, Agent-based lattice models of multicellular systems: Numerical methods, implementation, and applications, Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes. Miguel Cerrolaza Sandra Shefelbine Diego Garzón-Alvarado, 2017.

[. Pvlganzenmüller, The implementation of smooth particle hydrodynamics in lammps, 2011.

. Pvlgeris, A cell based modelling framework for skeletal tissue engineering applications, Journal of biomechanics, vol.43, pp.887-892, 2010.

. Pvlghysels, Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics, Physical biology, vol.6, issue.1, p.16009, 2009.

. Pvlghysels, Coarse implicit time integration of a cellular scale particle model for plant tissue deformation, International Journal for Multiscale Computational Engineering, vol.8, issue.4, pp.411-422, 2010.

. Pvlghysels, Multiscale modeling of viscoelastic plant tissue, International Journal for Multiscale Computational Engineering, vol.8, issue.4, pp.379-396, 2010.

[. Pvlheck, Modeling extracellular matrix viscoelasticity using smoothed particle hydrodynamics with improved boundary treatment, Computer Methods in Applied Mechanics and Engineering, vol.322, pp.515-540, 2017.

[. Pvlho, Multiscale modeling in food engineering, Journal of food Engineering, vol.114, issue.3, pp.279-291, 2013.

. Pvlodenthal, Analysis of initial cell spreading using mechanistic contact formulations for a deformable cell model, PLoS computational biology, vol.9, issue.10, p.1003267, 2013.

. Pvlsmeets, Modeling contact interactions between triangulated rounded bodies for the discrete element method, Computer Methods in Applied Mechanics and Engineering, vol.277, pp.219-238, 2014.

. [pvlvan-liedekerke, Offlattice agent-based models for cell and tumor growth: Numerical methods, implementation, and applications, Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes. Miguel Cerrolaza Sandra Shefelbine Diego Garzón-Alvarado, 2017.

. [pvlvan-liedekerke, A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates, Physical Biology, vol.7, 2010.

. [pvlvan-liedekerke, Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines, Plos. Comp. Biol, p.page, 2018.

. [pvlvan-liedekerke, Quantifying the mechanics and growth of cells and tissues in 3d using high resolution computational models, 2018.

. [pvlvan-liedekerke, Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results, Computational Particle Mechanics, vol.2, issue.4, pp.401-444, 2015.

. [pvlvan-liedekerke, Mechanisms of soft cellular tissue bruising. A particle based simulation approach, Soft Matter, vol.7, issue.7, p.3580, 2011.

. [pvlvan-liedekerke, Solving microscopic flow problems using stokes equations in sph, Computer Physics Communications, vol.184, issue.7, pp.1686-1696, 2013.

. [pvlvan-liedekerke, Dem simulations of the particle flow on a centrifugal fertilizer spreader, Powder technology, vol.190, issue.3, pp.348-360, 2009.

. [pvlvan-liedekerke, Particle-based model to simulate the micromechanics of biological cells, Physical Review E, vol.81, issue.6, pp.61906-61915, 2010.

. [pvlvan-zeebroeck, Determination of the dynamical behaviour of biological materials during impact using a pendulum device, Journal of sound and vibration, vol.266, issue.3, pp.465-480, 2003.

A. Engler, S. Sen, H. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, vol.126, pp.677-689, 2006.

R. Daniel-a-fletcher and . Mullins, Cell mechanics and the cytoskeleton, Nature, vol.463, issue.7280, pp.485-92, 2010.

S. Ulrich, . Schwarz, and . Samuel-a-safran, Physics of adherent cells, Rev. Mod. Phys, vol.85, issue.3, pp.1327-1381, 2013.

D. Lacroix and . Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading, Journal of biomechanics, vol.35, issue.9, pp.1163-1171, 2002.

A. Charles, C. A. Taylor, and . Figueroa, Patient-specific modeling of cardiovascular mechanics. Annual review of biomedical engineering, vol.11, pp.109-134, 2009.

, Mathematical biology. II Spatial models and biomedical applications. Interdisciplinary Applied Mathematics V, vol.18

D. Drasdo, Coarse Graining in simulated cell populations, vol.08, pp.319-363, 2005.

S. Hoehme, M. Brulport, A. Bauer, E. Bedawy, W. Schormann et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration, Proceedings of the National Academy of Sciences, vol.107, pp.10371-10376, 2010.

J. Galle, A. Preziosi, and . Tosin, Contact inhibition of growth described using a multiphase model and an individual cell based model, Applied Mathematics Letters, vol.22, pp.1483-1490, 2009.

J. C. Dallon, Multiscale modeling of cellular systems in biology, Current Opinion in Colloid & Interface Science, vol.15, issue.1-2, pp.24-31, 2010.

S. Sandersius and T. Newman, Modeling cell rheology with the Subcellular Element Model, Physical Biology, vol.5, p.15002, 2008.

J. Glazier, Dynamics of Cellular Patterns. Bussei Kenkyu, vol.58, pp.608-612, 1993.

P. Macklin, M. E. Edgerton, A. M. Thompson, and V. Cristini, Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression, Journal of theoretical biology, vol.301, pp.122-162, 2012.

A. Dmitry, H. Fedosov, B. Lei, S. Caswell, G. E. Suresh et al., Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria, PLoS Comput. Biol, vol.7, issue.12, p.1002270, 2011.

N. Sepúlveda, L. Petitjean, O. Cochet, E. Grasland-mongrain, P. Silberzan et al., Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model, PLoS Comput Biol, vol.9, issue.3, p.1002944, 2013.

C. Olgierd, R. L. Zienkiewicz, O. Taylor, R. L. Cecil-zienkiewicz, and . Taylor, The finite element method, vol.3, 1977.

J. Berni, T. Alder, and . Wainwright, Studies in molecular dynamics. i. general method, The Journal of Chemical Physics, vol.31, issue.2, pp.459-466, 1959.

, Pep Espanol. Dissipative particle dynamics with energy conservation. EPL, vol.40, issue.6, p.631, 1997.

J. Galle, D. Loeffler, and . Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, Biophysical journal, vol.88, issue.1, pp.62-75, 2005.

C. Marchetti, J. Joanny, S. Ramaswamy, B. Tanniemola, J. Liverpool et al., Hydrodynamics of soft active matter, Reviews of Modern Physics, vol.85, issue.3, p.1143, 2013.

S. J. Tiina-roose, P. K. Chapman, and . Maini, Mathematical Models of Avascular Tumor Growth, SIAM Review, vol.49, issue.2, pp.179-208, 2007.

H. J-s-lowengrub, . Frieboes, Y. Jin, . Chuang, . Li et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, vol.23, issue.1, pp.1-9, 2010.

