
HAL Id: tel-01989940
https://inria.hal.science/tel-01989940v2

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying and Verifying Hardware-based Security
Enforcement Mechanisms

Thomas Letan

To cite this version:
Thomas Letan. Specifying and Verifying Hardware-based Security Enforcement Mechanisms. Hard-
ware Architecture [cs.AR]. CentraleSupélec, 2018. English. �NNT : 2018CSUP0002�. �tel-01989940v2�

https://inria.hal.science/tel-01989940v2
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

CENTRALESUPELEC RENNES

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

Specifying and Verifying Hardware-based Security Enforcement
Mechanisms

Thèse présentée et soutenue à Paris, le 25 octobre 2018
Unité de recherche : CIDRE
Thèse N° : 2018-06-TH

Par

Thomas Letan

Rapporteurs avant soutenance :

Gilles Barthe Professor, IMDEA Software Institute
Laurence Pierre Professeur, Université Grenoble Alpes

 Composition du Jury :

Présidente
Emmanuelle Encrenaz Maître de conférences,

Sorbonne Université

Membres
Gilles Barthe Professor, IMDEA Software Institute
Laurence Pierre Professeur, Université Grenoble Alpes
Pierre Chifflier Chef de laboratoire, ANSSI
Guilaume Hiet Maître de conférences,

CentraleSupélec Rennes

Directeur de thèse
Ludovic Mé Professeur, Inria Rennes

Invité
Alastair Reid Researcher, ARM Ltd.

ii

Abstract

In this thesis, we consider a class of security enforcement mechanisms we called Hardware-based
Security Enforcement (HSE). In such mechanisms, some trusted software components rely on the
underlying hardware architecture to constrain the execution of untrusted software components
with respect to targeted security policies. For instance, an operating system which configures
page tables to isolate userland applications implements a HSE mechanism.

For a HSE mechanism to correctly enforce a targeted security policy, it requires both
hardware and trusted software components to play their parts. During the past decades, several
vulnerability disclosures have defeated HSE mechanisms. We focus on the vulnerabilities
that are the result of errors at the specification level, rather than implementation errors. In
some critical vulnerabilities, the attacker makes a legitimate use of one hardware component
to circumvent the HSE mechanism provided by another one. For instance, cache poisoning
attacks leverage inconsistencies between cache and DRAM’s access control mechanisms. We
call this class of attacks, where an attacker leverages inconsistencies in hardware specifications,
compositional attacks.

Our goal is to explore approaches to specify and verify HSE mechanisms using formal
methods that would benefit both hardware designers and software developers. Firstly, a formal
specification of HSE mechanisms can be leveraged as a foundation for a systematic approach to
verify hardware specifications, in the hope of uncovering potential compositional attacks ahead
of time. Secondly, it provides unambiguous specifications to software developers, in the form
of a list of requirements.

Our contribution is two-fold:

– We propose a theory of HSE mechanisms against hardware architecture models. This
theory can be used to specify and verify such mechanisms. To evaluate our approach,
we propose a minimal model for a single core x86-based computing platform. We use it
to specify and verify the HSE mechanism provided by Intel to isolate the code executed
while the CPU is in System Management Mode (SMM), a highly privileged execution
mode of x86 microprocessors. We have written machine-checked proofs in the Coq proof
assistant to that end.

– We propose a novel approach inspired by algebraic effects to enable modular verification
of complex systems made of interconnected components as a first step towards addressing
the challenge posed by the scale of the x86 hardware architecture. This approach is not
specific to hardware models, and could also be leveraged to reason about composition of
software components as well. In addition, we have implemented our approach in the Coq
theorem prover, and the resulting framework takes advantages of Coq proof automation
features to provide general-purpose facilities to reason about components interactions.

Keywords: Security • Hardware Verification • Formal Specification • Formal Methods • Coq

iv

Remerciements

Je tiens à remercier en premier lieu les membres de mon jury de thèse, à commencer par
Gilles Barthe et Laurence Pierre pour avoir rapporté cette thèse. Merci aussi à Emmanuelle
Encrenaz-Tiphene et Alastair Reid. Je suis honoré de l’intérêt que vous avez porté à mes travaux.

Je remercie ensuite Ludovic Mé, mon directeur de thèse. Venir te voir à la fin de l’un de tes
cours pour te demander s’il n’était pas possible de faire un stage « sur le kernel » aura été avec
le recul mon premier vrai pas en direction du monde de la recherche. Merci de m’avoir proposé
de rester un an de plus dans l’équipe CIDRE après la fin de mon stage et merci, surtout, de
m’avoir parlé de l’ANSSI et encouragé à y postuler. Pierre, Guillaume, votre encadrement et
votre soutien tout au long de cette thèse expliquent pour beaucoup sa qualité finale, quand bien
même la direction de mes recherches s’est finalement révélée assez éloignée de vos domaines de
prédilection. Merci de m’avoir laissé libre d’explorer les sujets qui m’intéressaient. Je n’oublierai
jamais comment vous avez su à plusieurs reprises m’expliquer mon propre travail, avec ces
mots que je n’arrivais pas à trouver. Merci, donc, à Guillaume Hiet. Début 2013, tu acceptais
avec Frédéric Tronel de m’encadrer une première fois pour mon stage de fin d’études. J’étais
loin de me douter, alors, que nous travaillerions ensemble aussi longtemps, ni combien notre
collaboration m’apporterait. Merci, ensuite, à Pierre Chifflier. Nos discussions pendant ces
quatre années ont nourri ma curiosité et forgé mon esprit critique. Te voir t’intéresser à tant de
sujets a été une véritable source d’inspiration. Merci, enfin, Benjamin Morin, pour m’avoir fait
confiance. L’évolution de ta carrière ne nous a pas permis de travailler ensemble jusqu’au bout
de cette thèse, mais je n’oublie pas que c’est en grande partie grâce à toi qu’elle a pu débuter.

Tout au long de cette thèse, j’ai pu compter sur le soutien de beaucoup de personnes. Je tiens
ainsi à remercier chaleureusement Yves-Alexis Perez. En ta qualité de chef d’équipe, tu as dû
composer avec un agent dont les disponibilités n’étaient pas toujours dépendantes des tâches
que tu lui confiais. Si j’ai pu tout à la fois conduire avec succès un travail de thèse et participer
aux missions de l’Agence, c’est aussi grâce à toi. J’ai souvent été sensible au temps de recherche
que tu me ménageais, à la liberté que tu me laissais pour choisir mes sujets et à la confiance
que tu m’as témoignée en me confiant des missions passionnantes. Merci à Arnaud Fontaine.
Je n’ai pas oublié notre conversation au Dernier Métro, pendant la rédaction de mon premier
article, où nous avons échangé sur mes travaux. Tu as su répondre à mes questions et mettre
des mots — qui se retrouvent en filigrane dans tout ce manuscrit — sur mes idées confuses
d’alors. Merci à Pierre Néron. Tu m’as énormément aidé à revoir ma copie après le refus de ma
première soumission ; tes conseils et relectures ne sont pas étrangers à l’acceptation de mon
premier article. Merci aussi à Yann Régis-Gianas d’avoir accepté de me rencontrer pour que je
lui présente mes travaux. Ton aide aura été précieuse pour avoir la chance de pouvoir présenter
mes travaux à Oxford.

v

vi

Merci à Anaël Beaugnon. Ton soutien, ton aide, tes encouragements m’ont indéniablement
aidé à tenir ce marathon qu’est une thèse. Tu t’es toujours spontanément proposée pour relire
mes articles et ce manuscrit, quand bien même ils n’étaient pas tout à fait aligné avec ton
domaine de recherche. Ton courage et ta ténacité face à l’adversité auront quant à eux été
une véritable source d’inspiration. Merci à Marion Daubignard, pour ta gentillesse, ta bonne
humeur et tes conseils. J’ai précieusement gardé la citation de ton arrière grand-mère : elle
trône encore sur le côté de mon écran. Je la regarde souvent et elle m’aide à me remotiver quand
j’en ai besoin. Je ne peux pas ne pas remercier Aurélien Deharbe, qui appréciera je l’espère cette
double négation à sa juste valeur. Je suis heureux que nos pérégrinations respectives nous aient
amenés à nous rencontrer. J’ai toujours pu compter sur ton soutien, ton énergie et ta bonne
humeur communicative quand j’en avais besoin.

Je remercie mes collègues à l’ANSSI. Depuis mon arrivée en octobre 2014, j’ai eu la chance de
travailler avec des personnes extrêmement compétentes et passionnées par ce qu’elles faisaient.
Vous voir vous investir dans vos missions a nourri ma propre motivation à mener les miennes
du mieux possible. J’ai une pensée toute particulière pour ceux avec qui j’ai partagé un bureau.
J’en ai déjà cité plusieurs déjà, mais il me faut nommer Alain Ozanne et Philippe Thierry pour
être complet. Je remercie aussi chaleureusement l’équipe CIDRE, pour qui je garderai pendant
longtemps encore une affection particulière. C’est en vous côtoyant que j’ai découvert le monde
de la recherche. La bienveillance et l’investissement dont vous avez tous fait sans cesse preuve
forcent le respect. J’ai toujours pris beaucoup de plaisir à vous retrouver et vous présenter
l’avancée de mes travaux pendant nos séminaires d’équipe et je regrette seulement ne pas avoir
eu l’occasion de le faire plus souvent. J’ai préféré ne pas citer vos noms à tous, car vous êtes
trop nombreux. Je me connais et je sais que le risque est grand que j’oublie l’un d’entre vous.

Je ne peux pas conclure ces remerciements sans prendre le temps d’exprimer ma gratitude à
ma famille, qui a toujours su répondre présente ; aussi bien dans les petits riens du quotidien
que dans les étapes clefs de ma vie. Je crois que je ne mesurerai jamais vraiment tout ce que
vous avez fait pour moi. Maman, je crois que je ne t’ai jamais explicitement remercié d’avoir pris
la décision de mettre entre parenthèses ta carrière professionnelle pendant si longtemps pour
tes enfants. Il m’a fallu longtemps pour prendre la mesure de tout ce que cela représentait. Je
profite donc de l’opportunité que m’offre ce manuscrit pour me rattraper. Papa, je t’ai toujours
vu redoubler d’efforts pour pourvoir aux besoins des tiens. Tu voulais, toi aussi, t’assurer que
tes enfants puissent faire leurs choix de vie, sans regret. Il est ici utile de le dire : vous avez,
l’un comme l’autre et l’un avec l’autre, réussit. C’est à nous, maintenant, de tracer le reste de
notre route sans jamais oublier la bonne fortune qui fut la nôtre d’être si bien lotis à notre point
de départ. N’est-ce pas, Marion, ma petite sœur que j’aime tant ? Merci à toi aussi, évidemment.
Je sais que, peu importe ce qui m’arrive, peu importe mes choix de vie, tu seras là.

Enfin, je me tourne vers toi, Juliette, et les mots me manquent pour exprimer toute ma
reconnaissance. Pendant la rédaction de ce manuscrit, mais surtout pendant une étape charnière
et difficile de ton parcours personnel, tu as toujours cherché à me soutenir, à m’encourager,
à me rassurer. J’ai pu me reposer sur ta confiance quand la mienne vacillait. C’est donc tout
naturellement que je te réserve mes ultimes remerciements et te dédie ce manuscrit.

Contents

Notations xi

Résumé de la thèse xiii

1 Introduction 1
1.1 Hardware-based Security Enforcement Mechanisms 2
1.2 Formal Verification of HSE Mechanisms . 3
1.3 Contributions . 4
1.4 Outline . 4

I Context 7

2 Intel x86 Architecture and BIOS Background 9
2.1 Introduction to x86 Architecture . 9

2.1.1 Processor, Architecture and Microarchitecture. 11
2.1.2 Memories and Cores I/Os . 11
2.1.3 Cache Memory . 14
2.1.4 Peripherals I/Os . 16
2.1.5 Conclusion . 19

2.2 BIOS Overview . 19
2.2.1 During the boot sequence . 19
2.2.2 At runtime . 20
2.2.3 HSE Mechanisms Implemented by the BIOS 21

2.3 BIOS HSE Mechanism and Compositional Attacks 23
2.3.1 SMRAM Cache Poisoning Attack . 23
2.3.2 Speed Racer . 25
2.3.3 SENTER Sandman . 25

2.4 Conclusion . 26

3 State of the Art 27
3.1 Towards the Formal Verification of HSE Mechanisms 28

3.1.1 Modeling a Hardware Architecture . 28
3.1.2 Specifying Security Policies . 30

vii

viii CONTENTS

3.1.3 Approaches and Tools . 32
3.1.4 Tour of Existing x86 Models . 34

3.2 Compositional Verification . 37
3.2.1 Labeled Transition Systems and Components Composition 38
3.2.2 Process Algebra . 39
3.2.3 Compositional Reasoning for Theorem Provers 41

3.3 Conclusion . 43

II Specifying and Verifying HSE Mechanisms 45

4 A Theory of HSE Mechanisms 47
4.1 Theory Definition . 47

4.1.1 Hardware Model . 48
4.1.2 HSE Mechanisms . 49
4.1.3 HSE Mechanism Correctness . 54
4.1.4 HSE Mechanisms Composition . 57

4.2 Case Study: Code Injection Policy . 58
4.2.1 Defining Code Injection . 59
4.2.2 Code Injection Policy . 60
4.2.3 Code Injection Policy Enforcement . 61

4.3 Conclusion . 63

5 Specifying and Verifying a BIOS HSE Mechanism 65
5.1 A Minimal x86 Hardware Model . 65

5.1.1 Model Scope . 66
5.1.2 Hardware States . 67
5.1.3 Transition Labels and Transition Relation 70
5.1.4 Transition-Software Mapping . 73

5.2 Specifying and Verifying a BIOS HSE Mechanism 74
5.2.1 BIOS HSE Definition . 74
5.2.2 BIOS HSE Mechanism Correctness . 77
5.2.3 On SpecCert Machine-Checked Proofs . 78

5.3 Conclusion . 82

III Towards Comprehensive Hardware Models 83

6 Modular Verification of Component-based Systems 85
6.1 Lessons Learned from Minx86 . 85

6.1.1 Minx86 Limitations . 86
6.1.2 FreeSpec Overview . 88

6.2 Modeling Programs with Effects . 91

CONTENTS ix

6.2.1 Interface of Effects . 92
6.2.2 Operational Semantics for Effects . 92
6.2.3 The Program Monad . 94
6.2.4 Components as Programs with Effects . 95

6.3 Modular Verification of Programs with Effects . 97
6.3.1 Abstract Specification . 97
6.3.2 Compliance and Correctness . 99
6.3.3 Proofs Techniques to Show Compliance for Components 100

6.4 Conclusion . 103

7 Conclusion and Perspectives 105
7.1 Summary of the Contributions . 106
7.2 Perspectives . 106

A A Formal Definition of HSE Mechanisms in Coq 109
A.1 Hardware Model . 109

A.1.1 Definition . 109
A.1.2 Traces . 110
A.1.3 Security Policies . 111

A.2 HSE Mechanisms . 112
A.2.1 Definition and HSE Laws . 112
A.2.2 Trace Compliance . 113
A.2.3 HSE Mechanism Correctness . 115
A.2.4 HSE Mechanisms Composition . 116

A.3 Case Study: Code Injection Policies . 119
A.3.1 The Software Stack . 119
A.3.2 Code Injection . 120
A.3.3 Code Injection Policies . 120

B Publications 123
B.1 Peer-reviewed Conferences . 123
B.2 Free Software . 123
B.3 Seminar . 123

x CONTENTS

Notations

Constructors We often define sets of values in terms of functions to construct these values.
These functions are called “constructors,” and they have mutually exclusive images, i.e. it is
not possible to construct the same value with two different constructors. Constructor names
begin with a capital letter. We adopt a notation similar to Haskell sum types to define sets via
constructors. For instance, this is how we define the disjoint union operator]:

A]B , Left : A→ A]B
| Right : B→ A]B

Given a ∈ A, we write Right(a) ∈ A]B for the injection of a inside A]B.

Named Tuples We adopt a notation similar to Haskell record types to manipulate “named”
tuples, that is tuples where each component is a field identified by a name.

T , 〈 field1 : A, field2 : B 〉

For x ∈ T , we write x.field1 for selecting the value of the field1 field. We write x{fieldi ← a}

for updating the value of the field fieldi. As a consequence,

x{fieldi ← a}.fieldk =

a if k = i

x.fieldk otherwise

We use a similar notation for functions, that is given f : A→ B, f{x← y} is a new function such
that

∀z ∈ A, f{x← y}(z) =

y if z = x

f(z) otherwise

Finally, we ease the definition of nested updates by gathering nested fields on the left side of←.
Let R , 〈s : T → U, v :W〉 be a set of named tuples whose field s is a function which maps
elements of T to element of U. To replace the value associated to t ∈ T by u ∈ U in the function
associated with the field s of r ∈ R, we write r{s(t)← u} instead of r{s← r.s{t← u}}.

xi

xii NOTATIONS

Résumé de la thèse

Dans le cadre de cette thèse, nous nous intéressons à une classe particulière de mécanismes de
sécurité. Ces mécanismes nécessitent qu’un ou plusieurs logiciels de confiance configurent la
plate-forme matérielle afin de contraindre l’exécution du reste de la pile logicielle à respecter
une politique de sécurité donnée. Nous qualifierons par la suite de mécanisme HSE (de l’anglais
Hardware-based Security Enforcement) les instances de cette classe. L’utilisation par le système
d’exploitation des mécanismes de pagination pour isoler chaque application est sûrement
l’exemple le plus courant de la mise en pratique d’un mécanisme HSE.

Contexte

Le contournement d’une politique de sécurité normalement assurée par le biais d’un mécanisme
HSE peut s’expliquer par une erreur dans sa mise en œuvre, aussi bien dans l’un des logiciels
de confiance chargés de sa configuration que dans les mécanismes matériels sur lesquels il
se repose. Nous nous sommes intéressés à ce second cas, et plus spécifiquement encore au
problème des erreurs affectant les spécifications de la plate-forme. Cette dernière est composée
de plusieurs dizaines de composants interagissant ensemble et la complexité résultante de ces
interactions rend en pratique difficile la conception d’un mécanisme à visée sécuritaire. Pour
chaque nouvelle fonctionnalité que le concepteur de la plate-forme désire ajouter, il est nécessaire
de s’assurer (1) qu’elle n’interfère pas avec les mécanismes HSE existants et (2) qu’il n’est pas
possible de la contourner par le biais d’une fonctionnalité antérieure. Ces risques peuvent être
critiques pour la sécurité de la plate-forme comme l’illustre l’attaque SENTER Sandman présentée
en 2015 par Xeno Kovah et al. [1]. Les auteurs ont montré qu’il était possible de modifier le
contenu de la mémoire flash d’un ordinateur en utilisant une extension de l’architecture x86
nommée Intel TXT [2]. Ils ont en effet remarqué que l’instruction SENTER permettait — dans sa
première version — de désactiver une composante essentielle du mécanisme de protection en
intégrité de la mémoire flash.

La multiplication des chemins d’attaque potentiels liée au nombre grandissant des compo-
sants constitue une menace clairement identifiée dans la littérature [3]. Dans le cas particulier
des mécanismes HSE, les vulnérabilités successives affectant l’architecture x86 [4, 5, 6, 7, 1] ont
été caractérisées par une sévérité très importante, car ces mécanismes visent à assurer l’isolation
des couches les plus basses — et, par voie de conséquence, les plus privilégiées — de la pile
logicielle.

xiii

xiv RÉSUMÉ DE LA THÈSE

Objectifs

Dans cette thèse, nous avons cherché à proposer une approche rigoureuse pour spécifier et
vérifier, par le biais de méthodes formelles, des mécanismes HSE. Notre hypothèse de départ
est qu’une telle approche bénéficierait à la fois aux concepteurs des plates-formes matérielles et
aux développeurs de logiciels qui s’appuient sur les mécanismes matériels de ces plates-formes.
Les premiers pourraient vérifier que leurs mécanismes matériels permettent effectivement de
mettre en œuvre les politiques de sécurité visées. Quant aux seconds, ils pourraient profiter
de spécifications décrivant sans ambiguïtés les exigences auxquelles leurs logiciels doivent se
conformer pour pouvoir profiter de ces politiques.

Notre démarche se place à la croisée de deux domaines de vérification. La vérification
matérielle, d’une part, se concentre généralement sur des propriétés qui s’appliquent incon-
ditionnellement à la plate-forme comme à la pile logicielle exécutée par cette dernière. De
nombreux travaux ont ainsi cherché à vérifier des protocoles de cohérence de caches [8, 9], ou la
correction de l’implémentation d’un modèle mémoire par un processeur [10]. La vérification de
logiciels bas niveaux, notamment des systèmes d’exploitation ou des hyperviseurs, se repose
naturellement sur des modèles de la plate-forme matérielle sous-jacente. Néanmoins, ces mo-
dèles abstraient bien souvent autant que faire se peut la complexité de l’architecture matérielle,
pour n’en garder que les éléments essentiels — bien souvent, les mécanismes de pagination
et les interruptions. La conséquence de cet état de fait est que les mécanismes nécessitant une
configuration logicielle sont moins souvent les sujets de vérification formelle.

Les travaux qui se rapprochent le plus de notre objectif et dont nous avons connaissance
sont ceux de Jomaa et al. [11], en lien avec le protokernel Pip [12]. Nous nous inscrivons dans la
continuité de cette approche, mais cherchons à dégager un formalisme beaucoup plus générique,
qui reposerait notamment sur un modèle matériel le plus générique possible. Cependant, un tel
modèle n’est pas sans poser de sérieux défis quant à son applicabilité dans un problème de
vérification réaliste. En effet, la complexité d’un modèle a un impact direct sur la facilité avec
laquelle on peut l’exploiter. Il est donc important de se poser, en amont, les bonnes questions
quant à l’approche utilisée pour le définir, afin que les efforts nécessaires pour sa conception ne
soient pas dépensés en vain. Plusieurs travaux ont plaidé en faveur d’une approche basée sur
un raisonnement par composition (compositional reasoning en anglais), où le système est divisé
en un sous-ensemble de composants et la vérification axée autour de leurs interactions, pour
faire face à ces défis [13, 14].

Contributions

Dans cette thèse, nous présentons deux contributions complémentaires, qui ont chacune fait
l’objet d’une publication à la conférence Formal Methods ; d’abord en 2016 [15], puis en 2018 [16].

Une théorie des mécanismes HSE. Notre première contribution est une théorie des méca-
nismes HSE, dont l’objectif premier est de servir de support à la spécification et à la vérification
de ces derniers. Elle s’articule autour d’une méthodologie divisée en plusieurs étapes. L’architec-

xv

ture matérielle est dans un premier temps modélisée sous la forme d’un système de transitions
étiquetées (labeled transition system, en anglais, désigné par la suite par l’acronyme LTS). Un
LTS est traditionnellement caractérisé par un ensemble d’états, un ensemble d’étiquettes et une
relation de transition. Une étiquette est attachée à chaque transition pour permettre de leur
donner une sémantique particulière. Le plus souvent, l’étiquette permet de décrire ce qui a
causé la transition.

Une trace d’un LTS est une séquence potentiellement infinie de transitions et décrit un
comportement possible du système. Dans le cas qui nous intéresse, une trace décrit une
exécution d’une pile logicielle par la plate-forme. La formalisation de politiques de sécurité pour
des systèmes de transitions est désormais bien établie. Ces politiques peuvent être formellement
définies sous la forme de prédicats de traces [17, 18, 18, 19] ou, dans les cas les plus complexes,
d’ensemble de traces [20].

Un modèle matériel se présente sous la forme d’un quadruplet 〈H,LS,LH,→〉 dans notre
théorie, où :

– H est l’ensemble des états que peut prendre le LTS, par exemple la valeur des registres
des différents composants matériels de la plate-forme et le contenu de la DRAM ;

– LS est l’ensemble des étiquettes attachées aux transitions dites logicielles, qui sont une
conséquence directe et prévisible de l’exécution, par la plate-forme matérielle, d’une
instruction faisant partie du programme d’un logiciel ;

– LH est l’ensemble des étiquettes attachées aux transitions dites matérielles ;

– → est la relation de transition du système.

En nous basant sur ce type de modèle matériel, nous pouvons spécifier un mécanisme HSE
sous la forme d’un ensemble de logiciels de confiance chargés d’implémenter ce mécanisme
et d’exigences qu’ils doivent respecter pendant leurs exécutions. À partir de cette définition,
il est possible de dégager un sous-ensemble de traces du modèle matériel dans lesquelles les
logiciels de confiance ont correctement implémenté le mécanisme HSE étudié, en respectant
à tout moment les deux exigences. Par la suite, un mécanisme HSE peut être prouvé correct
vis-à-vis de la politique de sécurité qu’il cherche à mettre en œuvre, si le sous-ensemble des
traces du modèle matériel qui le caractérisent satisfait le prédicat formalisant la politique.

Nous avons déroulé notre méthodologie sur un exemple réel, à savoir le mécanisme
Hardware-based Security Enforcement (HSE) implémenté par le BIOS des plates-formes x86
pour isoler leur exécution de celles des logiciels appartenant au reste de la pile logicielle. Le
BIOS (Basic Input/Output System) est un composant logiciel fourni par le constructeur de la
plate-forme, dont le principal objectif est d’initialiser puis de maintenir cette dernière en état
de fonctionnement. Ce mécanisme HSE repose sur des fonctionnalités matérielles relativement
peu connues, notamment un contexte d’exécution particulier des processeurs d’Intel — au
même titre que les rings, par exemple — nommé le System Management Mode (SMM). Le SMM
a ceci d’intéressant qu’il est le contexte d’exécution le plus privilégié de l’architecture x86, si
bien qu’une escalade de privilège permettant d’exécuter du code malveillant en SMM peut

xvi RÉSUMÉ DE LA THÈSE

avoir des conséquences désastreuses pour la sécurité de la plate-forme. Malheureusement, il a
été l’objet en dix ans de plusieurs vulnérabilités profitant d’incohérences dans les différents
composants matériels impliqués dans son isolation [4, 5, 6]. Parce que le SMM et les autres
mécanismes matériels impliqués dans le mécanisme HSE qui nous intéresse ne sont pas pris en
compte dans les modèles x86 de notre connaissance, nous avons dû en définir un nouveau. Cette
démarche s’est révélée riche d’enseignement quant aux propriétés qu’un modèle générique
d’une plate-forme matérielle devrait exhiber pour que ce dernier demeure utilisable dans un
processus de vérification. La modularité, tant de la modélisation que du travail de vérification
est, de notre point de vue, l’élément clef à privilégier pour pouvoir accompagner au mieux un
passage à l’échelle.

Raisonnement par composition pour Coq. Le raisonnement par composition permet de
vérifier chaque composant d’un système complexe en isolation, en spécifiant des hypothèses sur
le comportement du reste du système d’une part et en s’assurant que le composant adoptera
bien un comportement attendu en retour. Une fois cette première étape réalisée pour chaque
composant, il devient possible de raisonner sur la composition de chacun des éléments : si le
comportement garanti pour un composant C1 satisfait les hypothèses de raisonnement d’un
second composant C2, alors il est possible de conclure que la composition de C1 et de C2

garantit le comportement de C2.
Notre seconde contribution est une approche permettant la conduite de raisonnement

par composition sur des composants modélisés grâce à un langage purement fonctionnel [16]
ainsi qu’une implémentation nommée FreeSpec de cette approche [21] dans l’assistant de
preuve Coq [22]. L’originalité de notre contribution est de mettre à profit des paradigmes
fonctionnels — les monades [23], les effets algébriques et les handlers d’effets [24] — pour les
appliquer au domaine de la vérification de plates-formes matérielles. Les modèles écrits dans
notre formalisme sont facilement lisibles et soulignent bien les connexions entre les différents
composants. De plus, nous avons implémenté des tactiques dédiées permettant d’automatiser
en partie l’exploration de ces modèles, ce qui facilite grandement le travail de vérification.

Rien ne cantonne cependant le résultat de ce travail à la vérification de mécanismes HSE. Il
peut ainsi tout à fait s’appliquer dans le cadre de la vérification d’un système purement logiciel,
dès lors que ce logiciel peut être décrit sous la forme de plusieurs composants interagissant
ensemble. La principale limitation de notre approche tient dans les contraintes que nous
imposons aux interconnexions des composants du système. En l’état, FreeSpec ne permet par
exemple pas de considérer des graphes qui contiennent des cycles ou des « arêtes en avant »
(forward edges en anglais). Cette contrainte est importante, mais dans la pratique, nous avons
constaté qu’il est possible d’étudier une architecture matérielle à un niveau de détail où les
composants s’organisent en arbre, selon une hiérarchie par couches successives.

Travaux futurs

La suite logique de nos travaux serait d’appliquer le formalisme de FreeSpec dans le cadre de

xvii

la vérification complète d’un mécanisme HSE par le biais de notre théorie. Par exemple, nous
pourrions remplacer le modèle matériel que nous avons développé pour spécifier et vérifier
le mécanisme HSE implémenté par le BIOS et juger l’impact que cela aurait sur le travail
de vérification. Nous ne doutons par ailleurs pas que les limitations actuelles de l’approche
que nous proposons avec FreeSpec se heurteront à la complexité inhérente aux architectures
matérielles. Les résoudre nous permettrait d’envisager le passage à l’échelle et donc la définition
d’un modèle x86 générique, pouvant servir de support à une large collection de mécanismes
HSE couramment implémentés par les couches basses de la pile logicielle. Cela poserait très
vite la question de la confiance que l’on peut placer dans un tel modèle et notamment son
adéquation avec ce qui est réellement implémenté par le matériel. La validation de modèle est
un problème de recherche à part entière. Dans notre cas, elle est rendue plus complexe par le
fait que beaucoup de composants matériels sont fortement intégrés à la plate-forme matérielle et
difficilement accessible séparément. C’est par exemple le cas du Platform Controller Hub (PCH),
le composant matériel qui fait l’intermédiaire entre le processeur et les périphériques les moins
demandant en vitesse d’accès. Ce dernier est maintenant directement intégré directement dans
la puce des processeurs Intel.

xviii RÉSUMÉ DE LA THÈSE

1
Introduction

“All problems in computer science can be solved by another level of indirection.”
— David Wheeler

To manage complexity, computing platforms are commonly built as successions of abstraction
layers, from the hardware components to high-level software applications. Each layer leverages
the interface of its predecessor to expose a higher-level, more constrained set of functionalities
for its successors. This enables separation of concerns —each layer encapsulates one dimension
of the overall complexity— and modularity —two layers which expose the same interface can
be seamlessly interchanged.

From a security perspective, each layer is often more privileged than its successors. For
instance, system software components (e.g. an Operating System (OS) or a hypervisor) manage
the life cycle of upper layers (e.g. applications or guest OSes). In such a context, one layer
implicitly trusts its predecessors. On the one hand, it is important to keep this fact in mind when
we consider the security of the computing platform. Trust in lower levels of abstraction can
be misplaced, e.g. hardware implants and backdoors pose a significant threat to the platform
security [25], and the platform firmware has been used as a persistent attack vector across
machine restarts [26]. On the other hand, one layer may constrain the execution of its successors,
with respect to a targeted security policy, e.g. an OS enforces availability —fair share of processor
time—, confidentiality and integrity —exclusive partition of physical memories— properties
for the applications it manages. Concerning the lowest layers of software stack, e.g. the Basic
Input/Output System (BIOS) and system software components, the common approach is to
rely on features provided by the hardware architecture to reduce the hardware capabilities that
can be used by upper layers. This scenario characterizes a class of security mechanisms we call
HSE mechanisms.

In the following, we first detail in more detail how HSE mechanisms are implemented and
which threats these implementations face. In this thesis, we aim to specify and verify HSE

1

2 CHAPTER 1. INTRODUCTION

mechanisms. We motivate this choice, then give a brief overview of our contributions. We
conclude this first Chapter with a brief summary of the outline of this manuscript.

1.1 Hardware-based Security Enforcement Mechanisms

A HSE mechanism consists of the configuration by a trusted software component of the
underlying hardware architecture in order to constrain the execution of untrusted software
components with respect to a targeted security policy. For instance, system software components
often leverage, among other mechanisms, a Memory Management Unit (MMU) to partition the
system memory, and therefore needs to setup so-called page tables. Thus, when an application is
executed, it can only access a subset of the system memory. Besides, the processor can leverage
a hardware timer to stop applications execution, without the need for these applications to
cooperate.

A HSE mechanism enforces its targeted security property when (1) the trusted software
components correctly configure the hardware features at their disposal, and (2) these features
are sufficient to constrain the untrusted software execution as expected. Both requirements
remain challenging and have been violated at many occasions in the past, due to software and
hardware errors alike.

Software Errors. Part of vulnerabilities in HSE mechanism implementations by trusted soft-
ware components are due to some misuse of hardware features [27]. In the past, most lower-level
pieces of software, such as firmware components, have not been conceived and implemented
with security as primary focus. The increasing complexity of hardware architectures can also
be held partly responsible. While computers are made of dozens of components, software
developers have to read and understand as many, independent and often large documents of
various forms (e.g. data sheets, developer manuals), and they rarely focus on security. When
software developers misunderstand the documentation, as it happened for instance for the mov

ss and pop ss x86 instructions [28], the impact in terms of security can be significant.

Hardware Errors. Over the past decades, vendors have regularly added security features to
their products. Intel, for instance, has notably introduced hardware-based virtualization (VT-x,
VT-d) [29], dynamic root of trust (TXT) [2], or applicative enclaves (SGX) [30, 31]. It is crucial to
notice that most of them have been circumvented due to implementation bugs [32, 33]. This
is not surprising, as novel hardware features tend to be more and more complex. In extreme
scenarios, novel hardware features have been turned into attack vectors [32]. In addition to
these implementation errors, the fact that hardware architectures often comprise hundreds
of features implemented by dozens of interconnected devices complicates the conception of
new hardware features. Indeed, these new features should not interfere with the security
properties enforced by the existing components of the platform. For instance, the flash memory
(where lives the BIOS code) is supposedly protected against arbitrary write accesses from
system software components, thanks to a particular hardware interrupt. When Intel introduced

1.2. FORMAL VERIFICATION OF HSE MECHANISMS 3

TXT [2], they did not anticipate that this novel security feature had the particular side effect
of disabling the hardware interrupt used to protect the flash memory [1]. Such inconsistencies
in hardware specifications pave the road toward compositional attacks [3]. Compositional
attacks characterize scenarios where each component is working as expected in isolation, yet
their composition creates an attack path which prevents end-to-end security enforcement. In
the context of HSE mechanisms, this means untrusted software components can leverage one
hardware component to defeat a HSE mechanism implemented to constrain its execution.
Compositional attacks are due to a flaw in the specifications of the computing platform. As
such, they precede implementation errors, and their countermeasures often require a change
in the hardware interface. To prevent them, it is mandatory to reason about the computing
platform as a whole.

