Task Compatibility and Feasibility Maximization for Whole-Body Control - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Thèse Année : 2017

Task Compatibility and Feasibility Maximization for Whole-Body Control

La Maximisation de Compatibilité et Faisabilité des Tâches pour la Commande Corps-Complet

Résumé

Highly redundant robots, such as humanoids, possess vast industrial and commercial potential. Unfortunately, producing useful behaviors on complex robots is a challenging undertaking, particularly when the robot must interact with the environment. Model-based whole-body control alleviates some of this difficulty by allowing complex whole-body motions to be broken up into multiple atomic tasks, which are performed simultaneously on the robot. However, tasks are generally planned without close consideration for the underlying controller and robot being used, or the other tasks being executed, resulting in infeasible and/or incompatible task combinations when executed on the robot. Consequently, there is no guarantee that the prescribed tasks will be accomplished, resulting in unpredictable, and most likely, unsafe whole-body motions. The adverse side-effects of simultaneous task combinations have been well known to the robotics community since the inception of redundant robots. Typically, these effects are managed by prioritizing between tasks and tuning their gains and parameters, but never is their root cause eliminated. Planning techniques can account for additional tasks to improve whole-body motions prior to execution. Nevertheless, because of modeling errors, there are always differences between what is planned and what is executed on a real robot. On the other end of the spectrum, model-free learning methods attempt to bypass modeling errors by using reinforcement learning and policy search to incrementally improve task(s) through trial-and-error. Regrettably, these tasks must often be demonstrated kinesthetically to the robot beforehand, and require many trials to improve --- this is no small feat on robots such as humanoids. Regardless of the technique used to generate the tasks, either the tasks themselves or their parameters need to be tuned on the real robot and this can be both time consuming and costly. The objective of this work is to better understand what makes tasks infeasible or incompatible, and develop automatic methods of improving on these two issues so that the overall whole-body motions may be accomplished as planned. We start by building a concrete analytical formalism of what it means for tasks to be feasible with the control constraints and compatible with one another. By studying the underlying convex optimization problem produced by the model-based whole-body controller, we develop metrics for analyzing and quantifying these two phenomena. Using the model-based feasibility and compatibility metrics, we demonstrate how the tasks can be optimized using non-linear model predictive control, while also detailing the shortcomings of this model-based approach. In order to overcome these weaknesses, we then develop a model-free approach to quantify task feasibility and compatibility through simple controller and robot agnostic cost functions. Using these measures, an optimization loop is designed, which automatically improves task feasibility and compatibility using model-free policy search in conjunction with model-based whole-body control. Through a series of simulated and real-world experiments, we demonstrate the effects of infeasible and incompatible task sets, and show that by simply optimizing the tasks to improve both feasibility and compatibility, complex and useful whole-body motions can be realized. By endowing robots with an automated mechanism for correcting poorly designed tasks, we not only reduce the need for fine tuning of task priorities and parameters, but also open the door to more complex, robust, and useful whole-body behaviors.
Le développement de comportements utiles pour les robots complexes, tel que des humanoïdes, s’avère difficile. La commande corps-complet à base de modèle allège en partie ces difficultés, en permettant la composition des comportements corps-complets complexes à partir de plusieurs tâches atomiques effectuées simultanément sur le robot. Cependant, des hypothèses et erreurs de modélisation, faites pendant la planification des tâches, peuvent produire des combinaisons infaisables/incompatibles quand exécutées sur le robot, créant des mouvements corps-complet imprévisibles, et probablement dangereux. L’objectif de ce travail est de mieux comprendre ce qui rend les tâches infaisables ou incompatibles et de développer des méthodes automatiques pour améliorer ces problèmes pour que les mouvements corps-complets puissent être accomplis comme prévu. Nous commençons par construire un formalisme permettant d’analyser quand les tâches sont faisables et compatibles étant données les contraintes de commande. En utilisant les métriques de faisabilité et compatibilité à base de modèle, nous démontrons comment optimiser les tâches avec des outils de commande prédictive non-linéaire ainsi que les inconvénients de cette approche. Afin de surmonter ces faiblesses, une boucle d’optimisation est formulée, qui améliore automatiquement la faisabilité et compatibilité des tâches via la recherche de politique sans modèle en conjonction avec la commande corps-complets à base de modèle. À travers une série d’expériences simulées et réelles, nous montrons que la simple optimisation de faisabilité et compatibilité des tâches nous permet de réaliser des mouvements corps-complets utiles.
Fichier principal
Vignette du fichier
lober_phd_thesis.pdf (28.21 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-01927038 , version 1 (16-01-2018)
tel-01927038 , version 2 (19-11-2018)

Identifiants

  • HAL Id : tel-01927038 , version 1

Citer

Ryan Lober. Task Compatibility and Feasibility Maximization for Whole-Body Control. Robotics [cs.RO]. UPMC, 2017. English. ⟨NNT : ⟩. ⟨tel-01927038v1⟩
439 Consultations
150 Téléchargements

Partager

Gmail Facebook X LinkedIn More