. Enfin-;-drost, 2017)-aidera à dépasser certains travers des méthodologies de référence, dont les limitations et le manque de représentatitivité risquent d'orienter l'effort de recherche dans une mauvaise direction. Le problème abordé dans cette thèse ne reste cependant qu'une minuscule fraction d'un problème plus vaste qu, nous espérons que notre proposition d'une nouvelle méthodologie d'évaluation-associée à d'autres initiatives telles qu'ITODD

W. Bibliographie, T. Abbeloos, and . Goedemé, Point pair feature based object detection for random bin picking, Computer and Robot Vision (CRV), 2016 13th Conference on, p.143, 2016.

A. Agrawal, Y. Sun, J. Barnwell, and E. R. Raskar, Vision-guided robot system for picking objects by casting shadows, The International Journal of Robotics Research, vol.29, issue.2-3, p.36, 2010.

A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli et al., CAD-model recognition and 6DOF pose estimation using 3D cues, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.585-592, 2011.

A. Aldoma, F. Tombari, R. B. Rusu, and M. Vincze, OUR-CVFH-oriented, unique and repeatable clustered viewpoint feature histogram for object recognition and 6dof pose estimation, Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium, p.36, 2012.

A. Aldoma, T. Fäulhammer, and M. Vincze, Automation of "ground truth" annotation for multi-view RGB-D object instance recognition datasets, 2014 IEEE/RSJ International Conference on, vol.144, p.146, 2014.

A. Aldoma, F. Tombari, L. D. Stefano, and E. M. Vincze, A global hypothesis verification framework for 3D object recognition in clutter, IEEE transactions on pattern analysis and machine intelligence, vol.38, p.50, 2016.

J. Angeles, Is there a characteristic length of a rigid-body displacement ? Mechanism and Machine Theory, vol.41, p.61, 2006.

H. Araújo, R. L. Carceroni, and C. M. Brown, A fully projective formulation to improve the accuracy of lowe's Pose-Estimation algorithm, Computer Vision and Image Understanding, vol.70, issue.2, pp.227-238, 1998.

U. Asif, M. Bennamoun, and E. F. Sohel, Model-free segmentation and grasp selection of unknown stacked objects, European Conference on Computer Vision, vol.13, p.15, 2014.
DOI : 10.1007/978-3-319-10602-1_43

V. Balntas, A. Doumanoglou, C. Sahin, J. Sock, R. Kouskouridas et al., Pose guided RGBD feature learning for 3D object pose estimation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.36, p.39, 2017.
DOI : 10.1109/iccv.2017.416

O. Barinova, V. Lempitsky, and P. Kholi, On detection of multiple object instances using Hough transforms, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.9, p.105, 2012.

H. Bay, T. Tuytelaars, and L. Van-gool, Surf : Speeded up robust features, Computer Vision-ECCV 2006, p.43, 2006.
DOI : 10.1007/11744023_32

C. Belta and V. Kumar, An SVD-based projection method for interpolation on SE (3). Robotics and Automation, IEEE Transactions on, vol.18, issue.3, pp.334-345, 2002.
DOI : 10.1109/tra.2002.1019463

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1010&context=meam_papers

P. J. Besl and R. C. Jain, Three-dimensional object recognition, ACM Comput. Surv, vol.17, issue.1, p.41, 1985.

P. J. Besl and N. D. Mckay, A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell, vol.14, issue.2, p.120, 1992.

T. Birdal and S. Ilic, Point pair features based object detection and pose estimation revisited, 3D Vision (3DV), 2015 International Conference on, vol.47, p.49, 2015.
DOI : 10.1109/3dv.2015.65

C. Blender-online, Blender-a 3D modelling and rendering package, URL ?tt?? ????????????r??r?, vol.150, p.176, 2017.

R. C. Bolles and P. Horaud, 3DPO : A Three-Dimensional Part Orientation System, The International Journal of Robotics Research, vol.5, issue.3, p.49, 1986.
DOI : 10.1007/978-1-4613-1981-8_10

URL : https://hal.archives-ouvertes.fr/inria-00589982

U. Bonde, V. Badrinarayanan, and E. R. Cipolla, Robust instance recognition in presence of occlusion and clutter, European Conference on Computer Vision, vol.145, p.146, 2014.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and E. D. Krishnan, Unsupervised pixel-level domain adaptation with generative adversarial networks, The IEEE Conference on Computer Vision and Pattern Recognition

E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton et al., Learning 6d object pose estimation using 3d object coordinates, ECCV (2), vol.181, p.182, 2014.
DOI : 10.1007/978-3-319-10605-2_35

URL : http://wwwpub.zih.tu-dresden.de/%7Ecvweb/publications/papers/2014/PoseEstimationECCV2014.pdf

E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold et al., Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.44, 2016.

