. .. Microbiota-complementarities, 146 6.1.1 Data and models of the human metabolism

. .. , 146 6.1.3 Complementarity within the 381 bacteria communities, p.147

, Functional roles of bacteria inside minimal communities, p.151

E. S. , 153 6.2.1 Context of the study

.. .. Conclusion,

. .. Software,

. .. Workflows, 2.2 Providing a user view for traceability in GSM reconstruction, p.170

.. .. Conclusion, 173 1.1 Evolution of the number of scientific publications treating microbiome or microbiota

. .. , Dependencies of seaweeds to their biotic environment, p.31

, Dependencies of Ectocarpus sp. to its microbiota

, A small metabolic network -bipartite graph representation, p.38

. .. , Graph-based "scope" producibility in metabolic networks, p.40

, Effect of cycles on the graph-based concept of producibility, p.41

, Application of FBA to a small example

, Effect of cycles on the constraint-based concept of producibility, p.45

, Example of a thermodynamically infeasible cycle

. .. Differences, 47 1.13 ASP and hybrid LP-ASP solving of a problem

, An example of GSM reconstruction process

, Gap-filling of metabolic networks with different heuristics, p.55

E. .. Gsms, 72 2.3 Biomass restoration and recovery of essential reactions due to completion of 10, vol.800

, Biomass restoration and recovery of essential reactions due to completion of 10, vol.800

, 77 2.7 Classification of reactions added by Meneco and fastGapFill in functional completed GSMs, Possible FVA status changes after completion with respect to the initial network 75 2.6 Comparison of the sizes of the output of the three gap-filling methods Meneco

, Parsimonious metabolic model completion problem

. .. , Stoichiometric activation and metabolic network completion, vol.88

. .. , Topological activation and metabolic network completion, p.89

, Solutions to hybrid metabolic network completion

, Union of no-flux solutions carries flux

, Union of no-flux solutions carries no flux

, 106 4.2 Interest of heterogeneous methods in pathway completion and filling thanks to tracking of process metadata

, Chondrus crispus GSM (CcrGEM)

, Application of graph-based gap-filling to an algal bacterial system, design of the study

, Study of the 83 newly producible targets when combining E. siliculosus and Ca

E. Vitamin-b5-biosynthesis-in and C. P. Siliculosus, , p.117

, Toy example for community selection

, Mixed-bag selection of community

.. .. Compartmentalized,

. .. , Impact of exchange requirements in community selection, p.131

, Feasibility and community-size computation of HMP functions, p.138

, Enumeration and union of minimal-size solutions

, Relationship between size of union and number of solutions, p.139

. .. , 139 6.1 Connections between bacteria among the 381 minimal communities enabling the production of 46 targets of the human metabolism

. .. , 153 6.4 Taxonomic tree of the 10 bacteria associated to Ectocarpus sp. used for community selection

, Dependencies of targets producibility by alga towards cooperation with the six selected bacteria

, Screen captures of several pages of the local wiki and the interactions between them

B. , Taxonomic tree of the 89 gut bacteria

. Abubucker, Metabolic reconstruction for metagenomic data and its application to the human microbiome, PLoS Computational Biology, vol.8, issue.6, p.1002358, 2012.

. Aite, Traceability, reproducibility and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models, PLOS Computational Biology, vol.14, issue.5, p.1006146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807842

A. , M. Allison, S. D. Martiny, and J. B. , Resistance, resilience, and redundancy in microbial communities, Proceedings of the National Academy of Sciences of the United States of America, 105, pp.11512-11521, 2008.

. Amin, Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria, Nature, vol.522, issue.7554, pp.98-101, 2015.

. Ankrah, Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling, Journal of Bacteriology, pp.872-888, 2017.

[. Ansótegui, SAT-based MaxSAT algorithms, Artificial Intelligence, vol.196, pp.77-105, 2013.

. Arkin, The DOE Systems Biology Knowledgebase (KBase). bioRxiv, 2016.

. Arumugam, Enterotypes of the human gut microbiome, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

A. , The RAST Server: Rapid Annotations using Subsystems Technology, vol.9, p.75, 2008.

. Bäckhed, , 2005.

[. Bais, The role of root exudates in rhizosphere interactions with plants and other organisms, Annual Review of Plant Biology, vol.57, issue.1, pp.233-266, 2006.