1.2 Formal Verification of HSE Mechanisms

The significant impact of previously disclosed compositional attacks [4, 5, 6, 7, 1] motivate our
desire to formally specify and verify HSE mechanisms. We believe this would benefit both
hardware designers and software developers. Firstly, a formal specification of HSE mechanisms
can be leveraged as a foundation for a systematic approach to verify hardware specifications.
For each novel hardware feature introduced, it is necessary to check that the previous proofs
hold, meaning this feature does not introduce any compositional attack. Secondly, it provides
unambiguous specifications to firmware and system software developers, in the form of a
list of requirements to comply with, and the provided security properties. We believe these
specifications are a valuable addition to the existing documentation, because they gather at one
place information that is normally scattered across many documents which sometimes suffer
from lack of security focus.

We steer a middle course between two domains: hardware and system software verification.
Generally, hardware verification focuses on properties that are transparent to the executed
software, and require no configuration from its part, while software verification abstracts as
much as possible the hardware architecture complexity. However, compositional attacks can
come from unsuspected places, with no apparent link with the considered security mechanism.
For instance, the SENTER Sandman attack [1] leveraged a dedicated execution mode of x86
processor to disable the protection of the flash memory wherein the BIOS code is stored. Hence,
the composition of the numerous configurable hardware features is less subject to formal
verification. At the same time, some components are individually complex: for example, the
Intel Architectures Software Developer Manual [34] is 4842 pages long, the Memory Controller
Hub datasheet [35] is 430 pages long, and the Platform Controller Hub datasheet [36] is 988 pages
long. Besides, new hardware components and new versions of already existing components are
frequently released. As a consequence, the more modular our models and proofs are, the more
practicable our approach becomes. Otherwise, each modification of the hardware architecture
will have an important impact on the proofs already written.

4 CHAPTER 1. INTRODUCTION

1.3 Contributions

During the first stage of this thesis, we propose a theory of HSE mechanisms in the form of
requirements trusted software components have to satisfy. A HSE mechanism is correct if its
requirements are sufficient to make the hardware architecture enforce a targeted security policy.
To evaluate our approach, we formally specify and verify a HSE mechanism implemented by
the BIOS of x86-based computing platform at runtime to remain isolated from the rest of the
software stack. Our choice has been motivated by the prominent position of the Intel hardware
architecture on the personal computer market. Moreover compositional attacks targeting this
architecture have been disclosed [4, 5, 6, 7, 1]. The resulting model assumes as little as possible
about the actual implementation of the BIOS, and constitutes, to the extent of our knowledge,
the first formalization of the BIOS security model at runtime. Our model and its related proofs
of correctness have been implemented in the Coq theorem prover, to increase our confidence
in our result. This work has been presented at the 21th International Symposium on Formal
Methods (FM2016) [15]. In addition, the resulting project, called SpecCert, has been made
available as free software [37].

After this first contribution, we focus our attention on the challenge posed by the modeling
of a complex hardware architecture like the x86 architecture. In this thesis, we advocate for
the use of a general-purpose model of a hardware architecture to support the specification of
HSE mechanisms which can be implemented on this architecture. Our experiment with our
theory of HSE mechanisms convinced us that such a general-purpose model should obey certain
requirements, notably in terms of readability and modularity, so it could remain applicable to
real-life verification problem. Our second contribution is a novel approach, inspired by algebraic
effects, to enable modular verification of complex systems made of interconnected components.
This approach is not specific to hardware models, and could also be leveraged to reason
about composition of software components as well. This work has been presented at the 22th

International Symposium on Formal Methods (FM2018) [16]. Besides, we have implemented our
approach in Coq, and the resulting framework, called FreeSpec, takes advantages of theorem
prover automation features to provide general-purpose facilities to reason about components
interactions. Similarly to SpecCert, FreeSpec has been published as free software [21].

1.4 Outline

The rest of this manuscript proceeds as follows.
First of all, Part I provides the context in which this thesis falls. In Chapter 2, we give an

introduction to the x86 hardware architecture and the particular role played by the BIOS, in
order to present three illustrative compositional attacks. In Chapter 3, we review existing formal
verification approaches that have been proposed to verify hardware and software systems. We
justify, in this context, our choices in terms of formalism and tools.

Part II focuses on our first contribution. In Chapter 4, we present our general-purpose theory
to support the specification and verification of HSE mechanisms. In Chapter 5, we leverage this

1.4. OUTLINE 5

theory to reason about the HSE mechanism implemented by the BIOS to remain isolated from
the rest of the software stack at runtime.

Part III focuses on our second contribution. In Chapter 6, we present our compositional
reasoning framework for Coq, to modularly specify and verify systems made of interconnected
components

Finally, we conclude this thesis in Chapter 7, where we suggest some possible directions for
future work.

6 CHAPTER 1. INTRODUCTION

Part I

Context

7

2
Intel x86 Architecture and

BIOS Background

“You’re building your own maze, in a way, and you might just get lost in it.”
— Marijn Haverbeke

From a market share perspective, the x86 hardware architecture is widely used for laptops,
desktops and servers. Intel has introduced several security features to support HSE mechanism
over the past decades: hardware-based virtualization (VT-x, VT-d) [34, Volume 3, Chapter 23],
dynamic root of trust (TXT) [2], or applicative enclaves (SGX) [34, Volume 3, Chapter 36][31]. As
for the BIOS, it is the most privileged piece of software executed by the hardware architecture,
and implements several HSE mechanisms to remain isolated from the rest of the software
stack. The correctness of these mechanisms is therefore of key importance; yet they have been
the object of several compositional attacks [4, 5, 6, 7, 1]. These attacks have motivated our
effort to provide a formal framework for reasoning about HSE mechanisms. However, it is
important to emphasize that other mainstream architectures (e.g. ARM) work in a similar basis
and potentially suffer similar issues. Our contributions are thus intended to be applicable to
other hardware architectures.

The rest of this Chapter proceeds as follows. We provide the necessary details on how a
typical x86 hardware architecture works (Section 2.1) and we explain why and how the BIOS
remains isolated from the rest of the software stack at runtime (Section 2.2). This background
allows us to describe the critical compositional attacks we already mentioned (Section 2.3).

2.1 Introduction to x86 Architecture

Describing hardware architectures in depth is challenging, because they tend to comprise
an increasing number of interconnected components of various natures. The x86 hardware
architecture is a perfect illustration of this, which is probably best demonstrated by the scale

9

10 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

Processor
DRAM

Controller

Display
ControllerPCI

Express
Controller

PCH

Flash
Memory

TPM

USB
Controller

PCI Controller

Hard Drive
Controller

Figure 2.1: High-level view of the x86 hardware architecture

of its documentation. At the time of writing this thesis 1, the Intel 64 and IA-32 Architectures
Software Developer’s Manual is 4,842 pages long. A typical computing platform is made of dozens
of hardware components, including e.g. hard drives, a keyboard, a trackpad, an audio controller,
and a graphic card. Several come with their own documentation, often in the form of large
datasheets.

Figure 2.1 pictures how the most important hardware components are interconnected in
a modern x86 computing platform (generation Nehalem [38] and newer). The two main com-
ponents are the processor —responsible for executing the software stack— directly connected
to high-speed peripherals (e.g. DRAM, a display controller), and a companion chipset called
the Platform Controller which handles interactions with the rest of the peripherals (e.g. USB
devices, hard drives). The x86 architecture has seen many iterations over the years, and it is
quite common to find in the same computer park different versions of this architecture. For
instance, the processor was previously connected to a northbrige (low-latency), which was itself
connected to a southbridge (slower peripherals).

This section proceeds as follows. First, we describe the internals of a x86 processor (2.1.1).
We detail the mechanisms which play a part in interactions between the processor and the
memories scattered inside the hardware architecture (2.1.2), then focus on the caches embedded
inside the processor to reduce the latency induced by these interactions (2.1.3). Finally, we
explain how peripherals of the hardware platform actively communicate with the processor
(2.1.4).

1Spring 2018.

2.1. INTRODUCTION TO X86 ARCHITECTURE 11

2.1.1 Processor, Architecture and Microarchitecture.

The main component of the architecture is the processor. It embeds several execution units
called cores, which are responsible for executing assembly instructions of software component
programs. It also integrates several additional hardware modules to connect the cores to the
rest of the hardware architecture, e.g. a memory controller to manage interactions with the
DRAM. The concrete hardware implementation of the processor is often referred as the Intel
microarchitecture, in opposition to the Intel architecture which describes the expected behavior
and properties of a x86 system as seen by software developers. While Intel often modifies the
microarchitecture, the architecture has remained backward compatible for decades [39]. The
microarchitecture implements many optimizations, such as multithreading [40], instruction
pipelining [41], out-of-order execution [41, Section 2] or predictive branching [42][41, Section 3].

Intel microarchitecture blurs the frontier between hardware and software. Indeed, an
important part of the microarchitecture is not implemented as hardware circuit, but rather
under the form of microcode programs [31, Section 2.14]. That is, the processor is a programmable
device, whose behavior —including the semantics of several x86 instructions it implements [43]—
is partly determined by the microcode it has loaded. In practice, x86 processors only load
microcode updates which have been signed by Intel. To the best of our knowledge, x86
microcode has never been successfully used as an attack vector.

2.1.2 Memories and Cores I/Os

Besides cores, memories are the most important components of a computing platform. Cores
interact with these memories during so-called I/Os, for Input/Output: a core receives data
during an input and it sends data during an output. The x86 architecture integrates several
sources of memories, along with several mechanisms that can be used by the cores to interact
with these memories.

The main target of cores I/Os is the Dynamic Random Access Memory (DRAM). DRAM
contains the instructions executed by the cores, and the data they manipulate. A core decides
the semantics of a given memory cell depending on the context, e.g. the same binary sequence
can be decoded as an instruction or interpreted as an operand of an arithmetic operation.
In addition, other hardware components also provide additional memory regions that cores
can read from or write to. Contrary to DRAM, I/Os targeting these memories often carry
a semantics specific to each peripheral. For instance, an x86 processor integrates a display
controller which exposes a frame buffer to the cores. By writing to the frame buffer, a core
changes the pictures displayed on the computer screen.

Address Spaces. Cores interact with memories via two distinct memory address spaces,
characterized by a set of addresses and a set of instructions. The most important address space
is the system memory, and most of the x86 instructions (e.g. mov variants, arithmetic operations
such as sub and add) are designed to manipulate it. Addresses of the system memory are
referred to as physical addresses and the majority of system memory I/Os are dispatched to the

12 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

DRAM. Besides, cores use another address space characterized by two dedicated instructions
—in and out— to target the memories exposed by other hardware components. I/Os issued by
in and out instructions are referred to as Port-Mapped I/O (PMIO), and the addresses of this
address space are called ports.

Although they are historically used to target different memory regions, nowadays these two
address spaces overlap, as peripheral memories and registers can be exposed to the cores via
the system memory thanks to memory-mapped I/Os. That is, it is possible to read from or write to
the same memory location using two different address spaces. The mapping between addresses of the
system memory and their concrete memory locations within the hardware architecture is called
the memory map. This memory map is configurable, that is it can be changed dynamically via
configuration registers exposed by the processor and the Platform Controller Hub (PCH).

For instance, the Peripheral Component Interconnect (PCI) standard —whose aim is to
propose a standard local bus and communication protocol to connect hardware components to
a computing platform— introduces a so-called configuration space per PCI device, which is a
dedicated memory region with a specific semantics summarized in Figure 2.2. Registers of the
PCI configuration space, such as device and vendor IDs, can be accessed via PMIO. Indeed,
the PCH exposes two ports to that end. First, software components modify the content of the
PCI_CONFIG_ADDRESS port, to tell the PCH which PCI configuration register they want to interact
with. Then, they read from and write to the PCI_CONFIG_DATA port, and the PCH dispatches
these I/O to the targeted register. The PCI specification states that the offset 0x10 of the PCI
configuration spaces is dedicated to so-called BARs (Base Address Registers). The purpose of the
BARs is to configure a memory-mapped mechanism, so that it becomes possible to interact with
the PCI configuration space of a given peripheral via the system memory. As a consequence, a
core which reads from or write to the system memory in a range specified by a BAR sees its
I/O dispatched to the configuration space of the related PCI device.

Finally, software components often do not manipulate addresses of the system memory
directly. Indeed, cores have their own address translation mechanisms, namely segmentation [34,
Volume 3, Section 2.4] and pagination [34, Volume 3, Chapter 4] (potentially extended with its
virtualization technology [34, Volume 3, Section 28.2]), which are configurable by the software
components.

As such, determining which hardware component will handle a core I/O targeting a given
virtual address requires to have a complete knowledge of the x86 remapping and virtual
memory mechanisms and of their exact configurations at a given time.

Access Control for Software Components. The x86 hardware architecture provides a rich
collection of hardware features [34, Volume 3] to implement fine-grained access control policies
about software components I/Os. Subjects of these policies include the software and hardware
components of the system. Objects ultimately come down to the memory locations of various
natures scattered within the hardware architecture. Actions comprise reading from and writing
to a memory location. From a core perspective, it is also common to distinguish between
reading data and reading instructions.

2.1. INTRODUCTION TO X86 ARCHITECTURE 13

Vendor IDDevice ID

CommandStatus

Revision IDClass Code

BIST Header Type Lat. Timer Cache Line S.

Base Address Registers

Cardbus CIS Pointer

Subsystem Vendor IDSubsystem ID

Expansion ROM Base Address

Cap. PointerReserved

Reserved

Max Lat. Min Gnt. Interrupt Pin Interrupt Line

0151631

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Figure 2.2: Standard registers of PCI Type 0 (Non-Bridge) Configuration Space Header

For instance, the MMU is probably the most well-known hardware feature to implement an
access control policy. Thanks to the MMU, an operating system can attribute ranges of DRAM
to user applications it manages and isolate its code and data from these applications. The MMU
alone is not sufficient, because its scope does not cover its own configuration. That is, it is not
possible to configure the MMU in order to prevent a software component to modify the MMU
configuration. As a consequence, an additional hardware feature has to be used: the protection
rings [34, Volume 3, Section 5.5]. The x86 cores can operate in 4 different so-called rings, from 0
to 3, where ring 0 is the most privileged and ring 3 the least. Ring 3 imposes several restrictions
on software components, including the capability to modify the CR3 register which identifies the
base of the page table hierarchy used by the MMU. This is why ring 3 is commonly dedicated
to the execution of applications.

The complexity of the x86 I/O resolution mechanism requires to take into account the
numerous redirection features exposed by the architecture. Memory locations can have an
arbitrary number of aliases, in several layered address spaces: the DRAM controller assigns an
address to each memory cell the DRAM contains; the processor maps physical addresses to
DRAM addresses; the MMU maps virtual addresses to physical addresses. As a consequence,
modifying the content of a memory cell may not be the only way at the disposal of attackers to
defeat a given access control policy. For instance, if the access control policy refers to virtual
addresses v, modifying the MMU configuration results in modifying the content associated
with v.

14 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

2.1.3 Cache Memory

Interacting with the DRAM remains slow, in regard to the speed of cores. To improve per-
formance, Intel processors come with several levels of caches, from the smaller and quicker,
to the bigger and slower. For instance, Intel Core i7, i5 and i3 processors have three levels of
caches. Each core is assigned two levels of cache called L1 —which has the particularity of
being divided into a cache of instructions (used when the core read from memory instructions
to execute) and a cache of data — and L2, while they all share a so-called L3 cache divided into
interconnected slices. Figure 2.3 summarizes this organization.

Caches are divided into several cache blocks addressed by an index. Cache blocks are divided
into several cache lines, which are tagged with a memory address and contains a copy of the data
stored at this address. A cache is characterized by the number of cache lines per cache block, the
nature of the address associated with cache block indexes, and the nature of the address used
to tag cache line. For instance, Intel L2 and L3 caches are physically-indexed, physically-tagged,
meaning they use physical address to compute both the index and the tag.

Caches are mostly transparent to the software components. For instance, the processor
alone enforces the cache coherence, with the notable exception of multiprocessor (not multicore)
systems, for which “maintenance of cache consistency may, in rare circumstances, require
intervention by system software.” Intel has developed a dedicated protocol called MESIF to
that end [38].

When a core successfully reads the memory at a given address, it keeps a copy of the
result in its caches. Therefore, the next time it needs to read some data at this address, these
data are retrieved from the cache. Regarding write accesses, Intel x86 processors provide five
different caching strategies (uncacheable, write combining, write-through, write-back and write-
protected) [34, Volume 3, Chapter 11]. Fine-grained cache strategy configuration is achieved
through several hardware mechanisms, including (but not limited to):

– The CR0 register has a flag called CD, which enables caching once set.

– The processor has several registers called Memory Type Range Registers (MTRR), to
specify a cache strategy for pre-defined memory regions.

– The Page Table Attribute (PAT) allows for configuring a cache strategy at a memory page
granularity.

The write-back strategy is the most commonly used and is summarized in Figure 2.4. The
purpose of this strategy is to reduce the number of I/O forwarded to the DRAM. To that end,
each cache line has a “dirty bit” which is set by the cache when its value is updated by a write
access. A cache eviction occurs when the cache frees a given cache line previously used for a
given address in order to use it for another one. When it happens, the cache verifies the value
of the “dirty bit”, so it can update the underlying memory cell if necessary. Therefore, as long
as the cache line is not evicted, the processor does not issue write access to the underlying
memory. The write-back strategy is not suitable for memories of other hardware components

2.1. INTRODUCTION TO X86 ARCHITECTURE 15

L3 slice L3 slice

L3 sliceL3 slice

Cache L2

Cache L1
(Instruction)

Cache L1
(Data)

Execution Unit

Cache L2

Cache L1
(Instruction)

Cache L1
(Data)

Execution Unit

Cache L2

Cache L1
(Instruction)

Cache L1
(Data)

Execution Unit

Cache L2

Cache L1
(Instruction)

Cache L1
(Data)

Execution Unit

Figure 2.3: Typical caches organization of a x86 processor

16 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

mapped into the system memory. For instance, caching I/Os targeting a framebuffer does
not make sense, because the screen wouldn’t be updated. This is why Intel provides four
complementary strategies. The uncacheable strategy disables the cache for the given address,
while write combining, write-through, write-back and write-protected are similar strategies
such that copies of the underlying memory are stored in the cache to accelerate read accesses,
but write accesses are directly forwarded.

2.1.4 Peripherals I/Os

Cores are not the only active hardware components present inside a typical x86 hardware
architecture. For instance, several hardware components can also read from or write to the
DRAM using a technology called Direct Memory Access (DMA). Hardware components can
also interact with the processor by sending hardware interrupts of various natures. When a
user presses a key of its keyboard, the latter sends an interrupt request. Interrupt handlers, that
is programs executed by the core when it receives interrupts, are configurable via a so-called
Interrupt Descriptor Table (IDT) [34, Volume 3, Chapter 6]. Each line of the IDT corresponds to
a given interrupt whose semantics is specified by Intel, as summarized in Table 2.1. When a
core handles an interrupt, it saves its current context inside the DRAM, then starts executing
the corresponding interrupt handler. Not all x86 interrupts come from a hardware component.
Cores use several of them, for instance to recover from errors. For example, if a core is not able
to translate a virtual address into a physical address, it raises a so-called page fault.

Access Control for Hardware Components. Hardware components come from various places
and can be of various qualities. Once integrated together, an attacker can potentially leverage
any of them to threaten the security of the system. In this context, the principle of least
privilege [44] applies: a given component should only be able to leverage capabilities it needs to
work according to its purpose, where a “capability” refers to the right to perform a given I/O.
To impose an access control policy to hardware components, a system software component uses
the so-called VT-d feature, which implements an I/O-MMU for x86 computing platform [45].

In practice, the correct enforcement of an access control policy for hardware components
remains challenging, for various reasons. Firstly, security checks can have an important impact
on performance. Partly for this reason, the hardware components have long been assumed
trustworthy. A good demonstration of this fact is the Address Translation Services mechanism
introduced by the PCI standard, whose purpose is to allow PCI devices to bypass security
mechanisms designed to reduce their privileges [46]. Other examples showed blind trust in
foreign hardware components (e.g. USB devices) is not without consequences from a security
perspective [47, 48, 49]. Secondly, the “least privilege” may vary from one execution to another,
e.g. depending on the software stack executed. To handle the numerous use cases of the x86
architecture, its default configuration is very permissive, until software components such as the
BIOS or an operating system modify it to fit their needs, by implementing HSE mechanisms.

2.1. INTRODUCTION TO X86 ARCHITECTURE 17

Select a cache line

Cache hit?

[Yes]
[No]

Cache line dirty?

Write the
content of the

cache line back
to the DRAM

[Yes]

Read data from
lower memory

and fill the cache
line

Read data from
lower memory

and fill the cache
line

Mark the cache
line as “not dirty”

[No]

Read or Write? Return data
[Read]

Write new
value in cache

line
[Write]

Mark cache line
as dirty

Figure 2.4: The Write-Back cache strategy

18 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

#IRQ Semantics

0x00 Division by zero
0x01 Single-step interrupt
0x02 Non-Maskable Interrupt (NMI)
0x03 Breaking point (used by debuggers)
0x04 Stack overflow
0x05 Bounds
0x06 Invalid instruction opcode
0x07 Coprocessor not available
0x08 Double fault
0x09 Coprocessor segment overrun
0x0A Invalid task state segment
0x0B Segment not present
0x0C Stack fault
0x0D General protection fault
0x0E Page fault
0x0F Reserved by Intel
0x10 Math fault
0x11 Alignment check
0x12 Machine check
0x13 SIMD floating-point exception
0x14 Control protection exception

Table 2.1: x86 Interrupt Descriptor Table semantics

2.2. BIOS OVERVIEW 19

2.1.5 Conclusion

This introduction to the x86 hardware architecture provides the necessary background to
understand the challenges related to the implementation of a HSE mechanism in general. In
the next section, we explain why the BIOS requires such an isolated environment to operate,
and we detailed the hardware features it leveraged to that end.

2.2 BIOS Overview

The BIOS plays a significant role in Intel x86 computing platform. It is the first piece of
software executed by the processor, which initializes the hardware components and initiates
the execution of the software stack during the boot sequence (2.2.1). At runtime, it remains
active to perform various tasks, including and not limited to platform-specific events, device
emulation, or BIOS updates management (2.2.2). As such, it can only operate properly if certain
security requirements are met and implements several HSE mechanisms to that end (2.2.3).

2.2.1 During the boot sequence

The BIOS program is stored inside a small flash memory connected to the PCH through
the Serial Peripheral Interface (SPI) bus on modern x86 computing platform. When the
computing platform is powered up, the processor starts executing the code stored at a hard-
coded address within the flash memory. The first task of the BIOS is to initialize the hardware
architecture [50]. Then, the BIOS searches for a system software component to load into memory.
Historically, “legacy” BIOSes were looking for a Master Boot Record (MBR) at the beginning
of mass storage devices (e.g. hard drive, USB stick). The MBR, whose size is limited to 512
bytes, contains a small program to initiate a loader for a system software component. Modern
BIOSes implement the Unified Extensible Firmware Interface (UEFI) [51, 52] standard, whose
purpose is to standardize the boot sequence process in order to favor interoperability of BIOS
implementations. The boot sequence is divided into several phases, and the BIOS is packaged
into several software components accordingly. In particular, UEFI-compliant BIOS can load
so-called UEFI applications of arbitrary size, leading modern hypervisors and operating systems
to be packaged as UEFI applications [53].

Because the BIOS is the first software component executed by the hardware architecture, and
is responsible for initiating the execution of following software components (e.g. an operating
system), it is commonly designated as the root of trust [54] for the software stack. As such,
the integrity of the BIOS code is critical, and several strategies have been proposed to detect
BIOS code corruption during the boot sequence, with the two most predominant being Secure
Boot [55] and Trusted Boot [56]. Secure Boot and Trusted Boot can uncover certain BIOS
corruptions prior to the execution of the illegitimate code. However, they both rely on a so-
called root of trust, which is the initial code of the BIOS, whose integrity cannot be guaranteed
for certain because it is not stored on a read-only memory. Recent efforts have been expended
to overcome this limitation. For instance, in 2013 HP has introduced a security mechanism

20 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

called SureStart [57] whose purpose is to move the root of trust within another hardware
component, leaving most attackers unable to modify its code. More recently, the NIST has
published the Special Communication 800-193 —Platform Firmware Resiliency Guidelines [58]—
which specifically tackles the challenge posed by illegitimate firmware modification. These
approaches have in common to aim at enforcing the correct initialization of the platform by the
BIOS.

2.2.2 At runtime

The boot sequence ends once a system software component has been selected and loaded into
memory by the BIOS.

Software Interfaces. At runtime, the BIOS provides various software interfaces to the system
software component. For instance, the Advanced Configuration and Power Interface (ACPI)
tables [59, 60] is a standardized interface to configure various vendor-specific aspects of the
hardware platform, such as power management or thermal management. Similarly, legacy
BIOSes expose facilities to system software components, in the form of so-called BIOS Interrupt.
For instance, the interrupt 0x10 is dedicated to video services (e.g. setting the video mode,
setting the cursor shape and position, etc.). Nowadays, UEFI-capable BIOSes expose so-called
Runtime Services to system software component [61, Chapter 5] under the form of a table of
function pointers.

In either case, these interfaces act as an intermediary layer between a system software
component and the hardware architecture. In doing so, they reduce the coupling between the
software and hardware components. Sometimes, their use is optional, and BIOSes only provide
them as a facility. Other are mandatory gates towards certain computing platform features,
because they are related to critical mechanisms of the platform and the hardware vendors do
not want to rely on a (potentially vulnerable or malicious) system software component. For
instance, the BIOS takes care of its own software updates, in order to verify submitted versions
prior to applying them, e.g. by verifying cryptographic signature or preventing the installation
of older, outdated versions.

Proactive Features. In addition to supporting the execution of the rest of the software stack
through its interfaces, the BIOS carries out several hardware-specific tasks which are not publicly
documented. This includes and is not limited to handling hardware errors, checking thermal
zones, adjusting cores speed, configuring hardware workarounds, and emulate complete
hardware devices to the system software component [62].

The execution of the BIOS in this context should be transparent to the rest of the software
stack. As such, the BIOS remains the most privileged software component of the software stack,
even after the end of the boot sequence.

2.2. BIOS OVERVIEW 21

2.2.3 HSE Mechanisms Implemented by the BIOS

The BIOS is provided by the manufacturer of the hardware architecture. In most cases, it
is a proprietary software, and the computer owner has little control over it. The rest of the
software stack is considered untrusted, and one goal of the BIOS is to keep the computer in a
working state, even in the presence of an erroneous or malicious software stack. To that end,
the BIOS relies on several HSE mechanisms to enforce its isolation from the rest of the software
stack. From the information in the Intel manual [34], datasheets [35, 36], and in the academic
literature [27], the isolation required by the BIOS can be divided into three complementary
security policies.

Volatile Memory Access Control The BIOS is assigned a region of the volatile memory to
support its execution at runtime. This region is protected against I/Os issued by the rest
of the software stack.

Availability The rest of the software stack is not authorized to prevent the execution of the
BIOS at runtime, i.e. the BIOS can preempt the execution of the rest of the software stack.

Non-volatile Memory Access Control The BIOS is assigned a non-volatile memory region (in
practice, a portion of the flash memory) to store its code and data. The rest of the software
stack is not authorized to modify the content of this memory, in order to avoid a scenario
where attackers modify the BIOS code according to their needs and provoke a reboot of
the platform.

These three security policies are implemented by the means of HSE mechanisms which rely
on hardware features exposed by the processor and the PCH.

System Management Mode. To handle several software components with different levels
of privilege, Intel processors provide several execution modes, which can be assimilated to
sets of hardware capabilities. For instance, in a given execution mode, a core may refuse to
execute certain assembly instructions. Contrary to common belief, x86 execution modes are not
organized in a linear hierarchy, but are rather a matrix of complementary hardware features:
protection rings, paging configuration, virtualization technologies, etc. As for the BIOS, Intel
provides the so-called System Management Mode (SMM) [34, Volume 3, Chapter 34], introduced
in the Intel manual as follows:

SMM is a special purpose operating mode provided for handling systemwide
functions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by application
software or general-purpose system software. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transparently
to the operating system or executive and software applications.

Intel 64 and IA-32 Architectures Software Developer’s Manual

The SMM is the foundation of the BIOS isolation at runtime, but it is not sufficient.

22 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

System Management RAM. The SMRAM is the name given by Intel to a memory region
located inside the DRAM, and dedicated to the SMM. The exact location and size of the SMRAM
are architecture dependent. To locate it, the processor uses a dedicated register named SMBASE.
The BIOS should configure it during the boot sequence. As its name suggests, the SMBASE

value should point to the base of the SMRAM. As for the end of the SMRAM, the hardware
architecture does not expose it explicitly, and the BIOS developers need to refer to the processor
datasheet in order to find it.

At the beginning of the boot sequence, the SMRAM is left unprotected, meaning arbitrary
memory accesses targeting the SMRAM are authorized. This design allows the BIOS to initialize
the SMRAM content. Once the SMM code —the BIOS code intended to be executed at runtime
in SMM— has been correctly loaded into the SMRAM, and prior to starting the execution of a
system software component, the BIOS has to lock the SMRAM. A locked SMRAM can only
be accessed by a processor in SMM. To that end, the memory map is dynamically modified
with respect to the current state of the processor, and the physical addresses dedicated to the
SMRAM from the BIOS perspective are used by the rest of the software stack to access the VGA
controller memory. The SMRAMC register, exposed by the processor, controls this access control
mechanism via its D_LCK bit. The BIOS locks the SMRAM by setting the D_LCK bit. The memory
controller of a processor with the D_LCK bit set will prevent I/Os targeting the SMRAM if the
processor is not in SMM. In addition, the only way to clear the D_LCK bit is by performing a
complete reboot of the platform. This leaves no opportunity for the rest of the software stack
to modify the content of the SMRAM, because the BIOS will lock it again during the boot
sequence, prior to executing another software component.

System Management Interrupt. The System Management Interrupt (SMI) is a hardware
interrupt which makes cores “enter” SMM. More precisely, when a core receives a SMI, it
saves its current state (e.g. its registers, current execution mode, etc.) in the SMRAM, then it
reconfigures itself; in particular, it sets its program counter register to the value SMBASE+ 0x8000.
From this point, the core is in SMM and starts to execute what should be the SMM code. Once
the SMM code has performed the task it has been requested for, the rsm instruction can be used.
This instruction, specific to the SMM, tells the core to exit SMM and to restore its previous state.
This way, the execution of the software component previously halted by the SMI can resume.
From the system point of view, it is almost like if nothing has happened.

Finally, the PCH exposes a register called APM_CNT that a system software component can
write to in order to make the PCH trigger a SMI [36]. In practice, this mechanism is used by a
system software component in order to request the execution of the BIOS, for the purpose of
carrying out a given service, e.g. modifying the content of a given UEFI variable. 2

Flash Memory Lockdown. The content of the flash memory has to be protected from arbitrary
write accesses, similarly to the SMRAM protection. That is, only the SMM code should be able
to overwrite the content of the flash memory. This access control mechanism is implemented by

2UEFI variables are stored in the flash memory, alongside the BIOS code.

2.3. BIOS HSE MECHANISM AND COMPOSITIONAL ATTACKS 23

the PCH, and is configurable via the BIOS_CNTL control register. Two bits of this register are of
interest: the BIOSWE (BIOS Write Enable) bit, and the BLE (BIOS Lock Enable) bit.

The semantics of the BIOSWE and BLE bits is as follows. When the BIOSWE bit is clear, the PCH
only authorizes read accesses to the flash memory. If a core sets the BIOSWE bit, the behavior of
the PCH depends on the value of the BLE bit. If the BLE bit has been set by the BIOS during the
boot sequence, then the PCH triggers a SMI. As a consequence, the cores stop their current
executions and enter in SMM. This prevents a system software component from modifying the
content of the flash memory, even if the PCH now authorizes write accesses. It is the SMM
code responsibility to clear the BIOSWE bit before using the rsm instruction. On the contrary, if
the BLE bit is not set, setting the BIOSWE bit will not cause a SMI, leaving the system software
component free to modify the content of the flash memory. Similarly to the D_LCK bit of the
SMRAMC register, the BLE bit cannot be cleared without a reboot.

The system software component and the BIOS often use the flash memory lockdown
mechanism as a communication channel. The system software sets the BIOSWE bit in order to
notify the SMM code that a BIOS update is available.

The combination of the SMRAM, the SMI and the flash memory lockdown explains why
the SMM is often referred to as the x86 “most privileged execution mode.” In a nutshell, the
SMM code can leverage the same hardware capabilities as the system software, including
manipulating memories used by the system software. On the contrary, the system software
cannot modify either the SMRAM content or the SMM code stored in the flash memory, and
cannot prevent the SMM code execution, i.e intercept or mask SMIs.

2.3 BIOS HSE Mechanism and Compositional Attacks

To stay isolated from the rest of the software stack at runtime, the BIOS implements a HSE
mechanism whose key hardware feature is the SMM, a dedicated execution mode of x86
processor. The SMM provides the necessary features to enforce its isolation from the rest of the
software stack. Despite the key importance of SMM, several compositional attacks have been
disclosed over the past decade. In this section, we detail three attacks which have defeated the
three security policies targeted by the BIOS. The SMRAM Cache Poisoning Attack allowed for
circumventing the SMRAM access control mechanism (2.3.1). The so-called SENTER Sandman
attack prevented the execution of the BIOS and led to modifying the content of the flash memory
(2.3.3). The Speed Racer attack resulted into an authorized modification of the flash memory as
well (2.3.2).