R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley, Symmetry aware evaluation of 3D object detection and pose estimation in scenes of many parts in bulk, The IEEE International Conference on Computer Vision (ICCV), vol.18, p.172, 2017.

R. Brégier, F. Devernay, L. Leyrit, and J. L. Crowley, Defining the pose of any 3d rigid object and an associated distance, International Journal of Computer Vision, vol.18, p.56, 2017.

E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz et al., Universal robotic gripper based on the jamming of granular material, Proceedings of the National Academy of Sciences, vol.107, issue.44, p.11, 2010.

D. Buchholz, S. Winkelbach, and F. M. Wahl, RANSAM for industrial BinPicking, Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), vol.45, p.143, 1944.

Z. Cao, Y. Sheikh, and N. K. Banerjee, Real-time scalable 6DOF pose estimation for textureless objects, 2016 IEEE International Conference on Robotics and Automation (ICRA), vol.34, p.39, 2016.

R. T. Chin and C. R. Dyer, Model-based recognition in robot vision, ACM Computing Surveys (CSUR), vol.18, issue.1, p.41, 1986.

G. S. Chirikjian, Partial Bi-Invariance of SE (3) metrics, Journal of Computing and Information Science in Engineering, vol.15, issue.1, p.61, 2015.

G. S. Chirikjian and S. Zhou, Metrics on motion and deformation of solid models, Journal of Mechanical Design, vol.120, issue.2, p.64, 1998.

C. Choi and H. I. Christensen, 3D pose estimation of daily objects using an RGB-D camera, Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, p.47, 2012.

C. Choi, Y. Taguchi, O. Tuzel, M. Liu, and E. S. Ramalingam, Voting-based pose estimation for robotic assembly using a 3D sensor, 2012 IEEE International Conference on Robotics and Automation (ICRA), pp.1724-1731, 2012.

M. S. Costa and L. G. Shapiro, 3D object recognition and pose with relational indexing, Computer Vision and Image Understanding, vol.79, issue.3, p.41, 2000.
DOI : 10.1006/cviu.2000.0865

URL : http://homes.cs.washington.edu/~shapiro/mauro.pdf

E. Coumans, Bullet Physics SDK : real-time collision detection and multi-physics simulation for VR, games, visual effects, robotics, machine learning etc, vol.128, p.150, 2017.

N. , Precision at n, Encyclopedia of Database Systems, pp.2127-2128, 2009.

A. Criminisi and J. Shotton, Decision forests for computer vision and medical image analysis, p.112, 2013.

A. Crivellaro, M. Rad, Y. Verdie, K. Moo-yi, P. Fua et al., A novel representation of parts for accurate 3D object detection and tracking in monocular images, Proceedings of the IEEE International Conference on Computer Vision, p.39, 2015.

I. A. Sucan and S. Chitta, MoveIt !, 2017. URL ?tt?????????t?r?s??r?, p.12

W. Curtis, A. Janin, and E. K. Zikan, A note on averaging rotations, Proceedings of IEEE Virtual Reality Annual International Symposium, vol.83, p.96, 1993.

D. Damen, P. Bunnun, A. Calway, and W. W. Mayol-cuevas, Real-time learning and detection of 3D texture-less objects : A scalable approach, BMVC, p.41, 2012.

R. Detry, E. Baseski, M. Popovic, Y. Touati, N. Kruger et al., Learning object-specific grasp affordance densities, IEEE 8th International Conference on, p.15, 2009.
DOI : 10.1109/devlrn.2009.5175520

R. and D. Gregorio, A novel point of view to define the distance between two rigid-body poses, Advances in Robot Kinematics : Analysis and Design, p.63, 2008.

R. Diankov, Automated construction of robotic manipulation programs, p.12, 2010.

Y. Domae, H. Okuda, Y. Taguchi, K. Sumi, and E. T. Hirai, Fast graspability evaluation on single depth maps for bin picking with general grippers, 2014 IEEE International Conference on Robotics and Automation (ICRA), 1997.

