
HAL Id: tel-01904493
https://inria.hal.science/tel-01904493

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Solver for the Poisson Equation on a Hierarchy
of Superimposed Meshes, under a Python Framework

Federico Tesser

To cite this version:
Federico Tesser. Parallel Solver for the Poisson Equation on a Hierarchy of Superimposed Meshes,
under a Python Framework. Analysis of PDEs [math.AP]. Universite Bordeaux, 2018. English. �NNT :
�. �tel-01904493�

https://inria.hal.science/tel-01904493
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHEMATIQUES ET D’INFORMATIQUE DE
BORDEAUX

Mathématiques Appliquées et Calcul Scientifique

Par Federico Tesser

Solveur Parallèle pour l’Equation de Poisson sur Mailles
Superposées et Hiérarchiques, dans le Cadre du Langage

Python

Sous la direction de : Angelo Iollo et Michel Bergmann

Soutenue le 11/09/2018

Président du jury : Professeur Galusinski Cedric

Membres du jury :

M. Berrone, Stefano Professeur, Politecnico di Torino Rapporteur
M. Galusinski, Cedric Professeur, Université de Toulon Rapporteur
M. Rougier, Nicolas P. Chargé de recherche, Inria Bordeaux Examinateur
M. Cisternino, Marco Software Developer, PhD, Optimad Engineering Examinateur
M. Bruneau, Charles-Henry Professeur, Université de Bordeaux Invité
M. Barthou, Denis Professeur, Bordeaux INP Invité

Titre : Solveur Parallèle pour l’Equation de Poisson sur
Mailles Superposées et Hiérarchiques, dans le Cadre du
Langage Python

Résumé : Les discrétisations adaptatives sont importantes dans les problèmes de flux
compressible/incompressible puisqu'il est souvent nécessaire de résoudre des détails sur
plusieurs niveaux, en permettant de modéliser de grandes régions d'espace en utilisant un
nombre réduit de degrés de liberté (et en réduisant le temps de calcul). Il existe une grande
variété de méthodes de discrétisation adaptative, mais les grilles cartésiennes sont les plus
efficaces, grâce à leurs stencils numériques simples et précis et à leurs performances
parallèles supérieures. Et telles performance et simplicité sont généralement obtenues en
appliquant un schéma de différences finies pour la résolution des problèmes, mais cette
approche de discrétisation ne présente pas, au contraire, un chemin facile d'adaptation.
Dans un schéma de volumes finis, en revanche, nous pouvons incorporer différents types de
maillages, plus appropriées aux raffinements adaptatifs, en augmentant la complexité sur les
stencils et en obtenant une plus grande flexibilité. L'opérateur de Laplace est un élément
essentiel des équations de Navier-Stokes, un modèle qui gouverne les écoulements de
fluides, mais il se produit également dans des équations différentielles qui décrivent de
nombreux autres phénomènes physiques, tels que les potentiels électriques et
gravitationnels. Il s'agit donc d'un opérateur différentiel très important, et toutes les études
qui ont été effectuées sur celui-ci, prouvent sa pertinence. Dans ce travail seront présentés
des approches de différences finies et de volumes finis 2D pour résoudre l'opérateur
laplacien, en appliquant des patchs de grilles superposées où un niveau plus fin est
nécessaire, en laissant des maillages plus grossiers dans le reste du domaine de calcul. Ces
grilles superposées auront des formes quadrilatérales génériques. Plus précisément, les
sujets abordés seront les suivants: 1) introduction à la méthode des différences finies,
méthode des volumes finis, partitionnement des domaines, approximation de la solution; 2)
récapitulatif des différents types de maillages pour représenter de façon discrète la
géométrie impliquée dans un problème, avec un focus sur la structure de données octree,
présentant PABLO et PABLitO. Le premier est une bibliothèque externe utilisée pour gérer la
création de chaque grille, l'équilibrage de charge et les communications internes, tandis que
la seconde est l'API Python de cette bibliothèque, écrite ad hoc pour le projet en cours; 3) la
présentation de l'algorithme utilisé pour communiquer les données entre les maillages (en
ignorant chacune l'existence de l'autre) en utilisant les intercommunicateurs MPI et la
clarification de l'approche monolithique appliquée à la construction finale de la matrice pour
résoudre le système, en tenant compte des blocs diagonaux, de restriction et de
prolongement; 4) la présentation de certains résultats; conclusions, références. Il est
important de souligner que tout est fait sous Python comme framework de programmation,
en utilisant Cython pour l'écriture de PABLitO, MPI4Py pour les communications entre grilles,
PETSc4py pour les parties assemblage et résolution du système d'inconnues, NumPy pour
les objets à mémoire continue. Le choix de ce langage de programmation a été fait car
Python, facile à apprendre et à comprendre, est aujourd'hui un concurrent significatif pour
l'informatique numérique et l'écosystème HPC, grâce à son style épuré, ses packages, ses
compilateurs et pourquoi pas ses versions optimisées pour des architectures spécifiques.

Mots clés : Python, Différences Finies, Volumes Finis, Programmation Parallèle,
Opérateur de Laplace, Discrétisations Adaptatives

Equipe de Recherche MEMPHIS

Title : Parallel Solver for the Poisson Equation on a
Hierarchy of Superimposed Meshes, under a Python
Framework

Abstract : Adaptive discretizations are important in compressible/incompressible flow
problems since it is often necessary to resolve details on multiple levels, allowing large
regions of space to be modeled using a reduced number of degrees of freedom (reducing the
computational time). There are a wide variety of methods for adaptively discretizing space,
but Cartesian grids have often outperformed them even at high resolutions due to their
simple and accurate numerical stencils and their superior parallel performances. Such
performance and simplicity are in general obtained applying a finite-difference scheme for
the resolution of the problems involved, but this discretization approach does not present, by
contrast, an easy adapting path. In a finite-volume scheme, instead, we can incorporate
different types of grids, more suitable for adaptive refinements, increasing the complexity on
the stencils and getting a greater flexibility. The Laplace operator is an essential building
block of the Navier-Stokes equations, a model that governs fluid flows, but it occurs also in
differential equations that describe many other physical phenomena, such as electric and
gravitational potentials, and quantum mechanics. So, it is a very important differential
operator, and all the studies carried out on it, prove its relevance. In this work will be
presented 2D finite-difference and finite-volume approaches to solve the Laplacian operator,
applying patches of overlapping grids where a more fined level is needed, leaving coarser
meshes in the rest of the computational domain. These overlapping grids will have generic
quadrilateral shapes. Specifically, the topics covered will be: 1) introduction to the finite
difference method, finite volume method, domain partitioning, solution approximation; 2)
overview of different types of meshes to represent in a discrete way the geometry involved in
a problem, with a focus on the octree data structure, presenting PABLO and PABLitO. The
first one is an external library used to manage each single grid’s creation, load balancing and
internal communications, while the second one is the Python API of that library written ad hoc
for the current project; 3) presentation of the algorithm used to communicate data between
meshes (being all of them unaware of each other’s existence) using MPI inter-
communicators and clarification of the monolithic approach applied building the final matrix
for the system to solve, taking into account diagonal, restriction and prolongation blocks; 4)
presentation of some results; conclusions, references. It is important to underline that
everything is done under Python as programming framework, using Cython for the writing of
PABLitO, MPI4Py for the communications between grids, PETSc4py for the assembling and
resolution parts of the system of unknowns, NumPy for contiguous memory buffer objects.
The choice of this programming language has been made because Python, easy to learn
and understand, is today a significant contender for the numerical computing and HPC
ecosystem, thanks to its clean style, its packages, its compilers and, why not, its specific
architecture optimized versions.

Keywords : Python, Finite Differences, Finite Volumes, Parallel Programming, Laplace
Operator, Adaptive Discretizations

Research Team MEMPHIS

Résumé substantiel : Dans la vie de tous les jours, nous traitons souvent des
phénomènes multi-échelles, sans souvent le réaliser. Notre société elle-même est organisée
selon une structure hiérarchique qui suit un chemin multi-échelle: pays, régions, villes,
arrondissements et, à la fin, nous.

En laissant de côté nos aspects sociaux et en nous concentrant sur les phénomènes
physiques, un outil d'analyse important consiste à les décomposer dans leurs différentes
échelles.
Du point de vue de la physique en fait, tous les matériaux à l'échelle microscopique sont
composé des noyaux et des électrons, dont la structure et la dynamique sont responsable du
comportement macroscopique du matériau, tel que le transport, propagation d'onde,
déformation.

L'avènement de l'informatique parallèle a contribué au développement de la modélisation
multi-échelle, pas seulement en théorie. Puisque plus de degrés de liberté pourraient être
résolus par des environnements informatiques parallèles, des formulations algorithmiques
plus précises pourraient être admises.
Cependant, pour étudier certains phénomènes, des schémas d'ordre élevé et plus précis ne
suffisent pas, parfois. Donc, une approche alternative/coopérant est de réduire la dimension
caractéristique du domaine de calcul, pour essayer de reproduire tous les composants à
leurs différentes échelles. Et ce faisant, implique de plus grandes moles de données, qui
nécessitent plus de puissance de calcul et plus de temps à traiter.
Mais le pouvoir de calcul n'est pas illimité (comme il est pas notre temps) et, surtout, il ne
vient pas gratuitement. Les discrétisations adaptatives sont importantes dans de nombreux
problèmes multi-échelle, où il est essentiel de réduire la faim computationnelle et le temps de
calcul tout en obtenant la même ou plus grande précision, dans des régions particulières du
domaine de calcul.

En mathématiques appliquées, beaucoup de méthodes sont bien adaptées pour être
utilisées sur des grilles régulières (et en particulier cartésiennes), car elles sont simples et
permettent une représentation claire du domaine considéré.
Le principal inconvénient de cette approche est qu'elles ne permettent pas de discrétisations
adaptives, en forçant l'utilisateur à affiner le domaine de calcul globalement, sans suivre la
forme, par exemple, des frontières physiques et des corps à l'intérieur du contexte analysé.
Par conséquent, les métriques nécessaires pour passer de ces systèmes de référence
bodyfitted à ceux cartésiens, sont un peu ennuyeux à gérer, ainsi que nécessaire.

Pour cette raison l’AMR (raffinement de maillage adaptatif) est vital, surtout pour les grands
calculs: supposons de vouloir «donner un sens à l'univers avec des supercalculateurs»,
comme a dit Tom Abel de l'Université de Standford: c'est un problème cosmologique qui
incorpore la «mère de toutes les échelles», avec des variations spatiales de l'ordre de 10^12
plage dynamique jusqu'à 10^15.
Et en essayant de le résoudre en utilisant une grille raffinée uniforme, il faudrait une vie, ainsi
que d'énormes ressources de calcul. Et puisque les solutions complexes nécessitent plus de
mémoire, des outils adaptatifs efficaces comme l’AMR sont essentiels (bien que l’AMR ne
soit qu'un outil parmi d'autres qui doivent être utilisés).

Après une brève introduction sur les techniques AMR, et en passant dans un section
consacrée aux Chimera grids, le premier chapitre examinera le SAMR (raffinement de
maillage adaptatif structuré) et certains logiciels connexes, et se terminera avec l'introduction
d'une nouvelle méthode adaptative, sujet de ce manuscrit.

En particulier, ce travail présentera une nouvelle méthode adaptative de différences finies et
de volumes finis 2D pour discrétiser l'opérateur laplacien sur un domaine de calcul constitué
de plusieurs quadrilatères génériques qui se chevauchent.
Cette approche peut être insérée dans la typologie chimère, étant chaque grille construite
seule, sans l'intrusion des autres, et nécessitant une couche de communication pour la
résolution finale. Contrairement à ce qui se passe dans les approches SAMR (où les
communications sont nécessaires à chaque niveau de «l'arbre télescopique» des taches
construites sur la plus grossière), ici une seule communication est nécessaire, avec un seul
niveau de chevauchement, exploitant l'affinage intrinsèque de la structure de données
octree.
Caractéristique de cette approche est d‘etre pensé et implémenté en Python, comme
langage de programmation.

Les principaux objectifs de ce travail peuvent donc être résumés comme suit:

• appliquez une nouvelle approche pour les problèmes multi-échelles;
• résoudre les difficultés présentes dans les méthodologies cartésiennes, chimères et

SAMR, en laissant les avantages inchangés, en utilisant des maillages octree: pas de
changements dans les équations descriptives du phénomène considéré; affiner le
maillage là où c'est nécessaire; simplifier les algorithmes de communication entre les
patches;

• écrire un code HPC entièrement parallèle;
• créer une bibliothèque Python accessible gratuitement;
• augmenter le nombre d'enveloppes scientifiques écrites pour Python et déjà présent

(MPI4Py, NumPy, PETSc4py, etc.), avec un framework numérique complet, Python
compatible;

• explorer l'écosystème HPC en utilisant de nouvelles techniques et langages de
programmation.

Et le thème principal du chapitre deux c’est précisément une introduction à Python, un
langage de programmation de haut niveau et interprété, destiné à la programmation
general-purpose, qui fournit des concepts qui permettent un codage clair à petites et grandes
échelles, grâce à son système de type dynamique et sa gestion automatique de la mémoire.

Créé par Guido van Rossum et relaché en 1991, Python a une philosophie de élaboration
qui met l'accent sur la visibilité du code, et une syntaxe qui permet aux programmeurs
d'exprimer des concepts dans moins de lignes de code qu'avec d'autres langues. Il prend en
charge plusieurs paradigmes de programmation, y compris objet oriented, fonctionnel et
procédurale, et dispose d'une bibliothèque standard vaste et complète.
De plus, ses interpréteurs sont disponibles pour de nombreux systèmes d'exploitation.

Mais, étant qu'il s'agit d'un langage interprété, il est souvent beaucoup plus lent que les
langages compilés. En effet, les performances restent plus lentes par rapport aux langages
plus anciens tels que C et C ++.
À cet régard, la dernière partie du chapitre montre un outil qui vient à l'aide de Python,
Cython, un surensemble performant de Python qui peut être l'amalgame entre son sous-
ensemble et l'écosystème HPC, pour surmonter cette écart entre les langages de
programmation compilés et interprétés. Certains résultats numériques montrent des
performances en utilisant du code Python pur, un code Cython mixte ou une implémentation
pure en C++.

Le troisième chapitre, par contre, il présente une vue d'ensemble des structures de données
hiérarchiques pour représenter des images, telles que le quadtree et l'octree (les octrees
sont l'analogue 3D des quadtrees). Ces deux types de données fondamentaux sont basés
sur le principe de la décomposition récursive et leurs principaux champs d'utilisation sont: la
représentation des données utilisées dans les applications en infographie, robotique et
computer vision.

Un quadtree est une structure de données arborescente dans laquelle chaque nœud interne
a exactement quatre enfants. Les carrés sont le plus souvent utilisés pour partitionner un
espace 2D en le subdivisant de manière récursive en quatre quadrants ou régions. Les
données associées à une feuille varient en fonction de l'application, mais la feuille représente
une « unité des information spatiale intéressant ».
Les régions subdivisées peuvent être carrées ou rectangulaires, et la résolution de la
décomposition (c'est-à-dire, le nombre de fois que le processus de décomposition est
appliqué) peut être fixé au préalable ou peut être régie par les propriétés des données
d'entrée.

Sur la base de ce qui précède, les quadtrees peuvent être différenciés sur les bases
suivantes:

• le type de données qu'ils représentent;
• le principe guidant le processus de décomposition;
• la résolution (variable ou non);
• si la forme de l'arbre est indépendante de l'ordre dans lequel les données sont

traitées.

Le chapitre explique la construction de quadtrees, et leurs types les plus courants.

Bien sûr, étant un manuscrit sur les mathématiques appliquées, beaucoup d'importance est
consacrée à l'utilisation des quadtrees (et de leur contrepartie 3D) dans la décomposition de
l'espace. En fait, l'une des motivations pour le développement de structures de données
hiérarchiques, est un désir de économiser des espace. Outre la prise en compte des critères
de feuille, l'étude des structures de données hiérarchiques a également porté sur la manière
de coder l'arbre représentant la hiérarchie.
Et dans ce contexte, l'approche sur lequel le travail se concentre est celui basé sur les
locational codes, d'abord proposé par Morton, et connu en fait comme «Morton indices».

En analyse mathématique et informatique, cette représentation binaire est aussi appelée
ordre Z, ordre Morton, ou code Morton, et est un fonction qui mappe des données
multidimensionnelles dans une dimension, tout en préservant la localité des points de
données. L'ordre Z peut être utilisé pour construire efficacement un quadtree pour un
ensemble de points. L'idée de base est de trier l’ensemble d'entrée selon l'ordre Z et, une
fois triés, les points peuvent être stockés dand un arbre binary search et utilisé directement
(quadtree linéaire), ou ils peuvent être utilisés pour construire un quadtree pointer based.
Comme alternative, la courbe de Hilbert a été suggérée, ayant un meilleur comportement de
conservation de l'ordre, et donnant ainsi une meilleure localisation spatiale. Mais les calculs
pour la distance de Hilbert sont plus compliqués que pour le calcul de Morton, en conduisant
à important surcharge pour le processeur.
Comportement qui, dans les applications liées au CPU, n'est pas très apprécié.

le chapitre se termine par un paragraphe dédié à l'utilisation de les octrees pour la
génération du maillage, et à l'introduction de la bibliothèque Python créée par l'auteur pour le
projet en question : PABLitO.

Bibliothèque qui est décrite plus précisément dans le chapitre suivant: ceci et le dernier sont
les chapitres où il est couvert en détail la nouvelle méthode adaptative qui est le question clé
de cette thèse.
Méthode qui vise à réduire 1) la complexité typique des approches Chimera (où l'algorithme
global ne peut pas être mis en œuvre si facilement), et 2) le nombre croissant de grilles de
calcul en place (qui peuvent être un point chaud de complexité pour le schéma de
communication entre toutes les mailles). Et bien sûr, cette méthode vise à marquer un point
d’inflexion dans les techniques de programmation pour la CFD, en laissant ouverte une lueur
sur l'utilisation de langages de programmation non classiques (bien sûr, relativement
parlant), ayant été complètement développé en utilisant Python et Cython.
Ces deux langues ont été utilisées dans le but de présenter un véritable application
informatique totalement opérationnelle, comme déjà dit, avec un langage (Python) adapté
pour un développement et formations faciles.

Après avoir présenté les principaux points de modélisation et de simulation de processus
physiques, et après avoir établi les points clés pour la simulation numérique des équations
aux dérivées partielles (EDP) et pour le méthodes numériques de différences et de volumes
finis, ces chapitres abordent les aspects techniques et les aspects détaillés de cette méthode
de discrétisation 2D basée sur le chevauchement des quadrilatères génériques faites par
quadtrees qui, comme précédemment mentionné, peut être comparé à l’AMR structuré à
bloques, mais que diffère en réalité dans l'usage de la capacité intrinsèque de les quadtrees
eux-mêmes de pouvoir être raffinés localement, en utilisant par exemple un estimateur
d'erreur ou des fonctions de prédiction, ou peut-être juste des fonctions de forme.

Approches algorithmiques et de programmation pour les communications parallèles entre les
processus sont présentés, ainsi que l'idée derrière la construction du système monolithique
qui sera résolu. Des exemples sont montrés, pour illustrer également les différences et
l'utilisation des inter et intra communicateurs MPI.

L'équation de Poisson a été introduite, ainsi que les mécanismes Python pour appliquer la
sérialisation sur les données définies par l'utilisateur, nécessaires pour communiquer entre
de multiples processus et pour résoudre, en parallèle, des problèmes de calcul intensif avec
le paradigme MPI (malgré qu'il ne soit pas le seul disponible dans l'offre Python pour la
concurrence).
En outre, un exemple pratique du travail de programmation effectué à niveau Python a été
montré, en utilisant les extensions Cython écrites ad hoc, avec les approches algorithmiques
et de programmation pour le chevauchement des générique quadrilatère patches, utilisés
pour résoudre l’'équation de Poisson 2D, a été décrite.

Le dernier chapitre applique la théorie du chapitre précédent, en montrant des résultats
numériques sur différentes mailles, allant de une superposition classique à la déformation et
au raffinement intrinsèque.
Les paragraphes concernant ce sujet est toutefois reporté aux sections relatif à:

• l'explication mathématique de certaines interpolations utilisées dans les exemples;
• l'explication de la théorie dans la littérature qui concerne les résultats théoriques

gouvernant l'ordre des interpolations sur les régions frontalières des différents
patches de quadtree.

Le chapitre sera suivi par les conclusions couvrant tout le travail effectué, et qui vont prendre
les fils des sujets couverts, et des questions non encore terminé.

This thesis aims to be a common ground between applied mathematics and
information technology.
What will be read at its inside want to be clear and accurate for people
from both the audiences. That’s why technicalities, specific to these two
“distinct” worlds, won’t be around (not completely, at least).

A “vulgarisation” approach will be followed, explaining the basis of the
subjects that will be addressed, going into depth sometimes, but remaining
however in a common context for the previous two disciplines.
Context that is, for me of course, that thin line marking, although invisibly,
the excessively large cut-off between numerical methods and software devel-
oping, which at first sight may seem two fields quite different, but that in
reality could present several commonalities, more than the current ones.

Python represents one of these: a language widely used in software de-
veloping, thanks to its usage versatility but that, still, in the simulations
field is not considered like a valid alternative to the bare-bones languages
that dominate this scenario.
A real implementing case, so, could represent a first step in terms of accep-
tance and usage of a new language, in a new (for it) application context.

On the contrary, so many times can be seen IT frameworks, tools and in-
struments very powerful with “easy” mathematical implementations and
concerns.
That’s why it could be interesting to introduce in this field different ap-
proaches, to create here too valid alternatives and use cases to the main-
stream patterns.
In this context, a parallel multi-block approach for the resolution of the
Laplace operator could be a great starting point, gathering innovation with
a long-established mathematical case study (and guess what you will find in
pursuing the lecture).

Hoping that anyone looking through this thesis can find it clear and of
pleasant reading and, why not, source of inspiration, I would like to thank
the ones which have had the courage (willingly and not) to get, anyway,
up to this point: my parents, my fiancée, my family, who have always been
there, and have always put up with me. My supervisors, who have always
believed in me, helped and cheered me on during this “journey”. The com-
mission, which have agreed on judging my job. My friends, who have not
forgotten me during these years. To all of you, thanks.

Contents

1 Introduction 9

1.1 AMR Techniques . 11

1.2 Chimera grids . 12

1.3 Structured AMR . 16

1.4 Overlapping generic grids . 20

1.5 Summary . 22

2 Python 24

2.1 A Bit of History . 25

2.2 Releases . 26

2.3 The Zen of Python . 27

2.4 The Python Language . 28

2.5 The Standard Python Library 30

2.6 Python Implementations . 31

2.7 Python’s Pros and Cons . 32

2.7.1 Pros... 32

2.7.2 ...and Cons . 34

2.8 Cython . 35

2.9 What Cython is . 36

2.10 Cython Features . 38

2.11 Comparing Python, C, and Cython 40

2.12 Wrapping C Code with Cython 45

2.13 The Pareto Principle . 46

2.14 Summary . 48

3 Quadtrees and Octrees 50

3.1 Background . 51

3.2 Quadtree and Octree Definitions 53

3.3 Quadtree and Octree Space Decomposition 60

1

2 CONTENTS

3.4 The Quadtree/Octree Complexity Theorem 68
3.5 Algorithms Using Quadtrees 70
3.6 Quadtree Grid Generations 72

3.6.1 PABLitO Initialization 75
3.7 Summary . 77

4 Overlapping Octrees 79
4.1 PDEs Models and Simulations 80
4.2 Numerical Techniques for PDEs 83

4.2.1 Finite Difference Method 83
4.2.2 Finite volume method 87

4.3 Poisson Equation . 92
4.4 Numerical Discretization of the Poisson Equation 94

4.4.1 From/To Computational To/From Physical Domains . 95
4.5 Communicating Python Objects 98

4.5.1 Pickle and Marshalling 99
4.5.2 Multiprocessing . 100
4.5.3 MPI4Py . 101

4.6 Algorithmic and Programming Approaches 104
4.6.1 Programming Approach 106
4.6.2 Algorithmic Approach 108

4.7 Summary . 111

5 Numerical Results 114
5.1 Border and Inner Interpolations 114

5.1.1 Finite Volume Diamond Stencil 115
5.1.2 Bilinear Interpolation 116
5.1.3 Least squares . 119

5.2 Accuracy and Order of Interpolation 121
5.3 Numerical Results . 123

5.3.1 First Outcome . 123
5.3.2 Multiprocesses . 126
5.3.3 Heat Equation . 126

5.4 Summary . 134

6 Conclusions 137

List of Figures

1.1 AMR Refining methods representing different ways to refine
meshes for an adaptive approach. Base grid is showed in
the upper left corner, while in the subsequent subfigures is
modified to follow the refining paths, expressed by the corre-
sponding subcaptions . 13

1.2 A simple overset composite grid where the hole points are
blanked. Here are easily displayed the first two steps of the
recap on setting up an overset simulation: grid generation
(here curvilinear and Cartesian grids are used) and hole cut-
ting (interior points of the components grids are eliminated).
Image by Joel Guerrero[5] . 16

1.3 Interpolation elements for overlapping grids. Image by Joel
Guerrero[5], showing the third step of the overset simulation
recap, where donor and receptor cells are set out 17

1.4 Telescopic representation of the block-structured adaptive mesh
refinement. In red are highlighted the parts of each tele-
scopy’s level, partially refined in the next step, just on the
surface concerned by the refining. The refined portions can
be chosen using, for example, the Berger–Colella algorithm . 18

2.1 Python: its creator and its logo 27

3.1 An example of the use of bounding objects, helpful to solve
the visible-subset problem, aggravated by the come out of the
scene from the viewing surface. Infact, if the bounding object
is not visible, then clearly the object being bounded is also
not visible . 52

3

4 LIST OF FIGURES

3.2 Illustration of the quadtree decomposition process: (a) orig-
inal image, (b) first level of decomposition, (c) second and
final level of decomposition, (d) an example of an irregular
decomposition, (e) its tree representation 57

3.3 The edge quadtree for the vector data in red. The fixed max-
imum level of decomposition is 4, as can be seen around ver-
tices. If this imposition stops the partitioning, it unfortu-
nately leads to a not so well balanced quadtree 58

3.4 (a) Example 3D object, (b) its octree block decomposition,
and (c) its tree representation. The original figure (a) is ras-
terized filling its empy parts with some voxels (represented
in white, in (b), while in red are identified the parallelepiped
used to divide the original image) 59

3.5 Pointer encoding of the quadtree of Figure 3.2c. Internal
nodes are represented by circular nodes. Terminal nodes are
represented by square nodes 62

3.6 Left-to-right (left subtrees are checked before the right ones,
as opposed to right-to-left orders) tree traversals. 1) Pre-
order : F, B, A, D, C, E, G, I, H. 2) In-order : A, B, C, D, E,
F, G, H, I. 3) Post-order : A, C, E, D, B, H, I, G, F 63

3.7 Hilbert curve generated using recursive TEX macro and PGF.
Author: Marc van Dongen . 65

3.8 Locational representation for a third level quadtree: NW =
00 (binary 0), NE = 01 (binary 1), SW = 10 (binary 2), SE
= 11 (binary 3) . 66

3.9 Z-order representation for a third level quadtree (By David
Eppstein - Own work, Public Domain). See the correlation
with Figure 3.8 . 67

3.10 An illustration of the relative growth of the array and quadtree
representations at different levels of resolution for a simple
triangular region. Figures (a) through (c) are the array rep-
resentations of the triangle at resolutions 1, 2 and 3. Figures
(d) through (f) are the corresponding quadtree representa-
tions at the same resolutions 69