[. Becker, Quantitative Prediction of Cellular Metabolism with Constraintbased Models: The COBRA Toolbox, Nat Protoc, vol.2, issue.3, pp.727-738, 2007.

[. Benedict, Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models, PLoS Computational Biology, vol.10, issue.10, p.1003882, 2014.

W. Berry, D. Berry, S. Widder, and . Biedermann, Deciphering microbial interactions and detecting keystone species with co-occurrence networks, Frontiers in Microbiology, vol.5, issue.11, p.9, 2014.

[. Blackall, Coral-the world's most diverse symbiotic ecosystem, Molecular Ecology, vol.24, issue.21, pp.5330-5347, 2015.

[. Blasche, Model microbial communities for ecosystems biology, Current Opinion in Systems Biology, vol.6, pp.51-57, 2017.

. Borenstein, E. Feldman-;-borenstein, and M. W. Feldman, Topological signatures of species interactions in metabolic networks, Journal of computational biology : a journal of computational molecular cell biology, vol.16, issue.2, pp.191-200, 2009.

. Borenstein, , 2008.

, Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.14482-14489

M. Bosch, T. C. Bosch, and M. J. Mcfall-ngai, Metaorganisms as the new frontier, Zoology, vol.114, issue.4, pp.185-190, 2011.

L. Bourneuf and J. Nicolas, FCA in a Logical Programming Setting for Visualization-Oriented Graph Compression, ICFCA 2017: Formal Concept Analysis, pp.89-105, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558302

[. Brewka, asprin: Customizing Answer Set Preferences without a Headache, pp.1467-1474, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187001

[. Brinza, Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum, Comptes Rendus Biologies, vol.332, issue.11, pp.1034-1049, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445861

[. Budinich, A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems, PLOS ONE, vol.12, issue.2, p.171744, 2017.
DOI : 10.1371/journal.pone.0171744

URL : https://hal.archives-ouvertes.fr/hal-01478375

R. Carr and E. Borenstein, NetSeed: A network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment, Bioinformatics, vol.28, issue.5, pp.734-735, 2012.

[. Caspi, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases, Nucleic acids research, vol.42, pp.459-71, 2014.

[. Caspi, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic acids research, vol.44, issue.D1, pp.471-80, 2016.

[. Caspi, The MetaCyc database of metabolic pathways and enzymes, Nucleic Acids Research, vol.46, issue.D1, pp.633-639, 2018.
DOI : 10.1093/nar/gkx935

URL : https://academic.oup.com/nar/article-pdf/46/D1/D633/23162794/gkx935.pdf

[. Cavaliere, Cooperation in microbial communities and their biotechnological applications, Environmental Microbiology, vol.19, issue.8, pp.2949-2963, 2017.
DOI : 10.1111/1462-2920.13767

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/1462-2920.13767

[. Chan, Standardizing biomass reactions and ensuring complete mass balance in genomescale metabolic models, Bioinformatics, vol.33, issue.22, pp.3603-3609, 2017.

. Chazalviel, MetExploreViz: web component for interactive metabolic network visualization, Bioinformatics, pp.0-0, 2017.
DOI : 10.1093/bioinformatics/btx588

URL : https://academic.oup.com/bioinformatics/article-pdf/34/2/312/25114213/btx588.pdf

[. Chitale, Missing gene identification using functional coherence scores, Scientific Reports, vol.6, issue.1, p.31725, 2016.
DOI : 10.1038/srep31725

URL : https://www.nature.com/articles/srep31725.pdf

[. Christian, An integrative approach towards completing genome-scale metabolic networks, Molecular BioSystems, vol.5, issue.12, pp.1889-1903, 2009.
DOI : 10.1039/b915913b

[. Cock, The Ectocarpus genome and the independent evolution of multicellularity in brown algae, vol.465, pp.617-638, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00906990

[. Collén, Genome structure and metabolic features in the red seaweed Chondrus crispus, vol.110, pp.5247-52, 2013.

[. Collet, Extending the Metabolic Network of Ectocarpus Siliculosus Using Answer Set Programming, LPNMR 2013: Logic Programming and Nonmonotonic Reasoning, pp.245-256, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853752

[. Comte, Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities, Frontiers in Microbiology, vol.4, p.112, 2013.
DOI : 10.3389/fmicb.2013.00112

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2013.00112/pdf

[. Cormier, Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus, New Phytologist, vol.214, issue.1, pp.219-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402123

[. Cottret, MetExplore: collaborative edition and exploration of metabolic networks, Nucleic Acids Research, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886470

J. ;. Cottret, L. Cottret, and F. Jourdan, Graph methods for the investigation of metabolic networks in parasitology, 2010.