A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T. Kim, Recovering 6D object pose and predicting next-best-view in the crowd, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.166, p.173, 2016.

B. Drost and S. Ilic, 3D object detection and localization using multimodal point pair features, 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on, vol.47, p.49, 2012.

B. Drost, M. Ulrich, N. Navab, and E. S. Ilic, Model globally, match locally : Efficient and robust 3D object recognition, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, vol.179, p.181, 2010.

B. Drost, M. Ulrich, P. Bergmann, P. Härtinger, and C. Steger, Introducing MVTec ITODD-A dataset for 3D object recognition in industry, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.142, pp.2200-2208, 0198.

R. O. Duda and P. E. Hart, Use of the Hough transformation to detect lines and curves in pictures, Communications of the ACM, vol.15, issue.1, p.208, 1972.

. Bibliographie,

K. Eberharter and B. Ravani, Local metrics for rigid body displacements, Journal of Mechanical Design, vol.126, issue.5, pp.805-812, 2004.

K. R. Etzel and J. M. Mccarthy, A metric for spatial displacement using biquaternions on SO(4), Robotics and Automation, 1996. Proceedings, vol.4, p.61, 1996.

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and E. A. Zisserman, The Pascal visual object classes (VOC) challenge, International journal of computer vision, vol.88, issue.2, p.159, 2010.

G. Fanelli, J. Gall, and L. Van-gool, Real time head pose estimation with random regression forests, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.92, p.134, 2011.

M. A. Fischler and R. C. Bolles, Random sample consensus : A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, vol.24, issue.6, pp.381-395, 1981.

A. W. Fitzgibbon, Robust registration of 2D and 3D point sets. Image and Vision Computing, vol.21, p.49, 2003.

S. Fuchs, S. Haddadin, M. Keller, S. Parusel, A. Kolb et al., Cooperative bin-picking with time-of-flight camera and impedance controlled dlr lightweight robot iii, Intelligent Robots and Systems (IROS), 2010.

, IEEE/RSJ International Conference on, p.11, 2010.

K. Fukunaga and L. D. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. Information Theory, IEEE Transactions on, vol.21, issue.1, p.95, 1975.

J. Gall, A. Yao, N. Razavi, L. Van-gool, and E. V. Lempitsky, Hough forests for object detection, tracking, and action recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.11, p.111, 2011.

S. Garrido-jurado, R. Muñoz-salinas, F. J. Madrid-cuevas, and M. J. Marínjiménez, Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, vol.47, issue.6, p.148, 2014.

R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and E. A. Fitzgibbon, Efficient regression of general-activity human poses from depth images, Computer Vision (ICCV), 2011 IEEE International Conference on, p.47, 2011.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, p.54, 2014.

, Bibliographie 209

C. Gramkow, On averaging rotations, Journal of Mathematical Imaging and Vision, vol.15, issue.1-2, p.85, 2001.

S. Granger and X. Pennec, Multi-scale EM-ICP : a fast and robust approach for surface registration, Computer Vision-ECCV 2002, p.48, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00615911

M. Grard, R. Brégier, F. Sella, E. Dellandréa, and E. L. Chen, Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network, Springer Proceedings in Advanced Robotics, à paraître. URL ?tt?s????r?????r????s???????????, vol.14, p.18
URL : https://hal.archives-ouvertes.fr/hal-01674511

M. Gschwandtner, R. Kwitt, A. Uhl, and E. W. Pree, BlenSor : Blender sensor simulation toolbox, Advances in Visual Computing, p.151, 2011.

K. C. Gupta, Measures of positional error for a rigid body, Journal of mechanical design, vol.119, issue.3, p.62, 1997.

S. Gupta, P. Arbeláez, R. Girshick, and E. J. Malik, Aligning 3D models to RGBD images of cluttered scenes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.35, p.37, 2015.

A. Handa, T. Whelan, J. Mcdonald, and A. J. Davison, A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM, Robotics and automation (ICRA), p.151, 2014.

C. Harris and M. Stephens, A combined corner and edge detector, Alvey vision conference, p.43, 1988.

R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university press, p.24, 2003.

K. He, G. Gkioxari, P. Dollár, and E. R. Girshick, Mask R-CNN, IEEE International Conference on Computer Vision (ICCV, vol.14, p.15, 2017.