3.11 Example illustrating the neighboring object problem: P is
the location of the pointing device, for which we want to find
the closest neighbor in the surrounding area. To succeed in
our quest, we can use a recursive algorithm to easily find the
nearest object, which is represented by point A in node 6 . . 73

LIST OF FIGURES 5

4.1 Finite difference discretization for the one dimensional do-
main [0, L]. Similarly is discretized the temporal domain
[0, T], with time step k = ∆t. 83

4.2 Geometric clarification for the three finite difference approx-
imations: derivative at point j can be evaluated using the
information from the previous point j - 1 (backward), from
the following one j + 1 (formward, or from both of them (cen-
tered). Of course, reducing the distances between evaluation
points, more accurate approximations are obtained 86

4.3 2D equations are discretized easily extending the concepts
introduced for the 1D finite difference method, on a 2D do-
main decomposition: the x derivative evaluated on j, will be

ux (xi,j) =
ui+1,j − ui−1,j

2∆x
. 86

4.4 Control volumes Ω, boundaries ∂Ω, normals n to the edges,
having surfaces ∆S, are the ingredients distinctive of a finite
volume resolution . 88

4.5 Finite volume compass notation: neighbours of P are indi-
cated with the cardinal directions N , W , S, E, while cell
faces are denoted with the corresponding lower cases 89

4.6 1D control volume Vj with its borders xj−1/2 and xj+1/2. xj
is its center, while xj−1 and xj+1 are the center of the closer
volumes . 92

4.7 Computational Ω0 and physical Ω domains, where ∂Ω0 and
∂Ω represent their corresponding boundaries. Ω0i and Ωi are,
instead, computational and physical control cells. A direct
(physical to computational) and an inverse (computational
to physical) mapping between the domains are mentioned by
Σ (X) and X (Σ) . 94

4.8 Numbering example for a 2D cell of a quadtree, and for a
3D volume of an octree. In black is reported the ordering of
the nodes, while in red the sorting of the faces, and in blue
the numbering of the edges (faces and edges are enumerated
following an x-y-z order) . 105

4.9 Example of not perfectly superimposed grids. As it can be
seen, in fact, F3 and F do not exact match the border of the
background grid B, less fine. F1, F2 and F4 are three other
foreground grids, whose edges correspond to those of B 109

6 LIST OF FIGURES

4.10 An example of interpolations needed at the edge between fore-
ground and background: P is the center (the white point)
required to complete the stencil of the red point on the loose
grid, and it will be obtained interpolating the refined cells
close to him. The two P, by contrast, are the centers (again,
represented by two white points) requested to finalise the fore-
ground stencil, and obtained interpolating the neighbouring
cells of the background . 110

4.11 Inter and intra communication scheme, with global (red) and
local (other colours) enumeration for the MPI processes at
play. Intercommunicators for each group are depicted follow-
ing the corresponding colors of local processes’ enumeration.
In this case, local group green can communicate with the
other two, but them can not exchange messages, having not
created the inter-communicator between them 112

5.1 Diamond stencil on a 2:1 octree balance 117

5.2 The four red dots show the data points and the green dot is
the point at which we want to interpolate the data points,
using the bilinear interpolation. 118

5.3 1D composite mesh showing grid points xki , discretization
points xi, and overlap d. x1

N1
represent discretization points

of the first mesh G1, while x2
N2

are the discretization points
of the second mesh G2. Instead, the points of interpolation
are xj = x1

N1−j+1
, for j = 1, . . . , p and xp+j = x2

j , for j =
1, . . . , p. Overla d is defined as the distance between the in-
nermost interpolation point on G1 to the innermost interpo-
lation point on G2: d = xp − x2p 122

5.4 Finite volume approximation, using a diamond stencil 124

5.5 Finite difference approximation, where for the evaluation of
the unknown necessary for the background and covered by
the foreground, a second order bilinear interpolation has been
used; vice versa, to interpolate unknowns used by the fore-
ground stencils, but outside its borders (and so, falling into
the backgrounds), a second order approximation with a quadratic
polynomial is used, interpolated with the least squares method.125

LIST OF FIGURES 7

5.6 On x axis are reported the refinement levels (for the finite
difference case, just of the foreground grid, but for the back-
ground the trend is analogous), while on the y axis is shown
the difference between the exact solution and the numerical
approximation, in norm L2 127

5.7 Each grid is refined internally, and the octants of the back-
ground covered by the foreground will not be considered in
the monolithic system build to resolve the problem in its en-
tirety. The foreground represents a buffer zone around an
hypothetical object . 128

5.8 Behaviour of the error made on th numerical approximation.
Norms L2 and ∞ are reported, both for the background and
the foreground. As expected, first order degrowth is obtained 129

5.9 Each grid is refined internally, and the octants of the back-
ground covered by the foreground will not be considered in
the monolithic system build to resolve the problem in its en-
tirety, as already said in Figure 5.7 130

5.10 Behaviour of the error made on th numerical approximation.
Norms L2 and ∞ are reported, both for the background and
the foreground. As expected, first order degrowth is obtained 131

5.11 Each foreground grid represents a refinement for the back-
ground, also showing not perfectly superimposed refinings . . 132

5.12 Behaviour of the error made on th numerical approximation.
Norms L2 and ∞ are reported, just for the F2 grid in Figure
4.9a, having the other grdis the same trend. 133

5.13 Heat distribution on a computational domain depicted by
Subfigure 5.13a. The foreground grid, a stretched rectangle,
has been imposed with an initial condition of T = 1, while
the background has had the homogeneous T = 0 condition,
both for the initial and boundary constraints. As we can see,
as time passes, global temperature tends to comply, reaching
a uniform value . 135

List of Tables

2.1 Fibonacci timings for different implementations 41

8

Chapter 1

Introduction

AMR Adaptive Mesh Refinement

SAMR Structured Adaptive Mesh Refinement

PDE Partial Differential Equation

CHOMBO Software for Adaptive Solutions of Partial Differential
Equations

SAMRAI Structured Adaptive Mesh Refinement Application
Infrastructure

FDM Finite-Difference Method

FVM Finite-Volume Method

HPC High Performance Computing

In everyday life we often deal with multiscale phenomena, without often
realizing it. Our society itself is organized under a hierarchical structure
which follow a multiscale path: countries, regions, cities, districts and, at
the end, us.
Leaving our social aspects and focusing on physical phenomena, an impor-
tant analysis tool is to decompose them into their different scales.
From the view point of physics in fact, all materials at the microscale are
made up of the nuclei and the electrons, whose structure and dynamics are
responsible for the macroscale behavior of the material, such as transport,
wave propagation, deformation.

9

10 Introduction

The advent of parallel computing contributed to the development of mul-
tiscale modeling, not only in theory. Since more degrees of freedom could
be resolved by parallel computing environments, more accurate and precise
algorithmic formulations could be admitted.
However, to study certain phenomena, high order and more accurate schemes
are sometimes not enough. So, an alternative/co-operating approach is to
reduce the characteristic dimension of the computational domain, to try to
reproduce all of the components at their different scales. And doing so, in-
volves greater moles of data, which require more computational power and
more time to be processed.

But computational power is not unlimited (as it is not our time) and, above
all, it does not come free of charge. Adaptive discretizations are important
in many multiscale problems, where it is critical to reduce the computational
hunger and time while achieving the same or greater accuracy, in particular
regions of the computational domain.

In applied mathematics, a lot of methods are well suited to be used on
regular1 (and in particular, Cartesian2) grids, because they are simple and
allow a clear representation of the domain considered.

The main drawback of this approach is that it does not allow adaptive
discretizations, forcing the user to refine the computational domain globally
(see Figures 1.1a and 1.1b), without following the shape, for example, of the
physical boundaries and bodies inside the analysed context.
Therefore, the metrics needed to switch from these body-fitted reference sys-
tems to the Cartesian one, are a bit annoying to handle, as well as necessary.

That’s why AMR (adaptive mesh refinement) is vital, especially for big
computations: suppose to want “to make sense of the universe with super-
computers”, as Tom Abel of Standford University said: it is a cosmological
problem that incorporates the “mother of all scales”, with spatial variations
on the order of 1012 and a dynamic range up to 1015.
Thinking to try to solve it using a uniform refined grid, it would require
a lifetime, as well as huge calculus resources. And since complex solutions

1A regular grid is a tessellation of n-dimensional Euclidean space by congruent paral-
lelotopes (e.g. bricks).

2A Cartesian grid is a special case of a regular grid where the elements are unit squares
or unit cubes, and the vertices are integer points.

AMR Techniques 11

require more memory, efficient adaptive tools like AMR are essential (al-
though AMR is but one tool among many that are needed to be employed).

Following a brief introductory survey of AMR techniques, walking past a
section dedicated to Chimera grids, the chapter will examine the SAMR
(structured adaptive mesh refinement) techniques and some related software
packages, and it will end with the introduction of a new adaptive method,
that will be the topic of Chapter 4.

1.1 AMR Techniques

In numerical analysis, adaptive mesh refinement (or AMR, as we have al-
ready mentioned) is a method for adapting the accuracy of a solution within
certain regions of simulation, in a dynamic (or static) way during the time
the solution is being calculated.

When solutions are calculated numerically, they are often limited to pre-
determined quantified grids as in the Cartesian plane, which constitute the
computational grid (or “mesh”). But many problems in numerical analy-
sis do not require a uniform precision in the numerical grids used for the
simulation, favouring an accuracy that could be refined only in the regions
requiring the added details.

Adaptive mesh refinement procedure provides such a dynamic programming
environment, to adapt the precision of the numerical computation based on
the requirements of the relevant computation problem, and based on its spe-
cific areas which need more accurate precision, leaving the other regions at
lower levels of accuracy, details and resolution.
This dynamic technique of adapting computational precision to specific
requirements, has been accredited to Marsha Berger, Joseph Oliger, and
Phillip Colella3, who developed an algorithm for dynamic gridding called
local adaptive mesh refinement. In a parallel computing context, an im-
portant consequence of the adaptation is that the dynamically changing
resolution leads to a dynamically changing work load, data volume, and
communication pattern at run-time.
This is called dynamic load balancing4, and has implications for data

3Berger, M. J.; Colella, P. (1989). Local adaptive mesh refinement for shock hydrody-
namics. J. Comput. Phys. (Elsevier) 82: 64–84.

4In computing, load balancing improves the distribution of workloads across multiple
computing resources. It aims to optimize resource use, maximizing throughput, minimiz-

12 Introduction

placement as well as parallelization granularity.

The local adaptive mesh refinement algorithm starts covering the entire
computational domain with a coarse regular Cartesian grid. As the cal-
culation progresses, individual grid cells are tagged for refinement, using a
criterion that can either be user supplied, or automatic.
All tagged cells are then refined, which means that a finer grid is superim-
posed on the coarse one, and a correction procedure is implemented to cor-
rect the transfer along coarse-fine grid interfaces, to ensure that the amount
of any conserved quantity, leaving one cell, exactly balances the amount en-
tering the bordering cell.

The use of AMR has, since then, been used on a broad range of problems,
especially regarding the study of turbulence and of large scale structures
simulations (like, for example, in an astrophysics context), and has allowed
scientists to solve problems that would have been completely intractable on
a uniform grid.
And since then, different approaches and different techniques have been
developed, having however the common denominator to reduce the compu-
tational efforts of the numerical simulations. In figure 1.1 are given the most
common.

1.2 Chimera grids

Overset composite grids method, also known as the Chimera overset grids
technique (named like this after the composite monster of Greek mythol-
ogy5), have long been recognized as an attractive approach for treating
problems with complex geometries.
However, there are cases where, generating body-fitted grids, remains labor
intensive and error prone, and in this cases other approaches can be applied,
as we will see in the next sections.

The solution process uses a grid system that discretizes the problem domain
by using separately generated but overlapping grids, that need to update
and exchange boundary information through proper interpolations.
This method has been used successfully over the last two decades[13] [17],

ing response time and avoiding the overloading of any single resource.
5The Chimera was, according to Greek mythology, a monstrous fire-breathing hybrid

creature, composed of the parts of more than one animal.

Chimera grids 13

(a) Base grid (b) Uniform grid

(c) Mesh distortion (d) Point-wise structured

(e) Block structured (f) Ustructured

Figure 1.1: AMR Refining methods representing different ways to refine
meshes for an adaptive approach. Base grid is showed in the upper left
corner, while in the subsequent subfigures is modified to follow the refining
paths, expressed by the corresponding subcaptions

primarily to solve problems involving fluid flow in complex and dynamically
moving geometries, allowing the introduction of very complex representa-
tions that, in a classic Cartesian grid, would be analysed via a Level Set or
Immersed Boundary approach, imposing so some kinematic boundary con-
ditions, relaxing the difficulty in the meshes generation, but not taking into
account the reduction of the total number of cells making up the overall
mesh.

The overset composite grids method[11] is a way of assembling multiple
grids and treating them as a single grid.

14 Introduction

Basically, this method consists in generating a set of structured6 or unstruc-
tured7 component grids that cover the computational domain and overlap
where they meet, thus generating some partially overlapping blocks. The
geometry of the components can be defined individually, and hence the grid
around them can be generated separately.
In a full Chimera grid system, a complex geometry is therefore decomposed
into a system of simpler overlapping grids, each of one covering less complex
geometries.
Boundary information is then passed between these grids, using different
interpolations of the flow variables; note that many gridpoints may not be
used in the solution (hole points), while each block’s boundary (or fringe)
points, which lie in the interior of neighboring blocks, will require informa-
tion from that containing block.

To summarise, in very general terms, there are three steps to setting up
an overset simulation, as shown below.

1. Grid generation. The grids may be structured, unstructured, Carte-
sian, or a combination of these. One intuitive combination occurs when
structured-curvilinear grids and Cartesian grids are used: body-fitting
curvilinear grids are built independently for each geometric compo-
nent, and then embedded within a coarser Cartesian grid (see Figure
1.2).
Because each curvilinear grid is paired with a component from the
geometry, overset grids can be used to track relative motion with com-
putational efficiency, but domain connectivity must be performed di-
namically, so that adjacent grids share information.

2. Hole cutting. In this step, grid points are eliminated in both the
main grid and the component grids (as previously said, in a Chimera
approach many gridpoints will not be used).
First, all points in the component grids which are outside the compu-
tational domain, and all points which overlap with other component
grids and which are not needed for the solution interpolation, are re-
moved.

6Structured means that mesh points can be indexed in such a way that neighbor rela-
tions between points can be inferred from the indices

7An unstructured grid is identified by irregular connectivity. It cannot easily be ex-
pressed as a two-dimensional or three-dimensional array in computer memory.

Chimera grids 15

Next, all points in the main grid that are overlaid by component grids
and which are not needed for the interpolation are eliminated. Doing
so, holes are created in the main grid.

3. Chimera interpolation. The main difficulty in the use of overset
composite grids methods is in the data transfer between overlapping
grids.
Supposing a cell-centered finite volume scheme, we use the concepts
of donor and receptor cells: considering two grids, Grid A and Grid
B, that overlap with each other, a receptor point, say on Grid B, is a
fringe point which needs to receive flow information from Grid A, to
provide the boundary condition for its grid. The donor cell, instead
(and for this particular receptor cell), is identified as the cell on Grid
A that contains the receptor point (see Figure 1.3).
A simple interpolation method consists in directly transfering the flow
variables from the donor cell to the receptor cell, but with a more
accurate interpolation of course, better result in the convergence order
can be obtained.

To conclude this section, we report a minor recap of the pros and cons of the
Chimera grids method. Approach that, of course, has a lot of advantages,
like:

• capability to handle complex geometries;

• capability to reduce the time and the efforts to generate a grid;

• capability to allow, without further difficulties, evaluation of flows
around moving bodies.

But it has also some disadvantages, as:

• more complications because of programming complexities and coupling
of the grids;

• difficulties to mantain conservation at the interface;

• interpolation process may introduce errors of convergence problems, if
the solution exhibits strong variation near the interface;

• involving frequent searches over the cells in different zones or compo-
nent grids means that these searches could be very expensive for large
grids.

16 Introduction

Figure 1.2: A simple overset composite grid where the hole points are
blanked. Here are easily displayed the first two steps of the recap on setting
up an overset simulation: grid generation (here curvilinear and Cartesian
grids are used) and hole cutting (interior points of the components grids are
eliminated). Image by Joel Guerrero[5]

1.3 Structured AMR

In the previous section we have introduced the Chimera approach, and we
have mentioned some of its positive and negative aspects.
One of the most striking cons is that, operating with this approach, we are
bound to the use of grids set at priori, thus making more difficult (if not
impossible) to refine our computational domain following a time step.
Additionally, dealing with structured and unstructured grids at the same
time, can introduce additional complications, like:

• Cache-reuse/vectorization nearly impossible (unstructured);

• necessity to store neighborhoods (unstructured);

Structured AMR 17

Figure 1.3: Interpolation elements for overlapping grids. Image by Joel
Guerrero[5], showing the third step of the overset simulation recap, where
donor and receptor cells are set out

• complex load-balancing (unstructured);

• parent/child relations (structured);

• hanging nodes (structured).

Weighing up these issues, one can realise that an adaptive approach, totally
structured, could not hurt.

In fact, what is particular about structured adaptive mesh refinement is
that, normally, a structured mesh takes the form of a logically rectangular
grid, where a numerical PDE solver can be implemented, using array data
structures to represent the mesh points and their associated solution values.
This is a very delicate aspect to solve PDE, because the key to efficiency

18 Introduction

Figure 1.4: Telescopic representation of the block-structured adaptive mesh
refinement. In red are highlighted the parts of each telescopy’s level, par-
tially refined in the next step, just on the surface concerned by the refining.
The refined portions can be chosen using, for example, the Berger–Colella
algorithm

in PDE solvers is that the neighbor relations between mesh points can be
inferred from the array indices in the data structure used to store the mesh.
Due to this property, the operation to retrieve the solution values at neigh-
boring mesh points can be particularly efficiently implemented for structured
meshes.

The most common approach to structured AMR is to adapt the computing
coarse grid by adding refined rectangular grid patches in areas where higher
resolution is required, removing them where this fine grain level is no longer
necessary.
Essentially, this consists of four steps (Berger–Colella algorithm):

1. point-wise estimation of the errors in the computed solution;

Structured AMR 19

2. flagging of points where the accuracy is insufficient;

3. Clustering of flagged points;

4. insertion of higher resolution grid patches around such clusters.

Iteratively repeating this procedure can provide a hierarchical, composite,
structured grid, where each patch is inserted on the top of the underlying
coarser grid. And of course, the four steps listed above contribute to the
overall execution time of the simulation, and from their execution depends
the trade-off between the gain in execution time (having reduced the num-
ber of grid points) and the payload due to the mesh adaptation.
In order to improve the payoff, an approach block-wise to SAMR has ben
introduced in literature[2], whose purpose is to avoid clustering and grid-
fitting steps, dividing the initial coarse grid into blocks and subsequently, if
some points in a block are flagged for refinement, refining the whole block
of belonging (see Figure 1.4).

SAMR solution methods, however, share characteristics with uniform, non-
adaptive structured mesh methods. In particular, the simulation code may
be organized as a collection of numerical routines that operate on data de-
fined over logically-rectangular regions and communication operations that
pass information between those regions, to fill “ghost cells”.
Since a SAMR solution is constructed on a composite mesh, the numerical al-
gorithms and approximations must treat internal mesh boundaries between
coarse and fine levels properly to maintain a consistent solution state.

A large number of frameworks for solving partial differential equations using
the technique of structured adaptive mesh refinement have been developed,
and many of these are also freely available for downloading on the Internet.
The vast part of these are implementing the Berger–Colella algorithm with
a hierarchy of refinement levels on top of each other; what makes them dif-
ferent is the parallelization model.
The parallel implementation of SAMR application can indeed be realized in
a distributed memory environment using explicit message passing, or in a
global shared memory one, using a thred model. And the two implementa-
tions can also be combined into an hybrid approach, using message passing
and threads together.
For the continuation of the manuscript, and for consistency with the work
that will be presented, we mention just two frameworks, which belong to
the first category of parallel implementation.

20 Introduction

CHOMBO8 provides a set of tools for implementing finite difference and
finite volume methods for the solution of partial differential equations on
block-structured adaptively refined rectangular grids.
Both elliptic and time-dependent modules are included, and it supports
calculations in complex geometries with both embedded boundaries and
mapped grids.

SAMRAI9 (Structured Adaptive Mesh Refinement Application Infrastruc-
ture) is the code base in CASC (Center for Applied Scientific Computing)
for exploring application, numerical, parallel computing, and software issues
associated with SAMR.

1.4 Overlapping generic grids

We have already seen that in many problems in partial differential equations
we are confronted with multiple length scales and strong spatial localiza-
tions.

Finite-difference10 calculation using block-structured adaptive mesh refine-
ment is a powerful tool for computing solutions to partial differential equa-
tions involving such multiple scales. In this approach, the underlying prob-
lem domain is discretized using a rectangular grid and a solution is computed
on that grid.
Regions requiring additional resolution are identified by computing some
local measure of the original error and covered by a disjoint union of rect-
angles in the domain, which are then refined by some integer factor. The
solution is then computed on the composite grid, and this process may be
applied recursively.

But, if this approach has multiple advantages (putting more grids where the
solution is more interesting leaving elsewhere the grid coarse, saving order
of magnitude in memory and in run time, etc.), it has also some drawbacks
like, in particular, the algorithm and communication patterns complexities
between levels.

8https://commons.lbl.gov/display/chombo/
9https://computation.llnl.gov/projects/samrai

10In mathematics, finite-difference methods (FDM) are numerical methods for solving
differential equations by approximating them with difference equations, in which finite
differences approximate the derivatives.

Overlapping generic grids 21

Moreover, when the grid is not cartesian, the discretization of the differential
operators in space must take into account the metrics, making grid trans-
formations a bit annoying to handle. This problem, imposed by physical
domain body-fitted grids, can be crossed more easily using a finite-volume11

approach on octree meshes.

This work will presents a new 2D adaptive finite-difference and finite-volume
method to discretize the Laplacian operator on a computational domain
made of multiple, overlapping, generic quadrilateral grids.
Looking at what previously said, this approach can be “fitted into” the
Chimera typology, being each grid built alone, without the intrusion of the
others, and needings a communication layer for the final resolution.
Unlike what happens in SAMR approaches, where communications are needed
in every level of the “telescopic tree” of patches built on the coarser one,
here only one communication is required, having just one level of overlap-
ping, exploiting the intrinsic refining of the octree data structure.

The main objectives of this approach can be summarised as follows:

• Apply a new approach for multiscale problems.

• Solve those difficulties present in Cartesian, Chimera and SAMR method-
ologies, leaving the benefits unchanged, using octree meshes: no changes
in descriptive equations of the phenomenon under consideration; re-
fining the mesh where it is needed; simplify the communication al-
ghorithms between patches.

• Write a fully-parallel HPC code.

• Create a free accessible Python library.

• Increase the number of scientific wrapper written for Python and al-
ready present (MPI4Py, NumPy, PETSc4py, and so on), with a full,
Python compatible numerical framework.

• Explore the HPC ecosystem using new programming techniques and
programming languages.

11Finite volume refers to the small volume surrounding each node point on a mesh. In
the finite volume method, volume integrals in a partial differential equation that contain
a divergence term are converted to surface integrals, using the divergence theorem. These
terms are then evaluated as fluxes at the surfaces of each finite volume.

22 Introduction

1.5 Summary

This chapter has introduced the classic resolution scheme of partial differ-
ential equations (PDE) on a uniform grid, and has shown that, for well
behaved problems, this approach gives satisfactory results.
There are classes of problems, however, where, due to discontinuities, steep
gradients, shocks, etc., the uniform spacing approach is computationally ex-
tremely costly, requiring different and more “ad-hoc” solutions. Besides, for
time dependent problems, it is difficult to predict in advance a uniform mesh
spacing that will give acceptable results.
That’s why were presented different AMR techniques.

Bibliography

[1] K. Tomko Q. Liu A. Hamed, D. Basu. Performance characterization
and scalability analysis of a chimera based parallel navier-stokes solver
on commodity clusters. Parallel Computational Fluid Dynamics 2005,
2005.

[2] Ann S. Almgren. Introduction to block-structured adaptive mesh re-
finement (amr). Center for Computational Sciences and Engineering
Lawrence Berkeley National Laboratory.

[3] R. W. Anderson B. T. N. Gunney. Advances in patch-based adaptive
mesh refinement scalability. Journal of Parallel and Distributed Com-
puting, 2015.

[4] Jaideep Ray Benjamin A. Allan, S. Lefantzi. The scalability impact of
a component-based software engineering framework on a growing samr
toolkit: a case study. Parallel Computational Fluid Dynamics 2005,
2005.

[5] Joel Guerrero. Overset composite grids for the simulation of complex
moving geometries.

[6] A. M. Wissink D. A. Hysom Gunney, B. T. N. Parallel clustering al-
gorithms for structured amr. Journal of Parallel and Distributed Com-
puting.

[7] B. T. N. Gunney. Scalable mesh management for patch-based amr,
2012. Nuclear Explosive Code Development Conference Livermore, CA,
United States.

BIBLIOGRAPHY 23

[8] S.Lee K.W.Cho. Parallel approach of fully systemized chimera method-
ology for steady/unsteady problems. Parallel Computational Fluid Dy-
namics 2002, 2002.

[9] D. T. Graves J. N. Johnson H. S. Johansen N. D. Keen T. J. Ligocki
D. F. Martin P. W. McCorquodale D. Modiano P. O. Schwartz T. D.
Sternberg B. Van Straalen M. Adams, P. Colella. Chombo software
package for amr applications design document, 2015.

[10] Terry J. Ligocki vLeonid Oliker John Shalf Brian Van Straalen Samuel
W. Williams Matthias Christen, Noel Keen. Automatic thread-level
parallelization in the chombo amr library, 2011.

[11] Robert L. Meakin. Composite overset structured grids, handbook of
grid generation, chapter 11. CRC Press.

[12] T. J. Ligocki D. Modiano B. Van Straalen P. Colella, D. T. Graves.
Ebchombo software package for cartesian grid, embedded boundary ap-
plications, 2003.

[13] N. Anders Petersson. Hole-cutting for three-dimensional overlapping
grids. SIAM Journal on Scientific Computing.

[14] Scott R. Kohn Richard D. Hornung. Managing application complexity
in the samrai object oriented framework, 2002.

[15] Peter Zinterhof Roman Trobec, Marian Vajtersic. Parallel Computing
- Numerics, Applications, and Trends. Springer, 2008.

[16] D. B. Gannon M. L. Norman S. B. Baden, N. P. Chrisochoides. Struc-
tured Adaptive Mesh Refinement (SAMR) Grid Methods. Springer,
2000.

[17] Norman E. Suhs, Stuart E. Rogers, and W. E. Dietz. Pegasus 5: An au-
tomatic pre-processor for overset-grid cfd. AIAA 32nd Fluid Dynamics
Conference, St. Louis.

[18] R. D. Hornung S. R.Kohn. S. S. Smith N. S. Elliott Wissink, A. M.
Large scale structured amr calculations using the samrai framework,
2001. SC01 Proceedings, Denver.

Chapter 2

Python

ABC A Programming Language

CWI Centrum Wiskunde & Informatica

VM Virtual Machine

VHLL Very High Level Language

CLR Common Language Runtime

JIT Just in Time

JVM Java Virtual Machine

PSF Python Software Foundation

GIL Global Interpreter Lock

MPI Message Passing Interface

ALU Arithmetic Logic Unit

Python is an interpreted high-level programming language for general-purpose
programming, which provides constructs that enable clear coding on both
small and large scales, thanks to its dynamic type system and automatic
memory management.

Created by Guido van Rossum (Figure 2.1a) and first released in 1991,
Python has a design philosophy that emphasizes code readability, and a

24

A Bit of History 25

syntax that allows programmers to express concepts in fewer lines of code
than with other languages.
It supports multiple programming paradigms1, including object-oriented,
functional2 and procedural, and has a large and comprehensive standard
library.