H. Byrne, T. Alarcon, M. Owen, S. Webb, and P. Maini, Modelling aspects of cancer dynamics: a review, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.364, pp.1563-78, 1843.

J. Barré, P. Degond, and E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks, Multiscale Modeling & Simulation, vol.15, issue.3, pp.1294-1323, 2017.

A. Chauviere, H. Hatzikirou, G. Ioannis, J. S. Kevrekidis, V. Lowengrub et al., Dynamic density functional theory of solid tumor growth: Preliminary models, AIP advances, vol.2, issue.1, p.11210, 2012.

V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, 2010.

I. Ramis-conde, A. Mark, A. Chaplain, D. Anderson, and . Drasdo, Multiscale modelling of cancer cell intravasation: the role of cadherins in metastasis, Physical Biology, vol.6, p.16008, 2009.

Y. Kim, M. A. Stolarska, and H. G. Othemer, A Hybrid model for tumor Spheroid grwoth in vitro I: Theoretical development and earliy results, Mathematical Models and Methods in Applied Sciences, vol.17, issue.supp01, pp.1773-1798, 2007.

J. Monaghan, An introduction to SPH, Computer Physics Communications, vol.48, issue.1, pp.89-96, 1988.

. Jj-monaghan, Smoothed particle hydrodynamics and its diverse applications, Annual Review of Fluid Mechanics, vol.44, pp.323-346, 2012.

G. Wm and . Hoover, Isomorphism linking smooth particles and embedded atoms, Physica A: Statistical Mechanics and its Applications, vol.260, issue.3-4, pp.244-254, 1998.

A. Vazquez-quesada and M. Ellero, Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics, Journal of Chemical Physics, vol.130, p.34901, 2009.

B. Maury and J. Venel, A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, pp.145-168, 2011.
DOI : 10.1051/m2an/2010035

URL : https://hal.archives-ouvertes.fr/hal-00350815

J. Vangindertael, W. Camacho, H. Sempels, P. Mizuno, K. Dedecker et al., An introduction to optical super-resolution microscopy for the adventurous biologist, Methods and applications in fluorescence, vol.6, issue.2, p.22003, 2018.
DOI : 10.1088/2050-6120/aaae0c

URL : https://iopscience.iop.org/article/10.1088/2050-6120/aaae0c/pdf

T. Ando, N. Satya-prathyusha-bhamidimarri, . Brending, L. Colin-york, N. Collinson et al., The 2018 correlative microscopy techniques roadmap, Journal of Physics D: Applied Physics, vol.51, issue.44, p.443001, 2018.
DOI : 10.1088/1361-6463/aad055

URL : https://iopscience.iop.org/article/10.1088/1361-6463/aad055/pdf

A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, Journal of Computational Physics, vol.17, issue.1, pp.10-18, 1975.

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.2340-2361, 1977.
DOI : 10.1021/j100540a008

S. Hoehme and . Drasdo, A single-cell-based model of tumor growth in vitro: monolayers and spheroids, Physical Biology, vol.2, pp.133-147, 2005.

M. Block, E. Schöll, and D. Drasdo, Classifying the expansion kinetics and critical surface dynamics of growing cell populations, Physical Review Letters, vol.99, issue.24, 2007.

N. Jagiella, B. Müller, M. Müller, I. E. Vignon-clementel, and D. Drasdo, Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data, PLoS computational biology, vol.12, issue.2, p.1004412, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01244593

M. Radszuweit, M. Block, J. Hengstler, E. Schöll, and D. Drasdo, Comparing the growth kinetics of cell populations in two and three dimensions, Physical Review E, vol.79, issue.5, p.51907, 2009.

M. Scianna and L. Preziosi, A cellular Potts model for the MMP-dependent andindependent cancer cell migration in matrix microtracks of different dimensions, Comput. Mech, vol.53, issue.3, pp.485-497, 2013.

F. René, E. G. Van-oers, D. J. Rens, C. A. Lavalley, R. Reinhart-king et al., Mechanical Cell-Matrix Feedback Explains Pairwise and Collective Endothelial Cell Behavior In Vitro, PLoS Comput. Biol, vol.10, issue.8, p.1003774, 2014.

P. and U. Schwarz, Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model, Biophys. J, vol.106, issue.11, pp.2340-2352, 2014.

, Emanuele Leoncini. pplied Mathematics to Biology & Medicine, 2010.

J. Nicholas, P. Savill, and . Hogeweg, Modelling morphogenesis: from single cells to crawling slugs, J. Theor. Biol, vol.184, issue.3, pp.229-235, 1996.

M. Scianna and L. Preziosi, A cellular Potts model for the MMP-dependent andindependent cancer cell migration in matrix microtracks of different dimensions, 2013.

H. Maciej, G. L. Swat, J. M. Thomas, A. Belmonte, D. Shirinifard et al., Multi-scale modeling of tissues using compucell3d, Methods in cell biology, vol.110, pp.325-366, 2012.

E. Sonja, M. Boas, . Jimenez, M. Roeland, . Merks et al., A global sensitivity analysis approach for morphogenesis models, pp.1-29, 2015.

M. Margriet, R. Palm, and . Merks, Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell3D or VirtualLeaf, Tissue Morphogenesis, vol.1189, pp.301-322, 2015.

F. Graner and J. Glazier, Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model, Physical Review Letters, vol.69, 1992.

A. James, F. Glazier, and . Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, vol.47, issue.3, pp.2128-2154, 1993.

S. Turner and J. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model, J. Theor. Biol, vol.216, issue.1, pp.85-100, 2002.

M. Brenda, L. J. Rubenstein, and . Kaufman, The role of extracellular matrix in glioma invasion: a cellular Potts model approach, Biophys. J, vol.95, issue.12, pp.5661-5680, 2008.

A. Shirinifard, S. Gens, . Benjamin-l-zaitlen, J. Nikodem, M. Pop?awski et al., 3D multi-cell simulation of tumor growth and angiogenesis, PLoS ONE, vol.4, issue.10, p.7190, 2009.

E. Boghaert, C. Derek, C. M. Radisky, and . Nelson, Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state, PLoS Comput. Biol, vol.10, issue.12, p.1003997, 2014.

A. Szabó, M. Roeland, and . Merks, Cellular Potts modeling of tumor growth, tumor invasion and tumor evolution, Front. Oncol, 2013.

F. Jonathan, J. Li, and . Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, J. Theor. Biol, vol.343, pp.79-91, 2014.

X. Gao, J. T. Mcdonald, L. Hlatky, and H. Enderling, Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics, Cancer Research, vol.73, issue.5, pp.1481-1490, 2013.

M. Roeland, J. A. Merks, and . Glazier, Dynamic mechanisms of blood vessel growth, Nonlinearity, vol.19, issue.1, pp.1-10, 2006.