[. Cottret, Graph-Based Analysis of the Metabolic Exchanges between Two Co-Resident Intracellular Symbionts, Baumannia cicadellinicola and Sulcia muelleri, with Their Insect Host, Homalodisca coagulata, PLoS Computational Biology, vol.6, issue.9, p.1000904, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00690650

[. Coyte, The ecology of the microbiome: Networks, competition, and stability. Science, vol.350, pp.663-669, 2015.

G. Dantzig, Linear Programming and Extensions, 1963.

O. Dantzig, G. Dantzig, and A. Orden, The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific Journal of Mathematics, vol.5, issue.2, pp.187-195, 1955.

[. Desouki, CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions, Bioinformatics, vol.31, issue.13, pp.2159-2165, 2015.

[. Devoid, Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED, Methods in molecular biology, vol.985, pp.17-45, 2013.

. Dias, Genome-Wide Semi-Automated Annotation of Transporter Systems, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.14, issue.2, pp.443-456, 2017.

[. Dittami, Genome and metabolic network of "Candidatus Phaeomarinobacter ectocarpi", a new candidate genus of Alphaproteobacteria frequently associated with brown algae, Frontiers in Genetics, vol.5, p.241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079739

[. Dittami, Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures, The ISME Journal, vol.10, issue.1, pp.51-63, 2016.

[. Dittami, A metabolic approach to study algal-bacterial interactions in changing environments, Molecular Ecology, vol.23, issue.7, pp.1656-1660, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00936195

A. E. Douglas, Requirement of pea aphids (Acyrthosiphon pisum) for their symbiotic bacteria, Entomologia Experimentalis et Applicata, vol.65, issue.2, pp.195-198, 1992.

[. Duarte, Global reconstruction of the human metabolic network based on genomic and bibliomic data, vol.104, pp.1777-82, 2007.

[. Ebenhöh, Structural analysis of expanding metabolic networks, Genome informatics. International Conference on Genome Informatics, vol.15, pp.35-45, 2004.

[. Ebenhöh, Evolutionary changes of metabolic networks and their biosynthetic capacities, Systems biology, vol.153, issue.5, pp.354-362, 2006.

[. Ebrahim, COBRApy: COnstraints-Based Reconstruction and Analysis for Python, BMC systems biology, vol.7, p.74, 2013.

J. S. Edwards and B. O. Palsson, Systems properties of the Haemophilus influenzae Rd metabolic genotype, Journal of Biological Chemistry, vol.274, issue.25, pp.17410-17416, 1999.

[. Egan, The seaweed holobiont: Understanding seaweed-bacteria interactions, FEMS Microbiology Reviews, vol.37, issue.3, pp.462-476, 2013.

M. Ehrgott, Multicriteria optimization. Lecture notes in economics and mathematical systems, 2005.

[. Elbourne, TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life, Nucleic Acids Research, vol.45, issue.D1, pp.320-324, 2017.

H. Ellegren, Genome sequencing and population genomics in nonmodel organisms, Trends in Ecology and Evolution, vol.29, issue.1, pp.51-63, 2014.

K. ;. Emms, D. M. Emms, and S. Kelly, OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy, Genome Biology, vol.16, issue.1, p.157, 2015.

B. Eng, A. Eng, and E. Borenstein, An algorithm for designing minimal microbial communities with desired metabolic capacities, Bioinformatics, vol.32, issue.13, pp.2008-2016, 2016.

. Engel, The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions. mBio, vol.7, pp.2164-2179, 2016.

[. Faria, Constructing and Analyzing Metabolic Flux Models of Microbial Communities, Hydrocarbon and Lipid Microbiology Protocols, pp.247-273, 2016.

[. Faria, Methods for automated genome-scale metabolic model reconstruction, Biochemical Society transactions, vol.46, issue.4, pp.931-936, 2018.

K. Faust and J. Raes, Microbial interactions: from networks to models, Nature Reviews Microbiology, vol.10, issue.8, pp.538-550, 2012.