Python interpreters are available for many operating systems. CPython,
the reference implementation of Python, is an open source software devel-
oped using a community-based model, as do nearly all of its variants.

In this chapter we will introduce this versatile and multipurpose program-
ming language, taking inspiration from who is really into the Python pro-
gramming pattern and philosophy (in my humble opinion, I am just a novice
who loves to learn) like, just to name a few, Alex Martelli, Brett Slatkin, Kurt
Smith, Lisandro Dalcin. Some of their works are reported in bibliography.

2.1 A Bit of History

What do the alphabet and the programming language Python have in com-
mon? Yes, they both start with ABC. And if we are talking about ABC in
the Python context, it’s clear that we mean the not so famous programming
language3.

Python was conceptualized in the late 1980s. In an interview, Guido van
Rossum said: “In the early 1980s, I worked in a team building a language
called ABC. I don’t know how well people know ABC’s influence on Python,
but I try to mention it because I’m indebted to everything I learned during
that project and to the people who worked on it.”

Later on in the same interview, Guido van Rossum continued: “(...) I

1Styles of building the structure and the elements of computer programs.
2In computer science, functional programming treats computation as the evaluation of

mathematical functions and avoids changing-state and mutable data. It is a declarative
programming paradigm, so programming is done with expressions or declarations instead
of statements. Here, the output value of a function depends only on its input arguments.
So, calling a function f twice with the same value for an argument x produces the same
result f(x) each time, not depending on a local or global scope.

3ABC is a general-purpose programming language and programming environment,
which had been developed at CWI, Netherlands.

26 Python

started typing, and I created a simple virtual machine4, a simple parser5,
and a simple runtime6. I made my own version of the various ABC fea-
tures that I liked, creating a basic syntax, using indentation for statement
grouping instead of curly braces or begin-end blocks, and developing a small
number of powerful data types: hash tables7 (or dictionaries, as we call it),
lists, strings, and numbers.”

But what about the name “Python”. Most people think about snakes,
spotting also the logo (see Figure 2.1b), but the origin of the name has its
root in British humour.

Guido van Rossum wrote in 1996 about the choice of the name: “Over
six years ago, in December 1989, I was looking for a ‘hobby’ programming
project that would keep me occupied during the week around Christmas.
My office (...) would be closed, but I had a home computer, and not much
else on my hands. I decided to write an interpreter for the new scripting
language I had been thinking about lately: a descendant of ABC that would
appeal to Unix/C hackers. I chose Python as a working title for the project,
being in a slightly irreverent mood (and a big fan of Monty Python’s Flying
Circus).”

2.2 Releases

The first version of Python was released in February 1991. This was version
0.9.0, and the release included already exception handling, functions, core
data types, a module system and an object oriented support.

Python version 1.0 was released in January 1994, including as new features

4In computing, a virtual machine (VM) is an emulation of a computer system, providing
its functionalities. Their implementations may involve specialized hardware, software, or
a combination of both.

5Within computational linguistics, the term parsing is used to refer to the formal
analysis by a computer of a sentence or other string of words into its constituents.

6A runtime system, also called run-time system, primarily implements portions of an
execution model. Most languages have some form of runtime system, which implements
control over the order in which work that was specified in terms of the language gets
performed.

7In computing, a hash table (hash map) is a data structure which implements an
associative array abstract data type, a structure that can map keys to values. Given a
key, a hash table uses a hash function to compute an index into an array of buckets (or
slots), from which the desired value can be found.

The Zen of Python 27

(a) Guido Van Rossum (b) Python’s logo

Figure 2.1: Python: its creator and its logo

the functional programming tools: lambda, map, filter, reduce.

Python 2.0 was released in October 2000 and had many major new fea-
tures, including a cycle-detecting garbage collector8 and support for Uni-
code9. With this release, the development process became more transparent
and community-backed.

Python 3.0 was released in December 2008 after a long testing period. It is
a major revision of the language that is not backward-compatible with pre-
vious versions. However, many of its major features have been backported
to the backward-compatible Python 2.6.x and 2.7.x version series. The em-
phasis in this release had been on the removal of duplicate programming
constructs and modules, thus fulfilling (or coming close to) the 13th postu-
late of the Zen of Python10, whose aphorisms are reported in the hereunder
section.

2.3 The Zen of Python

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

8The gc exists only to detect and free circular references. Non-circular references are
handled through refcounting.

9Unicode is a computing industry standard for the consistent encoding, representation,
and handling of text, expressed in most of the world’s writing systems.

10The Zen of Python is a collection of 20 software principles (only 19 of which have been
written down) that influences the design of Python Programming Language. Tim Peters,
long time Pythoneer, envisioned it.

28 Python

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

• Special cases aren’t special enough to break the rules.

• Although practicality beats purity.

• Errors should never pass silently.

• Unless explicitly silenced.

• In the face of ambiguity, refuse the temptation to guess.

• There should be one– and preferably only one –obvious way to do it.

• Although that way may not be obvious at first unless you’re Dutch.

• Now is better than never.

• Although never is often better than *right* now.

• If the implementation is hard to explain, it’s a bad idea.

• If the implementation is easy to explain, it may be a good idea.

• Namespaces are one honking great idea – let’s do more of those!

The twentieth aphorism, according to Internet, seems to be some bizarre
Tim Peters in-joke: it’s an opportunity for people to provide their own
addition. And this “artistic license” enlightens considerably the free (“as in
speech” or “as in beer”) spirit of Python.

2.4 The Python Language

The Python language, while not minimalist, is rather spare, for good prag-
matic reasons: a complicated language is harder to learn and master (and
to implement efficiently and without bugs) than a simpler one.
Complications and quirks in a language hamper productivity in software
development and maintenance, particularly in large projects, where many
developers cooperate and often maintain code originally written by others.

The Python Language 29

Python is simple, but not simplistic. It adheres to the idea that if a language
behaves a certain way in some contexts, it should ideally work similarly in
all contexts (this philosophy recalls a bit the following principle of the Duck
typing11: “If it walks like a duck and it quacks like a duck, then it must
be a duck”). A good language, like any other well-designed artifact, must
balance such general principle with a high degree of practicality.

Python is a general-purpose programming language: its traits are useful
in just about any area of software development, but it does not have to
stand alone. In fact, while many developers find that it fills all of their
needs, Python programs should cooperate with a variety of other software
components, making it an ideal language for gluing together components
written in other languages.

Python is a very-high-level language (VHLL12), which means that it uses
a higher level of abstraction, conceptually farther from the underlying ma-
chine, than do classic compiled languages such as C, C++, and Fortran,
which are traditionally called high-level languages.

Python is also simpler, faster to process (both for human brains and for
programmatic tools), and more regular, than classic high-level languages.
This enables high programmer productivity and makes Python an attractive
development tool.

Good compilers for classic compiled languages can generate binary machine
code that runs faster than Python code, but in most cases, the performance
of Python-coded applications is sufficient.
However, when it doesn’t, optimization techniques can be used to improve
program’s performance, while keeping the benefit of high productivity.

Newer languages such as Java are slightly higher-level than classic ones (such
as C and Fortran), and share some characteristics of classic languages (for
example, the need to use declarations) as well as some of VHLLs like Python

11In computer programming, duck typing requires that type checking be deferred to
runtime. With normal typing, suitability is assumed to be determined by an object’s
type only. In duck typing, an object’s suitability is determined by the presence of certain
methods and properties, rather than the actual type of the object.

12VHLLs are designed to reduce the complexity and amount of source code required to
create a program, incorporating higher data and control abstraction abilities.

30 Python

(to name but a few, the use of portable bytecode13 as the compilation target
in typical implementations, and garbage collection to relieve programmers
from the need to manage memory).

Python is an object-oriented programming language, but lets the developer
to code using different styles, mixing and matching as the application re-
quires. Its object-oriented features are conceptually similar to those of C++,
but simpler to use. And, at the same time, more deeper: everything, in
Python, is an object14.

2.5 The Standard Python Library

The standard Python library is nearly as important for effective Python use
as the language itself. In fact, it supplies many well-designed, solid, 100
percent pure Python modules for convenient reuse, working on all its sup-
ported platforms (extension modules that are not coded in Python, however,
do not necessarily enjoy the same automatic cross-platform portability as
pure Python code).

Extension modules, from the standard library or from elsewhere, let Python
code access functionality supplied by the underlying operating system or
other software components such as GUIs15, databases, and networks.

Extensions also afford maximal speed in computationally intensive tasks
such as XML parsing and numeric array computations.
Users can write special-purpose extension modules in lower-level languages
to achieve maximum performance for small, computationally intensive parts
that they originally prototyped in Python.
They can also use tools such as Cython to wrap existing C/C++ libraries
into Python extension modules (we will see it).

Finally, developer can embed Python in applications coded in other lan-
guages, exposing existing application functionality to Python scripts via

13Bytecode, also termed portable code or p-code, is a form of instruction set designed
for efficient execution by a software interpreter.

14From [8] (free book): “everything in Python is an object, and almost everything has
attributes and methods. All functions have a built-in attribute doc , which returns the
doc string defined in the function’s source code. The sys module is an object which has
(among other things) an attribute called path. And so forth.”

15Graphical user interfaces.

Python Implementations 31

dedicated Python extension modules.

2.6 Python Implementations

When people speak of Python, they often mean not just the language but
also its implementation. Python is actually a specification for a language
that can be implemented in many different ways, emphasising the distinction
between the language and its implementations.
Here follows a list of the most common Python implementations, on the
understanding that this thesis will cover just the first one.

• CPython is Classic Python and is the most up-to-date, solid and com-
plete production-quality implementation of Python. It can be consid-
ered the “reference implementation” of the language.
CPython is a compiler, an interpreter, and a set of built-in and op-
tional extension modules, all coded in standard C.
CPython can be used on any platform where the C compiler complies
with the ISO/IEC 9899:1990 standard16.

• Jython is a Python implementation for any Java Virtual Machine
(JVM) compliant with Java 7 or better. For optimal use of Jython,
users need some familiarity with fundamental Java classes and its sup-
porting tools for tasks such as manipulating .jar files.

• IronPython is a Python implementation for the most commonly known
.NET, which make it possible to use all CLR17 libraries and frame-
works, having of course some familiarity with them.

• PyPy is a fast and flexible implementation of Python, coded in a subset
of Python itself, able to target several lower-level languages and virtual
machines using advanced techniques such as type inferencing18.
PyPy’s greatest strength is its ability to generate native machine code
“just in time”19.

16The international standard which defines the C programming language is available
from ISO. The current revision is ISO/IEC 9899:2011, also called C11.

17Microsoft-designed Common Language Runtime (CLR).
18Type inference refers to the automatic detection of the data type of an expression in

a programming language.
19In computing, just-in-time (JIT) compilation is a way of executing computer code

that involves compilation during execution of a program rather than prior to execution.
Most often this consists of source code or more commonly bytecode translation to machine
code, which is then executed directly.

32 Python

The primary difference between the implementations is the environment in
which they run and the libraries and frameworks they can use:

if you need a JVM environment, then Jython is your choice;

if you need a CLR (a.k.a. .NET) environment, take advantage of
IronPython;

if you need a custom version of Python, consider PyPy;

if you’re mainly working in a traditional environment, CPython is an
excellent fit, offering a most widely support by third-party addons and
extensions.

In other words, when you’re experimenting, learning, and trying things out,
use CPython, most widely supported and mature. To develop and deploy,
your best choice depends on the extension modules you want to use and how
you want to distribute your programs.

2.7 Python’s Pros and Cons

2.7.1 Pros...

Python is billed by the Python Software Foundation20. Launched
on March 6, 2001, its mission is to foster development of the Python com-
munity being responsible for various processes within it, like developing the
core Python distribution, managing intellectual rights, organizing developer
conferences, and so on.
Being easy to learn and running everywhere, in fact, implies having a huge
pool of consumers to follow and to stage.

Python it’s useful for a range of application types (including Web
development, scientific computing, education, etc.). And thanks to its use-
fulness, the language scores well in popularity indexes.

Read it, use it with ease. The main characteristics of a Python pro-
gram is that it is easy to read, and this aspect has many benefits: it helps
the programmer to think more clearly when writing programs, and it helps
the others who will maintain or enhance your program. In both cases, it

20The Python Software Foundation (PSF) is a nonprofit organization devoted to the
Python programming language.

Python’s Pros and Cons 33

requires less effort to write a Python program than to write one in another
language like C++ or Java, facilitating open source development.

Python is easy to use. Thanks to its learning fast curve, and to its
being dynamically typed21 and flexible, with code that is less verbose, it has
become extremely popular in academia, creating a large talent pool.

Python is a very productive way to write code. Some of this comes
from the simple syntax and readability (there is virtually no boilerplate22).
Some of it comes from the rich, well-designed built-ins, from the standard
library and from the availability of many third-party open source libraries
and modules.
Being easy to understand, the code is easier to maintain, of course.

Internet of things opportunities. Python may become popular for the
Internet of things, as new platforms such as Raspberry Pi23 are based on
it. Raspberry Pi’s documentation cites the language as “a wonderful and
powerful programming language that’s easy to use (easy to read and write),
and with Raspberry Pi lets you connect your project to the real world.”

Asynchronous coding benefits. Synchronous programming code, ex-
cluding conditionals and function calls, is executed sequentially from top-
to-bottom, blocking on long-running tasks such as network requests and disk
I/O.
Asynchronous programming24, on the contrary, runs in an event loop, and
when a blocking operation is needed, the request is started, and the code
keeps running without blocking for the result.
If the response is ready, an interrupt is fired, which causes an event handler

21A language is statically typed if the type of a variable is known at compile time. On
the other hand a language is dynamically typed if the variable’s type is associated with
run-time values.

22In computer programming, boilerplate code (or boilerplate) refers to sections of code
that have to be included in many places with little or no alteration. It is often used when
referring to languages that are considered verbose, i.e. the programmer must write a lot
of code to do minimal jobs at all.

23The Raspberry Pi is a series of small single-board computers developed in the United
Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer
science in schools and in developing countries. It does not include peripherals (such as
keyboards, mice and cases); however, some accessories have been included in several official
and unofficial bundles.

24User interfaces, for example, are asynchronous by nature, and spend most of their
time waiting for user input to interrupt the event loop and trigger event handlers.

34 Python

to be run, letting the control flow to continue.
In this way, a single program thread can handle many concurrent operations.

Python is great for writing asynchronous code, which rather than threading
uses a single event loop to do work in small units.
This code is often easier to write and maintain without confusing resource
contention25, deadlocks26, and other synchronisation problems.

In Python, everything is an object. Although this intrinsic attitude
make it possible to write very clear and understandable object-oriented code,
Python does not oblige developers to create an OO class mandatorily, to
start programming (like instead Java does).
Python, therefore, truly support multiparadigms approaches.

Python has a huge community.One of the greatest strengths of Python
is its robust, friendly, welcoming, international community. Python pro-
grammers and contributors meet face to face at conferences and local user
groups, actively discuss shared interests, and help one another on mailing
lists and social media.

2.7.2 ...and Cons

Speed can be an issue. Because it is an interpreted language, it is often
many times slower than compiled languages. However, it comes back to sep-
arating the language from the runtime: certain benchmarks of Python code
conducted under PyPy, run faster than the equivalent C code or others.
To cope with its slow speed of execution, many Python packages have been
optimized over the years and execute at compiled speed, although, in princi-
ple, performance remain slower compared to older languages such as C/C++
(in this regard, we will see in the next section a tool that comes to the aid
of Python).

Design restrictions. Because the language is dynamically typed, it re-
quires more testing and has errors that only show up at runtime.

25In computer science, resource contention is a conflict over access to a shared resource
such as random access memory, disk storage, cache memory, internal buses or external
network devices.

26In concurrent computing, a deadlock is a state in which each member of a group
is waiting for some other member to take action, such as sending a message or more
commonly releasing a lock.

Cython 35

Python’s global interpreter lock (read section 2.10), or GIL, is another re-
striction and it means that only one thread can access Python internals at a
time. This may be less important these days, since you can so easily spawn
tasks out to separate processes using the multiprocessing module, or write
asynchronous code instead, but it remains a big deal (surmountable, nerver-
theless).

Significant whitespace is enforced by the interpreter. The structure of
Python programs must be consistent, so where brackets or other iden-
tifiers allow the user more freedom in other languages, indentation is what
matters when it comes to Python.

Absence from mobile computing and browsers. Python is present
on many server and desktop platforms, but it is weak in mobile computing;
very few smartphone applications are developed with Python, and it is also
rarely seen on the client side of a Web application.
Python isn’t in Web browsers (and that’s a real shame), being hard to se-
cure. There is Brython27, but maybe it’s not real-world usable.

2.8 Cython

Cython is a superset of the Python programming language, designed to give
C-like performance with code which is mostly written in Python.
It is a compiled language that generates CPython extension modules, which
can then be loaded and used by regular Python code using the import state-
ment.

Cython is a derivative of the Pyrex28 language, but supports more features
and optimizations than it does, and works on Windows, macOS, and Linux,
producing source files compatible with CPython 2.6, 2.7, and 3.3 through
3.7.

Pyrex was developed by Greg Ewing, and its ability to speed up Python
code by large factors made it instantaneously popular, and many projects

27Brython, or Browser Python (it’s also the Welsh word for “breton”), is designed
to replace Javascript as the scripting language for the Web. As such, it is a Python 3
implementation adapted to the HTML5 environment.

28Pyrex is a Python-like language for rapidly and easily writing python extension mod-
ules. It can be described as Python with C data types.

36 Python

started using it intensively, especially for the scientific Python community
(needing some performance improvements), although it did not intend to
support all constructs in the Python language.
Being a successful open source concept, other projects adapted and patched
it to fit their needs, and among those, two forks of Pyrex itself(one by Stefan
Behnel and the other one, Sage29, by William Stein), ultimately combined
to form the Cython project, under the leadership and guidance of Robert
Bradshaw and Stefan Behnel.

From its beginning, Cython has benefited from a large and active open
source community, with many contributions to develop new features, to im-
plement them, to report bugs, and to fix them.

2.9 What Cython is

Cython is often confused with CPython, but the two are very different.

CPython, in fact, provides a C-level interface into the Python language,
known as the Python/C API30, while Cython, on the other side, uses this
C interface extensively, and therefore Cython depends on CPython.
So, Cython is not another implementation of Python, and indeed it needs
the CPython runtime to run the extension modules it generates.

But then, what exactly is Cython?

Cython is two closely related things:

• Cython is a programming language that blends Python with the static
type system of C and C++.

• Cython is a compiler that translates Cython source code into efficient
C or C++ source code. This source can then be compiled into a
Python extension module or a standalone executable.

29Sage is a GPL-licensed comprehensive mathematics software system that aims to
provide a viable alternative to Maple, Mathematica, and Matlab.

30In computer programming, an application programming interface (API) is a set of
subroutine definitions, protocols, and tools for building application software. In general
terms, it is a set of clearly defined methods of communication between various software
components.

What Cython is 37

Cython’s potential comes from the way it combines Python and C: writing
code feeling like Python, but getting easy access to C power. So, it can
be considered halfway between high-level Python and low-level C. And why
mixing such different languages? Let see.

All the positive aspects which have revealed Python to the vast program-
mers’ world (high-level, dynamic, easy to learn, flexible, etc.) come with a
cost: being interpreted. And that cost means a possible slowness of several
orders of magnitude than statically typed compiled languages.

C, on the other hand, is one of the oldest statically typed compiled lan-
guages in widespread use, so compilers have had time and study cases to
optimize its performance.
C is very low level and very powerful, but unlike Python, it does not have
many safeguards in place and can be difficult to use.

So, now it starts to be clear the answer to the previous question “why
combine these two languages”: both of them are mainstream, but they are
typically used in different domains, given their differences. And Cython’s
beauty is this: it combines Python’s expressiveness and dynamism with C’s
bare-metal performance, allowing its compiler to generate efficient C code,
just using a small number of keywords to the Python language.

So, a typical approach of a developer could be starting with Python code,
easy to write and to debug.
After that, needing better performances, profiling the code to search the
parts to be optimized.
Lastly, to speed up Python code, compiling Python source with Cython,
with optional static type declarations to achieve performance improvements,
depending of course on the algorithm to maximise.

But a developer might want to take the inverse approach, starting with
a C or C++ library and to interface it with Python. On this matter, he can
use Cython to interface with external code and create optimized wrappers
(we will see this later).

Both capabilities (compiling Python and interfacing with external code) are
designed to work together well, and each is an essential part of what makes
Cython useful. With Cython, either direction is feasible, coming from either
starting point.

38 Python

2.10 Cython Features

From the beginning, Cython has had an ambitious goal, that is full Python
compatibility. But it has also acquired features that are specific to its unique
nature between Python and C, giving him the fact of being a real Python
superset, easy to use and more efficient.
Facilities worthy of note are:

• easier interoperability and conversion between C types and Python
types.

• Specialized syntax to ease wrapping and interfacing with C++.

• Automatic static type inference for certain code paths.
All C types, infact, are available for type declarations: integer and
floating point types, complex numbers, structs, unions and pointer
types. Cython can automatically and correctly convert between the
types on assignment.
This also includes Python’s arbitrary size integer types, where value
overflows on conversion to a C type will raise a Python OverflowError
at runtime.

• First-class buffer support with buffer-specific syntax: using buffers ef-
fectively is often the key to obtaining C-level performance from Cython
code.
Cython makes particularly easy to work with them, having full support
for the new buffer protocol and, with it, NumPy arrays.

• Typed memoryviews. As suggested by the name, a typed memoryview
is used to view (or better, to share) data from a buffer-producing ob-
ject, and overlaps with the Python memoryview31 type, expanding it.
Because a typed memoryview operates at the C level, it has minimal
Python overhead and is very efficient, but it has a memoryview-like
interface, so it is easier to use than working with C-level buffers di-
rectly.
And being designed to work with the buffer protocol, it supports any
buffer-producing object efficiently, allowing sharing of data buffers
without copying.

31Memoryview is a Python type whose sole purpose is to represent a C-level buffer at
the Python level.

Cython Features 39

• Thread-based parallelism with prange. In the section dedicated to the
pros and cons of Python, we have introduced the global interpreter
lock, or GIL.
According to Python’s documentation, the GIL is “a mutex32 that
prevents multiple native threads from executing Python bytecodes at
once.”
In other words, the GIL ensures that only one native (or OS-level)
thread executes Python bytecodes at any given time during the execu-
tion of a CPython program, affecting not just Python-level code, but
the Python/C API as a whole.

Why is the GIL necessary? “This lock is necessary mainly because
CPython’s memory management is not thread-safe”, Python’s docu-
mentation explains. However, there is nothing so bad that it is not
good for something. After all:

1) C code not working with Python objects can be run without the
GIL in effect, allowing fully threaded execution.
2) The GIL is specific to CPython and consequently, other Python
implementations like Jython, IronPython, and PyPy, have no need for
a GIL.
3) Although being controversial because it prevents multithreaded
CPython programs from taking full advantage of multiprocessor sys-
tems, long-running operations such as I/O, image processing, and
NumPy33 number crunching, happen outside the GIL.
4) Developers can also use multiprocessing module to run applications
on different processes, rather than on multiple threads, as we pre-
viously said. And being in this context, another solution is to use
MPI4Py34, as we will see later in the thesis, to use message passing35

32In computer science, mutual exclusion is instituted for the purpose of preventing race
conditions; it is the requirement that one thread of execution never enter its critical section
at the same time that another concurrent thread of execution enters its own critical section.

33NumPy is the fundamental package for scientific computing with Python.
34MPI for Python package. MPI for Python provides bindings of the Message Passing

Interface (MPI) standard for the Python programming language, allowing any Python
program to exploit multiple processors.

35In computer science, message passing sends a message to a process and relies on the
process and the supporting infrastructure to select and invoke the actual code to run.
Message passing differs from conventional programming where a process, subroutine, or
function is directly invoked by name. Message passing is the key to some models of
concurrency and object-oriented programming.

40 Python

among parallel computational nodes.

Because Cython code is compiled, not interpreted, it is not running
Python bytecode. Hence, getting the chance to create C-only entities
in Cython that are not tied to any Python object, we can release the
global interpreter lock when working with the C-only parts of Cython.

Put in another way, we can use Cython to bypass the GIL and achieve
thread-based parallelism: Python users’ dream!

In the next two sections we will discuss some of its features previously listed;
no GIL exaples will be shown, because it is not our main objective. Instead,
a comparison between Python, C and Cython function will be discussed,
referring performances and timings.
The discussions are taken from the two homonymous sections of [11].

2.11 Comparing Python, C, and Cython

Let’s see an example to understand the differences between these three lan-
guages.

Consider a simple Python function fib that computes the nth Fibonacci
number:

1 def fib(n):

2 a, b = 0.0, 1.0

3 for i in range(n):

4 a, b = a + b, a

5 return a

The C transcription of fib follows the Python version closely:

1 double cfib(int n) {

2 int i;

3 double a=0.0, b=1.0, tmp;

4 for (i=0; i<n; ++i) {

5 tmp = a; a = a + b; b = tmp;

6 }

7 return a;

8 }

Comparing Python, C, and Cython 41

We use doubles in the C version and floats36 in the Python version to make
the comparison direct and remove any issues related to integer overflow for
C integral data types.

Cython understands Python code, so our unmodified Python fib function
is also valid Cython code.
To convert the dynamically typed Python version to the statically typed
Cython version, we use the cdef Cython statement to declare the statically
typed C variables i, a, and b:

1 def fib(int n):

2 cdef int i

3 cdef double a=0.0, b=1.0

4 for i in range(n):

5 a, b = a + b, a

6 return a

What about performances? Table 2.1 has the results.

Version fib(0) [ns] Speedup fib(90) [ns] Speedup Loop body [ns] Speedup

Pure Python 590 1 12.852 1 12.262 1
Pure C 2 295 164 78 162 76

C extension 220 3 386 33 166 74
Cython 90 7 258 50 168 73

Table 2.1: Fibonacci timings for different implementations

In Table 2.1, the second column measures the runtime for fib(0) and the
third column measures the speedup of fib(0) relative to Python.
Because the argument to fib controls the number of loop iterations, fib(0)
does not enter the Fibonacci loop, so its runtime is a reasonable measure of
the language-runtime and function-call overhead.
The fourth and fifth columns measure the runtime and speedup for fib(90),
which executes the loop 90 times. Both the call overhead and the loop exe-
cution runtime contribute to its runtime.
Lastly, the sixth and seventh columns measure the difference between the
fib(90) runtime and the fib(0) runtime and the relative speedup; difference
that is an approximation of the runtime for the loop alone, having removed
runtime and call overhead.

36Python’s built-in float type has double precision (it’s a C double in CPython).

42 Python

But beyond the columns, table 2.1 has also four rows:

• Pure Python. The first row (after the header) measures the perfor-
mance of the pure Python version of fib , and as expected, it has the
poorest performance by a significant margin in all categories.
In particular, the call overhead for fib(0) is over half a microsecond
on this system. Each loop iteration in fib(90) requires nearly 150
nanoseconds; Python leaves much room for improvement.

• Pure C. The second row measures the performance of the pure C ver-
sion of fib. Here there is no interaction with the Python runtime, so
there is minimal call overhead. This also means it cannot be used from
Python.
This version provides a bound for the best performance we can rea-
sonably expect from a simple serial fib function.
The fib(0) value indicates that C function call overhead is minimal (2
nanoseconds) when compared to Python, and the fib(90) runtime (164
nanoseconds) is nearly 80 times faster than Python’s on this particular
system.