M. Heber, M. Rüther, and H. Bischof, Catadioptric multiview pose estimation for robotic pick and place, VISAPP (1), vol.26, p.35, 2010.

S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige et al., Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes, Computer Vision (ICCV), 2011 IEEE International Conference on, vol.28, p.127, 2011.

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab et al., Gradient Response Maps for Real-Time Detection of Textureless Objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.5, p.127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00746534

S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski et al., Model based training, detection and pose estimation of textureless 3D objects in heavily cluttered scenes, Asian conference on computer vision, vol.179, p.182, 2012.

S. Hinterstoisser, V. Lepetit, N. Rajkumar, and E. K. Konolige, Going further with point pair features, European Conference on Computer Vision, vol.47, p.182, 2016.

H. Hirschmuller, Stereo processing by semiglobal matching and mutual information, IEEE Transactions, vol.30, issue.2, p.148, 2008.

T. Hoda?hoda?hoda?, X. Zabulis, M. Lourakis, ?. Obdr?álek, and J. Matas, Detection and fine 3D pose estimation of texture-less objects in RGB-D images, Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, vol.34, p.49, 2015.

T. Hoda?hoda?hoda?, J. Matas, and E. ?. Obdr?álek, On evaluation of 6D object pose estimation, European Conference on Computer Vision Workshops (ECCVW) 2016, vol.144, p.146, 2016.

T. Hoda?hoda?hoda?, P. Haluza, ?. Obdr?álek, J. Matas, M. Lourakis et al., T-LESS : An RGB-D dataset for 6D pose estimation of texture-less objects, Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, vol.28, p.146, 2017.

D. Holz, M. Nieuwenhuisen, D. Droeschel, J. Stückler, A. Berner et al., Active recognition and manipulation for mobile robot bin picking, Gearing Up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe, p.41, 2014.

S. Holzer, J. Shotton, and P. Kohli, Learning to efficiently detect repeatable interest points in depth data, European Conference on Computer Vision, p.43, 2012.

B. K. Horn and K. Ikeuchi, Picking parts out of a bin, Massachusetts Inst. of Tech. Cambridge Artificial Intelligence Lab, vol.10, p.143, 1983.

P. V. Hough, Machine analysis of bubble chamber pictures, International conference on high energy accelerators and instrumentation, vol.73, p.45, 1959.

P. V. Hough, Method and means for recognizing complex patterns, vol.654, p.45, 1962.

K. Hsiao, S. Chitta, M. Ciocarlie, and E. G. Jones, Contact-reactive grasping of objects with partial shape information, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, p.11, 2010.
DOI : 10.1109/iros.2010.5649494

K. Ikeuchi, H. K. Nishihara, B. K. Horn, P. Sobalvarro, and E. S. Nagata, Determining grasp configurations using photometric stereo and the PRISM binocular stereo system, The International Journal of Robotics Research, vol.5, issue.1, pp.1741-3176, 1986.
DOI : 10.1177/027836498600500103

URL : http://www.ri.cmu.edu/pub_files/pub3/ikeuchi_katsushi_1986_1/ikeuchi_katsushi_1986_1.pdf

E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and E. S. Levine, End-to-End learning of semantic grasping, Conference on Robot Learning, 2017.

Y. Jiang, S. Moseson, and E. A. Saxena, Efficient grasping from RGBD images : Learning using a new rectangle representation, Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp.3304-3311, 2011.

A. Johnson and M. Hebert, Recognizing objects by matching oriented points, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997. Proceedings, vol.43, p.44, 1997.
DOI : 10.1109/cvpr.1997.609400

A. E. Johnson and M. Hebert, Using spin images for efficient object recognition in cluttered 3D scenes, IEEE Transactions, vol.21, issue.5, p.147, 1999.

T. Jost and H. Hügli, A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images, Proceedings. Fourth International Conference on, vol.48, p.123, 2003.

J. T. Kajiya, The rendering equation, In ACM Siggraph Computer Graphics, vol.20, p.151, 1986.
DOI : 10.1145/15886.15902

A. C. Kak and L. Edwards, Experimental state of the art in 3D object recognition and localization using range data, Proceedings of the workshop on vision for robots in IROS1995, p.41, 1995.

