F. Bouhafs, M. Mackay, and M. Merabti, Links to the future: communication requirements and challenges in the smart grid, IEEE Power and Energy Magazine, vol.10, issue.1, pp.24-32, 2012.

A. Zaballos, A. Vallejo, and . Selga, Heterogeneous communication architecture for the smart grid, IEEE Network, vol.25, 2011.

X. Yu, C. Cecati, T. Dillon, and . Simoes, The new frontier of smart grids, IEEE Industrial Electronics Magazine, vol.5, pp.49-63, 2011.

, Electricity generation, transmission and distribution guides, pp.21-29

C. Vehbi, F. Gungor, and . Lambert, A survey on communication networks for electric system automation, Computer Networks, vol.50, pp.877-897, 2006.

M. Kaveh-razazian, A. Umari, V. Kamalizad, M. Loginov, and . Navid, G3-PLC specification for powerline communication: Overview, system simulation and field trial results, International Symposium on Power Line Communications and its Applications (ISPLC), pp.313-318, 2010.

C. Vehbi, B. Gungor, G. P. Lu, and . Hancke, Opportunities and challenges of wireless sensor networks in smart grid, IEEE Transactions on Industrial Electronics, vol.57, pp.3557-3564, 2010.

K. Sohraby, D. Minoli, and T. Znati, Wireless sensor networks: technology, protocols, and applications, 2007.

B. Smart-grid and . Taxonomy, A system view from a grid operator's perspective, 2015.

B. Davito, H. Tai, and R. Uhlaner, The smart grid and the promise of demand-side management, McKinsey on Smart Grid, vol.3, pp.8-44, 2010.

M. Rekik, Routage géographique multi-chemin basé sur l'intelligence d'essaim pour réseaux de capteurs et d'actionneurs sans fil : application aux Smart Grids, 2016.

N. Suljanovic, D. Borovina, M. Zajc, J. Smajic, and A. Mujcic, Requirements for communication infrastructure in smart grids, Energy Conference (ENERGYCON), 2014.
DOI : 10.1109/energycon.2014.6850620

E. Ancillotti, R. Bruno, and M. Conti, The role of communication systems in smart grids: Architectures, technical solutions and research challenges, Computer Communications, Elsevier 36, pp.1665-1697, 2013.

T. Winter, P. Thuber, and A. Brandt, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, 2012.

D. Wang, Z. Tao, J. Zhang, and A. Abouzeid, RPL-based routing for advanced metering infrastructure in smart grid, International Conference on Communications (ICC), 2010.
DOI : 10.1109/iccw.2010.5503924

URL : http://www.merl.com/publications/docs/TR2010-053.pdf

G. Rajalingham, Y. Gao, Q. Ho, and T. Lengoc, Quality of service differentiation for smart grid neighbor area networks through multiple RPL instances, Proceedings of the 11th symposium on QoS and security for wireless and mobile networks

E. Ancillotti, R. Bruno, and M. Conti, The role of the RPL routing protocol for smart grid communications, Communications Magazine, vol.51, pp.75-83, 2013.

N. Cam-winget, D. Hui, and . Popa, Applicability Statement for the Routing Protocol for Low-Power and Lossy Networks (RPL) in Advanced Metering Infrastructure (AMI) Networks. RFC 8036, 2017.

N. Saputro, K. Akkaya, and S. Uludag, A survey of routing protocols for smart grid communications, Computer Networks, vol.56, pp.2742-2771, 2012.

. Kenneth-c-budka, . Jayant-g-deshpande, L. Tewfik, and . Doumi, Communication network architecture and design principles for smart grids, Bell Labs Technical Journal, vol.15, pp.205-227, 2010.

U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P. Picco, What does model-driven data acquisition really achieve in wireless sensor networks?, In: International Conference on Pervasive Computing and Communications (PerCom), pp.85-94, 2012.
DOI : 10.1109/percom.2012.6199853

URL : http://www.dit.unitn.it/%7Epicco/papers/percom12.pdf

G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad hoc networks, vol.7, pp.537-568, 2009.

E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, Innetwork aggregation techniques for wireless sensor networks: a survey, IEEE Wireless Communications, vol.14, issue.2, 2007.