2.3.1 SMRAM Cache Poisoning Attack

Between 1986, when the SMM has first been introduced, and 2009, it was believed that the
SMRAMC register alone was sufficient to enforce SMRAM access control. Loïc Duflot et al. [4]

24 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

and Rafal Wojtczuk et al. [5] independently showed that this belief was misplaced when they
disclosed the SMRAM Cache Poisoning Attack.

Attack Path. The SMRAM Cache Poisoning leverages the write-back strategy (2.1.3) of the
cache to circumvent the D_LCK bit protection. The attack proceeds as follows:

1. Attackers set the cache strategy to be used for the SMRAM addresses to write-back.
This can be done by a malicious system software component, or even by a malicious
application under certain circumstances (for instance, if an operating system exposes a
software interface to manage the cache from the userland).

2. They write to the APM_CNT register in order to trigger of a SMI.

3. The BIOS code stored in SMRAM is executed in SMM, leading the cache to be filled with
copies of that code, and the processor leaves SMM when it executes the rsm instruction.

4. Attackers write to an address which belongs to the SMRAM, and because of the write-back
cache strategy, the processor updates the copies within the cache, and does not forward
the I/O to the memory controller.

5. Attacker trigger another SMI, and the processor uses the modified copy of the SMM code
inside its cache.

This attack is a perfect illustration of a compositional attack: both the memory controller and
the cache work as expected. The former prevents authorized accesses to the SMRAM, that is
a subset of the DRAM, by a processor not in SMM; the latter is keeping copies of successful
accesses to decrease latency due to memory accesses. However, the composition of the cache
and the memory controller breaks the BIOS Integrity property.

Countermeasure. The solution implemented by Intel to prevent further exploitation of this
vulnerability was to modify the behavior of the cache, when some memory access target the
SMRAM. Because the SMRAM size and location remain specific to each architecture, this means
it requires an additional step of configurations to tell the cache the physical addresses that
belong to the SMRAM.

The SMRAM Cache Poisoning attack is a textbook case of compositional attacks. It is interest-
ing to notice that six years later, Christopher Domas has disclosed another x86 vulnerability
called Sinkhole [6], which relies on a similar approach —but different hardware features— to
trick a processor in SMM to execute arbitrary instructions. Both attacks leave the content of the
SMRAM in DRAM intact, and leverage only legitimate hardware features.

2.3. BIOS HSE MECHANISM AND COMPOSITIONAL ATTACKS 25

2.3.2 Speed Racer

In 2015, Corey Kallenberg et al. showed that the scenario detailed previously, such that setting
BIOSWE triggers a SMI to suspend the execution of the system software, suffered from a race
condition if two cores cooperate [7].

Attack Path. On a typical x86 hardware architecture, all the x86 cores of the platform will
eventually enter SMM when a SMI is triggered. On the contrary, the BIOSWE flag is set as soon as
the BIOS_CNTL register is modified. If two cores cooperate, they can benefit from a sufficient
window for action and successfully tamper with the flash memory content. The attack proceeds
as follows:

1. One core tries ad infinitum to overwrite the content of the flash memory. Because the
BIOSWE bit is initially clear, the PCH discards its attempts, and the flash memory content
is correctly protected.

2. At the same time, another core set the BIOSWE bit.

3. A SMI is triggered, but by the time it propagates to the first core, it may have successfully
modified the flash memory content.

Countermeasure. To prevent this race condition, Intel has introduced a new configuration bit
to the BIOS_CNTL register: the SMM_BWP (SMM BIOS Write Protection). If the SMM_BWP is set, the
PCH discards any write access which targets the flash memory unless all processors are in SMM.

2.3.3 SENTER Sandman

Another attack has defeated the flash memory lockdown protection. In 2015, Xeno Kovah et al.
showed it was possible to leverage the Intel TXT technology to circumvent the flash memory
lockdown protection [1].

Intel TXT. The Intel Trusted eXecution Technology (TXT)[2] is a feature of some x86 processor,
whose purpose is twofold: it attests the integrity of the system software component program
without the need to trust the BIOS, and it provides a trusted execution environment to the
system software component.

Attack Path. The flash memory lockdown mechanism was based on the assumption that
unlocking the flash memory would force the execution of the BIOS, so that the latter could lock
it again. To that end, the PCH triggers a SMI at the same time as it unlocks the flash memory.
This mechanism was introduced at a time when software components could not configure x86
processors to ignore SMIs. This assumption became incorrect when Intel introduced the first
version of TXT, whose “trusted execution environment” provided by TXT-capable processors
explicitly disabled SMIs handling. As a consequence, adversarial system software components

26 CHAPTER 2. INTEL X86 ARCHITECTURE AND BIOS BACKGROUND

whose execution were initiated with TXT were able to unlock the flash memory, without being
interrupted by the SMI triggered by the PCH in response. Then, they could freely modify the
content of the flash memory, left unprotected by the PCH.

Countermeasure. The SMM_BWP configuration bit makes this attack ineffective. Besides, recent
x86 processors do not disable SMI during the initialization of a system software component
with TXT anymore.

2.4 Conclusion

In this Chapter, we gave an overview of the x86 hardware architecture and of the role played
by the BIOS within the software stack. We then have detailed how the BIOS relies on several
hardware features to remain isolated from the rest of the software stack. This illustrates real life
HSE mechanisms. Finally, we have presented three compositional attacks, to better illustrate
the threats they pose.

The rest of this manuscript will use the SMRAM Cache Poisoning Attack as a recurring
application use case for our contributions, because it has motivated our desire to formally
specify and verify HSE mechanisms, and it is a good illustration of compositional attacks.

3
State of the Art

“We build our computers the way we build our cities: over time, without a plan, on top of ruins.”

— Ellen Ullman

The formal verification of a system consists of proving its correctness with respect to a specifi-
cation [63], that is a description of properties targeted by the system. To that end, a model of
the system is defined to enable rigorous reasoning on the system behavior by means of formal
methods.

In this thesis, our objective is to give a formal theory of HSE mechanisms in the form
of requirements that trusted software components have to satisfy, and to verify that these
requirements do effectively provide the enforcement of targeted security policies. We steer a
middle course between two domains: hardware verification and system software verification.
Generally, hardware verification focus on properties which are transparent to the executed
software (e.g. cache coherency [8], linearizability of SGX instructions [64], or hardware-based
memory isolation [65]), and system software verification relies on hardware models which
abstract as much as possible of the architecture complexity. To the extent of our knowledge, the
closest related research project is the work of Jomaa et al. [11], who specified what requirements
a microkernel must satisfy in order for a MMU to enforce memory isolation at all times. This
approach remains an isolated initiative, hence the interactions of the numerous configurable
hardware features is less subject to formal verification.

The rest of this Chapter proceeds as follows. We detail how transition systems have been
widely and successfully used in order to model and verify hardware and software systems, and
where our approach stands with respect to previous work (Section 3.1). Then, we introduce
and justify our interest in compositional verification approaches that enable the “divide and
conquer” strategy to reduce the burden of verifying large systems (Section 3.2).

27

28 CHAPTER 3. STATE OF THE ART

3.1 Towards the Formal Verification of HSE Mechanisms

In a verification problem, the definition of a model allows for unambiguously describing the
set of possible behaviors of the system. The system is characterized by a set of states and by a
set of state transformations, called transitions (3.1.1). A sequence of transitions of the model,
commonly called trace, describes how the system has operated over time, that is which behavior
it has exhibited. As a consequence, by reasoning about the set of traces of the model, we reason
about the set of all possible behaviors of the system, e.g. to verify that security policies are
enforced at all time (3.1.2). To support this reasoning, many approaches and tools have been
proposed. Choosing between one of these tools means making a necessary compromise between
expressiveness, automation, and applicability (3.1.3). Regarding our objective, we need to use
hardware models which take into account the composition of the many hardware components
involved in HSE mechanisms implementation. Many x86 models have been proposed over
the years, but to the extent of our knowledge, none of them cover the hardware features we
are primarily interested in (3.1.4). To experiment with our formal theory of HSE mechanisms,
we propose our own model, and use this opportunity to identify necessary properties that a
large-scale model should exhibit in order to remain applicable during a verification process.

3.1.1 Modeling a Hardware Architecture

A system is characterized by a set of states (e.g. the state of a processor core typically includes
the values of its registers and its execution mode) and a set of state transformations (e.g. the
value of a register will change when a core executes certain instructions) which occur over
times as the system operates. Formally defining these two sets means constructing a model
of the system. Labeled transition systems [66] form a prominent class of transition systems,
characterized by the use of labels to distinguish between transitions.

Definition 3.1 (Labeled Transition System)
A labeled transition system is a tuple 〈S,L,R〉, such that S is a set of states, L is a set of labels,
and R ⊆ S× L× S is the transition relation, that is (s, l, s ′) ∈ R is a transition of the LTS.

Different names have been used to designate labels and labeled transitions, e.g. input vari-
ables [67], operations [68], rules [69], or actions [70]. Although the name changes, the motivation
remains to characterize the nature of the transition. LTS are well suited to reason about the
interactions of a system with its environment, e.g. hypercalls handled by a hypervisor [70] or
I/Os provoked by the execution of machine instructions [65]. Similarly to the work of Lie et
al. [65], we use labels to reason about the interactions between the hardware architecture and the
software components that are executed by this architecture. It allows us to define requirements
trusted software components have to satisfy to implement a given HSE mechanism.

Throughout this Chapter, we will use the airlock system as a running example, since it is both
simple —our examples remain of manageable size— and rich —we can use it to illustrate the
definitions we introduce. An airlock system is a device made of two doors, and an intermediary

3.1. TOWARDS THE FORMAL VERIFICATION OF HSE MECHANISMS 29

closed

closed

open

closed

closed
open

open

open

Open1

Close1

Open2

Close2

Figure 3.1: A simple airlock system modeled as a labeled transition system

chamber. To get across an airlock system, a user requests the opening of the first door, enters
the chamber, waits for the system to close the first door and open the second door, and exits the
chamber.

Example 3.1 (Airlock System)
We model our airlock system with a labeled transition system 〈S,L,R〉, such that:

– A door of the system can be either open or closed. The set of states of the airlock system
reflects the Cartesian product of the doors states.

S , {open, closed}× {open, closed}

– A transition is characterized by a request to open (Openi, with i ∈ {1, 2}) or close (Closei,
with i ∈ {1, 2}) a door of the system.

L , {Open1, Close1, Open2, Close2}

– The model does not allow the simultaneous opening of both doors, as stated by the definition
of R which does not contain a transition which leads to the state (open, open).

R , {(closed, closed), Open1, (open, closed),
(closed, closed), Open2, (closed, open),
(open, closed), Close1, (closed, closed),
(closed, open), Close2, (closed, closed)}

The resulting labeled transition system is pictured in Figure 3.1.

Our objective is to verify HSE mechanisms, therefore we need to be able to model them. To
that end, it is important to consider that (1) hardware architectures often allow for implementing

30 CHAPTER 3. STATE OF THE ART

several HSE mechanisms, and (2) hardware features involved in HSE mechanisms are not safe
by default. By defining HSE mechanisms of a given hardware architecture against a general-
purpose model of this architecture, rather than relying on ad-hoc models dedicated to specific
HSE mechanisms, we believe we reduce the overall verification effort induced by (1), and
address the threat posed by compositional attacks. However, (2) means such a general-purpose
model of hardware architectures necessarily embeds behavior which are legitimate with respect
to the hardware architecture functional specification, but violate some targeted security policies.
This is the case, for instance, if the BIOS leaves the SMRAM unlocked at the end of the boot
sequence.

3.1.2 Specifying Security Policies

The theory of properties of a transition system is now well understood, with an intuitive
classification of properties, such that:

– Safety properties [17, 18] characterize that nothing “bad” shall never happen.

– Liveness properties [18, 19] characterize that something “good” shall eventually happen.

Two classes of security policies commonly targeted by x86 HSE mechanisms are access
control and availability policies. An access control policy is a safety property: unauthorized
action by a subject shall never happen. An availability policy is a liveness property: the system
shall eventually satisfy the service.

Safety and liveness properties are expressed against sequences of transitions, commonly
called traces in the literature. Each formalism has its own definition of traces, which takes into
account its characteristic. As for the labeled transition systems, their traces interleaves a label
between each state [9].

Example 3.2 (Airlock System Trace)
With c = closed and o = open, the crossing, by a user, of the airlock system is characterized by
the following trace:

(c, c)
Open1−−−→(o, c)Close1−−−→(c, c)

Open2−−−→(c, o)Close2−−−→(c, c)

Afterwards, we write Σ(M) for the set of traces of a labeled transition system M.
Safety and liveness properties can be defined in terms of predicates on traces [71, 72, 73]. M

is said to be correct with respect to a property modeled as a predicate on traces P when

∀ρ ∈ Σ(M),P(ρ).

On the one hand, safety properties are characterized by an invariant ι on trace elements,
that is

P(ρ) , ι(ρ0)∧ P(ρ[1..]),

3.1. TOWARDS THE FORMAL VERIFICATION OF HSE MECHANISMS 31

where ρ0 is the first element of the trace, and ρ[1..] is the trace obtained by removing the first
element of ρ. On the other hand, liveness properties are characterized by a predicate η on trace
which has to be satisfied for at least a subtrace, that is

P(ρ) , ∃n > 0,η(ρ[..n])∨ P(ρ[1..]),

where ρ[..n] is the subtrace made with the n first elements of ρ.

Example 3.3 (Airlock Safety and Liveness Properties)
A typical safety property for an airlock system is that at least one door shall be closed at any
time. We formalize this property with the invariant ι, defined as follows:

ι(d1,d2) , d1 = closed∨ d2 = closed

The specification of the airlock system is defined with a labeled transition system. Assuming
the airlock device is initialized in a correct state (e.g. both doors are closed), we verify this
specification is correct with respect to the safety property characterized by ι by exhibiting a
proof that ι is an invariant with respect to R, that is

∀((d1,d2), l, (d ′1,d ′2)) ∈ R, ι(d1,d2)⇒ ι(d ′1,d ′2)

Proof. By definition of R, there are four transitions to consider, and our proof consists in an
enumeration of these cases. Case 1, both doors are closed, that is d1 = d2 = closed. The system
opens the first door, that is l = Open1. At the end of the transition, only the first door is open,
that is d ′1 = open and d ′2 = closed. By definition of ι, the statement to prove becomes

closed = closed∨ closed = closed⇒ open = closed∨ closed = closed

By definition of the disjunction ∨, the statement reduces to True ⇒ True, which is True by
definition of the implication⇒. The three other cases follow the exact same procedure. �

In addition, we can also prove that both doors of the airlock will eventually be closed. We
can characterize this liveness property with the predicate η on subtraces of one element, such
that

η(d1,d2) , d1 = closed∧ d2 = closed

We verify the specification of the airlock system is correct with respect to the liveness property
characterized by η by exhibiting a proof that for each transition of R, one of the states satisfies
η, that is

∀((d1,d2), l, (d ′1,d ′2)) ∈ R,η(d1,d2)∨ η(d
′
1,d ′2)

Proof. Again, the proof proceeds by case enumeration with respect to the definition of R, and
after unfolding η, we conclude using the definition of ∧ and ∨. �

Not all security policies can be formalized with predicates on traces. For instance, noninter-
ference [74] is a confidentiality policy which requires that so-called public inputs handled by a

32 CHAPTER 3. STATE OF THE ART

given system always produce the same output, regardless of concurrent secret inputs. In this
context, considering each trace independently is not sufficient, as to witness a violation of the
security policy requires to compare two traces together. As a consequence, such policies are
characterized by sets of sets of traces; they are called hyperproperties [40]. Verifying a system
with respect to a hyperproperty is harder in the general case, but certain hyperproperties, called
k-safety properties [40], can be reduced to an invariant enforcement which is more manageable
to prove.

In the context of formal verification, a security policy is characterized by a (set of) set(s) of
traces wherein the policy is enforced at all times. Because hardware features are unsafe, i.e. they
need to be configured by trusted software components which implements HSE mechanisms,
legitimate traces of a general-purpose x86 model will not be part of the “secure” traces. Our
formal theory of HSE mechanisms allows for identifying the subset of traces wherein the
mechanism is correctly implemented by the trusted software components. Verifying a HSE
mechanism consists of proving that this set of traces satisfies the predicate which characterizes
the targeted security policy. Because of the complexity of a typical x86 architecture, this work
cannot be achieved manually and we need the support of an appropriate tooling.

3.1.3 Approaches and Tools

Formal verification leverages two classes of approaches with their dedicated tools. On the one
hand, the most generic approach is the construction of a proof, that is a succession of inference
rules to derive the statement to be proven from formulas known to be true. Theorem provers
provide facilities to construct proofs and a checker to automatically verify these proofs. On the
other hand, it is possible to rely on algorithms whose correctness has been formally established
to handle a well-defined class of problems. Model checking [75] and satisfiability solvers [76]
are two classical instances of this approach.

The choice of one approach over another for a given verification problem is a compromise
constrained by requirements in terms of expressiveness, automation and applicability. More
expressiveness for formal language increase the scope of verification problems it can cover, but
it also reduces the level of automation of the tools used to verify its statements. Fully automated
procedures rely on algorithms whose computational complexity impairs their applicability for
more complex problems, e.g. model checking and the state explosion problem [77].

We now give an overview of state-of-the-art tools which are commonly leveraged for formal
verification of hardware and software components. We have organized it according to the
formal language they rely on.

Propositional and First-Order Logic. Propositional logic is characterized by terms, which
represents objects, and logical operators, such as conjunction ∧, disjunction ∨, implication
⇒, and negation ¬. First-order logic [78] extends propositional logic with predicates, that is
parameterized formulas that can be true or false with respect to the applied terms, and quantifiers,
such as ∀ (all values) or ∃ (there exists a value).

3.1. TOWARDS THE FORMAL VERIFICATION OF HSE MECHANISMS 33

SAT solvers [79] (e.g. Chaff [80])) form a class of tools whose purpose is to determine whether
a given propositional formula with boolean variables is satisfiable, by finding appropriate
instances for these variables. SMT solvers [81] (e.g. Z3 [82]) have a similar purpose, but they
target first-order logic formula —without quantifiers— and are not limited to boolean variables
(SMT stands for satisfiability modulo theories). Hence, in the theory of natural numbers, an
SMT solver will find that the formula x > y∧ x+ y = 5 is satisfiable with {x = 3,y = 2}, but the
formula x− y = 0 ∧ x 6= y is not satisfiable by any assignment. The lack of quantifiers has a
significant impact on formula expressiveness which reduces its applicability when it comes to
formal verification, e.g. we cannot express a specification of the form “at any point in a trace, a
predicate P is satisfied” if we consider a system can operate infinitely.

Temporal Logic. Modal logic [83] is a formal system which extends first-order logic with
modal operators. Temporal logic forms a family of modal logic systems, including e.g. Linear
Temporal Logic (LTL) [84] and Computation Tree Logic (CTL) [85]. Examples of LTL modular
operators are �P (P is always true), ♦P (P will eventually become true), and©P (P will be true
after the next transition of the system). CTL considers trees of possible futures (in opposition to
a linear future). CTL modal operator includes AP (P is true for all possible futures) and EP (there
exists at least one path where P becomes true). Temporal logic operators allow for reasoning
about propositions over time on infinite traces. Temporal logic formulas are commonly verified
using model checkers, e.g. NuSMV [67], SPIN [86] or TLA+ [87].

Despite improvements in algorithms, model checkers remains subject to the state explosion
problem [77], whose mitigation reduces the automation of the approach. For instance, symbolic
model checking requires to manually provide invariants to act as inductive hypotheses [88], and
bounded model checkers require to fix an upper bound for traces size, with the risk to abate
the result in the chosen number is too low [89].

Higher-order Logic. First-order logic quantifiers can only be applied on sets of terms (e.g.
natural numbers, booleans, or more complex structures such as the states of an airlock system).
Higher-order logic [90] does not suffer the same limitation, since they allow quantification over
sets of sets, functions and predicates. Hence, it becomes possible to express statements such
as for all sets with a total order <, for all pair of values α,β, then either α < β or β < α or α = β.
Therefore, higher order logic is more expressive than first-order logic, but it comes at a cost
in terms of automation. Interactive theorem provers (e.g. Coq [22], Isabelle/HOL [91], Atelier
B [92], or more recently Lean [93]) are based on higher-order logic.

We leverage a higher-order logic to define our formal theory of HSE mechanisms. This
allows us to reason about high-level properties implying HSE mechanisms —e.g. safety property
enforcement (Theorem 4.1) or mechanisms composition (Theorem 4.2)— where the hardware
model is left as a parameter of the proof.

34 CHAPTER 3. STATE OF THE ART

3.1.4 Tour of Existing x86 Models

To experiment with our approach, we decided to focus on the HSE mechanism implemented
by the BIOS at runtime to remain isolated from the rest of the software stack (Section 2.3). We
specify this mechanism and verify its correctness with respect to the security policy it aims to
enforce using Coq. We now give an overview of existing x86 models, and justify our choice to
develop our own model.

x86 Models by Intel. Intel has integrated formal verification in its processor design process
for more than a decade. Intel engineers first verified arithmetic operations performed by the
processors [94], then increased the verification scope to cover the complete execution unit [95].
More recently, the SGX instructions —which allow system software components to create
and manage enclaves [31]— have been verified with respect to security properties, rather than
functional specification [64].

Each project focused on one aspect of the x86 architecture and led to uncover logic errors and
inconsistencies in processor designs, while we aim for a more general-purpose model which
takes into account that hardware architecture are made of many components which interact
together. These (sometimes unsuspected) interactions may pave the road towards compositional
attacks. To the extend of our knowledge, Intel has not advertised about a “global” model of its
architecture, even though Nachiketh Potlapally, who was working at Intel at the time, discussed
the benefits of such a model in 2011 [96].

Besides, the models and tools used by Intel are rarely publicly available, hence we could not
leverage them to experiment with our approach.

x86 ISA Models. Several x86 model have been proposed by academic researchers over the
years for purposes of formally reasoning about machine-code programs. To that end, they have
modeled the x86 instructions set semantics, often referred to as x86 ISA.

Probably the most mature projects include RockSalt by Morissett et al. [97], Goel et al.
framework [98], and CompCert x86 assembly model [99]. These models allow for reasoning
about the execution of one software component in isolation. They focus on the semantics of
the x86 instruction set and abstract away as many hardware details as possible to increase the
applicability of the model. For instance, memories are commonly limited to the DRAM.

This approach works well when software components use a limited amount of hardware
features, as applications typically do, and to reason about correctness with respect to functional
specifications. It is less suitable in the context of HSE mechanisms verification with respect to
security policies, where multiple hardware components are involved, and the many features
exposed by the latter may interfere with each other.

It has been shown in the past that it is possible to extend such approaches, when their
abstraction is too strong. For instance, Chen et al. have extended the hardware model of
CompCertX, a variant of CompCert used in the development of formally verified kernels [100],
with a notion of input devices and interrupts [101]. However the primarily focus of these

3.1. TOWARDS THE FORMAL VERIFICATION OF HSE MECHANISMS 35

projects is to reason about software components, not the underlying hardware architecture.

Ad-hoc x86 Models Another category of x86 models is ad-hoc models, especially developed
to verify a dedicated system software component. As such, they focus on hardware features
used by the target of verification. The objective of these approaches is to verify the software
component and so they suppose the hardware will behave as expected. On the contrary, we aim
to specify requirements on software components, and to use these requirements as assumptions
to verify the underlying architecture.

The seL4 microkernel [102] is, to date, the most advanced and mature verified implementa-
tion of a microkernel. A implementation in C of the kernel is proven correct with respect to a
functional implementation modeled in the Isabelle/HOL theorem prover, and the authors have
proven this model correctly enforces that security policies including integrity and confidentiality
policies [103]. In practice, the hardware model focuses on MMU, cache and interrupt handling.
In large parts the exact behavior of hardware devices is left non-deterministic, in order to reduce
the assumptions made by the model for the hardware. Besides, we already mentioned the work
of Jomaa et al. [11]. In 2016, they have proposed a formal machine-checked proof (in Coq) of
guest isolation by an idealized protokernel based on a MMU. Similarly to seL4, their hardware
model focus on MMU and interrupt handling. In both cases, there is a clear separation between
the software component model and the hardware model, and it may be possible to extract the
hardware model and reuse it. However, their scope does not include the hardware features
involved in the HSE mechanisms implemented by the BIOS and described in Section 2.2.3.

Between 2011 and 2014, Gilles Barthe et al. have worked on an idealized model of a hy-
pervisor [70, 104, 105]. This model is defined in terms of states, actions and the semantics of
actions as state transformers. The state definition mixes information about both hardware
components (Central Processing Unit (CPU) execution mode, registers, memory content, etc.)
and software components (list of guests, the current active guest, memory mapping for the
hypervisor and the guests, etc.). The set of actions describes the events which can trigger a
transformation of the model states. For instance, it includes various tasks that the hypervisor
must carry out, such as scheduling the guests OS, hypercalls handling, or memory management.
Certain actions also witness the execution of guests, for instance when the executing guest OS
reads from or writes to memory. The resulting project, called VirtCert and implemented in
the Coq theorem prover, is fairly large, with over 50,000 lines of code. The verification results
focus on various isolation properties, from the most natural and straightforward (i.e. an OS
guest cannot write to or read from a page it does not own) up to non-interference variants
including protection against cache-timing attacks, notoriously harder to reason with. The use of
labeled transitions to reason about the interactions of the guests with the underlying system
—made of the hardware architecture and the hypervisor— constitutes an interesting approach
that we could leverage for modeling the interactions between the software components and the
hardware model. However, the focus of VirtCert remains very specific and does not cover the
SMM and related mechanisms.

36 CHAPTER 3. STATE OF THE ART

Models for Other Hardware Architectures. The x86 architecture is not the only hardware
architecture which has been the object of formal verification projects. We detail two projects
targeting ARM and XOM architectures because they follow alternative approaches that are of
interest with respect to our goal.

The two latest versions of the ARM processors have been formally specified [106, 107]. It is
important to emphasize that the specification of the ARMv8 architectures1 is the result of an
important 5-year effort by ARM Ltd to integrate formal specification definition to their regular
specification process [107]. The formal specification of ARMv8 architectures is written in a
dedicated language called ARM Specification Language, and has been intensively validated
against the ARM internal conformance testsuite.. Once the level of trustworthiness of the ASL
specifications have been established, they have been able to leverage them to formally verify
properties of the hardware architectures, e.g. by compiling them to a subset of Verilog accepted
by commercial Verilog model checkers [108]. The result of these efforts is being made available
on the ARM website, in addition to regular informal specifications [109]. This represents an
exciting opportunity for research targeting ARM architectures, and we can only hope that it
eventually becomes a standard in the industry.

ASL is used to describe the architecture in an unambiguous fashion, but it cannot be used
as-is to reason about the correctness of this architecture. This means the ASL model has to be
compiled to another representation, e.g. Verilog or a model checker modeling language. On
the contrary, we decided to implement our model directly in the language used by the tool
supporting our verification process, in order to avoid this translation step.

The eXecute Only Memory (XOM) microprocessor architecture maintains separate so-called
compartments for applications [110]. A XOM CPU keeps track of each memory location owner,
using a tagging mechanism, and supposedly prevents an application from accessing a memory
location it does not own. In 2003, David Lie et al. have verified the XOM architecture [65] using
the Murϕ model checker [69]. The verification objective of the authors was to prove that the
XOM architecture fulfills its promise to be tamper-resistant, by forbidding an attacker to modify
the memory location owned by a given application. The verification proceeds as follows:

1. A first specification of the XOM architecture, called the “actual model”, is defined. States
of this first model contain different hardware components of a XOM microprocessor, i.e.
registers, cache, volatile memory, and the internal machinery of XOM to track ownership
of memory locations. Transitions can be divided into two categories: the normal execution
of an application by the microprocessor, and active tampering from an adversary part,
leading the actual model to embed an adversary model.

2. A second specification, called the “idealized model”, abstracts away the memory hierarchy
formed by the cache and the volatile memory, and models the execution of a single
application, without an adversary. From this perspective, it encodes the security property.

1There are three variants of the ARM Architecture, for as many use cases: the A-class architecture provides the
necessary features to allow an operating system to manage applications, the R-class processors are dedicated to real-time
systems, and the M-class are used in microcontrollers.

3.2. COMPOSITIONAL VERIFICATION 37

3. To let Murϕ explore both models simultaneously, the authors have manually defined
a third model. Transitions which describe the execution of an application in the actual
model also update the idealized model, whereas transitions which describe actions by the
attacker only affect the actual model.

4. The authors have defined a function which checks if an “actual state” is equivalent to an
“idealized state”, and let Murϕ verify that the state equivalence is an invariant of the third
model.

In the process of verifying XOM, the authors have been able to show with their model that
the XOM architecture was subject to several replay attacks, and that the countermeasures
they proposed were effective. The formalism used to define the actual model follows a logic
which is approaching our needs. The labels of the transitions characterize the execution of a
software component by the architecture, without any detail in the model about its behavior or
its implementation. However, we believe the necessity to manually maintain a merge of two
transition systems reduces its applicability in the long run, as new architecture versions are
released frequently. This is why our formal theory of HSE mechanism is characterized by a
subset of traces of a model, rather than an additional, idealized model.

In order to experiment with our theory, we have chosen to specify and verify the HSE mechanism
implemented by the BIOS to remain isolated from the rest of the software stack at runtime. This
case study illustrates the challenges faced by the HSE mechanisms in general. To the best of our
knowledge, the hardware features involved in this HSE mechanism are outside of the scope of
existing models, which is why we developed our own. We drew on modeling approaches like
VirtCert [70] and XOM [65], and how they handle the interaction with the rest of the system.

Our theory is characterized by defining a model of the hardware architecture, specifying
restrictions over the model, and verifying the resulting restricted model. This methodology
is easily expressed in a higher logic. Hardware verification by means of theorem provers has
proven to be a practical alternative to model checking [9, 10]. For these reasons, we decided to
implement our model and proofs using the Coq theorem prover, to challenge the applicability
of our theory with a focused verification problem. This experience convinced us of the interests
of a general-purpose hardware model to verify different HSE mechanisms against the same
reference, and we have identified several interesting properties for such a model to remain
applicable in a theorem prover such as Coq.

3.2 Compositional Verification

The formal verification of a system as complex as the x86 hardware architecture poses significant
challenges. This is especially true considering that we focus on security policies and composi-
tional attacks —each hardware feature which is absent from the model can potentially be part

38 CHAPTER 3. STATE OF THE ART

of an attack path. Previous works have advocated for compositional reasoning approaches,
such as assume-guarantee [111] or rely-guarantee [112] paradigms, as an interesting solution to
tackle these challenges [13, 14]. In the context of compositional reasoning, the system is broken
down into several components. A component C is proven to enforce a guarantee G as long as
an assumption A is met. If a component C ′ is proven to enforce A, then the composition of C
and C ′ enforces G. Our objective is to apply compositional reasoning paradigms in Coq.

The rest of this Section proceeds as follows. First, we discuss how labeled transition systems
can be used to model interacting components (3.2.1), and how process algebra systems have been
used to facilitate the definition of these interactions (3.2.2). Finally, we detail how compositional
reasoning has been implemented specifically in theorem provers (3.2.3).

3.2.1 Labeled Transition Systems and Components Composition

Labeled transition systems have originally been introduced to reason about automata composi-
tions [66], with the idea that transitions of different transition systems which share the same label
happen simultaneously. In our context, an interesting variant of LTS is interface automata [113],
because they distinguish between three classes of transitions, modeled with three disjoint sets
of labels: input actions (denoted by in(S) for an automaton S), output actions (denoted by
out(S)), and internal actions (denoted by int(S)). They form the signature of a given automaton
(denoted by act(S)). Its transition relation R(S) is a subset of state(S)× act(S)× state(S), where
state(S) is the set of states of S. Composition of interface automata is achieved via input and
output actions. More precisely, when one automaton performs an output action π during a
transition, all automata having π as input action perform π simultaneously.

Example 3.4 (Airlock System as Interface Automata)
In order to illustrate how a system can be broken down into small components, we take once
again the example of the airlock system. In this context, the most obvious component is the
door. A door has two states: it can either be open or closed. It takes two input actions: Open
(the action to open the door) and Close (the action to close the door). It does not have any
output action, which means a door does not interact actively with the rest of the system. One
possible specification for a door i of an airlock system is the following interface automaton:

1 2

Openi

Closei

OpeniClosei

Openi

Closei

In addition to two doors, an airlock system needs a controller, whose purpose is to handle
requests coming from users and to effectively open and close doors in consequence. We consider
a slightly different situation than the specification given in Example 3.1. Here, there are only
two commands, modeled with two input actions: Req1 (one user wants the first door to be

3.2. COMPOSITIONAL VERIFICATION 39

opened) and Req2 (one user wants the second door to be opened). The controller does not
embed the states of the doors, but has four output actions, two per doors (Openi and Closei,
for i ∈ {1, 2}). We propose the following interface automaton:

2 3 4
Close2 Open1

567
Close1Open2

1

Req1

Req2

Req2Req1

Req1

Req2

Open1

Close1

Open2

Close2

Req1

Req2

Input and output actions models two facets of a component: how it is being used (input),
and how it uses other components (output). However, it is a fairly low-level modeling structure,
which complicates its usage for a large-scale model — for instance, our airlock system controller
is modeled with seven different states— and impair the model readability. In particular, it is
hard to formally establish the causal relation between input and output actions. Rather than
defining an automaton manually, it is possible to leverage process algebra formal languages.
They allow for modeling, by means of formal languages, interacting components as concurrent
processes which exchange messages through channels.

3.2.2 Process Algebra

Process algebras and their proof systems have been developed to reason about programs
executed in parallel. In process algebra such as Calculus of Communication Systems [114]
or Communicating Sequential Processes [115], concurrent threads run in parallel, and syn-
chronization is achieved by sending and waiting for messages, as specified by a dedicated
language.

Using these languages, we can write our “programs of output actions”, as we demonstrate
in the following example.

Example 3.5 (Airlock System in π-calculus)
We now try to give a specification of our airlock system using a process algebra called π-calculus.
Once again, we consider three components: two doors and a controller. Our objective is to write
a specification equivalent to our interface automata (although we do not provide a proof of that
equivalence).

We have used the following π-calculus construction to specify the airlock system:

– c(x).P means receiving a value from the channel c, bounding this value to the fresh name x,

40 CHAPTER 3. STATE OF THE ART

then executing the process P.

– c̄〈x〉.P means sending the name x through the channel c, then executing the process P.