M. Roeland, E. D. Merks, A. Perryn, J. A. Shirinifard, and . Glazier, Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth, PLoS Comput. Biol, vol.4, issue.9, p.1000163, 2008.

M. Margriet, R. Palm, and . Merks, Vascular networks due to dynamically arrested crystalline ordering of elongated cells, Phys. Rev. E, vol.87, issue.1, p.12725, 2013.

E. Sonja, R. Boas, and . Merks, Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation, J. R. Soc. Interface, vol.11, issue.92, p.20131049, 2014.

L. Amy, . Bauer, L. Trachette, Y. Jackson, and . Jiang, Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis, PLoS Comput. Biol, vol.5, issue.7, p.1000445, 2009.

L. Amy, . Bauer, L. Trachette, Y. Jackson, and . Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis, Biophysical journal, vol.92, issue.9, pp.3105-3121, 2007.

T. Josephine, R. Daub, and . Merks, A Cell-Based Model of Extracellular-MatrixGuided Endothelial Cell Migration During Angiogenesis, Bull. Math. Biol, pp.1-23, 2013.

U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-Gas Automata for the Navier-Stokes Equation, Physical Review Letters, vol.56, issue.14, pp.1505-1508, 1986.

H. Daniel, S. Rothman, and . Zaleski, Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics, 2004.

J. Rivet and J. P. Boon, Lattice Gas Hydrodynamics, 2005.

S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, In silico biology, vol.2, issue.3, pp.393-406, 2002.

A. Deutsch and S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis (Modeling and Simulation in Science, Engineering and Technology), 2004.

K. Böttger, H. Hatzikirou, A. Chauviere, and A. Deutsch, Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.105-135, 2012.

M. Tektonidis, H. Hatzikirou, A. Chauvière, M. Simon, K. Schaller et al., Identification of intrinsic in vitro cellular mechanisms for glioma invasion, Journal of Theoretical Biology, vol.287, issue.1, pp.131-147, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00807370

G. Alfons, J. Hoekstra, P. M. Kroc, and . Sloot, Simulating Complex Systems by Cellular Automata, 2010.

J. Galle, G. Aust, T. Schaller, D. Beyer, and . Drasdo, Individual cell-based models of the spatialtemporal organization of multicellular systems-achievements and limitations, Cytometry. Part A : the journal of the International Society for Analytical Cytology, vol.69, issue.7, pp.704-714, 2006.

D. Drasdo, M. Hoehme, and . Block, On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models, Journal of Statistical Physics, vol.128, pp.287-345, 2007.

P. Buske, J. Galle, N. Barker, G. Aust, H. Clevers et al., A Comprehensive Model of the Spatio-Temporal Stem Cell and Tissue Organisation in the Intestinal Crypt, PLoS Comput Biol, vol.7, issue.1, p.1001045, 2011.

P. Buske, J. Przybilla, M. Loeffler, N. Sachs, T. Sato et al., On the biomechanics of stem cell niche formation in the gut -modelling growing organoids, FEBS Journal, vol.279, issue.18, pp.3475-3487, 2012.

S. J. Dunn, S. Inke, J. Näthke, and . Osborne, Computational models reveal a passive mechanism for cell migration in the crypt, PLoS ONE, vol.8, issue.11, 2013.

. Richard-c-van-der-wath, S. Bruce, A. W. Gardiner, D. Burgess, and . Smith, Cell organisation in the colonic crypt: a theoretical comparison of the pedigree and niche concepts, PloS one, vol.8, issue.9, p.73204, 2013.

C. Pin, A. Parker, Y. Patrick-gunning, . Ohta, T. Ian et al., An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium, Integrative biology : quantitative biosciences from nano to macro, vol.7, pp.213-241, 2015.

M. Ingeborg, C. M. Van-leeuwen, M. Edwards, H. M. Ilyas, and . Byrne, Towards a multiscale model of colorectal cancer, World J Gastroenterol, vol.13, issue.9, pp.1399-1407, 2007.

D. Gianluca, P. Antonio, L. Macklin, and . Preziosi, An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix, Mathematical biosciences and engineering, vol.10, issue.1, pp.75-101, 2013.

H. Muhammad, . Zaman, D. Roger, P. Kamm, D. A. Matsudaira et al., Computational model for cell migration in three-dimensional matrices, Biophysical journal, vol.89, issue.2, pp.1389-1397, 2005.

R. Rangarajan and M. Zaman, Modeling cell migration in 3D, Cell Adhesion & Migration, vol.2, issue.2, pp.106-109, 2008.

D. ?. Schluter, M. ?. Ramis-conde, . ?j, and . Chaplain, Computational Modeling of Single-Cell Migration: The Leading Role of Extracellular Matrix Fibers, Biophysical Journal, vol.103, pp.1141-1151, 2012.

R. Rey and J. , A phenomenological approach to modelling collective cell movement in 2D, Biomechanics and modeling in mechanobiology, vol.12, issue.6, pp.1089-100, 2013.

F. Vermolen and A. Gefen, A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies, Biomechanics and modeling in mechanobiology, vol.11, issue.1-2, pp.183-95, 2012.

. P-pathmanathan, . Cooper, . Fletcher, . Mirams, . Montahan et al., A computational study of discrete mechanical tissue models, Physical Biology, vol.6, issue.3, p.36001, 2009.

M. Basan, J. Prost, J. Joanny, and J. Elgeti, Dissipative particle dynamics simulations for biological tissues: rheology and competition, Physical biology, vol.8, issue.2, p.26014, 2011.

G. Odell, G. Oster, P. Alberch, and B. Burnside, The mechanical basis of morphogenesis. I. Epithelial folding and invagination, Developmental biology, vol.85, issue.2, pp.446-462, 1981.

D. Drasdo and G. Forgacs, Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation, Developmental Dynamics, vol.219, issue.2, pp.182-191, 2000.

D. Drasdo and M. Loeffler, Individual-based models to growth and folding in one-layered tissues: intestinal crypts and early development, Nonlinear Analysis: Theory, Methods & Applications, vol.47, pp.245-256, 2001.

F. A. Meineke, C. S. Potten, and M. Loeffler, Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Proliferation, vol.34, issue.4, pp.253-266, 2001.

I. Ramis-conde, D. Drasdo, R. Alexander, M. Anderson, and . Chaplain, Modeling the Influence of the E-Cadherin-?-Catenin Pathway in Cancer Cell Invasion: A Multiscale Approach, Biophysical Journal, vol.95, issue.1, pp.155-165, 2008.

Y. Chu, S. Dufour, J. Thiery, E. Perez, and F. Pincet, Johnson-Kendall-Roberts Theory Applied to Living Cells, Physical Review Letters, vol.94, issue.2, p.28102, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009431

E. Barthel, Adhesive elastic contacts: JKR and more, Journal of Physics D: Applied Physics, vol.41, issue.16, p.163001, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00256886

A. Boulanger, Agent-based model -Continuum Model in tumor growth, 2009.

G. Schaller and M. Meyer-hermann, Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model, Phys. Rev. E, vol.71, issue.5, p.51910, 2005.