M. Grabisch, J. Marichal, R. Mesiar, and E. Pap, Aggregation functions: means, Information Sciences, vol.181, pp.1-22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00539028

B. Gabriel-martins-dias, S. Bellalta, and . Oechsner, A survey about prediction-based data reduction in wireless sensor networks, ACM Computing Surveys (CSUR), vol.49, p.58, 2016.

B. Hassibi, H. Ali, T. Sayed, and . Kailath, H-infinity optimality of the LMS algorithm, IEEE Transactions on Signal Processing, vol.44, pp.267-280, 1996.

S. Santini and K. Romer, An adaptive strategy for qualitybased data reduction in wireless sensor networks, Proceedings of the 3rd international conference on networked sensing systems (INSS)

I. , , pp.29-36, 2006.

D. Vehbi-c-güngör, T. Sahin, S. Kocak, C. Ergüt, C. Buccella et al., Smart grid technologies: communication technologies and standards, IEEE transactions on Industrial informatics, vol.7, pp.529-539, 2011.

M. Kuzlu, M. Pipattanasomporn, and S. Rahman, Communication network requirements for major smart grid applications in HAN, NAN and WAN, Computer Networks, vol.67, pp.74-88, 2014.

W. Wang, Y. Xu, and M. Khanna, A survey on the communication architectures in smart grid, Computer networks 55, vol.15, pp.3604-3629, 2011.

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, A comparative study of LPWAN technologies for large-scale IoT deployment, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01670379

K. Bashar-alohali, Q. Kifayat, W. Shi, and . Hurst, Group Authentication Scheme for Neighbourhood Area Networks (NANs) in Smart Grids, Journal of Sensor and Actuator Networks, vol.5, p.9, 2016.

N. O. Matthew, M. Sadiku, . Tembely, . Sarhan, and . Musa, Home Area Networks: A Primer, International Journal of Advanced Research in Computer Science and Software Engineering, vol.7, issue.5, 2017.

Y. Yan, Y. Qian, H. Sharif, and D. Tipper, A survey on smart grid communication infrastructures: Motivations, requirements and challenges, IEEE communications surveys & tutorials, vol.15, pp.5-20, 2013.

W. Meng, R. Ma, and H. Chen, Smart grid neighborhood area networks: a survey, IEEE Network, vol.28, pp.24-32, 2014.

N. Saputro, K. Akkaya, and S. Uludag, A survey of routing protocols for smart grid communications, Computer Networks, vol.56, pp.2742-2771, 2012.

U. S. Doe, Communications requirements of Smart Grid technologies, pp.1-69, 2010.

D. V-cagri-gungor, T. Sahin, S. Kocak, C. Ergut, C. Buccella et al., A survey on smart grid potential applications and communication requirements, IEEE Transactions on industrial informatics, vol.9, pp.28-42, 2013.

, NIST Framework and Roadmap for Smart Grid Interoperability Standards. Accessed 09, 2018.

U. S. Doe, Advanced Metering Infrastructure and Customer Systems, 2016.

D. Mah, P. Hills, O. K. Victor, R. Li, and . Balme, Smart grid applications and developments, 2014.

A. Verdiere, Y. Igarashi, T. Lys, C. Lavenu, J. Yi et al.,

J. Dean, The lightweight on-demand ad hoc distance-vector routing protocol-next generation (LOADng), 2016.

C. Perkins, E. Belding-royer, and S. Das, Ad hoc ondemand distance vector (AODV) routing. RFC 3561. RFC Editor, 2003.
DOI : 10.17487/rfc3561

URL : https://www.rfc-editor.org/rfc/pdfrfc/rfc3561.txt.pdf

M. Vu?ini´vu?ini´c, B. Tourancheau, and A. Duda, Performance comparison of the RPL and LOADng routing protocols in a home automation scenario, Wireless Communications and Networking Conference (WCNC), pp.1974-1979, 2013.