K. Kazerounian and J. Rastegar, Object norms : A class of coordinate and metric independent norms for displacements, Flexible Mechanisms, Dynamics, and Analysis. ASME DE-Vol, vol.47, p.64, 1992.

W. Kehl, F. Tombari, N. Navab, S. Ilic, and E. V. Lepetit, Hashmod : A hashing method for scalable 3D object detection, Proceedings of the British Machine Vision Conference (BMVC), vol.12, pp.36-37, 2015.
DOI : 10.5244/c.29.36

URL : http://www.bmva.org/bmvc/2015/papers/paper036/abstract036.pdf

W. Kehl, F. Milletari, F. Tombari, S. Ilic, and E. N. Navab, Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation, European Conference on Computer Vision, vol.47, p.179, 2016.

W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and E. N. Navab, SSD-6D : making RGBBased 3D detection and 6D pose estimation great again, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.52, 2017.

A. Kendall, M. Grimes, and E. R. Cipolla, PoseNet : A convolutional network for real-time 6-DOF camera relocalization, Proceedings of the IEEE International Conference on Computer Vision, vol.38, p.62, 2015.
DOI : 10.1109/iccv.2015.336

URL : http://arxiv.org/pdf/1505.07427

E. Kim and G. Medioni, 3D object recognition in range images using visibility context, Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, p.47, 2011.
DOI : 10.1109/iros.2011.6048203

L. F. Kozachenko and N. N. Leonenko, Sample estimate of the entropy of a random vector, Problemy Peredachi Informatsii, vol.23, issue.2, p.135, 1987.

K. Kronander and A. Billard, Learning compliant manipulation through kinesthetic and tactile human-robot interaction, IEEE Transactions on Haptics, vol.7, issue.3, p.12, 2014.
DOI : 10.1109/toh.2013.54

URL : http://lasa.epfl.ch/publications/uploadedFiles/StiffnessJournal.pdf

A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumhold et al., Learning Analysis-by-Synthesis for 6D pose estimation in RGB-D images, Proceedings of the IEEE International Conference on Computer Vision, vol.44, p.182, 2015.
DOI : 10.1109/iccv.2015.115

URL : http://arxiv.org/pdf/1508.04546

P. M. Larochelle, A. P. Murray, and E. J. Angeles, A distance metric for finite sets of rigid-body displacements via the polar decomposition, Journal of Mechanical Design, vol.129, issue.8, p.61, 2007.

I. Lenz, H. Lee, and A. Saxena, Deep learning for detecting robotic grasps, vol.13, p.14, 2013.
DOI : 10.1177/0278364914549607

B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski et al., Opengrasp : a toolkit for robot grasping simulation, International Conference on Simulation, Modeling, and Programming for Autonomous Robots, p.15, 2010.

V. Lepetit, P. Lagger, and P. Fua, Randomized trees for real-time keypoint recognition, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol.2, p.43, 2005.
DOI : 10.1109/cvpr.2005.288

URL : http://www.cse.unr.edu/~bebis/CS491Y/Papers/Lepetit05.pdf

V. Lepetit, F. Moreno-noguer, and E. P. Fua, EPnP : An Accurate O(n) Solution to the PnP Problem, Int J Comput Vis, vol.81, issue.2, pp.1573-1405, 2009.
DOI : 10.1007/s11263-008-0152-6

URL : https://upcommons.upc.edu/bitstream/2117/10327/1/moreno_ijcv2009.pdf

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and E. D. Quillen, Learning handeye coordination for robotic grasping with deep learning and largescale data collection, The International Journal of Robotics Research, issue.13, p.0278364917710318, 2016.
DOI : 10.1177/0278364917710318

URL : https://journals.sagepub.com/doi/pdf/10.1177/0278364917710318

Q. Lin and J. W. Burdick, Objective and frame-invariant kinematic metric functions for rigid bodies, The International Journal of Robotics Research, vol.19, issue.6, p.91, 2000.
DOI : 10.1177/02783640022067058

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona et al., Microsoft COCO : Common objects in context, European Conference on Computer Vision, vol.28, p.29, 2014.
DOI : 10.1007/978-3-319-10602-1_48

URL : http://arxiv.org/pdf/1405.0312.pdf

M. Liu, O. Tuzel, A. Veeraraghavan, Y. Taguchi, T. K. Marks et al., Fast object localization and pose estimation in heavy clutter for robotic bin picking, The International Journal of Robotics Research, vol.31, issue.8, p.143, 2012.
DOI : 10.1177/0278364911436018