S. Pawlizak, A. W. Fritsch, S. Grosser, D. Ahrens, T. Thalheim et al., Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition, New Journal of Physics, vol.17, issue.8, p.83049, 2015.

M. James, A. G. Osborne, J. M. Fletcher, P. K. Pitt-francis, D. J. Maini et al., Comparing individual-based approaches to modelling the self-organization of multicellular tissues, PLoS computational biology, vol.13, issue.2, p.1005387, 2017.

E. Palsson and H. G. Othmer, A model for individual and collective cell movement in Dictyosteliumdiscoideum, Proceedings of the National Academy of Sciences, vol.97, issue.19, pp.10448-10453, 2000.

B. Szabó, G. J. Szöllösi, B. Gönci, . Zs, D. Jurányi et al., Phase transition in the collective migration of tissue cells: Experiment and model, Phys. Rev. E, vol.74, p.61908, 2006.

B. A. Camley, Y. Zhang, Y. Zhao, B. Li, E. Ben-jacob et al., Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns, Proceedings of the National Academy of Sciences, vol.111, issue.41, pp.14770-14775, 2014.

J. Zimmermann, A. Brian, W. Camley, H. Rappel, and . Levine, Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues, Proceedings of the National Academy of Sciences of the United States of America, p.1522330113, 2016.

T. Neufeld and B. Edgar, Connections between growth and the cell cycle, Current Opinion in Cell Biology, vol.10, pp.784-790, 1998.

A. Tzur, R. Kafri, S. Valerie, G. Lebleu, M. W. Lahav et al., Cell Growth and Size Homeostasis in Proliferating Animal Cells, Science, vol.325, issue.5937, pp.167-171, 2009.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir et al., Optical measurement of cycle-dependent cell growth, Proceedings of the National Academy of Sciences, 2011.

R. Kafri, J. Levy, B. Miriam, S. Ginzberg, G. Oh et al., Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle, Nature, vol.494, issue.7438, pp.480-483, 2013.

H. Turlier, B. Audoly, J. Prost, and J. Joanny, Furrow constriction in animal cell cytokinesis, Biophysical journal, vol.106, issue.1, pp.114-137, 2014.
DOI : 10.1016/j.bpj.2013.11.014

URL : https://hal.archives-ouvertes.fr/hal-01667106

S. Hoehme and D. Drasdo, Mathematical Population Studies : An International Journal of Mathematical Biomechanical and Nutrient Controls in the Growth of Mammalian Cell Populations, vol.17, pp.37-41, 2010.

D. Drasdo, J. Kree, and . Mccaskill, Monte Carlo approach to tissue-cell populations, Physical Review E, vol.52, issue.6, pp.6635-6657, 1995.
DOI : 10.1103/physreve.52.6635

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison, Mathematical Biology, vol.58, pp.657-680, 2009.
DOI : 10.1007/s00285-008-0212-0

D. Drasdo and S. Hoehme, Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones, New Journal of Physics, vol.14, issue.5, p.55025, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778129

J. H. Irving, G. John, and . Kirkwood, The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics, The Journal of chemical physics, vol.18, issue.6, pp.817-829, 1950.

. Katarzyna-a-rejniak, An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development, Journal of theoretical biology, vol.247, issue.1, pp.186-204, 2007.

A. Katarzyna, R. H. Rejniak, and . Dillon, A single cell-based model of the ductal tumour microarchitecture, Computational & Mathematical Methods in Medicine, vol.8, issue.1, pp.51-69

, A single-cell-based model of multicellular growth using the immersed boundary method, AMS Contemporary Mathematics, vol.466, 2008.

A. Katarzyna, A. Rejniak, and . Anderson, A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure, Bulletin of mathematical biology, vol.70, issue.3, pp.677-712, 2008.

Y. Jamali, M. Azimi, and M. Mofrad, A sub-cellular viscoelastic model for cell population mechanics, PLoS One, vol.5, issue.8, 2010.
DOI : 10.1371/journal.pone.0012097

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012097&type=printable

G. I-v-pivkin and . Karniadakisa, Accurate Coarse-Grained Modeling of Red Blood Cells, Physical Review Letters, vol.101, p.118105, 2008.

M. Hosseini and J. Feng, A particle-based model for the transport of erythrocytes in capillaries, Chemical engineering science, vol.64, pp.4488-4497, 2009.

A. Dmitry, B. Fedosov, G. E. Caswell, and . Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.1937-1948, 2010.

B. D-a-fedosov, S. Caswell, G. Suresh, and . Karniadakis, Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.35-44, 2011.

Z. Peng, X. Li, M. Igor-v-pivkin, G. E. Dao, S. Karniadakis et al., Lipid bilayer and cytoskeletal interactions in a red blood cell, Proceedings of the National Academy of Sciences, 2013.
DOI : 10.1073/pnas.1311827110

URL : http://www.pnas.org/content/110/33/13356.full.pdf

M. Tozluo?, A. L. Tournier, P. Robert, S. Jenkins, . Hooper et al., Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions, Nature Cell Biology, vol.15, issue.7, pp.751-762, 2013.

M. Kim, D. M. Neal, D. Roger, H. Kamm, and . Harry-asada, Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries, PLOS Computational Biology, vol.9, issue.2, p.1002926, 2013.
DOI : 10.1371/journal.pcbi.1002926

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002926&type=printable

J. Chen, D. Weihs, M. Van-dijk, and F. J. Vermolen, A phenomenological model for cell and nucleus deformation during cancer metastasis, Biomechanics and modeling in mechanobiology, pp.1-22, 2018.
DOI : 10.1007/s10237-018-1036-5

URL : https://link.springer.com/content/pdf/10.1007%2Fs10237-018-1036-5.pdf

A. Sebastian, T. J. Sandersius, and . Newman, Modeling cell rheology with the Subcellular Element Model, Physical biology, vol.5, issue.1, p.15002, 2008.

P. Murray, C. Edwards, M. Tindall, and P. Maini, From a discrete to a continuum model of cell dynamics in one dimension, Physical Review E, vol.80, issue.3, p.31912, 2009.

F. Hermann-b-frieboes, Y. Jin, . Chuang, M. Steven, J. S. Wise et al., Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis, Journal of theoretical biology, vol.264, issue.4, pp.1254-78, 2010.