T. Iwao, K. Yamada, M. Yura, Y. Nakaya, A. A. Cárdenas et al., Dynamic data forwarding in wireless mesh networks, International Conference on Smart Grid Communications (SmartGridComm), pp.385-390, 2010.
DOI : 10.1109/smartgrid.2010.5622074

M. Rekik, N. Mitton, and Z. Chtourou, Geographic greedy routing with aco recovery strategy graco, International Conference on Ad-Hoc and Wireless Networks, pp.19-32, 2015.
DOI : 10.1007/978-3-319-19662-6_2

URL : https://hal.archives-ouvertes.fr/hal-01136305

S. Dawson-haggerty, A. Tavakoli, and D. Culler, Hydro: A hybrid routing protocol for low-power and lossy networks, International Conference on Smart Grid Communications, pp.268-273, 2010.
DOI : 10.1109/smartgrid.2010.5622053

M. Rekik, N. Mitton, and Z. Chtourou, QoS-aware routing for real-time and reliable wireless sensor network based Smart Grid NAN communications, Smart World Congress, 2017.
DOI : 10.1109/uic-atc.2017.8397435

URL : https://hal.archives-ouvertes.fr/hal-01524382

E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. Schmidt, RIOT OS: Towards an OS for the Internet of Things, Computer Communications Workshops (INFOCOM Workshops), pp.79-80, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00945122

A. Dunkels, B. Gronvall, and T. Voigt, Contiki-a lightweight and flexible operating system for tiny networked sensors, International Conference on Local Computer Networks (LCN), 2004.
DOI : 10.1109/lcn.2004.38

O. Gnawali and P. Levis, The Minimum Rank with Hysteresis Objective Function, 2012.

P. Thubert, Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL). RFC 6552. RFC Editor, 2012.

. Douglas-sj-de, D. Couto, J. Aguayo, R. Bicket, and . Morris, A high-throughput path metric for multi-hop wireless routing, Wireless networks, vol.11, pp.419-434, 2005.

P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, The trickle algorithm. RFC 6206, 2011.
DOI : 10.17487/rfc6206

URL : https://www.rfc-editor.org/rfc/pdfrfc/rfc6206.txt.pdf

E. Ancillotti, R. Bruno, and M. Conti, RPL Routing Protocol in Advanced Metering Infrastructures: an Analysis of the

, Sustainable Internet and ICT for Sustainability (SustainIT), pp.1-10, 2012.

H. Kim, J. Paek, and S. Bahk, QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications, 12th International Conference on Sensing, Communication, and Networking (SECON), 2015.

P. Kulkarni, S. Gormus, Z. Fan, and B. Motz, A self-organising mesh networking solution based on enhanced RPL for smart metering communications, International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp.1-6, 2011.

J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, Routing metrics used for path calculation in lowpower and lossy networks, 2012.

P. Olivier-kamgueu, E. Nataf, T. D. Ndié, and O. Festor, Energy-based routing metric for RPL. Research Report. Inria, 2013.

P. Marco, C. Fischione, G. Athanasiou, and P. Mekikis, MAC-aware routing metrics for low power and lossy networks, International Conference on Computer Communications (INFOCOM), 2013.

S. Yang, Y. Baek, J. Kim, K. Cho, and K. Han, A routing metric for load balance in wireless mesh networks, International Conference on Advanced Communication Technology. (ICACT), pp.1560-1565, 2009.

R. Draves, J. Padhye, and B. Zill, Routing in multiradio, multi-hop wireless mesh networks, Proceedings of the 10th annual international conference on Mobile computing and networking

W. Khallef, M. Molnar, A. Benslimane, and S. Durand, Multiple constrained QoS routing with RPL, International Conference on Communications (ICC), pp.1-6, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01584511

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, Cross-level sensor network simulation with cooja, 31st IEEE conference on Local computer networks, pp.641-648, 2006.

S. Capone, R. Brama, N. Accettura, D. Striccoli, and G. Boggia, An Energy Efficient and Reliable Composite Metric for RPL Organized Networks, International Conference on Embedded and Ubiquitous Computing (EUC), 2014.

P. Karkazis, C. Helen, L. Leligou, T. Sarakis, P. Zahariadis et al., Design of primary and composite routing metrics for RPL-compliant wireless sensor networks, Int. Conf. on Telecommunications and Multimedia (TEMU), 2012.