URL : http://www.merl.com/publications/docs/TR2012-007.pdf

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed et al., SSD : Single shot multibox detector, European conference on computer vision, vol.37, p.54, 2016.
DOI : 10.1007/978-3-319-46448-0_2

URL : http://arxiv.org/pdf/1512.02325

D. G. Lowe, Three-dimensional object recognition from single twodimensional images, Artificial intelligence, vol.31, issue.3, p.49, 1987.
DOI : 10.1016/0004-3702(87)90070-1

URL : http://www.cs.ubc.ca/~lowe/papers/aij87.pdf

D. G. Lowe, Object recognition from local scale-invariant features, The proceedings of the seventh IEEE international conference on, vol.2, p.43, 1999.
DOI : 10.1109/iccv.1999.790410

URL : http://www-inst.cs.berkeley.edu/~cs294-6/fa06/papers/LoweD_Object recognition from local scale-invariant features.pdf

I. Lysenkov and V. Rabaud, Pose estimation of rigid transparent objects in transparent clutter, Robotics and Automation (ICRA), 2013 IEEE International Conference on, p.27, 2013.
DOI : 10.1109/icra.2013.6630571

J. Mahler and K. Goldberg, Learning deep policies for robot bin picking by simulating robust grasping sequences, PMLR, pp.515-524, 2013.

J. M. Martinez and J. Duffy, On the metrics of rigid body displacements for infinite and finite bodies, Journal of Mechanical Design, vol.117, issue.1, p.63, 1995.

R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd et al., Robotic tentacles with Three-Dimensional mobility based on flexible elastomers, Advanced Materials, vol.25, issue.2, pp.205-212, 2013.
DOI : 10.1002/adma.201203002

URL : https://dash.harvard.edu/bitstream/1/12388816/1/Robotic%20Tentacles%20with%20Three-Dimensional%20Mobility%20Based%20on%20Flexible%20Elastomers.pdf

F. Massa, B. C. Russell, and E. M. Aubry, Deep Exemplar 2D-3D Detection by Adapting From Real to Rendered Views, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.30, 2016.
DOI : 10.1109/cvpr.2016.648

URL : https://hal.archives-ouvertes.fr/hal-01800639

R. A. Matthews, Tumbling toast, murphy's law and the fundamental constants, European Journal of Physics, vol.16, issue.4, p.131, 1995.
DOI : 10.1088/0143-0807/16/4/005

R. A. Matthews, Testing murphy's law : urban myths as a source of school science projects. School science review, vol.82, p.131, 2001.

A. S. Mian, M. Bennamoun, and E. R. Owens, Three-dimensional model-based object recognition and segmentation in cluttered scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.28, issue.10, p.145, 2006.

A. T. Miller and P. K. Allen, Graspit ! a versatile simulator for robotic grasping. Robotics & Automation Magazine, vol.11, p.15, 2004.

O. Morel, Environnement actif pour la reconstruction tridimensionnelle de surfaces métalliques spéculaires par imagerie polarimétrique, p.27, 2005.

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, VISAPP (1), vol.36, p.71, 2009.

J. L. Mundy, C. Huang, J. Liu, W. Hoffman, D. A. Forsyth et al., MORSE : a 3D object recognition system based on geometric invariants, Proc. DARPA Image Understanding Workshop, p.40, 1994.

M. Nieuwenhuisen, D. Droeschel, D. Holz, J. Stuckler, A. Berner et al., Mobile bin picking with an anthropomorphic service robot, Robotics and Automation (ICRA), 2013 IEEE International Conference on, p.41, 2013.

D. Novotny, D. Larlus, and E. A. Vedaldi, Learning 3D object categories by looking around them, The IEEE International Conference on Computer Vision (ICCV), vol.28, p.38, 2017.

S. Nowozin, Improved information gain estimates for decision tree induction, Proceedings of the 29th International Coference on International Conference on Machine Learning, p.135, 2012.

M. Oberweger, P. Wohlhart, and V. Lepetit, Training a feedback loop for hand pose estimation, Proceedings of the IEEE International Conference on Computer Vision, vol.30, p.49, 2015.