• Hand-written C extension. The third row measures a hand-written C
extension module for Python 2. This extension module requires several
dozen lines of C code, most of it boilerplate that calls the Python/C
API.
When calling from Python, the extension module must convert Python
objects to C data, compute the Fibonacci number in C, and convert the
result back to a Python object. Its call overhead (the fib(0) column)
is correspondingly larger than that of the pure-C version, which does
not have to convert from and to Python objects.
Because it is written in C, it is about three times faster than pure
Python for fib(0). It also gives a nice factor-of-30 speedup for fib(90).

• Cython. The last row measures the performance for the Cython ver-
sion.
Like the C extension, it is usable from Python, so it must convert
Python objects to C data before it can compute the Fibonacci num-
ber, and then convert the result back to Python.
Because of this overhead, it cannot match the pure C version for fib(0),
but, notably, it has about 2.5 times less overhead than the hand-
written C extension.

Comparing Python, C, and Cython 43

Because of this reduced call overhead, it is able to provide a speedup
of about a factor of 50 over pure Python for fib(90).

The takeaways from Table 2.1 are the last two columns: the loop runtime
for the pure C, C extension, and Cython versions are all about 165 nanosec-
onds, and the speedups relative to Python are all approximately 75x (for the
C-only parts of an algorithm, provided sufficient static type informations,
Cython can usually generate code that is as efficient as a pure-C equivalent).

So, when properly accounting for Python overhead, we see that Cython
achieves C-level performance. Moreover, it does better than the hand-
written C extension module on the Python-to-C conversions. In fact, Cython
generates highly optimized code that is frequently faster than an equivalent
hand-written C extension module. It is often able to generate Python-to-
C conversion code that is several factors faster than naive calls into the
Python/C API.

We can go even further and use Cython to create Python-like C functions
that have no Python overhead.
These functions can be called from other Cython code but cannot be called
directly from Python. They allow us to remove expensive call overhead for
core computations.

What is the reason for Cython’s performance improvements? For this exam-
ple, the likely causes are function call overhead, looping, math operations,
and stack versus heap allocations37.

• Function Call Overhad. The fib(0) runtime is mostly consumed by
the time it takes to call a function in the respective language; the time
to run the function’s body is relatively small.
We see in Table 2.1 that Cython generates code that is nearly an order
of magnitude faster than calling a Python function, and more than two
times faster than the hand-written extension.
Cython accomplishes this by generating highly optimized C code that
bypasses some of the slower Python/C API calls. We use these API
calls in the preceding C-extension timings.

• Looping. Python for loops, as compared to compiled languages, are
notoriously slow.

37The stack is the memory set aside as scratch space for a thread of execution, while
the heap is memory set aside for dynamic allocation.

44 Python

One surefire way to speed up loopy Python code is to find ways to
move the Python for and while loops into compiled code, either by
calling built-in functions or by using something like Cython to do the
transformation for you. The fib(90) column in the table is running a
for loop in each language for 90 iterations, and we see the impact of
this operation on the different version runtimes.

• Math Operations. Because Python is dynamically typed and can-
not make any type-based optimizations, an expression like a + b could
do anything.
We may know that a and b are only ever going to be floating-point
numbers, but Python never makes that assumption. So, at runtime,
Python has to look up the types of both a and b (which, in this in-
stance, are the same).
It must then find the type’s underlying add method (or the equiva-
lent), and call add with a and b as arguments. Inside this method,
the Python floats a and b have to be unboxed to extract the underly-
ing C doubles, and only then can the actual addition occur.
The result of this addition has to be packaged in an entirely new
Python float and returned as the result.
The C and Cython versions already know that a and b are doubles
and can never be anything else, so adding a and b compiles to just one
machine code instruction.

• Stack vs Heap Allocation. At the C level, a dynamic Python ob-
ject is entirely heap allocated.
Python takes great pains to intelligently manage memory, using mem-
ory pools and internalizing frequently used integers and strings.
But the fact remains that creating and destroying objects (and objects
here means ANY objects, even scalars) incurs overhead to work with
dynamically allocated memory and Python’s memory subsystem.
Because Python float objects are immutable, operations using Python
floats involve the creation and destruction of heap-allocated objects.
The Cython version of fib declares all variables to be stack-allocated
C doubles.
As a rule, stack allocation is much faster than heap allocation. More-
over, C floating-point numbers are mutable, meaning that the for loop
body is much more efficient in terms of allocations and memory usage.
It is not surprising that the C and Cython versions are more than an
order of magnitude faster than pure Python, since the Python loop

Wrapping C Code with Cython 45

body has to do so much more work per iteration.

2.12 Wrapping C Code with Cython

Let’s consider Cython’s other main feature: interfacing with external code.
Suppose that, instead of Python code, our starting point is C or C++ code,
and that we want to create Python wrappers for it. Because Cython under-
stands C and C++ declarations and can interface with external libraries,
and because it generates highly optimized code, it is easy to write efficient
wrappers with it.

Continuing with our Fibonacci theme, let’s start with a C implementation
and wrap it in Python using Cython. The interface for our function is:

1 double cfib(int n);

while the Cython wrapper results in:

1 cdef extern from "cfib.h":

2 double cfib(int n)

3
4 def fib(n):

5 """ Returns the nth Fibonacci number."""

6 return cfib(n)

The cdef extern block provides the cfib.h header filename, and after that, a
fib Python wrapper function is defined, which calls cfib and returns its result.

After compiling the preceding Cython code into an extension module named
wrap fib, it can be used from Python directly:

1 >>> from wrap_fib import fib

2 >>> help(fib)

3 Help on built-in function fib in module wrap_fib:

4 fib (...)

5 Returns the nth Fibonacci number.

6 >>> fib(90)

7 2.880067194370816e+18

46 Python

The fib function is a regular Python function inside the wrap fib extension
module, and calling it with a Python integer does what we expect, calling
into the underlying C function for us and returning a (large) result.

A hand-written wrapper would require several dozen lines of C code, and
detailed knowledge of the Python/C API, while here it was just a handful
of lines of Cython code to wrap a simple function.

This example was intentionally simple: provided the values are in range,
a Python int converts to a C int without issue, raising an OverflowError
otherwise.
Internally the Python float type stores its value in a C double, so there are
no conversion issues for the cfib return type.
And because we are using simple scalar data, Cython can generate the type
conversion code automatically.

However, being Cython a full-fledged language, we can use it to do whatever
we like before and after the wrapped function call.
Because the Cython language understands Python and has access to Python’s
standard library, we can leverage all of Python’s power and flexibility.

It should be noted that we can use Cython’s two reasons for being in one
file (or doing both inside the same function): speeding up Python alongside
calling external C functions.

2.13 The Pareto Principle

Of course it can be exiting to see improvements when we add some trivial
cdef statements to Python code, but not all Python code will see perfor-
mance gains when compiled with Cython.

The preceding fib example is intentionally CPU bound, meaning that all
the runtime is spent manipulating a few variables inside CPU registers, and
little, if any, movement is required.

If this function were, instead, memory bound (like adding the elements of
two large arrays), I/O bound (e.g., reading a large file from disk), or network
bound (downloading a file from an FTP server), the performance difference
between Python, C, and Cython would likely be significantly decreased. And

The Pareto Principle 47

as said, I/O and Numpy number crunching operations happen outside the
GIL, so parallel execution can be exploited intrinsically in Python itself.

When improving Python’s performance is the goal, the Pareto principle38

works in our favor: we can expect that approximately 80 percent of a pro-
gram’s runtime is due to only 20 percent of the code.

Of course the 20 percent is very difficult to locate without profiling, but
there is no excuse not to profile Python code, given how simple its built-in
profiling tools are to use.
Modules cProfile and profile39 provide deterministic profiling of Python pro-
grams. Deterministic profiling is meant to reflect the fact that all function
call, function return, and exception events are monitored, and precise tim-
ings are made for the intervals between these events (during which time the
user’s code is executing).
In contrast, statistical profiling randomly samples the effective instruction
pointer, and deduces where time is being spent.
The latter technique traditionally involves less overhead (as the code does
not need to be instrumented), but provides only relative indications of where
time is being spent.

That said, if we determine via profiling that the bottleneck in our program
is due to it being I/O or network bound, then we cannot expect Cython to
provide a significant improvement in performance, and we can use instead
Python modules like multiprocessing and threading, to achieve good results
with less effort.
it is worth determining the kind of performance bottleneck you have, before
turning to Cython, because, although it is a powerful tool, Cython must be
used in the right way and in the right context.

And once started to use it, all limitations of C data types become rele-
vant concerns, because Cython brings C’s type system to Python.
For example, Python integer objects silently convert to unlimited-precision40

38The Pareto principle (also known as the 80/20 rule, the law of the vital few, or the
principle of factor sparsity) states that, for many events, roughly 80% of the effects come
from 20% of the causes.

39cProfile is a C extension with reasonable overhead; profile is a pure Python module,
whose interface is limitated by cProfile, but which adds significant overhead to profiled
programs

40In computer science, arbitrary-precision arithmetic (also called bignum arithmetic,
multiple-precision arithmetic, or sometimes infinite-precision arithmetic), indicates that

48 Python

Python long objects when computing large values, but C ints or longs are
fixed precision, meaning that they cannot properly represent unlimited-
precision integers.

Cython has features to help catch these overflows, however the larger point
remains: C data types are faster than their Python counterparts, but are
sometimes not as flexible or general.

2.14 Summary

This chapter has introduced the Python language, emphasising its essential
features and pointing out its pros and cons.
Its drawbacks coding CPU bound and multi-processes/multi-threads appli-
cations were pointed out, and clarifications and solutions to these downsides
have been said, by focusing particularly on Cython, a performing superset of
Python, which can be the amalgam between its subset and the HPC ecosys-
tem.
The evidence of that are its continuing use in all those Python modules writ-
ten ad hoc for scientific computing (introduced in paragraph 1.4), and that
software and hardware giants (like Intel, NVIDIA, universities and private
enterprise) are pressing in this direction.

Bibliography

[1] Steve Holden Alex Martelli, Anna Ravenscroft. Python in a Nuthshell
- the Definitive Reference. O’Reilly, 2016.

[2] Allen B. Downey. Think Python - How to Think Like a Computer
Scientist. O’Reilly, 2015.

[3] Mark Lutz. Learning Python: Powerful Object-Oriented Programming.
O’Reilly, 2013.

[4] Alex Martelli. The template method design pattern in python, 2003.
OSCON.

[5] Alex Martelli. Thread in python 2.3, 2003. OSCON.

calculations are performed on numbers whose digits of precision are limited only by the
available memory of the host system. This contrasts with the faster fixed-precision arith-
metic found in most arithmetic logic unit (ALU) hardware, which typically offers between
8 and 64 bits of precision.

BIBLIOGRAPHY 49

[6] Alex Martelli. Template method and factory desing patterns, 2003.
EuroPython.

[7] Ian Ozsvald Micha Gorelick. High Performance Python: Practical Per-
formant Programming for Humans. O’Reilly, 2014.

[8] Mark Pilgrim. Dive Into Python. Apress, 2011.

[9] Luciano Ramalho. Fluent Python: Clear, Concise, and Effective Pro-
gramming. O’Reilly, 2015.

[10] Brett Slatkin. Effective Python: 59 Specific Ways to Write Better
Python (Effective Software Development Series). Addison-Wesley Pro-
fessional, 2015.

[11] Kurt W. Smith. Cython - a Guide for Python Programmers. O’Reilly,
2015.

Chapter 3

Quadtrees and Octrees

ADT Abstract Data Type

DF Depth First

DFS Depth First Search

CFD Computational Fluid Dynamics

PABLO Parallel Balanced Linear Octree

PABLitO Parallel Balanced Linear interpreted Octree

In this chapter, an overview of hierarchical data structures for representing
images, such as the quadtree and octree, is presented.

Hierarchical data structures are necessary when the scene being modeled
becomes significantly larger than the display grid, arising major logistic
problems.
In this case, there are two ways two handle these problems: one approach is
based on object-space hierarchies, while the second one is centered on image-
space hierarchies, and it is typified precisely by hierarchical data structures
such as quadtrees and octrees. We will give in the next section a more pre-
cise clarification.

Octrees are the 3D analog of quadtrees. The name is formed from oct
and tree, but note that it is normally written “octree” with only one “t”.
Octrees are often used in 3D graphics and 3D game engines, and their use for

50

Background 51

computer graphics was pioneered1 by Donald Meagher at Rensselaer Poly-
technic Institute.
These two fundamental data types are based on the principle of recursive de-
composition2, and their main fields of usage are: the representation of data
used in applications in computer graphics, computer-aided design, robotics
and computer vision.

In the following sections, region data (i.e. 2D shapes) are explained in
detail, extending the subject to 3D data.

3.1 Background

Before discussing some fundamental properties of quadtrees and octrees, we
elaborate on the motivation for their development.

As mentioned earlier, hierarchical data structures such as the quadtree and
octree have their roots in attempts to overcome problems that arise when
the scene being modeled is more complex than the display grid (in size, pre-
cision, number of elements, etc.).
And again, as mentioned earlier, these problems are solved with object-space
hierarchies and image-space hierarchies.

• Object-space hierarchies. Two kinds of logistic problems present
themselves in scene modeling. First, the number of objects to model
(i.e, the “universe” of the scene, meaning its totality).
Secondly, another problem is in determining what subset of the scene
is actually visible, further aggravated when the scene extends horizon-
tally and vertically past the bounds of the viewing surface.

The first problem has been addressed, in part, by observing that the
“universe” can be hierarchically organized into objects composed of
subobjects, which are in turn composed of other objects, and so forth.
This observation has been used as the basis for the organization of the

1Described in a 1980 report “Octree Encoding: A New Technique for the Representa-
tion, Manipulation and Display of Arbitrary 3-D Objects by Computer”.

2Recursive decomposition is a principle similar to divide and conquer methods, and
refers to the process whereby, any complex informational event at one level of descrip-
tion, can be specified more fully at a lower level of description by decomposing the event
into multiple components and multiple processes, that specifiy the relations among these
components.

52 Quadtrees and Octrees

(a) Unbounded objects (b) Bounding boxes

(c) Hierarchical bounding boxes

Figure 3.1: An example of the use of bounding objects, helpful to solve the
visible-subset problem, aggravated by the come out of the scene from the
viewing surface. Infact, if the bounding object is not visible, then clearly
the object being bounded is also not visible

user’s interface of various graphics packages.

And since the object hierarchy must be kept to solve the communica-
tion problem between the object and the overall picture to which it
belongs, it can also be used to solve the visible-subset problem, adapt-
ing the object hierarchy through the notion of bounding objects.

When detemining whether or not an object is visible, it is common
to surround the object (see Figure 3.1a) with a bounding box (see
Figure 3.1b) or even a sphere. If the bounding object is not visible,
then clearly the object being bounded is also not visible.
This technique produces a major computational savings, since it is
usually much easier to test for visibility of the bounding object than
the visibility of the bounded object.

However, to improve execution time in presence of a great number

Quadtree and Octree Definitions 53

of elements, the bounds need not be limited to the primitive objects
of the scene, but instead, bounding objects can also be placed around
complex geometries formed by the different levels of the object hier-
archy (see Figure 3.1c).

• Image-space hierarchies. A natural alternative to processing in the
object-space hierarchy is to organize the data around an image-space
hierarchy.
One problem with traditional image-space representations (i.e., 2D
and 3D arrays) is that they require the user to fix the maximum res-
olution in advance. However, a hierarchical organization of the image
space allows the resolution to vary with the complexity of the objects
in various regions.

Of course, there are many ways to partition the image space (viewed
as a continuous plane/space), but to interface easily with a Cartesian
coordinate system, a decomposition of the plane into square regions
(and a space into cubes) is the simplest.

When justifying the use of object-space hierarchies for image-space
processing, we often refer to the property of area coherence, which
means that objects tend to represent compact regions in the image
space.
Similarly, we might speak of object coherence as being a factor in
image-space hierarchies, since regions that are close to each other tend
to be parts of the same object. Thus, both types of hierarchies tend
to approximate each other.

For large-scale applications, however, the costs associated with the im-
precision of these approximations can easily overshadow any benefits
accrued from the explicit maintenance of just one of the hierarchies.
Thus, when possible, both hierarchies should be maintained.

3.2 Quadtree and Octree Definitions

The term quadtree is used to describe a class of hierarchical data structures
whose common property is that they are based on the principle of recursive
decomposition of space.

54 Quadtrees and Octrees

A quadtree is a tree data structure3 in which each internal node has ex-
actly four children.
Quadtrees are most often used to partition a 2D space by recursively sub-
dividing it into four quadrants or regions. The data associated with a leaf
cell4 varies by application, but the leaf cell represents a “unit of interesting
spatial information”.

The subdivided regions may be square or rectangular, and the resolution
of the decomposition (i.e., the number of times that the decomposition pro-
cess is applied) may be fixed beforehand or it may be governed by properties
of the input data.

Based on the above, quadtree can be differentiated on the following bases:

• the type of data that they represent;

• the principle guiding the decomposition process;

• the resolution (variable or not);

• whether the shape of the tree is independent of the order in which
data is processed.

Currently, they are used for point data, regions, curves, surfaces, and vol-
umes. The decomposition may be into equal parts on each level (i.e., regular
polygons, termed a regular decomposition), or it may be governed by the in-
put.

The current section explains the construction of quadtrees, and their most
common types.

A tree-pyramid (T-pyramid) is a “complete” tree. Every node of the
T-pyramid has four child nodes except leaf nodes, and all leaves are on the
same level. Level, that corresponds to individual pixels in the image.
The data in a tree-pyramid can be stored compactly in an array as an im-
plicit data structure, similar to the way a complete binary tree5 can be

3In computer science, a tree is a widely used abstract data type (ADT) that simulates
a hierarchical tree structure, with a root value and subtrees of children with a parent node,
represented as a set of linked nodes.

4A leaf cell (or leaf node) is a term used to indicate any node that does not have child
nodes.

5A binary tree is a tree with a branching factor of 2, hence binary. In other words,
each node can have at most two children.

Quadtree and Octree Definitions 55

stored compactly in an array6.

Consider now an incomplete tree: if we were to store every node corre-
sponding to a subdivided cell, we may end up storing a lot of empty nodes.
We can cut down on the size of such sparse trees by only storing subtrees
whose leaves have interesting data (i.e. “important subtrees”).
But we can actually cut down on the size even further. When we only keep
important subtrees, the pruning process may leave long paths in the tree
where the intermediate nodes have degree two (a link to one parent and one
child). It turns out that we only need to store the node u at the beginning
of this path (associating some meta-data with it to represent the removed
nodes) and attach the subtree rooted at its end to u.
What just presented is the core idea of compressed quadtrees.

The point quadtree is an adaptation of a binary tree used to represent 2D
point data.
It is often very efficient in comparing two-dimensional, ordered data points,
usually operating in O(logn)7 time, where n is the number of items stored.
Point quadtrees are worth mentioning for completeness, but they have been
surpassed by k-d trees8 as tools for generalized binary search.
Point quadtrees are constructed as follows. Given the next point to insert,
we find the cell in which it lies and add it to the tree. The new point is
added such that the cell that contains it is divided into quadrants by the

6There is a distinction between a tree as an abstract data type and as a concrete
data structure. As a data type, a tree has a value (value of the root) and children, and
the children are themselves trees (subtrees of the children of the root node). As a data
structure, a tree is a group of nodes, where each node has a value and a list of references
to other nodes (its children). Nodes in a tree could have next/previous references, or
references to their parent nodes.

7Binary search trees keep their keys in sorted order, so that lookup and other operations
can use the principle of binary search: when looking for a key in a tree (or a place to insert
a new key), they traverse the tree from root to leaf, making comparisons to keys stored in
the nodes of the tree and deciding, on the basis of the comparison, to continue searching
in the left or right subtrees. On average, this means that each comparison allows the
operations to skip about half of the tree, so that each lookup, insertion or deletion takes
time proportional to the logarithm of the number of items stored in the tree. This is much
better than the linear time required to find items by key in an (unsorted) array, but slower
than the corresponding operations on hash tables

8In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning
data structure for organizing points in a k-dimensional space. k-d trees are a useful data
structure for several applications, such as searches involving a multidimensional search
key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of
binary space partitioning trees.

56 Quadtrees and Octrees

vertical and horizontal lines that run through the point. Consequently, cells
are rectangular but not necessarily square.
In these trees, each node contains one of the input points.

Since the division of the plane is decided by the order of point-insertion,
the tree’s height is sensitive to and dependent on insertion order. Inserting
in a “bad” order can lead to a tree of height linear in the number of input
points (at which point it becomes a linked-list). If the point-set is static,
pre-processing can be done to create a tree of balanced height.

Region quadtree represents a partition of space in two dimensions by
decomposing the region into four equal quadrants, subquadrants, and so on,
with each leaf node containing data corresponding to a specific subregion.
Each node in the tree either has exactly four children, or has no children (a
leaf node).
The height of quadtrees that follow this decomposition strategy (i.e. subdi-
viding subquadrants as long as there is interesting data in the subquadrant
for which more refinement is desired) is sensitive to (and dependent on) the
spatial distribution of interesting areas in the space being decomposed.

This data structure is constructed in the following manner: starting with
an image (whose binary array representation is given in Figure 3.2a), it is
checked to see if it has a simple description and thus does not require any
further hierarchical structuring.
If this is not the case, then the image space is partitioned into four disjoint
congruent square regions (called quadrants) whose union covers the original
image space (see Figure 3.2b).
Each of these new image spaces is treated as if it were isolated, and each
one is examined to determine whether or not it has a simple description
(resulting in Figure 3.2c). Of course, in this example, the stopping rule for
the decomposition process is homogeneity (i.e., each square region is of one
color).
This decomposition technique is referred to as a regular decomposition, to
distinguish it from decomposition approaches that vary the size of the sub-
regions formed from the original regions (see Figure 3.2d).

The criteria to stop the decomposition process is called leaf criterion, be-
cause the spaces that satisfy it form the leaf nodes of the tree that represents
the hierarchical structure.
There are many variants on the quadtree data structure that differ only in

Quadtree and Octree Definitions 57

(a) (b)

(c) (d)

(e)
1 pixel

2x2

4x4

Figure 3.2: Illustration of the quadtree decomposition process: (a) orig-
inal image, (b) first level of decomposition, (c) second and final level of
decomposition, (d) an example of an irregular decomposition, (e) its tree
representation

what constitutes a satisfactory leaf criterion for the data structure, being a
multitude of plausible (and different) decomposition criteria.

But when looking for a leaf criterion, we should search for a subset of the
possible image spaces where the graphics task we want to process can be
solved easily, satisfying correctly the starting decomposition criteria. Some-
times, in fact, the leaf criterion cannot be fulfilled in a finite amount of time
or resources.

For instance, consider the edge octree. This kind of quadtrees are usually
used to store lines by subdividing cells to a very fine resolution, specifically
until there is a single line segment per cell.
If not set a maximum level of decomposition, near corners/vertices edge

58 Quadtrees and Octrees

quadtrees will continue dividing until they reach their default leaf criterion:
division in square regions where no region contains more than one line seg-
ment.
Fixing a maximum level of decomposition, by contrast, make it possible to
stop the partitioning, although it can result in extremely unbalanced trees
which may defeat the purpose of indexing.
For example, Figure 3.3 is the edge quadtree corresponding to the vector
data in red. In this case, truncation at the maximum tree depth (4) has
occurred at the nodes containing vertices A, B, C, D, E, F, and G, but not
H.

A B

C

D

F

G

H

E

Figure 3.3: The edge quadtree for the vector data in red. The fixed max-
imum level of decomposition is 4, as can be seen around vertices. If this
imposition stops the partitioning, it unfortunately leads to a not so well
balanced quadtree

The octree data structure is the 3D analog of the quadtree; its being can
easily extrapolated from the concepts previously exposed, and it was devel-
oped independently by various researchers.
Hunter9 mentioned it as a natural extension of the quadtree, and Reddy
and Rubin10 proposed the octree as one of three representations for solid

9G.M. Hunter; Efficient computation and data structures for graphics, Ph.D. disserta-
tion, Department of Electrical Engineering and Computer Science, Prince.ton University,
Princeton, NJ, 1978.

10D.R. Reddy and S. Rubin, Representation of three-dimensional objects, CMU-CS-7S-

Quadtree and Octree Definitions 59

objects. The second is a 3D generalization of the point quadtree of Finkel
and Bentley11, i.e. a decomposition into rectangular parallelepipeds (as op-
posed to cubes) with planes perpendicular to the x, y, and z axes. The third
breaks the object into rectangular parallelepipeds of an arbitrary size that
are not necessarily aligned with an axis.
Meagher12 developed numerous algorithms for performing solid modeling
where the octree is the underlying representation.

(a) (b)

1 2

413
5 6

9 10

14 15

11 12

A

B1 2 3 4 13 14 15

5 6 7 8 9 10 11 12

(c)

Figure 3.4: (a) Example 3D object, (b) its octree block decomposition, and
(c) its tree representation. The original figure (a) is rasterized filling its
empy parts with some voxels (represented in white, in (b), while in red are
identified the parallelepiped used to divide the original image)

113, Computer Science Department, Carnegie-Mellon University, Pittsburgh, April 1978.
11R.A. Finkel and J.L. Bentley, Quad trees: a data structure for retrieval on composite

keys, Acta Informatica, 1(1974), 1-9.
12D . Meagher, Geometric modeling using octree encoding, Computer Draphics and

Image Processing 19, 2(June 1982), 129-147.

60 Quadtrees and Octrees

To be consistent with this chapter, we report an example of costrunction for
a region octree.
It starts with an image in the form of a cubical volume, and continues deter-
mining if its description is sufficiently complex, in which case the volume is
recursively subdivided into eight congruent disjoint cubes (called octants),
until the complexity is sufficiently reduced.
Of course, the leaf criteria differ depending on whether the data is of a raster
format (consisting of 3D voxels13 having a single color, instead of 2D pixels)
or vector format (consisting of solids and planar or curved surfaces, instead
of polygons and edges).
Figure 3.4a is an example of a simple 3D object whose raster octree block
decomposition is given in Figure 3.4b and tree representation in Figure 3.4c.

3.3 Quadtree and Octree Space Decomposition

Although a number of different planar decomposition methods exist, quadtree
in the form of squares it is used, because it is a planar decomposition that
satisfies these two properties:

1. it yields a partition that is an infinitely repetitive pattern, so it can
be used for images of any size;

2. it yields a partition that is infinitely decomposable into increasingly
finer patterns, so into higher resolution.

A quadtree-like decomposition into four equilateral triangles also satisfies
these criteria, and they have been used in the literature (Yamaguchi et al.14

use them to generate an isometric view from an octree representation of an
object).
However, unlike the decomposition into squares, it does not have a uniform
orientation15 (all tiles with the same orientation cannot be mapped into each

13In 3D raster graphics, the volume is divided into evenly spaced rows and columns,
covering the three different directions (up-down, left-right, in-out). This divides the 3D
space into cubes, also know as voxels (volume elements). Each voxel has a 3D coordinate
within the volume and holds the color at that coordinate.

14. Yamaguchi, T.L. Kunii, K. Fujimura, and H. Toriya, Octree-related data structures
and algorithms, IEEE Computer Graphics and Applications, 4, 1(January 1984), 53-59.

15Three points p,q,r define a clockwise, a counter-clockwise triangle, or may be aligned.
These three cases correspond to a positive, negative, or null value of the following deter-
minant:

xq − xp xr − xp
yq − yp yr − yp

Quadtree and Octree Space Decomposition 61

other by translations of the plane that do not involve rotation or reflection).
In contrast, a decomposition into hexagons has a uniform orientation but
does not satisfy property 2.

One of the motivations for the development of hierarchical data structures
such as the quadtree is a desire to save space (we have already introduced
the compressed quadtrees).
Besides consideration of the leaf criteria, the investigation of hierarchical
data structures has also been concerned with how to encode the tree repre-
senting the hierarchy.
In literature, three general approaches are usually presented to represent
trees, each of which has been investigated with regard to the specific repre-
sentation of quadtrees.
In the following, we describe them just for quadtree, bearing in mind that
extension to their 3D counterpart is trivial.