[. Feist, A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Molecular Systems Biology, vol.3, p.121, 2007.

P. Feist, A. M. Feist, and B. O. Palsson, The biomass objective function, Current Opinion in Microbiology, vol.13, issue.3, pp.344-349, 2010.

O. Fiehn, Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks, Comparative and Functional Genomics, vol.2, issue.3, pp.155-168, 2001.

[. Freilich, Competitive and cooperative metabolic interactions in bacterial communities, Nature Communications, vol.2, 2011.

J. Friedman and E. J. Alm, Inferring Correlation Networks from Genomic Survey Data, PLoS Computational Biology, vol.8, issue.9, p.1002687, 2012.

[. Frioux, Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA, PloS one, vol.10, issue.3, p.120664, 2015.

[. Gebser, Theory solving made easy with clingo 5, Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP'16), vol.52, pp.1-2, 2016.

[. Gebser, , 2016.

, Theory Solving made easy with Clingo5

[. Gebser, Answer Set Solving in Practice, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.3, pp.1-238, 2012.

[. Gelfond, M. Lifschitz-;-gelfond, and V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation Computing, vol.9, pp.365-385, 1991.

[. Gibson, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics, Nutrition Research Reviews, vol.17, issue.02, p.259, 2004.

B. R. Glick, The enhancement of plant growth by free-living bacteria, Canadian Journal of Microbiology, vol.41, issue.2, pp.109-117, 1995.

[. Goecke, Review chemical interactions between Marine macroalgae and bacteria, Marine Ecology Progress Series, vol.409, pp.267-300, 2010.

J. E. Goldford and D. Segrè, Modern views of ancient metabolic networks, Current Opinion in Systems Biology, vol.8, pp.117-124, 2018.

[. Gottstein, Constraint-based stoichiometric modelling from single organisms to microbial communities, 2016.

[. Granger, Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0, PLoS Computational Biology, vol.12, issue.4, p.1004875, 2016.

[. Greenblum, Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease, Proceedings of the, vol.109, pp.594-603, 2012.

[. Griesemer, Combining multiple functional annotation tools increases coverage of metabolic annotation. bioRxiv, p.160887, 2018.

[. Ha, Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health, World journal of gastroenterology, vol.20, issue.44, pp.16498-517, 2014.

[. Handorf, Expanding metabolic networks: Scopes of compounds, robustness, and evolution, Journal of Molecular Evolution, vol.61, issue.4, pp.498-512, 2005.

[. Hanemaaijer, Model-based quantification of metabolic interactions from dynamic microbial-community data, PLOS ONE, vol.12, issue.3, p.173183, 2017.

B. D. Heavner and N. D. Price, Transparency in metabolic network reconstruction enables scalable biological discovery. Current opinion in biotechnology, vol.34, 2015.

[. Heinken, Systems biology of bacteria-host interactions, The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology, pp.113-137, 2016.

[. Heinken, Systemslevel characterization of a host-microbe metabolic symbiosis in the mammalian gut, Gut microbes, vol.4, issue.1, pp.28-40, 2013.

T. Heinken, A. Heinken, and I. Thiele, Systems biology of host-microbe metabolomics, Wiley interdisciplinary reviews. Systems biology and medicine, vol.7, pp.195-219, 2015.

[. Henry, Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction, Journal of Cellular Physiology, vol.231, issue.11, pp.2339-2345, 2016.

[. Henry, High-throughput generation, optimization and analysis of genomescale metabolic models, Nature biotechnology, vol.28, issue.9, pp.977-982, 2010.

[. Hood, Systems biology at the Institute for Systems Biology, Briefings in Functional Genomics and Proteomics, vol.7, issue.4, pp.239-248, 2008.

. Hornung, Studying microbial functionality within the gut ecosystem by systems biology, 2018.

[. Hucka, The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models, vol.19, pp.524-531, 2003.

, A framework for human microbiome research, Nature, vol.486, issue.7402, pp.215-221, 2012.

. Ideker, A new approach to decoding life : Systems Biology, Annual Review of Genomics and Human Genetics, vol.2, issue.1, pp.343-372, 2001.

[. Janhunen, Clingo goes linear constraints over reals and integers, Theory and Practice of Logic Programming, pp.872-888, 2017.