O. Gaddour, A. Koubâa, N. Baccour, and M. Abid, OF-FL: QoS-aware fuzzy logic objective function for the RPL routing protocol, International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2014.

P. Kamgueu, E. Nataf, and T. N. Djotio, On design and deployment of fuzzy-based metric for routing in low-power and lossy networks, 40th Local Computer Networks Conference Workshops (LCN Workshops), pp.789-795, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203409

T. G. Harshavardhana, . Vineeth, M. Svr-anand, and . Hegde, Power control and cross-layer design of RPL objective function for low power and lossy networks, 10th International Conference on Communication Systems & Networks (COMSNETS), pp.214-219, 2018.

M. Banh, H. Mac, N. Nguyen, K. Phung, N. Huu-thanh et al., Performance evaluation of multiple RPL routing tree instances for Internet of Things applications, International Conference on Advanced Technologies for Communications (ATC), pp.206-211, 2015.

T. Nguyen, M. Long, J. Uwase, K. Tiberghien, and . Steenhaut, QoS-aware cross-layer mechanism for multiple instances RPL, International Conference on Advanced Technologies for Communications (ATC), pp.44-49, 2013.

J. Radak, N. Mitton, and D. Simplot-ryl, Using Battery Level as Metric for Graph Planarization, International Conference on Ad Hoc Networks and Wireless (AdHocNow, pp.58-71, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00599117

J. Eriksson, A. Dunkels, N. Finne, F. Osterlind, and T. Voigt, Mspsim-an extensible simulator for msp430equipped sensor boards, Proceedings of the European Conference on Wireless Sensor Networks (EWSN), vol.118, 2007.

C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton et al.,

. Watteyne, FIT IoT-LAB: A large scale open experimental IoT testbed, 2nd World Forum on Internet of Things (WF-IoT), pp.459-464, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213938

E. Fleury, N. Mitton, T. Noel, and C. Adjih, FIT IoT-LAB: The largest iot open experimental testbed, ERCIM News, vol.101, p.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01138038

C. Rohner, L. M. Feeney, and P. Gunningberg, Evaluating battery models in wireless sensor networks, International Conference on Wired/Wireless Internet Communication, pp.29-42, 2013.

C. Park, K. Lahiri, and A. Raghunathan, Battery discharge characteristics of wireless sensor nodes: An experimental analysis, 2nd Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON), pp.430-440, 2005.

J. Dubrulle, Master thesis, pp.21-29

S. Haykin and B. Widrow, Least-mean-square adaptive filters, vol.31, 2003.

H. Butterweck, A steady-state analysis of the LMS adaptive algorithm without use of the independence assumption, International Conference on Acoustics, Speech, and Signal Processing

S. Bhandari, N. Bergmann, R. Jurdak, and B. Kusy, Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature, Sensors 17, vol.6, p.1221, 2017.

K. Miranda, T. Razafindralambo, and V. Ramos, Using efficiently autoregressive estimation in wireless sensor networks, International Conference on Computer, Information and Telecommunication Systems (CITS), pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00806049

Y. Jiao, Y. P. Rex, W. W. Cheung, . Chow, . Mark et al., A novel gradient adaptive step size LMS algorithm with dual adaptive filters, 35th International Conference of Engineering in Medicine and Biology (EMBC), pp.4803-4806, 2013.

P. Wang, M. Pooi-yuen-kam, and . Chia, A novel automatic step-size adjustment approach in the LMS algorithm, 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE, pp.867-871, 2009.

B. Stojkoska, D. Solev, and D. Davcev, Data prediction in WSN using variable step size LMS algorithm, Proceedings of the 5th International Conference on Sensor Technologies and Applications, 2011.

D. Bismor, K. Czyz, and Z. Ogonowski, Review and comparison of variable step-size LMS algorithms, In: International Journal of Acoustics and Vibration, vol.21, pp.24-39, 2016.