M. Oshima and Y. Shirai, Object recognition using Three-Dimensional information, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, vol.5, issue.4, pp.353-361, 1983.

M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, Fast keypoint recognition using random ferns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.32, issue.3, p.112, 2010.

F. C. Park, Distance metrics on the rigid-body motions with applications to mechanism design, Journal of Mechanical Design, vol.117, issue.1, p.62, 1995.

I. K. Park, M. Germann, M. D. Breitenstein, and H. Pfister, Fast and automatic object pose estimation for range images on the GPU. Machine Vision and Applications, vol.21, p.131, 2010.

B. Pelletier, Kernel density estimation on riemannian manifolds, Statistics & Probability Letters, vol.73, issue.3, pp.297-304, 2005.

X. Pennec, Computing the Mean of Geometric Features Application to the Mean Rotation. report, INRIA, 1991.
URL : https://hal.archives-ouvertes.fr/inria-00073318

L. Pinto and A. Gupta, Supersizing self-supervision : Learning to grasp from 50K tries and 700 robot hours, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.3406-3413, 2016.

A. Purwar and Q. J. Ge, Reconciling distance metric methods for rigid body displacements, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p.61, 2009.

J. R. Quinlan, Induction of decision trees, Machine learning, vol.1, issue.1, p.134, 1986.

M. Rad and V. Lepetit, BB8 : A scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth, The IEEE International Conference on Computer Vision (ICCV), vol.50, p.52, 2017.

M. Rad, P. M. Roth, and V. Lepetit, ALCN : Adaptive Local Contrast Normalization for Robust Object Detection and 3D Pose Estimation, Proc. British Machine Vision Conf. (BMVC

K. Rahardja and A. Kosaka, Vision-based bin-picking : Recognition and localization of multiple complex objects using simple visual cues, Intelligent Robots and Systems' 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, vol.3, p.40, 1996.

J. Redmon and A. Angelova, Real-time grasp detection using convolutional neural networks, Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp.1316-1322, 2015.
DOI : 10.1109/icra.2015.7139361

URL : http://arxiv.org/pdf/1412.3128

J. Redmon, S. Divvala, R. Girshick, and E. A. Farhadi, You Only Look Once : Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, p.54, 2016.
DOI : 10.1109/cvpr.2016.91

URL : http://arxiv.org/pdf/1506.02640

S. Ren, K. He, R. Girshick, and E. J. Sun, Faster R-CNN : Towards real-time object detection with region proposal networks, Advances in neural information processing systems, p.54, 2015.
DOI : 10.1109/tpami.2016.2577031

URL : http://arxiv.org/pdf/1506.01497

R. Rios-cabrera and T. Tuytelaars, Discriminatively trained templates for 3D object detection : A real time scalable approach, Computer Vision (ICCV), 2013 IEEE International Conference on, vol.34, p.179, 2013.
DOI : 10.1109/iccv.2013.256

URL : http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Rios-Cabrera_Discriminatively_Trained_Templates_2013_ICCV_paper.pdf

J. J. Rodrigues, J. Kim, M. Furukawa, J. Xavier, P. Aguiar et al., 6D pose estimation of textureless shiny objects using random ferns for bin-picking, Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, vol.47, p.143, 2012.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB : An efficient alternative to SIFT or SURF, Computer Vision (ICCV), 2011 IEEE international conference on, vol.42, p.43, 2011.
DOI : 10.1109/iccv.2011.6126544

R. B. Rusu and S. Cousins, 3D is here : Point cloud library (PCL), Robotics and Automation (ICRA), 2011 IEEE International Conference on, p.172, 2011.
DOI : 10.1109/icra.2011.5980567

URL : http://www.pointclouds.org/assets/pdf/pcl_icra2011.pdf

R. B. Rusu, N. Blodow, and M. Beetz, Fast point feature histograms (FPFH) for 3D registration, Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, p.43, 2009.
DOI : 10.1109/robot.2009.5152473

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, Fast 3D recognition and pose using the viewpoint feature histogram, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, vol.35, p.36, 2010.
DOI : 10.1109/iros.2010.5651280

A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta et al., Design, realization and sensorization of the dexterous iCub hand, Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, p.11, 2010.

P. H. Schönemann, A generalized solution of the orthogonal procrustes problem, Psychometrika, vol.31, issue.1, p.81, 1966.

