exists that does not perform an operation on d-sharing but
from an input d-sharing of a secret variable x, produces a fresh random uniform d-sharing of
this variable. This type of gadgets is called refresh gadget and works as follows:

• Refresh gadget. Let (xi)di=1 be a d-sharing of x. To compute a d-sharing (zi)di=1 of
z = x, we simply compute:

(z1, z2, . . . , zd)← Refresh(x1, x2, . . . , xd)

The details on how to compute soundly the Refresh function are detailed hereafter.
Basically, the idea is to perform a secure multiplication between an encoding of x and
an encoding of 1, namely the d-sharing (1, 0, . . . , 0).

It is easy to see that to remain efficient, the goal is to find a secure implementation of
the block cipher that minimizes the number of field multiplication, quadratic evaluation
and refresh gadgets, as they are the ones with a quadratic complexity in the masking order.
In this manuscript, we will equally use the denomination of gadgets and secure operations
(namely secure multiplication, secure evaluation, etc...).

2.1.3.3 Transformation

Now that we have defined encodings of sensitive variables and gadgets that perform simple
operations on encodings, we can describe how to transform an implementation of a block
cipher into a secure implementation protected with higher-order masking. To do so, every
elementary operation in the implementation of the block cipher is transformed into the
corresponding gadget working on d-sharings. Hence, the secure implementation takes as
inputs d-sharings corresponding to each input of the block cipher thanks to the encoding
function Enc. At the end of the computation, the output d-sharings of the computation are
transfomed into the outputs of the block-ciphers with the help of the decoding function Dec.
At carefully chosen positions in the secure implementation, refresh gadgets are inserted in
order to ensure the security of the implementation (see Chapter 4 for more details).

2.1.4 Probing security

The probing security was first introduced in the seminal work of Ishai, Sahai, and Wager
at Crypto 2003 [ISW03]. It has been used to prove the security of several of the masking
schemes in the literature. The definition of the probing security is defined as follows:

Definition 2.1.2 (from [ISW03]). Let d be the masking order and 1 ≤ t ≤ d an integer. A
algorithm is t-probing secure if and only if any set of at most t intermediate variables is
independent from the secret.



2.2 Secure Non-Linear Operations 11

Informally speaking, in this model, we suppose that the adversary can probe up to t
intermediate computations in the secure implementation. Namely, she can place up to t probes
in any of the elementary operations performed by the gadgets. As each of the elementary
operations in a gadget are performed on shares, the attacker recovers the knowledge of the one
or two shares processed by the operation. This can be seen as probing one software instruction
where one probe allows to recover information on either the source of the instruction (namely
one or two operands) or the destination (namely the output of the instruction). Then with
the information provided by her probes, the adversary tries to find some dependence with
the secret. If such dependence does not exist, then the secure implementation is said to be
t-probing secure. One of the strongest advantages of this model is that it allows to do elegant
and easy proofs to ensure the security of the secure implementation.
This model is also practically relevant and realistic as it catches what an adversary

performs with an higher-order side-channel attack. In fact, in a practical scenario the attacker
tries to find points of interest in the leakage trace corresponding to the evaluation of the
implementation. Then he tries to recombine these point of interests to find a statistical
correlation with the secret. Hence, the point of interests can be seen as placing probes in the
secure implementation.

2.2 Secure Non-Linear Operations

We now review some (widely used) constructions from the literature to compute masking
gadgets for non-linear operations. The two operands x, y ∈ F2n of the non-linear operation
gadget are represented as random d-sharings (x1, x2, . . . , xd) and (y1, y2, . . . , yd). Specifically,
we focus on the scheme proposed by Ishai, Sahai, and Wagner (ISW scheme) for the secure
multiplication [ISW03], and its extension by Coron, Prouff, Rivain and Roche (CPRR scheme)
to secure any quadratic function [CPRR14; CPRR15].

2.2.1 Ishai-Sahai-Wagner Multiplication

From two d-sharings (x1, x2, . . . , xd) and (y1, y2, . . . , yd), the ISW scheme computes an output
d-sharing (z1, z2, . . . , zd) as follows:

1. for every 1 ≤ i < j ≤ d, sample a random value ri,j over F2n ;

2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j + xi · yj) + xj · yi;

3. for every ≤ i ≤ d, compute zi = xi · yi +∑
j 6=i ri,j .

One can check that the output (z1, z2, . . . , zd) is well a d-sharing of the product z = x · y.
We indeed have ∑i zi = ∑

i,j xi · yj = (∑i xi)(
∑
j yj) since every random value ri,j appears

exactly twice in the sum and hence vanishes.

2.2.2 Mask refreshing

The ISW multiplication was originally proved probing secure at the order t = b(d−1)/2c (and
not d− 1 as one would expect with masking order d). The security proof was later made tight
under the condition that the input d-sharings are based on independent randomness [RP10].
In some situations, this independence property is not satisfied. For instance, one might have
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to multiply two values x and y where x = `(y) for some linear operation `. In that case, the
shares of x are usually derived as xi = `(yi), which clearly breaches the required independence
of input shares. To deal with this issue, one must refresh the sharing of x. However, one
must be careful doing so since a bad refreshing procedure might introduce a flaw [CPRR14].
A sound method for mask-refreshing consists in applying an ISW multiplication between
the sharing of x and the tuple (1, 0, 0, . . . , 0) [DDF14; BBD+15]. This gives the following
procedure:

1. for every 1 ≤ i < j ≤ d, randomly sample ri,j over F2n and set rj,i = ri,j ;

2. for every 1 ≤ i ≤ d, compute x′i = xi +∑
j 6=i ri,j .

It is not hard to see that the output sharing (x′1, x′2, . . . , x′d) well encodes x. One might
think that such a refreshing implies a strong overhead in performance (almost as performing
two multiplications) but this is still better than doubling the number of shares (which
roughly quadruples the multiplication time). Moreover, we show in Chapter 5 that the
implementation of such a refreshing procedure can be very efficient in practice compared to
the ISW multiplication.

2.2.3 Coron-Prouff-Rivain-Roche evaluation

The CPRR scheme was initially proposed in [CPRR14] as a variant of ISW to securely compute
multiplications of the form x 7→ x · `(x) where ` is linear, without requiring refreshing. It
was then shown in [CPRR15] that this scheme (in a slightly modified version) could actually
be used to securely evaluate any quadratic function f over F2n . The method is based on the
following equation

f(x1 + x2 + · · ·+ xd) =
∑

1≤i<j≤d
f(xi + xj + si,j) + f(xj + si,j) + f(xi + si,j) + f(si,j)

+
d∑
i=1

f(xi) + (d+ 1 mod 2) · f(0) (2.4)

which holds for every (xi)i ∈ (F2n)d, every (si,j)1≤i<j≤d ∈ (F2n)d(d−1)/2, and every quadratic
function f over F2n .
From a d-sharing (x1, x2, . . . , xd), the CPRR scheme computes an output d-sharing

(y1, y2, . . . , yd) as follows:
1. for every 1 ≤ i < j ≤ d, sample two random values ri,j and si,j over F2n ,

2. for every 1 ≤ i < j ≤ d, compute rj,i = ri,j + f(xi + si,j) + f(xj + si,j) + f((xi + si,j) +
xj) + f(si,j) ,

3. for every 1 ≤ i ≤ d, compute yi = f(xi) +∑
j 6=i ri,j ,

4. if d is even, set y0 = y0 + f(0).
According to Equation (2.4), we then have ∑d

i=1 yi = f
(∑d

i=1 xi), which shows that the
output sharing (y1, y2, . . . , yd) well encodes y = f(x).

In [CPRR14; CPRR15] it is argued that in the gap where the field multiplication cannot be
fully tabulated (22n elements is too much) while a function f : F2n → F2n can be tabulated
(2n elements fit), the CPRR scheme is (likely to be) more efficient than the ISW scheme.
This is because it essentially replaces (costly) field multiplications by simple look-ups.
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2.3 Polynomial Methods for S-boxes

An approach to reduce the number of multiplication involved in the evaluation of the s-box
in masking schemes is to consider the s-box as a polynomial over a finite field. This way,
the problem of efficiently evaluating the non-linear part becomes equivalent to studying fast
evaluation of polynomials over F2n . In [CGP+12], Carlet, Goubin, Prouff, Quisquater and
Rivain, were the first to give a countermeasure based on polynomial representation of the
s-box and proposed two methods to evaluate it. Then in [CRV14], Coron, Roy and Vivek
extend their approach to propose a new generic method for fast evaluation of polynomials
over binary fields.

In [CGP+12] the notion of cyclotomic class is introduced, which will be used for the CRV
method.

Definition 2.3.1. [Cyclotomic class] Let n be the number of input bits of the s-box and let
α ∈ [0; 2n − 2]. The cyclotomic class of α is the set Cα defined by:

Cα = {α.2i mod 2n − 1 ; i ∈ [0;n− 1]}

A cyclotomic class allows to get efficient masked operations: a power xα can be computed
from xβ without any non-linear multiplications if α and β are in the same cyclotomic class
since it only requires squarings.

2.3.1 Coron-Roy-Vivek method

The CRV method was proposed by Coron, Roy and Vivek in [CRV14]. It consists in
representing an s-box S(x) over F2n [x]/(x2n − x) as

S(x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x) , (2.5)

where pi(x) and qi(x) are polynomials with monomials in xL for some set of cyclotomic classes
L = Cα1=0 ∪ Cα2=1 ∪ Cα3 ∪ . . . ∪ Cα` such that for every i ≥ 3, αi = αj + αk mod 2n − 1 for
some j, k < i (or more generally αi = 2w · αj + αk mod 2n − 1 with k ∈ [[0, n − 1]]). Such
polynomials can be written as:

pi(x) =
∑̀
j=2

li,j(xαj ) + ci,0 and qi(x) =
∑̀
j=2

l′i,j(xαj ) + c′i,0 , (2.6)

where the li,j , l′i,j are linearized polynomials over F2n [x]/(x2n − x) and where the ci,0, c′i,0 are
constants in F2n .
In [CRV14], the authors explain how to find such a representation. In a nutshell, one

randomly picks the qi’s and searches for pi’s satisfying Equation (2.5). This amounts to
solving a linear system with 2n equations and t · |L| unknowns (the coefficients of the pi’s).
Note that when the choice of the classes and the qi’s leads to a solvable system, then it can be
used with any s-box (since the s-box is the target vector of the linear system). We then have
two necessary (non sufficient) conditions for such a system to be solvable, and one additional
for the sake of efficiency:

1. the set L of cyclotomic classes is such that t · |L| ≥ 2n
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2. all the monomials can be reached by multiplying two monomials from xL, that is
{xi · xj mod (x2n − x) ; i, j ∈ L} = x[[0,2n−1]]

3. every class (but C0 = {0}) have the maximal cardinality of n. Under this additional
constraint, Condition 1 leads to the following inequality: t · (1 + n · (`− 1)) ≥ 2n.

Minimizing the number of nonlinear multiplications while satisfying this constraint leads to
parameters t ≈

√
2n/n and ` ≈

√
2n/n.

Based on the above representation, the s-box can be evaluated using (` − 2) + (t − 1)
nonlinear multiplications (plus some linear operations). In a first phase, one generates the
monomials corresponding to the cyclotomic classes in L. Each xαi can be obtained by
multiplying two previous xαj and xαk (where xαj might be squared w times if necessary).
In the masking world, each of these multiplications is performed with a call to ISW. The
polynomials pi(x) and qi(x) can then be computed according to Equation (2.6). In practice
the linearized polynomials are tabulated so that at masked computation, applying a li,j
simply consists in performing a look-up on each share of the corresponding xαj . In the second
phase, one simply evaluates Equation (2.5), which takes t− 1 nonlinear multiplications plus
some additions. We recall that in the masking world, linear operation such as additions or
linearized polynomial evaluations can be applied on each share independently yielding an
O(d) complexity, whereas nonlinear multiplications are computed by calling ISW with an
O(d2) complexity. The performance of the CRV method is hence dominated by the `+ t− 3
calls to ISW.

2.3.2 Algebraic decomposition method

The algebraic decomposition method was proposed by Carlet, Prouff, Rivain and Roche in
[CPRR15]. It consists in using a basis of polynomials (g1, g2, . . . , gr) that are constructed by
composing polynomials fi as follows{

g1(x) = f1(x)
gi(x) = fi

(
gi−1(x)

) (2.7)

The fi’s are of given algebraic degree s. In our context, we consider the algebraic decomposition
method for s = 2, where the fi’s are (algebraically) quadratic polynomials. The method then
consists in representing an s-box S(x) over F2n [x]/(x2n − x) as

S(x) =
t∑
i=1

pi
(
qi(x)

)
+

r∑
i=1

`i
(
gi(x)

)
+ `0(x) , (2.8)

with
qi(x) =

r∑
j=1

`i,j
(
gj(x)

)
+ `i,0(x) , (2.9)

where the pi’s are quadratic polynomials over F2n [x]/(x2n − x), and where the `i’s and the
`i,j ’s are linearized polynomials over F2n [x]/(x2n − x).
As explain in [CPRR15], such a representation can be obtained by randomly picking

some fi’s and some `i,j ’s (which fixes the qi’s) and then searching for pi’s and `i’s satisfying
Equation (2.8). As for the CRV method, this amounts to solving a linear system with 2n
equations where the unknowns are the coefficients of the pi’s and the `i’s. Without loss of
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generality, we can assume that only `0 has a constant term. In that case, each pi is composed
of 1

2n(n− 1) monomials, and each `i is composed of n monomials (plus a constant term for
`0). This makes a total of 1

2 n (n− 1) · t+ n · (r + 1) unknown coefficients. In order to get a
solvable system we hence have the following condition: (1) 1

2 n (n− 1) · t+ n · (r+ 1) ≥ 2n. A
second condition is (2) 2r+1 ≥ n, otherwise there exists some s-box with algebraic degree
greater than 2r+1 that cannot be achieved with the above decomposition i.e. the obtained
system is not solvable for every target S.
Based on the above representation, the s-box can be evaluated using r + t evaluations of

quadratic polynomials (the fi’s and the qi’s). In the masking world, this is done with the help
of CPRR evaluations. The rest of the computation are additions and (tabulated) linearized
polynomials which are applied to each share independently with a complexity linear in d. The
cost of the algebraic decomposition method is then dominated by the r + t calls to CPRR.

2.3.3 Specific Methods for AES and PRESENT

Specific methods that target the algebraic structure of a particular s-box have also been
proposed in the literature. In this thesis, we mainly focus on the s-box of the AES and of
PRESENT as they are popular block-ciphers, the former beeing the standard for encryption
and the latter one of the most efficient lightweight block-ciphers.

2.3.3.1 Rivain-Prouf Decomposition

Many works have studied masking schemes for the AES s-box and most of them are based
on its peculiar algebraic structure. This s-box is defined as the composition of the inverse
function x 7→ x254 over F28 and an affine function: S(x) = Aff(x254). The affine function
being straightforward to mask with linear complexity, the main issue is to design an efficient
masking scheme for the inverse function. In [RP10], Rivain and Prouff introduced the
approach of using an efficient addition chain for the inverse function that can be implemented
with a minimal number of ISW multiplications. They show that the exponentiation to the
power of 254 can be performed with 4 nonlinear multiplications plus some (linear) squarings,
resulting in a scheme with 4 ISW multiplications. In [CPRR14], Coron et al. propose a
variant where two of these multiplications are replaced CPRR evaluations (of the functions
x 7→ x3 and x 7→ x5).1 This was further improved by Grosso et al. in [GPS14] who proposed
the following addition chain leading to 3 CPRR evaluations and one ISW multiplications:
x254 = (x2 · ((x5)5)5)2. This addition chain has the advantage of requiring a single function
x 7→ x5 for the CPRR evaluation (hence a single LUT for masked implementation). Moreover
it can be easily checked by exhaustive search that no addition chain exists that trades the
last ISW multiplication for a CPRR evaluation.

2.3.3.2 Kim-Hong-Lim (KHL) method

This method was proposed in [KHL11] as an improvement of the RP scheme. The main idea
is to use the tower field representation of the AES s-box [SMTM01] in order to descend from

1The original version of the RP scheme [RP10] actually involved a weak mask refreshing procedure which
was exploited in [CPRR14] to exhibit a flaw in the s-box processing. The CPRR variant of ISW was
originally meant to patch this flaw but the authors observed that using their scheme can also improve the
performances. The security of the obtained variant of the RP scheme was recently verified up to masking
order 4 using program verification techniques [BBD+15].
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F28 to F24 where the multiplications can be fully tabulated. Let δ denote the isomorphism
mapping F28 to (F24)2 with F28 ≡ F24 [x]/p(x), and let γ ∈ F28 and λ ∈ F24 such that
p(x) = x2 + x+ λ and p(γ) = 0. The tower field method for the AES s-box works as follows:

1. ahγ + al = δ(x), ah, al ∈ F24 4. a′h = d′ aj ∈ F24

2. d = λ a2
h + al · (ah + al) ∈ F24 5. a′l = d′(ah + al) ∈ F24

3. d′ = d14 ∈ F24 6. S(x) = Aff(δ−1(a′hγ + a′l)) ∈ F28

At the third step, the exponentiation to the 14 can be performed as d14 = (d3)4 · d2

leading to one CPRR evaluation (for d 7→ d3) and one ISW multiplication (plus some linear
squarings).2 This gives a total of 4 ISW multiplications and one CPRR evaluation for the
masked AES implementation.

2.3.3.3 Method for PRESENT

As a 4-bit s-box, the PRESENT s-box can be efficiently secured with the CRV method using
only 2 ISW multiplications, where the field multiplications are fully tabulated. The algebraic
decomposition method would give a less efficient implementation with 3 CPRR evaluations.
Another possible approach is to use the fact that the PRESENT s-box can be expressed as
the composition of two quadratic functions S(x) = F ◦ G(x). This representation (which
is recalled in Table 2.1) was put forward by Poschmann et al. in [PMK+11] to design an
efficient threshold implementation of PRESENT. In our context, this representation can be
used to get a masked s-box evaluation based on 2 CPRR evaluations. Note that this method
is asymptotically slower than CRV with 2 full-table ISW multiplications. However, due to
additional linear operations in CRV, F ◦G might actually be better for small values of d.

Table 2.1: PRESENT s-box S(x) = F ◦G(x).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
G(x) 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F
F (x) 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2

2.4 Bitslice Strategy

Bitslicing is an implementation strategy initially proposed by Biham in [Bih97]. It consists
in performing several parallel evaluations of a Boolean circuit in software where the logic
gates can be replaced by instructions working on registers of several bits. As nicely explained
in [MN07], “in the bitslice implementation one software logical instruction corresponds to
simultaneous execution of ` hardware logical gates, where ` is a register size [...] Hence
bitslice can be efficient when the entire hardware complexity of a target cipher is small and
an underlying processor has many long registers.”

2The authors of [KHL11] suggest to perform d3 = d2 · d with a full tabulated multiplication but this
would actually imply a flaw as described in [CPRR14]. That is why we use a CPRR evaluation for this
multiplication.
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In the context of higher-order masking, bitslicing can be used at the s-box level to
perform several secure s-box computations in parallel. One then needs a compact Boolean
representation of the s-box, and more importantly a representation with the least possible
nonlinear gates. Specifically, based on a Boolean circuit for an s-box S, one can perform `
parallel evaluations of S in software by replacing each gate of the circuit with the corresponding
bitwise instruction, where ` is the bit-size of the underlying CPU architecture. It results that
the only nonlinear operations in the parallel s-box processing are bitwise AND instructions
between `-bit registers which can be efficiently secured using the ISW scheme. Such an
approach achieves important speedup compared to polynomial methods since (i) ISW-based
ANDs are substantially faster than ISW-based field multiplications in practice, (ii) all the
s-boxes within a cipher round are computed in parallel. Such an approach was applied in
[GLSV15] to design block ciphers with efficient masked computations. To the best of our
knowledge, it has never been applied to obtain fast implementations of classical block ciphers
such as AES or PRESENT.

2.4.1 ISW Logical AND

The ISW scheme can be easily adapted to secure a bitwise logical AND between two m-
bit registers. From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd) of two m-bit strings
a, b ∈ {0, 1}m, the ISW scheme computes an output d-sharing (c1, c2, . . . , cd) of c = a ∧ b as
follows:

1. for every 1 ≤ i < j ≤ d, sample an m-bit random value ri,j ,

2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j ⊕ ai ∧ bj)⊕ aj ∧ bi ,

3. for every 1 ≤ i ≤ d, compute ci = ai ∧ bi ⊕
⊕

j 6=i ri,j .

If the architecture size is `, we can hence perform ` secure logical AND in parallel. Moreover
a logical AND is a single instruction so we expect the above ISW logical AND to be faster
than the ISW field multiplications.

2.5 ARM Assembly

In this thesis most of the implementation produced to benchmark and compare the different
masking schemes are developed in ARM assembly, a low level implementation language widely
used in mobile devices and smart cards. Most ARM cores are RISC processors composed of
sixteen 32-bit registers, labeled R0, R1, . . . , R15. Registers R0 to R12 are known as variable
registers and are available for computation.3 The three last registers are usually reserved for
special purposes: R13 is used as the stack pointer (SP), R14 is the link register (LR) storing
the return address during a function call, and R15 is the program counter (PC). The link
register R14 can also be used as additional variable register by saving the return address on
the stack (at the cost of push/pop instructions). The gain of having a bigger register pool
must be balanced with the saving overhead, but this trick enables some improvements in
many cases.

3Note that some conventions exist for the first four registers R0–R3, also called argument registers, and serving
to store the arguments and the result of a function at call and return respectively.
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In ARM v7, most of the instructions can be split into the following three classes: data
instructions, memory instructions, and branching instructions. The data instructions are the
arithmetic and bitwise operations, each taking one clock cycle (except for the multiplication
which takes two clock cycles). The memory instructions are the load and store (from and to
the RAM) which require 3 clock cycles, or their variants for multiple loads or stores (n+ 2
clock cycles). The last class of instructions is the class of branching instructions used for
loops, conditional statements and function calls. These instructions take 3 or 4 clock cycles.
This classification is summarized in Table 2.2.

Table 2.2: ARM instructions.

Class Examples Clock cycles
Data instructions EOR, ADD, SUB, AND, MOV 1
Memory instructions LDR, STR / LDM, STM 3 or n+ 2
Branching instructions B, BX, BL 3 or 4

One important specificity of the ARM assembly is the barrel shifter allowing any data
instruction to shift one of its operands at no extra cost in terms of clock cycles. Four kinds of
shifting are supported: the logical shift left (LSL), the logical shift right (LSR), the arithmetic
shift right (ASR), and the rotate-right (ROR). All these shifting operations are parameterized
by a shift length in [[1, 32]] (except for the logical shift left LSL which lies in [[0, 31]]). The latter
can also be relative by using a register but in that case the instruction takes an additional
clock cycle.
Another feature of ARM assembly that can be very useful is the branch predication.

This feature allows any instruction to be conditionally executed with respect to a (data
dependent) flag value (e.g. the carry flag, the zero flag, etc.). In the context of secure
embedded implementations, we have to ensure a data-independent operation flow in order to
prevent timing and/or simple side-channel attacks. We must therefore avoid data-dependent
conditional branches. For this reason we do not make use of the branch predication, except
when it involves non-sensitive data such as loop counters.

2.6 Open Problems

As explained in this chapter, gadgets performing operation on d-sharing are the ground
building block of masking schemes. As the multiplication gadgets require a quadratic number
of field operations with respect to the masking order, an interesting line of work could be
to find efficient ways to perform those operations. In fact, field multiplications are the
core operations in the evaluation of multiplication gadgets. As soon as the field size grows,
field multiplication can not be fully tabulated due to the size of the look-up tables. Hence,
studying and optimizing at the implementation level different approaches to perform those
field multiplications, such as the Karatsuba multiplication or the exp-log multiplication, can
lead to efficient multiplication gadgets with different time and memory trade-offs.

In the past few years, several new secure multiplication schemes have been proposed based
on the ISW multiplication method to get more efficient (at the cost of security) or more secure
(at the cost of effiency) multiplication gadgets. However, no work made a concrete comparison
between these different secure multiplications to better understand the performance gains
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and overheads that correspond to their different security guarantees. Moreover, several lines
of work are based on the fact that the CPRR evaluation scheme should outperform the ISW
multiplication scheme to justify their efficiency. However, no concrete comparisons at an
implementation level have been made to corroborate the state-of-the-art intuition.

One of the missing part of all the proposed masking schemes to get an efficient polynomial
decomposition of an s-box is a concrete comparison of them in practice. In fact, no work has
produced a fair implementation of all the solutions and analysed the performance results to
have clear insight on which method to use. It also seems like going down in a smaller field
to perform the decomposition allows to get more efficient implementation results. Pushing
forward this approach could be of interest by going over the Boolean field. Under this field,
the costly field multiplication becomes a simple bitwise AND and with a bitslice strategy
this could allow some significant improvement in the performance gain.

The idea of working on smaller field could also be ported to generic methods. In fact, the
CRV method could be extend to any finite field to produce more efficient decomposition. One
could produce generic methods for any s-box that is defined with respect to the s-box input
and output and the field size. Then, the developer could instantiate the decomposition with
these parameters on any finite field of characteristic 2 to get the most suitable decomposition
depending on his requirements. For instance, as the bitslice strategy seems to be promising
to obtain efficient masking schemes, it can be interesting to have a decomposition method for
generic s-boxes over the Boolean field.
Finally, most of the masking schemes are very consuming in terms of randomness re-

quirement due to the multiplication gadgets but also the refresh gadgets. Minimizing the
randomness consumption is hence an important line of work in order to produce efficient
implementations of masking schemes. Several formal verification tools have been developed in
the recent years to ensure the probing security of masking schemes by placing refresh gadgets
at carefully chosen positions. However, it sometimes happen that those tools lead to add
refresh gadgets at uncessary positions (in terms of probing security). It can be interesting to
find a formal method that allows to guarantee the probing security of an implementation
with a tight number of inserted refresh gadgets, compared to existing solutions, in order to
lower the randomness usage.
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3.1 Introduction

As explained in Chapter 2, the most widely-used solution is to consider the representation as
a polynomial function over a finite field (using Lagrange’s interpolation theorem) and to find
an efficient way to evaluate this polynomial. In order to obtain an efficient implementation
of an s-box protected with higher-order masking, the first challenge is to find an efficient
representation of it, where the number of multiplications involved in the evaluation is
minimized.
The first generic method to mask any s-box at any masking order d was proposed in

2012 by Carlet, Goubin, Prouff, Quisquater and Rivain [CGP+12] (following prior work by
Rivain and Prouff for the AES block cipher [RP10]). The core idea is to split the evaluation
of the polynomial representation of the s-box into simple operations over F2n (namely,
addition, multiplication by a constant, squaring and regular multiplication of two distinct
elements), where n denotes the number of input bits of the s-box. Among these operations,
only the regular multiplication of two distinct elements is non-linear (since squaring over a
characteristic 2 finite field is linear), and one can use the secure multiplication algorithms
to evaluate them [RP10; BBP+16; BCPZ16]. Carlet et al. [CGP+12] defined the masking
complexity (also known as multiplicative complexity and non-linear complexity) of an s-box
as the minimal number of such multiplications necessary to evaluate the corresponding
polynomial and they adapted known methods for polynomial evaluation based on cyclotomic
classes (see [CGP+12] for details).

This technique was later improved by Roy and Vivek in [RV13] using cyclotomic cosets
addition chains. They notably presented a polynomial evaluation method for the DES s-boxes
that requires 7 non-linear multiplications (instead of 10 in [CGP+12]). They also presented
a lower-bound on the length of such a chain and showed that the multiplicative complexity
of the DES s-boxes is lower bounded by 3. In 2014, Coron, Roy and Vivek [CRV14] proposed
a heuristic method which may be viewed as an extension of the ideas developed in [CGP+12]
and [RV13]. The so-called CRV method considers the s-box as a polynomial over F2n and
has heuristic multiplicative complexity O(2n/2/

√
n) instead of O(2n/2) proven multiplicative

complexity for the previous methods. They also proved a lower bound of Ω(2n/2/
√
n) on the

multiplicative complexity of any generic method to evaluate n-bit s-boxes. For all the tested
s-boxes their method is at least as efficient as the previous proposals and it often requires
fewer non-linear multiplications (e.g. only 4 for the DES s-boxes).

3.2 Approach

In this chapter, we propose a generalized decomposition method for s-boxes. More precisely, in
our approach any nλ-bit s-box for some integers n ≥ 1 and λ ≥ 1 can be seen as a polynomial
(or a vector of m ≥ 1 polynomials) over Fn2λ . We first start by defining the multiplicative
complexity for s-boxes and some lower bounds. We prove a lower bound of Ω(2λn/2√m/λ)
for the complexity of any method to evaluate nλ-bit to mλ-bit s-boxes. We then describe
our generalized decomposition method for which we provide concrete parameters to achieve
a decomposition for several triplets (n,m, λ) and for exemplary s-boxes of popular block
ciphers (namely PRESENT [BKL+07], SC2000 [SYY+02], CLEFIA [SSA+07] and KHAZAD
[BR00]).
Depending on the s-box, our generalized method allows one to choose the parameters n,
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m and λ to obtain the best possible s-box decomposition in terms of multiplications over
F2λ . In particular, for 8× 8 s-boxes, the CRV decomposition method [CRV14] (n = 1, m = 1,
λ = 8) is a special case of this generalized decomposition method. We also investigate a
particular case of our decomposition, the Boolean case, where n = 8, m = 8, λ = 1. For this
specific instantiation, we can apply a bitslicing strategy for the implementation part and
some improvement tailored for the Boolean field.

3.3 Multiplicative Complexity of Generic S-boxes

3.3.1 Notations and notions

Let λ be a positive integer. Then F2λ denotes the finite field with 2λ elements. Let Fλ,n be
the set of functions from Fn2λ to F2λ . Using Lagrange’s interpolation theorem, any function
f ∈ Fλ,n can be seen as a multivariate polynomial over F2λ [x1, x2, . . . , xn]/(x2λ

1 − x1, x2λ
2 −

x2, . . . , x2λ
n − xn):

f(x) =
∑

u∈[0,2λ−1]n
au x

u , (3.1)

where x = (x1, x2, . . . , xn), xu = xu1
1 ·xu2

2 · . . . ·xunn , and au ∈ F2λ for every u = (u1, . . . , un) ∈
[0, 2λ − 1]n.

The multiplicative complexity of a function in Fλ,n (also called the non-linear complexity)
is defined as follows:

Definition 3.3.1. Let f be a function in Fλ,n. The multiplicative complexity of f is the
minimal number of F2λ-multiplications required to evaluate it.

In the following, an s-box S is characterized with respect to 3 parameters: the number of
input elements n; the number of output elements m; and the bit-size of the elements λ. In
other words, an s-box with λn input bits and λm outputs bits is represented as follows:

∀x ∈ Fn2λ ,S(x) = (f1(x), f2(x), . . . , fm(x)), (3.2)

where the functions f1, f2, . . . , fm ∈ Fλ,n are called the coordinate functions of S.
The multiplicative complexity of an s-box S : x 7→ (f1(x), f2(x) . . . , fm(x)), denoted C(S),

is naturally defined as the multiplicative complexity of the family of its coordinate functions.
We shall also call the multiplicative complexity of a given circuit the actual number of
multiplication gates involved in the circuit, so that the multiplicative complexity of a circuit
gives an upper bound of the multiplicative complexity of the underlying s-box.

3.3.2 Multiplicative Complexity Lower Bound for S-boxes

Roy and Vivek presented in [RV13] a lower-bound on the length of cyclotomic coset addition
chains and used it to derive a logarithmic lower bound on the multiplicative complexity
of an s-box (i.e. on the minimal number of such multiplications necessary to evaluate the
corresponding polynomial). As mentioned in Chapter 2.3, Coron et al. [CRV14] improved this
lower bound and showed that the non-linear complexity of any generic method to evaluate
n-bit s-boxes when seen as a polynomial defined over F2n is in Ω(2n/2/

√
n).

In the following section, we generalize their approach and provide a new lower bound on
the multiplicative complexity of a sequence of n-variate polynomials over F2λ . Following
[RV13], we define the multiplicative complexity notion for such a sequence as follows:
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Definition 3.3.2 (Polynomial chain). Let λ ≥ 1, n ≥ 1, l ≥ 1 and m ≥ 1 be four
integers and let f1, . . . , fm ∈ F2λ [x1, . . . , xn] be a sequence of n-variate polynomials over
F2λ. A polynomial chain #”π for (f1, . . . , fm) is a sequence #”π = (πi)i∈{−n,...,`} and a list
(i1, . . . , im) ∈ {−n, . . . , `}m with

π−n = xn, π1−n = xn−1, . . . , π−1 = x1, π0 = 1,

πij = fj(x1, . . . , xn) mod (x2λ
1 + x1, . . . , x

2λ
n + xn), ∀j ∈ {1, . . . ,m},

and such that for every i ∈ {1, . . . , `}, one of the following condition holds:

1. there exist j and k in {−n, . . . , i− 1} such that πi = πj · πk;

2. there exist j and k in {−n, . . . , i− 1} such that πi = πj + πk;

3. there exists j in {−n, . . . , i− 1} such that πi = π2
j ;

4. there exists j in {−n, . . . , i− 1} and α ∈ F2λ such that πi = α · πj.
Given such a polynomial chain #”π for (f1, . . . , fm), the multiplicative complexity of #”π is the
number of times the first condition holds in the whole chain #”π . The multiplicative complexity
of (f1, . . . , fm) over F2λ, denoted M(f1, . . . , fm) is the minimal multiplicative complexity
over all polynomial chains for (f1, . . . , fm).