S. S. Haykin, Adaptive Filter Theory. Prentice-Hall information and system sciences series, p.9780130901262, 2002.

J. Dhiman, S. Ahmad, and K. Gulia, Comparison between Adaptive filter Algorithms (LMS, NLMS and RLS), International Journal of Science, Engineering and Technology Research (IJSETR), vol.2, issue.5, pp.1100-1103, 2013.

K. Miranda and V. Ramos, Improving data aggregation in Wireless Sensor Networks with time series estimation, IEEE Latin America Transactions, vol.14, issue.5, pp.2425-2432, 2016.

D. Jager and A. Andreas, NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data), 1996.

P. Jesus, C. Baquero, and P. S. Almeida, A survey of distributed data aggregation algorithms, IEEE Communications Surveys & Tutorials, vol.17, pp.381-404, 2015.

W. Beth-heinzelman, Application-Specific protocol architectures for wireless networks, 2000.

O. Younis and S. Fahmy, HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks, Transactions on mobile computing, vol.3, pp.366-379, 2004.

R. Rajagopalan, . Pramod, and . Varshney, Data aggregation techniques in sensor networks: A survey, IEEE Communications Surveys and Tutorials, vol.8, pp.48-63, 2006.

M. Ding, X. Cheng, and G. Xue, Aggregation tree construction in sensor networks, 58th Vehicular Technology Conference (VTC), vol.4, pp.2168-2172, 2003.

I. K. Hüseyin-Özgür-tan and . Körpeo?glu, Power efficient data gathering and aggregation in wireless sensor networks, ACM Sigmod Record, vol.32, pp.66-71, 2003.

M. Jelasity, Gossip-based Protocols for Large-scale Distributed Systems, 2013.

D. Kempe, A. Dobra, and J. Gehrke, Gossip-based computation of aggregate information, 44th Annual IEEE Symposium on Foundations of Computer Science, pp.482-491, 2003.

J. Chen, G. Pandurangan, and D. Xu, Robust computation of aggregates in wireless sensor networks: distributed randomized algorithms and analysis, Fourth International Symposium on Information Processing in Sensor Networks (IPSN), pp.348-355, 2005.

L. Chitnis, A. Dobra, and S. Ranka, Aggregation methods for large-scale sensor networks, ACM Transactions on Sensor Networks (TOSN), vol.4, p.9, 2008.

T. Shiobara, P. Palensky, and H. Nishi, Effective metering data aggregation for smart grid communication infrastructure, 41st Annual Conference of the Industrial Electronics Society (IECON), pp.2136-002141, 2015.

F. Bouhafs and M. Merabti, Managing communications complexity in the smart grid using data aggregation, 7th International Wireless Communications and Mobile Computing Conference (IWCMC), pp.1315-1320, 2011.

B. Karimi, V. Namboodiri, and M. Jadliwala, Scalable meter data collection in smart grids through message concatenation, IEEE Transactions on Smart Grid, vol.6, pp.1697-1706, 2015.

F. Uddin, Energy-Aware Optimal Data Aggregation in Smart Grid Wireless Communication Networks, IEEE Transactions on Green Communications and Networking, vol.1, issue.3, pp.358-371, 2017.

C. Ting-, Z. Lee, and . Tsai, On the Capacity of Smart Grid Wireless Backhaul With Delay Guarantee and Packet Concatenation, IEEE Systems Journal, pp.2628-2639, 2015.

P. Teymoori, M. Kargahi, and N. Yazdani, A realtime data aggregation method for fault-tolerant wireless sensor networks, Proceedings of the 27th Annual Symposium on Applied Computing, pp.605-612, 2012.

T. Abdelzaher, T. He, and J. Stankovic, Feedback control of data aggregation in sensor networks, 43rd Conference on Decision and Control (CDC), vol.2, pp.1490-1495, 2004.

T. Watteyne, L. Palattella, and . Grieco, Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): Problem statement, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208395

B. Morvaj, S. Lugaric, and . Krajcar, Demonstrating smart buildings and smart grid features in a smart energy city, 3rd International Youth Conference on Energetics (IYCE), pp.1-8, 2011.

. Eiman-al-nuaimi, A. Hind, N. Neyadi, and J. Mohamed, Applications of big data to smart cities, Journal of Internet Services and Applications, vol.6, p.25, 2015.