1. The original formulation of the quadtree encodes it as a tree structure
that uses pointers. It is the first and most obvious quadtree encoding
which requires additional overhead to encode the internal nodes of the
tree.
Each internal node (often referred to as a gray node), in fact, requires
four pointers (one for each of its subtrees), apart from the leaf nodes,
needing no pointer fields.
The size of a pointer field is the base 2 logarithm of the number of
nodes in the tree. Each node also requires one bit of information to
indicate whether it is an internal node or a leaf.

To describe quadtree algorithms, a father link is useful in each node;
however, this is not necessary for implementation, because in most
tasks, processing starts at the root and a stack of father links can be
easily maintained.

2. The second formulation, termed DF-expression16, represents the image
in the form of a traversal of the nodes of its quadtree.
Its approach makes use of the observation that the number of subtrees
of a given quadtree node, is either four or zero.
Thus, a quadtree can be represented by listing the nodes encountered

16The depth-first picture expression (DF-expression, where DF stands for depth first, or
also treecode) is a compact quadtree expression providing a high data compression capa-
bility. It is primarily a hierarchically structured data representation for binary pictures.

62 Quadtrees and Octrees

NW

NE SW

SE

G

G GW

W W B BB

B

B W W

Figure 3.5: Pointer encoding of the quadtree of Figure 3.2c. Internal nodes
are represented by circular nodes. Terminal nodes are represented by square
nodes

by a preorder traversal17 of the tree structure.

For example, traversing the quadtree of Figure 3.5 in the order NW,
NE, SW and SE, letting G, B and W denote nonterminal, solid and
empty nodes, result in the list GWGWWBBGWBWBB.

It is a very compact formulation, as each node type can be encoded
with one bit of overhead, used to distinguish between leaf nodes and
internal nodes: in the first case, the pre-order algoritm will display the
data of the current node; in the second one, it will recursively traverse
its left subtree, its right subtree, and finally it will process the current
node itself.

Although many simple algorithms are performed and efficiently im-
plemented using this traversal of the quadtree, it is not always easy to
use when random access to nodes is desired.
For instance, to visit the second subtree of a node, it is necessary to
visit each node of the first subtree so that the location of the root of
the second subtree can be determined.

3. The third approach is based on the use of locational codes, and it

17In computer science, tree traversal (also known as tree search) is a form of graph
traversal which refers to the process of visiting (checking and/or updating) each node in
a tree data structure, exactly once. Such traversals are classified by the order in which
the nodes are visited.

Quadtree and Octree Space Decomposition 63

F

B G

A D I

C E H

Figure 3.6: Left-to-right (left subtrees are checked before the right ones, as
opposed to right-to-left orders) tree traversals. 1) Pre-order : F, B, A, D, C,
E, G, I, H. 2) In-order : A, B, C, D, E, F, G, H, I. 3) Post-order : A, C, E,
D, B, H, I, G, F

was first proposed by Morton18 as an index to a geographical database.

Different variant are possibile, but in the one that we describe, each
node is represented by a pair of numbers. The first number, termed a
locational code, is composed of a concatenation of base 4 digits corre-
sponding to directional codes that locate the node along a path from
the root of the quadtree.
These directional codes take on the values 0, 1, 2, and 3 corresponding
to quadrants NW, NE, SW, and SE, respectively.
The second number, instead, is the level of the tree at which the node
is located.
Assuming that the root is at level 0, the pair of numbers (312,3) are
decoded as follows: 312 is the base 4 locational code and denotes a
node at level 3 reached by a sequence of transitions SE, NE, and SW-
starting at the root.

The overhead per node is two bits per level of depth of the node,

18G.M. Morton, A Computer Oriented Geodetic Data Base and a New Technique in File
Sequencing, IBM Ltd., Ottawa, Canada, 1966.

64 Quadtrees and Octrees

plus the base 2 logarithm of the depth of the node to specify the level
at which the node is found. Gargantini19 has investigated algorithms
specific to this representation, which she calls a linear quadtree20[4],
because the addresses are keys in a linear list of nodes (in literature,
this approach is also call leafcode).

This formulation is analogous to taking the binary representation of
the x and y coordinates of a designated pixel in the block (e.g., the
one at the lower left corner) and interleaving them (i.e., alternating
the bits for each coordinate; see Figure 3.8 and Figure 3.9).
Once the data are sorted into this ordering, any one-dimensional data
structure can be used, such as binary search trees, B-trees21, skip
lists22, or hash tables.

In mathematical analysis and computer science, this binary repre-
sentation is called Z-order, Morton-order, or Morton-code, and is a
function which maps multidimensional data to one dimension (as seen
for the locational codes), while preserving locality of the data points.
The resulting ordering can equivalently be described as the order one
would achieve from a depth-first traversal of a quadtree (see Figure
3.6: these searches are referred to as depth-first search (DFS), as the
search tree is deepened as much as possible on each child before going
to the next sibling).
The Z-order can be used to efficiently build a quadtree for a set of
points[7]. The basic idea is to sort the input set according to Z-order
and, once sorted, the points can either be stored in a binary search
tree and used directly (linear quadtree), or they can be used to build
a pointer based quadtree.
As an alternative, the Hilbert curve has been suggested, having a bet-
ter order-preserving behaviour, and giving so a better spatial locality.
But the calculations for the Hilbert distance23 are more complicated

19I. Gargantini, Linear Octtrees for Fast Processing of Three-Dimensional Objects, Com-
puter Graphics and Image Processing, Dec. 1982, pp. 365-374.

20A linear octree is represented by a linear array instead of a tree data structure.
21In computer science, a B-tree is a self-balancing tree data structure that keeps data

sorted and allows searches, sequential access, insertions, and deletions in logarithmic time.
The B-tree is a generalization of a binary search tree in that a node can have more than
two children.

22In computer science, a skip list is a data structure that allows fast search within an
ordered sequence of elements.

23Picking a point p covered by the curve, and tracing out the curve until you reach

Quadtree and Octree Space Decomposition 65

than for the Morton one, leading to significant processor overhead
which, in CPU bound applications, it is not well-liked.
The notion of distance speaking about space-filling curves is important
because it can be used as hash from a 2D coordinate to an integer, and
because some curves (as said, some more than others) preserve local-
ity, meaning that 2D point nearby in space are likely to have similar
Hilbert distances.
For a recent overview on multidimensional data processing, including
nearest neighbour searches, refer to [9].

n = 1 n = 2 n = 3 n = 4 n = 5

Figure 3.7: Hilbert curve generated using recursive TEX macro and PGF.
Author: Marc van Dongen

When using the linear quadtree encoding, further reduction of the storage
requirements is possible without substantially increasing the runtime re-
quirements of the algorithms.
In particular, there is no need to retain the internal nodes as the general
quadtree structure stores only data in the tree’s leaf nodes.
Since the number of internal nodes is equal to one third of the number of
leaf nodes minus one, this results in a significant space savings.

Moreover, it is often remarked that the nodes representing a background
color (or empty nodes) can also be eliminated from the node list. With a
binary raster image, the result is a reduction in the size of the quadtree to
one half of its former size (assuming that, on the average, one half of the
pixels are background).

The relative compactness of the pointer and the linear quadtree representa-
tions depends on the complexity of the scene being represented and on the
application in which they are used.

that point, then the number of intermediate points that you passed through, is called the
Hilbert distance

66 Quadtrees and Octrees

NWNWNWNWNWNE

NWNWSW NWNWSE

NWNENW NWNENE

NWNESW NWNESE

NWSWNW NWSWNE

NWSWSW NWSWSE

NWSENW NWSENE

NWSESW NWSESE

NENWNW NENWNE

NENWSW NENWSE

NENENW NENENE

NENESW NENESE

NESWNW NESWNE

NESWSW NESWSE

NESENW NESENE

NESESW NESESE

SWNWNW SWNWNE

SWNWSW SWNWSE

SWNENW SWNENE

SWNESW SWNESE

SWSWNW SWSWNE

SWSWSW SWSWSE

SWSENW SWSENE

SWSESW SWSESE

SENWNW SENWNE

SENWSW SENWSE

SENENW SENENE

SENESW SENESE

SESWNW SESWNE

SESWSW SESWSE

SESENW SESENE

SESESW SESESE

Figure 3.8: Locational representation for a third level quadtree: NW = 00
(binary 0), NE = 01 (binary 1), SW = 10 (binary 2), SE = 11 (binary 3)

The attractiveness of the linear quadtree representation increases with the
complexity of the scene, but the choice is not clear cut, and is further com-
plicated for 3D data, where the overhead of the internal nodes is less of
a factor and hence, an efficient implementation of the pointer-based repre-
sentation will often be more economical spacewise than a locational code
representation.

To conclude this section, we present another type of quadtrees, the ori-
gin of which is due to the necessity of reducing the number of leaf nodes in
these data structures.
The amount of storage required by quadtrees and octrees, infact, is directly
proportional to the number of leaf nodes. Reducing the latter, will reduce
also the earlier.

Quadtree and Octree Space Decomposition 67

y: 0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110

x:
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

111111

Figure 3.9: Z-order representation for a third level quadtree (By David
Eppstein - Own work, Public Domain). See the correlation with Figure 3.8

And therefore, the bintree, rather than splitting a region with respect to
all the principal planes simultaneously, it splits a region against only one
plane at each level.
For example, instead of splitting an octree node into eight subnodes, the
bintree first splits the node into two subnodes along the x -y plane. Each of
these subnodes is checked to see if it could be a valid leaf and, if not, is then
subdivided along the y-z plane.
Finally, nodes that require further subdivision are subdivided along the x -z
plane.
This process is repeated in a cyclical manner until the appropriate maximum
level of subdivision is attained.

68 Quadtrees and Octrees

3.4 The Quadtree/Octree Complexity Theorem

Most quadtree algorithms are simply preorder traversals of the quadtree
itself, and thus their execution time is generally a linear function of the
number of nodes in the quadtree.
Consequently, we are interested in the asymptotic analysis of the size of a
quadtree, more for its relevance to the execution time analysis of the algo-
rithms, than for the amount of storage actually required.
In this case, our discussion assumes a tree representation in the sense that
the number of nodes in the quad tree includes the internal nodes.

A key to the analysis of the execution time of quadtree algorithms is the
following theorem[13], which states that, except for pathological cases, the
number of nodes in the quadtree representation of a region is proportional
to the perimeter of the region.

Quadtree Complexity Theorem. The number of nodes in a quadtree
region representation for a simple polygon (i.e. with nonintersecting edges
and without holes), is O(p + q) for a 2q × 2q image, with perimeter p
measured in pixel widths.

In most cases, q is negligible, and thus, the number of nodes is proportional
to the perimeter. Hence, the quadtree complexity theorem holds that the
size of the quadtree representation of a region is linear in the perimeter of
the region.

An alternative interpretation of this result is that for a given image, if the
resolution doubles and hence the perimeter doubles (ignoring fractal effects),
then the number of nodes will double. On the other hand, for the 2D array
representation, when the resolution doubles, the size of the array quadru-
ples.
Therefore, asymptotically, quadtrees are arbitrarily more compact than 2D
arrays. Figure 3.10 illustrates the relative growth of the two representations
for a simple triangular region.

The Quadtree Complexity Theorem holds also for 3D data where the perime-
ter is replaced by surface area, and in general for d -dimensions where, instead
of perimeter, we have the size of the (d -1)-dimensional interfaces between
the d -dimensional objects.
In particular, most algorithms that execute on a quadtree representation of
an image instead of an array representation have an execution time that is

The Quadtree/Octree Complexity Theorem 69

a

b

c

d

e

f
Figure 3.10: An illustration of the relative growth of the array and quadtree
representations at different levels of resolution for a simple triangular region.
Figures (a) through (c) are the array representations of the triangle at res-
olutions 1, 2 and 3. Figures (d) through (f) are the corresponding quadtree
representations at the same resolutions

proportional to the number of blocks in the image rather than the number
of pixels.
Generally, this means that the application of a quadtree algorithm to a prob-
lem in d -dimensional space executes in time proportional to the analogous
array-based algorithm in the (d -1)-dimensional space of the surface of the
original d-dimensional image.

Thus, quadtrees are somewhat like dimension-reducing devices.

70 Quadtrees and Octrees

3.5 Algorithms Using Quadtrees

In this section we describe how some algorithms can be implemented us-
ing quadtrees, with respect to two subjects extremely valuable for meshes
generation: point location and neighboring object location.

• Point location. Probably, the simplest task to perform on raster
data is determining the color of a given pixel.
In the traditional raster representation, this task is accomplished by
exactly one array access, while the quadtree rendering requires search-
ing its internal structure.
The algorithm starts at the root of the quadtree and uses the values of
the x and y coordinates of the center of its block, to determine which
of the four subtrees contains the pixel.
For example, if both the x and y coordinates of the pixel are less than
the x and y coordinates of the center of the root’s block, then the pixel
belongs in the southwest subtree of the root. This process is performed
recursively until a leaf is reached, whose color will be the color of the
pixel.
The execution time for the algorithm is proportional to the level of
the leaf node containing the desired pixel.

However, point location can also be performed without the explicit
evaluation of the centers of each node encountered along the path.
This approach uses the depth n of the pixel we are searching (respect
of course to that of the root), and assumes that the southwestern-most
pixel is at (0, 0).
This approach to pixel location is easiest to contemplate with respect
to a quadtree representation that makes use of locational codes, al-
though it is equally applicable to the pointer representation of quadtrees.
The locational code for a leaf is formed by a process (described in the
section on data structure implementations) that is equivalent to inter-
leaving the binary coordinates of the lower left-hand corner of the leaf
(here coordinates are integer values ranging from 0 to 2n − 1 for a
2n × 2n grid).
When the leaf nodes are sorted by their locational codes (as for a pre-
order traversal of the quadtree), the addresses of all descendants of a
node, say P, lie between the address of P and the address of its im-
mediate successor at the same level. Then, a pixel is located by first
interleaving the binary representations of its coordinates to construct

Algorithms Using Quadtrees 71

an address, say K, for a hypothetical leaf node corresponding to the
pixel.
And this hypothetical leaf is located by performing a binary search24

on the sorted list of locational codes for the leaf nodes of the quadtree
and returning the leaf node with the largest locational code value that
is less than or equal to K.

The execution time for this algorithm is proportional to the log of
the number of leaf nodes in the tree (assuming key comparisons can
be made in constant time).
When a pointer representation is used, the execution time is propor-
tional to the level of the leaf node containing the desired pixel25. The
difference in the execution time is due to the fact that here, the pixel-
location algorithm is slightly different. In particular, we locate the
appropriate leaf by descending the tree.

• Neighboring object location. The vector analog of the pixel-
location task is the object-location operation, where the x and y coor-
dinates of the location of a pointing device (e.g., mouse, tablet, light-
pen) must be translated into the name of the appropriate object.
To handle this task, we must first determine the leaf that contains the
indicated location. If the leaf is empty, then we must investigate other
leaf nodes.
Investigation that we have to do even if the leaf node is not empty,
unless the location of the pointing device coincides with a primitive26,
because it is possible that a nearer primitive might exist in another
leaf.
What we are trying to do, in essence, is wishing to report the nearest
primitive of the object description, stored in the quadtree.

The approach used is a top-down27 recursive algorithm (the opera-

24In computer science, binary search, also known as half-interval search, logarithmic
search, or binary chop, is a search algorithm that finds the position of a target value
within a sorted array. Binary search runs in at worst logarithmic time, making O(log n)
comparisons, where n is the number of elements in the array.

25Finding a node in a linked list is O(n) where, in this case, n = 4q, where q is the
level at which the desired pixel it is, and 4 is the 2D repartition of a quadtree.

26A primitive point P of a group of point is simply a generator of this group: all elements
of the group can be expressed as P + P + P + ... + P (k times), for some k.

27Solving a problem by reducing it to one or more simpler problems is the essence of
the top-down approach to designing algorithms. One advantage to this approach is that

72 Quadtrees and Octrees

tion is also known as the nearest neighbor problem): initially, at each
level of the recursion, we explore the subtree that contains the loca-
tion of the pointing device, say P. Once the leaf containing P has been
found, the distance from P to the nearest primitive in the leaf is cal-
culated (empty leaf nodes have a value of infinity). Next, we unwind
the recursion.
As we do so, at each level we search the subtrees that represent regions
overlapping a circle centered at P, whose radius is the distance to the
closest primitive that has been found so far.
When more than one subtree must be searched, the subtrees repre-
senting regions nearer to P are searched before the subtrees farther
away (since it is possible that a primitive in them might make it un-
necessary to search the subtrees that are farther away).

Consider, for example, Figure 3.11 (it reports only point data; how-
ever, the treatment of vector data differs from point data only in the
formula used to calculate the distance from a point) and the task of
finding the nearest neighbor of P in node 7.

If we visit nodes in the order SW, SE, NW, NE as we unwind for the
first time, we check nodes 1 and 2 and the subtrees of the western
brother of 7. Once we visit node 3, we have to visit nodes 4, 5 and 6,
because they could contain a closer point to P.
By contrast, after have visited node 6, there is no need to visit nodes
8 and 9, since node 6 contained A, which is closer than B.
Same reasoning still applies for node 10, containing point C (which is
farther than A), and for nodes 11, 12, 13.

3.6 Quadtree Grid Generations

The algorithms exposed just now, are of great importance in a context of
mesh generation to solve partial differential equations by numerical meth-
ods.
A well-known field where this resolve process has gained great importance
is the computational fluid dynamics (CFD), where an automatic mesh gen-
eration technique which can accommodate local mesh refinement adaptively
is desirable, because in many CFD problems it is necessary to fit a mesh of
varying cell density to the boundary of curved or irregular domains, in order
to obtain accurate numerical solutions to the governing partial differential

it allows to abstract away certain details, to focus on the main steps of the algorithm.

Quadtree Grid Generations 73

1 2

3
7

8 9

10

12 13

C

D

11
B

A
P4

5 6

Figure 3.11: Example illustrating the neighboring object problem: P is the
location of the pointing device, for which we want to find the closest neighbor
in the surrounding area. To succeed in our quest, we can use a recursive
algorithm to easily find the nearest object, which is represented by point A
in node 6

equations without requiring an excessive number of mesh points.
But not only that: regions with a rapid change in the flow variables are not
known in advance, and they are identified during the solution process; thus,
the mesh should be adapted dynamically until the solution is sufficiently
accurate.
And of course, the mesh must be quick to generate and easy to adapt.
Therefore, an automatic mesh generation technique which can keep track of
the refined cells and control the local level of refinement is essential. Such a
technique must establish links between neighbouring cells at different levels
in a hierarchical sense to facilitate local mesh refinement.

One efficient technique for producing such meshes in two-dimensional space
is precisely to subdivide recursively the domain into quadrants using a
quadtree to store and manipulate the mesh information.

By the way, the transition from an algorithmic and theoretical point of
view about quadtrees (such as it has been addressed so far in this chapter),
to a more pragmatic and practic approach like this, is not for free.

74 Quadtrees and Octrees

Indeed, there are two main difficulties in using this grid generation tech-
nique:

• quadtrees are complicated in terms of storing and retrieving mesh
information due to their recursive tree structures.

• Hanging nodes28 (see the red point in Figure 3.11) arise at the interface
between cells of different sizes in quadtree grids.

To overcome these issues, CFD developers can handle software libraries
which take in charge of all the challenges concerning the domain discretiza-
tion for their study cases.
As far as quadtrees (and octrees) are concerned, there are a lot of tools
which can be used, but in continuing this thesis, just one will be taken into
account: PABLO (and of course, its Python counterpart PABLitO).

PABLO is C++/MPI library for parallel linear octree/quadtree developed
by Optimad Engineering srl under the GNU Lesser General Public License,
and it is now contained in bitpit29. It’s strengths are:

• to provide users with a ready-to-use tool for parallel adaptive grid of
quadrilaterals/hexahedra;

• message passing paradigm is transparent to the user since PABLO has
embedded MPI calls. By this way, the user can easily perform data
communications and dynamic load-balance by calling straightforward
high level methods;

• the user can feel free to customize his data in whatever way he likes;

• to allow adaptive mesh refinement by generating non-conforming grid
with hanging nodes;

• low memory consumption in the basic configuration (approx. 30B per
octant in 3D).

28Hanging nodes are vertices of the smaller cells which lie on the face of an adjacent
larger cell but not on any of its vertices. These nodes cause problems when discretizing
partial differential equations.

29Bitpit is a C++ library for scientific High Performance Computing. Within bitpit,
different modules factorize the typical effort which is needed to derived a real-life appli-
cation code. Main efforts are dedicated to handle differnt types of computational meshes,
their runtime adaptation and data transfer for parallel applications.

Quadtree Grid Generations 75

• 2:1 balancing30 between octants and a easy way to generate and store
intersections between octants;

• the existence of PABLitO31, that is a Python wrapper for PABLO,
written in Cython and developed as main framework for the work of
this thesis.

PABLitO is, as far as I know, the first parallel linear octree which can be
easily imported in Python. There is Pyoctree32, but this is an octree struc-
ture containing a 3D triangular mesh model, to be used for ray tracing33.
Like the already mentioned “rival”, PABLitO requires a C++ compiler and
Cython, to be operational, since both are centered around a C++ imple-
mentation, to improve computational speed.
But, unlike Pyoctree, which can take opportunity from an OpenMP sup-
port, PABLitO uses a distributed approach (if an MPI implementation
is present on the system, otherwise it will run in serial), leaving PABLO
managing the intra-communications inside each octree, and bearing the
inter-communications between octrees (see Figure 4.11). And this is a real
strength, because until now I have never heard about multiple communi-
cators in an MPI programs, leaving to the classic COMM WORLD all the
communications’ management.
In the next subsection it will be presented a typical starting point for the
usage of this new Python module

3.6.1 PABLitO Initialization

Creating differents MPI intra-communicators

1 group_w = comm_w.Get_group ()

2 procs_w = comm_w.Get_size ()

3 procs_w_list = range(0, procs_w)

4 procs_l_lists = chunk_list_ordered(procs_w_list ,

5 n_grids)

6 proc_grid = get_proc_grid(procs_l_lists ,

7 comm_w.Get_rank ())

8 group_l = group_w.Incl(procs_l_lists[proc_grid])

30An octree is 2:1 balanced if there are no pair of adjacent blocks where one is more
than double the size of the other.

31Written by Federico Tesser: https://github.com/uncleTes.
32Written by Michael Hogg: https://github.com/mhogg/pyoctree.
33In computer graphics, ray tracing is a rendering technique for generating an image

by tracing the path of light as pixels in an image plane and simulating the effects of its
encounters with virtual objects.

76 Quadtrees and Octrees

9 # Creating differents MPI intracommunicators.

10 comm_l = comm_w.Create(group_l)

11 # Current intracommunicator ’s name.

12 comm_name = comm_names[proc_grid]

13 comm_l.Set_name(comm_name)

14 #Communicator local’s name.

15 comm_l_n = comm_l.Get_name ()

16 #Communicator local’s rank.

17 comm_l_r = comm_l.Get_rank ()

18 #Communicator global ’s name.

19 comm_w_n = comm_w.Get_name ()

where

• procs l lists is a list containing the processes’ lists associated to each
octree

• proc grid is the integer prepresenting between the corresponding octree
of the current MPI process

• group l is the MPI processes group local to each octree

• comm l is the local intra-communicator build on the previously built
local group

Creating different MPI inter-communicators

1 # Creating differents MPI intercommunicators.

2 intercomm_dictionary = {}

3
4 if procs_w > 1:

5 create_intercomms(n_grids ,

6 proc_grid ,

7 comm_l ,

8 procs_l_lists ,

9 logger ,

10 intercomm_dictionary)

where

• intercomm dictionary is the Python dictionary containig all the inter-
communicators at stake. The key of each pair is a unique and safe tag
(created specifically by an intrinsic algorithm)

• create intercomms is the function to populate intercomm dictionary

Setting PABLOs

Summary 77

1 pablo , centers = set_octree(comm_l ,

2 proc_grid)

3
4 ...

5 ...

6 ...

where

• set octree is the method to set a PABLO for each process

3.7 Summary

This chapter has introduced quadtrees (and octrees) as data structures origi-
nated from images representation fields, examining their data representation
and space decomposition, and subsequently setting out different areas of ap-
plications, including point and object location, and grid generations. Of this
latter, which is the most important aspect for the continuation of the thesis,
a grounding in the libraries used in the following chapters has been given,
showing also some specific code for the usage of the carrier framework of
this project.

Bibliography

[1] Carsten Burstedde. Forest-of-octrees amr: algorithms and interfaces,
2012. Second HPC Workshop KAUST.

[2] Carsten Burstedde. Modular forest-of-octrees amr: algorithms and in-
terfaces, 2012. FEniCS, Simula Research Laboratory, Norway.

[3] Omar Ghattas Carsten Burstedde, Lucas C. Wilcox. p4est: Scalable
algorithms for parallel adaptive mesh refinement on forests of octrees.
SIAM Journal on Scientific Computing, 2011.

[4] I. Gargantini. An effective way to represent quadtrees. Communications
of the ACM, 1982.

[5] Robert E. Webber Hanan Samet. Hierarchical data strucutres and al-
gorithms for computer graphics. IEEE Computer Graphics & Applica-
tions, 1988.

78 Quadtrees and Octrees

[6] S. Cruz A. Saalehi A. G. L. Borthwick K. F. C. YJU, D.M. Greaves.
Quadtree grid generation: Information handling, boundary fitting and
cfd applications. Computers & Fluids, 1996.

[7] D. Eppstein M. Bern. Parallel construction of quadtrees and quality
triangulations. Int. J. Comp. Geom. & Appl, 1999.

[8] Hari Sundar Ilya Lashuk George Biros Rahul S. Sampath, Santi S. Ada-
vani. Dendro: Parallel algorithms for multigrid and amr methods on
2:1 balanced octrees. SC 2008: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, 2008.

[9] H. Samet. Foundations of Multidimensional and Metric Data Struc-
tures. Morgan-Kaufmann, 2006.

[10] Hanan Samet. An overview of quadtrees, octrees, and related hierar-
chical data structures. Theoretical Foundations of Computer Graphics
and CAD, 1988.

[11] Lucas C. Wilcox Omar Ghattas Tobin Isaac, Carsten Burstedde. Re-
cursive algorithms for distributed forests of octrees. SIAM Journal on
Scientific Computing, 2015.

[12] Omar Ghattas Tobin Isaac, Carsten Burstedde. Low-cost parallel al-
gorithms for 2:1 octree balance. Proceedings of the 26th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2012.

[13] Paul E. Black Vreda Pieterse. Quadtree complexity theorem. Algo-
rithms and Theory of Computation Handbook, 2004.

Chapter 4

Overlapping Octrees

BSC Barcelona Supercomputing Center

KAUST King Abdullah University of Science and Technology

LTE Leading Truncation Error

ASCII American Standard Code for Information Interchange

VTK The Visualization Toolkit

SIMD Single Instruction Multiple Data

MIMD Multiple Instruction Multiple Data

FTCS Forward Time Centered Space

BTCS Backward Time Centered Space

UDS Upwind Difference Scheme

CDS Central Difference Scheme

In this chapter we will cover in detail the new adaptive method which is the
key issue of this thesis.

Method that aims to reduce 1) the complexity typical of the Chimera aprroaches
(where the overall algorithm can be not so easy to be implemented), and
2) the increasing number of the in place computational grids (which, as we

79

80 Overlapping Octrees

have seen in Section 1.3, can be a complexity hot spot for the communica-
tion pattern between all the meshes).