We will provide a heuristic method which given a sequence of n-variate polynomials over
F2λ provides an evaluation scheme (or a circuit) with “small” multiplicative complexity.
Following, Coron et al. [CRV14], Proposition 3.3.3 provides a Ω(2nλ/2√m/λ) lower bound on
this multiplicative complexity. As in [CRV14], the proof is a simple combinatorial argument
inspired by [PS73].

Proposition 3.3.3. Let λ ≥ 1, n ≥ 1, l ≥ 1 and m ≥ 1 be four integers. There ex-
ists f1, . . . , fm ∈ F2λ [x1, . . . , xn] a sequence of n-variate polynomials over F2λ such that
M(f1, . . . , fm) ≥

√
m2nλ
λ − (2n+m− 1).

Proof. We consider a sequence of n-variate polynomials f1, . . . , fm in the algebra F2λ [x1, . . . , xn]
with multiplicative complexity M(f1, . . . , fm) = r for some integer r ≥ 1. If we consider
only the non-linear operations in a polynomial chain of minimal multiplicative complex-
ity #”π = (πi)i∈{−n,...,`}, we can see that there exist indices m0,m1, . . . ,mn+r+(m−1) with
mi ∈ {−n, . . . , `} for i ∈ {0, . . . , n+ r + (m− 1)} such that

• πmk = π−k−1 = xk+1 for k ∈ {0, . . . , n− 1});
(i.e. construction of the mononials in F2λ [x1, . . . , xn].)

• for k ∈ {n, . . . , n+ r − 1}, there exist field elements βk, β′k ∈ F2λ and βk,i,j , β′k,i,j ∈ F2λ
for (i, j) ∈ {0, . . . , k − 1} × {0, . . . , λ− 1} such that

πmk =

βk +
k−1∑
i=0

λ−1∑
j=0

βk,i,jπ
2j
mi

 ·
β′k +

k−1∑
i=0

λ−1∑
j=0

β′k,i,jπ
2j
mi


mod (x2λ

1 + x1, . . . , x
2λ
n + xn)

(i.e. construction of elements in the span of previously constructed πmk);
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• for k ∈ {n+ r, . . . , n+ r + (m− 1)} there exist field elements βk ∈ F2λ and βk,i,j ∈ F2λ
for (i, j) ∈ {0, . . . , n+ r − 1} × {0, . . . , λ− 1} such that

fk+1−(n+r) = πmk = βk +
n+r−1∑
i=0

λ−1∑
j=0

βk,i,jπ
2j
mi mod (x2λ

1 + x1, . . . , x
2λ
n + xn)

(i.e. construction of the coordinate functions with the span of previously constructed
πmk).

The total number of parameters β in this evaluation scheme of #”π is simply equal to:
n+r−1∑
k=n

2 · (1 + k · λ) +m(1 + (n+ r) · λ) = r2λ+ r(λm+ 2λn− λ+ 2) + λmn+m,

and each parameter can take any value in F2λ . The number of sequence of n-variate
polynomials f1, . . . , fm ∈ F2λ [x1, . . . , xn] with multiplicative complexityM(f1, . . . , fm) = r
is thus upper-bounded by 2λ(r2λ+r(λm+2λn−λ+2)+λmn+m).

Since the total number of sequences of n-variate polynomials f1, . . . , fm ∈ F2λ [x1, . . . , xn]
defined mod(x2λ

1 + x1, . . . , x2λ
n + xn) is ((2λ)2nλ)m, in order to be able to evaluate all such

polynomials with at most r non-linear multiplications, a necessary condition is to have

r2λ+ r(λm+ 2λn− λ+ 2) + λmn+m ≥ m2nλ

and therefore
r2λ+ r(λm+ 2λn− λ+ 2)− (m2nλ − λmn−m) ≥ 0.

Eventually, we obtain

r ≥

√
λ4m2nλ + (λm+ 2λn− λ+ 2)2 − (λm+ 2λn− λ+ 2)

2λ , (3.3)

and

r ≥
√

4λm2nλ − 2(λm+ 2λn− λ+ 2)
2λ ≥

√
m2nλ
λ
− (2n+m− 1).

3.3.3 Some results for the Boolean case.

In the Boolean case (when λ = 1), an s-box can be seen as Boolean circuit. We give hereafter
some results from the state-of-the-art on the multiplicative complexity of s-boxes in the
Boolean case. We shall also call multiplicative complexity of a given circuit the actual number
of multiplication gates involved in the circuit, so that the multiplicative complexity of a
circuit gives an upper bound of the multiplicative complexity of the underlying s-box.
The best known circuit for the AES s-box in terms of multiplicative complexity is due

to Boyar et al. [BMP13]. This circuit achieves a multiplicative complexity of 32 which was
obtained by applying logic minimization techniques to the compact representation of the AES
s-box by Canright [Can05] (and saving 2 multiplications compared to the original circuit).
In [CMH13], Courtois et al. use SAT-solving to find the multiplicative complexity of

small s-boxes. Their approach consists in writing the Boolean system obtained for a given
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Table 3.1: Multiplicative complexities of various s-boxes.

S-box S size n×m C(S) Ref
Lightweight block ciphers

CTC2 3× 3 3 [CMH13]
PRESENT 4× 4 4 [CMH13]
Piccolo 4× 4 4 [Sto16]
RECTANGLE 4× 4 4 [Sto16]

CAESAR submissions
LAC 4× 4 4 [Sto16]
Minalpher 4× 4 5 [Sto16]
Prøst 4× 4 4 [Sto16]
Ascon 5× 5 5 [Sto16]
ICEPOLE 5× 5 6 [Sto16]
PRIMATEs 5× 5 {6, 7} [Sto16]

AES and Keccak
Keccak 5× 5 5 [Sto16]
AES 8× 8 ≤ 32 [BMP13]

Bitslice-oriented block ciphers
NOKEON 4× 4 4 [DPAR00]
Fantomas 8× 8 ≤ 11 [GLSV15]
Robin 8× 8 ≤ 12 [GLSV15]

s-box and a given (target) multiplicative complexity t as a SAT-CNF problem. For each
value of t, the solver either returns a solution or a proof that no solution exists, so that
the multiplicative complexity is the first value of t for which a solution is returned. They
apply this approach to find Boolean circuits with the smallest multiplicative complexity for a
random 3× 3 s-box (meant to be used in CTC2 [Cou07]), the 4× 4 s-box of PRESENT, and
for several sets of 4× 4 s-boxes proposed for GOST [PLW10]. These results have recently
been extended by Stoffelen who applied the Courtois et al. approach to find optimal circuits
for various 4× 4 and 5× 5 s-boxes [Sto16]. These results are summarized in Table 3.1, where
for comparison we also include known results for AES [BMP13] and some bitslice-oriented
block ciphers [DPAR00; GLSV15].
The main limitation of the SAT-solving approach is that it is only applicable to small

s-boxes due to the combinatorial explosion of the underlying SAT problem, and getting the
decomposition of an s-box of size e.g. n = 8 seems out of reach. Moreover, the method is not
generic in the sense that the obtained decomposition stands for a single s-box and does not
provide an upper bound for the multiplicative complexity of s-boxes of a given size.

3.3.4 Parallel Multiplicative Complexity

We introduce hereafter the notion of parallel multiplicative complexity for s-boxes. The k-
parallel multiplicative complexity of an s-box is the least number of k-parallel multiplications
required to compute it. We formalize this notion hereafter:
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Definition 3.3.4. The k-parallel multiplicative complexityM(k)(f1, f2, . . . , fm) of a family
of functions f1, f2, . . . , fm ∈ Fλ,n, is the minimal integer t for which there exist functions
gi, hi ∈ Fλ,n for i ∈ [[1, tk]] such that:

g1, h1, g2, h2, . . . , gk, hk ∈ 〈1, x1, x2, . . . , xn〉 ,
∀i ∈ [[1, t− 1]] : gik+1, hik+1, . . . , g(i+1)k, h(i+1)k

∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gik · hik〉
(3.4)

and
f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gtk · htk〉 . (3.5)

The main motivation for introducing this notion comes from the following scenario. Assume
we want to perform t s-box computations on an `-bit architecture, where ` > t. Since each
register contains only λ bits elements out of `, one can perform up to τ = d`/λe multiplication
with a single call to a parallelized version of the multiplication algorithm (modulo some
packing of the operands and unpacking of the results, see Section 5.3.2.6 of Chapter 5).
This would in turn enable to perform k = dt/τe s-box computations in parallel. If the used
decomposition of the s-box has a k-parallel multiplicative complexity of s, then the resulting
implementation involve s multiplication instructions. This number of instructions is the main
efficiency criterion when such an implementation is protected with higher-order masking
which makes the k-parallel multiplicative complexity an important parameter for an s-box in
this context.

Remark 3.3.5. Note that in the Boolean case, if ` grows significantly the k-parallel multi-
plicative complexity is equivalent to the notion of multiplicative depth of a Boolean circuit.

As an illustration, we give in Figure 3.1 gives a sorted version of the AES circuit by Boyar
et al. [BMP13] optimized with respect to the parallel multiplicative complexity. One can
observed 6 groups of AND gates: a first group of 8 AND gates (in blue), 4 groups of 2
AND gates (in orange), and a last group of 16 AND gates (in blue). Each group can be
fully parallelized but two different groups cannot be computed in parallel due to dependence
between variables. We deduce that we can evaluate the circuit based on sixteen 2-parallel
AND gates, ten 4-parallel AND gates, seven 8-parallel AND gates, and six 16-parallel AND
gates.
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– top linear transformation –

y14 = x3 ⊕ x5 y1 = t0 ⊕ x7 y15 = t1 ⊕ x5 y17 = y10 ⊕ y11
y13 = x0 ⊕ x6 y4 = y1 ⊕ x3 y20 = t1 ⊕ x1 y19 = y10 ⊕ y8
y12 = y13 ⊕ y14 y2 = y1 ⊕ x0 y6 = y15 ⊕ x7 y16 = t0 ⊕ y11
y9 = x0 ⊕ x3 y5 = y1 ⊕ x6 y10 = y15 ⊕ t0 y21 = y13 ⊕ y16
y8 = x0 ⊕ x5 t1 = x4 ⊕ y12 y11 = y20 ⊕ y9 y18 = x0 ⊕ y16
t0 = x1 ⊕ x2 y3 = y5 ⊕ y8 y7 = x7 ⊕ y11

– middle non-linear transformation –

t2 = y12 ∧ y15 t23 = t19 ⊕ y21 t34 = t23 ⊕ t33 z2 = t33 ∧ x7
t3 = y3 ∧ y6 t15 = y8 ∧ y10 t35 = t27 ⊕ t33 z3 = t43 ∧ y16
t5 = y4 ∧ x7 t26 = t21 ∧ t23 t42 = t29 ⊕ t33 z4 = t40 ∧ y1
t7 = y13 ∧ y16 t16 = t15 ⊕ t12 z14 = t29 ∧ y2 z6 = t42 ∧ y11
t8 = y5 ∧ y1 t18 = t6 ⊕ t16 t36 = t24 ∧ t35 z7 = t45 ∧ y17
t10 = y2 ∧ y7 t20 = t11 ⊕ t16 t37 = t36 ⊕ t34 z8 = t41 ∧ y10
t12 = y9 ∧ y11 t24 = t20 ⊕ y18 t38 = t27 ⊕ t36 z9 = t44 ∧ y12
t13 = y14 ∧ y17 t30 = t23 ⊕ t24 t39 = t29 ∧ t38 z10 = t37 ∧ y3
t4 = t3 ⊕ t2 t22 = t18 ⊕ y19 z5 = t29 ∧ y7 z11 = t33 ∧ y4
t6 = t5 ⊕ t2 t25 = t21 ⊕ t22 t44 = t33 ⊕ t37 z12 = t43 ∧ y13
t9 = t8 ⊕ t7 t27 = t24 ⊕ t26 t40 = t25 ⊕ t39 z13 = t40 ∧ y5
t11 = t10 ⊕ t7 t31 = t22 ⊕ t26 t41 = t40 ⊕ t37 z15 = t42 ∧ y9
t14 = t13 ⊕ t12 t28 = t25 ∧ t27 t43 = t29 ⊕ t40 z16 = t45 ∧ y14
t17 = t4 ⊕ t14 t32 = t31 ∧ t30 t45 = t42 ⊕ tt41 z17 = t41 ∧ y8
t19 = t9 ⊕ t14 t29 = t28 ⊕ t22 z0 = t44 ∧ y15
t21 = t17 ⊕ y20 t33 = t33 ⊕ t24 z1 = t37 ∧ y6

– bottom linear transformation –

t46 = z15 ⊕ z16 t49 = z9 ⊕ z10 t61 = z14 ⊕ t57 t48 = z5 ⊕ z13
t55 = z16 ⊕ z17 t63 = t49 ⊕ t58 t65 = t61 ⊕ t62 t56 = z12 ⊕ t48
t52 = z7 ⊕ z8 t66 = z1 ⊕ t63 s0 = t59 ⊕ t63 s3 = t53 ⊕ t66
t54 = z6 ⊕ z7 t62 = t52 ⊕ t58 t51 = z2 ⊕ z5 s1 = t64 ⊕ s3
t58 = z4 ⊕ t46 t53 = z0 ⊕ z3 s4 = t51 ⊕ t66 s6 = t56 ⊕ t62
t59 = z3 ⊕ t54 t50 = z2 ⊕ z12 s5 = t47 ⊕ t65 s7 = t48 ⊕ t60
t64 = z4 ⊕ t59 t57 = t50 ⊕ t53 t67 = t64 ⊕ t65
t47 = z10 ⊕ z11 t60 = t46 ⊕ t57 s2 = t55 ⊕ t67

Figure 3.1: A circuit for AES with parallelizable AND gates.

3.4 Generic Framework

In this section, we study a generic decomposition framework to evaluate any nλ-bit to mλ-bit
function over a finite field F2λ , for any n,m, λ ≥ 1. Depending on the function, we can choose
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the parameters n, m and λ in order to obtain the best possible decomposition in terms of
multiplicative complexity.

3.4.1 Decomposition of a Single Coordinate Function

Let us define the linear power class of a function φ ∈ Fλ,n, denoted by Cφ, as the set

Cφ = {φ2i : i = 0, . . . , λ− 1}. (3.6)

Cφ corresponds to the set of functions in Fλ,n that can be computed from φ using only
the squaring operation. It is not hard to see that the set of {Cφ}φ are equivalence classes
partitioning Fλ,n. For any set B ⊆ Fλ,n, let us define the linear power closure of B as the set

B =
⋃
φ∈B
Cφ,

and the linear span of B as the set

〈B〉 =
{ ∑

φ∈B
aφφ

∣∣ aφ ∈ F2λ
}
.

Let f be a function in Fλ,n. The proposed decomposition makes use of a basis of functions
B ⊆ Fλ,n and consists in writing f as:

f(x) =
t−1∑
i=0

gi(x) · hi(x) + ht(x), (3.7)

where gi, hi ∈ 〈B〉 and t ∈ N. By definition, the functions gi and hi can be written as

gi(x) =
|B|∑
j=1

`j(ϕj(x)) and hi(x) =
|B|∑
j=1

`′j(ϕj(x)),

where the `j , `′j are linearized polynomials over Fλ,1 (i.e. polynomials for which the exponents
of all the monomials are powers of 2) and where {ϕj}1≤j≤|B| = B. We now explain how to
find such a decomposition by solving a linear system.
Solving a linear system. In the following, we shall consider a basis B such that 1 ∈ B
and we will denote B∗ = B \ {1} = {φ1, φ2, . . . , φ|B|−1}. We will further heuristically assume
|Cφi | = λ for every i ∈ {1, 2, . . . , |B| − 1}. We then get |B| = 1 + λ|B∗| = 1 + λ(|B| − 1).
We first sample t random functions gi from 〈B〉. This is simply done by picking t · |B|

random coefficients ai,0, ai,j,k of F2λ and setting gi = ai,0 +∑j,k ai,j,kφ
2k
j for every i ∈ [0, t−1]

where 1 ≤ k ≤ λ and 1 ≤ j ≤ |B| − 1. Then we search for a family of t+ 1 functions {hi}i
satisfying Equation (3.7). This is done by solving the following system of linear equations
over F2λ :

A · c = b (3.8)

where b = (f(e1), f(e2), . . . , f(e2nλ))T with {ei} = Fn2λ and where A is a block matrix defined
as

A = (1|A0|A1| · · · |At), (3.9)
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where 1 is the all-one column vector and where

Ai = (Ai,0|Ai,1| · · · |Ai,|B|−1), (3.10)

with
Ai,0 = (gi(e1), gi(e2), . . . , gi(e2nλ))T, (3.11)

for every i ∈ [0, t], with

Ai,j =



φj(e1) · gi(e1) φ2
j (e1) · gi(e1) ... φ2λ−1

j (e1) · gi(e1)
φj(e2) · gi(e2) φ2

j (e2) · gi(e2) ... φ2λ−1
j (e2) · gi(e2)

...
... . . . ...

φj(e2nλ) · gi(e2nλ) φ2
j (e2nλ) · gi(e2nλ) ... φ2λ−1

j (e2nλ) · gi(e2nλ)


, (3.12)

for every i ∈ [0, t− 1] and j ∈ [1, |B| − 1], and with

At,j =



φj(e1) φ2
j (e1) ... φ2λ−1

j (e1)
φj(e2) φ2

j (e2) ... φ2λ−1
j (e2)

...
... . . . ...

φj(e2nλ) φ2
j (e2nλ) ... φ2λ−1

j (e2nλ)


, (3.13)

for every j ∈ [1, |B| − 1].
It can be checked that the vector c, solution of the system, gives the coefficients of the hi’s

over the basis B (plus the constant term in first position). A necessary condition for this
system to have a solution whatever the target vector b (i.e. whatever the coordinate function
f) is to get a matrix A of full rank. In particular, the following inequality must hold:

(t+ 1)|B|+ 1 ≥ 2nλ . (3.14)

Another necessary condition to get a full-rank matrix is that the squared linear power
closure B × B spans the entire space Fλ,n. More details about the choice of such basis are
discussed in the following.

3.4.2 S-box Decomposition

Let S : x 7→ (f1(x), f2(x), . . . , fm(x)) be an s-box as defined in Section 3.3.1. We could apply
the above decomposition method to each of the m coordinate functions fi, which could
roughly result in multiplying by m the multiplicative complexity of a single function in Fλ,n.
As suggested in [BMP13] to construct an efficient circuit for the inversion in F16, we can
actually do better: the product involved in the decomposition of a coordinate function can
be added to the basis for the subsequent decompositions. Indeed, the term gi,j(x) · hi,j(x)
involved in the computation of fi(x) can be reused in the computation of the following
fi+1(x), . . . , fm(x). In our decomposition process, this means that the gj · hi,j functions can
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be added to the basis for the decomposition of the next coordinate functions fi+1, . . . , fm.
Specifically, we start with some basis B1 and, for every i ≥ 1, we look for a decomposition

fi(x) =
ti−1∑
j=0

gi,j(x) · hi,j(x) + hi,ti(x), (3.15)

where ti ∈ N and gi,j , hi,j ∈ 〈Bi〉. Once such a decomposition has been found, we carry on
with the new basis Bi+1 defined as:

Bi+1 = Bi ∪ {gi,j · hi,j}ti−1
j=0 . (3.16)

This update process implies that, for each decomposition, the basis grows and hence the
number ti of multiplicative terms in the decomposition of fi might decrease. In this context,
the necessary condition on the matrix rank (see Equation (3.14)) is different for every i. In
particular, the number ti of multiplications at step i satisfies:

ti ≥
2nλ − 1
λ|B∗i |+ 1 − 1 , (3.17)

where as above B∗i stands for Bi \ {1}.

3.4.3 Optimal parameters

Assuming that satisfying the lower bound on ti (see Equation (3.17)) is sufficient to get
a full-rank system, we can deduce optimal parameters for our generalized decomposition
method. Specifically, if we denote si = |B∗i |, we get a sequence (si)i that satisfiess1 = r + n

si+1 = si + ti with ti =
⌈

2nλ−1
λsi+1

⌉
− 1

, (3.18)

for i from 1 to m − 1, where r denotes the number of multiplications involved in the
construction of the first basis B1 (the n free elements of B1 being the monomials x1, x2, . . . ,
xn). From this sequence, we can determine the optimal multiplicative complexity of the
method C(S) which then satisfies

C(S) = min
r≥r0

(r + t1 + t2 + · · ·+ tm) , (3.19)

where r0 denotes the minimal value of r for which we can get an initial basis B1 satisfying
the spanning property (that is 〈B1 × B1〉 = Fλ,n) and where the ti’s are viewed as functions
of r according to the sequence Equation (3.18).

Table 3.2 provides a set of optimal parameters r, t1, t2, . . . , tm and corresponding C(S) for
several s-box sizes and several parameters λ and n = m (as for bijective s-boxes). For the sake
of completeness, we included the extreme cases n = 1, i.e. standard CRV method [CRV14],
and λ = 1, i.e. Boolean case [GR16]. We obtain the same results as in [CRV14] for the
standard CRV method. For the Boolean case, our results slightly differ from [GR16]. This
is due to our improved generation of B1 and to our bound on the ti’s (see Equation (3.17))
which is slightly more accurate than in [GR16].
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Table 3.2: Theoretical optimal parameters for our decomposition method.

(λ, n) |B1| r t1, t2, . . . , tn C(S)
4-bit s-boxes

(1,4)
7 2 2,1,1,1 7
8 3 1,1,1,1 7
9 4 1,1,1,1 8

(2,2)
4 1 2,1 4
5 2 1,1 4
6 3 1,1 5

(4,1) 3 1 1 2
4 2 1 3

6-bit s-boxes

(1,6) 14 7 4,3,2,2,2,2 22
15 8 4,3,2,2,2,2 23

(2,3)
8 4 4,2,2 12
9 5 3,2,2 12
10 6 3,2,2 13

(3,2)
6 3 3,2 8
7 4 3,2 9
8 5 2,2 9

(6,1)
4 2 3 5
5 3 2 5
6 4 2 6

8-bit s-boxes

(1,8)

24 17 9,7,6,5,4,4,4,3 59
25 18 9,7,5,5,4,4,4,3 59
28 19 9,6,5,5,4,4,4,3 59
29 20 8,6,5,5,4,4,4,3 59
30 21 8,6,5,5,4,4,4,3 60

(2,4)

15 9 9,5,4,4 31
16 10 8,5,4,4 31
17 11 8,5,4,3 31
18 12 7,5,4,3 31
19 13 7,5,4,3 32

(4,2)

8 5 8,4 17
9 6 7,4 17
10 7 6,4 17
11 8 6,3 17
12 9 5,3 17
13 10 5,3 18

(8,1)

5 3 7 10
6 4 6 10
7 5 5 10
8 6 4 10
9 7 3 10
10 8 3 11

(λ, n) |B1| r t1, t2, . . . , tn C(S)
9-bit s-boxes

(1,9)
35 25 14,10,8,7,6,6,5,5,5 91
36 26 14,10,8,7,6,6,5,5,5 92
37 27 13,10,8,7,6,6,5,5,5 92

(3,3)

13 9 13,6,5 33
14 10 12,6,5 33
15 11 11,6,5 33
16 12 11,6,5 34

(9,1)
8 6 7 13
9 7 6 13
10 8 6 14

10-bit s-boxes

(1,10)
49 38 20,14,12,10,9,8,8,7,7,7 140
50 39 20,14,12,10,9,8,8,7,7,7 141
51 40 20,14,12,10,9,8,8,7,7,7 142

(2,5)
25 19 20,11,9,7,7 73
26 20 20,11,9,7,7 74
27 21 19,11,9,7,7 74

(5,2)

13 10 16,7 33
14 11 15,7 33
15 12 14,7 33
16 13 13,7 33
17 14 12,7 33
18 15 11,7 33
19 16 11,7 34

(10,1)

9 7 12 19
10 8 11 19
11 9 10 19
12 10 9 19
13 11 8 19
14 12 7 19
15 13 7 20
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3.4.4 Basis Selection

Let us recall that the basis B1 needs to be such that the squared basis B1 × B1 spans the
entire space Fλ,n, i.e. 〈B1 × B1〉 = Fλ,n in order to have a solvable linear system. This is
called the spanning property in the following. This property can be rewritten in terms of
linear algebra. For every S ⊆ Fλ,n, let us define Mat(S) as the (λn× |S|)-matrix for which
each column corresponds to the evaluation of one function of S in every point of Fn2λ , that is

Mat(S) =



ϕ1(e1) ϕ2(e1) ... ϕ|S|(e1)
ϕ1(e2) ϕ2(e2) ... ϕ|S|(e2)

...
... . . . ...

ϕ1(e2nλ) ϕ2(e2nλ) ... ϕ|S|(e2nλ)


, (3.20)

where {ϕ1, ϕ2, . . . , ϕ|S|} = S. Then, we have

〈B1 × B1〉 = Fλ,n ⇐⇒ rank(Mat(B1 × B1)) = 2λn. (3.21)

To construct the basis B1, we proceed as follows. We start with the basis composed of all
monomials of degree 1 plus unity, i.e. the following basis:

B1 = {1, x1, x2, . . . , xn}. (3.22)

Then, we iterate B1 ← B1 ∪ {φ · ψ}, where φ and ψ are randomly sampled from 〈B1〉 until
reaching a basis with the desired cardinality and satisfying rank(Mat(B1 × B1)) ≥ 2λn. We
add the constraint that, at each iteration, a certain amount of possible products are tried and
only the best product is added to the basis, namely the one inducing the greatest increase
in the rank of Mat(B1 × B1). To summarize, the construction of the basis B1 is given in
Algorithm 1.

Algorithm 1 B1 construction algorithm
Input: Parameters λ, n, and N
Output: A basis B1 such that 〈B1 × B1〉 = Fλ,n
1: B1 = {1, x1, x2 . . . , xn}
2: rank = 0
3: while rank< 2nλ do
4: for i = 1 to N do
5: φ, ψ

$←− 〈B1〉
6: Si ← B1 ∪ {φ · ψ}
7: ri ← rank(Mat(Si × Si))
8: j ← argmax ri
9: if rj = rank then return error

10: rank ← rj
11: B1 ← Sj

return B1

Table 3.3 gives the size of the smallest randomized basis we could achieve using Algorithm
1 for various parameters. The number of tries was N = 1000 before adding a product of
random linear combination to the current basis.
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Table 3.3: Achievable smallest randomized basis computed according to Algorithm 1.

4-bit s-boxes 5-bit s-boxes 6-bit s-boxes 7-bit s-boxes
(λ, n) (1,4) (2,2) (4,1) (1,5) (5,1) (1,6) (2,3) (3,2) (6,1) (1,7) (7,1)
|B1| 7 4 3 10 4 14 8 6 4 19 4
r 2 1 1 4 2 7 4 3 2 11 2

8-bit s-boxes 9-bit s-boxes 10-bit s-boxes
(λ, n) (1,8) (2,4) (4,2) (8,1) (1,9) (3,3) (9,1) (1,10) (2,5) (5,2) (10,1)
|B1| 26 14 8 5 35 13 5 49 25 11 6
r 17 9 5 3 25 9 3 38 19 8 4

3.5 Application

3.5.1 Boolean case

We first study our decomposition method for the case where we want to decompose s-boxes
over the Boolean field, namely the case where n = m and λ = 1. We first exhibit an
improvement, called the rank drop improvement, in order to obtain decomposition leading
to more efficient implementations and then provide some experimental results on several
s-boxes. Finally, we exploit the fact that our method is highly parallelizable to get more
efficient decompositions on the Boolean field.

3.5.1.1 Exploiting rank drops

The rank drop improvement is based on the observation that even if the matrix A is not
full-rank, the obtained system can still have a solution for a given s-box. Specifically, if A is
of rank 2n− δ then we should get a solution for one s-box out of 2δ in average. Hence, instead
of having ti satisfying the condition (ti + 1)|B| ≥ 2n, we allow a rank drop in the system of
equations, by taking ti ≥ 2n−δ

|Bi| −1 for some integer δ for which solving 2δ systems is affordable.
We hence hope to get smaller values of ti by trying 2δ systems. Note that heuristically, we
can only hope to achieve the above bound if δ is slightly lower than the maximal rank 2n
(e.g. δ ≤ 2n

4 ). As an illustration, Table 3.4 provides the obtained parameters for a δ up to 32.
In the last column, we can see that the rank-drop improvement (theoretically) saves a few
multiplications.

Remark 3.5.1. When λ = 1, the probability of getting a solvable system should be around
(1

2)δ, which means that by trying about 2δ random systems we should find a solution with a
rank drop. For other values of λ, the possible gain from this improvement becomes marginal
as the number of random systems to try grows exponentially in λ. Therefore we choose to
only consider the rank-drop improvement for λ = 1.

In practice, we observe that the condition (ti + 1)|Bi| ≥ 2n − δ is not always sufficient
to get a matrix A of rank 2n − δ. We shall then start with ti = 2n−δ

|Bi| − 1 and try to solve
α · 2δ systems, for some constant α. In case of failure, we increment ti and start again until a
solvable system is found. The overall process is summarized in Algorithm 2.
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Table 3.4: Optimal parameters with rank-drop improvements.

n δ |B1| r t1, t2, . . . , tn C(S) Gain
4 4 7 2 1,1,1,1 6 1
5 8 11 5 2,1,1,1,1 11 2

8 12 6 1,1,1,1,1 11 2
6 16 15 8 3,2,2,2,1,1 19 4

16 16 9 2,2,2,2,1,1 19 4
7 32 23 15 4,3,3,2,2,2,2 33 5

32 24 16 3,3,3,2,2,2,2 33 5
8 32 31 22 7,5,5,4,4,3,3,3 56 5
8 32 32 23 6,5,5,4,4,3,3,3 56 5
9 32 47 37 10,8,7,6,6,5,5,5,4 93 3

32 48 38 9,8,7,6,6,5,5,5,4 93 3
32 63 52 15,12,11,9,9,8,7,7,7,6 143 2
32 64 53 15,12,10,9,9,8,7,7,7,6 143 2

10 32 65 54 15,12,10,9,8,8,7,7,7,6 143 2
32 66 55 15,12,10,9,8,8,7,7,6,6 143 2
32 67 56 14,12,10,9,8,8,7,7,6,6 143 2

The execution time of Algorithm 2 is dominated by the calls to a linear-solving procedure
(Step 6). The number of trials is in o(nα 2δ), where the constant in the o(·) is the average
incrementation of ti (i.e. the average number of times Step 13 is executed per i). In our
experiments, we observed that the optimal value of t1 = 2n−δ

s1
− 1 is rarely enough to get

a solvable system for f1. This is because we start with the minimal basis as in the single-
Boolean-function case. We hence have a few incrementations for i = 1. On the other hand,
the next optimal ti’s are often enough or incremented a single time.

3.5.1.2 Experimental results

Selected s-boxes. We used Algorithm 2 to obtain the decomposition of various n × n
s-boxes for n ∈ [[4, 8]], namely the eight 4 × 4 s-boxes of Serpent [ABK98], the s-boxes S5
(5×5) and S6 (6×6) of SC2000 [SYY+02], the 8×8 s-boxes S0 and S1 of CLEFIA [SSA+07],
and the 8× 8 s-box of Khazad [BR00]. The obtained results are summarized in Table 3.5.
Note that we chose these s-boxes to serve as examples for our decomposition method. Some
of them may have a mathematical structure allowing more efficient decomposition (e.g. the
CLEFIA S0 s-box is based on the inversion over F256 and can therefore be computed with a
32-multiplication circuit as the AES). We further give in appendix the obtained 2-parallel
decomposition for the s-boxes of SC2000, CLEFIA and Khazad.
We observe that Algorithm 2 (almost) achieves the optimal parameters given in Table

3.4 for n ∈ {4, 5, 6}. For n = 8, we only get the optimal multiplicative complexity of the
generalized method but without the rank-drop improvement. This might be due to the
fact that when n increases the value of δ becomes small compared to 2n and the impact of
exhaustive search is lowered.

Random s-boxes. We also applied Algorithm 2 on random s-boxes to observe the average
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Algorithm 2 Boolean decomposition with exhaustive search
Input: An s-box S ≡ (f1, f2, . . . , fm), parameters s1 = |B1|, α, and δ
Output: A basis B1 and the functions {hi,j}i,j and {gi,j}i,j
1: i = 1; t1 = 2n−δ

|s1| − 1
2: do α · 2δ times:
3: if i = 1 then randomly generate B1 ⊇ B0 with |B1| = s1
4: randomly sample ti functions gi,j ∈ 〈Bi〉
5: compute the corresponding matrix A
6: if A · c = bfi has a solution then
7: store the corresponding functions {hi,j}j and {gi,j}j
8: if i = n then return B1, {hi,j}i,j , {gi,j}i,j
9: Bi+1 = Bi ∪ {hi,j · gi,j}j ; ti+1 = 2n−δ

|Bi+1| − 1; i++
10: goto Step 2
11: endif
12: enddo
13: ti++; goto Step 2

effectiveness of our method. Specifically, we generated 1000 s-boxes (using the Knuth shuffle
algorithm) and we decomposed each of these s-boxes using Algorithm 2 with the following
parameters: n = 8, α = 8 and δ = 16. The obtained multiplicative complexities were 59 (for
9 s-boxes), 60 (for 536 s-boxes), and 61 (455 s-boxes), which is equivalent to what we got for
Khazad and CLEFIA in half of the trials and better (by 1 or 2 multiplications) for the rest.
These results are summarized in Table 3.6.