– [x = OPEN]P is a guard, that is P is executed if x is equal to the name OPEN.

– P+Q is the nondeterministic choice operator, we use it here in conjunction with guards to
implement an if-then-else construct. That is, considering the process

c(x).([x = 1]P+ [x = 2]Q)

If the value received from c is 1, P is executed. If it is 2, then Q is executed.

– νc.P means a new name c is created, and available for P to use it.

– P||Q is the parallel execution of P and Q.

CloseDoor(c) , c(x). ([x = OPEN]OpenDoor(c)
+[x = CLOSE]CloseDoor(c))

OpenDoor(c) , c(x). ([x = CLOSE]CloseDoor(c)
+[x = OPEN]OpenDoor(c))

Controller(c,d1,d2) , c(x). [x = OPEN1]d̄2〈CLOSE〉.d̄1〈OPEN〉.Controller(c,d1,d2)

+[x = OPEN2]d̄1〈CLOSE〉.d̄2〈OPEN〉.Controller(c,d1,d2)

System , νc.νd1.νd2.(Controller(c,d1,d2)

|| CloseDoor(d1)

|| CloseDoor(d2))

The system, modeled with the process System, creates the channels used by its components
to communicate, then starts their concurrent executions. A door is either open or closed, and
we model this with two mutually recursive processes CloseDoor and OpenDoor. They take one
channel c as an argument, then wait for new inputs coming from c. A controller is a recursive
process which takes three channels c, d1 and d2 as arguments. It waits for new requests coming
from c. When it receives a new request to open the first (resp. second) door, it first closes the
second (resp. first) door, using the channel d2 (resp. d1). Then, it opens the first (resp. second)
door, using the channel d1 (resp. d2).

Process algebras such as π-calculus are well-suited formalisms for describing component
interactions. In the context of the previous example, we implement a simple pattern: wait for
requests, act accordingly, then start again. A similar approach has been proposed by Choi et
al. in 2017. They have released Kami [10], a framework for Coq to design, verify and extract
(in the form of BlueSpec [116] programs) hardware components implementations. In Kami,
components are defined as modules M, that is a particular labeled transition system, whose

3.2. COMPOSITIONAL VERIFICATION 41

transitions are of the form
p
i−→
a

(v,q)

where i is an operation called by another component, p is the state of the component before the
operation i, a is a program of actions performed by the component in order to compute the
result of i, v is the result of i that is returned to the caller, and q is the modified state of the
component. Actions, in this context, are either local manipulation of the component’s state or
calls of operations handled by other components.

To reason about M with respect to a specification MS, Kami introduces a refinement relation
v. A module M refines a module MS (i.e. M is an implementation of MS) if any traces of M
can also be produced by MS. A component M can be composed with another component M ′ to
form a larger component M+M ′, for instance when the operations exposed by M ′ are used by
M. The authors introduced another “modular” refinement property, whose simplest expression
could be

M v N∧ R v S⇒M+ R v N+ S

They proved the correctness of a realistic multiprocessor system with respect to a simple ISA
semantics and Lamport’s sequential consistency [117] as the memory model. Their proofs
consist of a succession of refinement proofs from their implementation to high-level modules
which model instructions semantics and processor memory model.

Kami relies on a very interesting approach to model interconnected components. It extends
labeled transition systems to associate programs of output actions to transitions labeled with
input actions. However, and similarly to previous hardware verification researches, the proofs
focus on properties that are transparent to software components and do not require configuration
from their part. The approach used by Kami in order to model interconnect components is
very promising, but the verification process relies on successive refinements, rather than
a compositional reasoning —which remains our objective. We now give an overview of
compositional reasoning framework implemented in theorem provers.

3.2.3 Compositional Reasoning for Theorem Provers

Kami demonstrates that it is possible to model components in isolation, with an emphasis
on how they interact together. However, modeling the system is only a first step before the
verification process. To our surprise, compositional reasoning in presence of interconnected
components has been less studied in the theorem proving community, with the notable exception
of the B-method [92].

Several approaches [118, 119, 120] have been proposed to implement compositional reasoning
for the B-method, a well-established method of software development based on the B formal
system. B allows for the definition of functional specifications, called abstract machines, and the
refinement of these specifications up to executable code. An abstract machine is characterized
by a set of variables, and several operations which update these variables. Preconditions in the
form of predicates on the machine variables can be attached to a given operation to specify
when the operation can be used. B has already been used in order to reason about systems

42 CHAPTER 3. STATE OF THE ART

made of components which interact via interfaces [118, 119, 120]. In particular, Lanoix et al. [120]
proposed the following reasoning:

– Interfaces and requirements over components which expose these interfaces are defined
in the form of an abstract machine, where the operations preconditions models the
assumption a user needs to satisfy.

– A component which exposes this interface is expected to be a refinement (a more concrete
implementation) of this abstract machine.

– A model of a component which uses an interface can include the abstract machine which
models this interface and uses its operations, similarly to what aggregation enables in
object-orienting programming language.

This approach implements the key concepts of compositional reasoning we are interested in.
However, the B-method proof environment is quite different from other theorem provers, such
as Coq. In particular, B is similar to imperative languages, when Gallina is a purely functional
language.

To the extent of our knowledge, the Coq.io framework, developed and released by Guillaume
Claret et al. [121], represents the closest approach for Coq, but it addresses a different problem
—that is reasoning about functional programs in presence of side effects— and its compositional
reasoning approach is far more limited. Coq.io only considers two components: a program
with side effects, and an outer environment (typically the operating system) which carries out
these effects. For example, a program which reads the content of a file relies on an operating
system to access the file stored in a hard drive and makes this content available in its address
space.

Modeling side effects in pure programming language, such as Haskell or Gallina, is usually
achieved with monads [122, 23], and Coq.io is no exception. Programs with effects in Coq.io

are defined in a dedicated monad, with side effects (e.g. system calls to read from or write to
a file) axiomatized as monadic operations of this monad. The proofs rely on scenarios which
determine how an environment (e.g. an operating system) would react to the program requests.
The verification goal is to verify that, under the hypothesis that the environment is correct with
respect to a scenario, then a program with effects is also correct with respect to an expected
trace of side effects operations it produces. Coq.io paves the road towards a compositional
approach reasoning in Coq, but remains incomplete in our perspective. A program with effects
can be verified, but the verification of the composition of this program with its environment is
out of the scope of the project.

Besides, traditional monadic approaches have a reputation not to compose very well [123],
despite constructions such as monad transformers [124]. In our case, we explicitly need to
handle the composition of several components, e.g. if one component is connected to more than
just one. Recently, algebraic effects and effect handlers [24] have been proposed to address this
limitation, and they have been the object of implementations for several significant functional
programming languages (e.g. Eff [24], Idris [125], or Haskell [126]).

3.3. CONCLUSION 43

We advocate that an approach inspired by algebraic effects and effect handlers can be used
to implement a compositional approach for Coq similar to what others have already proposed
for the B-method, in particular by Lanoix et al. [120]. This is because the separation between
program with effects and effect handlers mimics the separation between one component which
interacts with a second one. We believe they allow for modeling components similarly to what
Kami achieves, but constitute at the same time a more familiar formalism for the functional
programming community whom Coq developers belong to.

3.3 Conclusion

In this Chapter, we have explained how it is possible to formally verify a system with respect to
a security policy by defining a transition system to model its behavior and reasoning about the
set of its traces. This general verification approach does not fully apply in the context of HSE
mechanisms, because the hardware architectures are not safe by default. Our theory of HSE
mechanisms, presented in Chapter 4, takes this into account. To demonstrate how this theory
can be leveraged in practice, we take the example of a HSE mechanism implemented by the
BIOS at runtime; and because the scope of existing x86 models does not cover the hardware
features that we are interested in, we developed our own in the experiments we detailed in
Chapter 5. We decided to use Coq, because its higher logic allows us to easily express the
specificities of our approach.

A general-purpose x86 hardware model poses an important challenge due to the scale
of the hardware architecture. Previous works have advocated for compositional reasoning
approaches, such as assume-guarantee [111] or rely-guarantee [112] paradigms, as an interesting
solution to tackle these challenges [13, 14]. However, to our surprise, the subject has not been
widely explored in Coq. In Chapter 6, we propose a novel formalism which leverages existing
functional programming language paradigms to enable compositional reasoning in Coq.

44 CHAPTER 3. STATE OF THE ART

Part II

Specifying and Verifying HSE
Mechanisms

45

4
A Theory of HSE

Mechanisms

“The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be
absolutely precise.”

— Edsger Dijkstra

Our first contribution is a theory of HSE mechanisms which takes into account that (1) hardware
architectures often allow for implementing several HSE mechanisms, and (2) hardware features
involved in HSE mechanisms are not safe by default, hence the role played by trusted software
components to configure them. The rest of this Chapter proceeds as follows. First, we detail
how our theory allows for specifying and verifying HSE mechanisms against general-purpose
hardware models, in isolation and in composition (Section 4.1). To demonstrate how we can
reason about composition of HSE mechanisms, we proceed through a case study focused on
a so-called code injection policy. More precisely, we prove how we can enforce this policy by
means of two HSE mechanisms implemented at the same time (Section 4.2). This case study is
used as the basis for a more in-depth experiment in the next Chapter.

For readers familiar with Coq, we present an implementation of our theory in Appendix A.
This development comprises machine-checked proofs of the theorems and lemmas that we
present throughout this Chapter.

4.1 Theory Definition

We model the hardware architecture as a labeled transition system whose sequences of tran-
sitions, also called traces, characterize every possible execution of software components (Sec-
tion 4.1.1). This model acts as a foundation for our HSE mechanisms theory (Section 4.1.2). We
then define correctness in the context of HSE mechanisms (Section 4.1.3). Our motivation to
separate the model of the hardware architecture and HSE mechanism definitions is to enable

47

48 CHAPTER 4. A THEORY OF HSE MECHANISMS

the reuse of the same hardware model to verify the correctness of several HSE mechanisms.
Besides, it makes reasoning about HSE mechanisms composition —that is, the implementation,
at the same time, of two HSE mechanisms or more— possible (4.1.4).

4.1.1 Hardware Model

We model a hardware architecture, which can execute different software components, as a
particular Labelled Transition System (LTS) (Definition 3.1) 1 with two sets of labels instead of
one.

States. The set of states of the LTS models possible configurations of the hardware compo-
nents. This configuration changes over time with respect to the hardware specifications and
comprises any relevant data such as register values, inner memory contents, etc. These state
transformations occur during the system’s transitions.

Labeled Transitions. We distinguish between two classes of transitions: the software tran-
sitions which are direct and foreseeable side effects of the execution of instructions and the
hardware transitions which are not. Following the terminology of David Basin et al. [73],
software transitions are “controllable”, while hardware transitions are only “observable”.

We illustrate this definition with the x86 instruction mov (%ecx),%eax 2. With respect to the
semantics of this instruction, a x86 core: (1) reads the content of the register ecx, (2) interprets
this value as an address and reads the main memory at this address, (3) writes this content into
the register eax, (4) updates the register eip with the address of the next instruction to execute.
The execution of this instruction by a core may result in several sequences of transitions. First,
the four execution steps described above translate into four software transitions. Between each
of these transitions, a hardware transition can occur. For instance, one hardware component
can initiate a DMA. Also, if the content of ecx is not a valid address, the processor raises
an interrupt. In this scenario, only one software transition occurs —when the core reads the
content of ecx— then the next transition models the interrupt.

Definition 4.1 (Hardware Model)
A hardware model Σ is a tuple 〈H,LS,LH,→〉, where

– H is the set of configurations of the hardware architecture

– LS is the set of labels to identify software transitions

– LH is the set of labels to identify hardware transitions

– → is the transition relation of the system

The transition relation → is a predicate on H× L×H, where L = LS] LH and] is the

1On page 28.
2Written in AT&T syntax here.

4.1. THEORY DEFINITION 49

disjoint union which requires that LS ∩ LH = ∅. A transition labeled with l from h to h ′ is
denoted by

h
l−→ h ′

and we write T(Σ) for the set of triples which satisfy the transition relation, that is

T(Σ) , { (h, l,h ′) | h l−→ h ′ }

Traces. A trace is a non-empty sequence of transitions of Σ, such that for two consecutive
transitions, the resulting state of the first one is the initial state of the next one.

Definition 4.2 (Traces)
We write R(Σ) for the set of traces of a hardware model Σ, and we consider the following
functions:

– init : R(Σ)→ H maps a trace to its initial state

– trans : R(Σ)→ ℘(T(Σ)) maps a trace to the set of transitions which occurred during the trace

Mainstream hardware architectures are not “safe” by default, and require additional software
configuration to enforce security properties. For instance, it is legitimate, from a x86 specification
perspective, to enter ring 3 mode with a page table which allows for modifying kernel code
and data. We aim to model HSE mechanisms as subsets of traces, to discard traces that are
legitimate from a hardware specification perspective, yet dangerous from a security perspective.

4.1.2 HSE Mechanisms

In our theory, a HSE mechanism is primarily characterized by a set of trusted software com-
ponents, a set of requirements over states and a set of requirements over software transitions.
Trusted software components are responsible for implementing the HSE mechanism. To that
end, they have to correctly configure the underlying hardware mechanism in accordance with
the two requirements over states and over software transitions.

On the one hand, the purpose of the requirements over states is to identify the hardware
configurations which constrain the execution of untrusted software components with respect to
a targeted security policy.

On the other hand, the purpose of the requirements over software transitions is to guarantee
requirements over states hold true at all time. Because we consider an adversary model where
attackers control untrusted software components, we do not consider any hypothesis on their
behavior. Therefore, requirements over software transitions should only constrain the execution
of trusted software components, which implement the HSE mechanism.

These two classes of requirements allow us to determine a subset of compliant traces, that
is traces where trusted software components have correctly implemented a HSE mechanism
by satisfying the requirements at all time. From this perspective, to verify whether this HSE

50 CHAPTER 4. A THEORY OF HSE MECHANISMS

mechanism is correct with respect to a targeted security policy means proving its set of compliant
traces satisfies the predicate which models the policy.

HSE Mechanisms. In the context of HSE mechanisms, trusted and untrusted software com-
ponents alike use the same interface to interact with the underlying hardware components:
the processor instructions set. To reason about HSE mechanisms, it is necessary to be able to
determine which software component is executed at a given time. In practice, a subset of the
states of the hardware architecture is dedicated to each software component. For instance, x86
processors protection rings are commonly used to execute several software components. Ring 0
is dedicated to the operating system, whereas the applications are executed by a core in ring 3,
with a particular page table setup.

Definition 4.3 (Hardware-Software Mapping)
Given S a set of software components, a hardware-software mapping context : H → S is a
function which takes a hardware state and returns the software component currently executed.

This definition is of key importance, because it implies strong hypotheses on how a software
stack is executed. First, we assume only one software component is executed at a given time
by the hardware architecture, in order to simplify our definitions. We believe dealing with
multi-core architectures is possible with the cost of additional efforts —e.g. by defining a set
of identifiers to select a particular core— yet it remains to be proven as we have not tackled
this challenge during this thesis. Besides, there are approaches which allow for executing
two software components using the same “hardware context”, e.g. JavaScript programs of
two tabs inside a browser are arguably two distinct software components. However, from the
hardware architecture perspective, these three components —the browser and the two JavaScript
programs— are indistinguishable, and enforcing a security policy in such a context is achieved
by means of software measures, e.g. program interpretation or software fault isolation [97].

We say a software transition is trusted (respectively untrusted) when it occurs from a state
associated to a trusted (respectively untrusted) software component. A hardware-software
mapping is mandatory to define requirements over software transitions that are consistent with
respect to our adversary model, i.e. which only constrain trusted software components.

Definition 4.4 (HSE Mechanism)
A HSE mechanism ∆ is a tuple 〈S, T , context, hardware_req, software_req〉, such that

– S is the set of software components executed by the hardware architecture.

– T ⊆ S is the set of trusted software components which implement the HSE mechanism and
form its Trusted Computing Base (TCB).

– context is a hardware-software mapping to determine which software component is currently
executed by the core.

4.1. THEORY DEFINITION 51

Processor

PCH

Flash
Memory

TPM

USB Con-
troller

PCI Con-
troller

Figure 4.1: From the processor to the flash memory

– hardware_req is a predicate on H to distinguish between safe hardware configurations and
potentially vulnerable ones.

– software_req is a predicate on H× LS to distinguish between software transitions that trusted
software components can safely use, and potentially harmful ones they need to avoid.

We illustrate this definition with the flash memory lockdown mechanism described in
Section 2.2.3.

Example 4.1 (Model of Flash Memory Lockdown Mechanism)
As a reminder, such mechanism enforces the integrity of the BIOS code within the flash memory
and is implemented by the PCH. As pictured in Figure 4.1, the PCH acts as a proxy between the
core and a collection of peripherals, including the flash memory. The HSE mechanism proceeds
as follows:

1. By default, the flash memory is locked and its content cannot be modified. By setting the
correct bit of a dedicated register of the PCH (BIOS_CNTL), a software component requests to
unlock the flash memory.

2. When a software component (e.g. system software) unlocks the flash memory, the PCH
triggers a SMI.

3. This forces the core to enter SMM. By doing so, the core stops the execution of the software
component which has unlocked the flash memory and starts the execution of the BIOS.

4. In order to protect the integrity of the flash memory content, the BIOS is expected to lock
the flash memory again, before resuming the execution of the system software with the rsm

assembly instruction.

Legacy BIOSes probably used this mechanism in order to implement an ad-hoc communi-
cation channel between the BIOS and the system software component, e.g. to initiate a BIOS

52 CHAPTER 4. A THEORY OF HSE MECHANISMS

update. The UEFI standard introduces dedicated protocols to enable communication between
the BIOS and the system software component, and our understanding is that in most implemen-
tations the BIOS action, in response to a SMI triggered by the unlocking of the flash memory, is
limited to lock it again and resume.

The set of trusted software components is limited to the BIOS, that is T = {bios}. This means
the rest of the software stack (e.g. the operating system and its applications) are untrusted and
therefore assumed to be under the control of attackers. The hardware-software context maps
CPUs in SMM with the execution of the BIOS, that is

context(h) = bios if h characterizes a CPU in SMM
context(h) ∈ S\{bios} otherwise

A safe hardware state (hardware_req) is either a state wherein the BIOS is executed, or a state
wherein the flash memory is locked. It is expected that the BIOS locks the flash memory before
using the rsm instruction (software_req).

HSE Laws. As it is, our theory of HSE mechanisms is too permissive. For a HSE mechanism
to be consistent, it must also obey two requirements, together called the HSE laws. The first
law says that the software_req predicate always holds true for untrusted software transitions.
That is, the first law enforces that a HSE mechanism definition does not make any assumption
regarding untrusted software components. The second law says that the requirements over
states specified by hardware_req are invariant with respect to software_req. As long as the trusted
software components which implement the HSE mechanism only generate software transitions
which satisfy the software_req predicate, the hardware_req predicate holds true. This means the
software transitions at the untrusted software components disposal cannot put the system into
an unsafe state.

Definition 4.5 (HSE Laws)
A HSE mechanism ∆ has to satisfy the following properties:

1. Untrusted software transitions satisfy software_req: ∀(h, l,h ′) ∈ T(Σ), ∀x 6∈ T ,

(l ∈ LS ∧ context(h) = x)⇒ software_req(h, l)

2. hardware_req is an invariant with respect to software_req: ∀(h, l,h ′) ∈ T(Σ),

(hardware_req(h)∧ (l ∈ LS ⇒ software_req(h, l)))⇒ hardware_req(h ′)

On the one hand, a HSE mechanism definition which does not satisfy the first law is
incorrectly making assumptions about “untrusted” software components. This makes these
components part of the TCB de facto, even though they do not belong to T. Formally defining a
HSE mechanism may be the occasion to uncover such implicit assumptions. On the other hand,
a HSE mechanism which does not satisfy the second law has to be carefully reviewed. As it

4.1. THEORY DEFINITION 53

stands, it lets the hardware architecture reach a state wherein the hardware configuration does
not satisfy the requirements over states, despite the correct implementation of the mechanism
by the trusted software components. In such a condition, the hardware architecture may stop
constraining the execution of untrusted software components with respect to the targeted
security policy. This could mean that constraints over trusted software components execution
are incomplete, or that requirements over hardware states are too restrictive. If the requirements
over hardware states cannot be loosened without threatening the security policy enforcement
or finding restrictions over trusted software execution, then the HSE mechanism probably does
not serve its purpose.

Example 4.2 (Flash Memory Lockdown Inconsistency)
We can convince ourselves that the informal definition description we have discussed in the
Example 4.1 obeys the first HSE law, but does not obey the second one.

Untrusted software transitions satisfy software_req. The only software restriction we have
formulated concerns the use of the rsm instruction by the BIOS. The rest of the software stack
can leverage the complete x86 instructions set with no restriction. In particular, an attacker is
free to unlock the flash memory thanks to the BIOS_CNTL register.

hardware_req is not an invariant with respect to software_req. A CPU is either in SMM or not
in SMM. If it is in SMM, the only way to leave SMM is to execute the rsm instruction, which
qualifies as a software transition. If the CPU is in SMM, the software_req hold true for this
software transition when the flash memory is locked. As a consequence, a BIOS which correctly
implements this HSE mechanism locks the flash memory prior to leaving the SMM. However, if
the CPU is not in SMM, and tries to open the flash memory, two things happen sequentially.
First, the flash memory is effectively opened. This has to be modeled by a software transition.
Then, the PCH triggers a SMI, leading the CPU to enter SMM. A SMI has to be modeled as a
hardware transition. Between the modification of the BIOS_CNTL register and the treatment of
the SMI by the CPU, the hardware_req predicate is not satisfied.

It is because the flash memory lockdown as described here does not satisfy the first law
that the race condition uncovered by Corey Kallenberg et al. [7] is possible. On the contrary,
the SMM_BWP register semantics —detailed in Subsection 2.3.2— allows for defining a HSE
mechanism which satisfies both laws, because the register ties together the state of the CPUs
and the flash memory state.

Trace Compliance. Whether trusted software components are correctly implementing a given
HSE mechanism is a safety property: trusted software components shall never generate a
software transition which does not satisfy the requirements of the HSE mechanism. The purpose
of these requirements over software transitions is to prevent untrusted software components
to reach a hardware configuration wherein the requirements over states are not satisfied. This
implies that the initial state of the trace must satisfy the requirements over states. A trace whose

54 CHAPTER 4. A THEORY OF HSE MECHANISMS

initial state satisfies the requirements over states and where trusted software components do
correctly implement a HSE mechanism is said to comply with this mechanism.

Definition 4.6 (Compliant Traces)
We write C(∆) for the set of the traces which comply with ∆. Given ρ ∈ R(Σ), then ρ ∈ C(∆) iff

hardware_req(init(ρ))∧ ∀(h, l,h ′) ∈ trans(ρ), l ∈ LS ⇒ software_req(h, l)

Example 4.3 (Memory Flash Lockdown Compliance)
We consider the trace to start at the end of the boot sequence, when the BIOS gives the control
flow to the system software component it has selected. At the time, it is expected that the
BIOS_CNTL register of the PCH has been correctly set; in particular, the SMM_BWP bit should be
set, to avoid the Speed Racer attack [7]. If the BIOS fails to do so, then the related trace is not
compliant to begin with. If it succeeds, then it still needs to carefully satisfy its requirements
over transitions throughout its execution for the trace to remain compliant over time.

Lemma 4.1 (HSE Invariant Enforcement)
As intended, hardware_req is an invariant of traces which comply with ∆, that is

∀ρ ∈ C(∆),∀(h, l,h ′) ∈ trans(ρ), hardware_req(h)∧ hardware_req(h ′)

Proof. By definition of C(∆), we know the initial state of the trace satisfies hardware_req, and
thanks to the second HSE law, we can conclude the state after the first transition also satisfies
hardware_req. We generalize to the trace by induction. �

As a consequence, a HSE mechanism allows for satisfying a given set of requirements over
hardware configurations throughout the execution of a software stack, as long as a set of trusted
software components correctly implement the mechanism.

4.1.3 HSE Mechanism Correctness

It is important to keep in mind that preserving a set of requirements over states is only a means
to an end. The true purpose of a HSE mechanism is to constrain the execution of untrusted
software components with respect to a targeted security policy.

A HSE mechanism can satisfy the HSE laws, but yet fails to constrain the execution of
untrusted software components with respect to a targeted security policy. The SMRAM cache
poisoning attack disclosed in 2009 is a good illustration of that eventuality [4, 5]. Back then, the
isolation of the BIOS at runtime was enforced by only two hardware mechanisms: the SMM of
the CPU and the SMRAMC register of the memory controller. By correctly configuring the memory
controller via the SMRAMC register, the BIOS can activate the protection of a dedicated memory

4.1. THEORY DEFINITION 55

Core

Cache

Memory
Controller

DRAM

SMRAM

Figure 4.2: From the core to the SMRAM

region called the SMRAM. In such a case, only a core in SMM can read or write to the SMRAM.
As it stands, the HSE mechanism described here satisfies both laws. The rest of the software
component can try to read from or write to the SMRAM (first law), but the memory controller
will protect its integrity in the presence of a core not in SMM (second law). However, between
the core and the memory controller lies the cache, as pictured in Figure 4.2. If the cache does
not implement an access control mechanism to protect its copies of the SMRAM content —as
was the case in 2009— it can be used to circumvent the protection enforced by the memory
controller. As we have already explained in Subsection 2.3.1, the integrity of the SMRAM is
enforced, so only a core in SMM can access to the content of the SMRAM. However, when this
core leaves the SMM, the content of the SMRAM remains in the cache, and nothing prevents an
untrusted software component to modify these copies. When the core enters in SMM again, it
fetches the (modified) content of the cache in place of the true SMRAM content.

We detailed in Subsection 3.1.2 how various classes of security policies —safety and liveness
properties, and hyperproperties— can be modeled against a transition system. Because our
hardware model is a labeled transition system, we can easily transpose these definitions to our
theory.

Definition 4.7 (Security Policy)
A security policy P is either a predicate on sets of traces, a predicate on traces or a predicate on
transitions.

Hardware features leveraged in the context of a HSE mechanism ∆ are not safe by default
and require to be configured by trusted software components. As a consequence, the security
policy P targeted by ∆ does not apply to the set of all traces of the hardware model, but we
expect that satisfying the requirements of ∆ —which is modeled in our theory by the set of
compliant traces C(∆)— is a sufficient condition for enforcing P.

56 CHAPTER 4. A THEORY OF HSE MECHANISMS

Definition 4.8 (Correct HSE Mechanism)
A HSE mechanism ∆ is correct with respect to a security policy P (denoted by ∆ |= P) if and
only if the set of compliant traces of ∆ satisfies P, that is

∆ |= P ,

P(C(∆)) if P is a predicate on sets of traces

∀ρ ∈ C(∆),P(ρ) if P is a predicate on traces

∀ρ ∈ C(∆),∀tr ∈ trans(ρ),P(tr) if P is a predicate on transitions

Verifying that a HSE mechanism is correct with respect to a security policy can be difficult.
In the context of this thesis, we focus on safety properties. To the extent of our knowledge, the
majority of HSE mechanisms target access control policies, which qualify as safety properties.
The reasoning is facilitated because they are characterized by predicates on transitions. The
following theorem takes advantage of this fact.

Theorem 4.1 (Correct HSE Mechanism for Predicate on Transitions)
Given a security policy P defined as a predicate on transitions, then

∀(h, l,h ′) ∈ T(Σ),
(hardware_req(h)∧ (l ∈ LS ⇒ software_req(h, l)))⇒ P(h, l,h ′)

is a sufficient condition for
∆ |= P

Proof. By definition, a HSE mechanism ∆ is correct with respect to a security policy characterized
by a predicate on transitions P if the transitions of its compliant traces satisfy P. With Lemma 4.1,
we know that initial states of a transition of compliant traces satisfy hardware_req. We also know
by definition of compliant traces that their transitions satisfy software_req. Therefore, if we can
prove that transitions which satisfy both hardware_req and software_req also satisfy P, then we
can conclude that transitions of compliant traces satisfy P. �

A proof of the correctness of a given HSE mechanism asserts that the hardware architecture
enforces a targeted security policy if trusted software components correctly implement this HSE
mechanism, that is their executions only imply software transitions which satisfy the appropriate
requirements. If attackers are able to modify the instructions of the trusted software components
programs, they can defeat the security enforcement by modifying the instructions responsible for
implementing it. This is why trusted software components are expected to protect themselves
against untrusted software components attempt to modify their program. They satisfy this
expectation thanks to dedicated HSE mechanisms that we can also verify. This raises the
question of the implementation of several HSE mechanisms at the same time.

4.1. THEORY DEFINITION 57

4.1.4 HSE Mechanisms Composition

In common software stacks, several HSE mechanisms are implemented at the same time by
low-level software components. The fact that two HSE mechanisms of the same hardware
architecture can be specified against the same general-purpose hardware model allows us
to reason about their composition. We model the concurrent implementation of two HSE
mechanisms ∆1 and ∆2 as a third HSE mechanism ∆1 u∆2. For convenience, the u operator
imposes two restrictions over HSE mechanisms: they shall share the same set of software
components and the same hardware-software mapping.

Definition 4.9 (Concurrent HSE Mechanisms)
Given two HSE mechanism ∆1 and ∆2, such that

∆1 = 〈S, T1, context, hardware_req1, software_req1〉
∆2 = 〈S, T2, context, hardware_req2, software_req2〉

We write ∆1 u∆2 for the HSE mechanism which combines the requirements of both ∆1 and ∆2,
that is

∆1 u∆2 , 〈S, T1 ∪ T2, context, hardware_req1∧2, software_req1∧2〉

where
hardware_req1∧2(h) , hardware_req1(h)∧ hardware_req2(h)

software_req1∧2(h, l) , software_req1(h, l)∧ software_req2(h, l)

We now discuss two properties of u which emphasize that its definition matches legitimate
expectations. Firstly, u forms a commutative monoid, and as a consequence is both associative
and commutative. This means the order in which we define a “composite” HSE mechanism
from a list of sub-mechanisms is not important. Secondly, the set of compliant traces of the
composition of two mechanisms is the intersection of the sets of compliant traces of these
mechanisms. In other words, to comply with the composition of two HSE mechanisms, a trace
has to comply with each mechanism individually.

Lemma 4.2 (Commutative Monoid)
We write ∆> for the HSE mechanism whose requirements over states and software transitions
are always satisfied. u forms a commutative monoid with the set of HSE mechanisms which
share both the same set of software components and the same hardware-software mapping,
whose identity element is ∆>.

Indeed, u satisfies the following properties:

Associativity: (∆1 u∆2)u∆3 = ∆1 u (∆2 u∆3)

Identity Element: ∆u∆> = ∆

Commutativity: ∆1 u∆2 = ∆2 u∆1

58 CHAPTER 4. A THEORY OF HSE MECHANISMS

Proof. u is defined with operators which themselves form monoids. For each property, the
proof consists of unfolding the definition of u and relying on the properties of ∪ and ∧. �

Lemma 4.3 (Compliant Traces, Composition and Intersection)
The set of compliant traces of the intersection of ∆1 and ∆2 is the intersection of the sets of
compliant traces of ∆1 and ∆2, that is

C(∆1 u∆2) = C(∆1)∩ C(∆2)

Proof. The main idea of the proof is to leverage the definition of ∧ and⇒ to turn a statement
of the form

(P∧ P ′)∧ (R⇒ Q∧Q ′)

into
(P∧ (R⇒ Q))∧ (P ′ ∧ (R⇒ Q ′))

and vice versa. In our case, P and P ′ are statements about the initial states of traces and
hardware_req, R is the premise filtering software transitions, and Q and Q ′ are statements about
software_req. �

The definition of a composition operator poses the question of HSE mechanisms compat-
ibility. There are obvious scenarios where two HSE mechanisms ∆1 and ∆2 can doubtlessly
be considered incompatible. For instance, C(∆1 u ∆2) = ∅ would mean it is not possible to
implement both at the same time. We anticipate there are other scenarios more unclear, for
instance if the set of compliant traces C(∆1 u∆2) contains only traces where the execution of
trusted software components are secure, but is not able to serve its purpose. We argue that a
similar situation can occur for a single HSE mechanism. Because we aimed to focus on hardware
architecture verification in the context of this thesis, we therefore did not investigate further the
compatibility of HSE mechanisms.

4.2 Case Study: Code Injection Policy

In the previous Section, we introduced our theory to formally specify and verify HSE mech-
anisms. It allows us to verify each HSE mechanism in isolation, and we also introduced a
composition operator as a first step toward reasoning about the implementation of two HSE
mechanisms or more at the same time. We now aim to illustrate further how our theory can be
leveraged in order to reason about security enforcement by means of several HSE mechanisms
implemented at the same time. To that end, we take as an example a security policy which
explicitly forbids software components of a typical software stack —that is, the BIOS, an oper-
ating system and several applications— to perform illegitimate code injection (4.2.2). As we
discussed in Subsection 4.1.3, the integrity of the trusted software components programs is an
implicit hypothesis of our approach, which makes our code injection policy a prerequisite for

4.2. CASE STUDY: CODE INJECTION POLICY 59

reasoning about other HSE mechanisms. We detail how this security policy can be enforced
through the correct implementation of two HSE mechanisms (4.2.3).

4.2.1 Defining Code Injection

A memory location within a hardware architecture is a container dedicated to store data used
by software components e.g. a general-purpose register of a processor, a DRAM memory cell,
etc. To formally define a code injection, it is necessary to be able to map an instruction executed
by the processor to the software component which has written this instruction into its memory
location. To that end, we assign to each memory location a so-called owner, such that a software
component becomes the new owner of a memory location when it overwrites its content during
a software transition. A hardware model tracks the memory location ownership when (1) the
hardware architecture state maps each memory location with a software component called its
owner, and (2) its transition relation updates this mapping throughout traces. By extension, we
say a software component owns some data when it owns the memory location in which these
data are stored.

Definition 4.10 (Transition-Software Mapping)
A transition-software mapping fetchedΣ : H× L → ℘(S) is a function which takes an initial
hardware state, a transition label and returns the set of owners of the instructions read during
this transition by the core in order to execute them afterwards. The word “fetch” is used in the
hardware industry to describe this subset of read accesses targeting instructions.