P. Sermanet, K. Xu, and E. S. Levine, Unsupervised perceptual rewards for imitation learning, Proceedings of Robotics : Science and Systems, 2017.
DOI : 10.15607/rss.2017.xiii.050

URL : https://doi.org/10.15607/rss.2017.xiii.050

I. Sharf, A. Wolf, and M. Rubin, Arithmetic and geometric solutions for average rigid-body rotation. Mechanism and Machine Theory, vol.45, pp.1239-1251, 2010.
DOI : 10.1016/j.mechmachtheory.2010.05.002

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook et al., Efficient human pose estimation from single depth images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.35, issue.12, p.139, 2013.
DOI : 10.1007/978-1-4471-4929-3_13

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, Communications of the ACM, vol.56, issue.1, p.114, 2013.
DOI : 10.1007/978-3-642-28661-2_5

H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. E. Demchuk, Nearest neighbor estimates of entropy. American journal of mathematical and management sciences, vol.23, p.135, 2003.
DOI : 10.1080/01966324.2003.10737616

S. Song and J. Xiao, Sliding shapes for 3D object detection in depth images, Computer VisionECCV 2014, number 8694 in Lecture Notes in Computer Science, pp.634-651, 2014.

R. Suárez, J. Cornella, and M. R. Garzón, Grasp quality measures. Institut d'Organització i Control de Sistemes Industrials, p.15, 2006.

R. Subbarao and P. Meer, Nonlinear mean shift for clustering over analytic manifolds, Computer Vision and Pattern Recognition, vol.1, p.92, 2006.
DOI : 10.1109/cvpr.2006.210

I. Sucan, M. Moll, and L. Kavraki, The open motion planning library, IEEE Robotics Automation Magazine, vol.19, issue.4, pp.72-82, 2012.

A. Tejani, D. Tang, R. Kouskouridas, and T. Kim, Latent-class hough forests for 3d object detection and pose estimation, vol.8694, p.158, 2014.

H. Tjaden, U. Schwanecke, and E. E. Schömer, Real-Time monocular segmentation and pose tracking of multiple objects, European Conference on Computer Vision, p.56, 2016.

F. Tombari, S. Salti, and L. D. Stefano, Unique signatures of histograms for local surface description, European conference on computer vision, p.43, 2010.

O. Tuzel, R. Subbarao, and P. Meer, Simultaneous multiple 3D motion estimation via mode finding on Lie groups, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol.1, p.92, 2005.

M. Ulrich, C. Wiedemann, and C. Steger, Combining Scale-Space and Similarity-Based aspect graphs for fast 3D object recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.10, p.33, 2012.

S. Umeyama, Least-squares estimation of transformation parameters between two point patterns, IEEE Transactions, vol.13, issue.4, p.81, 1991.

N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta et al., Simox : A robotics toolbox for simulation, motion and grasp planning, In Intelligent Autonomous Systems, vol.12, p.15, 2013.

B. K. Vainsthein, Fundamentals of Crystals, 1994.

A. Van-den-bosch, T. Bogers, and M. De-kunder, Estimating search engine index size variability : a 9-year longitudinal study, Scientometrics, vol.107, issue.2, pp.1588-2861, 2016.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol.1, p.20, 2001.

W. Wang, L. Chen, D. Chen, S. Li, and E. K. Kuhnlenz, Fast object recognition and 6D pose estimation using viewpoint oriented color-shape histogram, Multimedia and Expo (ICME), 2013 IEEE International Conference on, vol.35, p.36, 2013.

J. Weisz and P. K. Allen, Pose error robust grasping from contact wrench space metrics, Robotics and Automation (ICRA), 2012 IEEE International Conference on, p.15, 2012.

P. Wohlhart and V. Lepetit, Learning descriptors for object recognition and 3D pose estimation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.36, p.52, 2015.

J. Yang, H. Li, and Y. Jia, Go-ICP : Solving 3D registration efficiently and globally optimally, Proceedings of the IEEE International Conference on Computer Vision, p.49, 2013.

M. Zefran and V. Kumar, Planning of smooth motions on SE (3). In Robotics and Automation, IEEE International Conference on, vol.1, p.91, 1996.

E. Zhang and Y. Zhang, F-measure, Encyclopedia of Database Systems, pp.1147-1147, 2009.

Z. Zhang, A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.11, p.24, 2000.