L. Preziosi, A. , and C. Verdier, An elasto-visco-plastic model of cell aggregates, Journal of Theoretical Biology, vol.262, issue.1, pp.35-47, 2010.
DOI : 10.1016/j.jtbi.2009.08.023

URL : https://hal.archives-ouvertes.fr/hal-00361051

H. M. Byrne, J. M. Osborne, A. Walter, S. K. Kershaw, G. Mirams et al., A hybrid approach to multi-scale modelling of cancer, Phil Trans R Soc A, vol.368, pp.5013-5028, 2010.

I. González, -. Valverde, and J. Manuel-garcía-aznar, Mechanical modeling of collective cell migration: An agent-based and continuum material approach, Computer Methods in Applied Mechanics and Engineering, vol.337, pp.246-262, 2018.

M. B. Liu and . Liu, Smoothed particle hydrodynamics (sph): an overview and recent developments. Archives of computational methods in engineering, vol.17, pp.25-76, 2010.
DOI : 10.1007/s11831-010-9040-7

URL : http://dspace.imech.ac.cn/bitstream/311007/42434/1/2010_SPH_Overview_ArCME.pdf

R. Das and . Cleary, Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics, Theoretical and Applied Fracture Mechanics, vol.53, issue.1, pp.47-60, 2010.
DOI : 10.1016/j.tafmec.2009.12.004

P. S-e-hieber and . Koumoutsakos, An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers, Journal of Computational Physics, vol.227, issue.19, pp.8636-8654, 2008.

J. Gray, J. Monaghan, and R. Swift, SPH elastic dynamics, Computer Methods in Applied Mechanics and Engineering, vol.190, pp.6641-6662, 2001.
DOI : 10.1016/s0045-7825(01)00254-7

M. Liu, J. Shao, and J. Chang, On the treatment of solid boundary in smoothed particle hydrodynamics, Science China Technological Sciences, vol.55, issue.1, pp.244-254, 2012.

S. Adami, N. A. Hu, and . Adams, A generalized wall boundary condition for smoothed particle hydrodynamics, Journal of Computational Physics, vol.231, issue.21, pp.7057-7075, 2012.
DOI : 10.1016/j.jcp.2012.05.005

M. B. Liu and . Liu, Smoothed particle hydrodynamics (sph): an overview and recent developments. Archives of computational methods in engineering, vol.17, pp.25-76, 2010.
DOI : 10.1007/s11831-010-9040-7

URL : http://dspace.imech.ac.cn/bitstream/311007/42434/1/2010_SPH_Overview_ArCME.pdf

J. Morris, P. Fox, and Y. Zhu, Modeling low Reynolds number incompressible flows using SPH, Journal of Computational Physics, vol.136, pp.214-226, 1997.
DOI : 10.1006/jcph.1997.5776

M. Ellero, M. Serrano, and P. Espanol, Incompressible smoothed particle hydrodynamics, Journal of Computational Physics, vol.226, issue.2, pp.1731-1752, 2007.
DOI : 10.1016/j.jcp.2007.06.019

S. Litvinov, X. Ellero, N. Hu, and . Adams, A splitting scheme for highly dissipative smoothed particle dynamics, J. Comput. Phys, vol.229, issue.15, pp.5457-5464, 2010.
DOI : 10.1016/j.jcp.2010.03.040

M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Unified semianalytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method, International Journal for Numerical Methods in Fluids, vol.71, issue.4, pp.446-472, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00691603

S. Alt, P. Ganguly, and G. Salbreux, Vertex models: from cell mechanics to tissue morphogenesis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.372, 1720.
DOI : 10.1098/rstb.2015.0520

URL : https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2015.0520

M. Kim, R. Yaron, R. Silberberg, . Abeyaratne, D. Roger et al., Computational modeling of three-dimensional ecm-rigidity sensing to guide directed cell migration, Proceedings of the National Academy of Sciences, vol.115, issue.3, pp.390-399, 2018.

K. Tamura, T. Komura, and . Kato, Adhesion induced buckling of spherical shells, Journal of Physics: Condensed Matter, vol.16, issue.39, pp.421-428, 2004.
DOI : 10.1088/0953-8984/16/39/l01

D. Maugis, Adhesion of spheres: The JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci, vol.150, issue.1, pp.243-269, 1992.

S. Tanaka, D. Sichau, and . Iber, LBIBCell: a cell-based simulation environment for morphogenetic problems, Bioinformatics, 2015.

F. Milde, G. Tauriello, H. Haberkern, and P. Koumoutsakos, SEM++: A particle model of cellular growth, signaling and migration, Computational Particle Mechanics, 2014.

A. Nematbakhsh, W. Sun, P. A. Brodskiy, A. Amiri, C. Narciso et al., Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia, PLoS computational biology, vol.13, issue.5, p.1005533, 2017.

T. Lämmermann and M. Sixt, Mechanical modes of 'amoeboid' cell migration, Current Opinion in Cell Biology, vol.21, issue.5, pp.636-644, 2009.

G. Charras and E. Paluch, Blebs lead the way: how to migrate without lamellipodia, Nature reviews Molecular cell biology, vol.9, issue.9, p.730, 2008.

G. Andrew, D. Clark, and . Vignjevic, Modes of cancer cell invasion and the role of the microenvironment, Current Opinion in Cell Biology, vol.36, pp.13-22, 2015.

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nature reviews cancer, vol.3, issue.5, p.362, 2003.

T. Heck, M. Vaeyens, and H. Van-oosterwyck, Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis, Mathematical Modelling of Natural Phenomena, vol.10, issue.1, pp.108-141, 2015.

F. René, E. G. Van-oers, D. J. Rens, C. A. Lavalley, R. Reinhart-king et al., Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro, PLoS computational biology, vol.10, issue.8, p.1003774, 2014.

M. Tozluo?, A. L. Tournier, P. Robert, S. Jenkins, . Hooper et al., Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions, Nat. Cell Biol, vol.15, issue.7, pp.751-762, 2013.

J. Zhu and A. Mogilner, Comparison of cell migration mechanical strategies in threedimensional matrices: a computational study, Interface Focus, vol.6, issue.5, 2016.

E. Palsson, G. Hans, and . Othmer, A model for individual and collective cell movement in Dictyostelium discoideum, Proceedings of the National Academy of Sciences, vol.97, issue.19, pp.10448-10453, 2000.

E. Palsson, A three-dimensional model of cell movement in multicellular systems, Future Generation Computer Systems, vol.17, issue.7, pp.835-852, 2001.

D. Boal, Mechanics of the Cell, 2012.

K. Wolf, I. Yi, Y. Wu, J. Liu, E. Geiger et al., Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion, Nat. Cell Biol, vol.9, issue.8, pp.893-904, 2007.

P. Friedl and K. Wolf, Proteolytic interstitial cell migration: a five-step process, Cancer Metastasis Rev, vol.28, issue.1-2, pp.129-135, 2009.