We also looked at the influence of the two parameters α and δ on our decomposition
method. For this purpose, we applied Algorithm 2 to 1000 random s-boxes with smaller
parameters α and δ. The results are summarized in Figure 3.2. We observe a mean difference
of 1.68 multiplications between the two extreme pairs of parameters i.e. (α, δ) = (4, 4) and
(α, δ) = (16, 8). As expected, we also see that the δ parameter has more impact than the α
parameter.

3.5.1.3 Parallelization

The decomposition method over F2 is highly parallelizable. In practice, most SPN block
ciphers have a nonlinear layer applying 16 or 32 s-boxes and most processors are based
on a 32-bit or a 64-bit architecture. Therefore we shall focus our study on the k-parallel
multiplicative complexity of our method for k ∈ {2, 4}.

The parallelization of the method is slightly tricky since all the multiplicative terms gi,j · hi,j
cannot be computed in parallel. Indeed, the resulting products are fed to the basis so that
they are potentially involved in the linear combinations producing the next functions gi+1,j ,
hi+1,j , . . . , gm,j , hm,j . In order to fully parallelize our method we customize Algorithm 2 as
follows. We keep a counter q of the number of products added to the basis. Each time a
new fi+1 is to be decomposed, if the current counter q is not a multiple of k, then the first
q0 products gi+1,j · hi+1,j will be bundled with the last q1 products gi,j · hi,j in the parallel
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Table 3.5: Achieved parameters for several s-boxes.

|B1| r t1, t2, . . . , tn C(S)
n = 4

Serpent S2 7 2 1, 1, 0, 1 5
Serpent S7 7 2 1, 0, 1, 1 5
Serpent S1, S3–S6, S8 7 2 1, 1, 1, 1 6

n = 5
SC2000 S5 11 5 2, 2, 1, 1, 1 12

n = 6
SC2000 S6 15 8 3, 2, 2, 2, 1, 1 19

n = 8
Khazad & 31 22 11, 5, 5, 4, 4, 3, 3, 3 61
CLEFIA (S0, S1) 31 22 9, 6, 5, 4, 4, 4, 3, 3 61

31 22 11, 5, 5, 4, 4, 3, 3, 3 61

Table 3.6: Results of Algorithm 2 for random s-boxes (n = 8, α = 8, δ = 16).

C(S) 59 60 61
# s-boxes (over 1000) 9 536 455

version of our improved decomposition, where{
q0 = (k − q) mod k;
q1 = q mod k. (3.23)

We must then ensure that the functions {gi+1,j , hi+1,j}q0−1
j=0 are independent of the few last

products {gi,j ·hi,j}ti−1
j=ti−q1

. This can be done at no cost for the gi+1,j ’s which can be generated
without the last q1 products, and this adds a constraint on the linear system for the first q0
searched hi+1,j functions.

We observed in our experiments that for small values of k, the parallelization constraint has
a limited impact on Algorithm 2. We actually obtained the same parameters as in Table 3.5
for all the selected s-boxes (Serpent, SC2000, CLEFIA, and Khazad) for a parallelization
degree of k = 2, except for the s-box S3 of Serpent that requires 1 more multiplication.
The decomposition for the s-boxes of SC2000, CLEFIA and Khazad given in appendix have
been obtained for the 2-parallel version of Algorithm 2. For these decompositions, all the
multiplications can be bundled by pair.

We also experimented on random s-boxes for parallelization degrees k = 2 and k = 4 with
parameters n = 8, α = 8, δ = 16. These results are summarized in Table 3.7. We see that
the obtained parallel multiplicative complexity is only one or two parallel multiplications
more than this optimal dC(S)/ke (and sometimes achieves the optimal).
We obtained that 90% of the s-boxes have a 2-parallel multiplicative complexity of 31

(which means one more multiplication is needed in 50% of the case with respect to the
theoretical optimum) and 32 for 10% of the cases. For 4-parallel multiplicative complexity, all
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Figure 3.2: Number of Random S-boxes for each Multiplicative Complexity for n = 8

Table 3.7: Results of Algorithm 2 for random s-boxes (n = 8, α = 8, δ = 16).

Parallel mult. C(S) = C∗,(2) = C∗,(4) =
complexities 59 60 61 31 32 16
# s-boxes (over 1000) 9 536 455 900 100 1000
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the random s-boxes are evaluated with 16 multiplications, which means 1 more multiplication
in 50% of the cases.

3.5.2 Median case

We now report some experimental results achieved using our generalized decomposition
method on different values for n,m, and λ. Table 3.8 compares the achievable parameters
vs. the optimal estimate for random s-boxes. Note that in the table, the parameters |B1|,
r, t1, t2, . . . , tn correspond to the parameters in the achievable decomposition for randomly
chosen s-boxes. The last column gives the probability of obtaining a successful decomposition
for random s-boxes and for randomly chosen coefficients in the basis computation as well
as the decomposition step. In all the cases we made 10 trials to compute the probabilities
(except for 8-bit s-boxes over F22 where 100 trials were made).

Table 3.8: Optimal and achievable parameters for random s-boxes.

Optimal/Achievable (λ, n) |B1| r t1, t2, . . . , tn C(S) proba.
4-bit s-boxes

Optimal (2,2) 5 2 1,1 4 -
Achievable (2,2) 5 2 1,1 4 0.2

6-bit s-boxes
Optimal (2,3) 8 4 4,2,2 12 -

Achievable (2,3) 8 4 5,2,2 13 0.3
Optimal (3,2) 6 3 3,2 8 -

Achievable (3,2) 6 3 4,2 9 0.9
8-bit s-boxes

Optimal (2,4) 16 11 8,5,4,3 31 -
Achievable (2,4) 16 11 9,6,5,3 34 0.02
Optimal (4,2) 10 7 6,4 17 -

Achievable (4,2) 10 7 7,4 18 1.0
9-bit s-boxes

Optimal (3,3) 15 11 11,6,5 33 -
Achievable (3,3) 15 11 14,6,5 36 0.8

In the experiments, successive basis elements were added by products of random linear
combinations of elements from the current basis. The basis B1 was chosen such that the
corresponding matrix for the first coordinate function resulted in full rank (implying that
the spanning property of the basis B1 was satisfied). The basis was successively updated
with the ti products formed in the decomposition step of the ith coordinate function. While
the parameter t1 is invariant of the chosen s-box, the other ti are indeed dependent on it.
As we see from Table 3.8, the probabilities increase with the size of the field used for the
decomposition.
Table 3.9 gives the concrete parameters to achieve decomposition for s-boxes of popular

block ciphers (namely PRESENT [BKL+07], DES S1 and S8 [77], SC2000 S6 [SYY+02],
CLEFIA S0 and S1 [SSA+07] and KHAZAD [BR00]). Note that for all the cases considered
the parameters from Table 3.9 yield a decomposition. As above, the last column of the
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table gives the success probability over the random choice of the coefficients in the basis
computation as well as the decomposition step. Here again, in all the cases we made 10 trials
to compute the probabilities (except for 8-bit s-boxes over F22 where 100 trials were made).

Table 3.9: Achievable parameters to decompose specific s-boxes.

s-box (λ, n) |B1| r t1, t2, . . . , tn C(S) proba.
4-bit s-boxes

PRESENT [BKL+07] (2,2) 5 2 1,1 4 0.3
(6,4)-bit s-boxes

DES S1 [77] (2,3) 7 4 5,2 11 0.3
DES S8 [77] (2,3) 7 4 5,2 11 0.5

6-bit s-boxes
SC2000 S6 [SYY+02] (2,3) 8 4 5,2,2 13 0.2
SC2000 S6 [SYY+02] (3,2) 6 3 4,2 9 0.8

8-bit s-boxes
CLEFIA S0 [SSA+07] (4,2) 10 7 7,4 18 1.0
CLEFIA S0 [SSA+07] (2,4) 16 11 9,5,4,3 32 0.01
CLEFIA S1 [SSA+07] (4,2) 10 7 7,4 18 1.0
CLEFIA S1 [SSA+07] (2,4) 16 11 9,6,5,3 34 0.01
KHAZAD [BR00] (4,2) 10 7 7,4 18 1.0
KHAZAD [BR00] (2,4) 16 11 9,5,4,3 32 0.02

3.5.3 Full-field case

We now focus on the full-field case, namely when n = m = 1. This case is basically the CRV
decomposition method introduced in Section 2.3. In this case, we propose an improvement
where we had some small structure to the basis to get a more efficient software implementation.
Note that for this specific case, namely n = 1, the linear power classes introduced in Section
3.4 are equivalent to cyclotomic classes introduced in Section 2.3.

3.5.3.1 Improving CRV with CPRR

As suggested in [CPRR15], CRV can be improved by using CPRR evaluations instead of ISW
multiplications in the first phase of CRV. In Chapter 5, we demonstrate that depending on
the field size the CPRR is indeed faster than ISW (i.e. when full-table multiplication cannot
be afforded). Instead of multiplying two previously computed powers xαj and xαk , the new
power xαi is derived by applying the quadratic function x 7→ x2w+1 for some w ∈ [[1, λ− 1]].
In the masking world, securely evaluating such a function can be done with a call to CPRR.
The new chain of cyclotomic classes Cα1=0 ∪ Cα2=1 ∪ Cα3 ∪ . . . ∪ Cα` must then satisfy
αi = (2w + 1)αj for some j < i and w ∈ [[1, λ− 1]]. The different conditions to get a solvable
system in the case of the CRV decomposition (see Section 2.3) are recalled here:

1. the set L of cyclotomic classes is such that t · |L| ≥ 2n;

2. all the monomials can be reached by multiplying two monomials from xL, that is
{xi · xj mod (x2n − x) ; i, j ∈ L} = x[[0,2n−1]]; and
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3. every class (but C0 = {0}) have the maximal cardinality of n. Under this additional
constraint, Condition 1 leads to the following inequality: t · (1 + n · (r − 1)) ≥ 2n.

We have implemented the search of such chains of cyclotomic classes satisfying conditions
1,2, and 3 . We were able to validate that for every λ ∈ [[4, 10]] and for the parameters (r, t)
given in [CRV14], we always find such a chain leading to a solvable system. For the sake of
code compactness, we also tried to minimize the number of CPRR exponents 2w + 1 used
in these chains (since in practice each function x 7→ x2w+1 is tabulated). For λ ∈ {4, 6, 7}
a single CPRR exponent (either 3 or 5) is sufficient to get a satisfying chain (i.e. a chain
of cyclotomic classes fulfilling the above conditions and leading to a solvable system). For
the other values of λ, we could prove that a single CPRR exponent does not suffice to get a
satisfying chain. We could then find satisfying chains for λ = 5 and λ = 8 using 2 CPRR
exponents (specifically 3 and 5). For λ > 8, we tried all the pairs and triplets of possible
CPRR exponents without success, we could only find a satisfying chain using the 4 CPRR
exponents 3, 5, 9 and 17.

3.5.3.2 Optimizing CRV parameters.

We can still improve CRV by optimizing the parameters (r, t) depending on the ratio
θ = CCPRR

CISW
, where CCPRR and CISW denote the costs of ISW and CPRR respectively. The

cost of the CRV method satisfies

CCRV = (r − 2) CCPRR + (t− 1) CISW =
(
(r − 2) · θ + t− 1)

)
CISW

≥
(
(r − 2) · θ + d 2λ

(r − 1) · λ+ 1e − 1
)
CISW,

where the inequality holds from conditions 1 and 3. This lower bound ensures that the system
contains enough unknowns to be solvable. In practice, it was observed in [CRV14] that this
is a sufficient condition most of the time to get a solvable system (and our experiments
corroborate this fact). Our optimized version of CRV hence consists in using the parameter
r minimizing the above lower bound and the corresponding t = d 2λ

(r−1)·λ+1e as parameters for
given bit-length n and cost ratio θ.
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Figure 3.3: Optimal r parameter w.r.t. the CPRR-ISW cost ratio θ for λ ∈ [[4, 8]].
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Figure 3.4: CRV d2 const.
(λ = 6).

4 6 8 10 12

200

250

300

350

parameter r

cl
oc
k
cy
cl
es

(d
2
co
ns
ta
nt
) ISW-HT

ISW-EL
ISW-HT � 4
ISW-EL � 4
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Figure 3.6: CRV d2 const.
(λ = 10).

As an illustration, Figure 3.3 plots the optimal parameter r with respect to the ratio θ for
several values of λ. We observe that a ratio slightly lower than 1 implies a change of optimal
parameters for all values of n except 4 and 9. In other words, as soon as CPRR is slightly
faster than ISW, using a higher r (i.e. more cyclotomic classes) and therefore a lower t is a
sound trade. For our implementations of ISW and CPRR (see Chapter 5.3.2), we obtained
a ratio θ greater than 1 only when ISW is based on the full-table multiplication. In that
case, no gain can be obtain from using CPRR in the first phase of CRV, and one should use
the original CRV parameters. On the other hand, we obtained θ-ratios of 0.88 and 0.75 for
half-table-based ISW and exp-log-based ISW respectively. For the parallel versions of the
secure multiplications, these ratios become 0.69 (half-table ISW) and 0.58 (exp-log ISW).
We can observe from Figure 3.3 that for θ ∈ [0.58, 0.88], the optimal CRV parameters are
constants for all values of λ except for λ = 9 for which a gap occurs around θ ≈ 0.66. Figures
3.4–3.6 plot the d2 constant in the CRV cost obtained with these ratios for different values of
r for λ = 6, λ = 8, and λ = 10. These figures clearly illustrate the asymptotic gain that can
be obtained by using optimized parameters.
For λ ∈ {6, 8, 10}, we checked whether we could find satisfying CPRR-based chains of

cyclotomic classes, for the obtained optimal parameters. For λ = 6, the optimal parameters
are (r, t) = (5, 3) (giving 3 CPRR plus 2 ISW) which are actually the original CRV parameters.
We could find a satisfying chain for these parameters. For λ = 8, the optimal parameters
are (r, t) = (9, 4) (giving 7 CPRR plus 3 ISW). For these parameters we could not find any
satisfying chain. We therefore used the second best set of parameters that is (r, t) = (8, 5)
(giving 6 CPRR plus 4 ISW) for which we could find a satisfying chain. For λ = 10, the
optimal parameters are (r, t) = (14, 8) (giving 12 CPRR plus 7 ISW). For these parameters
we could neither find any satisfying chain. So once again, we used the second best set of
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parameters, that is (r, t) = (13, 9) (giving 11 CPRR plus 8 ISW) and for which we could find
a satisfying chain. All the obtained satisfying CPRR-based chains of cyclotomic classes are
given in Table 3.10.

Table 3.10: Cyclotomic classes with CPRR.

λ r t L exp. 2w + 1
Original CRV parameters

4 3 2 C0 ∪ C1 ∪ C3 3
5 4 3 C0 ∪ C1 ∪ C3 ∪ C15 3,5
6 5 3 C0 ∪ C1 ∪ C5 ∪ C11 ∪ C31 5
7 6 4 C0 ∪ C1 ∪ C5 ∪ C19 ∪ C47 ∪ C63 5
8 7 6 C0 ∪ C1 ∪ C5 ∪ C25 ∪ C95 ∪ C55 ∪ C3 3,5
9 9 8 C0 ∪ C1 ∪ C9 ∪ C17 ∪ C25 ∪ C51 ∪ C85 ∪ C103 ∪ C127 3,5,9,17
10 11 11 C0 ∪ C1 ∪ C3 ∪ C9 ∪ C17 ∪ C45 ∪ C69 ∪ C85 ∪ C207 ∪ C219 ∪ C447 3,5,9,17

Optimized CRV parameters
8 8 5 C0 ∪ C1 ∪ C5 ∪ C25 ∪ C95 ∪ C55 ∪ C3 ∪ C9 3,5
10 13 9 C0 ∪ C1 ∪ C3 ∪ C15 ∪ C17 ∪ C27 ∪ C51 ∪ C57 ∪ C85 ∪ C123 ∪ C159 ∪ C183 ∪ C205 3,5,9,17

Table 3.11 compares the performances of the original CRV method and the improved
versions for our implementation of ISW (half-table and exp-log variants for the field multi-
plication. See Chapter 5 for more details) and CPRR.1 For the improved methods, we give
the ratio of asymptotic performances with respect to the original version. This ratio ranks
between 79% and 94% for the improved version and between 75% and 93% for the improved
version with optimized parameters.

Table 3.11: Performances of CRV original version and improved version (with and without
optimized parameters).

Original CRV ([CRV14]) CRV with CPRR ([CPRR15]) Optimized CRV with CPPR
# ISW # CPRR clock cycles # ISW # CPRR clock cycles ratio # ISW # CPRR clock cycles ratio

λ = 6 (HT) 5 0 142.5 d2 +O(d) 2 3 132 d2 +O(d) 93% 2 3 132 d2 +O(d) 93%
λ = 6 (EL) 5 0 167.5 d2 +O(d) 2 3 142 d2 +O(d) 85% 2 3 142 d2 +O(d) 85%
λ = 8 (HT) 10 0 285 d2 +O(d) 5 5 267.5 d2 +O(d) 94% 4 6 264 d2 +O(d) 93%
λ = 8 (EL) 10 0 335 d2 +O(d) 5 5 292.5 d2 +O(d) 87% 4 6 284 d2 +O(d) 85%
λ = 10 (EL) 19 0 997.5 d2 +O(d) 10 9 858 d2 +O(d) 86% 8 11 827 d2 +O(d) 83%
λ = 8 (HT) �4 10 0 775 d2 +O(d) 5 5 657.5 d2 +O(d) 85% 4 6 634 d2 +O(d) 82%
λ = 8 (EL) �4 10 0 935 d2 +O(d) 5 5 737.5 d2 +O(d) 79% 4 6 698 d2 +O(d) 75%

1We only count the calls to ISW and CPRR since other operations are similar in the three variants and have
linear complexity in d.





Chapter 4
Composition

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Formal Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Game-Based Security Definitions . . . . . . . . . . . . . . . . . . . 49
4.3.4 Useful Security Results . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 A Security Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Game 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Game 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Translation to linear algebra. . . . . . . . . . . . . . . . . . . . . . 58
4.4.4 Game 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Probing-Security Verification for Standard Shared Circuits . . . . . 61
4.5.1 Linear Algebra Formulation . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Toy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.4 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.5 Towards Efficient Construction of Tight t-Private Circuits . . . . . . 66

4.6 Further Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.1 Generic Composition . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.2 Application to SPN-Based Block Ciphers . . . . . . . . . . . . . . . 69
4.6.3 Extension to Generic Shared Circuits . . . . . . . . . . . . . . . . . 71

4.7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.1 Application to Section 4.5 Examples . . . . . . . . . . . . . . . . . . 72
4.7.2 Application to AES s-box . . . . . . . . . . . . . . . . . . . . . . . 73

— 45 —



46 Chapter 4 Composition

4.1 Introduction

The second challenge we want to address in this thesis is the one of the composition of masked
operations. In fact, once a sound representation of the s-box function is found, one need to
carefully study how to implement it. As shown in Chapter 2, the independence property, i.e.
the probing security, of the masking scheme can be compromised with misuse multiplications.
Hence, one must carefully place some refresh gadgets in the implementation to produce fresh
encodings of the sensitive variables. However, the use of such gadgets comes at a price in
randomness consumption and efficiency.

In the past couple of years, several formal tools have been developed to evaluate the probing
security of implementations at a given masking order. Among the most efficient ones, Barthe
et al. developed maskVerif [BBD+15] and Coron developed CheckMasks [Cor17]. Both tools
take as input a shared circuit and return a formal security proof when no attack is found.
However, this evaluation is not tight and false negatives may occur and hence imply the
addition of unnecessary refresh gadgets. Moreover, while such tools are very convenient to
evaluate the security of concrete implementations, they suffer from an important limitation
which is their exponential complexity in the size of the circuit and consequently in the masking
order. As a result, these tools are impractical beyond a small number of shares (typically
d = 5). In a recent work, Bloem et al. [EC:BGIKMW18] further developed a new tool to
verify the security of masked implementations subject to glitches, which is an important step
towards provable and practical security of hardware implementations. However this tool still
suffers from the same efficiency limitations as the previous ones.

The method of Barthe et al. [BBD+16] allows one to safely compose t-NI and t-SNI gadgets
and get probing security at any order. Nevertheless, it is not tight and makes use of more
refresh gadgets than required. In many contexts, randomness generation is expensive and
might be the bottleneck for masked implementations. For instance, Journault and Standaert
describe an AES encryption shared at the order d = 32 for which up to 92% of the running
time is spent on randomness generation [JS17]. In such a context, it is fundamental to figure
out whether the number of t-SNI refresh gadgets inserted by Barthe et al.’s tool maskComp is
actually minimal to achieve t-probing security. In this Chapter, we find out that it is not and
we provide a new method which exactly identifies the concrete probing attacks in a Boolean
shared circuit.

Let us take a simple example. We consider the small randomized circuit referred to as Circuit
1 and illustrated in Figure 4.1 with [⊕] a t-NI sharewise addition, [⊗] a t-SNI multiplication,
and two Boolean sharings [x1] and [x2]. Applying Barthe et al’s tool maskComp on this circuit
automatically inserts a t-SNI refresh gadget in the cycle formed by gates [x1], [⊕], and [⊗]
as represented in Figure 4.2. However, it can be verified that for any masking order t, the
initial circuit is t-probing secure without any additional refresh gadget. Therefore, in the
following, this Chapter aims to refine the state-of-the-art method [BBD+16] to only insert
refresh gadgets when absolutely mandatory for t-probing security.

More specifically, the contribution of this chapter can be summarized as follows:

(1) We introduce formal definitions of the probing, non-interfering, and strong-non-interfering
security notions for shared circuits based on concrete security games. Although these
definitions are no more than a reformulation of existing security notions, we believe
that they provide a simple and precise framework to reason about probing security.
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[x1] [x2]

[⊕]

[⊗]

Figure 4.1: Graph representation of
Circuit 1.

[x1] [x2]

[⊕]

R

[⊗]

Figure 4.2: Graph representation of
Circuit 1 after maskComp.

(2) From the introduced game-based definitions, we provide a reduction of the probing
security of a given standard shared circuit –i.e. a shared circuit composed of ISW
multiplication gadgets, sharewise addition gadgets and SNI refresh gadgets– to the
probing security of a simpler circuit of multiplicative depth 1 and for which the adversary
is restricted to probe the multiplication inputs (which are linear combinations of the
circuit inputs).

(3) We give an algebraic characterization of the final security game, which allows us to
express the probing security of any standard shared circuit in terms of linear algebra.

(4) We show how to solve the latter problem with a new exact and proven method. Our
method takes the description of any standard shared circuit and either produces a
probing-security proof (valid at any order) or exhibits a probing attack (i.e. a set of
t < d probes that reveal information on the circuit d-shared input for some d). We
provide a concrete tool implementing our method in Sage.

(5) We apply our tool to the efficient implementation of the AES s-box developed by
Goudarzi and Rivain in [GR17]. Based on the previous state of the art, this s-box
was implemented using one SNI refresh gadget per multiplication gadget (to refresh
one of the operands), hence making a total of 32 refresh gadgets (which was later on
confirmed by the maskComp tool). Our new method formally demonstrates that the
same d-shared implementation is actually t-probing secure with no refresh gadget for
any d = t + 1. We provide implementation results and a performance analysis: this
new implementation achieves an asymptotic gain up to 43%. The code can be found
on GitHub [github].

(6) We extend our results to larger circuits by establishing new compositional properties
on t-probing secure gadgets. In particular, these new composition properties perfectly
apply to the case of SPN-based block ciphers. We also show that they apply to a wide
range of Boolean circuits with common gadgets and input sets.

4.2 Approach

In Section 4.3, useful notions are introduced, security definitions for composition are formalized
through concrete security games, and some useful security results are provided. Section 4.4
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provides our security reduction for standard shared circuits. Section 4.5 then details our
new method to exactly determine the probing security of a standard shared circuit. It also
gives an upper bound on the number of required refresh gadgets together with an exhaustive
method to make a standard shared circuit achieve tight probing security. In Section 4.6, our
new method is extended to apply to larger circuits, and in particular to SPN-based block
ciphers, with new compositional properties. Finally, Section 4.7 describes the new tool we
implemented to experiment our method on concrete circuits.

4.3 Formal Security Notions

4.3.1 Notations

In this chapter, we denote by F2 the finite field with two elements and by Ji, jK the integer
interval Z∩ [i, j] for any two integers i and j. For a finite set X , we denote by |X | the cardinal
of X and by x← X the action of picking x from X independently and uniformly at random.
For some (probabilistic) algorithm A, we further denote x ← A(in) the action of running
algorithm A on some inputs in (with fresh uniform random tape) and setting x to the value
returned by A.

4.3.2 Basic Notions

A Boolean circuit is a directed acyclic graph whose vertices are input gates, output gates,
constant gates of fan-in 0 that output constant values, and operation gates of fan-in at most
2 and fan-out at most 1 and whose edges are wires. In this chapter we consider Boolean
circuits with two types of operation gates: addition gates (computing an addition on F2) and
multiplication gates (computing a multiplication on F2). A randomized circuit is a Boolean
circuit augmented with random-bit gates of fan-in 0 that outputs a uniformly random bit.

A d-Boolean sharing of x ∈ F2 is a random tuple (x1, x2, . . . , xd) ∈ Fd2 satisfying x = ∑d
i=1 xi.

The sharing is said to be uniform if, for a given x, it is uniformly distributed over the subspace
of tuples satisfying x = ∑d

i=1 xi. A uniform sharing of x is such that any m-tuple of its shares
xi is uniformly distributed over Fm2 for any m ≤ d. In the following, a d-Boolean sharing of a
given variable x is denoted by [x] when the sharing order d is clear from the context. We
further denote by Enc a probabilistic encoding algorithm that maps x ∈ F2 to a fresh uniform
sharing [x].

A d-shared circuit C is a randomized circuit working on d-shared variables. More specifically,
a d-shared circuit takes a set of n input sharings [x1], . . . , [xn] and computes a set of m
output sharings [y1], . . . , [ym] such that (y1, . . . , ym) = f(x1, . . . , xn) for some deterministic
function f . A probe on C refers to a wire index (for some given indexing of C’s wires). An
evaluation of C on input [x1], . . . , [xn] under a set of probes P refers to the distribution of
the tuple of wires pointed by the probes in P when the circuit is evaluated on [x1], . . . , [xn],
which is denoted by C([x1], . . . , [xn])P .

We consider a special kind of shared circuits which are composed of gadgets. In the chapter,
we specifically consider three types of gadgets, namely ISW-multiplication gadgets ([⊗]),
ISW-refresh gadgets ([R]) and sharewise addition gadgets ([⊕]).
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ExpReal(A, C):
1: (P, x1, . . . , xn)← A()
2: [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3: (v1, . . . , vt)← C([x1], . . . , [xn])P
4: Return (v1, . . . , vt)

ExpSim(A,S, C):
1: (P, x1, . . . , xn)← A()
2: (v1, . . . , vt)← S(P)
3: Return (v1, . . . , vt)

Figure 4.3: t-probing security game.

Definition 4.3.1. A standard shared circuit is a shared circuit exclusively composed of
ISW-multiplication gadgets, ISW-refresh gadgets and sharewise addition gadgets as described
above.

4.3.3 Game-Based Security Definitions

In the following, we recall the probing, non-interfering and strong non-interfering security
notions introduced in [ISW03; BBD+16] and we formalize them through concrete security
games. Each of these games is defined for a given n-input d-shared circuit C and it opposes
an adversary A, which is a deterministic algorithm outputting a set of (plain) inputs x1,
. . . , xn and a set of probes P, to a simulator S, which aims at simulating the distribution
C([x1], . . . , [xn])P .

4.3.3.1 Probing Security.

We first recall the definition from [ISW03]. Our game-based definition is then given with a
proposition to state the equivalence of both notions.

Definition 4.3.2 (from [ISW03]). A circuit is t-probing secure if and only if any set of at
most t intermediate variables is independent from the secret.

Probing Security Game. The t-probing security game is built based on two experiments
as described in Figure 4.3. In both experiments, an adversary A outputs a set of probes P
(indices of circuit’s wires) such that |P| = t and n input values x1, . . . , xn ∈ F2.

In the first (real) experiment, referred to as ExpReal, the chosen input values x1, . . . , xn are
mapped into n sharings [x1], . . . , [xn] with encoding algorithm Enc. The resulting encodings
are given as inputs to the shared circuit C. The real experiment then outputs a random
evaluation C([x1], . . . , [xn])P of the chosen gates through a t-uple (v1, . . . , vt).

In the second experiment, referred to as ExpSim, the probing simulator S takes the (adver-
sary chosen) set of probes P and outputs a simulation of the evaluation C([x1], . . . , [xn])P ,
which is returned by the simulation experiment. The simulator wins the game if and only if
the two experiments return identical distributions.

Proposition 4.3.3. A shared circuit C is t-probing secure if and only if for every adversary
A, there exists a simulator S that wins the t-probing security game defined in Figure 4.3, i.e.
the random experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins
the t-probing security game defined in Figure 4.3, then any set of probes is independent
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from the secret as S has no knowledge of the secret inputs. Thus C is trivially t-probing
secure by Definition 4.3.2. From left to right, if the random experiments ExpReal(A, C) and
ExpSim(A,S, C) do not output identical distributions, then there exists a set of at most t
intermediate variables which cannot be perfectly simulated without the knowledge of the
input secrets. As a consequence, the circuit is not t-probing secure by Definition 4.3.2.

A shared circuit C which is t-probing secure is referred to as a t-private circuit. It is not
hard to see that a d-shared circuit can only achieve t-probing security for d > t. When a
d-shared circuit achieves t-probing security with d = t+ 1, we call it a tight private circuit.

4.3.3.2 Non-Interfering Security.

The non-interfering security notion is a little bit stronger. Compared to the probing security
notion, it additionally benefits from making the security evaluation of composition of circuits
easier. We recall its original definition from [BBD+16] before we give an equivalent formal
game-based definition.
Definition 4.3.4 (from [BBD+16]). A circuit is t-non-interfering (t-NI) if and only if any
set of at most t intermediate variables can be perfectly simulated from at most t shares of
each input.

Non-Interfering Security Game. The t-non-interfering (t-NI) security game is built
based on two experiments as described in Figure 4.4. In both experiments, an adversary A
outputs a set of probes P (indices of circuit’s wires) such that |P| = t and n input sharings
[x1], . . . , [xn] ∈ Fd2.
The first (real) experiment, referred to as ExpReal, simply returns an evaluation of C on

input sharings [x1], . . . , [xn] under the set of probes P.
The second experiment, referred to as ExpSim, is defined for a two-round simulator
S = (S1,S2). In the first round, the simulator S1 takes the (adversary chosen) set of probes
P and outputs n sets of indices I1, . . . , In ⊆ {1, . . . , d}, such that |I1| = · · · = |In| = t. In
the second round, in addition to the set of probes P , the simulator S2 receives the (adversary
chosen) input sharings restricted to the shares indexed by the sets I1, . . . , In, denoted [x1]I1 ,
. . . , [xn]In , and outputs a simulation of C([x1], . . . , [xn])P , which is returned by the simulation
experiment. The simulator wins the game if and only if the two experiments return identical
distributions.
Proposition 4.3.5. A shared circuit C is t-non-interfering secure if and only if for every
adversary A, there exists a simulator S that wins the t-non-interfering security game defined in
Figure 4.4, i.e. the random experiments ExpReal(A, C) and ExpSim(A,S, C) output identical
distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the
t-non interfering security game defined in Figure 4.3, then any set of probes can be perfectly
simulated from sets of at most t shares of each input. Thus C is trivially t-non-interfering
from Definition 4.3.4. From left to right, if the random experiments ExpReal(A, C) and
ExpSim(A,S, C) do not output identical distributions, then there exists a set of at most t
intermediate variables which cannot be perfectly simulated from sets Ij of input shares whose
cardinals are less than t. As a consequence, the circuit is not t-non interfering secure from
Definition 4.3.4.
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ExpReal(A, C):
1: (P, [x1], . . . , [xn])← A()
2: (v1, . . . , vt)← C([x1], . . . , [xn])P
3: Return (v1, . . . , vt)

ExpSim(A,S, C): ∗

1: (P, [x1], . . . , [xn])← A()
2: I1, . . . , In ← S1(P)
3: (v1, . . . , vt)← S2(P, [x1]I1 , . . . , [xn]In)
4: Return (v1, . . . , vt)

∗ For t-NI: |I1| = · · · = |In| = t.
For t-SNI: |I1| = · · · = |In| = |Pint| ≤ t.