. Johns, Principles for designing synthetic microbial communities, Current Opinion in Microbiology, vol.31, pp.146-153, 2016.
DOI : 10.1016/j.mib.2016.03.010

URL : https://manuscript.elsevier.com/S136952741630025X/pdf/S136952741630025X.pdf

A. R. Joyce and B. Ø. Palsson, The model organism as a system: integrating 'omics' data sets, Nature Reviews Molecular Cell Biology, vol.7, issue.3, pp.198-210, 2006.
DOI : 10.1038/nrm1857

. Julien-laferrière, A Combinatorial Algorithm for Microbial Consortia Synthetic Design. Scientific Reports, vol.6, p.29182, 2016.

[. Kaminski, A tutorial on hybrid answer set solving with clingo, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10370 LNCS, pp.167-203, 2017.
DOI : 10.1007/978-3-319-61033-7_6

[. Kanehisa, KEGG as a reference resource for gene and protein annotation, Nucleic acids research, vol.44, issue.D1, pp.457-62, 2016.
DOI : 10.1093/nar/gkv1070

URL : https://academic.oup.com/nar/article-pdf/44/D1/D457/9482226/gkv1070.pdf

[. Karp, The BioCyc collection of microbial genomes and metabolic pathways, Briefings in Bioinformatics, vol.28, issue.12, pp.1-6, 2017.

[. Karp, Pathway tools version 19.0 update: Software for pathway/genome informatics and systems biology, Briefings in Bioinformatics, vol.17, issue.5, pp.877-890, 2016.

[. Karp, The Pathway Tools software, Bioinformatics, vol.18, issue.1, pp.225-232, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.s225

URL : https://academic.oup.com/bioinformatics/article-pdf/18/suppl_1/S225/630508/18S225.pdf

, Community flux balance analysis for microbial consortia at balanced growth, PloS one, vol.8, issue.5, p.64567, 2013.

L. Kim, M. K. Kim, and D. S. Lun, Methods for integration of transcriptomic data in genome-scale metabolic models, Computational and Structural Biotechnology Journal, vol.11, issue.18, pp.59-65, 2014.

[. Kim, Recent advances in reconstruction and applications of genome-scale metabolic models, Current opinion in biotechnology, vol.23, issue.4, pp.617-640, 2012.

[. King, BiGG Models: A platform for integrating, standardizing and sharing genome-scale models, Nucleic Acids Research, vol.44, issue.D1, pp.515-537, 2016.
DOI : 10.1093/nar/gkv1049

URL : https://academic.oup.com/nar/article-pdf/44/D1/D515/16661243/gkv1049.pdf

[. Kitano and H. Kitano, Computational systems biology, Nature, vol.420, issue.6912, pp.206-210, 2002.

[. Kitano and H. Kitano, Systems biology: A brief overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.
DOI : 10.1126/science.1069492

URL : http://theory.bio.uu.nl/BPA/pdf/Obligatory_reading/Kitano_s02.pdf

[. Kleinjan, Exploring the Cultivable Ectocarpus Microbiome, Frontiers in Microbiology, vol.8, p.2456, 2017.

N. Klitgord and D. Segrè, Environments that induce synthetic microbial ecosystems, PLoS Computational Biology, vol.6, issue.11, p.1001002, 2010.
DOI : 10.1371/journal.pcbi.1001002

URL : https://doi.org/10.1371/journal.pcbi.1001002

[. Koch, Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process, Biotechnology for Biofuels, vol.9, issue.1, p.17, 2016.

[. Kreimer, NetCmpt: A network-based tool for calculating the metabolic competition between bacterial species, Bioinformatics, vol.28, issue.16, pp.2195-2197, 2012.

E. Kruse, K. Kruse, and O. Ebenhöh, Comparing flux balance analysis to network expansion: producibility, sustainability and the scope of compounds, Genome Informatics, vol.20, pp.91-101, 2008.

[. Laniau, Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks, BMC bioinformatics, vol.5, issue.10, p.225, 2014.
DOI : 10.7717/peerj.3860

URL : https://hal.archives-ouvertes.fr/hal-01635688

A. Leonelli, S. Leonelli, and R. A. Ankeny, What makes a model organism?, Endeavour, vol.37, issue.4, pp.209-212, 2013.
DOI : 10.1016/j.endeavour.2013.06.001

. Letunic, I. Bork-;-letunic, and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic acids research, vol.44, issue.W1, pp.242-247, 2016.