F. Sabeh, I. Ota, K. Holmbeck, H. Birkedal-hansen, P. Soloway et al., Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP, J. Cell Biol, vol.167, issue.4, pp.769-781, 2004.

F. Sabeh, R. Shimizu-hirota, and S. Weiss, Protease-dependent versusindependent cancer cell invasion programs: three-dimensional amoeboid movement revisited, J. Cell Biol, vol.185, issue.1, pp.11-19, 2009.

E. Infante, P. Monteiro, P. Paul-gilloteaux, M. Domingues, M. Raab et al., Mechanical stress on the nucleus triggers MT1-MMP digest-on-demand for matrix nuclear tunnel formation

S. Ulrich, T. Schwarz, I. B. Erdmann, and . Bischofs, Focal adhesions as mechanosensors: the two-spring model, Biosystems, vol.83, issue.2-3, pp.225-232, 2006.

G. Haguy-wolfenson, S. Meacci, . Liu, R. Matthew, T. Stachowiak et al., Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices, Nature cell biology, vol.18, issue.1, p.33, 2016.

O. V. Yuriy-v-pereverzev, M. Prezhdo, . Forero, V. Evgeni, W. E. Sokurenko et al., The two-pathway model for the catch-slip transition in biological adhesion, Biophysical journal, vol.89, issue.3, pp.1446-1454, 2005.

I. George and . Bell, Models for the specific adhesion of cells to cells, Science, vol.200, issue.4342, pp.618-627, 1978.

B. Grec, B. Maury, N. Meunier, and L. Navoret, A 1d model of leukocyte adhesion coupling bond dynamics with blood velocity, Journal of theoretical biology, vol.452, pp.35-46, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01566770

A. Elizaveta, C. Novikova, and . Storm, Contractile fibers and catch-bond clusters: a biological force sensor?, Biophysical journal, vol.105, issue.6, pp.1336-1345, 2013.

A. Szabó and . Czirók, The role of Cell-Cell adhesion in the formation of multicellular sprouts, Math. Model. Nat. Phenom, vol.5, issue.1, pp.106-122, 2010.

A. Geitmann, K. E. Joseph, and . Ortega, Mechanics and modeling of plant cell growth, Trends in plant science, vol.14, issue.9, pp.467-478, 2009.

M. H. Roeland, M. Merks, D. Guravage, G. Inzé, and . Beemster, Virtualleaf: an open-source framework for cell-based modeling of plant tissue growth and development, Plant physiology, vol.155, issue.2, pp.656-666, 2011.

J. Dumais, Can mechanics control pattern formation in plants? Current opinion in plant biology, vol.10, pp.58-62, 2007.

G. Qiong, J. A. Pitt, and . Bartsch, Elastic-plastic constitutive relations of the cell walls of apple and potato parenchyma, Journal of Rheology, vol.33, issue.2, pp.233-256, 1989.

. V-kouznetsova, F. Brekelmans, and . Baaijens, An approach to micro-macro modeling of heterogeneous materials, Computational mechanics, vol.27, issue.1, pp.37-48, 2001.

C. Miehe, J. Schröder, and J. Schotte, Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials, Computer methods in applied mechanics and engineering, vol.171, issue.3-4, pp.387-418, 1999.

W. Hcp-karunasena, . Senadeera, J. Richard, Y. Brown, and . Gu, A particle based model to simulate microscale morphological changes of plant tissues during drying, Soft matter, vol.10, issue.29, pp.5249-5268, 2014.

L. Taiz and E. Zeiger, Plant physiology, 2002.

M. A. Chaplain, The strain energy function of an ideal plant cell wall, Journal of Theoretical Biology, vol.163, issue.1, pp.77-97, 1993.

C. Wang, C. Wang, and . Thomas, Modelling the mechanical properties of single suspension-cultured tomato cells, Annals of botany, vol.93, issue.4, pp.443-53, 2004.

N. Wu, J. Marvin, and . Pitts, Development and validation of a finite element model of an apple fruit cell, Postharvest Biology and Technology, vol.16, issue.1, pp.1-8, 1999.

E. Mc-alamar, . Vanstreels, E. Oey, B. M. Moltó, and . Nicolaï, Micromechanical behaviour of apple tissue in tensile and compression tests: Storage conditions and cultivar effect, Journal of Food Engineering, vol.86, issue.3, pp.324-333, 2008.

J. Keckes, I. Burgert, K. Frühmann, M. Müller, K. Kölln et al., Cell-wall recovery after irreversible deformation of wood, Nature materials, vol.2, issue.12, p.810, 2003.

E. Vanstreels, . Mc-alamar, . Be-verlinden, . Enninghorst, E. Loodts et al., Micromechanical behaviour of onion epidermal tissue, Postharvest Biology and Technology, vol.37, issue.2, pp.163-173, 2005.
DOI : 10.17660/actahortic.2005.682.54

. Mc-jarvis, J. P. Briggs, and . Knox, Intercellular adhesion and cell separation in plants, Plant, Cell & Environment, vol.26, issue.7, pp.977-989, 2003.

P. Verboven, G. Kerckhofs, Q. Hibru-kelemu-mebatsion, K. Ho, M. Temst et al., Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography, Plant physiology, vol.147, issue.2, pp.518-527, 2008.

J. Cybulska, E. Vanstreels, Q. Ho, C. M. Courtin, V. Van-craeyveld et al., Mechanical characteristics of artificial cell walls, Journal of food engineering, vol.96, issue.2, pp.287-294, 2010.

F. Wittel, .. F. Kun, and H. , phys. rev. lett, vol.93, p.35504, 2004.

W. Chen and J. Fish, A mathematical homogenization perspective of virial stress. International journal for numerical methods in engineering, vol.67, pp.189-207, 2006.

W. Chen and J. Fish, A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales, International Journal for Numerical Methods in Engineering, vol.67, issue.2, pp.253-271, 2006.

J. Fish, W. Chen, and R. Li, Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions, Computer methods in applied mechanics and engineering, vol.196, issue.4-6, pp.908-922, 2007.

W. Gear, G. Ioannis, and . Kevrekidis, Constraint-defined manifolds: a legacy code approach to low-dimensional computation, Journal of Scientific Computing, vol.25, issue.1, pp.17-28, 2005.

. William-gear, J. Tasso, . Kaper, G. Ioannis, A. Kevrekidis et al., Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM Journal on Applied Dynamical Systems, vol.4, issue.3, pp.711-732, 2005.

J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, 2008.

W. Bangerth, R. Hartmann, and G. Kanschat, deal. ii-a general-purpose objectoriented finite element library, ACM Transactions on Mathematical Software (TOMS), vol.33, issue.4, p.24, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02414571

E. Hairer, P. Syvert, G. Nørsett, and . Wanner, Solving ordinary differential equations. i, volume 8 of springer series in computational mathematics, 1993.