Figure 4.4: t-(S)NI security game.

4.3.3.3 Strong Non-Interfering Security.

The strong non-interfering security is a stronger notion than non-interfering security as it
additionally guarantees the independence between input and output sharings. The latter
property is very convenient to securely compose gadgets with related inputs.

Definition 4.3.6 (Strong non-interfering security from [BBD+16]). A circuit is t-strong
non-interfering (t-SNI) if and only if any set of at most t intermediate variables whose t1 on
the internal variables ( i.e. intermediate variables except the output’s ones) and t2 on output
variables can be perfectly simulated from at most t1 shares of each input.

Strong Non-Interfering Security Game. The t-strong-non-interfering (t-SNI) security
game is similar to the t-NI security game depicted in Figure 4.4. The only difference relies in
the fact that the first-round simulator S1 outputs n sets of indices I1, . . . , In ⊆ {1, . . . , d},
such that |I1| = · · · = |In| = |Pint| ≤ t where Pint ⊆ P refers to the probes on internal wires,
i.e. the probes in P which do not point to outputs of C.

Proposition 4.3.7. A shared circuit C is t-strong-non-interfering secure if and only if for
every adversary A, there exists a simulator S that wins the t-SNI security game defined in
Figure 4.4, i.e. the random experiments ExpReal(A, C) and ExpSim(A,S, C) output identical
distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins
the t-non interfering security game defined in Figure 4.3, then any set of probes can be
perfectly simulated from sets of at most |Pint| = t1 shares of each input. Thus C is trivially
t-strong non-interfering from Definition 4.3.6. From left to right, if the random experiments
ExpReal(A, C) and ExpSim(A,S, C) do not output identical distributions, then there exists a
set of at most t intermediate variables which cannot be perfectly simulated from sets Ij of
input shares whose cardinals are less than t1. As a consequence, the circuit is not t-strong
non interfering secure from Definition 4.3.6.

4.3.4 Useful Security Results

This section states a few useful security results. From the above definitions, it is not hard to
see that for any shared circuit C we have the following implications:

C is t-SNI ⇒ C is t-NI ⇒ C is t-probing secure
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while the converses are not true. While the ISW-multiplication (and refresh) gadget defined
above was originally shown to achieve probing security, it actually achieves the more general
notion of strong non-interfering security as formally stated in the following theorem:

Theorem 4.3.8 ([BBD+16]). For any integers d and t such that t < d, the d-shared
ISW-multiplication gadget [⊗] and the d-shared ISW-refresh gadget [R] are both t-SNI.

The next lemma states a simple implication of the t-SNI notion:

Lemma 4.3.9. Let C be a n-input (t+1)-shared t-SNI circuit. Then for every (x1, . . . , xn) ∈
Fn2 , an evaluation of C taking n uniform and independent (t+1)-Boolean sharings [x1], . . . , [xn]
as input produces a sharing [y] (of some value y ∈ F2 which is a function of x1, . . . , xn) which
is uniform and mutually independent of [x1], . . . , [xn].

Proof of Lemma 4.3.9. Let I ⊆ {0, 1, . . . , t} such that |I| = t. From Definition 4.3.7, consider
an adversary A which outputs a set of probes P matching the output shares [y]I . The t-SNI
property implies that there exists an algorithm S performing a perfect simulation of [y]I
independently of [x1], . . . , [xn], that is

P([x1], . . . , [xn], [y]I) = P([x1], . . . , [xn]) · P([y]I) . (4.1)

Moreover, since for a given y = f(x1, . . . , xn), the sharing [y] is perfectly defined by [y]I , the
above rewrites

P([x1], . . . , [xn], [y]) = P([x1], . . . , [xn]) · P([y]) , (4.2)

which implies the mutual independence between [y] and [x1], . . . , [xn].
Let us now show that [y] is a uniform sharing i.e. the t-tuple [y]I is uniformly distributed

over Ft2, for any I ⊆ {0, 1, . . . , t} such that |I| = t. We proceed by contradiction: we assume
that [y] is not a uniform sharing and then show that C cannot be t-SNI. If [y] is not a uniform
sharing, then the t-tuple [y]I is not uniformly distributed over Ft2. This implies that there
exists a set J ⊆ I with J 6= ∅ such that the sum ∑

i∈J yi is not uniformly distributed over
F2. Then for any y ∈ F2, we have ∑

i∈J0,tK\J
yi +

∑
i∈J

yi = y , (4.3)

which implies that both [y]J and [y]J0,tK\J are not uniformly distributed and statistically
dependent on y. This implies that the tuple [y]J cannot be perfectly simulated independently
of y which contradicts the t-SNI property.

4.4 A Security Reduction

This section provides a reduction for the t-probing security of a standard (t+1)-shared circuit
C as defined in Section 4.3. Through a sequence of games we obtain a broad simplification of
the problem of verifying whether C is probing secure or not. At each step of our reduction,
a new game is introduced which is shown to be equivalent to the previous one, implying
that for any adversary A, there exists a simulator S that wins the new game if and only if
the circuit C is t-probing secure. We get a final game (see Game 3 hereafter) in which only
the inputs of the multiplication gadgets can be probed by the adversary and the circuit is
flattened into an (equivalent) circuit of multiplicative depth one. This allows us to express
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Game 0
t probes on a st.
shared circuit

Game 1 Game 2 Game 3

no probe on
internal variables

equivalent circuit of
multiplicative depth 1

probes only on
multiplications’ inputs

Figure 4.5: Overview of the sequence of games.

the probing security property as a linear algebra problem, which can then be solved efficiently
as we show in Section 4.5.

In a nutshell, our Game 0 exactly fits the game-based definition of t-probing security given
in the previous section. Then, with Game 1, we prove that verifying the t-probing security of
a standard shared circuit C is exactly equivalent to verifying the t-probing security of the
same circuit C where the attacker A is restricted to probe inputs of refresh gadgets, pairs
of inputs of multiplication gadgets, and inputs and outputs of sharewise additions (i.e., no
internal gadgets variables). Game 2 then shows that verifying the t-probing security of a
standard shared circuit C with a restricted attacker A is equivalent to verifying the t-probing
security of a functionally equivalent circuit C ′ of multiplicative depth one where all the
outputs of multiplication and refresh gadgets in C are replaced by fresh input sharings of
the same values in the rest of the circuit. Finally, with Game 3, we show that we can even
restrict the adversary to probe only pairs (xi, yj) where xi (resp. yj) is the ith share of x
(resp. the jth share of y) and such that x and y are operands of the same multiplication in C.
These three games are deeply detailed hereafter and proofs of their consecutive equivalence
are provided at each step. An overview is displayed on Figure 4.5.

4.4.1 Game 1.

In a nutshell, our first game transition relies on the fact that each probe in a t-SNI gadget can
be replaced by 1 or 2 probes on the input sharing(s) of the gadget. In particular, one probe
on a refresh gadget is equivalent to revealing one input share, one probe on a multiplication
gadget is equivalent to revealing two input shares (one share per input sharing). Formally, in
the random experiments ExpReal(A, C) and ExpSim(A,S, C), the set of probes P returned
by A, noted P ′ in the following, has a different form explicitly defined below.

Let us associate an index g to each gadget in the standard shared circuit and denote by G
the set of gadget indices. Let us further denote by Gr, Gm and Ga the index sets of refresh
gadgets, multiplication gadgets and addition gadgets, such that G = Gr ∪ Gm ∪ Ga. Then we
can denote by Ig and Jg the indices of circuit wires which are the shares of the (right and
left) input operands of gadget g ∈ G (where Jg = ∅ if gadget g is a refresh). Similarly, we
denote by Og the indices of circuit wires which represent the output of gadget g ∈ G. From
these notations, an admissible set of probes P ′ from the adversary in the new game is of the
form

P ′ = P ′r ∪ P ′m ∪ P ′a
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ExpReal1(A, C):
1: (P ′, x1, . . . , xn)← A()
2: [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3: (v1, . . . , vq)← C([x1], . . . , [xn])P ′
4: Return (v1, . . . , vq)

ExpSim1(A,S, C):
1: (P ′, x1, . . . , xn)← A()
2: (v1, . . . , vq)← S(P ′)
3: Return (v1, . . . , vq)

Figure 4.6: Game 1.

where

P ′r ⊆
⋃
g∈Gr
Ig

P ′m ⊆
⋃
g∈Gm

Ig × Jg

P ′a ⊆
⋃
g∈Ga
Ig

⋃
g∈Ga
Jg

⋃
g∈Ga
Og

and |P ′| = t. That is, each of the t elements of P ′ either is a pair of index in Ig × Jg for a
multiplication gadget g, or a single index in Ig for a refresh gadget g, or a single index in
Ig ∪ Jg ∪ Og for an addition gadget. Note that in the latter case, the index can correspond
to any wire in the addition gadget (which is simply composed of t+ 1 addition gates).
Let tm be the number of probes on multiplication gadgets, i.e. tm = |P ′m|, and tar the

number of probes on refresh or addition gadgets, i.e. tar = |P ′a ∪ P ′r|, so that tm + tar = t.
The evaluation C([x1], . . . , [xn])P ′ then returns a q-tuple for q = 2tm+ tar, which is composed
of the values taken by the wires of index i ∈ P ′a ∪ P ′r, and the values taken by the wires of
index i and j with (i, j) ∈ P ′m. The new experiments ExpReal1(A, C) and ExpSim1(A,S, C),
carefully written in Figure 4.6, each output a q-tuple and, as before, the simulator wins Game
1 if and only if the associated distributions are identical.

Proposition 4.4.1. A standard shared circuit C is t-probing secure if and only if for every
adversary A, there exists a simulator S that wins Game 1 defined above, i.e. the random
experiments ExpReal1(A, C) and ExpSim1(A,S, C) output identical distributions.

Proof. We first show:

∀A1, ∃S1 wins Game 1⇒ ∀A0, ∃S0 wins the t-probing security game (4.4)

Let us consider an adversary A0 that outputs some values x1, . . . , xn ∈ F2 and a set of probes
P. By definition, P can be partitioned into three subsets of probes, i.e. P = Pa ∪ Pr ∪ Pm,
where Pa represents the probes on addition gadgets, Pr the probes on refresh gadgets, and
Pm the probes on multiplication gadgets. Let us denote by P(g)

r ⊆ Pr (resp. P(g)
m ⊆ Pm)

the set of probes that point to the wires of the refresh gadget of index g ∈ Gr (resp. the
multiplication gadget of index g ∈ Gm). The t-SNI property of the refresh and multiplication
gadgets (see Definition 4.3.7) implies that:

• For every g ∈ Gr, there exists a simulator S(g)
SNI that given the set of probes P(g)

r (on
the internal wires of gadget g), outputs a set of probes P ′r(g) ⊆ Ig (on the input shares



4.4 A Security Reduction 55

of gadget g) such that |P ′r(g)| = |P(g)
r |, and given the input shares pointed by P ′r(g),

outputs a perfect simulation of the internal wires pointed by P(g)
r ;

• For every g ∈ Gm, there exists a simulator S(g)
SNI that given the set of probes P(g)

m (on
the internal wires of gadget g), outputs a set of pairs of probes P ′m(g) ⊆ Ig × Jg (on
the input shares of each operand of gadget g) such that |P ′m(g)| = |P(g)

m |, and given
the input shares pointed by P ′m(g), outputs a perfect simulation of the internal wires
pointed by P(g)

m ;

We define A1 as the adversary that returns the same values x1, . . . , xn ∈ F2 as A0 and the
set of probes P ′ = P ′a ∪ P ′r ∪ P ′m defined from P as:

P ′r =
⋃
g∈Gr
P ′r

(g)
, P ′m =

⋃
g∈Gm

P ′m
(g)

, P ′a = Pa,

where P ′r(g) and P ′m(g) denote the sets of probes defined by the simulators S(g)
SNI on input

P(g)
r and P(g)

m respectively. From the left side of implication Equation (4.4), there exists
a simulator S1 that wins Game 1 for the inputs (x1, . . . , xn) and the built set of probes
P ′. We define the simulator S0 as the simulator that computes P ′ from P as explained
above and then call S1 to get a perfect simulation of C([x1], . . . , [xn])P ′ . Then S0 applies
the simulator S(g)

SNI to get a perfect simulation of the internal wires pointed by P(g)
r (resp.

P(g)
m ) from the input shares pointed by P ′r(g) (resp. P ′m(g)) which are obtained from the

evaluation C([x1], . . . , [xn])P ′ . This way S0 obtains (and returns) a perfect simulation of
C([x1], . . . , [xn])P and the two experiments ExpReal(A0, C) and ExpSim(A0,S0, C) output
identical distributions, which demonstrates the implication Equation (4.4).

Let us now show:

∀A0, ∃S0 wins the t-probing security game⇒ ∀A1, ∃S1 wins Game 1 (4.5)

By contraposition, we can equivalently show that

∃A1, ∀S1, S1 fails in Game 1
⇒ ∃A0, ∀S0, S0 fails in the t-probing security game (4.6)

Let us thus assume that an adversary A1 exists which outputs some values x1, . . . xn and a
set of probes P ′ = P ′a ∪P ′r ∪P ′m such that no algorithm S1 can output a perfect simulation of
C([x1], . . . , [xn])P ′ . We show that we can then define an adversary A0 for which no simulator
S0 can win the t-probing security game. The adversary A0 outputs the same values x1, . . . xn
as A1 and the set of probes P = Pa ∪ Pr ∪ Pm such that

Pa = P ′a and Pr = P ′r (4.7)

We show in the following how to construct Pm so that no simulator S0 can output a perfect
simulation of C([x1], . . . , [xn])P .
If P ′m = ∅ then we have P = P ′ and the statement directly holds. Let us now consider

P ′m = {(i, j)}. From the left-side implication of 4.6, we get that no simulator S1 can perform
a perfect simulation of

(v1, . . . , vq) = C([x1], . . . , [xn])P ′ , (4.8)
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where q = t+ 1. Without loss of generality we assume that v1 and v2 are the wires pointed
by the indices i and j. We can assume that there exists a simulator S0 computing a perfect
simulation of (v3, . . . , vq), i.e. the wires pointed by P ′a ∪P ′r. (Otherwise we can simply define
A0 as returning the set of probes P ′a ∪ P ′r and Equation (4.6) directly holds). We deduce
that no simulator can achieve a perfect simulation of (v1, v2) given (v3, . . . , vq). In a standard
shared circuit, the shares of the input of a multiplication gadget are linear combinations of
the input shares [x1], . . . , [xN ] of the input of the circuit or the shares in output of refresh or
multiplication gadgets. We hence get that v1 and v2 can be expressed as

v1 = f1(x1, . . . , xN ) + g1(v3, . . . , vq) + r1

v2 = f2(x1, . . . , xN ) + g2(v3, . . . , vq) + r2

for some deterministic function f1, f2, g1, g2 and where

(r1, r2) ∈ {(0, 0), (0, r), (r, 0), (r, r)}

for some uniform random r over F2. (Note that r1 and r2 cannot be uniform independent
random elements of F2 otherwise the (v1, v2) could be straightforwardly simulated). We then
have four cases:

• For (r1, r2) = (0, 0), we have either f1 or f2 non constant (otherwise (v1, v2) could be
simulated). If f1 (resp. f2) is non constant, then v1 (resp. v2) cannot be simulated
given (v3, . . . , vq) and we define Pm = {i} (resp. Pm = {j}).

• For (r1, r2) = (0, r), we have f1 non constant (otherwise (v1, v2) could be simulated).
Then v1 cannot be simulated given (v3, . . . , vq) and we define Pm = {i}.

• For (r1, r2) = (r, 0), we have f2 non constant (otherwise (v1, v2) could be simulated).
Then v2 cannot be simulated given (v3, . . . , vq) and we define Pm = {j}.

• For (r1, r2) = (r, r), we have f1+f2 non constant (otherwise (v1, v2) could be simulated).1
Then the product v1 · v2 satisfies

v1 · v2 =
(
[f1 + f2](x1, . . . , xN ) + δ + r′

) · r′
where δ = [g1 + g2](v3, . . . , vq) is a constant given (v3, . . . , vq) and where r′ = v2 is a
uniform random element of F2. It is not hard to see that the distribution of v1 ·v2 cannot
be simulated without knowing [f1 + f2](x1, . . . , xN ). We then define Pm = {ψ(i, j)}
where ψ(i, j) denotes the index of the cross-product wi · wj computed in the target
ISW-multiplication gadget, with wi and wj denoting the wires indexed by i and j.

For the general case where P ′m contains more than one pair, we can proceed as above to
show that no S0 can simulate C([x1], . . . , [xn])P(1) where P(1) is obtained by replacing one
pair (i, j) from P ′ by a single index i, j or ψ(i, j) as described above. Then we reiterate the
same principle to show that no S0 can simulate C([x1], . . . , [xn])P(2) where P(2) is obtained
from P(1) by replacing one more pair (i, j) by a single index. And so on until the set of
probes has no more pairs but only t wire indices as in the original probing security game.

1Indeed if f1 = f2 then (v1, v2) can be simulated by (g1(· · · ) + r′, g2(· · · ) + r′) for some uniform random r′.
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Figure 4.7: Illustration of the Flatten transformation.

ExpReal2(A, C):
1: C ′ ← Flatten(C)
2: (P ′, x1, . . . , xN )← A()
3: [x1]← Enc(x1), . . . , [xN ]← Enc(xN )
4: (v1, . . . , vq)← C ′([x1], . . . , [xN ])P ′
5: Return (v1, . . . , vq)

ExpSim2(A,S, C):
1: C ′ ← Flatten(C)
2: (P ′, x1, . . . , xN )← A()
3: (v1, . . . , vq)← S(P ′)
4: Return (v1, . . . , vq)

Figure 4.8: Game 2.

4.4.2 Game 2.

Our second game transition consists in replacing the circuit C by a functionally equiv-
alent circuit C ′ of multiplicative depth one and with an extended input. In a nutshell,
each output of a multiplication or a refresh gadget in C is replaced by a fresh new input
sharing of the same value in the rest of the circuit. The new circuit hence takes N input
sharings [x1], . . . , [xn], [xn+1], . . . , [xN ], with N = n+ |Gm|+ |Gr|. The two circuits are func-
tionally equivalent in the sense that for every input (x1, . . . , xn) there exists an extension
(xn+1, . . . , xN ) such that C([x1], . . . , [xn]) and C ′([x1], . . . , [xN ]) have output sharings encod-
ing the same values. This transformation is further referred to as Flatten in the following,
and is illustrated on Figure 4.7.

The resulting Game 2 is illustrated on Figure 4.8. Although the additional inputs xn+1,
. . . , xN are deterministic functions of the original inputs x1, . . . , xn, we allow the adversary
to select the full extended input x1, . . . , xN for the sake of simplicity. This slight adversarial
power overhead does not affect the equivalence between the games.

Proposition 4.4.2. A standard shared circuit C is t-probing secure if and only if for every
adversary A, there exists a simulator S that wins Game 2 defined above, i.e. the random
experiments ExpReal2(A, C) and ExpSim2(A,S, C) output identical distributions.

Proof. Without loss of generality, we assume that the Flatten transformation does not change
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the gadget indexing. We first show:

∀A2, ∃S2 wins Game 2⇒ ∀A1, ∃S1 wins Game 1 (⇔ C t-probing secure) (4.9)

For each adversary A1 returning (x1, . . . , xn) and P ′, we define A2 as the adversary that
returns the same choice of probes P ′ and the extended input (x1, . . . , xN ) such that the n
first elements match the choice of A1 and the N − n matches the decoded outputs of the
corresponding multiplication and refresh gadgets. Then, by Lemma 4.3.9, the t-SNI property
of multiplication and refresh gadgets implies that each sharing in the output of these gadgets
is independent of the input sharings. Since all the probes in P ′ on multiplication and refresh
gadgets point to input shares only, the output of each such gadget can be replaced by a fresh
uniform sharing of the underlying plain value (which deterministically depends on x1, . . . ,
xn) without modifying the evaluation. We hence get that C([x1], . . . , [xn])P ′ in Game 1 and
C ′([x1], . . . , [xN ])P ′ in Game 2 output identical distributions. We can then simply define S1
as the simulator S2 winning against the defined adversary A2. We thus get a simulator that
outputs the same distribution as ExpReal1 from which we get Equation (4.9). Let us now
show:

∀A1, ∃S1 wins Game 1 (⇔ C t-probing secure)⇒ ∀A2, ∃S2 wins Game 2 (4.10)

For each adversary A2 returning (x1, . . . , xN ) and P ′, we define A1 as the adversary that
returns the same choice of probes P ′ and the truncated input with the n first elements of
(x1, . . . , xn). For the same reason as above, the evaluations C([x1], . . . , [xn])P ′ in Game 1 and
C ′([x1], . . . , [xN ])P ′ in Game 2 then output identical distributions and we can simply define
S2 as the simulator S1 winning against the defined adversary A1. We thus get a simulator
that outputs the same distribution as ExpReal2 from which we get Equation (4.10).

Corollary 4.4.3. A standard shared circuit C is t-probing secure if and only if the standard
shared circuit Flatten(C) is t-probing secure.

4.4.3 Translation to linear algebra.

At this point, the problem of deciding the t-probing security of a Boolean standard shared
circuit C has been equivalently reduced to the problem of deciding the t-probing security
of a circuit C ′ = Flatten(C) when the attacker is restricted to probes on multiplication and
refresh gadgets’ inputs, and intermediate variables of sharewise additions. In order to further
reduce it, we translate the current problem into a linear algebra problem. In the following,
we denote by xi,j the jth share of the ith input sharing [xi] so that

[xi] = (xi,0, xi,1, . . . , xi,t) ,

for every i ∈ J1, NK. Moreover, we denote by −→xj ∈ FN2 the vector composed of the jth share
of each input sharing:

−→xj = (x0,j , x1,j , . . . , xN,j) .
As a result of the Flatten transformation, each probed variable in the q-tuple (v1, . . . , vq) =
C([x1], . . . , [xN ])P ′ is a linear combination of the input sharings [x1], . . . , [xN ]. Moreover,
since the addition gadgets are sharewise, for every k ∈ J1, qK, there is a single share index j
such that the probed variable vk only depends of the jth shares of the input sharings, giving:

vk = −→ak · −→xj , (4.11)
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for some constant coefficient vector −→ak ∈ FN2 . Without loss of generality, we assume that the
tuple of probed variables is ordered w.r.t. the share index j corresponding to each vk (i.e.
starting from j = 0 up to j = t). Specifically, the q-tuple (v1, . . . , vq) is the concatenation of
t+ 1 vectors

−→v0 = M0 · −→x0 ,
−→v1 = M1 · −→x1 , . . . −→vt = Mt · −→xt , (4.12)

where the matrix Mj is composed of the row coefficient vectors −→ak for the probed variable
indices k corresponding to the share index j.

Lemma 4.4.4. For any (x1, . . . , xN ) ∈ FN2 , the q-tuple of probed variables (v1, . . . , vq)
= C([x1], . . . , [xN ])P ′ can be perfectly simulated if and only if the Mj matrices satisfy

Im(MT
0 ) ∩ Im(MT

1 ) ∩ · · · ∩ Im(MT
t ) = ∅ .

Moreover, if the Mj matrices are full-rank (which can be assumed without loss of generality),
then the above equation implies that (v1, . . . , vq) is uniformly distributed.

Proof. Without loss of generality we can assume that the Mj matrices are full-rank since
otherwise the probed variables v1, . . . , vq would be mutually linearly dependent and simulating
them would be equivalent to simulating any subset (vk)k∈K⊆J1,qK defining a free basis of
(v1, . . . , vq), and which would then induce full-rank matrices Mj .

Throughout this proof, we denote −→x = (x1, . . . , xN ). We first show that a non-null
intersection implies a non-uniform distribution of (v1, . . . , vq) which is statistically dependent
on −→x . Indeed, a non-null intersection implies that there exist a non-null vector −→w ∈ FN2
satisfying

−→w = −→u0 ·M0 = −→u1 ·M1 = · · · = −→ut ·Mt . (4.13)

for some (constant) vectors −→u0, . . . , −→ut . It follows that
t∑

j=0

−→uj · −→vj =
t∑

j=0

−→w · −→xj = −→w · −→x ,

which implies that the distribution of the q-tuple (v1, . . . , vq) = (−→v0 ‖ · · · ‖ −→vt ) is non-uniform
and dependent on −→x .
We now show that a null intersection implies a uniform distribution (which can then be

easily simulated). The uniformity and mutual independence between the sharings [x1], . . . ,
[xN ] implies that we can see −→x1, . . . , −→xt as t uniform and independent vectors on FN2 , and −→x0
as

−→x0 = −→x +−→x1 + · · ·+−→xt .
The joint distribution of −→v1 , . . . , −→vt is hence clearly uniform. Then each coordinate of −→v0 is
the result of the inner product −→r · −→x0 where −→r is a row of M0. By assumption, there exists
at least one matrix Mj such that −→r /∈ Im(MT

j ). It results that −→r · −→xj is a uniform random
variable independent of −→v1 , . . . , −→vt and the other coordinates of −→v0 (since M0 is full-rank).
Since the latter holds for all the coordinates of −→x0 we get overall uniformity of (−→v0 ‖ · · · ‖ −→vt )
which concludes the proof.

Lemma 4.4.4 allows us to reduce the t-probing security of a standard shared circuit to a
linear algebra problem. If an adversary exists that can choose the set of probes P ′ such that
the transposes of induced matricesM1, . . . ,Mt have intersecting images, then the distribution
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ExpReal3(A, C):
1: C ′ ← Flatten(C)
2: (P ′′, x1, . . . , xN )← A()
3: [x1]← Enc(x1), . . . , [xN ]← Enc(xN )
4: (v1, . . . , vq)← C ′([x1], . . . , [xN ])P ′′
5: Return (v1, . . . , vq)

ExpSim3(A,S, C):
1: C ′ ← Flatten(C)
2: (P ′′, x1, . . . , xN )← A()
3: (v1, . . . , vq)← S(P ′′)
4: Return (v1, . . . , vq)

Figure 4.9: Game 3.

of (v1, . . . , vq) depends on (x1, . . . , xN ) and a perfect simulation is impossible (which means
that the circuit is not probing secure). Otherwise, the tuple (v1, . . . , vq) can always be
simulated by a uniform distribution and the circuit is probing secure. This statement is the
basis of our verification method depicted in the next section. But before introducing our
verification method, we can still simplify the probing security game as shown hereafter by
using Lemma 4.4.4.

4.4.4 Game 3.

In this last game, the adversary is restricted to probe the multiplication gadgets only. Formally,
A returns a set of probes P ′ = P ′r ∪ P ′m ∪ P ′a such that P ′r = ∅ and P ′a = ∅. Such a set,
denoted P ′′ is hence composed of t pairs of inputs from ⋃

g∈Gm Ig × Jg. The evaluation
C([x1], . . . , [xn])P ′′ then returns a q-tuple for q = 2t. The new experiments ExpReal3(A, C)
and ExpSim3(A,S, C), displayed in Figure 4.6, each output a q-tuple and, as before, the
simulator wins Game 3 if and only if the associated distributions are identical.

Proposition 4.4.5. A standard shared circuit C is t-probing secure if and only if for every
adversary A, there exists a simulator S that wins Game 3 defined above, i.e. the random
experiments ExpReal3(A, C) and ExpSim3(A,S, C) output identical distributions.

Proof. We first show:

∀A2, ∃S2 wins Game 2⇒ ∀A3, ∃S3 wins Game 3 (⇔ C t-probing secure) (4.14)

For each adversary A3 that returns a set of inputs (x1, . . . , xN ) and a set probes P ′′, we
define an adversary A2 that outputs the same set of inputs and the same set of probes P ′′. By
assumption, there exists S2 that can perfectly simulate C ′([x1], . . . , [xN ])P ′′ and win Game 2.
As a consequence, the simulator S3 = S2 wins Game 3 as well. We now show:

∀A3, ∃S3 wins Game 3⇒ ∀A2, ∃S2 wins Game 2 (⇔ C t-probing secure) (4.15)

which is equivalent to show the contrapositive statement:

∃A2, ∀S2 fails Game 2⇒ ∃A3, ∀S3 fails Game 3 (⇔ C t-probing secure) (4.16)

We denote by (x1, . . . , xN ) the set of inputs and by P ′ the set of probes returned by A2. As
previously, we denote P ′ = P ′a ∪P ′r ∪P ′m such that P ′a are the probes on addition gadgets, P ′r
are probes on refresh gadgets inputs, and P ′m are probes on pairs of inputs of multiplication
gadgets. We further denote by M0, . . . , Mt the induced matrices from the probes P ′ as
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defined in Lemma 4.4.4. By assumption of the contrapositive statement Equation (4.16), we
have

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) 6= ∅ .
Moreover, we have q ≤ 2t implying that at least one Mj matrix has a single row and
consequently the above intersection is of dimension one i.e. it is defined as the span of a
single vector −→w ∈ FN2 :

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) = 〈−→w 〉 . (4.17)

Since −→w is the single row of at least one Mj matrix we have that −→w is directly induced by
a probed variable vk. In other words, a sharing (−→w · −→x0, . . . ,

−→w · −→xt) appears in the circuit
(either as input of some gadget, or as output of an addition gadget). We now argue that this
sharing must appear in input of a multiplication gadget. Assume by contradiction that this
sharing does not appear in input of a multiplication gadget, then it appears in a refresh or an
addition gadget. Let us then denote by tar the number of matrices Mj that have −→w as row
(i.e. the jth share of the considered sharing has been probed). The remaining t− tar matrices
Mj have at least 2 rows (since otherwise their image does not include −→w ). We deduce that
q ≥ tar + 2(t− tar) = 2t+ tar which is impossible since q ≤ 2t. We hence obtain that −→w must
be induced by a sharing (−→w · −→x0, . . . ,

−→w · −→xt) in input of a multiplication gadget.
We can then define A3 as the adversary that outputs the same set of inputs than A2 and

a set of probes P ′′ defined according to P ′ as follows:

• for every pair (i1, i2) ∈ P ′m, include (i1, i2) to P ′′,

• for every probe i ∈ P ′a ∪ P ′r, let j be the share index corresponding to the wire indexed
by i, then include the wire index of the multiplication input share −→w · −→xj .

It is not hard to see that the Mj matrices induced by the new set of probes P ′′ still
satisfies Equation (4.17) which implies that no simulator S3 can produce a perfect simulation
of C ′([x1], . . . , [xN ])P ′′ . In other words, our contrapositive statement Equation (4.16) holds
which concludes the proof.

4.5 Probing-Security Verification for Standard Shared Circuits

In this section, we describe a formal verification method that for any t ∈ N checks whether
a standard (t+ 1)-shared circuit C achieves t-probing security. Specifically, our tool either
provides a formal proof that C is t-probing secure for every t ∈ N (where C is a standard
shared circuit with sharing order t+ 1), or it exhibits a probing attack against C for a given t,
namely it finds a set of probes P (indices of wires) in the (t+ 1)-shared instance of C, such
that |P| = t, for which the evaluation C([x1], . . . , [xn])P cannot be simulated without some
knowledge on the plain input (x1, . . . , xn).

4.5.1 Linear Algebra Formulation

As demonstrated in the previous section, the t-probing security game for a standard (t+ 1)-
shared circuit C can be reduced to a game where an adversary selects a set of probes P ′′
solely pointing to input shares of the multiplication gadgets of a flattened circuit C ′. In the
following, we will denote by m the number of multiplication gadgets in C (or equivalently in
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C ′) and by g ∈ J1,mK the index of a multiplication gadget of C. We will further denote by
[ag] and [bg] the input sharings of the g-th multiplication gadget so that we have

[ag] = (−→ag · −→x0, . . . ,
−→ag · −→xt) and [bg] = (−→bg · −→x0, . . . ,

−→
bg · −→xt) , (4.18)

for some constant coefficient vectors −→ag ,
−→
bg ∈ FN2 , recalling that −→xj denotes the vector with

the jth share of each input sharing [x1], . . . , [xN ]. In the following, the vectors {−→ag ,
−→
bg}g are

called the operand vectors.
In Game 3, the adversary chooses t pairs of probes such that each pair points to one share

of [ag] and one share of [bg] for a multiplication gadget g. Without loss of generality, the set
of pairs output by the adversary can be relabelled as a set of triplet P = {(g, j1, j2)} where
g ∈ J1,mK is the index of a multiplication gadget, j1 and j2 are share indices. For any triplet
(g, j1, j2) ∈ P the two input shares −→ag · −→xj1 and −→bg · −→xj2 are added to the (2t)-tuple of probed
variables to be simulated. This set of triplets exactly defines a sequence of t+ 1 matrices M1,
. . . , Mt, defined iteratively by adding −→ag to the rows of Mj1 and −→bg to the rows of Mj2 for
each (g, j1, j2) ∈ P. Equivalently, the matrix Mj is defined as

Mj = rows({−→ag ; (g, j, ∗) ∈ P} ∪ {−→bg ; (g, ∗, j) ∈ P}) , (4.19)

for every j ∈ J0, tK where rows maps a set of vectors to the matrix with rows from this set.
Lemma 4.4.4 then implies that a probing attack on C consists of a set of probes P =
{(g, j1, j2)} such that the transposes of the induced Mj have intersecting images. Moreover,
since the total number of rows in these matrices is 2t, at least one of them has a single row
−→w . In particular, the image intersection can only be the span of this vector (which must
match the row of all single-row matrices) and this vector belongs to the set of operand vectors
{−→ag ,
−→
bg}g. In other words, there exists a probing attack on C if and only if a choice of probes

P = {(g, j1, j2)} implies

Im(MT
0 ) ∩ Im(MT

1 ) ∩ · · · ∩ Im(MT
t ) = 〈−→w 〉 . (4.20)

for some vector −→w ∈ {−→ag ,
−→
bg}g. In that case we further say that there is a probing attack on

the operand vector −→w .
In the remainder of this section, we describe an efficient method that given a set of vector

operands {−→ag ,
−→
bg}g (directly defined from a target circuit C) determines whether there exists

a parameter t and a set P = {(g, j1, j2)} (of cardinality t) for which Equation (4.20) can be
satisfied. We prove that (1) if such sets P exist, our method returns one of these sets, (2) if
not sets is returned by our method then the underlying circuit is t-probing secure for any
sharing order (t+ 1).