B. Levy, R. Levy, and E. Borenstein, Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.12804-12813, 2013.

[. Levy, NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation, BMC bioinformatics, vol.16, issue.1, p.164, 2015.

[. Li, Predicting microbial interactions through computational approaches, Methods, vol.102, pp.12-19, 2016.

[. Loira, Pantograph: A templatebased method for genome-scale metabolic model reconstruction, Journal of Bioinformatics and Computational Biology, vol.13, issue.02, p.1550006, 2015.
DOI : 10.1142/s0219720015500067

URL : https://hal.archives-ouvertes.fr/hal-01123733

[. Lozupone, Diversity, stability and resilience of the human gut microbiota, Nature, vol.489, issue.7415, pp.220-230, 2012.

[. Magnúsdóttir, Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota, Nature Biotechnology, vol.35, issue.1, pp.81-89, 2016.

T. Magnúsdóttir, S. Magnúsdóttir, and I. Thiele, Modeling metabolism of the human gut microbiome, Current Opinion in Biotechnology, vol.51, pp.90-96, 2018.

. Mahadevan, R. Schilling-;-mahadevan, and C. Schilling, The effects of alternate optimal solutions in constraint-based genome-scale metabolic models, Metabolic Engineering, vol.5, issue.4, pp.264-276, 2003.

[. Manor, Mapping the inner workings of the microbiome: genomic-and metagenomic-based study of metabolism and metabolic interactions in the human microbiome, Cell metabolism, vol.20, issue.5, pp.742-52, 2014.

Z. Maranas, C. D. Maranas, and A. R. Zomorrodi, Optimization methods in metabolic networks, 2016.

[. Marchesi, J. R. Marchesi, and J. Ravel, The vocabulary of microbiome research: a proposal, vol.3, p.31, 2015.

H. Mendes-soares and N. Chia, Community metabolic modeling approaches to understanding the gut microbiome: Bridging biochemistry and ecology, 2017.

. Mendes-soares, MMinte: an application for predicting metabolic interactions among the microbial species in a community, BMC bioinformatics, vol.17, issue.1, p.343, 2016.

[. Monk, , 2017.

N. A. Moran-;-moran, Symbiosis. Current Biology, vol.16, issue.20, pp.866-871, 2006.

[. Moretti, MetaNetX/MNXref -reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks, Nucleic Acids Research, vol.44, issue.D1, pp.523-526, 2016.

M. Morterol-;-morterol, Méthodes avancées de raisonnement en logique propositionnelle : application aux réseaux métaboliques, 2016.

F. Moya, A. Moya, and M. Ferrer, Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance, Trends in Microbiology, vol.24, issue.5, pp.402-413, 2016.

[. Oberhardt, Applications of genome-scale metabolic reconstructions, Molecular systems biology, vol.5, p.320, 2009.

. O'brien, Using Genomescale Models to Predict Biological Capabilities, Cell, vol.161, issue.5, pp.971-87, 2015.

[. Ofaim, Analysis of Microbial Functions in the Rhizosphere Using a MetabolicNetwork Based Framework for Metagenomics Interpretation, Frontiers in Microbiology, vol.8, p.1606, 2017.

-. Oksman, K. Saito-;-oksman-caldentey, and K. Saito, Integrating genomics and metabolomics for engineering plant metabolic pathways, Current Opinion in Biotechnology, vol.16, issue.2, pp.174-179, 2005.

[. Opatovsky, Modeling trophic dependencies and exchanges among insects' bacterial symbionts in a host-simulated environment, BMC Genomics, vol.19, issue.1, p.402, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916790

[. Orth, A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011, Molecular systems biology, vol.7, issue.535, p.535, 2011.

P. Orth, J. D. Orth, and B. Palsson, Systematizing the generation of missing metabolic knowledge, Biotechnology and Bioengineering, vol.107, issue.3, pp.403-412, 2010.

[. Orth, What is Flux Balance Analysis ?, Nature biotechnology, vol.28, issue.3, pp.245-248, 2010.

S. Pan and J. L. Reed, Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries, Current Opinion in Biotechnology, vol.51, pp.103-108, 2018.