A. Daniel, R. Fletcher, and . Mullins, Cell mechanics and the cytoskeleton, Nature, vol.463, issue.7280, p.485, 2010.

L. Marita, P. J. Rodriguez, N. J. Mcgarry, and . Sniadecki, Review on cell mechanics: experimental and modeling approaches, Applied Mechanics Reviews, vol.65, issue.6, p.60801, 2013.

A. Karolak, A. Dmitry, L. J. Markov, . Mccawley, and . Rejniak, Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues, Journal of The Royal Society Interface, vol.15, issue.138, p.20170703, 2018.

J. Guck, H. Ananthakrishnan, T. Mahmood, C. Moon, J. Cunningham et al., The optical stretcher: a novel laser tool to micromanipulate cells, Biophysical journal, vol.81, issue.2, pp.767-784, 2001.

G. Bao and S. Suresh, Cell and molecular mechanics of biological materials, Nature materials, vol.2, issue.11, p.715, 2003.

R. Hochmuth, Micropipette aspiration of living cells, Journal of Biomechanics, vol.33, pp.15-22, 2000.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert et al., Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence, Biophysical journal, vol.88, issue.5, pp.3689-3698, 2005.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. Cunningham et al., The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Biophysical Journal, vol.81, pp.767-784, 2001.

S. Grosser, . Fritsch, R. Tobias, R. Kießling, J. A. Stange et al., The lensing effect of trapped particles in a dual-beam optical trap, Optics Express, vol.23, issue.4, pp.5221-5235, 2015.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln et al., Quantifying the contribution of actin networks to the elastic strength of fibroblasts, Journal of Theoretical Biology, vol.242, issue.2, pp.502-516, 2006.

R. Tobias-r-kießling, J. A. Stange, A. W. Käs, and . Fritsch, Thermorheology of living cells-impact of temperature variations on cell mechanics, New Journal of Physics, vol.15, p.45026, 2013.

J. Brugués, B. Maugis, J. Casademunt, P. Nassoy, F. Amblard et al., Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration. Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.15415-15420, 2010.

M. Gyger, R. Stange, T. R. Kießling, A. Fritsch, B. Katja et al., Active contractions in single suspended epithelial cells, European Biophysics Journal, vol.43, issue.1, pp.11-23, 2014.

J. Li, C. Dao, S. Lim, and . Suresh, Spectrin-Level Modeling of the Cytoskeleton and Optical Tweezers Stretching of the Erythrocyte, Biophysical Journal, vol.88, issue.5, pp.3707-3719, 2005.

S. Suresh, J. Spatz, . Mills, M. Micoulet, C. Dao et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomaterialia, vol.1, issue.1, pp.15-30, 2005.

D. Cuvelier, Y. Thery, . Chu, J. Dufour, . Thiery et al., The universal dynamics of cell spreading, Current Biology, vol.17, pp.694-699, 2007.

A. Hategan, K. Sengupta, S. Kahn, E. Sackmann, and D. E. Discher, Topographical Pattern Dynamics in Passive Adhesion of Cell Membranes, Biophysical Journal, vol.87, issue.5, pp.3547-3560, 2004.

D. Leckband and . Israelachvili, Intermolecular forces in biology, Quarterly Reviews of Biophysics, vol.34, issue.2, pp.105-267, 2001.

N. Wang, G. Ostuni, D. Whitesides, and . Ingber, Micropatterning Tractional Forces in Living Cells, Cell Motility and the Cytoskeleton, vol.52, pp.97-106, 2002.

P. Michael, R. Murrell, J. Voituriez, P. Joanny, C. Nassoy et al., Liposome adhesion generates traction stress, Nature Physics, vol.10, issue.2, pp.163-169, 2014.

R. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model, Science, issue.4849, pp.177-84, 1988.

P. Marmottant, A. Mgharbel, J. Käfer, B. Audren, J. Rieu et al., The role of fluctuations and stress on the effective viscosity of cell aggregates, vol.106, pp.17271-17276, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00524596

, The Cellular Capsules technology And its applications to investigate model tumor, 2013.

S. Hammad, S. Hoehme, A. Friebel, A. Iris-von-recklinghausen, B. Othman et al., Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis, Archives of toxicology, vol.88, issue.5, pp.1161-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110657

G. Mazza, K. Rombouts, A. R. Hall, L. Urbani, T. V. Luong et al., Decellularized human liver as a natural 3d-scaffold for liver bioengineering and transplantation, Scientific reports, vol.5, p.13079, 2015.

M. Kim, J. Whisler, Y. R. Silberberg, R. D. Kamm, and H. Harry-asada, Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network, PLOS Computational Biology, vol.11, issue.10, p.1004535, 2015.

G. Jacquemet, H. Hamidi, and J. Ivaska, Filopodia in cell adhesion, 3D migration and cancer cell invasion, 2015.

T. Darci, T. Butcher, V. M. Alliston, and . Weaver, A tense situation: forcing tumour progression, Nature reviews. Cancer, vol.9, issue.2, pp.108-130, 2009.

M. Basan, T. Risler, F. Jean, . Joanny, S. Xavier et al., Homeostatic competition drives tumor growth and metastasis nucleation, HFSP Journal, vol.3, issue.4, pp.265-272, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00961019

J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply, Cancer research, vol.46, issue.7, pp.3504-3516, 1986.

G. Helmlinger, H. Netti, R. Lichtenbeld, R. Melder, and . Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature biotechnology, vol.15, issue.8, pp.778-83, 1997.

G. Cheng, J. Tse, K. Rakesh, L. L. Jain, and . Munn, Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PloS one, vol.4, issue.2, p.4632, 2009.

K. L. Mills, R. Kemkemer, S. Rudraraju, and K. Garikipati, Elastic free energy drives the shape of prevascular solid tumors, PLoS ONE, vol.9, issue.7, 2014.

F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan et al., Stress Clamp Experiments on Multicellular Tumor Spheroids. Phys. Rev. Lett, vol.107, issue.18, p.188102, 2011.

M. Delarue, F. Montel, D. Vignjevic, J. Prost, J. Joanny et al., Compressive Stress Inhibits Proliferation in Tumor Spheroids through a Volume Limitation, Biophysical Journal, vol.107, issue.8, pp.1821-1828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123922

H. C-y-chen, J. Byrne, and . King, The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids, Journal of Mathematical Biology, vol.43, pp.191-220, 2001.

D. Ambrosi and F. Mollica, The role of stress in the growth of a multicell spheroid, Journal of Mathematical Biology, vol.48, issue.5, pp.477-499, 2004.