4.5.2 Method Description

The proposed method loops over all the vector operands −→w ∈ {−→ag ,
−→
bg}g and checks whether

there exists a probing attack on −→w (i.e. whether a set P can be constructed that satisfies
Equation (4.20)).

For each −→w ∈ {−→ag ,
−→
bg}g the verification method is iterative. It starts from a set G1 ⊆ J1,mK

defined as
G1 = {g ; −→ag = −→w } ∪ {g ; −→bg = −→w } . (4.21)
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Namely G1 contains the indices of all the multiplication gadgets that have −→w as vector
operand. Then the set of free vector operands O1 is defined as

O1 = {−→bg ; −→ag = −→w } ∪ {−→ag ; −→bg = −→w } . (4.22)

The terminology of free vector operand comes from the following intuition: if a probing
adversary spends one probe on gadget g ∈ G1 such that −→ag = −→w to add −→w to a matrix Mj

(or equivalently to get the share −→w · −→xj), then she can also add −→bg to another matrix Mj′ (or
equivalently get the share −→bg ·−→xj′) for free. The adversary can then combine several free vector
operands to make −→w ∈ Im(MT

j′ ) occur without directly adding −→w to Mj′ (or equivalently
without directly probing −→w · −→xj′). This is possible if and only if −→w ∈ 〈O1〉.

The free vector operands can also be combined with the operands of further multiplications
to generate a probing attack on −→w . To capture such higher-degree combinations, we define
the sequences of sets (Gi)i and (Oi)i as follows:

Gi+1 = {g ; −→ag ∈ −→w + 〈Oi〉} ∪ {g ; −→bg ∈ −→w + 〈Oi〉} , (4.23)

and

Oi+1 = {−→bg ; −→ag ∈ −→w + 〈Oi〉} ∪ {−→ag ; −→bg ∈ −→w + 〈Oi〉} . (4.24)

for every i ≥ 1. The rough idea of this iterative construction is the following: if at step i+ 1
a probing adversary spends one probe on gadget g ∈ Gi+1 such that −→ag ∈ −→w + 〈Oi〉, then she
can add −→ag together with some free vector operands of previous steps to Mj in order to get
−→w ∈ Im(MT

j ). Then she can also add −→bg to another matrix Mj′ , making −→bg a new free vector
operand of step i+ 1.

Based on these definitions, our method iterates the construction of the sets Gi and Oi. At
step i, two possible stop conditions are tested:

1. if Gi = Gi−1, then there is no probing attack on −→w , the method stops the iteration on
−→w and continues with the next element in the set of vector operands;

2. if −→w ∈ 〈Oi〉, then there is a probing attack on −→w , the method stops and returns True
(with −→w and the sequence of sets (Gi,Oi)i as proof);

The method returns True if there exists a concrete probing attack on a vector −→w ∈ {−→ag ,
−→
bg}g

for a certain sharing order t+ 1. Otherwise, it will eventually stops with vector operand −→w
since the number of multiplications is finite and since Gi ⊆ Gi+1 for every i ≥ 1. When all
the possible vector operands have been tested without finding a probing attack, the method
returns False. Algorithm 3 hereafter gives a pseudocode of our method where NextSets
denotes the procedure that computes (Gi+1,Oi+1) from (Gi,Oi).
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Algorithm 3 Search probing attack
Input: A set of vector operands {−→ag ,

−→
bg}g

Output: True if there is probing attack on some −→w ∈ {−→ag ,
−→
bg}g and False otherwise

1: for all −→w ∈ {−→ag ,
−→
bg}g do

2: (G1,O1)← NextSets(∅, ∅, {−→ag ,
−→
bg}g,−→w )

3: if −→w ∈ 〈O1〉 then return True
4: for i = 1 to m do
5: (Gi+1,Oi+1)← NextSets(Gi,Oi, {−→ag ,

−→
bg}g,−→w )

6: if Gi+1 = Gi then break
7: if −→w ∈ 〈Oi〉 then return True

return False

In the rest of the section we first give some toy examples to illustrate our methods and
then provides a proof of its correctness.

4.5.3 Toy Examples

Two examples are provided hereafter to illustrate our iterative method in the absence then in
the presence of a probing attack.

In the very simple example of Figure 4.1, two variables are manipulated in multiplications
in the circuit C: −→w 1 = −→x1 and −→w 2 = −→x1 +−→x2. The set of multiplications G is of cardinal one
since it only contains one multiplication (−→w 1,

−→w 2). Following the number of variables, the
method proceeds at most in two steps:

1. As depicted in Algorithm 3, the method first determines whether there exists a probing
attack on −→w 1. In this purpose, a first set G1 is built, such that G1 = (−→w 1,

−→w 2) and
O1 = −→w 2. Since G1 6= ∅ and −→w 1 6= −→w 2, then a second set must be built. However, there
is no multiplication left, that is G2 = G1 and so there is no attack on −→w 1.

2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built, such that
G1 = (−→w 2,

−→w 1) and O1 = −→w 1. Since G1 6= ∅ and −→w 2 6= −→w 1, then a second set must be
built. However, there is no multiplication left, that is G2 = G1 and so there is no attack
on −→w 2 either. Since there is no input variable left, the method returns False, which
means that there is no possible probing attack on this circuit.

Figure 4.10 provides a second Boolean circuit. It manipulates five variables −→w i as operands
of multiplication gadgets: −→w 1 = −→x1, −→w 2 = −→x2, −→w 3 = −→x3, −→w 4 = −→x1 +−→x2, and −→w 5 = −→x2 +−→x3.
The set of multiplications G is of cardinal three with (−→w 1,

−→w 2), (−→w 4,
−→w 5), and (−→w 3,

−→w 4).
Following the number of variables, the method proceeds at most in five steps:

1. The method first determines whether there exists a probing attack on −→w 1. In this
purpose, a first set G1 is built, such that G1 = (−→w 1,

−→w 2) and O1 = −→w 2. Since G1 6= ∅
and −→w 1 6= −→w 2, then a second set must be built. G2 = G1 ∪ {(−→w 4,

−→w 5), (−→w 4,
−→w 3)} since

−→w 4 = −→w 1 +−→w 2. However, −→w 1 /∈ O2(=< −→w 2,
−→w 3,
−→w 5 >), so a third set must be built.

Since there is no multiplication left, that is G3 = G2, there is no attack on −→w 1.
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[x1] = −→w 1 [x2] = −→w 2 [x3] = −→w 3

[⊕]
−→w 4

[⊕]
−→w 5

[⊗] [⊗] [⊗]

Figure 4.10: Graph representation of a second Boolean circuit.

2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built, such
that G1 = (−→w 2,

−→w 1) and O1 = −→w 1. Since G1 6= ∅ and −→w 2 6= −→w 1, then a second set
must be built. G2 = G1 ∪ {(−→w 4,

−→w 5), (−→w 4,
−→w 3)} since −→w 4 = −→w 2 + −→w 1. And in that

case, −→w 2 ∈ O2(=< −→w 1,
−→w 3,
−→w 5 >) since −→w 2 = −→w 3 + −→w 5. Thus the method returns

True and there exists an attack on −→w 2 = −→x2 for some masking order t.

4.5.4 Proof of Correctness

This section provides a proof of correctness of the method. This proof is organized in two
propositions which are based on some invariants in Algorithm 3. The first proposition shows
that if the method returns True for some operand vector −→w and corresponding sets (Gi,Oi)
then there exists a probing attack on −→w (i.e. a set P can be constructed that satisfies
Equation (4.20)). The second proposition shows that if the method returns False then there
exists no probing attack for any −→w , namely the underlying circuit is t-probing secure as soon
as masked variables are masked with t+ 1 shares.

Proposition 4.5.1. For every i ∈ N, if −→w ∈ 〈Oi〉 then there exists t ∈ N and P = {(g, j1, j2)}
with |P| = t implying

⋂t
j=0 Im(MT

j ) = −→w .

Proof of Proposition 4.5.1. To prove this proposition, we demonstrate by induction the
following invariant:

Invariant: ∀s ∈ N, ∃ t ∈ N such that with t carefully chosen probes on multiplications from
Gi, we are able to get:

• r matrices Mj such that −→w ∈ Im(Mj), 0 ≤ j ≤ r − 1, where r = t+ 1− s;

• s matrices Mj such that 〈Oi〉 ⊆ Im(Mj), r ≤ j ≤ t.

We show that the invariant holds for i = 1. Let s ∈ N and let `1 = |O1|. If we place s probes
on each multiplication gadget g ∈ G1, we can have r = s · `1 matrices Mj = rows(−→w ), and s
matrices Mj = rows(O1). We thus get the desired invariant with t = r+ s− 1 = s(`1 + 1)− 1.
We now show that the invariant holds for i + 1 if it holds for i. Let s ∈ N and let

`i+1 = |Oi+1|. By assumption, for s′ = s · (`i+1 + 1), there exists t′ such that with t′ carefully
chosen probes on multiplications from Gi, we are able to get:

• r′ matrices Mj such that −→w ∈ Im(Mj), 0 ≤ j ≤ r′ − 1, where r′ = t′ + 1− s′;

• s′ matrices Mj such that 〈Oi〉 ⊆ Im(Mj), r′ ≤ j ≤ t′.
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In what follows, the s′ last matrices are called the unfinished matrices. If we place s probes on
each multiplication gadget g ∈ Gi+1, we can add a vector operand from −→w + 〈Oi+1〉 to s · `i+1
of the unfinished matrices. We thus obtain s · `i+1 more matrices Mj such that −→w ∈ Im(Mj).
We can further add all the `i+1 operands from Oi+1 to the s remaining unfinished matrices.
We then get s matrices Mj such that 〈Oi+1〉 ⊆ Im(Mj), which show the inductive statement.

From the above invariant, we can easily demonstrate the proposition statement. Indeed if
we have −→w ∈ 〈Oi〉 for some i ∈ N then the invariant implies that for s = 1, there exists t ∈ N
and P = {(g, j1, j2)} such that −→w ∈ Im(Mj) for 0 ≤ j ≤ t and 〈Oi〉 ⊆ Im(Mt), implying
−→w ∈ Im(Mt) as well. We then get ⋂tj=0 Im(Mj) = −→w .

Proposition 4.5.2. Let i > 1 such that G1 ⊂ · · · ⊂ Gi−1 = Gi and −→w /∈ 〈Oi〉. Then for any
t ∈ N and P = {(g, j1, j2)} with |P| = t we have −→w /∈ ⋂tj=0 Im(MT

j ).

Proof of Proposition 4.5.2. Let us denote P = P1 ∪ P2 such that

P1 = {(g, j1, j2) ; g ∈ Gi} and P2 = {(g, j1, j2) ; g /∈ Gi}

with |P1| = t1 and |P2| = t2, with t1 + t2 = t. The set P1 provides at most t1 matrices
Mj such that −→w ∈ Im(Mj) plus t1 operand vectors from Oi to be distributed among the
remaining matrices. Then the set P2 provides 2t2 additional vectors from {−→ag ,

−→
bg ; g /∈ Gi}

to be distributed among the remaining matrices. However none of these additional vectors
is included −→w + 〈Oi〉 which implies that at least two of them are necessary to produce one
additional matrixMj such that −→w ∈ Im(Mj). We conclude that we can get at most t1 +t2 = t
matrices Mj such that −→w ∈ Im(Mj) which implies −→w /∈ ⋂tj=0 Im(Mj).

4.5.5 Towards Efficient Construction of Tight t-Private Circuits

Our formal verification method exactly reveals all the t-probing attacks on standard shared
circuits. A sound countermeasure to counteract these attacks is the use of refresh gadgets.
We discuss here how to transform a flawed standard shared circuit into a t-private circuit
with exactly the minimum number of refresh gadgets.

In a first attempt, we easily show that refreshing the left operands of each multiplication
in C is enough to provide t-probing security.

Proposition 4.5.3. A standard shared circuit C augmented with t-SNI refresh gadgets
operating on the left operand of each multiplication gadget is t-probing secure.

Proof of Proposition 4.5.3. Let C be a standard shared circuit augmented with t-SNI refresh
gadgets operating on the left operand of each multiplication gadget. From Corollary 4.4.3,
the analysis of the t-probing security of C can be reduced to the analysis of the t-probing
security of Flatten(C). In the latter, each multiplication takes as its left operand a new fresh
encoding. Now let us assume that there exists a probing attack on C. We know from the
linear algebra formulation above that this attack is characterized by a vector −→w and a set of
t+ 1 matrices such that

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) = 〈−→w 〉 . (4.25)
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We also know that there exists at least one index 0 ≤ i ≤ t, such that matrix Mi is completely
defined by the row vector −→w . Now let us assume that −→w represents a probe on the left operand
of a multiplication. Since this operand is a new fresh encoding that is used nowhere else, then
it cannot be recovered from the linear combination of other operands. As a consequence, all
the matrices must be defined by the same row vector −→w . But at most t probes are available
to target this last operand which is not enough to feed the t+ 1 matrices and consequently
leads to a contradiction. Let us now assume that −→w represents a probe on the right operand
of a multiplication. In that case, probes on right operands (including probe −→w ) can feed up
to t matrices in order to fulfill Equation (4.25). Without loss of generality, we assume these
matrices to be M0, . . .Mt−1. The last matrix Mt is then necessarily built from probes on left
operands. Since all of them are fresh encodings, then Im(Mt) cannot include −→w , which gives
the second contradiction and completes the proof.

In a second attempt, we need to slightly modify Algorithm 3 so that it conducts an analysis
on all the possible operands in order to return a complete list of the flawed ones. So far,
it stops at the first flaw. With such a list for a standard shared circuit, we can show that
refreshing only the flawed operands is enough to provide t-probing security.

Proposition 4.5.4. A standard shared circuit C augmented with t-SNI refresh gadgets
operating on each flawed operand, as revealed by our method, of its multiplication gadgets is
t-probing secure.

Proof of Proposition 4.5.4. Let us consider a standard shared circuit C augmented with
t-SNI refresh gadgets operating on each one of its α flawed operands. For each of these
α flawed operands represented by the vector −→w , there are a certain number β of sets of
probes associated to sets of matrices (M j

i )0≤i≤t for (1 ≤ j ≤ β) whose intersecting images
are equal to −→w . In each of these β sets of matrices, at least one matrix is exactly equal to
−→w . Refreshing the corresponding operand each time it is used in a multiplication makes it
impossible to get a matrix equal to −→w anymore in any of the β sets. As a consequence, all
these sets of probes do not lead to a probing attack anymore. Furthermore, since we only
turned operands into fresh encodings that are not reused, then this transformation do not
lead to new probing attacks.

Propositions 4.5.3 and 4.5.4 provide an upper bound of the required number of refresh
gadgets in a standard shared circuit to achieve probing security at any order t. If we denote
by m the number of multiplications in a standard shared circuit C and by o the number of
flawed operands returned by our method, then C is to be augmented of at most r = min(m, o)
refresh gadgets to achieve probing security at any order t. Given this upper bound, an
iterative number of refresh gadgets from 1 to r can be inserted at each location in C in order
to exhibit a tight private circuit with a minimum number of refresh gadgets.

4.6 Further Steps

Now that we are able to exactly determine the t-probing security of standard shared circuits,
a natural follow-up consists in studying the t-probing security of their composition. In a first
part, we establish several compositional properties, and then we show how they apply to the
widely deployed SPN-based block ciphers. We eventually discuss the extension of our results
to generic shared circuits.
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4.6.1 Generic Composition

This section is dedicated to the statement of new compositional properties on tight private
circuits. In a first attempt, we show that the composition of a t-private circuit whose outputs
coincide with the outputs of t-SNI gadgets with another t-private circuit is still a t-private
circuit.

Proposition 4.6.1. Let us consider a standard shared circuit C composed of two sequential
circuits:

• a t-probing secure circuit C1 whose outputs are all outputs of t-SNI gadgets,

• a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. As the outputs of the first circuit C1 are the outputs t-SNI gadgets, we get from Lemma
4.3.9 that the input encodings of C1 and the input encodings of C2 are independent and
uniformly distributed. Then, the proof is straightforward from Proposition 4.4.2. Basically,
the analysis of C’s t-probing security can be equivalently reduced to the analysis of the
t-probing security of C ′ = Flatten(C) in which each output of a t-SNI gadget is replaced by a
fresh new input sharing of the corresponding value in the rest of the circuit, i.e. C2. As a
consequence, C is t-probing secure if and only if both C1 and C2 are t-probing secure, which
is correct by assumption.

In a second attempt, we establish the secure composition of a standard shared circuit that
implements a (shared) linear surjective transformation through several sharewise addition
gadgets, that we refer to as a t-linear surjective circuit, and a standard t-probing circuit.

Proposition 4.6.2. Let us consider a standard shared circuit C composed of two sequential
circuits:

• a t-linear surjective circuit C1, exclusively composed of sharewise additions,

• a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. We consider a standard shared circuit C with input −→x = (x1, . . . , xn) composed
of a t-linear surjective circuit C1 as input to a t-probing secure circuit C2. We denote by
−→y = (y1, . . . , yn′) the set of C1’s outputs, or equivalently the set of C2’s inputs. From
Proposition 4.4.5, the t-probing security of C can be reduced to the t-probing security of
circuit C ′ = Flatten(C) for probes restricted to the multiplications’ operands. In our context,
C1 is exclusively composed of sharewise additions, so the probes are restricted to C2. From
Lemma 4.4.4, any set of probed variables on C2’s multiplications operands (v1, . . . , vq) can
be written as the concatenation of the t+ 1 vectors

−→v0 = M0 · −→y0 ,
−→v1 = M1 · −→y1 , . . . −→vt = Mt · −→yt ,

where
Im(MT

0 ) ∩ Im(MT
1 ) ∩ · · · ∩ Im(MT

t ) = ∅ . (4.26)
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To achieve global t-probing security for C, we need to achieve a null intersection for matrices
that apply on C’s inputs instead of C2’s inputs. As C1 implements a linear surjective
transformation f , there exists a matrix Mf of rank n′ such that

∀ 0 ≤ i ≤ t, −→yi = Mf · −→xi .

As a consequence, any set of probes (v1, . . . , vq) in C ′ as defined in Game 3 can equivalently
be rewritten as the concatenation of the t+ 1 vectors

−→v0 = M0 ·Mf · −→x0 ,
−→v1 = M1 ·Mf · −→x1 , . . . −→vt = Mt ·Mf · −→xt .

By contradiction, let us assume that

Im(MT
f ·MT

0 ) ∩ Im(MT
f ·MT

1 ) ∩ · · · ∩ Im(MT
f ·MT

t ) 6= ∅,

that is, there exists a non-null vector −→w such that
−→w ∈ Im(MT

f ·MT
0 ) ∩ Im(MT

f ·MT
1 ) ∩ · · · ∩ Im(MT

f ·MT
t ).

Equivalently, there exists −→z0 ,
−→z1 , . . . ,

−→zt such that
−→w = MT

f ·MT
0 · −→z0 = MT

f ·MT
1 · −→z1 = . . . = MT

f ·MT
1 · −→zt .

From Equation (4.26), there exist at least two distinct indices i and j in {0, . . . , t}, such that

MT
i · −→zi 6= MT

j · −→zj .

As −→w = MT
f ·MT

i · −→zi = MT
f ·MT

j · −→zj , the difference MT
i · −→zi −MT

j · −→zj belongs to MT
f ’s

kernel. But from the surjective property of Mf , MT
f has full column rank n′, and thus a null

kernel:
dim(Ker(MT

f )) = n′ − dim(Im(MT
f )) = 0.

As a consequence, MT
i ·−→zi −MT

j ·−→zj = 0 and since MT
i ·−→zi 6= MT

j ·−→zj we have a contradiction
which completes the proof.

Eventually, we claim that two t-private circuits on independent encodings form a t-private
circuit as well.

Proposition 4.6.3. Let us consider a standard shared circuit C composed of two parallel
t-probing secure circuits which operate on independent input sharings. Then, C = C1‖C2 is
t-probing secure.

Proof. As the input sharings are independent, the result is straightforward from Lemma 4.4.4.

4.6.2 Application to SPN-Based Block Ciphers

An SPN-based block cipher is a permutation which takes as inputs a key k in {0, 1}κ and
a plaintext p in {0, 1}n and outputs a ciphertext c in {0, 1}n, where n and κ are integers.
As illustrated in Figure 4.11, it is defined by successive calls to a round function and by
an optional expansion algorithm KS. The round function is a combination of a non linear
permutation S and a linear permutation L.
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⊕
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. . . . . .

c

t-linear surjective circuit

Figure 4.11: Structure of an SPN-Based Block Cipher.
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Proposition 4.6.4. Let C be a standard shared circuit implementing an SPN block cipher
as pictured in Figure 4.11. And let CS and CKS be the standard shared (sub-)circuits
implementing S and KS respectively. If both conditions

1. CS’s and CKS’s outputs are t-SNI gadgets’ outputs,

2. CS and CKS are t-probing secure (for any sharing order t+ 1),

are fulfilled, then C is also t-probing secure.

Note that if S’s and KS’s outputs are not t-SNI gadgets’ outputs, then the linear surjective
circuit can be extended to the last t-SNI gadgets’ outputs of these circuits without loss of
generality.

Proof. As S and KS are t-probing secure, it follows from Proposition 4.6.3, that when
implemented in parallel on independent input encodings, their composition is t-probing secure
as well. Then, as the output of their composition matches the outputs of t-SNI gadgets, then
they can be sequentially composed with a t-probing secure circuit from Proposition 4.6.1.
Finally, the composition of linear surjective circuits with t-probing secure circuits is ensured
by Proposition 4.6.2, which completes the proof.

Remark 4.6.5. This result can not be directly applied to the AES full block cipher as the
outputs of the key schedule function are not SNI gadgets.

4.6.3 Extension to Generic Shared Circuits

We discuss hereafter two straightforward extensions of our work. Namely some constraints
on gadgets that compose the standard shared circuits can be relaxed, and the considered
circuit can easily be extended to work on larger finite fields.

4.6.3.1 On Standard Shared Circuits.

The method presented in this Chapter through Sections 4.4 and 4.5 aims to accurately
establish the t-probing security of a standard shared circuit for any sharing order t + 1.
Namely, it is restricted to Boolean shared circuits exclusively composed of ISW-multiplication
gadgets, ISW-refresh gadgets, and sharewise addition gadgets. While the assumption on
addition gadgets is quite natural, the restrictions made on the multiplication and refresh
gadgets can be relaxed. The reduction demonstrated in Section 4.4 only expects the refresh
gadgets to be t-SNI secure to ensure the equivalence between Game 1 and the initial t-probing
security game. Afterwards, t-probing security is equivalently evaluated on a corresponding
flattened circuit with probes on multiplications’ operands only. Therefore, there is no
restriction on the choice of refresh gadgets but their t-SNI security. While multiplication
gadgets are also expected to be t-SNI secure for the equivalence between Game 1 and the
initial t-probing security game to hold, this feature is not enough. To prove this equivalence,
multiplication gadgets are also expected to compute intermediate products between every
share of their first operand and every share of their second operand. Otherwise, our method
could still establish the probing security of a circuit, but not in a tight manner, meaning that
security under Game 3 would imply probing security but insecurity under Game 3 would
not imply insecurity w.r.t. the original probing insecurity notion. Our method would hence
allow false negatives, as state-of-the-art methods currently do. Beyond the advantages of
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providing an exact method, this restriction is not very constraining since not only the widely
deployed ISW-multiplication gadgets but also the large majority of existing multiplication
gadgets achieve this property.

4.6.3.2 On Circuits on Larger Fields.

Since ISW-multiplication gadgets and ISW-refresh gadgets can straightforwardly be extended
to larger fields our reduction and verification method could easily be extended to circuits
working on larger fields.

4.7 Application

Following the results presented in previous sections, we developed a tool in sage that takes
as input a standard shared circuit and determines whether or not it is t-probing secure
with Algorithm 3. Specifically, the standard shared circuit given as input to the tool is
expressed as a set of instructions (XOR, AND, NOT, REFRESH) with operands as indices of either
shared input values or shared outputs of previous instructions. Namely, the XOR instructions
are interpreted as sharewise addition gadgets of fan-in 2, the NOT instructions as sharewise
addition gadgets of fan-in 1 with the constant shared input (1, 0, . . . , 0), the AND instructions
as ISW-multiplication gadgets of fan-in 2, and the REFRESH instructions as ISW-refresh
gadgets of fan-in 1. As an application, we experimented our tool on several standard shared
circuits. First, we analyzed the t-probing security of the small examples of Section 4.5 as
a sanity check. Then, we investigated the t-probing security of the AES s-box circuit from
[BMP13] and compared the result with what the maskComp tool produces. Additionally, we
studied the impact of our tool to practical implementations (for both the randomness usage
and the performance implications).

4.7.1 Application to Section 4.5 Examples

In order to have some sanity checks of our new method on simple standard shared circuits,
we applied our tool to the examples given in Section 4.5, namely the standard shared circuits
depicted in Figure 4.1 and Figure 4.10. Specifically, we first translated the two standard
shared circuits into a list of instructions that is given to our tool. For each circuit, the
first instruction gives the number of shared inputs. Then, each of the following instruction
matches one of the four possible operations among XOR, AND, NOT, and REFRESH together with
the indices of the corresponding one or two operands. The output of each such operation is
then represented by the first unused index. At the end, from the generated list of instructions
the tool derives a list of pairs of operands, namely the inputs to the multiplications in the
circuit. Finally, Algorithm 3 is evaluated on the obtained list of operands.

The first example is based on a standard shared circuit that takes 2 shared inputs and
then performs two operations, namely a sharewise addition (XOR) and an ISW-multiplication
(AND). The AND instruction takes two inputs, namely the output of the XOR and one of the
two inputs of the circuit, which means that there is only two possible target vectors for an
attack to be mounted. They are displayed in the list list_comb. For both these two vectors
successively displayed with variable comb, the tool generates their respective sets G1 and O1,
as defined in Section 4.5. Then since G2 is equal to G1 for both vectors, the tool outputs
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[x1] [x2]

[⊕]

[⊗]
→

;; 2
XOR 1 2
AND 1 3

→

list_comb = [1 ,3]
-----------------------------------
comb = 1
=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]
O: [[3] , []]

-----------------------------------
comb = 3
=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]
O: [[1] , []]

-----------------------------------
(’No attack found ’)

Figure 4.12: New method applied on example 1.

[x1] [x2] [x3]

[⊕] [⊕]

[⊗] [⊗] [⊗]
→

;; 3
XOR 1 2
XOR 2 3
AND 1 2
AND 4 5
AND 4 3

→

list_comb = [1 ,3 ,2 ,4 ,6]
-----------------------------------
comb = 1
=> NO ATTACK (G3 = G2)

G: [[(1 ,2)], [(3 ,6) ,(3 ,4)], []]
O: [[2] , [6, 4], []]

-----------------------------------
comb = 3
=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1 ,2)], []]
O: [[6 , 4], [2] , []]

-----------------------------------
comb = 2
=> ATTACK

G: [[(1 ,2)], [(3 ,6) ,(3 ,4) ]]
O: [[1] , [6, 4]]

-----------------------------------
(’ Attack found: 2 in span [1 ,6 ,4] ’)

Figure 4.13: New method applied on example 2.

that no attack could be found. The circuit is thus t-probing secure. The complete process is
described in Figure 4.12.

The second example is based on a standard shared circuit that takes 3 shared inputs and
then performs 5 operations, namely 2 sharewise additions (XOR) and 3 ISW-multiplications
(AND). The three AND instructions take five distinct inputs, which means that there are five
possible target vectors for an attack to be mounted. For the two first target vectors, no
attack could be found as the tool expressed all the multiplications in the circuit with two sets
G1 and G2 without finding any attack. For the third target vector, after the construction of
G2 an attack was found as the target vector belonged to the span of the set O2. The complete
process is described in Figure 4.13. Moreover, we verified that by adding a refresh gadget on
the operand on which our tool find an attack prior to the multiplication where it is used, the
tool is not able any more to find an attack on the new circuit for this example. The results
can be find in Figure 4.14.

4.7.2 Application to AES s-box

At Eurocrypt 2017, Goudarzi and Rivain [GR17] proposed an efficient software implementation
of the s-box of the AES for higher-order masking. Based on the Boolean circuit of Boyer et al.
[BMP13], their implementation evaluates the s-box on a state under bitslice representation
with only 32 AND gates. In order to be t-probing secure without doubling the number of
shares in the encoding of sensitive variables, a conservative choice was made to add a refresh
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[x1] [x2] [x3]

[⊕] [⊕]R

[⊗] [⊗] [⊗]
→

;; 3
XOR 1 2
XOR 2 3
REF 2
AND 1 6
AND 4 5
AND 4 3

→

-----------------------------------
list_comb = [3, 8, 6, 1, 4]
-----------------------------------
comb = 3
=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1 ,8)], []]
O: [[6 , 4], [8] , []]

-----------------------------------
comb = 8
=> NO ATTACK (G2 = G1)

G: [[(1 ,8)], []]
O: [[1] , []]

-----------------------------------
comb = 6
=> NO ATTACK (G2 = G1)

G: [[(3 ,6)], []]
O: [[3] , []]

-----------------------------------
comb = 1
=> NO ATTACK (G2 = G1)

G: [[(1 ,8)], []]
O: [[8] , []]

-----------------------------------
comb = 4
=> NO ATTACK (G2 = G1)

G: [[(3 ,4)], []]
O: [[3] , []]

-----------------------------------
(’No attack found ’)

Figure 4.14: New method applied on example 2 augmented with a refresh.

gadget prior to each multiplication. As explained in Section 4.1, a major drawback of such
conservative approach is the performance overhead induced by the number of calls to refresh
gadgets due to the randomness usage.

In order to obtain efficient implementations of the AES s-box and to be tight on the number
of randomness requirement, we have applied our tool to the circuit of the s-box reordered by
Goudarzi and Rivain without any refreshing gadget. Interestingly, we obtained that no attack
can be found for any masking order. More precisely, the tool first identified 36 distinct target
vectors out of the 64 possible operands of multiplication gadgets (it can be easily checked on
the circuit found in Section 6 of [GR17]). For each of the 36 target vectors, the corresponding
set G1 is constructed. Then, for every variable the algorithm stops as the respective sets G2
are always equal to the respective sets G1. The complete report of the tool results can be
found in Table 4.1. In the first and third columns of Table 4.1, the expressions of the target
vectors as linear combinations of input variables or multiplications input are given and in the
second and fourth columns, the corresponding sets G1 are displayed, all in hexadecimal form.

To prove the security of the AES s-box circuit, our tool took only 427 ms. This speed is
mainly due to the fact that for each possible target variable, only the set G1 is computed. For
comparison, we looked at the time taken by the maskVerif tool of [BBD+15]. For a masking
order t = 2, maskVerif found no attack in 35.9 sec and for t = 3 in approximately 10 hours.

For the sake of comparison, we also applied the maskComp tool on the same circuit. We
obtained that maskComp adds refresh gadgets prior to each multiplication in the circuit,
transforming it into a new t-NI secure circuit. Since our tool has shown that the circuit is
t-probing secure with no refresh gadgets, adding those refresh gadgets implies an overhead
in the t-probing security that can lead to less efficient practical implementations. As an
illustration, we have implemented a bitslice version of the AES s-box circuit for a generic
masking order to see the impact in performances between a full refresh approach (i.e. the
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Table 4.1: Results for AES s-box circuit.