With this mapping, specific to a given hardware model, it becomes possible to determine
the owner of an instruction fetched by the processor in order to be decoded and executed.
s ∈ fetchedΣ(h, l) means that an instruction owned by s was fetched in order to be executed by
the processor during a transition labeled with l from a state h.

With a hardware-software mapping and a transition-software mapping, we give a formal
definition of a code injection.

Definition 4.11 (Code Injection)
A software component x ∈ S achieves a code injection against another software component
y ∈ S during a transition labeled with l ∈ L from a state h ∈ H to a state h ′ ∈ H, denoted by

h
l−−−→

x y
h ′

when the processor fetches an instruction owned by x while executing y, that is

h
l−−−→

x y
h ′ , x ∈ fetchedΣ(h, l)∧ context(h) = y

We write h l−−−→
x 6 y

h ′ when x does not achieve a code injection against y.

60 CHAPTER 4. A THEORY OF HSE MECHANISMS

It is important to emphasize that a code injection is not inherently a “bad thing.” A software
component initialization is most of the time the result of a code injection.

Example 4.4 (Application Code Injection)
When a user executes a new application, the operating system loads the code of this application
into the DRAM. Therefore, when the processor starts the execution of the application in ring 3,
it executes instructions which are owned by the OS.

On the contrary, an illegitimate code injection poses a significant threat against the security
of the software stack, because it constitutes an attack vector for privilege escalation. Low-level
software components, such as the BIOS, partly rely on the hardware architecture to protect them
against illegitimate code injection. They store their code in a memory region of their choice and
implement a HSE mechanism to prevent upper layers of the stack from modifying its content.
As a consequence, unsound HSE mechanisms pave the road to illegitimate code injection.

Example 4.5 (SMRAM Cache Poisoning)
The SMRAM cache poisoning attack [4, 5] that we detailed in Subsection 2.3.1 can be used to
perform a code injection attack against the BIOS. For instance, Loic Duflot et al. have been able
to inject the necessary instructions inside the cache for the processor so that the BIOS updates
the SMBASE register, whose purpose is to determine the first instruction executed by a core when
it enters SMM.

4.2.2 Code Injection Policy

We leverage the code injection definition to propose a generic formalization of code injection
policy. This policy determines if a given software component is authorized to make a code
injection against another software component.

Definition 4.12 (Code Injection Policy)
A code injection policy I is a safety property characterized by a tuple 〈S,�, context〉, such that

– S is a set of software components executed by the hardware architecture

– � is a binary relation on S, such that given (x,y) ∈ S× S, x� y means x is authorized to
make a code injection against y. � has to be (1) anti-symmetric, and (2) transitive.

∀(x,y) ∈ S× S,
x� y∧ y� x⇒ x = y (1)

∀(x,y, z) ∈ S× S× S,
x� y∧ y� z⇒ x� z (2)

– context is a hardware-software mapping.

4.2. CASE STUDY: CODE INJECTION POLICY 61

A transition labeled with l ∈ L from h ∈ H to h ′ ∈ H satisfies I when code injections which
occur during this transition are authorized by�, that is

I(h, l,h ′) , ∀(x,y) ∈ S× S, h l−−−→
x y

h ′ ⇒ x� y

Based on Definition 4.12, we can define a code injection policy for a typical software stack
which comprises the BIOS, an operating system and n applications.

Definition 4.13 (BIOS-OS-Applications Code Injection Policy)
For a software stack made of a BIOS, an operating system and n applications, that is

S , {bios, os, app1, . . . appn}

we define the authorization relation� using three rules:

�-refl: A software component is authorized to tamper with its own execution, that is

∀x ∈ S, x� x

�-bios: The BIOS is authorized to tamper with the execution of the rest of the software stack,
that is

∀x ∈ S, bios� x

�-os: The OS is authorized to tamper with the execution of the application it manages, that is

∀k ∈ [0,n], os� appk

We prove by case enumeration that� is anti-symmetric and transitive.
The definition of the corresponding context shall obey the following logic: when the processor

is in SMM, the BIOS is executed; when the processor is not in SMM and is in ring 0, the operating
system is executed; when the processor is not in SMM and is in ring 3, one of the applications
—identified by the page tables used by the processor— is executed.

4.2.3 Code Injection Policy Enforcement

A security policy such as the one detailed in Definition 4.13 is not enforced by one but several
HSE mechanisms. Therefore, we break it down to more specific security sub-policies, with each
one being enforced by a dedicated HSE mechanism.

Definition 4.14 (BIOS Code Injection Sub-policy)
We write Ibios for the code injection sub-policy, whose purpose is to enforce that the only
software component authorized to perform a code injection against the BIOS is the BIOS itself,

62 CHAPTER 4. A THEORY OF HSE MECHANISMS

that is
Ibios(h, l,h ′) , ∀x ∈ S,h l−−−−−→

x bios
h ′ ⇒ x = bios

Definition 4.15 (OS Code Injection Sub-policy)
We write Ios for the code injection sub-policy, whose purpose is to enforce that applications are
only authorized to perform code injection against themselves, that is

Ios(h, l,h ′) , ∀x ∈ S,h l−−−−−→
appk x

h ′ ⇒ x = appk

Without any knowledge about the HSE mechanisms used to enforce Ibios and Ios, we can
prove they together imply the enforcement of I.

Theorem 4.2 (Code Injection Policy Enforcement)
Given two HSE mechanisms ∆os and ∆os, if ∆bios is correct with respect to Ibios and ∆os is
correct with respect to Ios, then ∆bios u∆os is correct with respect to I, that is

(∆bios |= Ibios ∧∆os |= Ios)⇒ ∆bios u∆os |= I

Proof. By definition of correct HSE mechanism, we need to prove that the set of traces which
comply with ∆bios u∆os satisfies the security policy characterized by I. With Lemma 4.3, we
know that the set of compliant traces of ∆bios u∆os is the intersection of the sets of compliant

traces of ∆bios and ∆os. As a consequence, we know any transition h l−→ h ′ of these traces
satisfy both Ios and Ibios. We can conclude by case enumeration:

– I does not impose any restriction if the bios performs a code injection during such a transition.

– Because of Ibios, an os can only perform a case injection against itself are against an applica-
tion, which satisfies I

– Because of Ios, an application can only perform a case injection against itself, which also
satisfies I. �

In this Section, we specified a general-purpose policy called code injection policy, and detailed
how we could apply it to a typical software stack made of a BIOS, an operating system and
n applications. More precisely, we proved it is possible to enforce such a policy in this setup
by enforcing two sub-policies (respectively Ibios to protect the BIOS, and Ios to constrain the
execution of the applications) thanks to two HSE mechanisms (respectively denoted by ∆bios
and ∆os). On a typical x86 hardware architecture, ∆bios relies on the SMM and the SMRAMC
memory region within DRAM (as we detailed in Subsection 2.2.3), and ∆os relies on the MMU
and the protection rings.

4.3. CONCLUSION 63

4.3 Conclusion

In this Chapter, we have presented our theory of HSE mechanisms, in the form of requirements
over a hardware model. We emphasize that our approach can be used to verify several HSE
mechanisms against the same hardware model. We believe this is an essential property; in
practice, these multiple mechanisms are implemented at the same time by different software
components, and they may interfere with each other, as illustrated by the SENTER Sandman
attack discussed in Subsection 2.3.3.

Throughout this Chapter, we have tried to illustrate our definitions with real-world examples,
as our effort has been originally motivated by the disclosure of several vulnerabilities targeting
multiple x86 HSE mechanisms for the past few years [5, 4, 127, 6, 7]. All being told, our approach
can be summarized to a three-step methodology for specifying and verifying HSE mechanisms
against hardware architecture models, that is (1) specifying the software requirements that
must be satisfied by the trusted software components which implement the HSE mechanism,
(2) specifying the targeted security policy the HSE mechanism supposedly enforces, and
(3) verifying that the HSE mechanism is correct with respect to the targeted security policy. We
believe this methodology would benefit both hardware designers and software developers, but
we are interested in challenging the applicability of our approach. To that end, we proceed with
the case study introduced in Section 4.2, by specifying the HSE mechanism implemented by the
BIOS to remain isolated from the rest of the software stack after the end of the boot sequence
(detailed Section 2.3), and verifying this HSE mechanism is correct with respect to the BIOS
code injection (Definition 4.14).

64 CHAPTER 4. A THEORY OF HSE MECHANISMS

5
Specifying and Verifying a

BIOS HSE Mechanism

“BIOS as the root of trust. For everything.”
— Joanna Rutkowska

In Chapter 4, we have introduced a theory of HSE mechanisms, whose purpose is to be the
foundation of a three-step methodology to formally specify and verify HSE mechanisms. We
have also introduced a code injection policy for a software stack made of a BIOS, an operating
system and n applications (Definition 4.13), and we have defined a sub-policy which focuses
on the BIOS protection (4.14). In this Chapter, we apply our approach to specify and verify
the HSE mechanism implemented by the BIOS on x86 hardware architectures at runtime
and described in Section 2.3. The purpose of this HSE mechanism is to provide an isolated
execution environment to the BIOS. It should therefore enforce the so-called BIOS code injection
sub-policy.

The rest of this Chapter proceeds as follows. First, we define a minimal x86 hardware model
we call Minx86, whose scope comprises the hardware features required to express our case
study (Section 5.1). Then, we give a formal definition of the HSE mechanism implemented by
the BIOS at runtime, and show that this definition satisfies the two HSE laws and is correct
with respect to the targeted security policy previously introduced (Section 5.2). The model and
the proofs described in this Chapter have been implemented using Coq. We have released this
development as free software in a project called SpecCert 1.

5.1 A Minimal x86 Hardware Model

Minx86 is intended to be a minimal model for single core x86-based machines and we have
used publicly available Intel documents [128, 35, 34] to define it. The hardware architecture

1SpecCert can be found at the following URL: https://github.com/lthms/speccert

65

https://github.com/lthms/speccert

66 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

we are modeling with Minx86 matches the one depicted in Figure 4.2. It contains one core 2,
one level of cache, a memory controller, a DRAM controller and a VGA controller 3 which both
expose some memory to the core. In its current state of implementation, its scope focuses on the
SMM, but Minx86 is intended to be incrementally extendable to cover more hardware features.

The rest of this Section proceeds as follows. We give an overview of the Minx86 scope (5.1.1),
then describe in depth its key components of the LTS, that is its set of states (5.1.2) on the one
hand, and its set of labeled transitions (5.1.3) on the other hand. Finally, in order to reason
about code injection policies (Definition 4.12), we define the transition-software mapping of
Minx86 (5.1.4).

5.1.1 Model Scope

Hardware Features. We consider the core can be either in SMM or in an unprivileged mode.
As explained in Section 2.2.3, when a processor receives a System Management Interrupt (SMI),
it halts its current execution, reconfigures itself to a hard-coded state, and then executes the code
stored in memory at the address SMBASE+ 0x8000. In practice, the SMBASE value points to the
beginning of a memory region called the SMRAM. Leaving the SMM is done by executing a
special purpose instruction called rsm (for resume).

The core relies on a cache to reduce the I/O latency. We model one level of cache which
stores both data and instructions and we consider two cache strategies: uncacheable (UC) and
writeback (WB). With the UC strategy, the cache is not used and all I/Os are forwarded to the
memory controller, whereas with the WB strategy, the cache is used as much as possible 4. To
determine which cache strategy to use, the core relies on several configuration registers. Among
them, the System Manangement Range Registers (SMRR) tell the core where the SMRAM is
located and which cache strategy to use for I/O targeting the SMRAM when the core is in SMM.
When it is not in SMM, the core always uses the UC strategy for I/O targeting the SMRAM.
Such registers can only be configured when the core is in SMM. SMRR have been introduced as
a countermeasure to the SMRAM cache poisoning attack [5, 4] which allowed some untrusted
code to tamper with the copy of the SMRAM stored in the cache.

The memory controller [35] receives all the core I/Os which are not handled by the cache
and dispatches them to the DRAM controller or to the VGA controller. It exposes a unified view
(the memory map) of the system memory to the core. The core manipulates this memory map
with a set of physical addresses and the memory controller uses a special range of these physical
addresses to host the SMRAM. This memory area is dedicated to store the code intended to be
executed when the core is in SMM.

Tracking Memory Ownership. The Minx86 definition is parameterized by a hardware-
software mapping context (Definition 4.3). The memory locations of Minx86 are either cache

2As discussed in the previous Chapter, we did not tackle the challenge posed by multi-core computers in this thesis.
3A VGA controller is a hardware device on which we can connect a screen. It exposes some memory to the core for

communication purposes.
4These cache strategies are explained in [34], Volume 3A, Chapter 11, Section 11.3 (page 2316 – 2317)

5.1. A MINIMAL X86 HARDWARE MODEL 67

lines or memory cells exposed by the DRAM or the VGA controllers. The memory ownership
is updated through transitions according to three rules:

1. When a cache line gets a copy of a DRAM or VGA cell content, the owner of this cell
becomes the new owner of this cache line.

2. When the content of a cache line is written back to a memory cell, the new owner of this
memory cell is the owner of the cache line.

3. During a software transition whose purpose is to overwrite the content of a memory
location, the software component currently executed —and therefore responsible for the
software transition— becomes the new owner of this memory location.

Definition 5.1 (Minx86)
We write Minx86(context) for the hardware model which tracks memory ownership with respect
to the context hardware-software mapping, such that

Minx86(context) , 〈H(S),LS,LH,−−−−→
context

〉

where S is the image of context, that is the set of software components which form the software
stack.

We emphasize that there are many valid definitions of the context function, regarding the
verification problem we consider. For instance, we need two different definitions of context
whether we consider a hypervisor in the software stack or not. We do not rely on the concrete
definition of context to implement the tracking of memory ownership within Minx86, hence it
is left as a parameter for the model.

5.1.2 Hardware States

H(S) is defined as the Cartesian product of the set of states of the core, the cache, the memory
controller and the memories exposed by both the DRAM and the VGA controllers. Each of
these sets is defined in order to model the hardware features we have previously described. We
use named tuples 5 to define them. Thus, H(S) is defined as follows:

H(S) , 〈 core : Core, cache : Cache(S), mc : MC, mem : Mem(S) 〉

Cache and Mem are parameterized by S because they expose memory locations to the core which
can contain instructions to be fetched. To implement the tracking of memory ownership within
our model, we need to taint the memory locations with their respective owner, which belongs
to S.

5See page xi for a description of the notations we used to manipulate them.

68 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

Address Spaces. We define PhysAddr, the set of physical addresses that the core uses to
perform I/O and HardAddr, the set of hardware addresses exposed by the DRAM and VGA
controllers. To distinguish between DRAM and VGA addresses, we use two different construc-
tors 6.

PhysAddr , Pa : [0, max_addr]→ PhysAddr

HardAddr , Dram : [0, max_addr]→ HardAddr

| Vga : [0, max_addr]→ HardAddr

The maximal address offset (denoted by max_addr here) is specific to the core and may vary
in time according to its addressing mode (real mode, long mode, etc.), therefore we leave its
value as a parameter of our model. By convenience, we give the same maximum address to
each address space.

Finally, we write Val for the set of values that the memory cells scattered within the memory
locations of the hardware architecture can take.

Core. The set of states of the core is denoted by Core. We give a minimal definition of Core,
with a clear focus on the SMM.

Core ,

〈
in_smm : { true, false }, pc : PhysAddr, smbase : PhysAddr,

smrr : Smrr, strat : PhysAddr→ CacheStrat

〉

The boolean in_smm is set to true when the core is in SMM and to false otherwise. The
physical address pc models the program counter, a register used to store the address of the next
instruction to be fetched and executed. The physical address smbase models the register of the
same name. The map strat abstracts away the numerous mechanisms of x86 microprocessors to
determine which cache strategy to use for a given I/O, where CacheStrat , { UC, WB } is the set
of the modeled cache strategies. The set of states of the SMRRs is denoted Smrr.

Smrr , 〈 range : ℘(PhysAddr), strat : CacheStrat 〉

The set of physical addresses range tells the core the location of the SMRAM and strat indicates
which cache strategy has to be used when the core is in SMM.

Cache. Let Index be the set of cache indexes and index : PhysAddr→ Index the function used
by the core to determine which index to use for a given physical address. They are both
parameters of our model. The cache is divided into several cache lines which contain the cached
memory content and several additional information required by the cache strategy algorithm.
The set of states of the cache line is denoted by CacheLine(S). In addition to modeling hardware
specifications, the definition of CacheLine(S) attaches a software owner to a cache line.

CacheLine(S) , 〈 dirty : { true, false }, tag : PhysAddr, content : Val, owner : S 〉

6See page xi.

5.1. A MINIMAL X86 HARDWARE MODEL 69

The cache is modeled as a mapping between address indexes and cache lines.

Cache(S) , Index→ CacheLine(S)

A cache c ∈ Cache(S) is well-formed if every cache line is tagged with a physical address whose
index corresponds to the cache line index, that is

∀i ∈ Index, index(c(i).tag) = i

Memory Controller. The set of states of the memory controller is denoted by MC.

MC , 〈 d_open : { true, false }, d_lock : { true, false } 〉

The two booleans d_open and d_lock model two bits of a configuration register named smramc.
They are used to determine how the memory controller dispatches the I/O which targets a
physical address of the SMRAM. For a memory controller state mc ∈ MC to be consistent with
respect to the hardware specifications, it has to verify that

mc.d_lock = true⇒ mc.d_open = false

We model the SMRAM with two ranges of addresses:

– hSmram , {Dram(i) | smram_base 6 i 6 smram_end } the SMRAM memory range within
the DRAM memory

– pSmram , {Pa(i) | smram_base 6 i 6 smram_end } the projection of the SMRAM in the
address space manipulated by the core

The values of smram_base and smram_end are specified in the memory controller specifications
and are left as a parameter of our model. It is the software responsability to set the SMRR
accordingly. We assume smram_end−smram_base > 0x8000, that is the first instruction executed
by the core after entering SMM (located at SMBASE+ 0x8000) is inside the SMRAM if the SMBASE

register is correctly configured.
The memory controller translates physical addresses into hardware addresses and forwards

the I/O accordingly. We model this translation with the function

dispatch : MC× { true, false }× PhysAddr→ HardAddr

70 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

Definition 5.2
The function dispatch is defined as follows:

dispatch(mc, in_smm, pa) ,

Vga(i) if in_smm = false, pa ∈ pSmram,

and mc.d_open = false

Dram(i) otherwise

where pa = Pa(i).

We emphasize that the same physical address can be translated into two different hardware
addresses for two memory controller states m and m ′, hence it is possible to have

dispatch(m,b,pa) 6= dispatch(m ′,b,pa)

Memories. The physical memories (exposed by the DRAM and the VGA controllers) are
modeled together with a mapping between the hardware addresses and both their contents and
the software components which own them. We write Mem(S) for the set of states of the physical
memories.

Mem(S) , HardAddr→ 〈 content : Val, owner : S 〉

5.1.3 Transition Labels and Transition Relation

In accordance with Definition 4.1, we consider two sets of labels to distinguish between software
transitions (direct, foreseeable consequences of instruction execution, denoted by LS) and
hardware transitions (denoted by LH). For each transition label we define (1) a precondition to
determine whether the transition can occur from a given hardware state, and (2) a postcondition
to specify the consequences of the transitions over the hardware architecture state. Let pre be a
predicate on L×H(S), and post be a predicate on L×H(S)×H(S), then the transition relation
of Minx86 is defined as follows:

h
l−−−−→

context
h ′ , pre(l,h)∧ post(l,h,h ′)

Software Transitions. Table 5.1 lists the labels dedicated to software transitions in terms
of constructors. We model the core I/Os with Read(pa) and Write(pa), the configuration
of the memory controller with OpenBitFlip and LockSmramc, the configuration of the cache
strategy with SetCacheStrat(pa, strat), the configuration of the SMRR with UpdateSmrr(smrr),
the exit of the SMM with Rsm, and the update of the core program counter register with
NextInstruction(pa).

We now give a description of the pre and postconditions for each label. The interested
readers can refer to the Coq development [37] in case they want to review their definitions.

Because the pagination and segmentation mechanisms are outside of the current scope of
Minx86, we consider that a core can always read and write at any physical address. As a

5.1. A MINIMAL X86 HARDWARE MODEL 71

Event Parameters Description

Write pa ∈ PhysAddr

v ∈ Val

A core I/O to write to physical address
pa the value v

Read pa ∈ PhysAddr A core I/O to read from physical ad-
dress pa.

SetCacheStrat pa ∈ PhysAddr

strat ∈ CacheStrat

Change the cache strategy for pa to
strat

UpdateSmrr smrr ∈ Smrr Update the SMRR content with the new
value smrr

Rsm — The core leaves SMM
OpenBitFlip — Flip the d_open bit
LockSmramc — Set the d_lock bit
NextInstruction pa ∈ PhysAddr The program counter register of the

core is set to pa

Table 5.1: List of labels dedicated to Minx86 software transitions (LS)

consequence, the precondition for Read(pa) and Write(pa) always holds true. The postconditions
for Read(pa) and Write(pa, v) take into account (1) the cache strategy configured for the address
pa, (2) the state of the cache line associated to the index i = index(pa), (3) whether pa belongs
to the SMRAM or not, (4) whether the core is in SMM or not, and (5) whether the D_OPEN

bit of the SMRAMC register is set or not, in order to determine which memory locations are
updated and modify their respective owner accordingly. We discuss two specific cases of the
transition labeled Write(v, pa) from a state h to a state h ′ in order to illustrate the definition of
the postcondition predicate:

1. If the cache strategy for the address pa is set to WB, the content of this address is not
currently cached by the processor, the cache line indexed by i = index(pa) is marked as
“dirty”, and pa does not fall in the range specified by the core SMRR, that is

h.core.strat(pa) = WB

∧ ¬cache_miss(h.cache, pa)
∧ pa 6∈ h.smrr.range
∧ h.cache(i).dirty = true

Then, the content of the cache line is written back to memory and the cache line is
updated with v as its new content, context(h) as its new owner, pa as its new tag,
and its dirty bit is set. To know which memory location is associated with the ad-
dress pa, we rely on the dispatch function (see Definition 5.2) which models the I/O
resolution mechanism of the memory controller. For this specific case, with ha =

72 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

Event Description

ReceiveSMI A SMI is raised and the core enters SMM
Fetch A core I/O to fetch the instruction stored at the physical

address contained in the program counter register

Table 5.2: List of labels dedicated to Minx86 hardware transitions (LH)

dispatch(h.mc,h.in_smm,h.cache(i).tag), the postcondition is

h ′ = h

mem(ha)←

〈
content = h.cache(i).content,

owner = h.cache(i).owner

〉
,

cache(i)←

〈
content = v, tag = pa,

owner = context(h), dirty = true

〉

Note that the same scenario applies if pa belongs to the range specified by the core SMRR,
and the cache strategy specified by the SMRR is WB.

2. If we consider a similar case, but this time the address pa is already present inside the
cache, then only the cache is updated. The new owner of the selected cache line is the
software component currently executed by the core, its new content is v —we remind the
considered transition is Write(v, pa)— and its dirty bit is set, while the tag of the cache
line remains untouched. In this second scenario, the postcondition is

h ′ = h

 cache(i)← h.cache(i)

content = v,

owner = context(h),
dirty = true

A software component can always update the cache strategy used for an I/O. The post-
condition for SetCacheStrat(pa, strat) requires only the cache strategy setting for this physical
address pa to change. The precondition for UpdateSmrr requires the core to be in SMM. The
postcondition requires the SMRR of the core to be updated with the correct value, the rest of
the hardware architecture state being left unchanged.

A software component can jump to any physical address, that is the preconditions for the
label NextInstruction(pa) always hold true. The postcondition for NextInstruction(pa) requires
the program counter register to be updated with pa. The OpenBitFlip precondition requires the
SMRAMC register to be unlocked. The postcondition requires the d_open bit to be updated. The
LockSmramc precondition requires the SMRAM to be unlocked, i.e. the d_lock bit to be unset.
The postcondition requires the d_open bit to be unset and the d_lock bit to be unset.

Hardware Transitions. Table 5.2 lists the labels dedicated to hardware transitions in terms of
constructors.

ReceiveSMI models a SMI being raised and handled by the core. Its precondition requires the
core not to be in SMM because SMM is non-reentrant. The postcondition of ReceiveSMI requires

5.1. A MINIMAL X86 HARDWARE MODEL 73

h.core.in_smm = false h ′ = h

{
core.in_smm← true,

core.pc← h.core.smbase + 0x8000

}
h

ReceiveSMI−−−−−−→
context

h ′

Figure 5.1: Pre and postconditions for Minx86 ReceiveSMI transitions

the program counter to be set to SMBASE+ 0x8000 and the core enters in SMM. Both the pre and
postcondition of ReceiveSMI are formally defined in Figure 5.1. Fetch models the I/O to fetch
the instruction pointed by the program counter register. As a consequence, the definition of its
precondition and postcondition are the same as Read(h.core.pc). Fetch is a hardware transition
because the address used to fetch the next instruction is determined by the program counter
register of the core. A software component can modify the value of this register —this is
modeled by NextInstruction— but it is not alone in this case. The hardware architecture will
update the register independently to the software component it currently executes, e.g. when it
receives an interrupt.

5.1.4 Transition-Software Mapping

We define Minx86_fetched a transition-software mapping for Minx86 (Definition 4.10), to map
an initial state of a transition and the label of this transition to the set of software components
which own the instruction fetched during this transition. In the case of Minx86, there is only one
event which implies fetching instructions: Fetch. To define the transition-software mapping in
this specific case, we rely on a helper function read_from_cache : H(S)× PhysAddr→ {true, false}
which returns true if a core will read the content of a given physical address from the cache,
and false otherwise. This function is defined as follows:

read_from_cache(h, pa) ,

true if pa 6∈ h.core.smrr.range, h.core.strat = WB

and cache_hit(h.cache, pa)
true if pa ∈ h.core.smrr.range, h.core.smrr.strat = WB,

cache_hit(h.cache, pa) and h.core.in_smm = true

false otherwise

Using the function read_from_cache, we can define the transition-software mapping of Minx86
as follows:

Minx86_fetched(h, l) =

∅ if l 6= Fetch
∅ if h.core.pc ∈ h.core.smrr.range

and h.core.in_smm = false

{h.cache(index(pc)).owner} where pc = h.core.pc and
if read_from_cache(h, pc) = true

{h.mem(ha).owner} where
ha = dispatch(h.mc,h.in_smm,h.core.pa)

74 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

Firstly, an instruction is fetched during a Fetch transition only, so for other transitions, the
function returns the empty set. Secondly, if a core not in SMM tries to read the content of a
physical addresses which belongs to the range specified by its SMRR, the specification states
that the result of this I/O is a constant value, hence the function also returns the empty set
in this case. For the last two cases, we based our decision on the read_from_cache function to
determine the content of the singleton returned by Minx86_fetched.

In this Section, we have defined a minimal x86 hardware model we called Minx86. In its current
state, the scope of Minx86 is limited to hardware features involved in the HSE mechanism
implemented by the BIOS to remain isolated from the rest of the software stack at runtime.
However, we have defined Minx86 with extensibility in mind. Notably, the hardware-software
mapping used by the model in order to track memory location ownership is left as a parameter,
and Minx86 could be extended to reason about other HSE mechanisms whose purpose is to
enforce a code injection policy.

5.2 Specifying and Verifying a BIOS HSE Mechanism

We consider the execution of the software stack made of a BIOS, an operating system and n
applications, after the end of the boot sequence. In this Section, our objective is to implement the
three-step methodology that we have introduced in Chapter 4, that is (1) specifying the software
requirements that must be satisfied by the trusted software components which implement the
HSE mechanism, (2) specifying the targeted security policy the HSE mechanism supposedly
enforces, and (3) verifying that the HSE mechanism is correct with respect to the targeted
security policy.

Since the targeted security policy has already been defined previously (Definition 4.14), it
leaves steps (1) and (3) to complete. We first give a formal definition of the HSE mechanism
implemented by the BIOS (denoted by ∆bios) to remain isolated from the rest of the software
stack (5.2.1). Then, we verify its correctness with respect to the BIOS code injection sub-policy
Ibios (Definition 4.14) (5.2.2). We conclude this Section with an overview of the approach we
used to organize our machine-checked proof, written in Coq (5.2.3)

5.2.1 BIOS HSE Definition

Minx86 is parameterized with a hardware-software mapping context (Definition 4.3). This
mapping is necessary for the model to track memory ownership during Write, Read and Fetch
transitions. Because Minx86 is not precise enough to distinguish between the execution of the
operating system and the applications, we axiomatize the definition of context with two rules:

context-bios: If the core is in SMM, it executes the BIOS

h.in_smm = true⇒ context(h) = bios

5.2. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM 75

context-untrusted: If the core is not in SMM, it executes another component of the software
stack

h.in_smm = false⇒ context(h) ∈ { os, app1, . . . , appn }

We define ∆bios to model the HSE mechanism applied by the BIOS, such that

∆bios = 〈S, { bios }, context, hardware_req, bios_req〉

As context has already been specified, only hardware_req and bios_req remain. Once we have
properly introduced both, we verify our definition of ∆bios satisfies the HSE laws (Definition 4.5).

Requirements over States. Given h ∈ H(S), we have identified six requirements over states
for h to satisfy hardware_req.

1. When the core executes the SMM code, the program counter register value needs to be an
address in SMRAM.

context(h) = bios⇒ h.core.pc ∈ pSmram

2. The SMBASE register was correctly set during the boot sequence to point to the base of the
SMRAM.

h.core.smbase = Pa(smram_base)

3. All the memory locations within the SMRAM are owned by the BIOS.

∀ha ∈ hSmram,h.mem(ha).owner = bios

4. For a physical address in SMRAM, in case of cache hit, the related cache line content must
be owned by the SMM code.

∀pa ∈ pSmram, cache_hit(h.cache, pa)⇒ h.cache(index(pa)).owner = bios

5. In order to protect the content of the SMRAM inside the DRAM memory, the boot
sequence code has locked the SMRAMC controller. This ensures that an OS cannot set the
d_open bit any longer and only a core in SMM can modify the content of the SMRAM.

h.mc.d_lock = true

6. The range of memory declared with the SMRR needs to overlap with the SMRAM.

pSmram ⊆ h.core.smrr.range

During the boot sequence, the BIOS is the only software component executed, so there is no
untrusted software component whose execution needs to be constrained. It is expected that
the BIOS configures the hardware architecture in a way which satisfies the requirements over
states prior to start the execution of the rest of the software stack. Otherwise, the runtime will
not start from a “safe” state and the related traces will not comply to ∆bios (Definition 4.6). In
such a case, there is no guarantee that the security policy will be enforced, independently of the
correctness of ∆bios.

76 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

Requirements over Transitions. We now define bios_req. We only define two restrictions.
First, we force the BIOS execution to remain confined within the SMRAM. The reason is simple:
the OS can tamper with the memory outside the SMRAM. Secondly, we prevent the BIOS to
update the SMRR registers. These registers should have been properly configured during the
boot sequence, and there is no need to further update them.

bios_req(h, l) , context(h) = bios

⇒ ((∀pa ∈ PhysAddr,
l = NextInstruction(pa)⇒ pa ∈ pSmram)

∧ (∀smrr ∈ Smrr, l 6= UpdateSmrr(smrr)))

Verifying the HSE Laws. For ∆bios to be a HSE mechanism, we need to prove it satisfies the
two HSE laws.

The first law states that bios_req is always satisfied when a non-trusted software component,
i.e. different from the BIOS, is executed by the hardware architecture. By definition of bios_req,
context(h) = bios is an antecedent of the requirements over NextInstruction and UpdateSmrr.
Therefore, the first HSE law is satisfied for ∆bios.

The second law requires the state requirements to be invariant with respect to the software
requirements. We prove this by case enumeration of l ∈ LS] LH and h ∈ H(S). We check that
each requirement described previously is preserved by bios_req. In practice, these proofs turned
out to be the more demanding, especially for requirement 3. —the content of the SMRAM is
owned by the BIOS— and 4. —the cache line tagged with physical addresses related to the
SMRAM are owned by the BIOS— because this requires to take the SMRR and the write-back
strategy into account for the Write and Read. We take the example of Read transitions; a similar
approach applies to Write transitions.

Given a transition labeled Read(pa) from h to h ′, there are three cases to consider:

1. The core discards the read, as part of the SMRAM cache poisoning countermeasure. In
this context, the hardware architecture is not updated, therefore h = h ′ and we can
conclude that hardware_req(h)⇒ hardware_req(h ′).

2. The core is configured to read the content of pa from the underlying memories (un-
cacheable strategy). Thanks to requirements 5., we know that the SMRAMC register has been
correctly configured, so by definition of dispatch (Definition 5.2), we know that only a
core in SMM can update the content of the SMRAM. We conclude that the content of the
SMRAM remains owned by the BIOS in h ′.

3. The core is configured to read the content of pa from the cache, and may have to perform
a cache eviction if necessary (write-back strategy). This last case is the more complex,
because we have to consider: whether the core is in SMM or not; whether the targeted
physical address falls into the SMRR range or not; whether the I/O results in a cache hit
or not; in case of cache miss, whether the occupied cache line is tagged “dirty” or not;
in case of a dirty bit, whether its tag (a physical address) belongs to the SMRAM or not.

5.2. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM 77

Taken separately, each case is relatively straightforward to prove. For instance, in case
of cache miss, but the occupied cache line is not tagged as “dirty”, then the underlying
memories are not updated, so we can conclude that the SMRAM remains owned by the
BIOS. To manage the number of cases to consider, we carefully organize our proofs in
general-purpose lemmas which applies to both Read and Write transitions 7.

Once each requirement has been shown to be preserved during a transition, we can conclude
for hardware_req as a whole.