And of course this method seeks to mark a little turning point in the CFD
programming techinques, leaving opened a glimmer on the usage of non-
“classical” (of course, relatively speaking) programming languages, having
been completely developed using Python and Cython.
These two languages were used with the aim of presenting a real scientific
computing application totally operating, as already told, with a language
(Python) suitable for easy developing, easy training, and user-friendliness.
All aspects that, longer than I, have affected the way of thinking of large
companies like NVIDIA and Intel, and of important research groups and sci-
entists from, for example, BSC, Argonne National Laboratory and KAUST.

Although in different fileds, all the already mentioned interested subjects
are unified by the desire to create Python’s wrappers, to use their original
products, having been dazzled by its versatility and power.

And so, why not to try to emulate them, in a real contest application?

After having introduced the main points of modeling and simulation of
physical processes, and after having established the key points for the nu-
merical simulation of partial differential equations (PDEs) and for the finite
difference and finite volume numerical methods, we will move into the tech-
nicalities and the detailed aspects of this 2D discretization method based
on the overlap of generic quadrilateral grids made by quadtrees which, as
we already seen in Chapter 1, can be compared to block structured AMR,
but that in reality differs from it in the usage of the intrinsic capability of
the quadtrees themselves to be refined locally, using for example some error
estimator or some prediction functions, or maybe just some shape functions.

4.1 PDEs Models and Simulations

Every physical process that we want to resolve must be, at first, ordered
onto the following stages:

• the definition of the physical problem, listing its governing equations,
to which follows then

• the creation of the mathematical model using systems of PDEs or

PDEs Models and Simulations 81

ODEs, each of which combined with initial and (or) boundary condi-
tions (to get a well-posed problem1).
PDEs are, in fact, mathematical models of continuous physical phe-
nomenon in which a dependent variable, say u, is a function of more
than one independent variable (and of their derivatives), say t (time),
and x, y, z (spatial position).
A special case is ordinary differential equations (ODEs), which deal
with functions of a single variable.

• After the previous steps, before solving the underlying problem, it is
necessary to discretize the mathematical model, generating a discrete
grid on which to project the continuous scheme of the governing equa-
tions, giving rise to a sistem of algebraic equations.
This step is necessary when there are no other ways, other than the
numerical one, to solve the physical process (complex problems usu-
ally do not have analytical solution). And all the numerical techniques
for PDEs are based on the creation of a discrete space alongside the
continuous one in which the governing equations originally belong.

• Finally, after having obtained the keenly awaited solution, it remains
to analyse the obtained results, looking for a comparison with the
predicted ones or, if presents, with the analytical reference solution.

PDEs can be used to describe a wide variety of phenomena such as sound,
heat, electrostatics, electrodynamics, fluid dynamics, elasticity, or quantum
mechanics. These seemingly distinct physical phenomena can be formalised
similarly in terms of PDEs, giving rise to mainly three families of them.
Given the following second order2 general form for linear PDEs in two vari-
ables

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu+ g = 0

we define the discriminant b2 − 4ac, on the basis of which we can classify
them into the following groups.

• Hyperbolic: b2 − 4ac > 0.

1The mathematical term well-posed problem stems from a definition given by Jacques
Hadamard, and it means that mathematical models of physical phenomena should underlie
the properties that 1) a solution exists, 2) the solution is unique and 3) the solution’s
behavior changes continuously with the initial conditions.

2The order of a partial differential equation is the order of the highest derivative oc-
curring in the equation.

82 Overlapping Octrees

Hyperbolic PDEs describe time-dependent, conservative physical pro-
cesses, such as convection3, that are not evolving toward steady state.

An example is the one dimensional wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0

• Parabolic: b2 − 4ac = 0.

Parabolic PDEs describe time-dependent dissipative physical processes,
such as diffusion4, that are evolving toward steady state.

An example is the one dimensional heat equation

∂u

∂t
− ∂2u

∂x2
= 0

• Elliptic: b2 − 4ac < 0.

Elliptic PDEs describe processes that have alreay reached steady states,
and hence are time-independent.

An example is the two dimensional Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0

In the following section we will introduce two numerical techniques for solv-
ing PDEs: finite difference and finite volume methods.

3in a general convection-diffusion equation, the contribution of convection is described
by −∇· (v̄u). Roughly speaking, to understand it imagine standing on the bank of a river,
measuring the amount of salt of the water each second. If upriver somebody dumps a
bucket of salt into the river, later you would see the salinity suddenly rise, then fall, as
the zone of salty water passes by. Thus, the concentration at a given location can change
because of the flow.

4Diffusion, by the way, is usually represented by ∇ · (∇u). If we imagine u as the
concentration of a chemical, when it is low somewhere compared to the surrounding areas
(a local minimum of concentration), the substance will diffuse in from the surroundings
(that are evolving toward steady state), so the concentration will increased. And viceversa,
if concentration is higher than the surroundings.

Numerical Techniques for PDEs 83

4.2 Numerical Techniques for PDEs

Numerical partial differential equations is the branch of numerical analysis
that studies the numerical solution of partial differential equations which, as
we have already seen, not necessarily present an analytical settlement, and
therefore it is necessary to obtain an approximation of the behaviour of the
desired solution.

Of course different approaches are possible, but here we will focus only
on two of them, very similar in the underlying resolving approach.

4.2.1 Finite Difference Method

Finite difference method represents functions by their values at certain grid
points and derivatives are approximated through differences in these values.

Suppose that we are solving u = u(t, x) on the domain Ω = [0, T] × [0, L].
We discretize the domain Ω by partitioning the spatial interval [0, L] into
m+ 2 grid points x0, x1, . . . , xm, xm+1 = L, such that

∆xj = xj+1 − xj, j = 0, 1, 2, . . .m

In the case that the m + 2 spatial points xj are equally spaced, we have
∆x = ∆xj ,∀j (see Figure 4.1).

x0 x1 x2 xj-1 xj xj+1 ... xm xm+1

∆x

Figure 4.1: Finite difference discretization for the one dimensional domain
[0, L]. Similarly is discretized the temporal domain [0, T], with time step
k = ∆t.

The numerical solution of the PDE is an approximation to the exact solution
obtained using a discrete representation at the grid points xj of the discrete
spatial mesh, at every time level tk.
Let us denote this numerical solution as U , such that

Ukj ≈ u(tk, xj)

For each time level tn, so, the numerical solution is a collection of finite
values:

Un = [Un1 , U
n
2 , . . . , U

n
m]

84 Overlapping Octrees

collection in which, values Un0 and Unm+1 are given by boundary conditions,
for all the time steps.
On the other and, the initial condition, at time 0, U0, must be given for all
the spatial grid points.

Recalling that the derivative of a function u at the point xj is defined by
the limits

ux (xj) = lim
h→0

u (xj + h)− u (xj)

h

= lim
h→0

u (xj)− u (xj − h)

h

= lim
h→0

u (xj + h)− u (xj − h)

2h

we use them, with a small finite value of h = ∆x, to define the three dif-
ferent approximation schemes of the finite difference method (a geometric
clarification is reported in figure 4.3):

ux (xj) ≈
u (xj + ∆x)− u (xj)

∆x
(forward difference)

≈ u (xj)− u (xj −∆x)

∆x
(backward difference)

≈ u (xj + ∆x)− u (xj −∆x)

2∆x
(centered difference)

whose characteristic is the error obtained approximating the derivative.
The leading truncation error (LTE) is in fact obtained using Taylor
approximation5 around a grid point xj . So, considering for the moment
forward and backward approximation, we have:

uj+1 = uj + ∆x

(
∂u

∂x

)
j

+
(∆x)2

2

(
∂2u

∂x2

)
j

+
(∆x)3

6

(
∂3u

∂x3

)
j

+ · · · (1)

uj−1 = uj −∆x

(
∂u

∂x

)
j

+
(∆x)2

2

(
∂2u

∂x2

)
j

− (∆x)3

6

(
∂3u

∂x3

)
j

+ · · · (2)

5u(x) =
∑∞

n=0

(x− xj)n

n!

(
∂nu

∂xn

)
j

.

Numerical Techniques for PDEs 85

from which we get the accuracy of these two finite difference approximations,
rearranging the previous equations in the following way(

∂u

∂x

)
j

=
uj+1 − uj

∆x
−∆x

2

(
∂2u

∂x2

)
j

− ∆x2

6

(
∂3u

∂x3

)
j

+ · · ·

(
∂u

∂x

)
j

=
uj − uj−1

∆x
+

∆x

2

(
∂2u

∂x2

)
j

− ∆x2

6

(
∂3u

∂x3

)
j

+ · · ·

where in red is represented the leading truncation error, expressed in the
form:

ετ = αm (∆x)m + αm+1 (∆x)m+1 + · · · ≈ αm (∆x)m

It is so clear then that for the forward and backward finite difference meth-
ods, the truncation error is O (∆x), meaning that they are first order ap-
proximations.
For the central difference scheme, an estimation of its LTE is obtained sub-
tracting the previous two formulae, (1)− (2), obtaining(

∂u

∂x

)
j

=
uj+1 − uj−1

2∆x
−∆x2

3

(
∂3u

∂x3

)
j

+ · · ·

which clearly reveals its nature more precise (O
(
∆x2

)
).

Summarising what has been done previously, it must be clear that:

• the backward and forward difference are a first order accurate approx-
imation to the partial derivative ux at xj , and that their LTEs are
O (∆x);

• the centered difference is a second order accurate approximation to
the partial derivative ux at xj , and that its LTE is O

(
∆x2

)
.

If on the other hand, we add (1) and (2), rather than subtract them, we
obtain a central approximation for the second order derivatives(

∂2u

∂x2

)
j

=
uj+1 − 2uj + uj−1

∆x2
+O

(
∆x2

)
which can be used, for example, considering the heat equation ut = uxx,
where we can apply a forward difference at time tn and a central one in space,

86 Overlapping Octrees

exact backward

forward

centered

Δx Δx

j j + 1j - 1
x

u

Figure 4.2: Geometric clarification for the three finite difference approxima-
tions: derivative at point j can be evaluated using the information from the
previous point j - 1 (backward), from the following one j + 1 (formward,
or from both of them (centered). Of course, reducing the distances between
evaluation points, more accurate approximations are obtained

i,ji - 1, j i + 1, j

i, j + 1

i, j - 1

y

x

Δx

Δy

Figure 4.3: 2D equations are discretized easily extending the concepts intro-
duced for the 1D finite difference method, on a 2D domain decomposition:

the x derivative evaluated on j, will be ux (xi,j) =
ui+1,j − ui−1,j

2∆x

Numerical Techniques for PDEs 87

to obtain the following explicit (solution at time level k + 1 is determined
by solution at previous time levels only) scheme:

uk+1
j − ukj

∆t
=
ukj+1 − ukj + ukj−1

∆x2
→

uk+1
j = ukj +

∆t

∆x2

(
ukj+1 − ukj + ukj−1

)
We can note that this scheme is first order accurate in time and second order
accurate in space.
Both the time and space derivatives are replaced by finite differences. Doing
so requires to specify both the time and spatial locations of the u values in
the finite difference formulas. Therefore, we have introduced a superscript
k to designate the time step of the discrete solution.
The previous Forward Time, Centered Space(FTCS) formulation is easy to
implement because the values of uk+1

j can be updated indipendently of each

other, not depending on uk+1
j−1 or uk+1

j+1 .
If this is a good thing from a programming point of view, for the stability of
the solution this is not. In fact, explicit approximation require the following
condition to be satisfied, in order to obtain stable solutions.

∆t

∆x2
<

1

2

To involve bot the current state and the later one to find the solution at
time k + 1 (therefore, an implicit scheme is introduced), we could use a
backward difference at time tn+1, remaining fixed in space:

uk+1
j − ukj

∆t
=
uk+1
j+1 − u

k+1
j + uk+1

j−1

∆x2

This approach is imaginatively called Backward Time, Centered Space (BTCS),
and it requires to solve a system of equations at each time step. It goes with-
out saying that this means a computational effort greater than the one in
the FTCS, and also the code developing will be more complicated.
However, even if this scheme is as just as accurate as the previous one, it
is unconditional stable, more robust then to the choice of ∆t and ∆x (for
solutions of the heat equation).

4.2.2 Finite volume method

Finite volume method represents and evaluates partial differential equations
in the form of algebraic equations, by acting in a similar fashion as in the

88 Overlapping Octrees

finite difference method, except for the fact that here, rather than pointwise
approximations on a grid, we have the average integral value on a reference
(or control) volume. The method starts by dividng the flow domain into

Ω

δΩ Ω δΩ

∆S

n

(b)(a)
Figure 4.4: Control volumes Ω, boundaries ∂Ω, normals n to the edges, hav-
ing surfaces ∆S, are the ingredients distinctive of a finite volume resolution

a number of small control volumes, in whose centers are defined the grid
points where, usually, unknown are stored.
The equations are then integrated over each control volume. Considering
for example a general (steady) transport equation6 for some quantity φ of
the type ∇ ·

(
Ūφ
)

= ∇ · (γ∇φ) + Sφ, if we integrate we obtain∫
Ω
∇ ·
(
Ūφ
)
dV =

∫
Ω
∇ · (γ∇φ) dV +

∫
Ω
SφdV →

∫
Ω
∇ ·
(
Ūφ− γ∇φ

)
dV =

∫
Ω
SφdV

where the last passage is achieved combining together the convection (∇ ·(
Ūφ
)
) and difussion (∇ · (γ∇φ)) terms.

The divergence theorem7 can be used to convert the left hand side volume

6The convection–diffusion equation is a combination of the diffusion and convection
(advection) equations, and describes physical phenomena where physical quantities are
transferred inside a physical system due to two processes: diffusion and convection.

7In vector calculus, the divergence theorem (also known as Gauss’s theorem), is a result
that relates the flow of a vector field through a surface, to the behavior of the vector field
inside that surface. Precisely, the divergence theorem states that the outward flux of a
vector field, through a closed surface, is equal to the volume integral of the divergence
over the region inside the surface.

Numerical Techniques for PDEs 89

integral to an integral around the boundary ∂Ω∫
∂Ω

(
Ūφ− γ∇φ

)
· n̄dS =

∫
Ω
SφdV (4.1)

which is a statement of conservation for the control volume, being Ūφ · n̄dS
and γ∇φ · n̄dS respectively the convective and diffusive flux across the same
boundary part, and being their integral the total net fluxes into the control
volume.
Provided that the same expressions are used for fluxes across faces in neigh-
bouring cells, this approach ensures that the conservation properties will
also be satisfied globally over the flow domain. In the Equation 4.1 we have

P
E

S

N

W

n

e

s

w

∆x

∆y

Figure 4.5: Finite volume compass notation: neighbours of P are indicated
with the cardinal directions N , W , S, E, while cell faces are denoted with
the corresponding lower cases

that:

• the surface integral is generally approximated in a discretized form by∫
∂Ω

(
Ūφ− γ∇φ

)
· n̄dS ≈

∑
k

(
Ūφ− γ∇φ

)
k
· (n̄∆S)k

where the flux
(
Ūφ− γ∇φ

)
k

is evaluated at the centre of the edge k
of the volume Ω, and (∆S)k and n̄k are, respectively, the area and the
unit vector normal to the edge k (referring to Figure 4.5, k = e, n, w,
s).

90 Overlapping Octrees

But now, an issue occurs: if the solution is available only at computa-
tional nodes (the centers of the control volumes), we need an interpo-
lation to obtain the convection fluxes at the evaluation points, namely
the centers of the edges of the control volumes.
To do this, different approximations are present in literature, and we
will show two of them, of the first and second order, to keep consis-
tency with the finite differences section.

The first one is the upwind difference scheme(UDS); considering a
typical grid point j in a one-dimensional domain (see Figure 4.6),
there are only two directions associated with point j : left (towards
negative infinity) and right (towards positive infinity).
If velocity Ū is positive, then the left side is called upwind side and
the right side is the downwind side. Viceversa if u is negative.
And speaking about the approximations done, the following ones are
taken

if Ū > 0 → φj−1/2 ≈ φj−1 and φj+1/2 ≈ φj

if Ū < 0 → φj−1/2 ≈ φj and φj+1/2 ≈ φj+1

which are first-order accurate flux approximations, as the leading trun-
cation error shows in the following Taylor expansion

Ūφj+1/2 = Ūφj−
Ū∆x

2

(
∂φ

∂x

)
j+1/2

− Ū (∆x)2

8

(
∂2φ

∂x2

)
j+1/2

+ · · ·

The second one is the central difference scheme(CDS) which reduces

a classical polynomial interpolation p1 (x) = φL
xR − x
xR − xL

+φR
x− xL
xR − xL

to the averaged values

φj−1/2 ≈
φj−1 + φj

2

φj+1/2 ≈
φj1 + φj+1

2

Numerical Techniques for PDEs 91

from where, using the following Taylor expansions

φj+1 = φj+1/2 +
∆x

2

(
∂φ

∂x

)
j+1/2

+
(∆x)2

8

(
∂2φ

∂x2

)
j+1/2

+ · · ·

φj = φj+1/2 −
∆x

2

(
∂φ

∂x

)
j+1/2

+
(∆x)2

8

(
∂2uφ

∂x2

)
j+1/2

+ · · ·

we obtain the second order LTE

φj+1/2 =
φj + φj+1

2
−(∆x)2

8

(
∂2φ

∂x2

)
j+1/2

+ · · ·

adding the previous two equations.

• The source term is approximated as∫
Ω
SφdV ≈ S̄φV ol ≈ (Sφ)P V ol

where S̄φ is the average value of Sφ over the control volume, and (Sφ)P
is simply its value ath the cell centre node P .

This approximation can also be shown to be usually of the second
order.

As an example, we can consider the elliptic equation uxx = f (x) on the
control volume Vi = [xi−1/2, xi+1/2]. Applying the revious steps, we will
have: ∫ i+1/2

xi−1/2

uxxdx =

∫ i+1/2

xi−1/2

fdx →

ux
(
xi+1/2

)
− ux

(
xi−1/2

)
=
(
xi+1/2 − xi−1/2

)
fi →

ui+1 − 2ui + ui−1

h
= hfi

where the last transition is obtained using centered differences on the deriva-
tives, and the midpoint rule8.

8
∫ b

a
f (x) dx ≈ (b− a) f

(
a+b
2

)
.

92 Overlapping Octrees

To conclude, finite difference methods are relatively easy to apply, when the
flow geometry allows a simple Cartesian set of grid points, to be adopted.
But, if complex geometries are present, more work is needed, not being able
to arrange orthogonal grid lines to easily approximate derivatives. There-
fore, other solutions must be found.

And of course, in engineering problems, special care is given to ensure con-
servation properties.
Finite volumes, being based on applying conservation principles over each
control volume, guarantee global conservation, but not only. As each ref-
erence volume can be assigned different material parameters, they are the
natural choice for heterogeneous material.

Vj

xj xj+1
xj+1/2xj-1/2xj-1

Figure 4.6: 1D control volume Vj with its borders xj−1/2 and xj+1/2. xj is
its center, while xj−1 and xj+1 are the center of the closer volumes

4.3 Poisson Equation

In this section we start introducing the main mathematical topic of this
work: the Poisson equation.

Many books on programming languages starts with an “Hello world” pro-
gram, so it seems normal to start a new numerical PDEs resolution approach
from one of the most fundamental equations: the Poisson one, indeed.
It will be our counterpart to the classical “first program ever”, that pro-
grammers love.

In mathematics, Poisson equation is a partial differential equation of elliptic
type with broad utility in mechanical engineering and theoretical physics.
The Poisson equation arises in numerous physical contexts, including heat
conduction, electrostatics, diffusion of substances, twisting of elastic rods,
inviscid fluid flow, and water waves.

Poisson Equation 93

It is a generalization of Laplace’s equation (previously seen), which is also
very frequently seen in physics, and it is named after the French mathemati-
cian, geometer, and physicist Siméon Denis Poisson.
Although it is very common and very well studied, this equation keeps a
certin importance appearing in numerical splitting strategies for more com-
plicated systems of PDEs, in particular the Navier-Stokes equations.

Its mathematical formulation is the following:

∆u (x̄) = f (x̄) x in Ω

u (x̄) = ud (x̄) x on ∂Ω

where u = u (x̄) is the unknown function, f = f (x̄) is a forcing term, Ω is
the spatial domain and ∂Ω is its boundary.

The Poisson equation, made up by both the PDE −∆u = f and the bound-
ary condition u = ud, is an example of boundary-value problem which, in
the field of differential equations, is a differential equation together with a
set of additional constraints, called the boundary conditions.
A solution to a boundary value problem is a solution to the differential
equation which also satisfies the boundary conditions, which can be of three
different types:

• Dirichlet: also called a first-type boundary condition, it specifies the
value of the function itself. Assuming an unknown function y, we could
have

y = f

• Neumann: this a second-type boundary condition, and it specifies
the value of the normal derivative of the function, like

∂y

∂n
= f

• Robin: a mix of the previous two so, supposed c0 and c1 some con-
stants, whe could have

c0y + c1
∂y

∂n
= f

94 Overlapping Octrees

In two space dimensions with coordinates x and y, we can write the Poisson
equation as

−∂
2u

∂x2
− ∂2u

∂y2
= f (x, y) (4.2)

where the unknown u = u (x, y) is a function of two variables and it is
defined over a two-dimensional domain Ω.

P

η

ε
y

x

Ω0I ΩIP

Ω0

Ω

∂Ω∂Ω0

X (Σ)

Σ (X)

Figure 4.7: Computational Ω0 and physical Ω domains, where ∂Ω0 and ∂Ω
represent their corresponding boundaries. Ω0i and Ωi are, instead, compu-
tational and physical control cells. A direct (physical to computational) and
an inverse (computational to physical) mapping between the domains are
mentioned by Σ (X) and X (Σ)

4.4 Numerical Discretization of the Poisson Equa-
tion

Equation 4.2, with the corresponding Dirichlet boundary condition, specifi-
cally in 2D space, is the pivot around which we have developed the job done
so far, following the two different numerical approaches we have previously
introduced:

Numerical Discretization of the Poisson Equation 95

1. finite-difference approach:

∂2u

∂ε2

[(
∂ε

∂x

)2

+

(
∂ε

∂y

)2
]

+
∂2u

∂η2

[(
∂η

∂x

)2

+

(
∂η

∂y

)2
]

+

2
∂2u

∂η∂ε

[
∂η

∂x

∂ε

∂x
+
∂η

∂y

∂ε

∂y

]
+
∂u

∂ε

[
∂2ε

∂2x
+
∂2ε

∂2y

]
+

∂u

∂η

[
∂2η

∂2x
+
∂2η

∂2y

]
= f

and

2. finite-volume approach: ∫
Ωi

∆u =

∫
Ωi

f

∫
∂Ω0i

∇Σu (∇ΣX)−1 C (∇ΣX)n0ds0 =

∫
Ω0i

f(X(Σ))|∇ΣX|

4∑
j=1

[
∇Σu (∇ΣX)−1

j C (∇ΣX)j

]
n0js0j = [f(X(Σ))|∇ΣX|]p Ω0i

where we already have considered, in the discretization, the grid transforma-
tions (see Figure 4.7) which take into account a direct (physical to computa-
tional, Σ (X),) and an inverse (computational to physical, X (Σ)) mapping
between the domains.

This procedure is necessary because derivatives on a cartesian grid (
∂u

∂ε
,
∂u

∂η
)

are easy to compute, while those on a body fitted mesh (
∂u

∂x
,
∂u

∂y
) are more

difficult to be evaluted, but they are more concrete, reflecting real cases.
So, it would be convenient to re-write the PDE of the case in terms of ε
and η, instead of x and y, and to discretize it in the computational domain
rather than in the physical one (taking into account, of course, derivative
transformations).

4.4.1 From/To Computational To/From Physical Domains

Given therefore the mapping

ε = ε (x, y) η = η (x, y)

96 Overlapping Octrees

and the chain rule

∂u

∂x
=
∂u

∂ε

∂ε

∂x
+
∂u

∂η

∂η

∂x

∂u

∂y
=
∂u

∂ε

∂ε

∂y
+
∂u

∂η

∂η

∂y
(4.3)

we have the following second order derivatives transformations

∂2u

∂x2
=
∂u

∂ε

∂2ε

∂x2
+
∂u

∂η

∂2η

∂x2
+ 2

∂2u

∂ε∂η

∂ε

∂x

∂η

∂x
+
∂2u

∂ε2

(
∂ε

∂x

)2

+
∂2u

∂η2

(
∂η

∂x

)2

∂2u

∂y2
=
∂u

∂ε

∂2ε

∂y2
+
∂u

∂η

∂2η

∂y2
+ 2

∂2u

∂ε∂η

∂ε

∂x

∂η

∂y
+
∂2u

∂ε2

(
∂ε

∂y

)2

+
∂2u

∂η2

(
∂η

∂y

)2

which explain the previous finite difference (re)formulation. The matrix
∂ε

∂x

∂ε

∂y

∂η

∂x

∂η

∂y


is the so called Jacobian matrix ∇XΣ, which is the matrix of all first-order
partial derivatives of a vector-valued function.

Regarding by contrast the finite volume re-elaboration, the change of vari-
able X (Σ), makes it possibile to come back at the reference configuration,
considering the determinant of the Jacobian |∇ΣX|.
However, the following part of the earlier equation∫

Ωi

f =

∫
Ω0i

f(X(Σ))|∇ΣX|

is valid just for volumes. For surfaces, the general formulation for a change
of variable is given by∫

∂Ωi

f =

∫
∂Ω0i

f(X(Σ))C (∇ΣX)

where C (∇ΣX) is the Cofactor matrix.
A cofactor matrix of a square matrix is another square matrix whose generic
element at position i, j is the cofactor associated at the same position of
the starting matrix, thus defined:

cofi,j = (−1)i+j det (Ai,j)

Numerical Discretization of the Poisson Equation 97

where we have called the initial matrix A, to facilitate the explanation. The
cofactor matrix is therefore

C (A) =


cof1,1 (A) cof1,2 (A) · · · cof1,n (A)

...
. . .

...
...

cofn,1 (A) cofn,2 (A) · · · cofn,n (A)


which, if A is reversible, can be obtained by its inverse matrix adj (A),
following these equivalences:

adj (A) = (C (A))T

A−1 = det (A)−1 adj (A)

C (A) = det (A)
(
A−1

)T
where adj (A) is the adjoint matrix 9. So, considering the Jacobian ∇ΣX in
2D, we have that

(∇ΣX)−1 =
1

det (∇ΣX)


∂y

∂η
−∂x
∂η

−∂y
∂ε

∂x

∂ε

 →

C (∇ΣX) =


∂y

∂η
−∂y
∂ε

−∂x
∂η

−∂x
∂ε


which gives a better concrete representation of the elements used in the
finite-volume approach discretization.

To conclude this section, we have to figure out the last term that comes
into play considering the finite-volume change of variable (∇ΣX)−1.
Recalling the chain rule 4.3, we can write it as

∂

∂x

∂

∂y

 =


∂

∂ε

∂

∂η

∇XΣ

9In linear algebra, the adjugate, classical adjoint, or adjunct of a square matrix is the
transpose of its cofactor matrix.

98 Overlapping Octrees

and repeating it around the other way, we will have that
∂

∂ε

∂

∂η

 =


∂

∂x

∂

∂y

∇ΣX

from which follows that
∂

∂ε

∂

∂η

 =



∂

∂ε

∂

∂η

∇XΣ

∇ΣX

so
(∇XΣ) (∇ΣX) = I → ∇XΣ = (∇ΣX)−1

and therefore (∇ΣX)−1 is nothing but the right Jacobian for the transfor-
mation considered.

After having introduced the numerical approaches that have been followed
for the problem at the center of our study, in the following section the pro-
gramming and algorithmic overtures adopted will be expressed, in order to
originate something “new” in the wide variety of resolvent methods for the
Poisson equation.
Before that, nevertheless, a brief introductory section on the ways present
in Python to communicate objects between processes (and especially on the
why to use them) is reported.
This will be useful to better explain the underlying parallel scheme, used in
the program.