Target G1 Target G1
8E {(8E, 80), (96875, 8E)} C6 {(C6, 86), (418605, C6)}
72 {(9, 72), (C2D0B, 72)} 29B040 {(29B040, D9), (29B040, E7)}

3457E {(3457E, 1B040)} 21 {(21, 5F), (683645, 21)}
16875 {(16875, A0000)} 96875 {(96875, 8E), (96875, 80)}
C37B {(C37B, D835)} 44C37B {(44C37B, 41), (44C37B, 74)}
18605 {(18605, 36875)} 236875 {(5457E, 236875)}

D9 {(E7, D9), (29B040, D9)} 5F {(21, 5F), (683645, 5F)}
683645 {(683645, 5F), (683645, 21)} 5457E {(5457E, 87), (5457E, 236875), (5457E, F2)}

E7 {(E7, D9), (29B040, E7)} 86 {(C6, 86), (418605, 86)}
C2D0B {(C2D0B, 72), (C2D0B, 9)} 418605 {(418605, 86), (418605, C6)}

74 {(41, 74), (44C37B, 74)} D835 {(C37B, D835)}
A0000 {(16875, A0000)} 641B4E {(641B4E, 2D), (641B4E, 28)}
20D835 {(20D835, 59), (20D835, 69)} 28 {(28, 2D), (641B4E, 28)}

F2 {(87, F2), (5457E, F2)} 87 {(87, F2), (5457E, 87)}
69 {(69, 59), (20D835, 69)} 1B040 {(3457E, 1B040)}
9 {(9, 72), (C2D0B, 9)} 59 {(69, 59), (20D835, 59)}
2D {(28, 2D), (641B4E, 2D)} 80 {(8E, 80), (96875, 80)}
41 {(41, 74), (44C37B, 41)} 36875 {(18605, 36875)}

Nb. of Refresh Nb. of Random Timing (Set. 1) Timing (Set. 2)
[GR17] 32 32 t(t− 1) 408 t2 + 928 t+ 1262 1864 t2 − 528 t+ 1262

this thesis 0 16 t(t− 1) 295.5 t2 + 905.5 t+ 872 1069 t2 + 132 t+ 872

Table 4.2: Performance results of the implementation AES s-box depending on the number
of refresh gadgets.

conservative choice of Goudarzi and Rivain and the result of maskComp) and a no refresh
approach (our new tool). Each of this two approaches produces a circuit that is at least
t-probing secure for any masking order t and that is securely composable with other circuits
(since maskComp produce a t-NI circuit and from the result of Section 4.6. To be consistent
with the state of the art, the randomness in our implementations can be obtained from a
TRNG with two different settings: a first setting with a free TRNG that outputs 32-bit of
fresh randomness every 10 clock cycles (as in [GR17]) and a second setting with a constrained
TRNG that outputs 32-bit of fresh randomness every 80 clock cycles (as in [JS17]). The
performance results can be found in Table 4.2. For both approaches, the number of refresh
gadgets used and the number of randomness needed are displayed. Then, the timing in clock
cycles for both settings are shown. We can see that our tool allows to divide by 2 the number
of required randomness and benefits from an asymptotic gain of up to 43% in speed. The
comparison of the timings for several masking orders are depicted in Figure 4.15.
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Figure 4.15: Timings of a t-probing secure AES s-box implementation.
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5.1 Introduction

In this chapter, we present a case study on ARM (v7) architectures, which are today the
most widespread in embedded systems (privileged targets of side-channel attacks). We
provide an extensive and fair comparison between the different methods of the state of the
art and the ones proposed in Chapter 3, and a benchmarking on optimized implementations
of higher-order masked blockciphers. For this purpose, we follow a bottom-up approach and
start by investigating the efficient implementation of the base-field multiplication, which
is the core elementary operation of the ISW-based masking schemes. We propose several
implementations strategies leading to different time-memory trade-offs. We then investigate
the main building blocks of existing masking schemes, namely the ISW (and its variants)
and CPRR schemes. We optimize the implementation of these schemes and we describe
parallelized versions that achieve significant gains in performances. From these results, we
propose fine-tuned variants of our generic decomposition methods for three cases (full field
case, median case and Boolean case) and the algebraic decomposition methods, which allows
us to compare them in a practical and optimized implementation context. We also investigate
efficient polynomial methods for the specific s-boxes of two important blockciphers, namely
AES and PRESENT.

As an additional contribution, we put forward an alternative strategy to polynomial
methods which consists in applying bitslicing at the s-box level. More precisely, the s-box
computations within a block cipher round are bitsliced so that the core nonlinear operation
is not a field multiplication anymore (nor a quadratic polynomial) but a bitwise logical AND
between two m-bit registers (where m is the number of s-box computations). This allows
us to translate compact hardware implementations of the AES and PRESENT s-boxes into
efficient masked implementations in software. This approach has been previously used to
design blockciphers well suited for masking [GLSV15] but, to the best of our knowledge, has
never been used to derive efficient higher-order masked implementations of existing standard
blockciphers such as AES or PRESENT. We further provide implementation results for full
blockciphers and discuss the security aspects of our implementations.
Our results clearly demonstrate the superiority of the bitslicing approach (at least on

32-bit ARM architectures). Our masked bitslice implementations of AES and PRESENT
are significantly faster than state-of-the-art polynomial methods with fine-tuned low-level
implementations. In particular, an encryption masked at the order 10 only takes a few
milliseconds with a 60 MHz clock frequency (specifically 8ms for AES and 5ms for PRESENT).
Each implementation presented in this chapter can be found on GitHub for public usage

at the following link [github].

5.2 Approach

In this chapter, we describe the algorithmic and implementation tricks used to produce efficient
implementation of protected block-ciphers with higher-order masking. All the implementation
were made in ARM assembly and can be found on GitHub. To do so, we proceed with
a bottom-up approach. First, we described the different building blocks that are used in
the implementation of a block-ciphers, from the field multiplication to secure non-linear
operations. Then, we give implementation performances for the evaluation of secure generic
s-boxes following the results of Chapter 3. We also provide implementation results for
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structured s-boxes such as the one of the AES and the one of PRESENT. Finally, we describe
and give implementation results for the two block-ciphers AES and PRESENT, using the
different s-boxes implemented. Thank to the result of Chapter 4, the implementation of the
AES can be done with minimal randomness consumption, as no refreshes of the sharings are
needed.

5.3 Building Blocks

5.3.1 Field Multiplications

In this section, we focus on the efficient implementation of the multiplication over F2λ where
λ is small (typically λ ∈ [[4, 10]]). The fastest method consists in using a precomputed table
mapping the 22λ possible pairs of operands (a, b) to the output product a · b. The size of this
table is given in Table 5.1 with respect to λ.
In the context of embedded systems, one is usually constrained on the code size and

spending several kilobytes for (one table in) a cryptographic library might be prohibitive.
That is why we investigate hereafter several alternative solutions with different time-memory
trade-offs. Specifically, we look at the classical binary algorithm and exp-log multiplication
methods. We also describe a tabulated version of Karatsuba multiplication, and another table-
based method: the half-table multiplication. The obtained implementations are compared in
terms of clock cycles, register usage, and code size (where the latter is mainly impacted by
precomputed tables).

In the rest of this section, the two multiplication operands in F2λ will be denoted a and
b. These elements can be seen as polynomials a(x) = ∑λ−1

i=0 aix
i and b(x) = ∑λ−1

i=0 bix
i

over F2[x]/p(x) where the ai’s and the bi’s are binary coefficients and where p is a degree-
λ irreducible polynomial in F2[x]. In our implementations, these polynomials are simply
represented as λ-bit strings a = (aλ−1, . . . , a0)2 or equivalently a = ∑λ−1

i=0 ai 2i (and similarly
for b).

5.3.1.1 Binary Multiplication

The binary multiplication algorithm is the most basic way to perform a multiplication on a
binary field. It consists in evaluating the following formula:

a(x) · b(x) =
( · · · ((bλ−1a(x)x+ bλ−2a(x)

)
x+ bλ−3a(x)

) · · · )x+ b0a(x) , (5.1)

by iterating over the bits of b. A formal description is given in Algorithm 4.

Table 5.1: Size of the full multiplication table (in kilobytes) w.r.t. λ.

λ = 4 5 6 7 8 9 10
Table size 0.25 KB 1 KB 4 KB 16 KB 64 KB 512 KB 1048 KB
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Algorithm 4 Binary multiplication algorithm
Input: a(x), b(x) ∈ F2[x]/p(x)
Output: a(x) · b(x) ∈ F2[x]/p(x)
1: r(x)← 0
2: for i = λ− 1 down to 0 do
3: r(x)← x · r(x) mod p(x)
4: if bi = 1 then r(x)← r(x) + a(x)

return r(x) mod p(x)

The reduction modulo p(x) can be done either inside the loop (at Step 3 in each iteration)
or at the end of the loop (at Step 6). If the reduction is done inside the loop, the degree of
x · r(x) is at most λ in each iteration. So we have

x · r(x) mod p(x) =
{
x · r(x)− p(x) if rλ−1 = 1
x · r(x) otherwise (5.2)

The reduction then consists in subtracting p(x) from x · r(x) if and only if rλ−1 = 1 and
doing nothing otherwise. In practice, the multiplication by x simply consists in left-shifting
the bits of r and the subtraction of p is a simple XOR. The tricky part is to conditionally
perform the latter XOR with respect to the bit rλ−1 as we aim for a branch-free code. This
is achieved using the arithmetic right shift1 instruction (sometimes called signed shift) to
compute (r � 1)⊕ (rλ−1 × p) by putting rλ−1 at the sign bit position, which can be done in
3 ARM instructions (3 clock cycles) as follows:

LSL $tmp , $res , #(32 -n) ;; tmp = r_{n -1}
AND $tmp , $mod , $tmp , ASR #32 ;; tmp = p & (tmp ASR 32)
EOR $res , $tmp , $res , LSL #1 ;; r = (r_{n -1} * p)^(r << 1)

Step 4 consists in conditionally adding a to r whenever bi equals 1. Namely, we have to
compute r ⊕ (bi · a). In order to multiply a by bi, we use the rotation instruction to put bi in
the sign bit and the arithmetic shift instruction to fill a register with bi. The latter register
is then used to mask a with a bitwise AND instruction. The overall Step 4 is performed in 3
ARM instructions (3 clock cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)
AND $tmp , $opA , #opB , ASR #32 ;; tmp = a & (tmp ASR 32)
EOR $res , $tmp ;; r = r^(a * b_i)

Variant. If the reduction is done at the end of the loop, Step 3 becomes a simple left shift,
which can be done together with Step 4 in 3 instructions (3 clock cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)
AND $tmp , $opA , $opB , ASR #32 ;; tmp = a & (tmp ASR 32)
EOR $res , $tmp , $res , LSL #1 ;; r = (a * b_i)^(r << 1)

1This instruction performs a logical right-shift but instead of filling the vacant bits with 0, it fills these bits
with the leftmost bit operand (i.e. the sign bit).
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The reduction must then be done at the end of the loop (Step 6), where we have r(x) =
a(x) · b(x) which can be of degree up to 2λ− 2. Let rh and r` be the polynomials of degree
at most λ− 2 and λ− 1 such that r(x) = rh(x) · xλ + r`(x). Since we have r(x) mod p(x) =
(rh(x) · xλ mod p(x)) + r`(x), we only need to reduce the high-degree part rh(x) · xλ. This
can be done by tabulating the function mapping the λ − 1 coefficients of rh(x) to the
λ− 2 coefficients of rh(x) · xλ mod p(x). The overall final reduction then simply consists in
computing T [r � λ]⊕ (r · (2λ − 1)), where T is the corresponding precomputed table.

5.3.1.2 Exp-Log Multiplication

Let g ∈ F2λ be a generator of the multiplicative group F∗2λ . We shall denote by expg the
exponential function defined over [[0, 2λ−1]] as expg(`) = g`, and by logg the discrete logarithm
function defined over F∗2λ as logg = exp−1

g . Assume that these functions can be tabulated
(which is usually the case for small values of λ). The multiplication between field elements a
and b can then be efficiently computed as

a · b =
{

expg(logg(a) + logg(b) mod 2λ − 1) if a 6= 0 and b 6= 0
0 otherwise (5.3)

Le us denote t = logg(a) + logg(b). We have t ∈ [[0, 2λ+1 − 2]] giving

t mod 2λ − 1 =
{
t− 2λ + 1 if tλ = 1
t otherwise (5.4)

where tλ is the most significant bit in the binary expansion t = ∑λ
i=0 ti 2i, which can be

rewritten as t mod 2λ − 1 = (t+ tλ) · (2λ − 1). This equation can be evaluated with 2 ARM
instructions2 (2 clock cycles) as follows:

ADD $tmp , $tmp , LSR #n ;; tmp = tmp + tmp >>n
AND $tmp , #(2^n -1) ;; tmp = tmp & (2^n -1)

Variant. Here again, a time-memory trade-off is possible: the expg table can be doubled in
order to handle a (λ+ 1)-bit input and to perform the reduction. This simply amounts to
considering that expg is defined over [[0, 2λ+1 − 2]] rather than over [[0, 2λ − 1]].

Zero-testing. The most tricky part of the exp-log multiplication is to manage the case
where a or b equals 0 while avoiding any conditional branch. Once again we can use the
arithmetic right-shift instruction to propagate the sign bit and use it as a mask. The test for
zero can then be done with 4 ARM instructions (4 clock cycles) as follows:

RSB $tmp , $opA , #0 ;; tmp = 0 - a
AND $tmp , $opB , $tmp , ASR #32 ;; tmp = b & (tmp ASR 32)
RSB $tmp , #0 ;; tmp = 0 - tmp
AND $res , $tmp , ASR #32 ;; r = r & (tmp ASR 32)

2Note that for λ > 8, the constant 2λ − 1 does not lie in the range of constants enabled by ARM (i.e. rotated
8-bit values). In that case, one can use the BIC instruction to perform a logical AND where the second
argument is complemented. The constant to be used is then 2λ which well belongs to ARM constants
whatever the value of λ.
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5.3.1.3 Karatsuba Multiplication

The Karatsuba method is based on the following equation:

a · b = (ah + a`)(bh + b`)x
λ
2 + ah bh (xn + x

λ
2 ) + a` b` (x

λ
2 + 1) mod p(x) (5.5)

where ah, a`, bh, b` are the polynomials with degree at most bλ2 c−1 such that a(x) = ah x
λ
2 +a`

and b(x) = bh x
λ
2 + b`. The above equation can be efficiently evaluated by tabulating the

following functions:

(ah + a`, bh + b`) 7→ (ah + a`)(bh + b`)x
λ
2 mod p(x) ,

(ah, bh) 7→ ah bh (xλ + x
λ
2 ) mod p(x) ,

(a`, b`) 7→ a` b` (x
λ
2 + 1) mod p(x) .

We hence obtain a way to compute the multiplication with 3 look-ups and a few XORs based
on 3 tables of 2λ elements.

In practice, the most tricky part is to get the three pairs (ah||bh), (a`||b`) and (ah+a`||bh+b`)
to index the table with the least instructions possible. The last pair is a simple addition of
the two first ones. The computation of the two first pairs from the operands a ≡ (ah||a`) and
b ≡ (bh||b`) can then be seen as the transposition of a 2× 2 matrix. This can be done with 4
ARM instructions (4 clock cycles) as follows:

EOR $tmp0 , $opA , $opB , LSR #(n/2) ;; tmp0 = [a_h|a_l^b_h]
EOR $tmp1 , $opB , $tmp0 , LSL #(n/2) ;; tmp1 = [a_h|a_l|b_l]
BIC $tmp1 , #(2^n*(2^(n/2) -1)) ;; tmp1 = [a_l|b_l]
EOR $tmp0 , $tmp1 , LSR #(n/2) ;; tmp0 = [a_h|b_h]

5.3.1.4 Half-Table Multiplication

The half-table multiplication can be seen as a trade-off between the Karatsuba method and
the full-table method. While Karatsuba involves 3 look-ups in three 2λ-sized tables and the
full-table method involves 1 look-up in a 22λ-sized table, the half-table method involves 2
look-ups in two 2 3λ

2 -sized tables. It is based on the following equation:

a · b = bh x
λ
2 (ah x

λ
2 + a`) + b` (ah x

λ
2 + a`) mod p(x) , (5.6)

which can be efficiently evaluated by tabulating the functions:

(ah, a`, bh) 7→ bh x
λ
2 (ah x

λ
2 + a`) mod p(x) ,

(ah, a`, b`) 7→ b` (ah x
λ
2 + a`) mod p(x) .

Once again, the barrel shifter is useful to get the input triplets efficiently. Each look-up
can be done with two ARM instructions (for a total of 8 clock cycles) as follows:

EOR $tmp ,$opB ,$opA ,LSL#n ;; tmp =[ a_h|a_l|b_h|b_l]
LDRB $res ,[ $tab1 ,$tmp ,LSR #(n/2) ;; res=T1[a_h|a_l|b_h]
EOR $tmp ,$opA ,$opB ,LSL #(32 -n/2) ;; tmp =[ b_l |0..| a_h|a_l]
LDRB $tmp ,[ $tab2 ,$tmp ,ROR #(32 -n/2)] ;; tmp=T2[a_h|a_l|b_l]
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Table 5.2: Multiplication performances.

bin mult v1 bin mult v2 exp-log v1 exp-log v2 kara. half-tab full-tab
clock cycles (λ ≤ 8) 10λ+ 3 (+3) 7λ+ 3 (+3) 18 (+2) 16 (+2) 19 (+2) 10 (+3) 4 (+3)
clock cycles (λ > 8) 10λ+ 4 (+3) 7λ+ 15 (+3) 35 (+2) 31 (+2) 38 (+2) n/a n/a
registers 5 5 5 (+1) 5 (+1) 6 (+1) 5 (+1) 5
code size (λ ≤ 8) 52 2λ−1 + 48 2λ+1 + 48 3 · 2λ + 40 3 · 2λ + 42 2 3λ

2 +1 + 24 22λ + 12

5.3.1.5 Performance

The obtained performance is summarized in Table 5.2 in terms of clock cycles, register usage,
and code size. For clock cycles, the number in brackets indicates instructions that need to
be done only once when multiple calls to the multiplication are performed (as in the secure
multiplication procedure described in the next section). These are initialization instructions
such as loading a table address into a register. For λ > 8, elements take two bytes to be
stored (assuming λ ≤ 16) which implies an overhead in clock cycles and a doubling of the
table size. For most methods, the clock cycles and register usage are constant w.r.t. λ ≥ 8,
whereas the code size depends on λ. For the sake of illustration, we therefore additionally
display the code size (and corresponding LUT sizes) in Figure 5.1 for several values of λ.

Remark 5.3.1. For λ > 8, elements take two bytes to be stored (assuming λ ≤ 16). Two
options are then possible for look-up tables: one can either store each λ-bit element on a full
32-bit word, or store two λ-bit elements per 32-bit word (one per half-word). The former
option has a strong impact on the LUT sizes, and hence on the code size, which is already
expected to be important when λ > 8. Therefore we considered the latter option, which has an
impact on performances since we either have to load two bytes successively, or to load one
32-bit word and select the good half-word (which is actually costlier than two loads).

4 6 8

10−1

100

101

λ

K
B

bin mult v1
bin mult v2
exp-log v1
exp-log v2
half-table
full-table

λ 4 6 8 10
Binary v1 0 0 0 0
Binary v2 8 B 32 B 128 B 1 KB
Exp-log v1 32 B 128 B 0.5 KB 4 KB
Exp-log v2 48 B 192 B 0.75 KB 6 KB
Karatsuba 48 B 192 B 0.75 KB 6 KB
Half-table 0.13 KB 1 KB 8 KB 128 KB
Full-table 0.25 KB 4 KB 64 KB 2048 KB

Figure 5.1: Full code size (left graph) and LUT size (right table) w.r.t. λ.

We observe that all the methods provide different time-memory trade-offs except for
Karatsuba which is beaten by the exp-log method (v1) both in terms of clock cycles and
code size. The latter method shall then always be preferred to the former (at least on our
architecture). As expected, the full-table method is by far the fastest way to compute a field
multiplication, followed by the half-table method. However, depending on the value of λ,
these methods might be too consuming in terms of code size due to their large precomputed
tables. On the other hand, the binary multiplication (even the improved version) has very
poor performance in terms of clock cycles and it should only be used for extreme cases where
the code size is very constrained. We consider that the exp-log method v2 (i.e. with doubled
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exp-table) is a good compromise between code size an speed whenever the full-table and
half-table methods are not affordable (which might be the case for e.g. λ ≥ 8). In the
following, we shall therefore focus our study on secure implementations using the exp-log
(v2), half-table or full-table method for the base field multiplication.

5.3.2 Secure Non Linear Operations

In this section we describe optimized low-level implementations of the four following secure
multiplications and one secure evaluation of quadratic functions:
ISW (Ishai-Sahai-Wagner, Crypto’03): probing secure multiplication,
BDF+ (Barthe et al. , Eurocrypt’17): bounded-moment secure multiplication,
BBP+ (Belaïd et al. , Eurocrypt’16): ISW gadget with randomness saving,
BCPZ (Battistello et al. , CHES’16): ISW gadget with additional refreshing,
CPRR (Carlet et al. , CRYPTO’18): secure quadratic evaluation.
Each secure operation is described at the algorithmic level and at the implementation

level (with possible implementation tricks). For the ISW-like multiplications and the CPRR
evaluation, we also provide a parallelized version of the code Then, we provided some
implementation results (in both clock cycles and code size) and compare the different schemes
in terms of performances, randomness consumption, and security guarantees.

Remark 5.3.2. For the rest of this section, the field multiplication between two elements a
and b over F2λ, for any λ, is denoted by a · b.

5.3.2.1 ISW: the Standard Probing-Secure Multiplication

Let us recall the ISW multiplication scheme introduced in Chapter 2.

Algorithm 5 ISW (Ishai-Sahai-Wagner, Crypto’03)
Input: sharings (a1, . . . , ad) ∈ {0, 1}32×d and (b1, . . . , bd) ∈ {0, 1}32×d

Output: sharing (c1, . . . , cd) ∈ {0, 1}32×d such that ⊕i ci = (⊕i ai) · (
⊕

j bj)
1: for i = 1 to d do
2: ci ← ai · bi
3: for i = 1 to d do
4: for j = i+ 1 to d do
5: s← {0, 1}32

6: s′ ← (s⊕ (ai · bj))⊕ (aj · bi)
7: ci ← ci ⊕ s
8: cj ← cj ⊕ s′

return (c1, . . . , cd)

From two sharings (a1, . . . , ad) and (b1, . . . , bd), the ISW multiplication simply computes
all the d2 crossed products ai · bj which are then summed in d new shares ci with new
random elements ri,j . Each new random element is involved twice in the new shares implying⊕
i ci = ⊕

i,j ai · bj = (⊕i ai) · (
⊕
j bj).

From the implementation viewpoint, we use the approach suggested in [Cor14] that directly
accumulates each intermediate result ri,j in the output share ci so that the memory cost is
O(d) instead of O(d2) when the ri,j ’s are stored. In order to push forward the optimization,
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Table 5.3: Implementation results for the ISW multiplication over F2

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

Straight ISW 75 291 1155 4611 18435 164 164 164 164 164 10 d (d− 1)/2
Unrolled ISW 58 231 949 3876 15682 132 464 1848 7500 30324 8 d (d− 1)/2

we also propose a version of the code where the nested loops are unrolled for specific values
of d, namely when d is a power of 2. The performance of our low-level implementations is
summarized in Table 5.3. We observe that unrolling the loops allows us to save 15% to 23%
clock cycles with an overhead factor from 3 to 200 times the code size. The only case where
the unrolling fully benefits in both time and memory is for d = 2.

5.3.2.2 BDF+: a Bounded-Moment Secure Multiplication

At Eurocrypt 2017, Barthe et al. introduced a new way to compute a secure multiplication
specifically tailored for the bitwise context (i.e. for bitsliced implementations) [BDF+17].
Their scheme handles registers holding all the shares of a given bit whereas in traditional
ISW-based scheme, the shares of a variable are stored in different registers for security reasons.
Nevertheless, Barthe et al. show that their multiplication is secure in the relaxed bounded
moment model, which is argued to be sound in practice.
Intuitively the BDF+ multiplication can be decomposed into different steps: the loading

of the input shares a and b; the computation of the partial products between a and b; the
loading of fresh randomness r; and the compression phase where these partial products are
XORed all together and separated by the fresh randomness.

Its implementation is especially efficient when the number of shares d is equal to the size
of the registers in the target architecture. This has been shown in [JS17] for the case d = 32.
However, a question left open in the latter work is the scenario where the number of shares
mismatches the register size. This issue is addressed hereafter.
For this purpose, we generalize the BDF+ algorithm to a scenario where d can be lower

than the register size. We propose a parallel version of this algorithm in which several
sharings are stored in a register (e.g. 4 sharings of order d = 8 in one 32-bit register) and
we describe an efficient way to perform sharing-wise rotations to keep good performance
in such a non-optimal scenario. The main restriction is that our generalization only works
for masking orders that are a power of 2 (so that the sharing size divides the register size),
including the case d = 2 which was not taken into account in the original publication. The
optimized BDF+ multiplication is described in Algorithm 6.

Encoding. In order to make full use of the register when d is less than 32 (i.e. d is not equal
to the architecture size), but d is a power of 2, we fill the input registers with k = 32/d words
of d shares. We thus process k secure multiplications in parallel. More specifically, let us
denote w0, . . . , w31 the bits of a 32-bit register w (from MSB to LSB). For d = 16, w encodes
2 secret bits z0 and z1 such that ⊕15

i=0wi = z0 and ⊕31
i=16wi = z1. For d = 8, w encodes 4

secret bits z0, z1, z2 and z3 such that ⊕7
i=0wi = z0 and ⊕15

i=8wi = z1 and ⊕23
i=16wi = z2 and⊕31

i=24wi = z3, and so on.

Efficient sharing-wise rotation. Algorithm 6 can directly be applied on multi-sharing
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Algorithm 6 BDF+ (Barthe et al. , Eurocrypt’17)
Input: shares a = (a1, · · · , ad) ∈ {0, 1}32, shares b = (b1, · · · , bd) ∈ {0, 1}32

Output: shares c = (c1, · · · , cd) ∈ {0, 1}32 corresponding to a · b
1: x1 ← a ∧ b
2: r ← {0, 1}32

3: y1 ← x1 ⊕ r
4: if d = 2 then
5: x2 ← a ∧ ROT(b, 1)
6: y2 ← y1 ⊕ x2
7: c← y2 ⊕ ROT(r, 1)
8: for i = 1 to d/2− 1 do
9: if i mod 2 = 0 then

10: r ← {0, 1}32

11: x2i ← a ∧ ROT(b, i)
12: x2i+1 ← ROT(a, i) · b
13: y3i−1 ← y3i−2 ⊕ x2i
14: y3i ← y3i−1 ⊕ x2i+1
15: y3i+1 ← y3i ⊕ ROT(r, i mod 2)
16: xd ← a ∧ ROT(b, d/2)
17: c← y3b(d−1)/2c+1 ⊕ xd

return c

input registers. The only operation which needs to be modified accordingly is the rotation
ROT(w, i). We propose an efficient low-level implementation for such a sharing-wise rotation.
Our method relies on the observation that applying an i-bit rotation to every d-bit chunk in
a word w can be obtained by the following equation:

ROT(w, i) =
(
(w � i) · maskd,i

)⊕ ((w � d− i) · maskd,i
)

(5.7)

where maskd,i is a selection mask defined as

maskd,i = 11 . . . 1︸ ︷︷ ︸
d−i

00 . . . 0︸ ︷︷ ︸
i

‖ · · · ‖ 11 . . . 1︸ ︷︷ ︸
d−i

00 . . . 0︸ ︷︷ ︸
i

,

and maskd,i denotes its complement. From this equation we can directly compute the sharing-
wise rotation. The main trick in the implementation is to efficiently deal with the generation
of maskd,i and the sharing-wise rotation.

The mask generation is decomposed into two steps. The first step allows to setup the mask
correctly: maskd,0 is initialized with the value 0xFFFFFFFF. We then need a correction value
which will be used to update the mask correctly. correction is initialized with values given
in Table 5.4. Note that these operations are performed only once at the beginning of the
multiplication. The second step will update the mask for the rotation according to the offset
of the rotation given by the following formula:

maskd,i = maskd,0 ⊕ (correction� i)

In practice, we only store maskd,0 and correction in two registers and we update them
accordingly in each iteration of the loop. The cost of the update is 2 cycles.
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Table 5.4: Possible values for correction

d 2 4 8 16
correction 0x5555555 0x11111111 0x01010101 0x00010001

Table 5.5: Performance results for BDF+ (generic and unrolled)

clock cycles code size (bytes) registers random usage
d 2 4 8 16 32 2 4 8 16 32

BDF+ generic n/a 77 146 285 n/a n/a 248 244 240 n/a 13 d(d− 1)/4e
BDF+ unrolled 34 47 81 149 120 280 356 504 808 748 13 d(d− 1)/4e

;; mask update
EOR $mask , $mask , $correction
LSL $correction , $correction , #1

Note that we make use of another register in order to store maskd,1 (i.e. the rotation by 1)
which is always needed to compute the rotations of the random values (instead of computing
it again each time).

The rotation ROT(w, i) is then quite straightforward to implement as describes hereafter:
;; rotation of $w by $i

AND $tmp , $mask , $w , LSL $i
LSR $w , $w , $(d-i)
BIC $w , $w , $mask
EOR $w , $tmp , $w

Since the offsets of the shift lie in a register, we cannot benefit from the combined barrel
shifter. Hence the overall cost of one rotation is 5 cycles.

In Table 5.5, we report results of our implementation of the BDF+ multiplication for
d ranging from 2 to 32 for the generic version and an unrolled version (where the main
advantage is to be able to hardcode the masks and values for the shifts). We observe that
the unrolled version for d = 32 is faster and has less code size than for d = 16. This is
easily explained by the fact that we can make full use of the barrel shifter in the case d = 32.
Moreover, we observe that the unrolled version is 40% to 80% faster than the regular version.
This is due to the fact that we can hardcode the masks, which makes the barrel shifter work
again. The code size of the unrolled version ranges from 0.3 to 3 times the generic one. Note
also that the code size of the generic version is decreasing as d grows because we compute
the correction value iteratively (i.e. it needs log(32/d) iterations).

5.3.2.3 BBP+: Towards Optimal Randomness Consumption

Belaïd et al. at Eurocrypt 2016 [BBP+16] tackled the problem of minimizing the amount of
randomness required in a secure multiplication. They described a generic algorithm which
makes use of less randomness than ISW, reducing the former randomness requirement from
d (d−1)

2 to d2

4 + d. As opposed to the ISW multiplication (which achieves (d− 1)-SNI security),
this algorithm is only proven (d − 1)-NI secure. The original description of this secure
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multiplication (see [BBP+16]) is generic for any masking order d ≥ 4 (specific algorithms
for the case where d = 2 and 3 are given in their paper). However, it makes use of several
conditional branches to process additional operations depending on the parity of the order d
and/or of the loop index i.
We rewrote the algorithm such that all the conditional branches are removed, without

affecting the correctness (see Algorithm 7). These changes lead to several improvements in
practice: first replacing if/ statement with loops allows avoiding several conditional branches
treatment that are quit expensive in ARM assembly. Moreover, by rewriting the algorithm in
such a way, we can compute all the randomness on-the-fly and avoid multiple load and store
instructions for the correction step. Such improvements come at the cost of a less generic
algorithm (it only works for even orders d). For the sake of comparison, we have implemented
both algorithms to show the performance gained in clock cycles and code size (see Table 5.6).
We can see that our improvements allow a gain in timing ranging from 18% to 20% with
an overhead of only 80 bytes of memory. Furthermore, we also unrolled the nested loops
in order to get better results in timings. The timing gain ranges from 17% to 60% with an
overhead factor between 3.5 and 50 for the code size for d ≥ 8 only. For smaller values of d,
the unrolled version is better for both timing and code size.

Algorithm 7 BBP+ (Belaïd et al. , Eurocrypt’16) w/o conditional branches
Input: sharings (a1, . . . , ad) ∈ {0, 1}32×d and (b1, . . . , bd) ∈ {0, 1}32×d

Output: sharing (c1, . . . , cd) ∈ {0, 1}32×d such that ⊕i ci = (⊕i ai) · (
⊕

j bj)
1: c1 ← a1 · b1
2: c2 ← a2 · b2
3: for i = 3 to d− 1 by 2 do
4: ci ← ai · bi
5: ci+1 ← ai+1 · bi+1
6: si ← {0, 1}32

7: for i = 1 to d− 1 by 2 do
8: ri,i+1 ← {0, 1}32

9: LoopRow(i, i+ 3)
10: ci ← ci ⊕ (ri,i+1 ⊕ ai · bi+1 ⊕ ai+1 · bi)
11: LoopRow(i+ 1, i+ 3)
12: ci+1 ← ci+1 ⊕ r

Algorithm 8 LoopRow Procedure
Input: indexes i, t randoms (sj)j∈{3,...,d−1}
1: for j = d down to t by 2 do
2: ri,j ← {0, 1}32

3: ci ← ci ⊕
(
r ⊕ (ai · bj ⊕ aj · bi)⊕ sj−1 ⊕ (ai · bj−1 ⊕ aj−1 · bi)

)
4: cj ← cj ⊕ ri,j

5.3.2.4 BPCZ: Towards Security against Horizontal Attacks

At CHES 2016, Battistello et al. described a horizontal side-channel attack on the standard
ISW multiplication [BCPZ16]. This attack essentially consists in reducing the noise in the
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Table 5.6: Implementation results for the BBP+ multiplication

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

Original BBP+ n/a 334 1204 4552 17680 n/a 344 344 344 344 12 d+ d2/4
Optimized BBP+ 88 274 970 3658 14218 428 428 428 428 428 12 d+ d2/4
Unrolled BBP+ 36 161 775 3018 11920 100 344 1544 5996 23732 11 d+ d2/4

targeted values by averaging them. More precisely, during the computation of Algorithm 5,
each share ai (resp. bi) is manipulated d times. Hence one can average the noise and
reduce it by a factor

√
d (in a standard deviation metric). Such an attack is inherent to the

ISW scheme and implies that despite the probing-security, increasing the masking order d
implies increasingly high noise requirements for the masking countermeasure to bring security
improvements (i.e., for the noise to be large enough after averaging, it has to increase before
averaging).