5.2.2 BIOS HSE Mechanism Correctness

Our objective is to prove that ∆bios is correct with respect to Ibios. Because Ibios is a security
policy modeled with a predicate on transitions, we know thanks to Theorem 4.1 that

∀(h, l,h ′) ∈ T(Minx86(context)),
(hardware_req(h) ∧ (l ∈ LS ⇒ bios_req(h, l)))⇒ Ibios(h, l,h ′)

is a sufficient condition for ∆bios |= Ibios.
From the security policy perspective, only the Fetch label is relevant. Indeed, a code injection

can only occur when an instruction owned by a software components is fetched in order to be
executed by a core (Definition 4.2.1). For Minx86, this only happens during transitions labeled
by Fetch by definition of Minx86_fetched (see Subsection 5.1.4). Fetch is a hardware transition,
and therefore is not concerned by bios_req. As a consequence, we can simplify our proof goal as
follows:

∀(h,h ′) ∈ H(S)×H(S) such that h Fetch−−−−→
context

h ′,

hardware_req(h) ⇒ Ibios(h, Fetch,h ′)

We now unfold the definition of Ibios (Definition 4.14) and of the code injection (Definition 4.11),
which allows us to simplify further our proof goal as follows:

∀(h,h ′) ∈ H(S)×H(S) such that h Fetch−−−−→
context

h ′,

(hardware_req(h)∧ context(h) = bios)⇒Minx86_fetched(h, Fetch) = { bios }

The rest of the proof leverages the definition of hardware_req. Because of requirements 1., we
know that h.core.pc belongs to the pSmram. By definition of Minx86_fetched, we know that we
have two cases to consider:

– The instruction is read from the cache, and therefore

Minx86_fetched(h, Fetch) = {h.cache(index(h.core.pc)).owner }

In this context, we can conclude using the requirements 4.

7The interesting reader can have a look at the file src/Smm/Delta/Preserve/Architecture.v in [37], which gather
these proofs, and src/Smm/Delta/Preserve/{Read,Write}.v to see them in action.

78 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

– Otherwise, the instruction is read from the underlying memories. More precisely, by the
definition of dispatch (Definition 5.2), we know the instruction is read from the DRAM,
and as a consequence the requirements 3. allows us to conclude.

As a side note, we emphasize that these proofs validate the SMRAM cache poisoning
countermeasure. Without the SMRRs, it is not possible to conclude about the correctness of
∆bios if the hardware model takes the cache into account. We consider two scenarios. On the
one hand, the HSE mechanism definition takes the cache into account too. In these conditions,
it is not possible to prove it satisfies the second law. Indeed, the cache poisoning attack violates
the requirement 4. On the other hand, the HSE mechanism definition does not take the cache
into account. As a consequence, it is possible to prove it satisfies the second law. However, it
is not possible to prove it is correct with respect to Ibios. Indeed, we cannot discard the case
where a cache line tagged with a physical address which belongs to the SMRAM is owned
by an untrusted software component. In this scenario, we could even exhibit a trace which
complies to the HSE mechanism, but does not satisfy the security policy.

5.2.3 On SpecCert Machine-Checked Proofs

As we already explained in the introduction, we have implemented the model and proofs of
this Chapter in Coq, to increase our confidence in our results. The resulting project [37] counts
around 4 500 lines of code divided into 2 000 lines of code of definition and specification and
2 500 lines of code of proofs. We have taken great care to organize our development in order to
manage the many sub-cases notably induced by the write-back strategy.

Each hardware component has been defined in isolation from the rest of the hardware
architecture, with a set of functions, a set of properties and a set of general-purpose lem-
mas. For instance, the directory src/Cache/ contains four files: Cache_def.v, Cache_func.v,
Cache_proofs.v, and Cache_prop.v. We then have defined H(S), that is the Cartesian product of
individual components, in a similar manner. Inside the src/x86/Architecture/ directory, we de-
fined general-purpose functions (Architecture_func.v) and lemmas (Architecture_proofs.v)
to reason about the hardware architecture as a whole as often as possible.

This approach has proven to be valuable to deal with the many cases to cover when used in
conjunction with a recurring pattern we call “remember; destruct; assert; apply”, after the Coq
tactics. We illustrate the use of this pattern with the proof goal pictured in Figure 5.2.

1. Using remember, we can make the sequence of intermediary state updates more visible
(see Figure 5.3, compared to Figure 5.2). Each a_i is an intermediary state resulting in a
call to a general-purpose function from the Architecture_func.v file.

2. Using destruct, we can explore the alternative paths resulting from the use of Gallina

constructions such as pattern matching, or if-then-else. For instance, regarding the
initial state of the system, the content of the address pa may or may not be present in the
cache (Figure 5.3, line 14). We explore both alternatives using the destruct tactic (see the
two simplified goals in Figure 5.4, more particularly on the value of a_3).

5.2. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM 79

1 Hreq : hardware_req a

2 ===

3 hardware_req

4 (update_cache_content

5 (if cache_hit_dec (cache a) pa

6 then a

7 else

8 update_cache_content

9 (if cache_location_is_dirty_dec (cache a) pa

10 then

11 update_memory_content

12 a

13 (phys_to_hard a (cache_location_address (cache a) pa))

14 (find_in_cache_location (cache a) pa)

15 else a)

16 pa

17 (find_memory_content a (phys_to_hard a pa))) pa

18 (context (proc a)))

Figure 5.2: Raw postcondition of a Write transition with a writeback strategy

3. Using assert, we can introduce new goals to prove intermediary results (like the one
in Figure 5.5, for instance). In our case, we will prove that the predicate hardware_req

remains satisfied after each state update.

4. Using apply, we can leverage lemmas about hardware_req preservation for a given state
update, e.g. exported by the Architecture_proofs.v or Cache_proofs.v files. For instance,
the function update_cache_content (Figure 5.3, line 11) has a companion lemma called
update_cache_content_with_context_preserves_inv that we can use to conclude about
the goal introduced in Figure 5.5.

Figure 5.6 depicts the typical shape of resulting proof trees. The proofs are structured
around smaller, more atomic proof goals of the form ι(hi)⇒ ι(hi+1), where ι is supposedly an
invariant, hi is an intermediary state, and hi+1 its successor.

The resulting “proof strategy” has proven to be effective to manage the relative complexity
of our proof goals. However, it remains cumbersome to use manually, because it requires to
generate manually an important number of hypotheses (via one per remember and assert use),
which sometimes increases significantly the size of the proof obligation generated by Coq.

80 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

1 Hreq : hardware_req a

2 Heqa_2 : a_2 =

3 update_memory_content

4 a

5 (phys_to_hard a (cache_location_address (cache a) pa))

6 (find_in_cache_location (cache a) pa)

7 Heqa_3 : a_3 = (if cache_location_is_dirty_dec (cache a) pa

8 then a_2

9 else a)

10 Heqa_4 : a_4 =

11 update_cache_content a_3

12 pa

13 (find_memory_content a (phys_to_hard a pa))

14 Heqa_5 : a_5 = (if cache_hit_dec (cache a) pa

15 then a

16 else a_4)

17 Heqa_6 : a_6 = update_cache_content a_5 pa (context (proc a))

18 ===

19 hardware_req a_6

Figure 5.3: Postcondition of a Write transition with a writeback strategy, after the use of the
remember tactic

1 (* -- >8 -- *)

2 Hc : cache_location_is_dirty (cache a) pa

3 Heqa_3 : a_3 = a_2

4 (* -- >8 -- *)

5 ===

6 hardware_req a_6

1 (* -- >8 -- *)

2 Hc : ~ cache_location_is_dirty (cache a) pa

3 Heqa_3 : a_3 = a

4 (* -- >8 -- *)

5 ===

6 hardware_req a_6

Figure 5.4: Exploring alternative paths using the destruct tactics

5.2. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM 81

1 Hreq : hardware_req a

2 (* -- >8 -- *)

3 Heqa_4 : a_4 =

4 update_cache_content a_3

5 pa

6 (find_memory_content a (phys_to_hard a pa))

7 (* -- >8 -- *)

8 ===

9 hardware_req a_4

Figure 5.5: Intermediary statements, generated using assert tactics

Id
ι(h)

` ι(h)

Invr

ι(h)

h1 = r(h)

` ι(h)⇒ ι(h1)
M-P

ι(h)

h1 = r(h)

` ι(h1)

Invs

ι(h)

h1 = r(h)

h2 = s(h1)

` ι(h1)⇒ ι(h2)
M-P

ι(h)

h1 = r(h)

h2 = s(h1)

` ι(h2)

Invt

ι(h)

h1 = r(h)

h2 = s(h1)

h ′ = t(h2)

` ι(h2)⇒ ι(h ′)
M-P

ι(h)

h1 = r(h)

h2 = s(h1)

h ′ = t(h2)

` ι(h ′)

where M-P is the Modus ponens, and Invr, Invs, and Invt are intermediary lemmas previously
proved true.

Figure 5.6: Dividing a transition into sequences of intermediary states updates

82 CHAPTER 5. SPECIFYING AND VERIFYING A BIOS HSE MECHANISM

5.3 Conclusion

In this Chapter, we have proceeded with the case study introduced in Section 4.2. We introduced
Minx86, a minimal x86 hardware model conceived with extensibility in mind. We specified
the HSE mechanism implemented by the BIOS in order to remain isolated from the rest of
the software stack, then verified that this mechanism is correct with respect to the so-called
BIOS code injection sub-policy. In summary, we have applied our three-step methodology.
The resulting model assumes as little as possible about the actual implementation of the BIOS,
and constitutes, to the extent of our knowledge, the first formalization of the BIOS security
model at runtime. As we have already mentioned, our proofs have been implemented within
the Coq theorem prover to increase our confidence in our results, and have been released as
free software [37]. The resulting project counts around 4 500 lines of code, and we believe
this represents a manageable size regarding the complexity of the model, but whether our
approach remains applicable for a large-scale models remains to be proven when we first
released this work in 2016. Subsequently, we have experimented increasing the scope of Minx86
with pagination, and have been convinced that considering the whole architecture at once —as
it is done in Minx86— would not scale properly.

The next Part of this thesis focuses on this challenge. We propose another approach to
enable modular verification of complex systems composed of interconnected components, such
as hardware architectures.

Part III

Towards Comprehensive Hardware
Models

83

6
Modular Verification of

Component-based Systems

“Give someone a program, you frustrate them for a day; teach them how to program, you frustrate them
for a lifetime.”

— David Leinweber

In the previous Part of this manuscript, we have introduced a theory of HSE mechanisms and
have leveraged it to specify and verify the HSE mechanism implemented by the BIOS at runtime
in order to remain isolated from the rest of the software stack. In this context, we have defined
a dedicated x86 hardware model called Minx86 (Definition 5.1). This experiment has been very
insightful. In particular, it has highlighted the key importance of a modular approach to tackle
the challenge posed by the scale of the x86 hardware architecture.

This Chapter focuses on our second contribution: an approach to model and verify each
component of a component-based system in isolation, while providing the necessary abstractions
to compose these components [16], along with a companion framework for Coq we called
FreeSpec to support this approach [21].

The rest of the Chapter proceeds as follows. We motivate our contribution in accordance
with our experience implementing the proofs of Chapter 5 (Section 6.1). Then, we describe
how we model components in terms of programs with effects and effect handlers (Section 6.2).
Finally, we introduce so-called abstract specifications to verify their respective properties, and
discuss two verification strategies which leverage them (Section 6.3).

6.1 Lessons Learned from Minx86

In this Section, we emphasize three limitations of Minx86 which makes its use at a larger scale
unlikely (6.1.1). Then, we give an overview of the approach we proposed to address them
(6.1.2).

85

86 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

6.1.1 Minx86 Limitations

Having reasoned about the correctness of ∆bios, we have identified three limitations which
reduce the applicability of Minx86 as we would increase its scope:

1. its monolithic design;

2. its weakness against the temporary violation problem [129];

3. the presence, within our supposedly general-purpose model, of abstract values that are
specific to a particular case study.

Monolithic Model. The set of states H(S) of Minx86 is the Cartesian product of the sets of
states of its hardware components, namely a core, a cache, a memory controller and two arrays
of memory cells. That is, Minx86 is a monolithic model, and this is not without consequences.

During the development of our proof of concept, changes to the definition of H(S) had
an important impact on proofs already written at the moment. We have no doubt that such
situations will arise again if we try to increase the scope of Minx86.

Besides, some transitions of Minx86 imply several intermediary state updates. This is
particularly true for Read and Write transitions, as both the cache and memories are updated
in case of cache misses or cache evictions. The complexity of a transition postcondition has a
direct impact on the proofs we have to construct in order to verify the correctness of a given
system, as the number of case scenarios to consider increases quickly. We have already given an
indication of this in Subsection 5.2.1 when we explained the structure of the proof that ∆bios
complies with the second HSE law. The proof goal depicted in Figure 5.2 —as presented by Coq
when we are constructing our proof— is a good illustration of that, considering it is already a
subcase of the complete proof. In this small snippet, we can identify four intermediary states
(as shown in Figure 5.3).

Temporary Violation Problem. The complexity of Minx86 transitions emphasizes another
important limitation: it is potentially subject to the so-called temporary violation problem [129],
where a predicate is satisfied before and after a given transition, yet is temporary violated during
the transition. A well-known illustration of this threat is —once again— the airlock system.

Example 6.1 (Temporary Violation Problem in an Airlock System)
In Example 3.1, we have carefully defined the labeled transition system of the airlock system
so that it is unambiguously not subject to the temporary violation problem. As a reminder,
the targeted security policy for an airlock system is that at least one door shall be closed at all
time. We did that by avoiding transitions between states (open, closed) and (closed, open). We
can define a transition system which is correct with respect to the targeted safety property and
includes these transitions.

6.1. LESSONS LEARNED FROM MINX86 87

Core Cache Memory Controller

write(pa, v, priv)

cache_hit(p)

false
write(pa ′, v’, priv)

write_cache_line(index(pa), v)

Figure 6.1: Sequence diagram of the execution of movq $0, (%rax)

closed

closed

open

closed

closed
open

open

open

Req1

Req2

Req2Req1

We can imagine several scenarios: (1) Doors states updates are simultaneous and instanta-
neous; in other words, the transitions are atomic. (2) The airlock system first closes one door
before opening the other. (3) The airlock system first opens one door before closing the other.
The systems modeled in Examples 3.1, 3.4, and 3.5 correspond to the scenario (2). On the
contrary, the transition system pictured in this example is not precise enough to discard the
eventuality that both doors are, at a given point in time, both open.

The temporary violation problem undermines the second HSE law, which stipulates that
the requirement over states of a HSE mechanism is an invariant of the model with respect
to the requirement over software transitions (see Definition 4.5). In practice, transitions in
Minx86 are not atomic (they are made of several intermediary state updates, as depicted in
Figure 6.1). Attackers may be able to leverage a temporary violation of invariant, similarly to
the Speed Racer attack [7] detailed in Subsection 2.3.2. Modeling that threat without changing

88 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

the modeling structure of Minx86 requires to increase the granularity of the transitions, with
the direct consequence to complicate the model.

Abstract Model. Our decision to embed the memory location ownership directly inside
Minx86, alongside with the concrete content of each memory location, contradicts our objective
to rely on general-purpose models to specify and verify HSE mechanisms. Continuing with a
similar logic would mean modifying the model every time we want to reason about a security
policy which requires to maintain additional information. For instance, if we want to determine
how many times memory locations have been updated since the beginning of the trace, we
would have to modify the definitions of H(S) and of the transition relation to add a counter
along with the owner of a memory location. Modifying the transition relation is likely to
break all proofs previously written, and therefore this greatly reduces the opportunity to reuse
Minx86 for other security policies.

6.1.2 FreeSpec Overview

In the verification work presented in Chapter 5, we have successfully managed the limitations of
Minx86 partly because we have taken great care in organizing our development as modurarly
as we could. We detailed in Subsection 5.2.3 the strategy we have leveraged to organize our
proofs. We have decoupled the hardware components as much as possible, and we leveraged
the “remember; destruct; assert; apply” pattern to reason about their successive state updates.
As a result, the proofs are structured around smaller, more atomic proof goals. That is, our proof
strategy has proven to be an effective way to mitigate the monolithic design of Minx86, and has
the potential to address the temporary violation problem (thanks to the intermediary sub-case
we introduce with the assert tactic). However, it remains cumbersome to use manually.

Objectives. With FreeSpec, our objective is twofold.
Firstly, we want to propose a general-purpose formalism that allows for never considering

the hardware architecture as a whole, but rather focus on interactions between neighboring
components. To that end, we take the principle of our theory of HSE mechanisms a step further.
Our approach is based onto a clear separation between hardware components from the one side,
and software components from the other side. Software components can interact with hardware
components through the execution of instructions, modeled by the software transitions of the
hardware model, and we specify requirements over how trusted software requirements interact
with the hardware architecture. With FreeSpec, we apply the same reasoning for hardware
components alike: we specify how they interact together, and specify requirements over these
interactions.

Secondly, we want to automate as much as possible the remember; destruct; assert; apply
pattern, in a way that enables formally reasoning about the temporary violation problem. This
objective is reminiscent of the programming language problematic to model and verify large
programs with side effects. Reasoning about side effects in purely functional languages such as

6.1. LESSONS LEARNED FROM MINX86 89

Memory Controller

IMC

Cache

ICache

I/O MMU

Core

IC

Software

DRAM

IDRAM

VGA

IVGA

Figure 6.2: Interface-driven modeling of the x86 architecture

Gallina, the Coq specification language, is difficult, firstly because they imply to somehow take
into account an outer stateful environment and secondly, because the composition of stateful
computations is not well handled by traditional (monadic) approaches. Algebraic effects and
handlers [24] overcome this double challenge. They allow to model large classes of effects (e.g.,
exception, state, non-determinism) and to compose effects within purely functional programs,
while deferring the realizations of these effects to dedicated handlers. In this Chapter, we aim to
show how a variant of algebraic effects based on free monads can be used to support reasoning
about component-based systems, including with respect to the temporary violation problem.

We now give an overview of the formalism that we propose to overcome Minx86 limitations,
both to model and verify a hardware architecture. Its key concept is to focus on components
interfaces, where an interface is a set of interdependent operations which are expected to produce
a value.

Interface and Component. A component is characterized primarily by the interface it exposes
to the rest of the system, and secondarily by its current state and the interfaces it uses in order to
operate. A component receives requests to compute results of operations through its interface,
and sends computational requests to other components it is connected to via their interfaces
and waits for their results.

Example 6.2 (Minx86 as a component-based system)
Figure 6.2 pictures an alternative model to Minx86. The software components interact with the
core via its instruction set. When the core needs to read from or write to memory, it leverages

90 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

DRAM

IDRAM

VGA

IVGA

Memory Controller

IMC

Processor

Figure 6.3: The memory controller in isolation

its cache. In case of cache miss or cache eviction, the cache interacts with the system memory
through the memory controller, whose goal is to dispatch memory accesses between e.g. DRAM
and the VGA controller. In addition, the memory controller dispatches memory requests coming
from other sources, for instance an I/O MMU —something that we have not taken into account
in the proofs in Chapter 6.

Abstract Specifications. To enable compositional reasoning about component-based systems,
we introduce so-called abstract specifications which are characterized by requirements over how
the interface should be used and requirements over the interface operations results.

Example 6.3 (BIOS Isolation)
We consider one more time the isolation of the BIOS at runtime, thanks to the SMM and the
SMRAM.

The SMRAMC register, exposed by the memory controller, allows the BIOS to configure the
main access control mechanism which protects the content of the SMRAM from the rest of the
software stack. Using FreeSpec, we can model and verify this access control mechanism in
isolation, by focusing on the memory controller alone. This is achieved by abstracting away
the rest of the hardware model, thanks to the interfaces exposed and used by the hardware
component of interest, as pictured in Figure 6.3. We model the security policy enforced by
the mechanism behind the SMRAMC register thanks to an abstract specification. An abstract
specification is a couple of requirements —over the interface users, and over the interface
results— which translates as follows here:

– We forbid unprivileged I/O targeting the SMRAM when the SMRAMC register is not correctly
configured.

– We guarantee that a processor which read the content of the SMRAM while in SMM will get
what it has previously written to SMRAM while in SMM.

6.2. MODELING PROGRAMS WITH EFFECTS 91

Memory Controller

IMC

Cache

ICache

Core

Figure 6.4: The cache in isolation

We can prove the memory controller is correct with respect to this abstract specification, meaning
if the processor satisfies the requirements over users, then the results computed by the memory
controller satisfy the requirements over results.

In such a case, the memory controller works as expected, but this does not mean that the
result alone is sufficient to conclude about the system as a whole. We still have to prove the
premise, i.e. that the processor makes a correct use of the memory controller interface. However,
we do not need to use the model of the memory controller to that end, we only need to know
that it will behave as specified by the abstract specification if the processor does too.

We focus on modeling the processor, made in our example of two components: a core and a
cache. Similarly to what we achieved with the memory controller, we reason about the cache in
isolation (as pictured with Figure 6.4). We want to prove that 1. the cache makes a correct use
of the memory controller interface, i.e. each use of the memory controller interface satisfy the
appropriate requirements, and 2. it provides similar guarantees to the core.

We proceed by defining a second abstract specification, this time against the interface of the
cache. This additional abstract specification serves two purposes: it restricts how the core is
allowed to use the cache, and by construction how the cache uses the memory controller, but it
also formalizes the expectation of the core.

In this second case, the requirements over the interface results are the same as what we
already introduced for the memory controller. Trying to prove a cache without SMRR can
enforce them would uncover the SMRAM cache poisoning attack.

In this Section, we have discussed the limitations of Minx86. This necessary assessment
allowed us to propose an alternative formalism to address them. In the rest of this Chapter, we
describe in depth this formalism.

6.2 Modeling Programs with Effects

The first objective of FreeSpec is to incrementally model a complex system, one component at a
time. To do so, we use the key concepts of algebraic effects and effect handlers, implemented

92 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

with a variant of the Free monad called the Program monad as defined in the operational

package of Haskell [130].
This section and the one afterwards proceed through a running example: a minimalist

memory controller, as depicted in Figure 6.3. As before, we have implemented our proofs in
Coq, and interesting readers can refer specifically to the file examples/Smram.v of [21].

6.2.1 Interface of Effects

Within a computing system, interconnected components communicate through interfaces. A
component which exhibits an interface receives computational requests from other components;
it handles these requests by computing their results and sending the latter back to the client
component. In FreeSpec, a computational request is modeled with an effect, that is a symbolic
value which describes the request and its potential result.

For I an interface, we denote by I|A ⊆ I the subset of effects whose results belong to a set A.

Example 6.4 (Memory Controller Interfaces)
The VGA and the DRAM controllers exhibit a similar interface which allows for reading and
writing into a memory region. Their interfaces are denoted by IVGA and IDRAM respectively. Let
Loc be the set of memory locations and Val the set of values stored inside the memory region.
We use the unit value () to model effects without results (similarly to the void keyword in an
imperative language). We define IDRAM (respectively IVGA) with two constructors:

IDRAM , ReadDRAM : Loc → IDRAM|Val

| WriteDRAM : Loc → Val → IDRAM|{()}

Then, IDRAM = IDRAM|{()} ∪ IDRAM|Val , and ReadDRAM(l) ∈ IDRAM|Val is an effect that
describes a memory access to read the value v ∈ Val stored at the location l ∈ Loc.

The memory controller interface is similar, but it distinguishes between privileged and
unprivileged accesses. It also provides one effect to lock the SMRAM protection mecha-
nism, i.e. it enables the SMRAM isolation until the next hardware reset. We define the set
Priv , { privileged, unprivileged } to distinguish between privileged memory accesses made
by a processor in SMM and unprivileged accesses made the rest of the time. The memory
controller interface, denoted by IMCH, is defined with three constructors:

IMCH , ReadMCH : Loc → Priv → IMCH|Val

| WriteMCH : Loc → Val → Priv → IMCH|{()}

| Lock : IMCH|{()}

6.2.2 Operational Semantics for Effects

An effect corresponds to a computational request made to an implementation of a given
interface. To compute the result of the computational request, we define its operational semantics.

6.2. MODELING PROGRAMS WITH EFFECTS 93

Ultimately, we will model a component as an operational semantics for all the effects of its
interface. Since operational semantics are defined using a purely functional language, they
always compute the same result for a given effect, which is inconsistent with the stateful aspect
of hardware components. Thus, an operational semantics produces not only a result, but also a
new operational semantics, which encapsulates the new state of the component.

Definition 6.1 (Operational Semantics)
We write ΣI for the set of operational semantics for a given interface I, defined co-inductively as

ΣI , {σ |σ : ∀A, I|A → A× ΣI }.

An operational semantics σ ∈ ΣI is a function which, given any effect of I, produces both a
result which belongs to the expected set and a new operational semantics to use afterwards.

A component may use more than one interface. For instance, the memory controller of our
running example can access the system memory and the memory shared by the VGA controller.
But an operational semantics is defined for only one interface. In FreeSpec, we solve this issue
by composing interfaces together to create new ones.

Definition 6.2 (Interfaces Composition)
Let I and J be two interfaces. ⊕ is the interface composition operator, defined with two
constructors:

I⊕ J , InL : ∀A, I|A → (I⊕ J)|A

| InR : ∀A, J|A → (I⊕ J)|A

The resulting interface I⊕ J contains the effects of both I and J, wrapped into either InL
or InR constructors. Because constructors images are mutually exclusive 1, this means we
can consider I⊕ I that is the composition of I with itself. This is necessary if we want to be
able to reason about a component connected to two other components which both exhibit
the same interface. Besides, ⊕ preserves the effect result, e.g. given any effect e ∈ I|A, then
InL(e) ∈ (I⊕ J)|A.

Example 6.5 (VGA and DRAM Composition)
We consider IDRAM ⊕ IVGA. Then, InL(ReadDRAM(l)) ∈ (IDRAM ⊕ IVGA)|Val is an effect that
describes a read access targeting the DRAM controller, whereas InR(ReadVGA(l)) ∈ (IDRAM ⊕
IVGA)|{()} is an effect that describes a read access targeting the VGA controller.

Using ⊕, we can compose several interfaces together. We then need another composition
operator, this time for operational semantics. We compose operational semantics together to
construct a new operational semantics for the composed interface.

1See page xi

94 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

C4

IC4

C2

IC2

C3

IC3

C1

Figure 6.5: Illustration of the diamond pattern

Definition 6.3 (Operational Semantics Composition)
Let I and J be two interfaces, σi ∈ ΣI and σj ∈ ΣJ be two operational semantics dedicated to
these interfaces. We use the λ-calculus abstraction notation for unnamed functions. ⊗ is the
composition operator for operational semantics, defined as

σi ⊗ σj , λe.

{
(x,σ ′i ⊗ σj) when e = InL(ei) and σi(ei) = (x,σ ′i)
(x,σi ⊗ σ ′j) when e = InR(ej) and σj(ej) = (x,σ ′j)

The definition of⊗ has an important impact over what can be specified in FreeSpec. Handling
an effect of I (respectively J) does not update σj (respectively σi). As a consequence, we cannot
specify as is a graph of components which contains a cycle or a diamond. This is the main limitation
of FreeSpec, but its incidence is abated because computing platforms are often designed as a
hierarchical succession of layers. We illustrate it with the four-component system depicted in
Figure 6.5. When C1 uses an effect of the interface IC2 , it is possible that the component C2 will
itself use an effect of the interface IC4 . If that happens, the state of the component C4, leading
the result of the next effect used by C3 to be different, compared it could have been without the
action of C2.

Using interfaces, we model how components interact with each other, and we aim to model
a component which exposes an interface as an operational semantics for this interface. We now
present a formalism –the Program monad— to model how a component uses its neighbors
when it handles computational requests of its interface.

6.2.3 The Program Monad

Modeling programs with side effects in purely functional languages such as Gallina (the
Coq specification language) or Haskell is usually achieved thanks to monads [131]. FreeSpec
leverages a variant of the free monad called the Program monad [130] to model programs with
effects. Operational semantics play the role of operational [130] interpreters. We write PI(A)

for the set of programs with effects which belongs to I, modeled thanks to the Program monad,

6.2. MODELING PROGRAMS WITH EFFECTS 95

and whose result belongs to a set A.

Definition 6.4 (Program Monad)
The Program monad is defined with three constructors:

PI(A) , Pure : A→ PI(A)

| Bind : ∀B,PI(B)→ (B→ PI(A))→ PI(A)

| Request : I|A → PI(A)

These constructors allow for the construction of values which act similarly to abstract syntax
trees to model programs with effects. On the one hand, Pure and Request are comparable to
the leaves of a syntax tree and model atomic computations; Pure models local computations,
whereas Request models deferring a computational request to a handler and waiting for its
result. On the other hand, Bind (usually written with the infix operator >>=) models the control
flow of a program with effects, like the abstract syntax tree nodes would. It defines how the
result of one computation determines the following ones.

Example 6.6 (Copy)
We define copy : Loc → Loc → PIDRAM({()}) such that copy(l, l ′) models a program with effects
that returns no result, but copies the value v stored at the memory location l inside the memory
location l ′.

copy(l, l ′) , Request(ReadDRAM(l)) >>= λv.Request(WriteDRAM(l ′, v))

Given l ∈ Loc and l ′ ∈ Loc, copy(l, l ′) symbolically models a program with effects. To assign
an interpretation of this program, it must be completed with an operational semantics which
realizes the interface IDRAM.

Definition 6.5 (Program With Effects Realization)
Let I be an interface, σ ∈ ΣI an operational semantics for this interface and ρ ∈ PI(A) a program
with effects which belong to this interface. σ[ρ] ∈ A×ΣI denotes the realization of this program
by σ, defined as:

σ[ρ] ,

(x,σ) if ρ = Pure(x)
σ(e) if ρ = Request(e)
σ ′[f(y)] if ρ = q >>= f and (y,σ ′) = σ[q]

6.2.4 Components as Programs with Effects

With the interfaces, their operational semantics, the ⊕ and ⊗ operators to compose them and
the Program monad to model programs with effects which belong to these interfaces, we now
have all we need to model a given component which exposes an interface I and uses another

96 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

interface J. We proceed with the following steps: modeling the component in terms of programs
with effects, then deriving one operational semantics for I from these programs, assuming an
operational semantics for J has been provided.

The behavior of a component is often determined by a local, mutable state. When it computes
the result of a computational request, not only a component may read its current state; but it
can also modify it, for instance to handle the next computational request differently. This means
we have to model the state of a component with a set S of symbolic state representations. We
map the current state of the component and effects of I to a program with effects of J. These
programs must compute the effect result and the new state of the component.

Definition 6.6 (Component)
Let I be the interface exhibited by a component and J the interface it uses. Let S be the set of its
states. The component C, defined in terms of programs with effects of J, is of the form

∀A, I|A → S→ PJ(A× S)

Hence, C specifies how the component handles computational requests, both in terms of
computation results and state updates.

Example 6.7 (Minimal Memory Controller Model)
Let CMCH be the memory controller defined in terms of programs with effects of IDRAM ⊕ IVGA,
then CMCH is of the form

∀A, IMCH|A → SMCH → PIDRAM⊕IVGA(A× SMCH)

where SMCH , {on, off} means the SMRAM protection is either activated (on) or deactivated
(off).

On the one hand, the Lock effect will activate the isolation mechanism of the memory
controller, setting its state to on. On the other hand, the effects constructed with ReadMCH and
WriteMCH will use the current state of the memory controller, the privileged parameter of the
effect and the memory location of the access to determine if it uses the DRAM or the VGA
controller. By default, it fetches the memory of the DRAM controller, except if all of the three
following conditions are satisfied : (1) the isolation mechanism is activated, (2) the access is
unprivileged, and (3) the targeted memory location belongs to the SMRAM. In such a case, it
reroutes access to the VGA controller.

A component C defined in terms of programs with effects cannot be used as is to compute
the result of a given effect. To do that, we need to derive an operational semantics for I from C.

Definition 6.7 (Deriving Operational Semantics)
Let C be a component which exhibits an interface I, uses an interface J and whose states belong
to S. Let s ∈ S be the current state of the component and σj ∈ ΣJ be an operational semantics

6.3. MODULAR VERIFICATION OF PROGRAMS WITH EFFECTS 97

for J. We can derive an operational semantics for I, denoted by 〈C, s,σj〉, defined as

〈C, s,σj〉 , λi.(x, 〈C, s ′,σ ′j〉) where ((x, s ′),σ ′j) = σj[C(i, s)]

For each incoming effect e ∈ I, we realize the program with effects associated with this
effect, i.e. C(e, s) where s is the current state of the component, with an operational semantics
σj of J. According the Definition 6.5, we get the result of this program with effect and a new
operational semantics σ ′j. According to Definition 6.6, this result is a pair of the result of e
and the new state s ′ of the component. Using s ′ and σ ′j, we can construct the new operational
semantics of Ito use after handling e.

The resulting operational semantics models a system made of interconnected components,
and can then be used to derive another component model into an operational semantics
which models a larger system. For instance, we can proceed with the following steps to
comprehensively model our running example: (i) defining the operational semantics for the
DRAM and VGA controllers; (ii) using these operational semantics to derive an operational
semantics from CMCH. The resulting operational semantics can take part in the derivation of a
cache defined in terms of programs with effects of IMCH, to model a larger part of the system
pictured in the Figure 6.2.

6.3 Modular Verification of Programs with Effects

The first objective of FreeSpec is to provide the required tools to model each component of a
system independently, and to compose these components to model the whole system. Its second
objective is to verify that the composition of several components satisfies a set of properties.
To achieve that, we introduce the so-called abstract specifications, which allows for specifying,
for each interface, expected properties for the effect results, independently of any underlying
handler. Abstract specifications can be used to emphasize the responsibility of each component
of a system regarding the enforcement of a given security policy. Verifying a component is done
against abstract specifications of the interfaces it directly uses, even if it relies on a security
property enforced by a deeper component in the components graph. In this case, we have to
verify that every single component which separates them preserve this property. This procedure
can help to prevent or uncover architectural attacks.

In this section, we proceed with our running example by verifying that the memory controller
correctly isolates the SMRAM. In order to do that, we define an abstract specification which
states that privileged reads targeting the SMRAM returns the value which has previously been
stored by a privileged write. It models the SMRAM isolation: unprivileged writes cannot
tamper with the content of the SMRAM, as read by a privileged CPU.

6.3.1 Abstract Specification

In FreeSpec, an abstract specification dedicated to an interface I is twofold. It defines a
precondition over the effects that a caller must satisfy; and, in return, it specifies a postcondition

98 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

over the effects results that an operational semantics must enforce. Since both the precondition
and the postcondition may vary in time, we parameterize an abstraction specification with an
abstract state and a step function to update this state after each effect realization.

Definition 6.8 (Abstract Specification)
An abstract specification A dedicated to an interface I is defined as a tuple 〈Ω, step, pre, post〉
where

– Ω is a set of abstract states

– step : ∀A, I|A → A→ Ω→ Ω is a transition function for the abstract state.