4.5 Communicating Python Objects

Jobs running in different processes have their own independent memory
spaces, and in general cannot share data through memory.
To make processes communicate, programmers need some sort of channel.
One possible channel would be a shared memory segment, but it’s more
common to use serialization10, to let the processes “speak” between them,
partly bacause, talking about from a programmer point of view, it is usually
easier to use and apply.

10Serialization is the process of converting an object to another representation (often
binary, but it can be expressed using other forms like xml.

Communicating Python Objects 99

4.5.1 Pickle and Marshalling

The Python standard library supports different mechanisms for data persis-
tence11, many of which rely on disk storage. But pickling and marhsaling,
however, can also work with memory buffers.

• The pickle module implements binary protocols for serializing and
de-serializing a Python object structure. “Pickling” is the process
whereby a Python object hierarchy is converted into a byte stream,
while “unpickling” is the inverse operation, in which a byte stream
(from a binary file or bytes-like object) is converted back into an ob-
ject hierarchy.
Pickling and unpickling are alternatively known as serialization, mar-
shalling, orflattening, and they provide user-extensible facilities to se-
rialize general Python objects using ASCII or binary formats, ensuring
to be backwards compatible across Python releases.

• The marshal module is another primitive Python serialization module,
existing primarily to support Python’s .pyc files. It provides facilities
to serialize built-in Python objects using a binary format specific to
Python, independent of machine architecture issues, but its serializa-
tion format is not guaranteed to be portable across Python versions.
Being in fact its primary job to support .pyc files, the Python imple-
menters reserve the right to change the serialization format in non-
backwards compatible ways should the need arise.

Users should prefer the usage of the pickle module, because it keeps track
of the objects it has already serialized (so that later references to the same
object won’t be serialized again), having implications on both recursive ob-
jects and object sharing.

• Recursive objects are objects that contain references to themselves,
and these are not handled by marshal, and even attempting to marshal
a recursive object will crash your Python interpreter.

• Object sharing instead, happens when there are multiple references
to the same object in different places in the object hierarchy being
serialized.
pickle stores such objects only once, and ensures that all other refer-
ences point to the master copy. Shared objects remain shared, which

11Serialization is not persistence, but persistence is one way it can be used.

100 Overlapping Octrees

can be very important for mutable objects12.
Moreover, marshal cannot be used to serialize user-defined classes
and their instances, while pickle can save and restore class instances
transparently.

4.5.2 Multiprocessing

Different multiprocesses paradigms exists in Python, which use pickle to
communicate objects.

One choice could be using the multiprocessing module, that is a pack-
age that supports spawning processes using an API similar to the threading
module, and it runs on both Unix and Windows.
It offers both local and remote concurrency, effectively side-stepping the
Global Interpreter Lock (remember it?) by using subprocesses instead of
threads. Due to this, the multiprocessing module allows the programmer to
fully leverage multiple processors on a given machine.
Hereafter an example to communicate between processes using a Queue,
to pass messages back and forth (ny pickleable object can pass through a
Queue). To be exact, in this simple example one message is passed to one
worker, then the main process wait for it to finish.

1
2 import multiprocessing

3
4 class MyFancyClass(object):

5
6 def __init__(self , name):

7 self.name = name

8
9 def do_something(self):

10 proc_name = multiprocessing.current_process ().name

11 print ’Doing something fancy in %s for %s!’ %

(proc_name , self.name)

12
13
14 def worker(q):

15 obj = q.get()

16 obj.do_something ()

17
18

12Not all python objects handle changes the same way. Some objects are mutable,
meaning they can be altered; others are immutable, meaning that they cannot be changed
but rather they return new objects when attempting to update.

Communicating Python Objects 101

19 if __name__ == ’__main__ ’:

20 queue = multiprocessing.Queue()

21
22 p = multiprocessing.Process(target=worker , args=(queue ,))

23 p.start()

24
25 queue.put(MyFancyClass(’Fancy Dan’))

26
27 # Wait for the worker to finish

28 queue.close ()

29 queue.join_thread ()

30 p.join()

However, in accordance with its portability, with its widespread use, and
with its common layer shared with all the HPC applications, in this frame-
work it has been decided to adopt (as yet mentioned) an MPI approach,
using its binding for Python given by MPI4Py.

4.5.3 MPI4Py

MPI for Python can communicate any built-in or user-defined Python ob-
ject taking advantage of the features provided by the pickle module. These
facilities will be routinely used to build binary representations of objects to
communicate (at sending processes), and restoring them back (at receiving
processes).

Although simple and general, the serialization approach (i.e., pickling and
unpickling) previously discussed imposes important overheads in memory
as well as processor usage, especially in the scenario of objects with large
memory footprints13 being communicated.
Pickling general Python objects, ranging from primitive or container built-in
types to user-defined classes, necessarily requires computer resources. Pro-
cessing is also needed for dispatching the appropriate serialization method
(that depends on the type of the object) and doing the actual packing.

13The word footprint generally refers to the extent of physical dimensions that an ob-
ject occupies, giving a sense of its size. In computing, the memory footprint of a soft-
ware application indicates its runtime memory requirements, while the program executes.
This includes all sorts of active memory regions like code segment containing (mostly)
program instructions (and occasionally constants), data segment (both initialized and
uninitialized), heap memory, call stack, plus memory required to hold any additional data
structures (such as symbol tables, debugging data structures, open files, shared libraries
mapped to the current process, and so on) that the program ever needs while executing
and will be loaded at least once during the entire run.

102 Overlapping Octrees

Additional memory is always needed, and if its total amount is not known
a priori, many reallocations can occur. Indeed, in the case of large numeric
arrays, this is certainly unacceptable and precludes communication of ob-
jects occupying half or more of the available memory resources.

MPI for Python supports direct communication of any object exporting
the single-segment buffer interface14.
This interface is a standard Python mechanism provided by some types (e.g.,
strings and numeric arrays), allowing access in the C side to a contiguous
memory buffer (i.e., address and length) containing the relevant data. This
feature, in conjunction with the capability of constructing user-defined MPI
datatypes describing complicated memory layouts, enables the implemen-
tation of many algorithms involving multidimensional numeric arrays (e.g.,
finite difference schemes) directly in Python, with negligible overhead, and
almost as fast as compiled Fortran, C, or C++ codes.

Here a simple example, with pickle under the hood to serialize the data

list, followed by a similar one written in C++

1 from mpi4py import MPI

2 comm = MPI.COMM_WORLD

3 rank = comm.Get_rank ()

4 data = None

5 send = comm.send

6 recv = comm.recv

7 if (rank == 0):

8 data = range(0, 10)

9 send(data , dest = 1,

10 tag = 0)

11 elif (rank == 1):

12 print("Before recv:")

13 print(data)

14 data = recv(source = 0,

15 tag = 0)

16 print("After recv:")

17 print(data)

1 #include "mpi.h"

2
3 #include <stdio.h>

4
5 int main(int argc , char ** argv) {

14Single segment buffer interface is an obscure name to mean a piece of memory that is
contiguous.

Communicating Python Objects 103

6 int rank , size;

7 int x[10] = {};

8 MPI_Status status;

9 MPI_Init(&argc , &argv);

10 MPI_Comm_size(MPI_COMM_WORLD , &size);

11 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

12 if (rank == 0) {

13 for (int i=0; i<10 ; i++) x[i] = i;

14 MPI_Send(x, 10, MPI_INT , 1, 0,

15 MPI_COMM_WORLD);

16 }

17 else if (rank == 1) {

18 printf("Before recv:")

19 for(int loop = 0; loop < 10; loop++)

20 printf("%d ", x[loop]);

21 MPI_Recv(x, 10, MPI_INT , 0, 0,

22 print("After recv:")

23 for(int loop = 0; loop < 10; loop++)

24 printf("%d ", x[loop]);

25 MPI_COMM_WORLD , &status);

26 }

27 MPI_Finalize ();

28 }

and whose output results

$ mpirun -n 2 python mpi4py 02.py

Before recv:

None

After recv:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

It has to be noted the ease in the usage of MPI functions, compared with
the C++ version (comparison that applies to MPI initialization and final-
ization too): an easy import of the module mpi4py enable the usage of all
the classes, subclasses, functions and submodules present in the bindings
written by Lisandro Dalcin.

However, The previous MPI4Py example does not take into account con-
tiguous memory buffer data types, while we have seen that they should be
used to reduce annoying overheads.
So, here the counterpart using precisely Numpy arrays

1 from mpi4py import MPI

2 import numpy

104 Overlapping Octrees

3 from numpy import arange , float64

4 comm = MPI.COMM_WORLD

5 rank = comm.Get_rank ()

6 send = comm.Send

7 recv = comm.Recv

8 if (rank == 0):

9 data = arange(5, dtype = float64)

10 send([data , 3, MPI.DOUBLE], dest = 1,

11 tag = 0)

12 elif (rank == 1):

13 data = 10 * arange(5, dtype = float64)

14 print("Before Recv:")

15 print(data)

16 recv(data , source = 0, tag = 0)

17 print("After Recv:")

18 print(data)

whose output is

$ mpirun -n 2 python mpi4py 03.py

Before Recv:

[0. 10. 20. 30. 40.]

After Recv:

[0. 1. 2. 30. 40.]

Of course the simplicity of the examples presented it is just for clarification,
and not for practical applications.
Actually, in a real scenario, it is desirable to communicate, as well as arrays
or contiguous memory data, also structures or objects, without breaking
them into individual arrays (even if, this option, for vector optmisation,
should be taken into account, but this is totally another topic).
In the following section we will discuss this subject in a more detailed why,
explaining why users should do this, and above all how they could do this.

4.6 Algorithmic and Programming Approaches

The starting point of this section is to consider the computational domain
of reference as a combination of overlapping quadtrees, whose shapes and
positions are decided by the user.

The end user in fact have at his disposal an input file, in which he can
set some parameters, relevant for the resolving of the problem.
Below is reported a screenshot of this auxiliary file.

Algorithmic and Programming Approaches 105

0 1

2 3

0 1

2

3

(a) Bitpit 2D cell enumeration

0 1

2 3

4 5

6 7

0 1

2

3

4

5

0 1

2

3
4 5

6 7
8 9

10

11

x
z y

(b) Bitpit 3D cell enumeration

Figure 4.8: Numbering example for a 2D cell of a quadtree, and for a 3D
volume of an octree. In black is reported the ordering of the nodes, while in
red the sorting of the faces, and in blue the numbering of the edges (faces
and edges are enumerated following an x-y-z order)

1 [PABLO]

2 NumberOfGrids =

3 GridPoints =

4 Refinements =

5 [PROBLEM]

6 Dimension =

7 Log =

It can be seen that there are two dinstinct main sections, referring respec-
tively to the data needed by the quadtrees ([PABLO]), and to the data
dedicated to the more general “ensemble” of the problem ([PROBLEM]).
Entry NumberOfGrids is the total number of quadtrees currently involved
of which, if n represents their total number, 1 is for the background, and
n− 1 are for the more refined, superposed foreground grids.
GridPoints is a set of ternary groups of floating points, representing the
four (or eight, in 3D) edge nodes (starting form the anchor node in the lower
left corner, see Figure 4.8). The field Refinements, by the way, represents
a list of integers (one for each quadtree), indicating the starting level of de-
composition (see Figure 3.2) of the grids.
Changing section, we have Dimension and Log (and, for time dependent
problems, there will be also the times’s informations like step, starting and
ending interval) that serve to choose the dimensional environment (2D or
3D), and to enable (or not) the logging on all the parts of the program.

106 Overlapping Octrees

4.6.1 Programming Approach

After having filled up the required fields, the modules containing all the
bindings necessary for the simulation, written and compiled in Cython (this
last passage is done using distutils, a module part of the standard library
and useful to build Python packages, and the cythonize compiler), are eas-
ily imported in the Python interpreter, as a classic one, and allow the access
to all the routines and classes, defined in them.
Specifically, two binding modules have been writen, respectively for PABLO
and for another library written toujours by Optimad Engineering, helpful
with the parallel writing of the .vtk files15, vital for the post-processing and
visualization of the results.

Hereafter the body of the function used to build up “custom Cython” ex-
tensions from the input .pyx files. Here, module Cython.Distutils is used
instead of the previously mentioned distutils and cythonize, but the gist
does not change.
This function can be used thanks to the “altered” version of the class
build_ext belonging right to the module used.
Changes to this class have been made specifically for the context of this
concerned project.

1 # Define \" Extension \" being cythonized.

2 def def_ext_modules(self):

3
4 os.environ["CXX"] = "c++"

5 os.environ["CC"] = "gcc"

6 BITPIT_ENABLE_MPI = 0

7 include_libs = "-I" + self.PABLO_include_path

8 include_libs = include_libs + " -I" + self.IO_include_path

9
10 if ((not (not self.mpi_include_path)) and \

11 (ENABLE_MPI4PY)):

12 BITPIT_ENABLE_MPI = 1

13 include_libs = include_libs + " -I" + \

14 self.mpi_include_path

15 os.environ["CXX"] = "mpic++"

16 os.environ["CC"] = "mpicc"

15The Visualization Toolkit provides a number of source and writer objects to read and
write popular data file formats, as well as some of its own file formats. There are two
different styles of file formats available in VTK; the simplest are the legacy, serial formats
that are easy to read and write either by hand or programmatically. Besides, the XML
formats are preferred because they support random access, parallel I/O, and portable data
compression.

Algorithmic and Programming Approaches 107

17
18 _extra_compile_args = ["-std=c++11",

19 "-O3" ,

20 "-fPIC" ,

21 include_libs ,

22 "-DBITPIT_ENABLE_MPI=" + \

23 str(BITPIT_ENABLE_MPI)]

24 _extra_link_args = ["-fPIC"]

25 _cython_directives = {"boundscheck": False ,

26 "wraparound": False ,

27 "nonecheck": False}

28 _language = "c++"

29 _extra_objects = ["libbitpit_MPI.a" if (BITPIT_ENABLE_MPI)

30 else "libbitpit.a"]

31
32 src_dir = os.path.dirname(self.IO_include_path.rstrip("/"))

33 common_dir = src_dir + "/common/"

34 operators_dir = src_dir + "/operators/"

35 containers_dir = src_dir + "/containers/"

36 _include_dirs=["." ,

37 self.PABLO_include_path ,

38 self.IO_include_path ,

39 common_dir ,

40 operators_dir ,

41 containers_dir ,

42 numpy_get_include ()]

43
44 _cc_time_env = {"BITPIT_ENABLE_MPI": BITPIT_ENABLE_MPI}

45
46 splitext = os.path.splitext

47 ext_modules=[Extension(splitext(self.extensions_source)[0],

48 [self.extensions_source] ,

49 extra_compile_args = _extra_compile_args ,

50 extra_link_args = _extra_link_args ,

51 cython_directives = _cython_directives ,

52 language = _language ,

53 extra_objects = _extra_objects ,

54 include_dirs = _include_dirs ,

55 cython_compile_time_env = _cc_time_env ,

56)]

57
58 return ext_modules

while here a piece of code from a Cython “para tree.pyx” file, just to un-
derstand a little better how exactly the writing of a Python wrapper takes
place, on the basis of the existence of a C++ library.

1 cdef extern from "ParaTree.hpp" namespace "bitpit":

2 cdef cppclass ParaTree:

108 Overlapping Octrees

3 ...

4 ...

5 void computeConnectivity ()

6
7 cdef class Py_Para_Tree:

8 cdef ParaTree* thisptr

9 cdef MPI_Comm mpi_comm

10 ...

11 ...

12 def compute_connectivity(self):

13 self.thisptr.computeConnectivity ()

Class Py_Para_Tree will be available to the user just writing the following
line into the Python interpreter (or in a Python script)

1 from para_tree import Py_Para_Tree

that is, as we said, as easy as the loading of any other Python module.

4.6.2 Algorithmic Approach

After having clarified more specifically the programming modus operandi
and efforts, let’s focus on the algorithmic part.
As previously said, the computational domain of reference is seen as a com-
bination of overlapping quadtrees, each of which “live” without knowing
nothing but its own space and boundaries. Nothing is never said about the
existence of other quadtrees.
Thus, for example, in Figure 4.9a any of the defined grids does not know to
be in a system made of 5 different physical spaces.
And the problem to be resolved, in our case the Poisson problem, will be
equally share between the quadtrees involved. Speaking in a parallel com-
puting fashion, we could equate this approach with the SIMD approach.
Single Instruction Multiple Data (SIMD), means in fact that all parallel
units share the same instruction, but they carry it out on different data
elements. Here then, the parallel units would be the quadtrees, while the
instruction would be represented by the Poisson problem.
But internally, each instance of the Poisson problem on a different refer-
ence domain, in turn will be managed by different processes, recalling the
MIMD architecture: Multiple Instruction Multiple Data (MIMD) means
that parallel units have separate instructions, so each of them can do some-
thing different. Indeed, each process will work on a different sub-domain
of the target geometry, being able to do something different from the other
processes, working on the other sub-domains.

Algorithmic and Programming Approaches 109

To achieve this in parallel, MPI inter and intra communicators are used.
Intra-communicators will handle communications internal at each quadtrees,
while inter-communicators will manage communications between quadtrees.
Yes, because it is true the above analogy with parallel architectures, but it
also true that, to resolve globally the Poisson problem on the totality of the
considered domain, each grid will have to exchange, sooner or later, some
data with the grids concerned with this sharing.

Looking at Figure 4.9b, for example, F and B must share data vital for
the boundary conditions (for F) and to complete the numerical scheme for
the cells of B close to those covered by F, that will not be considered in the
assembly process of the final system to be resolved (see Figure 4.10).
Background octants needed by the numerical scheme (point P) and cov-
ereded by foreground grids will be replaced in the final system by an inter-
polation of the foreground octants around it.
Vice versa, the boundary values needed by foreground octants, being outside
their own borders, will be obtained by an interpolation of the background
octants reaching them (point P). More on interpolations will be told in the
next chapter, exposing related examples.

B
F3

F2F1

F4

(a) 5 grids

B

F

(b) 2 grids

Figure 4.9: Example of not perfectly superimposed grids. As it can be seen,
in fact, F3 and F do not exact match the border of the background grid
B, less fine. F1, F2 and F4 are three other foreground grids, whose edges
correspond to those of B

The system of unknown which is necessary to resolve to obtain a numerical

110 Overlapping Octrees

solution, is solved using PETSc and its Python binding PETSc4Py. PETSc
is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications modeled by partial differential equations. it is de-
signed with an object-oriented style, and almost all user-visible types are
abstract interfaces with implementations that may be chosen at runtime.
Those objects are managed through handles to opaque data structures which
are created, accessed and destroyed by calling appropriate library routines.
PETSc consists of a variety of components, each of which manipulates a
particular family of objects and the operations one would like to perform
on these objects. These components provide the functionality required for
many parallel solutions of PDEs.
It employs the MPI standard for all message-passing communication.

x x
xx

x xx

xx

xx

P

P

P

Figure 4.10: An example of interpolations needed at the edge between fore-
ground and background: P is the center (the white point) required to com-
plete the stencil of the red point on the loose grid, and it will be obtained
interpolating the refined cells close to him. The two P, by contrast, are the
centers (again, represented by two white points) requested to finalise the
foreground stencil, and obtained interpolating the neighbouring cells of the
background

Summary 111

Considering Figure 4.9a, the monolithic system will have the following form
D R R R R
P D 0 0 0
P 0 D 0 0
P 0 0 D 0
P 0 0 0 D

×

x
x
x
x
x

 =


f
f
f
f
f


in which

• Blocks D are the discretization matrices onto each grid (parallel MPI
intra-communications). These block are assembled by each grid,
without the participation of data originating from other grids (colored
intra-communicators in Figure 4.11).

• Blocks R and P are the restriction and prolongation operators be-
tween the grids (parallel MPI inter-communications). Restric-
tion blocks are assembled using data from foreground grids, whil pro-
longation operators are built with data from background grid (black
intra-communicators in Figure 4.11).

• MPI Datatypes are used to exchange informations between the grids,
which do not know each other, to fill the monolithic system. As
previosuly said, in fact, It is desirable to communicate also struc-
tures or objects, without breaking them into individual arrays. But
Why? Because, first of all, breaking data encapsulation complicates
the code. And secondly, multiple communication operations result in
higher overall communication cost, than one operation used with the
same amount of data (because of the start-up latency).
MPI provides two mechanisms that can be used on heterogeneous ma-
chines, and one of these it is exactly creating MPI derived datatypes
(the other one is packing/unpacking data). Practically speaking, is
equivalent to create a struct filled with user data, and then send it
between processes.

The monolithic system is finally solved by PETSc, using the MPI.COMM WORLD
(see Figure 4.11, red enumeration) communicator.

4.7 Summary

How to resolve numerically a physical problem? What is a PDE? How to
overcome it, knowing that it does not have an analytical solution? And

112 Overlapping Octrees

0

1

2

0 1

0 1

2

3

0

1

2

3 4

5 6

7

8

MPI.COMM_WORLD
INTRA-COMM
INTRA-COMM
INTRA-COMM
INTER-COMM

Figure 4.11: Inter and intra communication scheme, with global (red) and
local (other colours) enumeration for the MPI processes at play. Intercom-
municators for each group are depicted following the corresponding colors
of local processes’ enumeration. In this case, local group green can commu-
nicate with the other two, but them can not exchange messages, having not
created the inter-communicator between them

what to do if the resolution domain is not a classical Cartesian grid?
To all these questions this chapter has tried to answer, but not only: the
Poisson equation has been introduced, along with Python mechanisms to
apply serialization on user defined data, required to communicate between
multiple processes and to solve, in parallel, massive HPC problems, using
the MPI paradigm (despite it is not the only one available in Python offering
remote concurrency).
Furthermore, a practical example of the programming work done at Python
level has been showed, using the Cythone extensions written ad hoc.
Last but not least, the algorithmic and programming approaches to the
overlapping generic quadrilateral octree patches method, used to solve the
2D Poisson equation, has been outlined.

Bibliography

[1] Fenics project. https://fenicsproject.org/pub/tutorial/sphinx1/,
. web page.

[2] Mpi4py. https://mpi4py.readthedocs.io/en/stable/overview.html,
. web page.

[3] Python docs. https://docs.python.org/3/, . web page.

BIBLIOGRAPHY 113

[4] Mpi4py. https://mpi4py.readthedocs.io/en/stable/, . web page.

[5] File formats for vtk, . Extract Taken from The VTK User’s Guide.

[6] Love Hakansson Mikael Mortensen Rahman Sudiyo Berend
van Wachem Bengt Andersson, Ronnie Andersson. Computa-
tional Fluid Dynamics for Engineers. Cambridge University Press,
2011.

[7] T. J. Craft. Basix finite volume methods, 2010. School of Mechanical
Aerospace and Civil Engineering, University of Manchester.

[8] M. Peric J. Ferziger. Computational Methods for Fluid Dynamics.
Springer, 2002.

[9] Argonne National Laboratory. PETSc Users Manual. 2017.

[10] Alfio Quarteroni. Numerical Models for Differential Problems. Springer,
2009.

[11] M Schafer. Computational Engineering - Introduction to Numerical.
Springer, 2006.

[12] Nathan L. Gibson Vrushali A. Bokil. Finite difference, finite element
and finite volume methods for the numerical solution of pdes, 2007.
DOE Multiscale Summer School.

Chapter 5

Numerical Results

DDFV Discrete Duality Finite Volume

In this chapter we will show some numerical results obtained with our im-
plementation.

The paragraph concerning this topic is however postponed to the sections
relative to:

• the math explanation of some interpolations used in the examples to
come;

• the explanation of the theory occurring in literature, in respect of
the theoretical results governing the order of the interpolations on the
frontier areas of the different quadtree patches;

• the theoretical results present in literature that guarantee the stability
and the uniqueness of the solution for the Poisson equation.

The chapter will be followed by the conclusions covering all the work done,
and that will pick up the threads of the topics covered, and of the issues not
yet completed.

5.1 Border and Inner Interpolations

The interpolations presented in this section are classified according to the
following criteria:

114

Border and Inner Interpolations 115

• interpolations used inside the domain of each quadtree. Here, only the
diamond stencil is set out, because it is the finite-volume “counterpart”
of the already covered (see Subsection 4.2.1) and well known centered
finite-difference method;

• inteprolations used on the boundary area between background and
foreground meshes. Here, two approaches are “rolled out”: the classic
bilinear interpolation, and the least squares method with the pseudo-
inverse matrix usage.

5.1.1 Finite Volume Diamond Stencil

Since the early 2000’s a new family of Finite Volume numerical methods has
been developed, under the common name of Discrete Duality Finite Volume
(DDFV) schemes.
In [2] and [5] they were introduced to study the Laplace equation on a large
class of 2D distorted meshes, adding some unknowns to the problem; in par-
ticular, requiring unknowns on both vertices and centers of primal control
volumes. In this way it was possible to obtain a full approximation of the
gradient.
DDFV is a method oriented to this kind of reconstruction, and it uses the
term dual control volumes, as opposed to the primal ones, and the term
diamond mesh.
In this subsection, a simplification of such methods is presented, leaving
aside the construction of the dual meshes, focusing instead on the diamond
cells. A complete description of the DDFV scheme can be found in [9] and
[7].
The need to use this kind of method is due to the use of octree meshes, which
have within them local refining, requiring appropriate stencil to evaluate the
fluxes around the edges.
And considering Figure 5.1, we can easily derive why the interpolation is
called in this way: in fact, the quadrangle considered ACBD is undoubt-
edly, a non degenerate diamond.
A point of information about the “new” unknown introduced by the DDFV
mehods: in our simplification, considering always Figure 5.1, points C and
D, which could be new vertices’ unknowns, they will not be inserted in the
overall system to be resolved, since they will be inteprolated using the closer
centers’ unknowns, thereby adding no extra “cost” to the resolution of the
discretized equation.

116 Numerical Results

If A = (a1, a2, a3) and B = (b1, b2, b3), we have that
−−→
AB = (b1 − a1, b2 −

a2, b3 − a3) (and, vice versa,
−−→
BA = (a1 − b1, a2 − b2, a3 − b3)).

By adding furthermore the following definition of discrete gradient

∇ (φ) t.c. (x
′ − x) · ∇(φ) = φ(x

′
)− φ (x)

we have that

φB − φA =
∂φ

∂ε
ABε +

∂φ

∂η
ABη

φC − φD =
∂φ

∂ε
DCε +

∂φ

∂η
DCη

from which

∂φ

∂ε
=

φBDCη
ABεDCη −ABηDCε

− φADCη
ABεDCη −ABηDCε

−

φCABη
ABεDCη −ABηDCε

+
φDABη

ABεDCη −ABηDCε

∂φ

∂η
=

φBDCε
ABεDCη −ABηDCε

− φADCε
ABεDCη −ABηDCε

+

φCABε
ABεDCη −ABηDCε

− φDABε
ABεDCη −ABηDCε

On a uniform octree, the previous evaluation of the derivatives “degener-
ates” automatically in the well suited and known form:

∂φ

∂ε
=
φB − φA
ABε

∂φ

∂η
=
φC − φD
DCη

5.1.2 Bilinear Interpolation

In mathematics, bilinear interpolation is an extension of linear interpolation
for interpolating functions of two variables (e.g., x and y) on a rectilinear

Border and Inner Interpolations 117

η

ε

A

B

C

D

Figure 5.1: Diamond stencil on a 2:1 octree balance

2D grid.
The key idea is to perform linear interpolation first in one direction, and
then again in the other direction. Although each step is linear in the sam-
pled values and in the position, the interpolation as a whole is not linear
but rather quadratic in the sample location.