Battistello et al. also proposed a mitigation of such a horizontal attack. Their multiplication,
given in Algorithm 9, is similar to the standard ISW multiplication but the matrix of the
crossed products ai · bj is computed differently (see Algorithm 10): refreshings are regularly
inserted to avoid the repeated apparition of each share ai (resp. bi). The RefreshMasks
operation is a simple ISW-based refreshing as described later in Section 5.3.3. The authors
also proved that their multiplication is (d− 1)-SNI secure.

Algorithm 9 BCPZ (Battistello et al. , CHES’16)
Input: shares ai such that ∑i ai = a, shares bi such that ∑i bi = b
Output: shares ci such that ∑i ci = a · b
1: Mi,j ← MatMult((x1, . . . , xd), (y1, . . . , yd))
2: for i = 1 to d do
3: ci ←Mi,i

4: for i = 1 to d do
5: for j = i+ 1 to d do
6: s← F
7: s′ ← (s+Mi,j) +Mj,i

8: ci ← ci + s
9: cj ← cj + s′

return c1, ..., cd

The implementation of Algorithm 9 is straightforward (same as ISW). The main challenge is
to efficiently implement Algorithm 10 in a recursive way. In fact, due to the restrictive amount
of registers available, using functions to perform the recursion in ARM assembly becomes
very costly. Each recursive call needs to have access to several informations: the correct set
of input sharings, namely the start of #”

X1,
#”

X2,
#”

Y 1 and #”

Y 2 as well as the correct addresses
for the output sharings. This means that several registers containing those information need
to be pushed to the stack prior to each call to a recursive function and popped before the
computation. As push and pop are basically load and store in ARM assembly the total
cost of managing the inputs and outputs of a recursive function is approximately equal to a
dozen of clock cycles for each recursive calls. This costs, on top of the associated jumps for
each recursive function, is equivalent to the computation of a complete ISW multiplication.
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Algorithm 10 MatMult
Input: the d-sharings (xi)i∈[1..d] and (yi)i∈[1..d] of x∗ and y∗ respectively
Output: the d2-sharing (Mi,j)i∈[1..d],j∈[1..d] of x∗ · y∗
1: if n = 1 then
2:

# ”

M ← [x1 · y1]
3:

#”

X(1) ← (x1, . . . , xd/2), #”

X(1) ← (xd/2+1, . . . , xd)
4:

#”

Y (1) ← (y1, . . . , yd/2), #”

Y (1) ← (yd/2+1, . . . , yd)
5:

# ”

M (1,1) ← MatMult( #”

X(1),
#”

Y (1))
6:

#”

X(1) ← RefreshMasks( #”

X(1)), #”

Y (1) ← RefreshMasks( #”

Y (1))
7:

# ”

M (1,2) ← MatMult( #”

X(1),
#”

Y (2))
8:

# ”

M (2,1) ← MatMult( #”

X(2),
#”

Y (1))
9:

#”

X(2) ← RefreshMasks( #”

X(2)), #”

Y (2) ← RefreshMasks( #”

Y (2))
10:

# ”

M (2,2) ← MatMult( #”

X(2),
#”

Y (2))

11:
# ”

M ←
(

# ”

M (1,1) # ”

M (1,2)
# ”

M (2,1) # ”

M (2,2)

)
return # ”

M

Table 5.7: Implementation results for the BCPZ multiplication

clock cycles code size (bytes) register random usage
d 2 4 8 16 32 2 4 8 16 32

BCPZ (macros) 108 498 2106 8698 35386 240 648 2324 9368 38168 13 (log(d)− 1)d2/2− (d/2− 1)d
BCPZ (functions) 134 593 2529 10473 42649 400 476 780 1996 6860 13 (log(d)− 1)d2/2− (d/2− 1)d

Therefore and since we restrict ourselves in this study to d ≤ 32, we developed the MatMult
procedure with macros. Specifically, for each masking order d that is a power of 2, we simply
implement Algorithm 10 using macros for each possible input sharing size d ∈ {2, 4, . . . , 32},
which allows us to save several clock cycles. However the main drawback of implementing
the MatMult procedure in such way is that the code size grows exponentially. To lower down
the explosion of the code size, we have also implemented a version of the code where the
terminal case macro (for d = 2) is implemented as a function. This allows us to divide by
up to 5 the code size while having a performance decrease of around 20%. Both timing and
code size for the BPCZ multiplication with the two versions of the MatMult procedure are
given in Table 5.7.

5.3.2.5 CPRR evaluation.

The CPRR scheme was initially proposed in [CPRR14] as a variant of ISW to securely compute
multiplications of the form x 7→ x · `(x) where ` is linear, without requiring refreshing. It
was then shown in [CPRR15] that this scheme (in a slightly modified version) could actually
be used to securely evaluate any quadratic function f over F2λ . The method is based on the
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Algorithm 11 Quadratic Evaluation
Input: shares ai such that ∑i ai = a, a look-up table for a algebraic degree-2 function h
Output: share ci such that ∑i ci = h(a)
1: for i = 0 to d do
2: ci = h(ai)
3: for i = 0 to d do
4: for j = i+ 1 to d do
5: s← F2λ
6: s′ ← F2λ
7: t← s
8: t← t+ h(ai + s′)
9: t← t+ h(aj + s′)

10: t← t+ h((ai + s′) + aj)
11: t← t+ h(s′)
12: s′ ← t
13: ci ← ci + s
14: cj ← cj + s′

return c1, ...cd

following equation

f(x1 + x2 + · · ·+ xd) =
∑

1≤i<j≤d
f(xi + xj + si,j) + f(xj + si,j) + f(xi + si,j) + f(si,j)

+
d∑
i=1

f(xi) + (d+ 1 mod 2) · f(0) (5.8)

which holds for every (xi)i ∈ (F2λ)d, every (si,j)1≤i<j≤d ∈ (F2λ)d(d−1)/2, and every quadratic
function f over F2λ .
From a d-sharing (x1, x2, . . . , xd), the CPRR scheme computes an output d-sharing

(y1, y2, . . . , yd) as follows:

1. for every 1 ≤ i < j ≤ d, sample two random values ri,j and si,j over F2λ ,

2. for every 1 ≤ i < j ≤ d, compute rj,i = ri,j + f(xi + si,j) + f(xj + si,j) + f((xi + si,j) +
xj) + f(si,j) ,

3. for every 1 ≤ i ≤ d, compute yi = f(xi) +∑
j 6=i ri,j ,

4. if d is even, set y1 = y1 + f(0).

According to 5.8, we then have ∑d
i=1 yi = f

(∑d
i=1 xi), which shows that the output sharing

(y1, y2, . . . , yd) well encodes y = f(x). The overall computation is summarized in Algorithm
11.

In [CPRR14; CPRR15] it is argued that in the gap where the field multiplication cannot be
fully tabulated (22λ elements is too much) while a function f : F2λ → F2λ can be tabulated
(2λ elements fit), the CPRR scheme is (likely to be) more efficient than the ISW scheme.
This is because it essentially replaces (costly) field multiplications by simple look-ups. We
present in the next section the results of our study for our optimized ARM implementations.
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5.3.2.6 Parallelization

Both ISW and CPRR schemes work on λ-bit variables, each of them occupying a full 32-bit
register. Since in most practical scenarios, we have λ ∈ [[4, 8]], this situation is clearly
suboptimal in terms of register usage, and presumably suboptimal in terms of timings. A
natural idea to improve this situation is to use parallelization. A register can simultaneously
store m := b32/λc values, we can hence try to perform m ISW/CPRR computations in
parallel (which would in turn enable to performm s-box computations in parallel). Specifically,
each input share is replaced by m input shares packed into a 32-bit value. The ISW (resp.
CPRR) algorithm loads packed values, and performs the computation on each unpacked
λ-bit chunk one-by-one. Using such a strategy allows us to save multiple load and store
instructions, which are among the most expensive instructions of ARMv7 assembly (3 clock
cycles). Specifically, we can replace m load instructions by a single one for the shares ai, bj
in ISW (resp. xi, xj in CPRR) and the random values ri,j , si,j (read from the TRNG), we
can replace m store instructions by a single one for the output shares, and we can replace m
XOR instructions by a single one for some of the addition involved in ISW (resp. CPRR). On
the other hand, we get an overhead for the extraction of the λ-bit chunks from the packed
32-bit values. But each of these extractions takes a single clock cycle (thanks to the barrel
shifter), which is rather small compared to the gain in load and store instructions.

Remark 5.3.3. Note that using parallelization in our implementations does not compromise
the probing security. Indeed, we pack several bytes/nibbles within one word of the cipher
state but we never pack (part of) different shares of the same variable together. The probing
security proofs hence apply similarly to the parallel implementations.3

5.3.3 Refresh gadgets

5.3.3.1 ISW Refresh

The ISW-based mask refreshing is pretty similar to an ISW multiplication, but it is actually
much faster since it involves no field multiplications and fewer additions (most terms being
multiplied by 0). It simply consists in processing:

for i = 1 .. d : for j = i+ 1 .. d : r ← $; ai ← ai + r; aj ← aj + r;

A straightforward implementation of this process is almost 3 times faster than the fastest
ISW multiplication, namely the full-table one (see Figure 5.2).
We can actually do much better. Compared to a standard ISW implementation, the

registers of the field multiplication are all available and can hence be used in order to save
several loads and stores. Indeed, the straightforward implementation performs d − i + 1
loads and stores for every i ∈ [[1, d]], specifically 1 load-store for ai and d − i for the aj ’s.
Since we have some registers left, we can actually pool the aj ’s loads and stores for several
ai’s. To do so, we load several shares ai, ai+1, . . . , ai+k with the LDM instruction (which
has a cost of k + 2 instead of 3k) and process the refreshing between them. Then, for every

3Putting several shares of the same variable in a single register would induce a security flaw in the probing
model where full registers can be probed. For this reason, we avoid doing so and we stress that parallelization
does not result in such an undesired result. However, it should be noted that in some other relevant
security models, such as the single-bit probing model or the bounded moment leakage model [BDF+16],
this would not be an issue anyway.
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j ∈ [[i + k + 1, d]], we load aj , perform the refreshing between aj and each of the ai, ai+1,
. . . , ai+k, and store aj back. Afterwards, the shares ai, ai+1, . . . , ai+k are stored back with
the STM instruction (which has a cost of k + 2 instead of 3k). This allows us to load (and
store) the aj only once for the k shares instead of k times, and to take advantage of the LDM
and STM instructions. In practice, we could deal with up to k = 8 shares at the same time,
meaning that for d ≤ 8 all the shares could be loaded and stored an single time using LDM
and STM instructions.

Table 5.8: Timings of the ISW-based mask refreshing.

Straightforward version 7.5 d2 + 1.5 d− 7
Optimized version ≤ 2.5 d2 + 2.5 d+ 2
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Figure 5.2: Timings of mask refreshing.

The performance of our implementations of the ISW-based mask refreshing is given in Table
5.8 and plotted in Figure 5.2 for illustration.4 The performances of our implementations of
the ISW-based mask refreshing are plotted in Figure 5.2. Our optimized refreshing is up to 3
times faster than the straightforward implementation and roughly 10 times faster that the
full-table-based ISW multiplication.

5.3.3.2 BDF+ Refresh

Barthe et al. in [BDF+17], along with their multiplication gadget, also provide a refreshing
gadget described in Algorithm 12. It simply consists in XORing the share to refresh by a
random value and a rotation of it. The iteration of the BDF+ refresh d(d − 1)/3e times
makes it SNI secure. The overall BDF+ refresh needs dd(d− 1)/3e random bits and performs
2d(d− 1)/3e additions and d(d− 1)/3e ROT. There are no particular implementations tricks
except that we use the same ROT algorithm introduced in Section 5.3.2.2 in order to keep
the correctness with the specific encoding. Implementation results can be found in Table 5.9.

4Note that the timings of the optimized version cannot be fully interpolated with a quadratic polynomial
but we provide a tight quadratic upper bound (see Table 5.8).
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Algorithm 12 BDF+ Refresh
Input: shares a
Output: shares c
1: r ← {0, 1}32

2: c← a⊕ r ⊕ ROT(r, 1) return c

Table 5.9: Implementation results for the BDF+ refresh

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

BDF+ Refresh 25 25 25 25 16 116 116 116 116 110 10 d

5.3.4 Performance and Comparisons

5.3.4.1 Secure Multiplications Comparison

We now compare the four multiplication algorithms over F2, i.e. when working on the
Boolean field. In Table 5.10 we gather the four multiplications we studied in this section and
we compare them at an algorithmic level. Namely, we give the operation counts (in terms of
32-bit XOR, 32-bit AND, and sharing-wise ROT) to perform a secure 32-bit AND between
two sharings. The NI/SNI row specifies if the considered multiplication is SNI- or NI-secure.
The row “max use of shares” represents (informally) the level of protection against horizontal
side-channels attacks: O(d) means that each share is processed a linear number in d times
(i.e. no protection) and O(1) means that each share is processed a constant number of times
(i.e. protection).

We differentiate two cases for the BDF+ multiplication. A first case where we consider
the multiplication alone, which is SNI until d = 3 and only NI secure afterwards. A second
case where we consider the composition of the multiplication with one iteration of the BDF+

refresh (described in Section 5.3.3), which is SNI secure up to d = 8 and only NI secure
afterwards (see [BDF+17]). The cost difference between these two versions is simply the cost
of an elementary refresh (i.e., the addition of a share of zero). Finding the number of such
refreshes that are required to be SNI at any order is an open problem. Note that for BDF+,
the results are given for d calls to the multiplication (since each call allows to compute 32/d
elements).
We note that we did not perform the same addition for the BBP+ multiplication since it

would imply the need of a more expensive SNI refresh on the output, which would contradict
the goal of [BBP+16] to minimize randomness by mixing NI and SNI multiplications instead
of solely SNI multiplications (and in particular, if an SNI multiplication is required, one
could use the ISW one, or the BDF+ up to order 8).
We also recall that this table does not mention the different risks of an unsatisfied

(independence) assumption. Namely the fact that the BDF+ multiplication can suffer from
a reduced security order due to couplings while for the other algorithms, the main risk of
security order reduction comes from transition-based leakages.
Based on the results in the previous sections, we can compare the performance of our

implementations of the multiplications for bitsliced inputs with higher-order masking in ARM
v7. We make the comparison for five masking orders, namely 2, 4, 8, 16 and 32. Moreover,
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Algorithm: ISW BDF+

(BM model)
BDF+ w.
refresh

(BM model)

BBP+ BCPZ

NI/SNI: SNI SNI
(up to d = 3)

SNI
(up to d = 8)

NI SNI

Max use of
shares:

O(d) O(d) O(d) O(d) O(1)

XOR-32 count: 2d(d− 1) d(3d/2− 1) d(3d/2 + 1) (7d2 − 6d)/4 d2 log(d)+2d

AND-32 count: d2 d2 d2 d2 d2

ROT count: 0 d(5d/4− 1) 5d2/4 0 0

Random bits: 16d(d− 1) 32dd(d−
1)/4e

32dd(d−
1)/4e+ 32

8d2 + 16d− 1 16d2 log(d) +
d

Table 5.10: Comparison of the multiplications at the algorithmic level.

we also give the performance results for two sets of TRNG. For the first one (called the
TRNG-1 settings in the following), we make the same assumption as in [GR17] that we
need to wait 10 clock cycles to get a fresh 32-bit random word. For the second one (called
the TRNG-2 settings in the following), we make the same assumption as in [JS17] that we
need to wait 80 clock cycles to get a fresh 32-bit random word. Finally, in order to have a
fair comparison between the four algorithms the implementation results are given for the
computation of a multiplication between two shared 32-bit operands. This means that for
the 3 ISW-based multiplication (ISW, BCPZ, BBP+) the results are given for a single call to
their respective functions, whereas for the BDF+ multiplication the results are given for d
calls to the function (since each calls allows to compute 32/d elements). The overall results
are given in Tables 5.11 and 5.12 for respectively the TRNG-1 and the TRNG-2 settings. As
illustration, we also plot the performances in clock cycles (log scale) for both TRNG-1 and
TRNG-2 settings in Figure 5.3 and Figure 5.4 respectively.

Table 5.11: Multiplication performances for TRNG-1.

TRNG-1
clock cycles code size (bytes)

d 2 4 8 16 32 2 4 8 16 32
ISW 75 291 1155 4611 18435 164 164 164 164 164
ISW unrolled 58 231 949 3876 15682 132 464 1848 7500 30324
BDF+ n/a 308 1168 4560 n/a n/a 248 244 240 n/a
BDF+ unrolled 68 188 648 2384 3840 280 356 504 808 748
BDF+ (+ refresh) n/a 408 1568 5360 n/a n/a 360 356 352 n/a
BDF+ unrolled (+ refresh) 118 288 1048 3184 5440 392 468 616 920 960
BBP+ 88 274 970 3658 14218 428 428 428 428 428
BBP+ unrolled 36 161 775 3018 11910 100 344 1544 5996 23732
BCPZ (macros) 108 498 2106 8698 35386 240 648 2334 9368 38168
BCPZ (macros + functions) 134 593 2529 10473 42649 400 476 780 1996 6860
ISW Refresh 51 72 239 933 3761 236 236 236 236 236
BDF+ Refresh 50 50 50 50 50 128 128 128 128 128
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Table 5.12: Multiplication performances for TRNG-2.

TRNG-2
clock cycles code size (bytes)

d 2 4 8 16 32 2 4 8 16 32
ISW 166 837 3703 15531 63571 500 500 500 500 500
ISW unrolled 149 777 3497 14796 60818 480 872 2508 9264 36600
BDF+ n/a 672 2624 10384 n/a n/a 596 592 588 n/a
BDF+ unrolled 250 552 2104 8208 27136 448 500 876 1204 1192
BDF+ (+ refresh) n/a 1136 3552 12240 n/a n/a 1016 1012 1008 n/a
BDF+ unrolled (+ refresh) 482 1016 3032 10064 30848 868 920 1296 1624 1612
BBP+ 270 820 2790 10210 38970 800 800 800 800 800
BBP+ unrolled 127 525 2504 9479 36581 436 716 2096 7172 27776
BCPZ (macros) 199 1408 7202 32358 136942 576 1032 2988 11372 45932
BCPZ (macros + functions) 225 1503 7625 34133 144205 760 836 1128 2344 7208
ISW Refresh 142 345 2241 10761 46713 412 412 412 412 412
BDF+ Refresh 116 116 116 116 116 420 420 420 420 420

As expected the BCPZ offers the worst performances because of the many refreshings
which intend to provide resistance to horizontal side-channel attacks, for both of the TRNG
settings.
The BBP+ multiplication outperforms the ISW multiplication (up to 25% faster) even

in the case where the randomness is cheap. The difference becomes more significant in the
TRNG-2 context (up to 40% faster), since BBP+ have reduced randomness requirements.

For the TRNG-2 settings, we can also observe that unrolling the loops does not offer an
interesting tradeoff as the gain in timing is not very significant compared to the code size
overhead.
As shown in Table 2 of [BDF+17], the iteration of the BDF+ refresh requires a bit less

randomness than ISW one but is more computationally involved. This is well reflected in
Tables 5.11 and 5.12: the ISW refresh has better performance than the BDF+ refresh for the
TRNG-1 setting while it is the opposite for the TRNG-2 setting.

Figure 5.3: Multiplication performances for TRNG-1 in clock cycles
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Overall, BDF+ and BBP+ multiplications provide the best performance in both TRNG
settings thanks to their lower randomness requirements (compared to the classical ISW). Of
course these two multiplications also have weaker security guaranties (in terms of composability
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Figure 5.4: Multiplication performances for TRNG-2 in clock cycles
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and resistance against horizontal attacks). On the other hand, ISW and BCPZ offer better
security guaranties and hence are more involved in terms of randomness requirements, making
these differences more visible in the TRNG-2 setting.

5.3.4.2 ISW vs CPRR

As argued in Section 5.3.1.5, we consider three variants for the base field multiplication in the
ISW scheme, namely the full-table method, the half-table method and the exp-log method
(with doubled exp table). The obtained ISW variants are labeled ISW-FT, ISW-HT and
ISW-EL in the following. The obtained performance are summarized in Table 5.13 where
the clock cycles with respect to d have been obtained by interpolation. Note that we did
not consider ISW-FT for n > 8 since the precomputed tables are too huge. The timings (for
n ≤ 8) are further illustrated in Figure 5.5 with respect to d. The obtained performance are
illustrated in Figure 5.5 with respect to d. Note that we did not consider ISW-FT for n > 8
since the precomputed tables are too huge.

Table 5.13: Performance of ISW and CPRR schemes.

ISW-FT ISW-HT ISW-EL CPRR
Clock cycles (for n ≤ 8) 21.5 d2 − 0.5 d 28.5 d2 − 0.5 d 33.5 d2 − 0.5 d 25d2 − 8 d
Clock cycles (for n > 8) n/a n/a 52.5d2 − 4.5d+ 12 37d2 − 14 d
Code size (bytes) 184 + 22n 244 + 2 3n

2 +1 280 + 3 · 2n 196 + 2n

Random usage (bytes) d(d−1)
2

d(d−1)
2

d(d−1)
2 d(d− 1)

These results show that CPRR indeed outperforms ISW whenever the field multiplication
cannot be fully tabulated. Even the half-table method (which is more consuming in code-size)
is slower than CPRR. For n ≤ 8, a CPRR evaluation asymptotically costs 1.16 ISW-FT, 0.88
ISW-HT, and 0.75 ISW-EL.

We implemented parallel versions of ISW and CPRR for n = 4 and n = 8. For the former
case, we can perform m = 8 evaluations in parallel, whereas for the later case we can perform
m = 4 evaluations in parallel. For n = 4, we only implemented the full-table multiplication
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Figure 5.5: Timings of ISW and CPRR schemes.

for ISW, since we consider that a 256-byte table in code is always affordable. For n = 8
on the other hand, we did not implement the full-table, since we consider that a 64-KB
table in code would be to much in most practical scenarios. Tables 5.14 and 5.15 give the
obtained performance in terms of clock cycles and code size. For comparison, we give both
the performance of the m-parallel case and that of the m-serial case. We also exhibit the
asymptotic ratio i.e. the ratio between the d2 constants of the serial and parallel case. These
performance are illustrated on Figures 5.6 and 5.7. Figures 5.6 and 5.7 give the obtained
performance in terms of clock cycles.

Table 5.14: Performance of parallel ISW and CPRR schemes for n = 8.

ISW-HT � 4 ISW-HT × 4 ISW-EL � 4 ISW-EL × 4 CPRR � 4 CPRR × 4
Clock cycles 77.5 d2 − 1.5 d+ 2 114d2 − 2d 95.5 d2 − 1.5 d+ 2 134 d2 − 2 d 54 d2 − 22 d 100 d2 − 32 d
Asympt. ratio 68% 100% 70% 100% 54% 100%
Code size 8.6 KB 8.1 KB 1.5 KB 0.9 KB 580 B 408 B
Random usage d(d−1)

2 2d(d− 1) d(d−1)
2 2d(d− 1) d(d− 1) 4d(d− 1)

Table 5.15: Performances of parallel ISW and CPRR schemes for n = 4.

ISW-FT � 8 ISW-FT × 8 CPRR � 8 CPRR × 8
Clock cycles 72 d2 172d2 − 4d 94 d2 − 42 d− 3 200 d2 − 64 d
Asympt. ratio 42% 100% 47% 100%
Code size 804 B 388 B 596 B 168 B
Random usage d(d−1)

2 4d(d− 1) d(d− 1) 8(d− 1)

These results show the important gain obtained by using parallelism. For ISW, we get
an asymptotic gain around 30% for 4 parallel evaluations (n = 8) compared to 4 serial
evaluations, and we get a 58% asymptotic gain for 8 parallel evaluations (n = 4) compared
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Figure 5.6: Timings of (parallel) ISW and
CPRR schemes for n = 8.

2 4 6 8 10

0.5

1

1.5

·104

d

cl
oc
k
cy
cl
es

ISW-FT � 8
ISW-FT × 8
CPRR � 8
CPRR × 8

Figure 5.7: Timings of (parallel) ISW and
CPRR schemes for n = 4.

to 8 serial evaluations. For CPRR, the gain is around 50% (timings are divided by 2) in both
cases (n = 8 and n = 4). We also observe that the efficiency order keeps unchanged with
parallelism, that is: ISW-FT > CPRR > ISW-HT > ISW-EL.

5.3.4.3 Register Usage for ISW and CPRR Implementations

The register usage of our implementations of ISW and CPRR is given in Table 5.16. For
ISW, the bottleneck for “temporary variables” is the register usage of the multiplication.
From the ISW loop, one can check that we do not need the multiplication operands once
they have been multiplied. This allowed us to save 2 registers in the full-table and exp-log
multiplications, and 1 register in the half-table multiplication. These savings are indicated
under brackets in Table 5.16 (and they are taken into account in the total).

Table 5.16: Register usage

Input/output LUT & TRNG Loop ISW / CPRR Temporary Total
addresses addresses counters variables variables

ISW-FT/EL 3 2 2 1 5 (-2) 11
ISW-HT 3 2 2 1 5 (-1) 12
CPRR 2 2 2 2 4 12

Regarding parallel versions, ISW implementations need two more registers compared to
standard implementations in order to store the extracted n-bit chunks from packed 32-bit
values for ai and bj . In the case of CPRR, a single additional register is sufficient for
manipulating the shares of x with respect to the two loop counters i and j. As it can be
deduced from Table 5.16, our parallel implementations of ISW and CPRR hence uses 13
registers, except for ISW-HT that needs 14 registers (i.e. it uses the link register), which is
pretty tight.
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5.4 Generic Implementations

5.4.1 Boolean decomposition

We now describe our implementations of a bitsliced s-box layer protected with higher-order
masking based on our decomposition method over F2. Our implementations evaluate 16
n× n s-boxes in parallel where n ∈ {4, 8}, and they are developed in generic 32-bit ARM
assembly. They take n input sharings [ #”x 1], [ #”x 2], . . . , [ #”xn] defined as

[ #”x i] = ( #”x i,1,
#”x i,2, . . . ,

#”x i,d) such that
d∑
j=1

#”x i,j = #”x i (5.9)

where #”x i is a 16-bit register containing the i-th bit of the 16 s-box inputs. Our implementations
then output n sharings [ #”y 0], [ #”y 1], . . . , [ #”y n] corresponding to the bitsliced output bits of the
s-box. Since we are on a 32-bit architecture with 16-bit bitsliced registers, we use a degree-2
parallelization for the multiplications. Namely, the 16-bit ANDs are packed by pairs and
replaced by 32-bit ANDs which are applied on shares using the ISW scheme.
The computation is then done in three stages. First, we need to construct the shares of

the elements of the minimal basis B0. Once the first stage is completed, all the remaining
multiplications are done between linear combinations of the elements of the basis. Let us
denote by [ #”

t i] the sharings corresponding to the elements of the basis which are stored in
memory. After the first stage we have {[ #”

t i]} = {[ #”xu] | u ∈ U}. Each new #”
t i is defined as(∑

j<i

ai,j
#”
t j
)
�
(∑
i<j

bi,j
#”
t j
)

(5.10)

where � denote the bitwise multiplication, and where {ai,j}j and {bi,j}j are the binary
coefficients obtained from the s-box decomposition (namely the coefficients of the functions
gi,j and hi,j in the span of the basis). The second stage hence consists in a loop on the
remaining multiplications that

1. computes the linear-combination sharings [ #”r i] = ∑
j<i ai,j [

#”
t j ] and [ #”s i] = ∑

j<i bi,j [
#”
t j ]

2. refreshes the sharing [ #”r i]

3. computes the sharing [ #”
t i] such that #”

t i = #”r i � #”s i

where the last step is performed for two successive values of i at the same time by a call to
a 32-bit ISW-AND. The sums in Step 1 are performed on each share independently. The
refreshing procedure is simply a ISW refresh as explained in Section 5.3.3.
Once all the basis sharings [ #”

t i] have been computed, the third stage simply consists in
deriving each output sharing [ #”y i] as a linear combination of the [ #”

t i], which is refreshed
before being returned.

5.4.1.1 Linear parts.

We now explain how to optimize the evaluation of the linear parts of the implementation. In
fact during the evaluation of a decomposition, we need a large number of linear combinations
of elements of the basis. This linear parts have significant impacts on the performances
(see Table 5.18) for small masking order. Therefore, in our ARM implementation we try to
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propose optimization in order to reduce as much as possible this linear overheads. To do so,
we use windowing technique to perform evaluations of elements in the basis. More precisely,
the evaluation is computed with k = cardinality of the basis

architecture size calls to a macro that performs v
conditional XORS, where v is the architecture size. In our case, since the implementation is
done on a 32-bit ARM architecture, v is equal to 32 and k is at most 4. Therefore, we test
the size of the basis to perform the sound number of calls to the windowing macro. Moreover,
we also define a macro just for the computation of the first coordinate function, which is
composed of 31 conditional xors (since the first coordinate function is only composed of
elements of B0).

5.4.2 Median case decomposition

Based on our generic decomposition method, we now describe our implementation of an s-box
layer protected with higher-order masking in ARM v7. We focused our study on the common
scenario of a layer applying 16 8-bit s-boxes to a 128-bit state. We apply our generalized
decomposition with parameters n = m = 2 and λ = 4 (medium case) to compare the obtained
implementation to the ones for the two extreme cases.
Our implementation is based on the decomposition obtained for the CLEFIA S0 s-box

with parameters (r, t1, t2) = (7, 7, 4). Note that it would have the same performances with
any other 8-bit s-box with the same decomposition parameters (which we validate on all our
tested random 8-bit s-boxes). The input (x1, x2) of each s-box is shared as ([x1], [x2]) where

[xi] = (xi,1, xi,2, . . . , xi,d) such that
d∑
j=1

xi,j = xi . (5.11)

Note that for those chosen parameters (n,m, λ), the input x1 and x2 are 4-bit elements, i.e.
the inputs of the 8-bit s-boxes are split into 2. The output of the computation is a pair
([y1], [y2]) where y1 and y2 are the two 4-bit coordinates of the s-box output.

The computation is then pretty regular. It can be summarize with the following pseudo-code:

Algorithm 13 S-box evaluation pseudo-code
Input: ([x1], [x2])
Output: ([y1], [y2]) = S([x1], [x2])
1: B = ([x1], [x2])
2: for i = 3 to 21 do
3: B = compute_pairwise_products([ui], [vi]) ∪ B
4: ([y1], [y2]) = evaluate_sbox(B)
5: return ([y1], [y2])

We start from a basis that contains the input sharings {[z1], [z2]} = {[x1], [x2]}. Then for
i = 3 to 21 each of the 18 multiplications is performed between two linear combinations of
the elements of the basis, that is

[zi] = [ui]� [vi] , (5.12)
where � denotes the ISW multiplication with refreshing of one of the operand and where

ui,j =
∑
k<i

`i,k(zk,j) and vi,j =
∑
k<i

`′i,k(zk,j) for every j ∈ [1, d], (5.13)
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for some linearized polynomials `i,k and `′i,k obtained from the s-box decomposition. Once
all the products have been computed, the output sharings [y1] and [y2] are simple linear
combinations of the computed [zi].

To make the most of the 32-bit architecture, the s-box evaluations are done eight-by-eight
since we can fill a register with eight 4-bit elements. The ISW-based multiplications can then
be parallelized as suggested in Section 5.3.2.6 except for the field multiplications between two
shares. To perform those multiplications, we simply need to unpack the eight 4-bit elements
in each 32-bit operand, and then to sequentially perform the 8 field multiplications. These
field multiplications are fully tabulated which only takes 0.25KB of ROM on F16 (following
the results of Section 5.3.1).

5.4.3 Algebraic Decomposition

We implemented the search of sound algebraic decompositions for λ ∈ [[4, 10]]. Here again,
we looked for full rank systems i.e. systems that would work with any target s-box. For
each value of λ, we set r to the smallest integer satisfying condition (2) i.e. r ≥ log2(λ)− 1,
and then we looked for a t starting from the lower bound t ≥ 2(2λ−λ(r+1))

λ(λ−1) (obtained from
condition (1)) and incrementing until a solvable system can be found. We then increment r
and reiterate the process with t starting from the lower bound, and so on. For λ ≤ 8, we
found the same parameters as those reported in [CPRR15]. For λ = 9 and λ = 10 (these
cases were not considered in [CPRR15]), the best parameters we obtained were (r, t) = (3, 14)
and (r, t) = (4, 22) respectively. All these parameters are recalled in Table 5.17.

Table 5.17: Obtained parameters for the algebraic decomposition method.