– pre is the precondition over effects, i.e a predicate on I×Ω such that pre(e,ω) is true if and
only if the effect e satisfies the precondition parameterized with the abstract state ω.

– post is the postcondition over effects results, i.e. a predicate on
⋃

A(I|A ×A×Ω) such that
post(e, x,ω) is true if and only if the results x computed for the effects e satisfy the postcondition
parameterized with the abstract state ω.

By defining an abstract specification of an interface I, it becomes possible to abstract away
the effect handler, i.e. the underlying component. As a consequence, reasoning about a program
with effects can be achieved without the need to look at the effect handlers. An abstract
specification is dedicated to one verification problem (in our context, one security property),
and it is possible to define as many abstract specifications as required.

We write runstep : ∀A,ΣI → PI(A)→ Ω→ (A× ΣI ×Ω) for the function which, in addition
to realize a program with effects, updates an abstract state after each effect. Using runstep, we
can determine both the precondition over effects and the postcondition over effects results while
an operational semantics realizes a program with effects.

Example 6.8 (Memory Controller Abstract Specification)
Let AMCH be the abstract specification such that AMCH = 〈ΩMCH, stepMCH, preMCH, postMCH〉.
AMCH models the following property: “privileged reads targeting the SMRAM return the value
which has been previously stored by a privileged write”:

– Let Smram ⊆ Loc be the set of memory locations which belong to the SMRAM. We define
ΩMCH , Smram → Val , such that ω ∈ ΩMCH models a view of the SMRAM as exposed by the
MCH for privileged reads.

– We define stepMCH which updates the view of the MCH (modeled as a function) after each
privileged write access targeting any SMRAM location l, that is

stepMCH(e, x,ω) ,

λl ′. (if l = l ′ then v else ω(l ′))

if e = WriteMCH(l, v, privileged) and l ∈ Smram
ω otherwise

6.3. MODULAR VERIFICATION OF PROGRAMS WITH EFFECTS 99

– There is no precondition to the use of the memory controller effects, so

∀e ∈ I,∀ω ∈ ΩMCH, preMCH(e,ω)

– The postcondition enforces that the result x of a privileged read targeting the SMRAM
(Read(l, privileged)) has to match the value stored in AMCH abstract state, i.e. the expected
content for this memory location ω(l).

postMCH(e, x,ω) , ∀l ∈ Loc, e = ReadMCH(l, privileged)∧ l ∈ Smram ⇒ x = ω(l)

6.3.2 Compliance and Correctness

The verification of a component C, which exhibits I and uses J, consists in proving we can
derive an operational semantics σi for I from an operational semantics σj for J. This semantics
σi enforces the postcondition of an abstract specification AI dedicated to I (compliance). As C
is defined in terms of programs with effects of J, the latter needs to make a licit usage of J with
respect to an abstract specification AJ dedicated to J (correctness).

First, σi complies with AI if, (1) given any effect which satisfies AI precondition, σi
produces a result which satisfies its postcondition, and if (2) the new operational semantics
σ ′i also complies with AI. The precondition and the postcondition are parameterized by an
abstract state, so is the compliance property.

Definition 6.9 (Operational Semantics Compliance)
Let A be an abstract specification for an interface I, defined as 〈Ω, step, pre, post〉, ω ∈ Ω, then
σ ∈ ΣI complies with A in accordance with ω (denoted by σ |= A[ω]) iff.

∀e ∈ I, pre(e,ω)⇒ post(e, x,ω)∧ σ ′ |= A[step(e, x,ω)] where (x,σ ′) = σ(e)

Secondly, programs with effects of C make a licit usage of an operational semantics σj ∈ ΣJ
which complies with AJ if they only use effects which satisfy AJ precondition. As for the
compliance property, correctness is parameterized with an abstract state.

Definition 6.10 (Program With Effects Correctness)
Let A be an abstract specification for an interface I, defined as 〈Ω, step, pre, post〉, ω ∈ Ω, and
ρ ∈ PI(A), then ρ is correct with respect to A in accordance with ω (denoted by A[ω] |=ρ), iff.

A[ω] |=ρ ,

True if ρ = Pure(x)
pre(e,ω) if ρ = Request(e)
∀σ ∈ ΣI such that σ |= A[ω],

A[ω] |=q∧A[ω ′] |=f(x) if ρ = q >>= f

where (x, _,ω ′) = runstepJ(σ,q,ω)

100 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

Every local computation (Pure) is correct with respect to A in accordance with ω. A
computation which uses an effect e ∈ I (Request) is correct with respect to A in accordance
with ω if and only if e satisfies the precondition of A for the abstract state ω. Finally, the
chaining of two programs with effects (Bind) is correct with A in accordance with ω if the
first program is correct with A in accordance with ω, and the second program is correct in
accordance with the abstract state reached after the realization of the first program.

Properties, inferred from an abstract specification, of a correct program with effects only
hold if it is realized by a compliant operational semantics. Besides, we prove that correct
programs preserve operational semantics compliance.

Theorem 6.1 (Compliance Preservation)
Let A be an abstract specification dedicated to an interface I, then σ a compliant operational
semantics for I produces a compliant operational semantics σ ′ when it realizes a correct program
ρ, that is

σ |= A[ω] ∧ A[ω] |=ρ ⇒ σ ′ |= A[ω ′] where runstep(σ, ρ,ω) = (x,σ ′,ω ′)

As for interfaces (with ⊕) and operational semantics (with ⊗), we have also defined an
abstract specification composition operator �. We do not detail its definition in this Chapter 2,
but it has the significant property to allow for reasoning about the composition of interfaces
and composition of operational semantics.

Theorem 6.2 (Congruent Composition)
Let I (respectively J) be an interface. Let AI (respectively AJ) be an abstract specification and
σi ∈ ΣI (respectively σj ∈ ΣJ) be an operational semantics for this interface.

σi |= AI[ωi]∧ σj |= AJ[ωj]⇒ σi ⊗ σj |= (AI �AJ)[ωi,ωj]

With the compliance preservation, we know that as long as we follow the abstract specifica-
tion precondition related to the effects we use, compliant operational semantics keep enforcing
the postcondition. With the compliance preservation and congruent composition, we know we
can reason locally, that is component by component.

6.3.3 Proofs Techniques to Show Compliance for Components

We have dived into the mechanisms which allow for composing together compliant operational
semantics, but little has been said about how to prove the compliance property. In a typical
FreeSpec use case, operational semantics are not built as is, but rather derived from a component
model (Definition 6.7). How to prove the resulting operational semantics complies with an
abstract specification depends on how the component is connected to the rest of the system. We

2Interesting readers can refer to the file theories/Compose.v of [21] to find its definition, but the latter is not required
to understand the rest of this Chapter.

6.3. MODULAR VERIFICATION OF PROGRAMS WITH EFFECTS 101

have already discussed the consequences of the operational semantics composition operator
⊗ (Definition 6.3). Notably, a graph of components which contains a cycle, a diamond or a
forward edge cannot be easily modeled and verified in FreeSpec. In its current state, FreeSpec
provides two theorems to verify the properties of a component model in terms of an abstract
specification, dedicated to two composition patterns: when a component is being used by one
component, and when a component is being used by more than one component.

Predicate of Synchronization. The simplest scenario consists of one component which uses
many components, and is only used by one other component, e.g. in Figure 6.3. Let I and J

be two interfaces and let C be a component with a set of states S, which exhibits I and uses
J. Let AI be an abstract specification dedicated to I. Deriving an operational semantics from
C which complies with AI in accordance with ωi ∈ ΩI requires to show the existence of
s ∈ S and σj ∈ ΣJ such that

〈C, s,σj〉 |= AI[ωi].

However, proving this statement would not be very satisfying, as it ties our verification results
to one specific operational semantics σj, and by extension one specific component. As a
consequence, we define an abstract specification AJ to generalize our statement and abstracting
away σj. We now need to prove there exists ωj ∈ ΩJ such that given an operational semantics
σj which complies with AJ in accordance with ωj, the operational semantics derived from C, s
and σj complies with AI in accordance with ωi, that is

∀σj ∈ ΣJ, σj |= AJ[ωj]⇒ 〈C, s,σj〉 |= AI[ωi]

The combinatorial explosion of cases introduced byωi, s andωj, modified as the component
handles effects, makes inductive reasoning challenging. The FreeSpec framework provides a
useful theorem to address these challenges, which leverages a so-called predicate of synchro-
nization. The latter is defined by the user on a case-by-case basis, to act as an invariant for the
induction, and a sufficient condition to enforce compliance.

Theorem 6.3 (Derivation Compliance)
Let sync, a relation between abstract states of ΩI and ΩJ and concrete states of S, be a predicate
of synchronization. Then, it is expected that, ∀ωi ∈ ΩI, s ∈ S and ωj ∈ ΩJ such that
sync(ωi, s,ωj) holds, then ∀σj ∈ ΣJ such that σj |= AJ[ωj] and ∀e ∈ I such that preI(e,ωi),

1. C preserves the synchronization of states, that is sync(ω ′i, s
′,ω ′j)

2. C is defined in terms of programs with effects which are correct with respect to AJ in
accordance with ωj, that is AJ[ωj] |=C(e, s)

3. C computes a result for e which satisfies AI postcondition, that is postI(e, x,ωi)

where ((x, s ′),σ ′j,ω
′
j) = runstepJ(σj,C(e, s),ωj) and ω ′i = stepI(e, x,ωi).

102 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

Should these three properties be verified, then we show that

sync(ωi, s,ωj)∧ σj |= AJ[ωj]⇒ 〈C, s,σj〉 |= AI[ωi].

Example 6.9 (Memory Controller Compliance)
We want to prove we can derive an operational semantics from CMCH (Example 6.7) which
complies with AMCH (Example 6.8).

We define ADRAM , 〈ΩDRAM, stepDRAM, preDRAM, postDRAM〉 an abstract specification ded-
icated to IDRAM to express the following property: “a read access to a memory location which
belongs to the SMRAM return the value which has been previously written at this memory location.”
In particular, ΩDRAM = ΩMCH, i.e. they are two views of the SMRAM, as exposed by the
DRAM controller or by the memory controller. In this context, the behavior of VGA is not
relevant. Let > be the abstract specification which has no state and such that its precondition
and postcondition are always satisfied (meaning every operational semantics always complies
with it). Therefore, the abstract specifications dedicated to the interface used by CMCH, that is
IDRAM ⊕ IVGA, is ADRAM �> whose abstract state is ΩDRAM.

We define the predicate of synchronization syncMCH such that

syncMCH(ωi, s,ωj) , s = on∧ ∀l ∈ Smram ,ωi(l) = ωj(l)

Hence, we start our reasoning from a situation where the SMRAM isolation is already activated
and the states of the two abstract specifications are the same, meaning the two views of the
SMRAM (as stored in the DRAM, and as exposed by the memory controller) coincide. We
prove syncMCH satisfies the three premises of the Theorem 6.3. We conclude we can derive an
operational semantics from CMCH which complies with AMCH.

Predicate of Neutrality. Another common composition pattern consists of a component which
is used by more than one other component, e.g. the memory controller in Figure 6.2 is being
used by the IOMMU and the cache. FreeSpec provides a theorem which allows for extending
the result obtained with the Theorem 6.3, in the specific case where concurrent accesses do
not lead to any abstract state update, and always satisfy the requirements over effects. This
represents an important constraint, but matches realistic use cases. In particular, when hardware
components interfaces are very large, two components are likely to use different classes of
effects that do not interfere with each other.

Definition 6.11 (Predicate of Neutrality)
Let I be an interface and A , 〈Ω, step, P, Q〉 be an abstract specification dedicated to I. Let
pn : I→ P be a subset of effects. pn is said to be a predicate of neutrality of A (denoted A‖pn)

6.4. CONCLUSION 103

if and only if

∀A, ω ∈ Ω, i ∈ I|A, x ∈ A,
(pn(i)⇒ P(i,ω))∧ (pn(i)∧ Q(i, x,ω)⇒ ω = step(i, x,ω))

In a similar manner to the predicate of synchronization, FreeSpec provides a theorem to
help and guide the verification work of its users.

Theorem 6.4 (Neutrality and Concurrency)
Let σ ∈ ΣI be an operational semantics dedicated to I. Let pn : I→ P be a subset of effects. Let
σ↓pn be the operational semantics built upon σ which executes arbitrary sequences of effects
satisfying pn between two effects. We prove that

A‖pn ∧ σ |= A[ω]⇒ σ↓pn |= A[ω]

In other words, a second component which only uses the effects that satisfies pn can use the
interface concurrently to a component proved to be correct with respect to A.

Example 6.10 (Memory Controller and IOMMU)
As pictured in Figure 6.2, the memory controller not only arbitrates the memory accesses of
the CPU, but also to other hardware components (mostly PCI and PCIe devices). One possible
predicate of neutrality for AMCH is to deny the IOMMU the possibility to perform privileged
write, so that only the main CPU could do it, that is

pnIOMMU(e) , ∀l ∈ Loc, v ∈ ×Val , e 6= WriteMCH(l, v, privileged)

By definition of AMCH, and more precisely according to its transition function, only privileged
write accesses update its abstract state. Therefore, we prove

∀A,ω ∈ ΩMCH, e ∈ I|A, x ∈ A, pnIOMMU(e)⇒ stepMCH(ω, e, x,ω) = ω

Besides, the precondition preMCH always holds true.
As a consequence, AMCH‖pnIOMMU, that is pnIOMMU is a predicate of neutrality of AMCH.

This means if we can prove that the effects used by the IOMMU always satisfy pnIOMMU
predicate, then we can safely compose it with a cache knowing that, from the security perspective
of the cache, it is like the IOMMU “is not here” (it does not interfere).

6.4 Conclusion

In this Chapter, we have introduced the FreeSpec key definitions and theorems so that we could
model a minimal memory controller component and verify its properties in the presence of a
well-behaving DRAM controller. This example has been driven by a real mechanism commonly
found inside x86-based computing platforms.

104 CHAPTER 6. MODULAR VERIFICATION OF COMPONENT-BASED SYSTEMS

The typical workflow of FreeSpec can be summarized as follows: specifying the interfaces
of a system; modeling the components of the system in terms of programs with effects of these
interfaces; identifying the abstract specifications which express the requirements over each
interface; verifying each component in terms of compliance with these abstract specifications.

Independent groups of people can use FreeSpec to modularly model and verify a system,
as long as they agree on the interfaces and abstract specifications. If, during the verification
process, one group finds out a given interface or abstract specification needs to be updated,
the required modifications may impact its neighbors. In other words, this verification process
can help uncover inconsistencies in hardware specifications which pave the road towards
compositional attacks. For instance, modeling a x86-based computing system, as pictured in
Figure 6.2, using FreeSpec requires to take into account the cache, and to verify it complies
with an abstract specification similar to the one defined in Example 6.8. As we explained in
Example 6.2, such a proof was not possible to write prior to 2009, because the cache was lacking
an access control mechanism for the SMRAM at that time. Thus, FreeSpec could have helped
uncover the SMRAM cache poisoning attack previously mentioned [5, 4].

The abstract specifications are defined in terms of interfaces, i.e. independently from com-
ponents. It has two advantages. First, for a given verification problem modeled with a set
of abstract specifications, two components which exhibit the same interface can be proven to
comply with the same abstract specification. In such a case, we can freely interchange these
components, and the verification results remain true. This is useful to consider the challenge
posed by components versioning, i.e. a new version of a component brings new features which
could be leveraged by an attacker. Then, it is possible to verify a given component in terms of
several abstract specifications. This means we can independently conduct several verification
works against the same component.

7
Conclusion and

Perspectives

“ I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.”

— Abraham Maslow

The starting point of this thesis is the SMRAM cache poisoning attack [4, 5], and more generally
various compositional attacks [3] against the x86 hardware architecture [1, 6, 7]. These attacks
have in common to leverage inconsistencies in the hardware specifications to defeat security
policies supposedly enforced by the hardware architecture.

In this thesis, we have identified a class of security enforcement mechanisms called Hardware-
based Security Enforcement (HSE) mechanisms, which consist of the configuration by a trusted
software component of the underlying hardware architecture in order to constrain the execution
of untrusted software components with respect to a targeted security policy. We have investi-
gated the use of formal methods to formally specify and verify HSE mechanisms as a potential
solution to uncover compositional attacks. We steer a middle course between two domains:
hardware verification and system software verification. Generally, hardware verification focuses
on properties which are transparent to the executed software and system software verification
relies on hardware models which abstract the architecture complexity as much as possible . On
the contrary, when it comes to HSE mechanisms it is important to consider that (1) hardware
architectures often allow for implementing several HSE mechanisms, and (2) hardware features
involved in HSE mechanisms are not safe by default.

In the following, we first give a brief summary of our two contributions and then suggest
some possible directions for future work.

105

106 CHAPTER 7. CONCLUSION AND PERSPECTIVES

7.1 Summary of the Contributions

Our contribution is twofold. As a first step, we have proposed a theory of HSE mechanisms.
Furthermore, we have proposed a compositional reasoning framework for Coq, based on our
experience in implementing a proof of concept for our theory.

A Theory of HSE Mechanisms. We have proposed in Chapter 4 a theory of HSE mechanisms,
such that a mechanism is primarily characterized by a set of trusted software components, a
set of requirements over states and a set of requirements over software transitions. We have
evaluated our approach in Chapter 5. We have introduced Minx86, a minimal model for a
single core x86-based computing platform, and we have used it to specify and verify the HSE
mechanism implemented by the BIOS to remain isolated from the rest of the software stack at
runtime. We have written machine-checked proofs in Coq to increase our confidence in our
result. Proofs related to the Chapter 4 have been commented in Appendix A and those related
to the Chapter 5 have been released as free software [37].

Compositional Reasoning for Coq. We have proposed in Chapter 6 a novel approach which
enables modular verification of complex systems made of interconnected components. This
approach is the result of various lessons learned during the development of our first proof of
concept, and we believe it represents a first step towards addressing the challenge posed by the
scale of the x86 hardware architecture. Components of a system are primarily identified by the
interface they expose, and secondarily by their current state and the interfaces they use. We have
introduced so-called abstract specifications to allow for reasoning about components in isolation
and about the expected properties of their composition. Besides, the resulting Coq framework,
called FreeSpec and also made available as free software [21], is not specific to hardware models,
and could also be leveraged to reason about composition of software components as well.

7.2 Perspectives

This thesis introduces a theory for specifying and verifying HSE mechanism as restrictions
on hardware models, and a formalism to define and reason about these models in terms of
interconnected components.

Using FreeSpec to Specify and Verifying HSE Mechanisms

Our theory of HSE mechanisms and our compositional reasoning framework for Coq remain
two separated projects. The most natural continuation of our work would be to connect them,
e.g. by substituting Minx86 with a model developed using FreeSpec. Going further, we are
convinced a general-purpose model for the x86 architecture would be worth the time and effort
spent on its construction. However, we have no doubt that the limitations of FreeSpec —in

7.2. PERSPECTIVES 107

terms of components interaction patterns— still reduce its applicability for the most complex
parts of the x86 hardware architecture.

Extending FreeSpec With a Model Validation Framework

As a complement, the trustworthiness of a general-purpose hardware model is of key importance,
as emphasized by Reid et al. for their formal specification of ARM [107]. Extending FreeSpec
with a validation model framework would be an important step in that direction. We have
taken great care for FreeSpec to be compatible with the code extraction feature of Coq, which
means we can turn components model into executable programs. This feature opens interesting
opportunities, but remains only a first step towards a practical model validation framework.
In addition to traditional challenges, validating a model of a PCH, for instance, promises to
be challenging because of its tight integration inside Intel chips. Focusing our efforts on open
source processors, such as Leon4 [132], could allow us to investigate further this avenue of
research.

108 CHAPTER 7. CONCLUSION AND PERSPECTIVES

A
A Formal Definition of HSE

Mechanisms in Coq

This Appendix presents an implementation of the formal definition of HSE mechanisms detailed
in Chapter 4, and follows a similar outline. The main purpose of this development is to provide
rigorous, machine-checked proofs of the lemmas and theorems discussed in the Chapter.
We assume the reader is familiar with Coq, and we discuss several key fragments of the
development.

A.1 Hardware Model

A.1.1 Definition

A hardware model in our formalism is a tuple 〈H,LS,LH,→〉 (Definition 4.1), with→ being a
predicate on H× (LS] LH)×H.

The three sets H, LS and LH are introduced as variables of our development. This means
they are implicit arguments of any further definition which uses them.

2 Variables (H Ls Lh: Type).

The disjoint union] is modeled through a dedicated inductive type called label.

4 Inductive label :=

5 | Software

6 : Ls -> label

7 | Hardware

8 : Lh -> label.

Because H, LS and LH are implicit arguments of our development, a hardware model can be
reduced to its relation transition→.

109

110 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

10 Definition model

11 : Type :=

12 H -> label -> H -> Prop.

A transition in our formalism is a tuple (h, l,h ′) which satisfies the transition relation of the
model. Subsets in Coq are usually modeled using so-called sigma-type: { x: A | P x } is the
subset of elements of type A which satisfy the predicate P. We define transition m, the set of
transitions of a model m, using a sigma-type.

29 Definition transition

30 (m: model)

31 : Type :=

32 { tr | m (from tr) (labelled tr) (to tr) }.

Because Gallina is a strongly typed language, manipulating a sigma-type can be cumbersome.
In particular, there is no implicit coercion from { x: A | P x } to A by default. The function
proj1_sig can be used to explicitly coerce a sigma-type value, and we leverage the Notation

feature of Coq, in order to ease the coercion.

34 Notation "'#' x" :=

35 (proj1_sig x) (at level 0).

That is, when we write #x, Coq will unwrap the sigma-type.

A.1.2 Traces

The next step is to model traces (Definition 4.2). We first introduce sequence, a parameterized
type which cannot be empty. This simplifies several definitions, such as init (which returns
the initial state of a trace).

39 Inductive sequence

40 (a: Type)

41 : Type :=

42 | Ssingleton (x: a)

43 : sequence a

44 | Scons (x: a)

45 (rst: sequence a)

46 : sequence a.

Not all sequences are traces, as a trace is a sequence where, given two consecutive transitions,
the initial state of the second one is the resulting state of the first. Similarly to the transition

type, we define trace with a sigma-type. To define the predicate to distinguish between valid
and invalid trace, we first define init and trace as functions on sequence (transition m),
with the set of transitions returned by trace is modeled as a predicate on transition m. Then,
we define is_trace, an inductive predicate on sequence (transition m).

A.1. HARDWARE MODEL 111

62 Inductive is_trace

63 {m: model}

64 : sequence (transition m) -> Prop :=

65 | singleton_is_trace (tr: transition m)

66 : is_trace (Ssingleton tr)

67 | step_is_trace (tr: transition m)

68 (rho: sequence (transition m))

69 (Heq: to #tr = init rho)

70 (Hrec: is_trace rho)

71 : is_trace (Scons tr rho).

Finally, we use the is_trace predicate to define trace m.

73 Definition trace

74 (m: model)

75 : Type :=

76 { tr: sequence (transition m) | is_trace tr }.

A.1.3 Security Policies

We have detailed how security policies can be modeled in transition systems, in Subsection 3.1.2
for the general case and in Subsection 4.1.3 for the context of HSE mechanisms. A security
policy is either a predicate on sets of traces, a predicate on traces or a predicate on transitions.
In this development, we keep the former (predicate on sets of traces) as the generic definition.

90 Definition security_policy

91 (m: model) :=

92 (trace m -> Prop) -> Prop.

We then express the two latter (predicate on traces, and predicate on transitions) as particular
sub-cases of this generic definition.

94 Definition security_property

95 (m: model)

96 (prop: trace m -> Prop)

97 : security_policy m :=

98 fun (traces: trace m -> Prop)

99 => forall (rho: trace m), traces rho -> prop rho.

101 Definition safety_property

102 {m: model}

103 (prop: transition m -> Prop)

104 : security_policy m :=

105 fun (traces: trace m -> Prop)

112 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

106 => forall (rho: trace m),

107 traces rho

108 -> forall (tr: transition m),

109 trans #rho tr

110 -> prop tr.

A.2 HSE Mechanisms

We now give a formal definition of HSE mechanisms in the Coq theorem prover, as stated in
Definition 4.4.

A.2.1 Definition and HSE Laws

First, we introduce an helper definition to easily express predicates of the form l ∈ LS ⇒ P(l).

112 Definition if_software

113 (l: label)

114 (P: Ls -> Prop)

115 : Prop :=

116 match l with

117 | Software l

118 => P l

119 | _

120 => True

121 end.

The if_software allows for hiding the pattern matching that is necessary to express various
definitions of our theory of HSE mechanisms. Then, we define a type of HSE mechanisms using
the Coq Record syntax, as follows.

123 Record HSE

124 (m: model) :=

125 { software: Type

126 ; tcb: software -> Prop

127 ; context: H -> software

128 ; hardware_req: H -> Prop

129 ; software_req: H -> Ls -> Prop

130 ; law_2: forall (tr: transition m),

131 hardware_req (from #tr)

132 -> if_software (labelled #tr)

133 (software_req (from #tr))

134 -> hardware_req (to #tr)

A.2. HSE MECHANISMS 113

135 ; law_1: forall (tr: transition m),

136 ~ tcb (context (from #tr))

137 -> if_software (labelled #tr)

138 (software_req (from #tr))

139 }.

By making the two laws part of the HSE mechanisms definition, we ensure that no inconsis-
tent HSE mechanism can be defined in Coq.

A.2.2 Trace Compliance

Whether trusted software components are correctly implementing a given HSE mechanism is a
safety property. This means we shall be able to derive a subset of “compliant” traces from the
set of traces of the hardware model.

147 Definition compliant_trace

148 {m: model}

149 (hse: HSE m)

150 (rho: trace m)

151 : Prop :=

152 hardware_req hse (init #rho)

153 /\ forall (tr: transition m),

154 trans #rho tr

155 -> if_software (labelled #tr)

156 (software_req hse (from #tr)).

This definition is straightforward: for a trace to be compliant with a HSE mechanism, its
initial state has to comply with the hardware requirements of this HSE mechanism, while
its software transitions (that is, transitions whose label belongs to Ls) satisfy its software
requirements.

In order to prove Lemma 4.1, we first prove an intermediary result: if a trace complies with a
given HSE mechanism, then the subtrace obtained by removing its first transition also complies
with the HSE mechanism.

158 Fact compliant_trace_rec

159 {m: model}

160 (hse: HSE m)

161 (x: transition m)

162 (rho: sequence (transition m))

163 (Hcons: is_trace (Scons x rho))

164 (Hrho: is_trace rho)

165 : compliant_trace hse (exist (Scons x rho) Hcons)

166 -> compliant_trace hse (exist rho Hrho).

114 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

167 Proof.

168 intros [Hhard_req Hsoftware_req].

169 constructor.

170 + inversion Hcons; subst.

171 cbn.

172 rewrite <- Heq.

173 apply law_2.

174 ++ apply Hhard_req.

175 ++ apply Hsoftware_req.

176 left; reflexivity.

177 + intros tr Htrans.

178 apply Hsoftware_req.

179 right; exact Htrans.

180 Qed.

We use this result in the proof by induction of Lemma 4.1. This lemma states that hardware
requirements of a consistent HSE mechanism are invariant of compliant traces.

184 Lemma hse_inv_enforcement

185 {m: model}

186 (hse: HSE m)

187 : forall (rho: trace m),

188 compliant_trace hse rho

189 -> forall (tr: transition m),

190 trans #rho tr

191 -> hardware_req hse (from #tr)

192 /\ hardware_req hse (to #tr).

193 Proof.

194 intros [rho Hrho] Hcomp tr Htrans.

195 cbn in *.

196 induction rho.

The first case to consider is the singleton sequence, with only one transition. By definition
of the compliant traces, the initial state of the only transition of rho satisfies hardware_req. In
order to prove that the resulting state of this transition also satisfies the requirement, we use
the second law of the HSE mechanism definition.

197 + inversion Hcomp as [Hhard_req Hsoftware_req].

198 split.

199 ++ now rewrite Htrans.

200 ++ apply law_2.

201 +++ now rewrite Htrans.

202 +++ now apply Hsoftware_req.

A.2. HSE MECHANISMS 115

The second case to consider is a trace made of an initial transition and a subtrace. If we
consider the associated set of transitions, we again have to cover two cases. Firstly, we can focus
on the initial transition: the proof is here very similar to the singleton trace case. Secondly,
we can consider the transitions of the subtrace. We know this subtrace is compliant using
compliant_trace_rec. This allows us to use the induction hypothesis, and conclude the proof.

203 + destruct Htrans as [Htrans|Htrans].

204 ++ rewrite Htrans.

205 split; [apply Hcomp |].

206 apply law_2.

207 +++ apply Hcomp.

208 +++ apply Hcomp.

209 left; reflexivity.

210 ++ inversion Hrho; subst.

211 apply (IHrho Hrec).

212 +++ eapply compliant_trace_rec.

213 apply Hcomp.

214 +++ apply Htrans.

215 Qed.

A.2.3 HSE Mechanism Correctness

231 Definition correct_hse

232 {m: model}

233 (hse: HSE m)

234 (p: security_policy m)

235 : Prop :=

236 p (compliant_trace hse) .

238 Theorem safety_property_correct_hse

239 {m: model}

240 (hse: HSE m)

241 (p: transition m -> Prop)

242 : (forall (rho: trace m)

243 (tr: transition m),

244 trans #rho tr

245 -> hardware_req hse (from #tr)

246 -> if_software (labelled #tr)

247 (software_req hse (from #tr))

248 -> p tr)

249 -> correct_hse hse (safety_property p).

250 Proof.

116 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

251 intros Hreq.

252 unfold correct_hse, safety_property.

253 intros rho Hcomp tr Htrans.

254 apply (Hreq rho tr Htrans).

255 + eapply hse_inv_enforcement.

256 ++ exact Hcomp.

257 ++ exact Htrans.

258 + apply Hcomp.

259 exact Htrans.

260 Qed.

A.2.4 HSE Mechanisms Composition

HSE mechanisms are commonly implemented simultaneously by modern software stack, e.g.
an operating system configures the MMU, while firmware relies on the processor SMM. In
Chapter 4, we have proposed a first definition of a composition operator to reason about
such scenario. This operator is not total, and cannot compose together two arbitrary HSE
mechanisms. Therefore, we first define a predicate to determine whether two HSE mechanisms
are compatible or not. The main characteristic of two compatible HSE mechanisms is that they
use the same hardware-software mapping. Maybe surprisingly for the reader unfamiliar with
Coq, this property is not straightforward to express and requires to use the eq_rect function
which allows to cast a value from one type to another, assuming we can provide the proof both
types are actually the same.

401 Definition compatible_hse

402 {m: model}

403 (hse1 hse2: HSE m)

404 : Prop :=

405 software hse1 = software hse2

406 /\ forall x H,

407 context hse2 x = eq_rect _ id (context hse1 x) _ H.

We then define the HSE_cap function (cap being the name of the latex command of ∩) which
computes the composition of two compatible HSE mechanisms. We rely on the refine tactic in
order to write the proofs of consistency of the resulting HSE mechanisms in interactive mode
(using tactics) rather than providing them directly.

409 Definition HSE_cap

410 {m: model}

411 (hse1 hse2: HSE m)

412 (Hcompatible: compatible_hse hse1 hse2)

413 : HSE m.

414 refine ({| software := software hse1

A.2. HSE MECHANISMS 117

415 ; context := context hse1

416 ; tcb := fun x

417 => tcb hse1 x \/ tcb hse2 (eq_rect _ id x _ _)

418 ; hardware_req := fun x

419 => hardware_req hse1 x

420 /\ hardware_req hse2 x

421 ; software_req := fun x l

422 => software_req hse1 x l /\ software_req hse2 x l

423 |}).

As stated in Definition 4.5, we prove the first law...

429 + intros tr Htcb.

430 apply Classical_Prop.not_or_and in Htcb.

431 destruct Htcb as [Ht1 Ht2].

432 inversion Hcompatible as [Hsoftware Hcontext].

433 rewrite <- Hcontext in Ht2.

434 apply law_1 in Ht1.

435 apply law_1 in Ht2.

436 induction tr as [tr Htr];

437 induction tr as [[h l] h'];

438 induction l; auto.

439 unfold proj1_sig.

440 split.

441 ++ apply Ht1.

442 ++ apply Ht2.

443 Unshelve.

444 apply Hcompatible.

445 Defined.

... and the second law (hardware_req is an invariant).

424 + intros tr [Hi1 Hi2] Hsoft.

425 split; apply law_2; [exact Hi1 | idtac | exact Hi2 | idtac];

426 induction tr as [tr Htr]; induction tr as [[h l] h'];

427 induction l; auto;

428 apply Hsoft.

We discussed in Chapter 4 several expected properties of the HSE mechanisms composition.
For instance, Lemma 4.3 states that the set of compliant traces of the compositions of two HSE
mechanisms is the intersection of the sets of compliant traces of each HSE mechanism. In the
context of this development, sets are defined as predicates (this is a common approach in Coq).
To reason about set equality, we prove two complementary implications. Firstly, a compliant

118 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

trace of the composition of two HSE mechanisms necessarily complies with one of these HSE
mechanisms. The associated proof covers both possible cases whose are very similar 1.

472 Lemma compliant_trace_intersec_intersec_compliant_trace

473 {m: model}

474 (hse_1: HSE m)

475 (hse_2: HSE m)

476 (Hcomp: compatible_hse hse_1 hse_2)

477 (rho: trace m)

478 : compliant_trace (HSE_cap hse_1 hse_2 Hcomp) rho

479 -> compliant_trace hse_1 rho /\ compliant_trace hse_2 rho.

480 Proof.

481 intros Hct.

482 unfold compliant_trace in Hct.

483 unfold HSE_cap in Hct.

484 cbn in Hct.

485 split.

486 + constructor.

487 ++ apply Hct.

488 ++ intros tr Htr.

489 destruct Hct as [_H Hct].

490 assert (Hres: if_software (labelled #tr)

491 (fun l : Ls =>

492 software_req hse_1 (from #tr) l

493 /\ software_req hse_2 (from #tr) l))

494 by (apply Hct; exact Htr).

495 induction tr as [tr _H2]; induction tr as [[h l] h'].

496 induction l; auto.

497 cbn in *.

498 apply Hres.

499 + constructor.

500 ++ apply Hct.

501 ++ intros tr Htr.

502 destruct Hct as [_H Hct].