. Peres, SAT-Based Metabolics Pathways Analysis without Compilation, Computational Methods in Systems Biology, pp.20-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108840

. Pharkya, OptStrain: A computational framework for redesign of microbial production systems, Genome Research, vol.14, issue.11, pp.2367-2376, 2004.

[. Plata, Global probabilistic annotation of metabolic networks enables enzyme discovery, Nature Chemical Biology, vol.8, issue.10, pp.848-854, 2012.

[. Prigent, The genome-scale metabolic network of Ectocarpus siliculosus (EctoGEM): A resource to study brown algal physiology and beyond, Plant Journal, vol.80, issue.2, pp.367-381, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057153

[. Prigent, Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks, PLOS Computational Biology, vol.13, issue.1, p.1005276, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01449100

P. Provasoli, L. Provasoli, and I. J. Pintner, Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae), Journal of Phycology, vol.16, issue.2, pp.196-201, 1980.

J. Raymond and D. Segrè, The effect of oxygen on biochemical networks and the evolution of complex life, Science, issue.5768, pp.1764-1771, 2006.

. Reed, Systems approach to refining genome annotation, Proc Natl Acad Sci U S A, vol.103, issue.46, pp.17480-17484, 2006.

. Reed, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR), Genome biology, vol.4, issue.9, p.54, 2003.

T. Rose and J. Mazat, FluxVisualizer, a Software to Visualize Fluxes through Metabolic Networks. Processes, vol.6, p.39, 2018.

[. Royer, Unraveling Protein Networks with Power Graph Analysis, PLoS Comput Biol, vol.4, issue.7, p.1000108, 2008.

[. Russell, Non-model model organisms, BMC Biology, vol.15, issue.1, p.55, 2017.

. [satish-kumar, Optimization based automated curation of metabolic reconstructions, BMC bioinformatics, vol.8, p.212, 2007.

T. Schaub and S. Thiele, Metabolic network expansion with answer set programming, International Conference on Logic Programming (ICLP), pp.312-326, 2009.

T. Schaub and S. Thiele, Metabolic network expansion with ASP, Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP'09), vol.5649, pp.312-326, 2009.

[. Schellenberger, Elimination of thermodynamically infeasible loops in steady-state metabolic models, Biophysical journal, vol.100, issue.3, pp.544-53, 2011.

[. Schellenberger, , vol.6, pp.1290-307, 2011.

. Schuetz, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli, Molecular systems biology, vol.3, p.119, 2007.

. Schuetz, Multidimensional optimality of microbial metabolism, Science, vol.336, issue.6081, pp.601-605, 2012.

[. Sekirov, Gut Microbiota in Health and Disease, Physiological Reviews, vol.90, issue.3, pp.859-904, 2010.

[. Shannon, Cytoscape: A software Environment for integrated models of biomolecular interaction networks, Genome Research, vol.13, issue.11, pp.2498-2504, 2003.

. Simons, Extending and implementing the stable model semantics, Artificial Intelligence, vol.138, issue.1-2, pp.181-234, 2002.

[. Steffensen, PSAMM: A Portable System for the Analysis of Metabolic Models, PLoS Computational Biology, vol.12, issue.2, p.1004732, 2016.

[. Steinway, Inference of Network Dynamics and Metabolic Interactions in the Gut Microbiome, PLOS Computational Biology, vol.11, issue.6, p.1004338, 2015.

[. Stolyar, Metabolic modeling of a mutualistic microbial community, Molecular systems biology, vol.3, issue.1, p.92, 2007.

A. Succurro and O. Ebenhöh, Review and perspective on mathematical modeling of microbial ecosystems, Biochemical Society Transactions, vol.46, issue.2, pp.403-412, 2018.

[. Sung, Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis, Nature Communications, vol.8, issue.1, 2017.

. Swainston, Metabolomics, issue.7, p.12, 2016.

[. Tapia, , 2016.

, Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp, Frontiers in Microbiology, vol.7, p.197

F. ;. Thacker, R. W. Thacker, and C. J. Freeman, Sponge-Microbe Symbioses. Recent Advances and New Directions, Advances in Marine Biology, vol.62, pp.57-111, 2012.

[. Thiele, A systems biology approach to studying the role of microbes in human health, Current Opinion in Biotechnology, vol.24, issue.1, pp.4-12, 2013.

I. Thiele and B. Ø. Palsson, A protocol for generating a high-quality genome-scale metabolic reconstruction, Nature protocols, vol.5, issue.1, pp.93-121, 2010.