λ 4 5 6 7 8 9 10
(r, t) (1,2) (2,2) (2,3) (2,6) (2,9) (3,14) (4,22)

Remark 5.4.1. To avoid redundancy with the linear combinations of the gi’s, the authors
of [CPRR15] suggest to derive pi’s that have null linear parts. In order to save some
memory spaces, we make the choice of searching for pi’s with linear parts and remove the
linear terms `i

(
gi(x)

)
in Equation (2.8). Hence, the goal is now to look for a decomposition

S(x) = ∑t
i=1 pi

(
qi(x)

)
, where the pi’s contain linear terms.

5.4.4 Performance Comparisons

We now compare the performance results of the implementations of the four following
decomposition methods (3 instantiations of our generic decomposition method and the
algebraic decomposition ):

• Boolean case (λ = 1, n = 8)

• Median case (λ = 4, n = m = 2)

• Plain field case (λ = 8, n = 1)

• Algebraic decomposition
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For each implementation, the performances are compared for the computation of 16 s-boxes
on a 32-bit ARM architecture. Table 5.18 summarizes the obtained performances in clock
cycles with respect to the masking order d.

Table 5.18: Performances in clock cycles.

CRV AD Boolean case Median case
4× 4� s-boxes 4× 4� s-boxes 16� s-boxes 2× 8�

λ = 8 2576 d2 + 5476 d+ 2528 2376 d2 + 3380 d+ 5780 656 d2 + 19786 d+ 5764 2757 d2 + 17671 d+ 2402
2× 8� s-boxes 2× 8� s-boxes 16� s-boxes n/a

λ = 4 337 d2 + 563 d+ 434 564 d2 + 270 d+ 660 59 d2 + 1068 d+ 994 n/a

Boolean case. For the Boolean case, it is worth noticing that packing and unpacking the
bitslice registers for the parallelization of the ISW-ANDs implies a linear overhead in d. For
d ∈ [[2, 20]], this overhead is between 4% and 6% of the overall s-box computations for n = 8,
and between 7% and 11% for n = 4 (and this ratio is asymptotically negligible). For d = 2,
the overhead slightly exceeds the gain, but for every d ≥ 3, parallelizing the ISW-ANDs
always results in an overall gain of performances.

We observe that the Boolean case is asymptotically faster than the optimized implementa-
tions of CRV and AD methods (3.6 times faster for n = 8 and 5.7 times faster for n = 4).
However, we also see that the linear coefficient is significantly greater for the Boolean case,
which comes from the computation of the linear combinations in input of the ISW-ANDs (i.e.
the sharings [ #”r i] and [ #”s i]). As an illustration, Figures 5.8 and 5.9 plots the obtained timings
with respect to d. We see that for n = 4, our implementation is always faster than the
optimized AD and CRV. On the other hand, for n = 8, our implementation is slightly slower
for d ≤ 8. We stress that our implementations could probably be improved by optimizing the
computation of the linear combinations.
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Figure 5.8: Timings for n = 8.
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Figure 5.9: Timings for n = 4.

The RAM consumption and code size of our implementations are given in Table 5.19. We
believe these memory requirements to be affordable for not-too-constrained embedded devices.
This is especially significant for n = 8 where CRV and AD needs a high amount of storage
for the lookup tables of the linearized polynomials. On the other hand, we observe a big gap
regarding the RAM consumption. The Boolean method is indeed more consuming in RAM
because of all the [ #”

t i] sharings that must be stored while such a large basis is not required
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for the CRV and AD methods, and because of some optimizations in the computation of the
linear combinations.

Table 5.19: Code sizes and RAM consumptions.

CRV AD Boolean case Median case
λ = 8 4× 4� s-boxes 4× 4� s-boxes 16� s-boxes 2× 8�
Code size 27.5 KB 11.2 KB 4.6KB 8.7 KB
RAM 80d bytes 188d bytes 644d bytes 92d bytes
λ = 4 2× 8� s-boxes 2× 8� s-boxes 16� s-boxes n/a
Code size 3.2 KB 2.6 KB 2.2 KB n/a
RAM 24d bytes 64d bytes 132d bytes n/a

Median case. These results show that the median case is slightly less efficient in terms
of timings. However, it provides an interesting tradeoff in terms of memory consumption.
Indeed the bitslice implementation has the drawback of being quite consuming in terms of
RAM (with 644d bytes needed) and the CRV-based implementation has the drawback of
having an important code size (27.5 KB) which is mainly due to the half-table multiplication
and the tabulation linearized polynomials over F256. In terms of code size, the median case
is the best. The median case offers a nice alternative when both RAM and code size are
constrained. It also needs the same amount of randomness than the CRV decomposition and
more than twice less than the bitslice decomposition.
Additionally, implementations based on our medium case decomposition might provide

further interesting tradeoffs on smaller (8-bit or 16-bit) architectures where bitslice would be
slowed down and where the optimized CRV-based implementation might be too consuming
in terms of code size.

5.5 Structured S-boxes

5.5.1 Polynomial representation

As detailed in Chapter 2, there is exist two main approach to decompose the AES s-box,
namely the Rivain-Prouff method and the Kim-Hong-Lim method. For PRESENT, the usual
solution is to evaluate the F ◦G representation.

5.5.2 Bitslice representation

5.5.2.1 Secure Bitsliced AES S-box

For the AES s-box, we based our work on the compact representation proposed by Boyar
et al. in [BMP13]. Their circuit is obtained by applying logic minimization techniques to
the tower-field representation of Canright [Can05]. It involves 115 logic gates including 32
logical AND. The circuit is composed of three parts: the top linear transformation involving
23 XOR gates and mapping the 8 s-box input bits x0, x1, . . . , x7 to 23 new bits x7, y1, y2,
. . . , y21; the middle non-linear transformation involving 30 XOR gates and 32 AND gates
and mapping the previous 23 bits to 18 new bits z0, z1, . . . , z17; and the bottom linear
transformation involving 26 XOR gates and 4 XNOR gates and mapping the 18 previous bits
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to the 8 s-box output bits s0, s1, . . . , s7. In particular, this circuit improves the usual count
of 34 AND gates involved in previous tower-field representations of the AES s-box.

Using this circuit, we can perform the 16 s-box computations of an AES round in parallel.
That is, instead of having 8 input bits mapped to 8 output bits, we have 8 (shared) input
16-bit words X0, X1, . . . , X7 mapped to 8 (shared) output 16-bit words S1, S2, . . . , S8. Each
word Xi (resp. Si) contains the ith bits input bit (resp. output bit) of the 16 s-boxes. Each
XOR gate and AND gate of the original circuit is then replaced by the corresponding (shared)
bitwise instruction between two 16-bit words.

Parallelizing AND gates. For our masked bitslice implementation, a sound complexity
unit is one call to the ISW-AND since this is the only nonlinear operation, i.e. the only
operation with quadratic complexity in d (compared to other operations that are linear in d).
In a straightforward bitslice implementation of the considered circuit, we would then have a
complexity of 32 ISW-AND. This is suboptimal since each of these ISW-AND is applied to
16-bit words whereas it can operates on 32-bit words. Our main optimization is hence to
group together pairs of ISW-AND in order to replace them by a single ISW-AND with fully
filled input registers. This optimization hence requires to be able to group AND gates by pair
that can be computed in parallel. To do so, we reordered the gates in the middle non-linear
transformation of the Boyar et al. circuit, while keeping the computation consistent. We were
able to fully parallelize the AND gates, hence dropping our bitslice complexity from 32 down
to 16 ISW-AND. We thus get a parallel computation of the 16 AES s-boxes of one round with
a complexity of 16 ISW-AND, that is one single ISW-AND per s-box. Since an ISW-AND is
(significantly) faster than any ISW multiplication, our masked bitslice implementation breaks
through the barrier of one ISW field multiplication per s-box. Our reordered version of the
Boyar et al. circuit is described in Figure 5.10. It can be checked that every two consecutive
AND gates can be performed in parallel.

Remark 5.5.1. The Boyar et al. circuit involves many intermediate variables (denoted by ti)
that are sometimes needed multiple times. This strongly impact the performances in practice
by requiring several loads and stores, which –as mentioned earlier– are the most expensive
ARM instructions, and further implies a memory overhead. In order to minimize this impact,
we also reordered the gates in the linear transformations so that all the intermediate variables
can be kept in registers. This is only possible for linear transformations since they are applied
on each share independently. On the other hand, the shares of the intermediate variables
in input of an ISW-AND must be stored in memory as they would not fit altogether in the
registers.

5.5.3 Secure Bitsliced PRESENT S-box

For our masked bitsliced implementation of the PRESENT s-box, we used the compact
representation given by Courtois et al. in [CHM11], which was obtained from Boyar et al. ’s
logic minimization techniques improved by involving OR gates. This circuit is composed of 4
nonlinear gates (2 AND and 2 OR) and 9 linear gates (8 XOR and 1 XNOR).

Remark 5.5.2. An ISW-OR can be computed from an ISW-AND by using De Morgan’s
law, that is a ∨ b = ā · b̄, and since the negation in the masking world simply consists in
complementing a single of the d shares (which can be efficiently done with a single instruction).
One can also easily get an ISW-NAND and an ISW-NOR.
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– top linear transformation –

y14 = x3 ⊕ x5 y1 = t0 ⊕ x7 y15 = t1 ⊕ x5 y17 = y10 ⊕ y11
y13 = x0 ⊕ x6 y4 = y1 ⊕ x3 y20 = t1 ⊕ x1 y19 = y10 ⊕ y8
y12 = y13 ⊕ y14 y2 = y1 ⊕ x0 y6 = y15 ⊕ x7 y16 = t0 ⊕ y11
y9 = x0 ⊕ x3 y5 = y1 ⊕ x6 y10 = y15 ⊕ t0 y21 = y13 ⊕ y16
y8 = x0 ⊕ x5 t1 = x4 ⊕ y12 y11 = y20 ⊕ y9 y18 = x0 ⊕ y16
t0 = x1 ⊕ x2 y3 = y5 ⊕ y8 y7 = x7 ⊕ y11

– middle non-linear transformation –

t2 = y12 · y15 t23 = t19 ⊕ y21 t34 = t23 ⊕ t33 z9 = t44 · y12
t3 = y3 · y6 t15 = y8 · y10 t35 = t27 ⊕ t33 z10 = t37 · y3
t5 = y4 · x7 t26 = t21 · t23 t42 = t29 ⊕ t33 z4 = t40 · y1
t7 = y13 · y16 t16 = t15 ⊕ t12 z14 = t29 · y2 z6 = t42 · y11
t8 = y5 · y1 t18 = t6 ⊕ t16 t36 = t24 · t35 z13 = t40 · y5
t10 = y2 · y7 t20 = t11 ⊕ t16 t37 = t36 ⊕ t34 z15 = t42 · y9
t12 = y9 · y11 t24 = t20 ⊕ y18 t38 = t27 ⊕ t36 z7 = t45 · y17
t13 = y14 · y17 t30 = t23 ⊕ t24 t39 = t29 · t38 z8 = t41 · y10
t4 = t3 ⊕ t2 t22 = t18 ⊕ y19 z5 = t29 · y7 z16 = t45 · y14
t6 = t5 ⊕ t2 t25 = t21 ⊕ t22 t44 = t33 ⊕ t37 z17 = t41 · y8
t9 = t8 ⊕ t7 t27 = t24 ⊕ t26 t40 = t25 ⊕ t39 z11 = t33 · y4
t11 = t10 ⊕ t7 t31 = t22 ⊕ t26 t41 = t40 ⊕ t37 z12 = t43 · y13
t14 = t13 ⊕ t12 t28 = t25 · t27 t43 = t29 ⊕ t40 z2 = t33 · x7
t17 = t4 ⊕ t14 t32 = t31 · t30 t45 = t42 ⊕ t41 z3 = t43 · y16
t19 = t9 ⊕ t14 t29 = t28 ⊕ t22 z0 = t44 · y15
t21 = t17 ⊕ y20 t33 = t32 ⊕ t24 z1 = t37 · y6

– bottom linear transformation –

t46 = z15 ⊕ z16 t49 = z9 ⊕ z10 t61 = z14 ⊕ t57 t48 = z5 ⊕ z13
t55 = z16 ⊕ z17 t63 = t49 ⊕ t58 t65 = t61 ⊕ t62 t56 = z12 ⊕ t48
t52 = z7 ⊕ z8 t66 = z1 ⊕ t63 s0 = t59 ⊕ t63 s3 = t53 ⊕ t66
t54 = z6 ⊕ z7 t62 = t52 ⊕ t58 t51 = z2 ⊕ z5 s1 = t64 ⊕ s3
t58 = z4 ⊕ t46 t53 = z0 ⊕ z3 s4 = t51 ⊕ t66 s6 = t56 ⊕ t62
t59 = z3 ⊕ t54 t50 = z2 ⊕ z12 s5 = t47 ⊕ t65 s7 = t48 ⊕ t60
t64 = z4 ⊕ t59 t57 = t50 ⊕ t53 t67 = t64 ⊕ t65
t47 = z10 ⊕ z11 t60 = t46 ⊕ t57 s2 = t55 ⊕ t67

Figure 5.10: AES s-box circuit for efficient bitslice implementation.

PRESENT has 16 parallel s-box computations per round, as AES. We hence get a bitsliced
implementation with 16-bit words that we want to group for the calls to ISW-AND. However
for the chosen circuit, we could not fully parallelize the nonlinear gates because of the
dependency between three of them. We could however group the two OR gates after a slight
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reordering of the operations. We hence obtain a masked bitsliced implementation computing
the 16 PRESENT s-boxes in parallel with 3 calls to ISW-AND. Our reordered version of the
circuit is depicted in Figure 5.11. We clearly see that the two successive OR gates can be
computed in parallel. For the sake of security, we also refresh one of the two input sharings in
the 3 calls to ISW-AND. As for the bitslice AES s-box, the implied overhead is manageable.

t1 = x2 ⊕ x1 t7 = x3 ⊕ t5
t2 = x1 · t2 t8 = x3 ∨ t5
t3 = x0 ⊕ t2 t9 = t7 ∨ t6
y3 = x3 ⊕ t3 y2 = t6 ⊕ t8
t4 = t1 · t3 y0 = y2 ⊕ t7
t5 = t4 ⊕ x1 y1 = t3 ⊕ t9
t6 = t1 ⊕ y3

Figure 5.11: PRESENT s-box circuit for efficient bitslice implementation.

5.5.3.1 Implementation and Performance

Table 5.20 gives the performance obtained for our masked bitslice implementations of the
AES and PRESENT s-boxes. For comparison, we also recall the performances of the fastest
polynomial methods for AES and PRESENT (i.e. parallel versions of KHL and F ◦G) as
well as the fastest generic methods for n = 8 and n = 4 (i.e. parallel versions of the algebraic
decomposition method for n = 8 and CRV for n = 4). The timings are further plotted in
Figures 5.12 and 5.13 for the sake of illustration.

Table 5.20: Performance of secure bitsliced s-boxes and comparison.

Clock cycles Code size
Bitslice AES s-box (16�) 288 d2 + 1097 d+ 1080 3.1 KB
KHL (2× 8�) 764 d2 + 512 d+ 538 4 KB
Alg. decomp. for n = 8 (4× 4�) 2376 d2 + 3812 d+ 5112 10.3 KB
Bitslice PRESENT s-box (16�) 61.5 d2 + 178.5 d+ 193 752 B
F ◦G (2× 8�) 376 d2 − 168 d+ 204 1.4 KB
CRV for n = 4 (2× 8�) 295 d2 + 667 d+ 358 2.1 KB

These results clearly demonstrate the superiority of the bitslicing approach. Our masked
bitsliced implementations of the AES and PRESENT s-boxes are significantly faster than
state-of-the art polynomial methods finely tuned at the assembly level.
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Figure 5.12: Timings for 16 AES s-boxes.
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Figure 5.13: Timings for 16 PRESENT s-
boxes.

5.6 Cipher Implementations

This section finally describes masked implementations of the full PRESENT and AES
blockciphers. These blockciphers are so-called substitution-permutation networks, where each
round is composed of a key addition layer, a nonlinear layer and a linear diffusion layer.
For both blockciphers, the nonlinear layer consists in the parallel application of 16 s-boxes.
The AES works on a 128-bit state (which divides into sixteen 8-bit s-box inputs) whereas
PRESENT works on a 64-bit state (which divides into sixteen 4-bit s-box inputs). For
detailed specifications of these blockciphers, the reader is referred to [FIP01] and [BKL+07].
For both blockciphers, we follow two implementation strategies: the standard one (with
parallel polynomial methods for s-boxes) and the bitsliced one (with bitsliced s-box masking).

For the sake of efficiency, we assume that the key is already expanded, and for the sake of
security we assume that each round key is stored in (non-volatile) memory under a shared
form. In other words, we do not perform a masked key schedule. Our implementations start
by masking the input plaintext with d− 1 random m-bit strings (where m is the block cipher
bit-size) and store the d resulting shares in memory. These d shares then compose the sharing
of the block cipher state that is updated by the masked computation of each round. When
all the rounds have been processed, the output ciphertext is recovered by adding all the
output shares of the state. For the bitsliced implementations, the translation from standard
to bitsliced representation is performed before the initial masking so that it is done only once.
Similarly, the translation back from the bitsliced to the standard representation is performed
a single time after unmasking.
The secure s-box implementations are done as described in previous sections. It hence

remains to deal with the key addition and the linear layers. These steps are applied to each
share of the state independently. The key-addition step simply consists in adding each share
of the round key to one share of the state. The linear layer implementations are described
hereafter.

5.6.1 Standard AES linear layer.

We based our implementation on a classical optimized version of the unmasked block cipher.
We use a transposed representation of the state matrix in order to store each row in a 32-bit
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register. The MixColumns can then be processed for each column simultaneously by working
with row registers, and the ShiftRows simply consists of three rotate instructions.

5.6.2 Bitsliced AES linear layer.

The MixColumns step can be efficiently computed in bitslice representation by transforming
the state matrix (bi,j)i,j into a new state matrix:

ci,j = xtimes(bi,j ⊕ bi+1,j)⊕ bi+1,j ⊕ bi+2,j ⊕ bi+3,j , (5.14)

where xtimes denotes the multiplication by x over F28 ≡ F2[x]/p(x) with p(x) = x8 + x4 +
x3 + x+ 1. The xtimes has a simple Boolean expression, which is:

(b7, b6, . . . , b0)2
xtimes−−−−−→ (b6, b5, b4, b3 ⊕ b7, b2 ⊕ b7, b1, b0 ⊕ b7, b7)2 (5.15)

Let Wk denotes the word corresponding to the kth bits of the state bytes bi,j , and let W (i,j)
k

denotes the (4 · i+ j)th bit of Wk (that is the kth bit of the state byte bi,j). The words Zk in
output of the bitslice MixColumns satisfy

Z
(i,j)
k = X

(i,j)
k ⊕W (i+1,j)

k ⊕W (i+2,j)
k ⊕W (i+3,j)

k , (5.16)

where X(i,j)
k is the kth bit of the output of xtimes(bi,j ⊕ bi+1,j). This gives

Zk = Xk ⊕ (Wk ≪ 4)⊕ (Wk ≪ 8)⊕ (Wk ≪ 12) , (5.17)

where ≪ denotes the rotate left operator on 16 bits. Following the Boolean expression of
xtimes, the word Xk satisfies Xk = Yk−1 if k ∈ {7, 6, 5, 2}, Xk = Yk−1 ⊕ Y7 if k ∈ {4, 3, 1},
and X0 = Y7, with Yk = Wk ⊕ (Wk ≪ 4).
The above equation can be efficiently evaluated in ARM assembly, taking advantage of

the barrel shifter. The only subtlety is that the above rotate operations are on 16 bits
whereas the ARM rotation works on 32 bits. But this can be simply circumvented by using
left shift instead of left rotate with a final reduction of the exceeding bits. The obtained
implementation takes 43 one-cycle instructions for the overall bitslice MixColumns.

The ShiftRows is the most expensive step of the AES linear layer in bitslice representation.
It must be applied on the bits of each vector Wk (since each nibble of Wk correspond to
a different row of the state). Each row can be treated using 6 ARM instructions (6 clock
cycles) as shown in the following code:

;; R3 =b0 b1 b2 b3 ... b16
AND R0 , R3 , #0 xF0 ;; R0 = b5 b6 b7 b8
AND R2 , R0 , #0 x80 ;; R2 = b8
BIC R0 , R0 , #0 x80 ;; R0 = b5 b6 b7 0
EOR R0 , R0 , R2 , LSR #4 ;; R0 = b8 b5 b6 b7
BIC R3 , #0 xF0 ;; R3 = b1 ... b4 0000 b9 ... b16
EOR R3 , R0 , LSL #1 ;; R3 = b1 ... b4b8b5b6b7 ... b16

This must be done for 3 rows, which makes 18 clock cycles per word Wk, that is a total of
8× 18 = 144 clock cycles.
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5.6.3 PRESENT linear layer.

The linear layer of PRESENT, called the pLayer, consists in a permutation of the 64 bits of
the state. In both representations, our implementation of this step use the straightforward
approach where each bit is taken at a given position i in a source register and put at
given position j in a destination register. Such a basic operation can be done in two ARM
instructions (2 clock cycles), with a register $one previously set to 1, as follows:

AND $tmp , $src , $one , LSR #i
EOR $dst , $tmp , LSL #j

In both representations, our pLayer implementation is hence composed of 64×2 instructions
as above, plus the initialization of destination registers, for a total of 130 instructions for the
standard representation and 132 for the bitslice representation.5

5.6.4 Translation to and from bitslice format.

For both blockciphers the bitslice translations (forward and backward) can be seen as bit
permutations. They are hence implemented using a similar approach as for the pLayer of
PRESENT. This requires around 2× 64 = 128 cycles for PRESENT and 2× 128 = 256 clock
cycles for AES. Further note that in the case of PRESENT, the forward bitslice translation
is exactly the pLayer transformation, which allows some code saving.

5.6.5 Performance

In our standard implementation of AES, we used the parallel versions of KHL and RP
(with ISW-EL) for the s-box. For the standard implementation of PRESENT, we used the
parallel versions of the F ◦G method and of the CRV method. The obtained performance
are summarized in Table 5.21. The timings are further plotted in Figures 5.14 and 5.15 for
illustration.

These results clearly confirm the superiority of the bitslice implementations in our context.
The bitslice AES implementation asymptotically takes 38% of the timings of the standard
AES implementation using the best parallel polynomial method for the s-box (namely KHL).
This ratio reaches 18% for PRESENT (compared to the F ◦G method). It is also interesting
to observe that PRESENT is slower than AES for standard masked implementations whereas
it is faster for masked bitslice implementations. In the latter case, a PRESENT computation
asymptotically amounts to 0.58 AES computation. This ratio directly results from the
number of calls to ISW-AND which is 10× 16 = 160 for AES (16 per round) and 31× 3 = 93
for PRESENT (3 per round).

In order to illustrate the obtained performance in practice, Table 5.22 gives the correspond-
ing timings in milliseconds for a clock frequency of 60 MHz. For a masking order of 10, our
bitsliced implementations only take a few milliseconds.

5We do not count the initialization of the register $one which is done once and not for each share.
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Table 5.21: Performances of masked blockciphers implementation.

Clock cycles Code (KB) Random (bytes)
Bitslice AES 2880 d2 + 13675 d+ 11872 7.5 320d(d− 1)
Standard AES (KHL �) 7640 d2 + 6229 d+ 6311 4.8 560d(d− 1)
Standard (AES RP-HT �) 9580 d2 + 5129 d+ 7621 12.4 400d(d− 1)
Standard (AES RP-EL �) 10301 d2 + 6561 d+ 7633 4.1 400d(d− 1)
Bitslice PRESENT 1906.5 d2 + 10972.5 d+ 7712 2.2 372d(d− 1)
Standard PRESENT (F ◦G �) 11656 d2 + 341 d+ 9081 1.9 496d(d− 1)
Standard PRESENT (CRV �) 9145 d2 + 45911 d+ 11098 2.6 248d(d− 1)
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Figure 5.14: Timings of masked AES.
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Figure 5.15: Timings of masked PRESENT.

Table 5.22: Timings for masked bistlice AES and PRESENT with a 60 Mhz clock.

d = 2 d = 3 d = 4 d = 5 d = 10
Bitslice AES 0.89 ms 1.39 ms 1.99 ms 2.7 ms 8.01 ms
Bitslice PRESENT 0.62 ms 0.96 ms 1.35 ms 1.82 ms 5.13 ms





Chapter 6
Conclusion and Open Questions

6.1 Conclusion

In this thesis, we have studied efficient schemes to protect block ciphers against physical
attacks. As the evaluation of the s-boxes is the main bottleneck, the first challenge was to find
sound representation of the s-boxes. For this purpose, we studied the s-box as a polynomial
over a finite field and proposed a generalization of an existing method to decompose any
polynomial over any finite field. As opposed to solutions using SAT solvers, our decomposition
technique can work for any s-box size. The main advantage of this generalized method is
its efficiency in terms of multiplicative complexity and its flexibility with respect to its
instantiations. Indeed, our implementation results showed interesting trade-offs between
timing and memory costs. In fact, for small masking orders working on a full field allows
to obtain fast implementation results but with some costs on code size, whereas median
field allows to obtain slower implementation but with a tight memory usage. However, as
the masking order grows, the Boolean field quickly becomes the best solution thanks to the
bitslicing strategy.

Then, we analyzed the security of masking schemes in a theoretical framework and more
specifically the composable security of secure implementations using ISW multiplication
gadgets. By a security reduction with the use of game based techniques, we were able to
reformulate the probing security of those particular circuits into a problem of linear algebra.
From the linear algebra, we identified a criterion to determine whether or not a tight shared
circuit is probing secure for any adversary. From this criterion, we have developed a formal
verification tool that can determine, given the description of a secure circuit, if a probing
attack is possible. For the AES s-box Boolean circuit, our verification tool determined that
no refresh gadgets are required, as opposed to other verification tools that insert refresh
gadgets after each multiplication. This led to a reduction of the randomness consumption by
a factor of two in the implementation of the AES s-box with a bitslicing strategy.

Finally, we have implemented in ARM assembly most of the state-of-the-art masking
schemes and different instantiations of our decomposition framework. We followed a bottom-
up approach that allowed us to obtain optimized implementations for the building blocks
of the construction of protected block ciphers. We studied different techniques to perform
secure multiplications with various trade-offs between efficiency, randomness consumption
and practical security. Finally, we have studied the use of the bitslice strategy at the s-box
level which allowed us to outperform all known polynomial-based solutions. Moreover, for the
AES s-box the bitsliced implementation requires little randomness thanks to our verification
tool. The numerous implementations developed during this thesis have been made available
online for public use [github].

— 113 —
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6.2 Open Questions

Here, we give a few open problems and directions that might be interesting for future work.

Question 6.1. How could homomorphic encryption benefit from our generic decomposition
tool?

In homomorphic encryption, the problem of evaluating efficiently the s-box is similar
to the one in masking schemes. In fact, to lower the impact of the growth of the noise
in homomorphic encryption, one needs to find encryption schemes that have a minimal
multiplicative depth. Therefore, one may want to adapt our generic decomposition method to
target not only the multiplicative complexity but also the multiplicative depth and hence get
efficient implementation of homomorphic encryption. Specifically, since the notion of parallel
multiplicative complexity introduced in Chapter 3 is equivalent to the notion of multiplicative
depth, as soon as the architecture size is big enough (see Chapter 3), our generic framework
could be adapted to find representations that lower the multiplicative depth.

Question 6.2. Could we optimize SAT solver techniques to work on bigger s-boxes?

One major drawback of our generic decomposition framework is that it is a heuristic
method. To get the tightest decomposition of a function with respect to the number of
multiplications, the ideal solution is to use SAT solvers to find the exact representation of
the s-box with the optimal multiplicative complexity. However, as the size of the s-box grows,
the complexity of SAT solvers explodes. Hence, one interesting line of work would be to see
if it is possible to reduce the number of equations that the SAT solvers try to solve to find
representations in a reasonable amount of time.

Question 6.3. Is our verification tool extendable to more generic problems?

Currently our verification tool introduced in Chapter 4 only works on Boolean circuit
composed of ISW multiplications. It would be of interest to extend the results to more general
circuits (e.g. arithmetic circuits), but also to more generic secure multiplication (namely
multiplications that do not necessarily manipulate all the cross products). Moreover, we
only applied our tool to the example given in Chapter 3. Applying the tool to other existing
solutions such as generic decomposition techniques to reduce the randomness can hence be a
interesting line of work.
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Résumé
Depuis leur introduction à la fin des années 1990,
les attaques par canaux auxiliaires sont considérées
comme une menace majeure contre les implémen-
tations cryptographiques. Parmi les stratégies de
protection existantes, une des plus utilisées est le
masquage d’ordre supérieur. Elle consiste à séparer
chaque variable interne du calcul cryptographique en
plusieurs variables aléatoires. Néanmoins, l’utilisation
de cette protection entraîne des pertes d’efficacité con-
sidérables, la rendant souvent impraticable pour des
produits industriels.
Cette thèse a pour objectif de réduire l’écart entre les
solutions théoriques, prouvées sûres, et les implémen-
tations efficaces déployables sur des systèmes embar-
qués. Plus particulièrement, nous nous intéressons à
la protection de chiffrement par bloc tel que l’AES,
dont l’enjeu principal revient à protéger les boîtes-s
avec un surcoût minimal.
Nous essayons d’abord de trouver des représentations
mathématiques optimales pour l’évaluation des boîtes-
s en minimisant le nombre de multiplications (un
paramètre déterminant pour l’efficacité du masquage,
mais aussi pour le chiffrement homomorphe). Pour
cela, nous définissons une méthode générique pour
décomposer n’importe quelle fonction sur un corps
fini avec une complexité multiplicative faible. Ces
représentations peuvent alors être évaluées efficace-
ment avec du masquage d’ordre supérieur. La flexi-
bilité de la méthode de décomposition permet égale-
ment de l’ajuster facilement selon les nécessités du
développeur.
Nous proposons ensuite une méthode formelle pour
déterminer la sécurité d’un circuit évaluant des sché-
mas de masquages. Cette technique permet notam-
ment de déterminer de manière exacte si une attaque
est possible sur un circuit protégé ou non. Par rap-
port aux autres outils existants, son temps de réponse
n’explose pas en la taille du circuit, ce qui permet
d’obtenir une preuve de sécurité quelque soit l’ordre
de masquage employé. De plus, elle permet de dimin-
uer de manière stricte l’emploi d’outils coûteux en
aléas, requis pour renforcer la sécurité des opérations
de masquages.
Enfin, nous présentons des résultats d’implémentation
en proposant des optimisations tant sur le plan algo-
rithmique que sur celui de la programmation. Nous
utilisons notamment une stratégie d’implémentation
bitslice pour évaluer les boîtes-s en parallèle. Cette
stratégie nous permet d’atteindre des records de ra-
pidité pour des implémentations d’ordres élevés. Les
différents codes sont développés et optimisés en assem-
bleur ARM, un des langages les plus répandus dans
les systèmes embarqués tels que les cartes à puces
et les téléphones mobiles. Ces implémentations sont,
en outre, disponibles en ligne pour une utilisation
publique.

Mots Clés
cryptographie, attaques par canaux auxiliaires, implé-
mentation efficace, contremesures, sécurité prouvée,
assembleur.

Abstract
Since their introduction at the end of the 1990s, side-
channel attacks are considered to be a major threat
against cryptographic implementations. Higher-order
masking is considered to be one the most popular ex-
isting protection strategies. It consists in separating
each internal variable in the cryptographic computa-
tion into several random variables. However, the use
of this type of protection entails a considerable ef-
ficiency loss, making it unusable for industrial solu-
tions.
The goal of this thesis is to reduce the gap between
theoretical solutions, proven secure, and efficient im-
plementations that can be deployed on embedded sys-
tems. More precisely, I am analysing the protection
of block ciphers such as the AES encryption scheme,
where the main issue is to protect the s-boxes with
minimal overhead in costs.
I have tried, first, to find optimal mathematical rep-
resentations in order to evaluate the s-boxes while
minimizing the number of multiplications (a decisive
parameter for masking schemes, but also for homo-
morphic encryption). For this purpose, I have de-
fined a generic method to decompose any function on
any finite field with a low multiplicative complexity.
These representations can, then, be efficiently evalu-
ated with higher-order masking. The flexibility of the
decomposition technique allows also easy adjusting to
the developer’s needs.
Secondly, I have proposed a formal method for mea-
suring the security of circuits evaluating masking
schemes. This technique allows to define with exact
precision whether an attack on a protected circuit is
feasible or not. Unlike other tools, its response time is
not exponential in the circuit size, making it possible
to obtain a security proof regardless of the masking
order used. Furthermore, this method can strictly re-
duce the use of costly tools in randomness required
for reinforcing the security of masking operations.
Finally, we present the implementation results with
optimizations both on algorithmic and programming
fronts. We particularly employ a bitslice implemen-
tation strategy for evaluating the s-boxes in parallel.
This strategy leads to speed record for implementa-
tions protected at high order. The different codes are
developed and optimized under ARM assembly, one
of the most popular programming language in embed-
ded systems such as smart cards and mobile phones.
These implementations are also available online for
public use.

Keywords
cryptography, side-channel attacks, efficient imple-
mentation, countermeasures, provable security, assem-
bly.
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