503 assert (Hres: if_software (labelled #tr)

504 (fun l : Ls =>

505 software_req hse_1 (from #tr) l

506 /\ software_req hse_2 (from #tr) l))

507 by (apply Hct; exact Htr).

508 induction tr as [tr _H2]; induction tr as [[h l] h'].

1We can probably reduce the size of the proof by half with some refactoring.

A.3. CASE STUDY: CODE INJECTION POLICIES 119

509 induction l; auto.

510 cbn in *.

511 apply Hres.

512 Qed.

Secondly, a trace which complies with one of two HSE mechanisms also complies with their
composition.

514 Lemma intersec_compliant_trace_compliant_trace_intersec

515 {m: model}

516 (hse_1: HSE m)

517 (hse_2: HSE m)

518 (Hcomp: compatible_hse hse_1 hse_2)

519 (rho: trace m)

520 : compliant_trace hse_1 rho /\ compliant_trace hse_2 rho

521 -> compliant_trace (HSE_cap hse_1 hse_2 Hcomp) rho.

522 Proof.

523 intros [H1 H2].

524 constructor.

525 + unfold HSE_cap.

526 cbn.

527 split; [apply H1|apply H2].

528 + intros tr Htrans.

529 assert (Hb1: if_software (labelled #tr)

530 (software_req hse_1 (from #tr)))

531 by (apply H1; exact Htrans).

532 assert (Hb2: if_software (labelled #tr)

533 (software_req hse_2 (from #tr)))

534 by (apply H2; exact Htrans).

535 induction tr as [tr _H3]; induction tr as [[h l] h'].

536 induction l; cbn in *; auto.

537 Qed.

A.3 Case Study: Code Injection Policies

A.3.1 The Software Stack

We consider the execution of a software stack made of a firmware component, an operating
system and an infinite number of applications, identified by a natural number.

262 Inductive software_stack

263 : Type :=

120 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

264 | BIOS

265 : software_stack

266 | OS

267 : software_stack

268 | App (n: nat)

269 : software_stack.

Because our hardware model is left as a parameter of this Coq development, so are the
hardware-software mapping and transition-software mapping that we will use to reason about
the software stack execution.

271 Variables (ss_context: H -> software_stack)

272 (ss_fetched: H -> label -> (software_stack -> Prop)).

A.3.2 Code Injection

Implementing the code injection definition (Definition 4.11) in Gallina is straightforward.

338 Definition code_injection

339 {m: model}

340 (tr: transition m)

341 (x y: software_stack)

342 : Prop :=

343 ss_fetched (from #tr) (labelled #tr) y

344 /\ ss_context (from #tr) = y.

A.3.3 Code Injection Policies

The code injection policy is defined against a relation between software components to tell
whether one software component is authorized to perform a code injection against another. In
our case, we implement this relation as an inductive predicate.

274 Inductive stack_ge

275 : software_stack -> software_stack -> Prop :=

276 | stack_ge_refl (x: software_stack)

277 : stack_ge x x

278 | bios_bottom (x: software_stack)

279 : stack_ge BIOS x

280 | os_apps (n: nat)

281 : stack_ge OS (App n).

The proof that the relation stack_ge is antisymmetric relies on a case analysis.

A.3. CASE STUDY: CODE INJECTION POLICIES 121

586 Lemma stack_ge_anti_sym

587 (x y: software_stack)

588 : stack_ge x y -> stack_ge y x -> x = y.

589 Proof.

590 intros H1 H2.

591 inversion H1; subst; inversion H2; subst; try reflexivity.

592 Qed.

Using these components, the definition of the code injection policy is simple.

346 Definition code_injection_policy

347 {m: model}

348 (tr: transition m)

349 : Prop :=

350 forall (x y: software_stack),

351 code_injection tr x y

352 -> stack_ge x y.

As explained in Chapter 4, the enforcement of such security policy is done thanks to several
HSE mechanisms. A first HSE mechanism will be devoted to enforce that the BIOS remains
isolated from the rest of the software stack, that is it will enforce the following policy:

539 Definition bios_code_injection_policy

540 {m: model}

541 (tr: transition m)

542 : Prop :=

543 forall (x: software_stack),

544 code_injection tr x BIOS

545 -> x = BIOS.

A second HSE mechanism will be devoted to enforce that the applications cannot perform
illegitimate code injection against the rest of the software stack, that is:

547 Definition os_code_injection_policy

548 {m: model}

549 (tr: transition m)

550 : Prop :=

551 forall (x: software_stack)

552 (n: nat),

553 code_injection tr (App n) x

554 -> x = App n.

Our theory of HSE mechanisms allows us to prove that the concurrent implementation of
two HSE mechanisms —correct with respect to their respective security policy— is a sufficient

122 APPENDIX A. A FORMAL DEFINITION OF HSE MECHANISMS IN COQ

condition for the enforcement “global” code injection policies, by demonstrating that the
composition of these HSE mechanisms is correct with respect to the code injection policy.

556 Theorem constrain_everyone

557 {m: model}

558 (hse_bios: HSE m)

559 (hse_os: HSE m)

560 (Hcomp: compatible_hse hse_bios hse_os)

561 : correct_hse hse_bios

562 (safety_property bios_code_injection_policy)

563 -> correct_hse hse_os

564 (safety_property os_code_injection_policy)

565 -> correct_hse (HSE_cap hse_bios hse_os Hcomp)

566 (safety_property code_injection_policy).

567 Proof.

568 intros Hbios Hos rho Hct tr Htrans.

569 apply compliant_trace_intersec_intersec_compliant_trace in Hct.

570 inversion Hct as [Hrb Hro].

571 intros x y Htamper.

572 unfold correct_hse, safety_property in *.

573 unfold bios_code_injection_policy, os_code_injection_policy in *.

574 induction x.

575 + constructor.

576 + induction y.

577 ++ apply (Hbios rho Hrb tr Htrans) in Htamper.

578 discriminate.

579 ++ constructor.

580 ++ constructor.

581 + apply (Hos rho Hro tr Htrans) in Htamper.

582 rewrite Htamper.

583 constructor.

B
Publications

B.1 Peer-reviewed Conferences

– SpecCert: Specifying and Verifying Hardware-based Security Enforcement Mecha-
nisms.
Thomas Letan, Pierre Chifflier, Guillaume Hiet, Pierre Néron, Benjamin Morin, 21st
International Symposium on Formal Methods (FM 2016).

– Modular Verification of Programs with Effects and Effect Handlers in Coq.
Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, Guillaume Hiet, 22st International
Symposium on Formal Methods (FM 2018).

B.2 Free Software

– SpecCert, a Coq framework for specifying and verifying Hardware-based Security En-
forcement, distributed under the terms of the CeCILL-B — https://github.com/lthms/

speccert

– FreeSpec, a Coq framework for modularly verifying programs with effects and effect
handlers, distributed under the terms of the GPL-3 — https://github.com/ANSSI-FR/

FreeSpec

B.3 Seminar

– FreeSpec : Modular Verification of Systems using Effects and Effect Handlers in Coq,
Analyse et conception de systèmes, IRIF – https://www.irif.fr/seminaires/acs/index

123

https://github.com/lthms/speccert
https://github.com/lthms/speccert
https://github.com/ANSSI-FR/FreeSpec
https://github.com/ANSSI-FR/FreeSpec
https://www.irif.fr/seminaires/acs/index

Acronyms

ACPI Advanced Configuration and Power Interface

BIOS Basic Input/Output System

CPU Central Processing Unit

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

HSE Hardware-based Security Enforcement

IDT Interrupt Descriptor Table

LTS Labelled Transition System

MMU Memory Management Unit

PCH Platform Controller Hub

PMIO Port-Mapped I/O

SMI System Management Interrupt

SMM System Management Mode

SMRR System Manangement Range Registers

TCB Trusted Computing Base

UEFI Unified Extensible Firmware Interface

XOM eXecute Only Memory

125

List of Figures

2.1 High-level view of the x86 hardware architecture 10
2.2 Standard registers of PCI Type 0 (Non-Bridge) Configuration Space Header . . . 13
2.3 Typical caches organization of a x86 processor . 15
2.4 The Write-Back cache strategy . 17

3.1 A simple airlock system modeled as a labeled transition system 29

4.1 From the processor to the flash memory . 51
4.2 From the core to the SMRAM . 55

5.1 Pre and postconditions for Minx86 ReceiveSMI transitions 73
5.2 Raw postcondition of a Write transition with a writeback strategy 79
5.3 Postcondition of a Write transition with a writeback strategy, after the use of the

remember tactic . 80
5.4 Exploring alternative paths using the destruct tactics 80
5.5 Intermediary statements, generated using assert tactics 81
5.6 Dividing a transition into sequences of intermediary states updates 81

6.1 Sequence diagram of the execution of movq $0, (%rax) 87
6.2 Interface-driven modeling of the x86 architecture 89
6.3 The memory controller in isolation . 90
6.4 The cache in isolation . 91
6.5 Illustration of the diamond pattern . 94

127

List of Tables

2.1 x86 Interrupt Descriptor Table semantics . 18

5.1 List of labels dedicated to Minx86 software transitions (LS) 71
5.2 List of labels dedicated to Minx86 hardware transitions (LH) 72

129

Bibliography

[1] Xeno Kovah, Corey Kallenberg, John Butterworth, and Sam Cornwell. SENTER Sandman:
Using Intel TXT to Attack Bioses. Hack in the Box, 2015.

[2] Intel. Intel Trusted Execution Technology (Intel TXT). 07 2015.

[3] Jeannette M Wing. A Call to Action: Look beyond the Horizon. IEEE Security & Privacy,
(6):62–67, 2003.

[4] Loic Duflot, Olivier Levillain, Benjamin Morin, and Olivier Grumelard. Getting into the
SMRAM: SMM Reloaded. CanSecWest.

[5] Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM Memory via Intel CPU Cache
Poisoning.

[6] Christopher Domas. The Memory Sinkhole. In BlackHat USA, july 2015.

[7] Corey Kallenberg and Rafal Wojtczuk. Speed Racer: Exploiting an Intel Flash Protection
Race Condition. January 2015.

[8] Ulrich Stern and David L Dill. Automatic Verification of the SCI Cache Coherence Protocol.
In Advanced Research Working Conference on Correct Hardware Design and Verification Methods,
pages 21–34. Springer, 1995.

[9] Muralidaran Vijayaraghavan, Adam Chlipala, Nirav Dave, et al. Modular Deductive
Verification of Multiprocessor Hardware Designs. In International Conference on Computer
Aided Verification, pages 109–127. Springer, 2015.

[10] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, et al.
Kami: A Platform for High-Level Parametric Hardware Specification and Its Modular
Verification. Proceedings of the ACM on Programming Languages, 1(ICFP):24, 2017.

[11] Narjes Jomaa, David Nowak, Gilles Grimaud, and Samuel Hym. Formal Proof of Dynamic
Memory Isolation Based on MMU. In Theoretical Aspects of Software Engineering (TASE),
2016 10th International Symposium on, pages 73–80. IEEE, 2016.

[12] The Pip Development Team. The pip protokernel. http://pip.univ-lille1.fr/.

[13] Deepak Garg, Jason Franklin, Dilsun Kaynar, and Anupam Datta. Compositional System
Security with Interface-Confined Adversaries. Electronic Notes in Theoretical Computer
Science, 265:49–71, 2010.

131

[14] Thomas Heyman, Riccardo Scandariato, and Wouter Joosen. Reusable Formal Models for
Secure Software Architectures. In Software Architecture (WICSA) and European Conference
on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, pages 41–50.
IEEE, 2012.

[15] Thomas Letan, Pierre Chifflier, Guillaume Hiet, Pierre Néron, and Benjamin Morin.
SpecCert: Specifying and Verifying Hardware-based Security Enforcement. In 21st
International Symposium on Formal Methods (FM 2016). Springer, 2016.

[16] Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. Modular
Verification of Programs with Effects and Effect Handlers. In 28st International Symposium
on Formal Methods (FM 2018). Springer, 2018.

[17] Leslie Lamport. Proving the Correctness of Multiprocess Programs. IEEE transactions on
software engineering, (2):125–143, 1977.

[18] Leslie Lamport. Logical Foundation. Distributed systems-methods and tools for specification,
190:119–130, 1985.

[19] Bowen Alpern and Fred B Schneider. Defining Liveness. Technical report, Cornell
University, 1985.

[20] Michael R Clarkson and Fred B Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

[21] Thomas Letan. FreeSpec: a Compositional Reasoning Framework for the Coq Theorem
Prover. https://github.com/lthms/speccert.

[22] Inria. The Coq Proof Assistant. https://coq.inria.fr/.

[23] Simon Peyton Jones. Tackling the Awkward Squad: monadic I/O, concurrency, exception
and foreign-language calls in Haskell. Engineering theories of software construction, pages
47–96, 2005.

[24] Andrej Bauer and Matija Pretnar. Programming with Algebraic Effects and Handlers.
Journal of Logical and Algebraic Methods in Programming, 84(1):108–123, 2015.

[25] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester. A2:
Analog Malicious Hardware. In Security and Privacy (SP), 2016 IEEE Symposium on, pages
18–37. IEEE, 2016.

[26] Shawn Embleton, Sherri Sparks, and Cliff C Zou. SMM rootkit: a new breed of OS
independent malware. Security and Communication Networks, 6(12):1590–1605, 2013.

[27] Yuriy Bulygin, J Loucaides, Andrew Furtak, O Bazhaniuk, and A Matrosov. Summary of
Attacks Against BIOS and Secure Boot. Proceedings of the DefCon, 2014.

[28] MITRE. CVE-2018-8897. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-8897.

[29] Intel. Intel 64 and IA32 Architectures Software Developer Manual, chapter Introduction to
Virtual Machine Extensions. October 2014.

[30] Intel. Intel 64 and IA32 Architectures Software Developer Manual, chapter Introduction to
Intel Software Guard Extenions. October 2014.

[31] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptology ePrint Archive,
2016:86, 2016.

[32] Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel TXT via SINIT Code Execution
Hijacking. November 2011.

[33] Fernand Lone Sang, Eric Lacombe, Vincent Nicomette, and Yves Deswarte. Exploiting
an I/OMMU vulnerability. In Malicious and Unwanted Software (MALWARE), 2010 5th
International Conference on, pages 7–14. IEEE, 2010.

[34] Intel. Intel 64 and IA32 Architectures Software Developer Manual. October 2014.

[35] Intel. Intel 5100 Memory Controller Hub Chipset.

[36] Intel. Intel 7 Series / C216 Chipset Family Platform Controller Hub (PCH).

[37] Thomas Letan. SpecCert: a framework for the Coq Theorem Prover.
https://github.com/lthms/speccert.

[38] Michael E Thomadakis. The Architecture of the Nehalem Processor and Nehalem-EP
SMP Platforms. Resource, 3(2), 2011.

[39] J Turley. White Paper Introduction to Intel® Architecture, 2014.

[40] Debbie Marr, Frank Binns, D Hill, Glenn Hinton, D Koufaty, et al. Hyper-Threading
Technology in the Netburst® Microarchitecture. 14th Hot Chips, 2002.

[41] Agner Fog. The Microarchitecture of Intel, AMD and VIA CPUs: An Optimization
Guide for Assembly Programmers and Compiler Makers. Copenhagen University College of
Engineering, 2012.

[42] Milena Milenkovic, Aleksandar Milenkovic, and Jeffrey Kulick. Demystifying Intel Branch
Predictors. In Workshop on Duplicating, Deconstructing and Debunking, 2002.

[43] Simon P Johnson, Uday R Savagaonkar, Vincent R Scarlata, Francis X McKeen, and
Carlos V Rozas. Technique for Supporting Multiple Secure Enclaves, 2015. US Patent
8,972,746.

[44] Jerome H Saltzer and Michael D Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8897
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8897

[45] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Ra-
jesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. Intel
Virtualization Technology for Directed I/O. Intel technology journal, 10(3), 2006.

[46] Marion Daubignard and Yves-Alexis Perez. ProTIP: You Should Know What to Expect
From Your Peripherals. Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC), June 2017.

[47] Karsten Nohl and Jakob Lell. BadUSB – On Accessories That Turn Evil. Black Hat USA,
2014.

[48] Trammell Hudson and Larry Rudolph. Thunderstrike: EFI Firmware Bootkits for Apple
MacBooks. In Proceedings of the 8th ACM International Systems and Storage Conference,
page 15. ACM, 2015.

[49] Pierre Chifflier. UEFI et bootkits PCI: le danger vient d’en bas. In Actes du 11ème
symposium sur la sécurité des technologies de l’information et des communications (SSTIC),
pages 159–190, 2013.

[50] Darmawan Salihun. BIOS Disassembly Ninjutsu Uncovered (Uncovered series). A-List
Publishing, 2006.

[51] Vincent Zimmer. Platform Trust Beyond BIOS Using the Unified Extensible Firmware
Interface. In Security and Management, pages 400–405, 2007.

[52] UEFI Forum. Unified Extensible Firmware Interface (UEFI) Specification, Version 2.7 Errata A.
August 2017.

[53] Matt Fleming. [PATCH] x86 EFI boot stub, October 2011.
https://lkml.org/lkml/2011/10/17/81.

[54] Joanna Rutkowska. Intel x86 Considered Harmful. the Invisible Things Lab, 2015.

[55] Lee Rosenbaum and Vincent Zimmer. A Tour Beyond BIOS into UEFI Secure Boot. 2012.

[56] Jonathan Corbet. Protecting systems with the TPM, February 2016.
https://lwn.net/Articles/674751/.

[57] HP Inc. HP Sure Start: Automatic Firmware Intrusion Detection and Repair System, 2016.

[58] Andrew Regenscheid. Platform Firmware Resiliency Guidelines. NIST Special Publication,
800:193, 2018.

[59] UEFI Forum. Advanced Configuration and Power Interface (ACPI) Specification, Version 6.2
Errata A. September 2017.

[60] Loïc Duflot, Olivier Grumelard, Olivier Levillain, and Benjamin Morin. ACPI and SMI
Handlers: Some Limits to Trusted Computing. Journal in computer virology, 6(4):353–374,
2010.

[61] Vincent Zimmer, Michael Rothman, and Suresh Marisetty. Beyond BIOS: Developing with
the Unified Extensible Firmware Interface. Walter de Gruyter GmbH & Co KG, 2017.

[62] Jiewen Yao, Vincent J Zimmer, and Qin Long. System Management Mode Isolation in
Firmware, May 7 2009. US Patent App. 12/317,446.

[63] Aarti Gupta. Formal Hardware Verification Methods: A Survey. In Computer-Aided
Verification, pages 5–92. Springer, 1992.

[64] Rebekah Leslie-Hurd, Dror Caspi, and Matthew Fernandez. Verifying Linearizability
of Intel® Software Guard Extensions. In International Conference on Computer Aided
Verification, pages 144–160. Springer, 2015.

[65] David Lie, John Mitchell, Chandramohan A Thekkath, and Mark Horowitz. Specifying
and Verifying Hardware for Tamper-Resistant Software. In Security and Privacy, 2003.
Proceedings. 2003 Symposium on, pages 166–177. IEEE, 2003.

[66] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, Saddek Bensalem, and
David Probst. Property Preserving Abstractions for the Verification of Concurrent Systems.
Formal methods in system design, 6(1):11–44, 1995.

[67] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV2: An
Opensource Tool for Symbolic Model Checking. In International Conference on Computer
Aided Verification, pages 359–364. Springer, 2002.

[68] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. MIT press, 2012.

[69] University of Utah School of Computing. Murphi Model Checker.
https://formalverification.cs.utah.edu/Murphi/.

[70] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Formally Verify-
ing Isolation and Availability in an Idealized Model of Virtualization. In International
Symposium on Formal Methods, pages 231–245. Springer, 2011.

[71] Bowen Alpern and Fred B Schneider. Recognizing Safety and Liveness. Distributed
computing, 2(3):117–126, 1987.

[72] Fred B. Schneider. Enforceable Security Policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

[73] David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zălinescu. Enforceable Security
Policies Revisited. ACM Transactions on Information and System Security (TISSEC), 16(1):3,
2013.

[74] Joseph A Goguen and José Meseguer. Security Policies and Security Models. In Security
and Privacy, 1982 IEEE Symposium on, pages 11–11. IEEE, 1982.

[75] Edmund M Clarke, Thomas A Henzinger, and Helmut Veith. Introduction to Model
Checking. In Handbook of Model Checking, pages 1–26. Springer, 2018.

[76] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability Solvers.
Foundations of Artificial Intelligence, 3:89–134, 2008.

[77] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model Checking
and the State Explosion Problem. In Tools for Practical Software Verification, pages 1–30.
Springer, 2012.

[78] Raymond R Smullyan. First-Order Logic, volume 43. Springer Science & Business Media,
2012.

[79] Sharad Malik and Lintao Zhang. Boolean Satisfiability From Theoretical Hardness to
Practical Success. Communications of the ACM, 52(8):76–82, 2009.

[80] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th annual Design
Automation Conference, pages 530–535. ACM, 2001.

[81] Clark Barrett, Morgan Deters, Leonardo De Moura, Albert Oliveras, and Aaron Stump. 6
Years of SMT-COMP. Journal of Automated Reasoning, 50(3):243–277, 2013.

[82] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340.
Springer, 2008.

[83] Alexander Chagrov. Modal Logic. 1997.

[84] A Prasad Sistla and Edmund M Clarke. The Complexity of Propositional Linear Temporal
Logics. Journal of the ACM (JACM), 32(3):733–749, 1985.

[85] Edmund M Clarke and E Allen Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic. In Workshop on Logic of Programs, pages
52–71. Springer, 1981.

[86] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on software engineering,
23(5):279–295, 1997.

[87] Leslie Lamport. Specifying Systems: the TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[88] Kenneth L McMillan. Symbolic Model Checking. In Verification of Digital and Hybrid
Systems, pages 117–137. Springer, 2000.

[89] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu, et al.
Bounded Model Checking. Advances in computers, 58(11):117–148, 2003.

[90] Daniel Leivant. Higher Order Logic, 1994.

[91] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[92] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-book: Assigning Programs to
Meanings. Cambridge University Press, 2005.

[93] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von
Raumer. The Lean Theorem Prover (System Description). In International Conference on
Automated Deduction, pages 378–388. Springer, 2015.

[94] John Harrison. Formal Verification of IA-64 Division Algorithms. In International
Conference on Theorem Proving in Higher Order Logics, pages 233–251. Springer, 2000.

[95] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore,
Sudhindra Pandav, Anna Slobodová, Christopher Taylor, Vladimir Frolov, Erik Reeber,
et al. Replacing Testing with Formal Verification in Intelˆ{\scriptsize\circledR} CoreTM
i7 Processor Execution Engine Validation. In International Conference on Computer Aided
Verification, pages 414–429. Springer, 2009.

[96] Nachiketh Potlapally. Hardware Security in Practice: Challenges and Opportunities. In
Hardware-Oriented Security and Trust (HOST), 2011 IEEE International Symposium on, pages
93–98. IEEE, 2011.

[97] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan.
RockSalt: Better, Faster, Stronger SFI for the x86. In ACM SIGPLAN Notices, volume 47,
pages 395–404. ACM, 2012.

[98] Shilpi Goel, Warren A Hunt, Matt Kaufmann, and Soumava Ghosh. Simulation And
Formal Verification Of x86 Machine-Code Programs That Make System Calls. In Formal
Methods in Computer-Aided Design (FMCAD), 2014, pages 91–98. IEEE, 2014.

[99] Xavier Leroy et al. The CompCert Verified Compiler. Documentation and user’s manual.
INRIA Paris-Rocquencourt, 2012.

[100] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. CertiKOS: An Extensible Architecture for Building Certified
Concurrent OS Kernels. In OSDI, volume 16, pages 653–669, 2016.

[101] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. Toward
Compositional Verification of Interruptible OS Kernels and Device Drivers. Journal of
Automated Reasoning, 61(1-4):141–189, 2018.

[102] Data61/CSIRO. The seL4 Microkernel. https://sel4.systems/.

[103] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al.
seL4: Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 207–220. ACM, 2009.

[104] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Cache-Leakage
Resilient OS Isolation in an Idealized Model of Virtualization. In Computer Security
Foundations Symposium (CSF), 2012 IEEE 25th, pages 186–197. IEEE, 2012.

[105] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. System-
level Non-Interference for Constant-Time Cryptography. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 1267–1279. ACM,
2014.

[106] Anthony Fox and Magnus O Myreen. A Trustworthy Monadic Formalization of the
ARMv7 Instruction Set Architecture. In International Conference on Interactive Theorem
Proving, pages 243–258. Springer, 2010.

[107] Alastair Reid. Trustworthy specifications of ARM® v8-A and v8-M system level archi-
tecture. In Proceedings of the 16th Conference on Formal Methods in Computer-Aided Design,
pages 161–168. FMCAD Inc, 2016.

[108] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen,
Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. End-to-end Verification
of Processors with ISA-Formal. In International Conference on Computer Aided Verification,
pages 42–58. Springer, 2016.

[109] ARM Ltd. A64 ISA XML for Armv8.4, 2018.

[110] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. Architectural Support for Copy and Tamper Resistant
Software. ACM SIGPLAN Notices, 35(11):168–177, 2000.

[111] Amir Pnueli. In Transition from Global to Modular Temporal Reasoning about Programs.
In Logics and models of concurrent systems, pages 123–144. Springer, 1985.

[112] Cliff B. Jones. Tentative Steps Toward a Development Method for Interfering Programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 5(4):596–619, 1983.

[113] Luca De Alfaro and Thomas A Henzinger. Interface Automata. In ACM SIGSOFT Software
Engineering Notes, volume 26, pages 109–120. ACM, 2001.

[114] Robin Milner. A Calculus of Communicating Systems. LNCS, 92, 1980.

[115] Charles Antony Richard Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666–677, 1978.

[116] Rishiyur Nikhil. Bluespec System Verilog: efficient, correct RTL from high level specifi-
cations. In Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. Proceedings.
Second ACM and IEEE International Conference on, pages 69–70. IEEE, 2004.

[117] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Progranm. IEEE transactions on computers, (9):690–691, 1979.

[118] Jeanine Souquieres. Verifying the Compatibility of Component Interfaces using the B
Formal Method. Software Engineering Research and Practice, pages 850–856, 2005.

[119] Samir Chouali, Maritta Heisel, and Jeanine Souquières. Proving Component Interoper-
ability with B Refinement. Electronic Notes in Theoretical Computer Science, 160:157–172,
2006.

[120] Arnaud Lanoix and Jeanine Souquières. Component-based Development using the B
method, July 2006. Research report.

[121] Guillaume Claret. Coq.io. https://coq.io.

[122] Philip Wadler. Comprehending Monads. In Proceedings of the 1990 ACM conference on
LISP and functional programming, pages 61–78. ACM, 1990.

[123] Martin Hyland, Gordon Plotkin, and John Power. Combining Effects: Sum and Tensor.
Theoretical Computer Science, 357(1-3):70–99, 2006.

[124] Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and Modular Inter-
preters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 333–343. ACM, 1995.

[125] Edwin Brady. Programming and Reasoning with Algebraic Effects and Dependent Types.
In ACM SIGPLAN Notices, volume 48, pages 133–144. ACM, 2013.

[126] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible Effects: An Alternative To
Monad Transformers. In ACM SIGPLAN Notices, volume 48, pages 59–70. ACM, 2013.

[127] Joanna Rutkowska and Rafal Wojtczuk. Preventing and Detecting Xen Hypervisor
Subversions. Blackhat Briefings USA, 2008.

[128] Intel. Desktop 4th Generation Intel Core Processor Family, Desktop Intel Pentium Processor
Family, and Desktop Intel Celeron Processor Family.

[129] Peter Müller, Arnd Poetzsch-Heffter, and Gary T Leavens. Modular Invariants for Layered
Object Structures. Science of Computer Programming, 62(3):253–286, 2006.

[130] Heinrich Apfelmus. The operational package, 2010. https://hackage.haskell.org/

package/operational.

https://hackage.haskell.org/package/operational
https://hackage.haskell.org/package/operational

[131] CAR Hoareetal. Tackling the Awkward Squad: monadic input/output, concurrency, ex-
ceptions, and foreign-language calls in Haskell. Engineering theories of software construction,
2001.

[132] Jiri Gaisler. LEON SPARC Processor: The Past, Present and Future. RAMP Winter Retreat,
Berkeley, 2007.

Titre : Spécifier et vérifier des stratégies d’application de politiques de sécurité s’appuyant sur des
mécanismes matériels

Mots clés : Sécurité ▪ Vérification matérielle ▪ Méthodes formelles ▪ Coq

Résumé : Dans ces travaux de thèse, nous nous
intéressons à une classe de stratégies d'application
de politiques de sécurité que nous appelons HSE,
pour Hardware-based Security Enforcement. Dans ce
contexte, un ou plusieurs composants logiciels de
confiance contraignent l'exécution du reste de la pile
logicielle avec le concours de la plate-forme
matérielle sous-jacente afin d'assurer le respect d'une
politique de sécurité donnée.
Pour qu'un mécanisme HSE contraigne effectivement
l'exécution de logiciels arbitraires, il est nécessaire
que la plate-forme matérielle et les composants
logiciels de confiance l'implémentent correctement.
Ces dernières années, plusieurs vulnérabilités ont mis
à défaut des implémentations de mécanismes HSE.
Nous concentrons ici nos efforts sur celles qui sont le
résultat d'erreurs dans les spécifications matérielles
et non dans une implémentation donnée.

Plus précisément, nous nous intéressons aux cas
particulier de l'usage légitime, par un attaquant,
d'une fonctionnalité d'un composant matériel pour
contourner les protections offertes par un second.
Notre but est d'explorer des approches basées sur
l'usage de méthodes formelles pour spécifier et
vérifier des mécanismes HSE. La spécification de
mécanismes HSE peut servir de point de départ pour
la vérification des spécifications matérielles
concernées, dans l'espoir de prévenir des attaques
profitant de la composition d'un grand nombre de
composants matériels. Elles peuvent ensuite être
fournies aux développeurs logiciels, sous la forme
d'une liste de prérequis que leurs produits doivent
respecter s'ils désirent l'application d'une politique de
sécurité clairement identifiée.

Title : Specifying and Verifying Hardware-based Security Enforcement Mechanisms

Keywords: Security ▪ Hardware Verification ▪ Formal Methods ▪ Coq

Abstract: In this thesis, we consider a class of
security enforcement mechanisms we called
Hardware-based Security Enforcement (HSE). In
such mechanisms, some trusted software
components rely on the underlying hardware
architecture to constrain the execution of untrusted
software components with respect to targeted security
policies. For instance, an operating system which
configures page tables to isolate userland
applications implements a HSE mechanism.
For a HSE mechanism to correctly enforce a targeted
security policy, it requires both hardware and trusted
software components to play their parts. During the
past decades, several vulnerability disclosures have
defeated HSE mechanisms. We focus on the
vulnerabilities that are the result of errors at the
specification level, rather than implementation errors.
In some critical vulnerabilities, the attacker makes a

legitimate use of one hardware component to
circumvent the HSE mechanism provided by another
one. For instance, cache poisoning attacks leverage
inconsistencies between cache and DRAM’s access
control mechanisms. We call this class of attacks,
where an attacker leverages inconsistencies in
hardware specifications, compositional attacks.
Our goal is to explore approaches to specify and
verify HSE mechanisms using formal methods that
would benefit both hardware designers and software
developers. Firstly, a formal specification of HSE
mechanisms can be leveraged as a foundation for a
systematic approach to verify hardware
specifications, in the hope of uncovering potential
compositional attacks ahead of time. Secondly, it
provides unambiguous specifications to software
developers, in the form of a list of requirements.

	Notations
	Résumé de la thèse
	Introduction
	Hardware-based Security Enforcement Mechanisms
	Formal Verification of HSE Mechanisms
	Contributions
	Outline

	I Context
	Intel x86 Architecture and BIOS Background
	Introduction to x86 Architecture
	Processor, Architecture and Microarchitecture.
	Memories and Cores I/Os
	Cache Memory
	Peripherals I/Os
	Conclusion

	BIOS Overview
	During the boot sequence
	At runtime
	HSE Mechanisms Implemented by the BIOS

	BIOS HSE Mechanism and Compositional Attacks
	SMRAM Cache Poisoning Attack
	Speed Racer
	SENTER Sandman

	Conclusion

	State of the Art
	Towards the Formal Verification of HSE Mechanisms
	Modeling a Hardware Architecture
	Specifying Security Policies
	Approaches and Tools
	Tour of Existing x86 Models

	Compositional Verification
	Labeled Transition Systems and Components Composition
	Process Algebra
	Compositional Reasoning for Theorem Provers

	Conclusion

	II Specifying and Verifying HSE Mechanisms
	A Theory of HSE Mechanisms
	Theory Definition
	Hardware Model
	HSE Mechanisms
	HSE Mechanism Correctness
	HSE Mechanisms Composition

	Case Study: Code Injection Policy
	Defining Code Injection
	Code Injection Policy
	Code Injection Policy Enforcement

	Conclusion

	Specifying and Verifying a BIOS HSE Mechanism
	A Minimal x86 Hardware Model
	Model Scope
	Hardware States
	Transition Labels and Transition Relation
	Transition-Software Mapping

	Specifying and Verifying a BIOS HSE Mechanism
	BIOS HSE Definition
	BIOS HSE Mechanism Correctness
	On SpecCert Machine-Checked Proofs

	Conclusion

	III Towards Comprehensive Hardware Models
	Modular Verification of Component-based Systems
	Lessons Learned from Minx86
	Minx86 Limitations
	FreeSpec Overview

	Modeling Programs with Effects
	Interface of Effects
	Operational Semantics for Effects
	The Program Monad
	Components as Programs with Effects

	Modular Verification of Programs with Effects
	Abstract Specification
	Compliance and Correctness
	Proofs Techniques to Show Compliance for Components

	Conclusion

	Conclusion and Perspectives
	Summary of the Contributions
	Perspectives

	A Formal Definition of HSE Mechanisms in Coq
	Hardware Model
	Definition
	Traces
	Security Policies

	HSE Mechanisms
	Definition and HSE Laws
	Trace Compliance
	HSE Mechanism Correctness
	HSE Mechanisms Composition

	Case Study: Code Injection Policies
	The Software Stack
	Code Injection
	Code Injection Policies

	Publications
	Peer-reviewed Conferences
	Free Software
	Seminar