[. Thiele, When metabolism meets physiology: Harvey and Harvetta. bioRxiv, p.255885, 2018.

[. Thiele, A community-driven global reconstruction of human metabolism, vol.31, pp.419-425, 2013.

[. Thiele, fastGapFill: efficient gap filling in metabolic networks, Bioinformatics, vol.30, issue.17, pp.2529-2531, 2014.

V. Tremaroli and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, issue.7415, pp.242-249, 2012.

. Der-ark, More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes, vol.5, p.78, 2017.

. Van-der-heijden, The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems, 2008.

[. Venter, , vol.291, pp.1304-1351, 2001.

[. Vijayakumar, Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling, Briefings in Bioinformatics, 2017.

. Vitkin, E. Shlomi-;-vitkin, and T. Shlomi, MIRAGE: a functional genomicsbased approach for metabolic network model reconstruction and its application to cyanobacteria networks, Genome biology, vol.13, issue.11, p.111, 2012.

N. S. Webster, Cooperation, communication, and co-evolution: Grand challenges in microbial symbiosis research, Frontiers in Microbiology, vol.5, p.164, 2014.

[. Werren, Wolbachia: Master manipulators of invertebrate biology, 2008.

[. Widder, Challenges in microbial ecology: building predictive understanding of community function and dynamics, The ISME Journal, vol.10, issue.10, pp.2557-2568, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512087

[. Xavier, Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes, Metabolic engineering, vol.39, pp.200-208, 2017.

[. Xu, Genome-scale metabolic modelling common cofactors metabolism in microorganisms, Journal of Biotechnology, vol.251, pp.1-13, 2017.

Z. Xu, Y. Xu, and F. Zhao, Single-cell metagenomics: challenges and applications, Protein & Cell, vol.9, issue.5, pp.501-510, 2018.

[. Ye, Saccharina genomes provide novel insight into kelp biology, Nature communications, vol.6, p.6986, 2015.

[. Yizhak, Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model, Bioinformatics, vol.26, issue.12, pp.255-260, 2010.

[. Zakrzewski, MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models, PloS One, vol.7, issue.12, p.51511, 2012.

[. Zarecki, A novel nutritional predictor links microbial fastidiousness with lowered ubiquity, growth rate, and cooperativeness, PLoS computational biology, vol.10, issue.7, p.1003726, 2014.

[. Zelezniak, Metabolic dependencies drive species co-occurrence in diverse microbial communities, vol.112, pp.6449-6454, 2015.

[. Zhuang, Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments, The ISME Journal, vol.5, issue.2, pp.305-316, 2011.

[. Zomorrodi, dOptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities, ACS Synthetic Biology, vol.3, issue.4, pp.247-257, 2014.

A. R. Zomorrodi and C. D. Maranas, OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities, PLoS Computational Biology, vol.8, issue.2, p.1002363, 2012.

[. Zuñiga, Elucidation of complexity and prediction of interactions in microbial communities, Microbial Biotechnology, vol.10, issue.6, pp.1500-1522, 2017.

. Aite, Traceability, reproducibility and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models, PLOS Computational Biology, vol.14, issue.5, p.1006146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807842

[. Dittami, The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae. bioRxiv, p.307165, 2018.

[. Frioux, Scalable and exhaustive screening of metabolic functions carried out by microbial consortia, Bioinformatics, vol.34, issue.17, pp.934-943, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01946860

[. Frioux, Hybrid metabolic network completion, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10377 LNAI, pp.308-321, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01557347

[. Frioux, Hybrid Metabolic Network Completion. Theory and Practice of Logic Programming -in press, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01557347

[. Laniau, Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks, PeerJ, vol.5, issue.10, p.3860, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635688

[. Prigent, Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks, PLOS Computational Biology, vol.13, issue.1, p.1005276, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01449100

, M ) : -seed ( M

, scope ( M ) : -product (M , R ) , reaction ( R ) , 6 dscope ( M2 ) : reactant ( M2 , R )

, scope ( M ) : -reactant (M , R ) , reaction ( R ) , reversible ( R ) , 9 dscope ( M2 ) : product ( M2 , R ). t ( M ) : -target ( M ) , not scope ( M ). t ( M ) : -target ( M ) , scope ( M )