Considering Figure 5.2, φ (x, y) can be expressed in terms of φi,j , leading to
the following formulation:

φ (x, y) = b1,1φ1,1 + b1,2φ1,2 + b2,1φ2,1 + b2,2φ2,2 (5.1)

where coefficients bi,j are obtained comparingt the earlier equation with this
one:

φ (x, y) =

[
x2 − x x− x1

]
(x2 − x1) (y2 − y1)

φ1,1 φ1,2

φ2,1 φ2,2

y2 − y

y − y1


which can also be written as:

b1,1

b1,2

b2,1

b2,2


=





1 x1 y1 x1y1

1 x1 y2 x1y2

1 x2 y1 x2y1

1 x2 y2 x2y2



T

−1

︸ ︷︷ ︸
A



1

x

y

xy



118 Numerical Results

being in fact

A =
1

(x1 − x2) (y1 − y2)



x2y2 −y2 −x2 1

−x2y1 y1 x2 −1

−x1y2 y2 x1 −1

x1y1 −y1 −x1 1


From the last system we obtain the following explicit formulation for the

x1 x x2

ϕy1

y

y2

1,1
ϕ
2,1

ϕ
1,2

ϕ
2,2

ϕ
x,y

Figure 5.2: The four red dots show the data points and the green dot is the
point at which we want to interpolate the data points, using the bilinear
interpolation.

searched coefficients:

b1,1 =
x2y2 − y2x− x2y + xy

(x1 − x2) (y1 − y2)

b1,2 =
−x2y1 + y1x+ x2y − xy

(x1 − x2) (y1 − y2)

b2,1 =
−x1y2 + y2x+ x1y − xy

(x1 − x2) (y1 − y2)

b2,2 =
x1y1 − y1x− x1y + xy

(x1 − x2) (y1 − y2)

Border and Inner Interpolations 119

Referring to Equation 5.1, its derivatives are

∂φ (x, y)

∂x
=

2∑
i=1

2∑
j=1

∂bi,j
∂x

φi,j

∂φ (x, y)

∂y
=

2∑
i=1

2∑
j=1

∂bi,j
∂y

φi,j

5.1.3 Least squares

The method of least squares is a standard approach in regression analysis1 to
approximate the solution of overdetermined systems, i.e., sets of equations
in which there are more equations than unknowns. “Least squares” means
that the overall solution minimizes the sum of the squares of the residuals
made in the results of every single equation.

Considering (xi, yj) as the points of the input data, we want to find a func-
tion φ such that it approximates the sequence of the given points.
This can be achieved minimizing the euclidean distance between the two
sequences yi and φ (xi), namely

S =

n∑
i=1

(xi − φ (xi))
2 (5.2)

(as already told, from here it derives the name “least squares”).

In practical cases, φ (x) is parametric, and therefore the problem boils down
to determine the parameters which minimize the distance of the points from
the curve2.
So, given the parametric formulation of the curve φ

φ (x) = p1φ1 (x) + p2φ2 (x) + · · ·+ pkφk (x)

1In statistical modeling, regression analysis is a set of statistical processes for estimating
the relationships among variables.

2Of course it is necessary an amount of points equal or greater to the number of
parameters from which depends the curve.

120 Numerical Results

we define ‖r‖ = ‖Ap− y‖, which is equal to ‖r‖ =
∑n

i=1 φ (xi)− yi, being

A =


φ1 (x1) · · · φk (x1)

...
. . .

...

φ1 (xn) · · · φk (xn)

 , p =


p1

...

pk

 , y =


y1

...

yn


and we consider its square ‖r‖2, that is exactly what is written in Equation
5.2 (so, ‖r‖2 = S).
Therefore, the first step to minimize S is to examine its derivatives respect
to the k parameters, and match them with 0:

d‖r‖2

dpm
= 0, with 1 ≤ m ≤ k

The resolution of this system can be proven to be equal to resolve the system
(Ap− y)T A = 0, from which

p =
(
ATA

)−1
AT︸ ︷︷ ︸

Ps

y (5.3)

where Ps is the so called Pseudo-inverse matrix.

Assuming φ (x, y) = ax+ by + cxy + d, we will have that

A =



x0 y0 x0y0 1

x1 y1 x1y1 1

...
...

. . .
...

xn−1 yn−1 xn−1yn−1 1


, p =



a

b

c

d


, y =


φ0

...

φn−1


which means, from Equation 5.3,

a

b

c

d


= Ps


φ0

...

φn−1


which gives us the parameters p in function of the values φn.

Accuracy and Order of Interpolation 121

5.2 Accuracy and Order of Interpolation

An important question to ask when using composite grids is how to choose
the order of interpolation so that the overall accuracy will be as good as the
accuracy of the discretization formulae.
The answer to this question depends on the order of the PDE and the order
of accuracy of the discretization formula.
Moreover, the answer also depends on the behaviour of the region of overlap
as the mesh is refined.

Typically the overlap region will have a width which is approximately a
constant times h, where h is a measure of the grid spacing. That is, the
overlap region shrinks as the mesh is refined3.

In Henshaw[4] it was shown that for solving second-order elliptic equa-
tions to second-order accuracy it is necessary to use third-order interpolation
(quadratic interpolation) if the overlap between component grids decreases
with h as the grids are refined. (Second-order interpolation, as linear inter-
polation, is sufficient if the overlap remains larger than some constant).

In Chesire and Henshaw[3], instead, it was shown how to choose the interpo-
lation for a more general class of problems. Considering the model problem
of solving a (2p)th-order boundary value problem on a one-dimensional com-
posite grid, they have proved that when the overlap d decreases linearly with
h, then the width of the interpolation formula, q, should be 2pr + 1, where
2r is the order of acuracy of the discretization.
Thus, the width of the interpolation formula is the same as the width of the
discretization formula.
If, on the other hand, d is a constant independent of h, then q = pr + 1.

To summarize the results of this section (see Figure 5.3), if

• 2p: order of PDE (highest spatial derivative)

• 2r: order of accuracy discretization

• q: width of interpolation formula

3Note: we will call an interpolant whose accuracy is O(hP) to be a pth-order inter-
polant. In one dimension the standard interpolant on an equally spaced mesh which uses
p points is a pth-order interpolant. Thus the standard linear interpolation (two points)
is second-order interpolation while quadratic interpolation (three points) is third-order
interpolation.

122 Numerical Results

• d: width of overlap,

then

• q = 2pr + 1: width of interpolation formula if d ∝ h

• q = pr + 1: width of interpolation formula if d = O(1)

• pr: number of interpolation points on each grid

• d+ pr(h1 + h2): total overlap.

This analysis can be related to the case when the composite grid equations
degenerate to the standard central-difference approximation for a single grid.
This situation occurs when h1 = h2 = d, in which case the interpolation
points align exactly with grid points.
In this case, although the results previously cited said that interpolant
should be (2p + l)-order accurate, classic finite-difference/finite-volume the-
ory interpolation applies. What explained in this section can be easily ex-

Figure 5.3: 1D composite mesh showing grid points xki , discretization points
xi, and overlap d. x1

N1
represent discretization points of the first mesh

G1, while x2
N2

are the discretization points of the second mesh G2. In-
stead, the points of interpolation are xj = x1

N1−j+1
, for j = 1, . . . , p and

xp+j = x2
j , for j = 1, . . . , p. Overla d is defined as the distance between the

innermost interpolation point on G1 to the innermost interpolation point on
G2: d = xp − x2p

Numerical Results 123

tended to 2D cases, recalling that the previously one-dimensional theory in-
dicates that, loosely speaking, the width of the interpolation formula should
be equal to (or greater than) the width of the discretization formula in order
to achieve an overall accuracy equal to the order of discretization.
This means that a 3 x 3 interpolation stencil (third-order or bi-quadratic
interpolation) is required for second-order accuracy and a 5 x 5 interpolation
stencil (fifth-order interpolation) is needed for a fourth- order accuracy.

5.3 Numerical Results

So, after having exposed some theoretical fundamentals, in this section we
report a few numerical results.

5.3.1 First Outcome

In this subsection we show the function sin((x − 0.5)2 + (y − 0.5)2) evalu-
ated on two deformed grids: the first one (Figure 5.4) is a deformed single
grid, with internal refinement automatically managed by the finite volume
diamond stencil.
The second one, instead (Figure 5.5), is a deformed domain composed by
two grids, whose distortions are, in no way, associated. Here, a classic finite
difference central scheme is used, respectively on the background and on the
foreground (one process each).

As we can see from the convergence orders of the errors reported in Figure
5.6, the finite-difference reconstruction (the 2nd one) obtains a first order
decrease, due to the use of different sizes of the octants in the classic central
scheme.
This can be outlined considering the following Taylor series expansion ap-
proximations to the second derivative, for non uniform grids:(

∂2φ

∂x2

)
i

=
φi+1 (xi − xi−1) + φi−1 (xi+1 − xi)− φi (xi+1 − xi−1)

1
2 (xi+1 − xi−1) (xi+1 − xi) (xi − xi−1)

−

(xi+1 − xi)− (xi − xi−1)

3

(
∂3φ

∂x3

)
i

+H

where the leading truncation error term is first order, but vanishes when the
spacing between the points is uniform, making the approximation second-
order accurate.

124 Numerical Results

(a) Computational mesh

(b) Numerical reconstuction

Figure 5.4: Finite volume approximation, using a diamond stencil

Numerical Results 125

(a) Background and foreground meshes

(b) Numerical reconstuction

Figure 5.5: Finite difference approximation, where for the evaluation of the
unknown necessary for the background and covered by the foreground, a
second order bilinear interpolation has been used; vice versa, to interpolate
unknowns used by the foreground stencils, but outside its borders (and so,
falling into the backgrounds), a second order approximation with a quadratic
polynomial is used, interpolated with the least squares method.

126 Numerical Results

However, because of the different sizes of “h”, characteristic of both the
grids, along the edges of the foreground no matter we are using second or-
der interpolations, we will obtain a first order convergence, in accordance
with Subsection 5.2, precisely because of the different characteristic quanti-
ties involved.
If, by the way, the composite grid degenerate into a “single” uniform one,
then we have confirmed the results exposed in the already cited Subsection
and in the previous Taylor expansion.

Finite volume approach (the 1st one) instead, using a simplified diamond
scheme for the reconstruction of the fluxes on the interfaces, takes into ac-
count the presence of non uniform cells in the neighbours, and it is wery
well suited for this kind of problems.

Its chart
error

refinements
is reported in Figure 5.6b.

The result is actually reported to show the correctness of this scheme, al-
though applied on a deformed and refined domain, composed by just one
grid.

5.3.2 Multiprocesses

In this subsection, always the function sin((x− 0.5)2 + (y − 0.5)2) is recon-
structed, but on two different domains, having in common the fact to be
splitted on four processes (two for each grid). Figures 5.7a and 5.9a indicate
visually the different components of the comprehensive numerical domain,
coloring each one by a different color.
In the last case of this subsection is presented the case concerning the cin-
figuration presented in Figure 4.9a. Only the results for the F2 grid are
reported, having the other grdis the same trend.

5.3.3 Heat Equation

The heat equation is a parabolic partial differential equation that describes
the distribution of heat (or variation in temperature) in a given region over
time.
For a function u (x, y, t) of two spatial variables and the time variable t, the
heat equation is

∂u

∂t
= α∆u

Numerical Results 127

3.1e-05

6.1e-05

2.5e-04

5e-04

1e-03

2.2e-03

6e-03

 4 5 6 7 8 9 10

n
o
rm

s

refs

L2
1st ord. conv.

(a) Error ||L2|| degrowth for the finite difference case of Figure 5.4

4.810679e-05

1.887948e-04

7.290753e-04

2.891851e-03

1.026195e-02

5.676500e-02

5.173284e-01

 3 4 5 6 7 8 9

n
o
rm

s

refs

L2
2nd ord. conv.

(b) Error ||L2|| degrowth for the finite volume case of Figure 5.5

Figure 5.6: On x axis are reported the refinement levels (for the finite dif-
ference case, just of the foreground grid, but for the background the trend
is analogous), while on the y axis is shown the difference between the exact
solution and the numerical approximation, in norm L2

128 Numerical Results

(a) Domain decomposition between four processes: green and blue are for
the foreround, red and grey for the background

(b) Numerical approximation for sin((x− 0.5)2 + (y − 0.5)2) on the
domain above

Figure 5.7: Each grid is refined internally, and the octants of the background
covered by the foreground will not be considered in the monolithic system
build to resolve the problem in its entirety. The foreground represents a
buffer zone around an hypothetical object

Numerical Results 129

9.188891e-03

1.863143e-02

4.036251e-02

7.894839e-02
1.217436e-011.545357e-01

2.963141e-01

6.344367e-016.611490e-01

4.699993e+00

1.460306e+01

2.892972e+01

5.954331e+01
1.013179e+02

 3 4 5 6 7 8 9

n
o
rm

s

refs

inf
L2

1st ord. conv.

(a) Background error’s convergences

2.203790e-02

4.358441e-02

8.060834e-028.552186e-02

1.604979e-011.720570e-01

3.180488e-013.403658e-01

6.333262e-01

1.220541e+00

4.163349e+00

1.264884e+011.429897e+01

5.914903e+01

 4 5 6 7 8 9 10

n
o
rm

s

refs

inf
L2

1st ord. conv.

(b) Foreground error’s convergences

Figure 5.8: Behaviour of the error made on th numerical approximation.
Norms L2 and∞ are reported, both for the background and the foreground.
As expected, first order degrowth is obtained

130 Numerical Results

(a) Domain decomposition between four processes: green and blue are for
the foreround, red and grey for the background

(b) Numerical approximation for sin((x− 0.5)2 + (y − 0.5)2) on the
domain above

Figure 5.9: Each grid is refined internally, and the octants of the background
covered by the foreground will not be considered in the monolithic system
build to resolve the problem in its entirety, as already said in Figure 5.7

Numerical Results 131

5.758686e-04

1.359911e-03

2.679073e-03

5.137441e-035.309512e-03

1.112334e-021.365171e-02
2.166138e-02
3.603371e-02
4.967781e-02
7.534910e-02

2.706758e-012.714462e-01

1.308707e+00

 3 4 5 6 7 8 9

n
o
rm

s

refs

inf
L2

1st ord. conv.

(a) Background error’s convergences

1.009753e-03

2.835394e-03

5.258127e-035.602891e-03

1.115617e-021.159233e-02

2.145950e-022.407865e-02

4.255101e-02
5.992599e-02

1.038701e-01

1.999313e-012.337266e-01

5.811478e-01

 4 5 6 7 8 9 10

n
o
rm

s

refs

inf
L2

1st ord. conv.

(b) Foreground error’s convergences

Figure 5.10: Behaviour of the error made on th numerical approximation.
Norms L2 and∞ are reported, both for the background and the foreground.
As expected, first order degrowth is obtained

132 Numerical Results

(a) Domain decomposition between five processes, one for grid

(b) Numerical approximation for sin((x− 0.5)2 + (y − 0.5)2) on the
domain above

Figure 5.11: Each foreground grid represents a refinement for the back-
ground, also showing not perfectly superimposed refinings

Numerical Results 133

1.9423808347067587e-05

4.1595964961922173e-05

8.056001972905338e-05

0.00017322304787470506

0.00035136414669156499

0.00081523983216597029

0.0018441295649213724

 4 5 6 7 8 9 10

n
o
rm

s

refs

L2
1st ord. conv.

(a) Foreground error’s convergence, L2 norm

0.00017546622592018446

0.00038119969884659044

0.00072337674176076172

0.0015525000413309509

0.0030434581690695073

0.0068861809689535758

0.014406268202545841

 4 5 6 7 8 9 10

n
o
rm

s

refs

inf
1st ord. conv.

(b) Foreground error’s convergence, infinity norm

Figure 5.12: Behaviour of the error made on th numerical approximation.
Norms L2 and ∞ are reported, just for the F2 grid in Figure 4.9a, having
the other grdis the same trend.

134 Numerical Results

where α is the thermal diffusivity4. For the mathematical treatment it is
sufficient to consider the case α = 1, and of course supplement an initial
condition u (x, y, 0) = f (x, y) and the boundary conditions.

For the example reported in Figure 5.13, we have chosen a backward time,
centered space (BTCS scheme, that lead to the following discretization, for
the time step m and for spatial position i, j, of the previous equation:

umi,j − u
m−1
i,j

∆t
= α

umi−1,j + umi+1,j − 4umi,j + umi,j+1 + umi,j−1

∆x2
+O (∆t) +O

(
∆x2

)
Implementation of the BTCS scheme requires solving a system of equations

at each time step but, being unconditionally stable (as we have seen in the
previous chapter), it presents a huge advantage over the FTCS (forward
time, centered space) approach, to obtain stable solutions.

5.4 Summary

If the previous chapter has dealt in detail the numerical and programming
approaches and techniques used in the course of my work, this chapter has
emphasized the visualization of the results, showing furthermore the con-
vergence orders obtained.
Before that however, some pages were spent to line up the readers on the
interpolation schemes used, on the theoretical results against which we
bumped, and on the background of theory necessary to proceed in con-
ducting the tests.
The overall conclusions, by the way, are postponed in the next chapter.

4In heat transfer analysis, thermal diffusivity is the thermal conductivity k, divided by

density ρ and specific heat capacity at constant pressure cp:
k

ρcp
. It is the measure of

thermal inertia, which means that in a substance with high thermal diffusivity, heat moves
rapidly through it because the substance conducts heat quickly relative to its volumetric
heat capacity or “thermal bulk”.

Summary 135

(a) Computational Domain (b) Time step = 1

(c) Time step = 10 (d) Time step = 20

(e) Time step = 40 (f) Time step = 80

(g) Time step = 100 (h) Time step = 160

Figure 5.13: Heat distribution on a computational domain depicted by Sub-
figure 5.13a. The foreground grid, a stretched rectangle, has been imposed
with an initial condition of T = 1, while the background has had the homo-
geneous T = 0 condition, both for the initial and boundary constraints. As
we can see, as time passes, global temperature tends to comply, reaching a
uniform value

136 Numerical Results

Bibliography

[1] N. Nikiforakis W.D. Henshaw A.R. Koblitz, S. Lovett. Direct numerical
simulation of particulate flows with an overset grid method. Journal of
Computational Physics, 2017.

[2] K. Domelevo and P. Omnes. A finite volume method for the laplace
equation on almost arbitrary two-dimensional grids. M2AN, 2005.

[3] W. D. Henshaw G. Cheshire. Composite overlapping meshes for the
solution of partial differential equations. Journal of Computational
Physics, 1989.

[4] W. D. Henshaw. Thesis, 1985. Department of Applied Mathematics,
California Institute of Technology, 1985 (unpublished).

[5] F. Hermeline. A finite volume method for the approximation of diffusion
operators on distorted meshes. J. Comput. Phys., 2000.

[6] A. M. Wissink S. R. Kohn Hornung, R. D. Managing complex data
and geometry in parallel. Engineering with Computers, 2006.

[7] Stella Krell. Stabilized ddfv schemes for stokes problem with variable
viscosity on general 2d meshes. hal-00385687v1, 2009.

[8] Pablo Ouro Fermin Navarrina Sofiane Khelladi Ignasi Colominas
Luis Ramirez, Xesus Nogueira. A higher-order chimera method for
finite volume schemes. 2017.

[9] Giulia Lissoni Thierry Goudon, Stella Krell. Numerical analysis of
the ddfv method for the stokes problem with mixed neumann/dirichlet
boundary conditions. hal-01502397, 2017.

[10] D. A. Hysom R. D. Hornung Wissink, A. M. Enhancing scalability of
parallel structured amr calculations, 2003. Proceedings of the Interna-
tional Conference on Supercomputing 2003 (ICS‘03), San Francisco.

Chapter 6

Conclusions

Conclusions are never easy because, as their name suggests, they represent
the end of something.
And finishing something, it is never entirely a good thing. Every experience,
every work, every “path”, they contain good and bad memories, and their
mingle usually leave us with a feeling of sour looking back, of sad, even if un-
til the day before the “longed-for” conclusion we were thrilled by the change.

And this is exactly the sense that I feel rereading my thesis, because at
first glance it brings to my memory all the people I have met during this
period, and knowing that I won’t see them on a daily basis let me feel bad.
Secondly, it reminds me all the efforts made to do what it has been shown,
and all the jitters when things did not came back.

And with these memoirs, thoughts surface to my mind, concerning all the
tasks pre-fixed and that eventually, for a lack of time or for exhaustion, they
were not accomplished.

In the list of these “unfinished business”, first of all, I would state the
absence of the 3D implementation, which would have surely given an “im-
pact” more pronounced to this work, while sticking around the 2D cases
could make it feel like a “toy” developing.
Another thing, for which I get upset with myself, is that an hybrid ap-
proach has not been coded, leaving empty that space always saved for an
MPI+OpenMP or MPI+MPI combination (by the way, calling pragmas is
possible in Cython, just disabling the G.I.L., and MPI shared memory win-
dows are binded into mpi4py).

137

138 Conclusions

And of course, mathematically speaking, a case more complicated than the
Poisson equation could have been considered; maybe the Stokes flow1 which,
being a steady and linearized form of the Navier-Stokes equations, is a very
well studied and even popular equation in the CFD universe.

But should have, could have, do not matter. A Ph.D. thesis is something
that does not end; simply, it is interrupted at some point, as someone wiser
than me said once.
And besides, usually there is an explanation for all; also because, otherwise,
what has been said so far would not explain the already cited feelings of
melancholy that I perceive, having been exposed just “not accomplished”
(yet) aspects of this thesis.

Then, why do not mention the work done to get a working Python API
for PABLO. In Chapter 4 we have seen just some extracts from the code
written, but the efforts are deeper.
Just think about the conversion of C++ templates in Cython templates,
which is something you usually do not find in books. Or what about the
usage of derived classes from a C++ context into a Python one. And this
again, is something you have to figure it out, to avoid errors, in Python,
concerning double free or corruption, being obliged to delete the pointers
both of the derived and the parent classes.
And pointers, writing a Python wrapper, are something you should be con-
cern about. For example, a typical pointer’s conversion is like

1 darray3 getCenter(Octant* octant)

2 ...

3 ...

4 def get_center(self ,

5 uintptr_t idx ,

6 ...)

7 ...

8 ...

9 center = self.der_thisptr._getCenter(<Octant*><void*>idx)

10 ...

where get_center is the wrapper for the original function getCenter.
Once you know how to cast the pointers, parameter passing is something
realtivily easy but again, you have to figure it out. In this case for example,

1Stokes flow, also named creeping flow, is a type of fluid flow where advective inertial
forces are small compared with viscous forces. Being the Reynolds number low, this is a
typical situation in flows where the fluid velocities are very slow and the viscosities are
very large.

139

there is a double change: the uintptr_t2 integer to void pointer conversion
first, and later the void to the desired_type pointer cast.

Continuing citing the essays spent in the generation from scratch of the
code, having already cited (Chapter 4) the changes applied to the build_ext
class of the module Cython.Distutils, a word should be spent on the us-
age of MPI inter and intra communicators, which ususally leave room to
the common and unifying MPI COMM WORLD, thereby avoiding the ad-
ditional complexity due to the construction of an inter-communicator from
two intra-communicators.
Indeed, this operation will require separate collective operations in the local
group and in the remote group, as well as a point-to-point communication
between a process in the local group and a process in the remote group.
In this regard, a specific method was written to create automatically the
MPI intercommumicators for the different grids, depending on the number
of the grids inserted.
And this method has to deal with the choice of local and remote “peer”
communicators, and has to choose a safe tag to ensure the uniqueness of the
connection. The function MPI_INTERCOMM_CREATE (Python corresponding
function is Create_intercomm), in fact, can be used to create an inter-
communicator from two existing intra-communicators, in the following situ-
ation: at least one selected member from each group (the group leader) has
the ability to communicate with the selected member from the other group;
that is, a “peer” communicator exists to which both leaders belong, and
each leader knows the rank of the other leader in this peer communicator.
Furthermore, members of each group know the rank of their leader.

And of course, speaking of MPI, we should consider the non trivial Python
to MPI data conversion, necessary to avoid reduntant overheads in passing
data between processes.
For example, considering this code snippet

1 ...

2 ...

3 block_type = dtype(’(1, 10)i4 , (1, 1)f8 , (1, 1)f8’)

4 data = array (((1,2,3,4,5,6,7,8,9,10), 65.567 , 3.0), \

5 dtype = block_type)

6 block_length = [10, 1, 1]

7 block_displ = [0, 40, 48]

2It is an unsigned int that is capable of storing a pointer, which typically means that
it’s the same size as a pointer.

140 Conclusions

8 mpi_types = [MPI.INT , MPI.DOUBLE , MPI.DOUBLE]

9 mpi_d_t = create_struct(block_length ,

10 block_displ ,

11 mpi_types).Commit ()

12 if (rank == 0):

13 data = numpy.zeros(1, block_type)

14 recv([data , mpi_d_t], source = 1, tag = 1)

15 print(data)

16 elif (rank == 1):

17 data = numpy.array(data , block_type)

18 send([data , mpi_d_t], dest = 0, tag = 1)

we have a practical example of what we said in Chapter 4, speaking about
MPI Datatypes; here mpi_d_t will be used, together with data, to specify
all the informations MPI needs:

• the number and types of all the data members/fields;

• the relative offset of the fields from the beginning of the structure;

• The total memory occupied by a structure.

As for the programming part, I would like now to underline some choices and
problematics that have affected the mathematical and dimensional contexts.

For the 3D case, its absence is explained by having tried to obtain a second
order method, focusing our strengts and attentions on implemeting differ-
ent ways and methodologies of interpolations at the borders, passing from a
classic finite-difference centered scheme to several finite-volume ones, char-
acterised by the commonality of the diamond stencil (as seen in Chapter 5),
essential starting point to use the intrinsic refining capacity of the Octrees.
Although these essays have given us a discreet knowledge of the problem
and of all its issues, we still have finished to meet those constraints previ-
ously exposed by the theory sections of the preceding chapter, not being
able to ensure, everywhere at the interfaces, a 3 x 3 interpolation stencil,
considering just one halo ring of neighbours around the affected cells of the
grids.
This “constraint” on the thickness of the ring was imposed because, at the
time the experiments were being carried out, ther was not in PABLO a
function to enlarge that, and modify a so complicated library was out of the
scope of this thesis.
Besides, evaluation of additional “outher halo points”3 could have lead to a

3Each procesor has a domain consisting of a core region surrounded by a ring of “inner
halo points”. The outher halo points are points which lie in another processors calculation

141

communications increase.

So, here we are, to take stock of the efforts by summarising what was,
and not, done.

I am honestly and deeply proud of what has been accomplished, because
I think it is something not yet proposed, something “new” in the approach
made towards the resolution of the problems considered, and something that
effectively and in practical terms shows a concrete application using differ-
ent Python’s modules, which previously could have look just as an end in
itself as of a uselfuness purely theoretical, in a community (that of Python’s
users) which has always had no business with modelling and simulations.
But not only new usages of Python’s module were shown: a completely new
Python module has been developed, PABLitO, which is, for what I know,
the first Python API to use a parallel balanced linear octree in an inter-
preted way.

And speaking more personally, for me, this professional interlude in my
life did really matter, letting me meet students, researchers, professors, very
well versed in their subjects (and this is crucial for the occupational growth
of one individual), and allowing me to do what I definitely want to (and what
I am actually doing): working in the applied mathematics field, but under
a profile more IT oriented. And my supervisors let me “carte blanche”,
putting always, in front of everything, my intent, my aspirations, my desire
to investigate certain and specific topics.

And their will to always value firstly the interests of their doctoral stu-
dents, myself included, has established in me a great sense of recognition for
them. For this I thank them, and I want to carry out that famous checklist
of “unfinished business” not only for the Python community; not only for
me.
I want to continue this project, on my own time, yes for both myself and to
contribute to the growth of free software, but for them too. Because, right
now, I can assure them that their teaching will not be lost, but I also want
to show them that their trust has not been wasted.
Because they deserve this as chefs, as persons, as mentors.

domain, and the inner halo points are those required by other processors.