M. Chaplain, L. Graziano, and . Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Mathematical Medicine and Biology, vol.23, issue.3, pp.197-229

P. Mascheroni, C. Stigliano, M. Carfagna, D. P. Boso, L. Preziosi et al., Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model, 2016.

F. Montel, M. Delarue, J. Elgeti, D. Vignjevic, G. Cappello et al., Isotropic stress reduces cell proliferation in tumor spheroids, New Journal of Physics, vol.14, issue.5, p.55008, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01138975

K. Alessandri, V. Bibhu-ranjan-sarangi, B. Valérïévitch-gurchenkov, T. R. Sinha, L. Kießling et al., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proceedings of the, vol.110, pp.14843-14851, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01356886

D. Drasdo, S. Hoehme, and J. G. Hengstler, How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis, Journal of hepatology, vol.61, issue.4, pp.951-957, 2014.

N. Francisco-feijó-delgado, . Cermak, C. Vivian, S. Hecht, Y. Son et al., Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells, PloS one, vol.8, issue.7, p.67590, 2013.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani et al., Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, issue.3, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

M. Aragona, T. Panciera, A. Manfrin, S. Giulitti, F. Michielin et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell, vol.154, issue.5, pp.1047-59, 2013.

. Boris-i-shraiman, Mechanical feedback as a possible regulator of tissue growth, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.3318-3323, 2005.

A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal et al., Collective and single cell behavior in epithelial contact inhibition, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.739-783, 2012.

M. David-owen, The Cell Cycle: Principles of Control, 2007.

S. Douezan, K. Guevorkian, R. Naouar, S. Dufour, D. Cuvelier et al., Spreading dynamics and wetting transition of cellular aggregates, Proceedings of the National Academy of Sciences, vol.108, issue.18, pp.7315-7320, 2011.

A. G. Fletcher, J. Christopher, S. Breward, and . Chapman, Mathematical modeling of monoclonal conversion in the colonic crypt, Journal of Theoretical Biology, vol.300, pp.118-133, 2012.

A. Elke, . Ober, and . Frédéric-p-lemaigre, Development of the liver: Insights into organ and tissue morphogenesis, Journal of hepatology, 2018.

J. Matthew, N. Paszek, K. R. Zahir, J. N. Johnson, G. I. Lakins et al., Tensional homeostasis and the malignant phenotype, Cancer cell, vol.8, issue.3, pp.241-54, 2005.

R. Poincloux, F. Lizárraga, and P. Chavrier, Matrix invasion by tumour cells: a focus on mt1-mmp trafficking to invadopodia, J Cell Sci, vol.122, issue.17, pp.3015-3024, 2009.

T. Rodrigues, B. Kundu, J. Silva-correia, C. Subhas, . Kundu et al., Emerging tumor spheroids technologies for 3d in vitro cancer modeling, Pharmacology & therapeutics, vol.184, pp.201-211, 2018.

G. Benton, G. Degray, K. Hynda, J. Kleinman, I. George et al., In vitro microtumors provide a physiologically predictive tool for breast cancer therapeutic screening, PloS one, vol.10, issue.4, p.123312, 2015.

M. Vinci, C. Box, and S. A. Eccles, Three-dimensional (3d) tumor spheroid invasion assay, Journal of visualized experiments: JoVE, issue.99, 2015.

B. Eric, J. M. Berens, A. T. Holy, A. Riegel, and . Wellstein, A cancer cell spheroid assay to assess invasion in a 3d setting, Journal of visualized experiments: JoVE, issue.105, 2015.

C. Liu, D. L. Mejia, B. Chiang, K. E. Luker, and G. Luker, Hybrid collagen alginate hydrogel as a platform for 3d tumor spheroid invasion, Acta biomaterialia, 2018.

Y. Kim, M. A. Stolarska, G. Hans, Y. Othmer, M. Kim et al., A HYBRID MODEL FOR TUMOR SPHEROID GROWTH IN VITRO I: THEORETICAL DEVELOPMENT AND EARLY RESULTS, 2007.

E. Ban, M. Franklin, S. Nam, R. Lucas, H. Smith et al., Mechanisms of plastic deformation in collagen networks induced by cellular forces, Biophysical journal, vol.114, issue.2, pp.450-461, 2018.

J. Delile and M. Herrmann, Nadine Peyriéras, and René Doursat. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation, Nature communications, vol.8, p.13929, 2017.

G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot et al., Physiboss: a multi-scale agent based modelling framework integrating physical dimension and cell signalling. bioRxiv, p.267070, 2018.

G. Stoll, B. Caron, E. Viara, A. Dugourd, A. Zinovyev et al., Maboss 2.0: an environment for stochastic boolean modeling, Bioinformatics, vol.33, issue.14, pp.2226-2228, 2017.

A. Friebel, J. Neitsch, T. Johann, S. Hammad, J. G. Hengstler et al., TiQuant: Software for tissue analysis, quantification and surface reconstruction, Bioinformatics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01257137

M. Philip, H. Morse, and . Feshbach, Methods of theoretical physics, 1953.

T. Odenthal, B. Smeets, J. Christiaens, K. Verstrepen, E. Tijskens et al., EVOLUTION OF ADHESION PROPERTIES IN YEAST, Proceedings of the 10th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, pp.431-437, 2012.

R. J-c-hansen, . Skalak, A. Chien, and . Hoger, An elastic network model based on the structure of the red blood cell membrane skeleton, Biophysical journal, vol.70, issue.1, pp.146-66, 1996.

K. and J. Greenwood, An Adhesion Map for the Contact of Elastic Spheres, Journal of colloid and interface science, vol.192, pp.326-333, 1997.

J. Guck, . Ananthakrishnan, . Moon, J. Cunningham, and . Käs, Optical deformability of soft biological dielectrics, Physical review letters, vol.84, issue.23, p.5451, 2000.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln et al., Quantifying the contribution of actin networks to the elastic strength of fibroblasts, Journal of Theoretical Biology, vol.242, issue.2, pp.502-516, 2006.

N. Wang, P. James, D. E. Butler, and . Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, pp.1124-1127, 1993.

D. Stamenovic and N. Wang, Engineering approaches to cytoskeletal mechanics, J Appl Physiol, vol.89, pp.2085-2090, 2000.

J. Xu, Y. Tseng, and D. Wirtz, Strain hardening of actin filament networks regulation by the dynamic cross-linking protein ?-actinin, Journal of Biological Chemistry, vol.275, issue.46, pp.35886-35892, 2000.

F. Wottawah, . Schinkinger, . Lincoln, M. Ananthakrishnan, . Romeyke et al., Optical Rheology of Biological Cells. Physical Review Letters, vol.94, p.98103, 2005.

L. L-d-landau, E. Pitaevskii, A. Lifshitz, and . Kosevich, Theory of Elasticity, vol.7, 1986.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln et al., Quantifying the contribution of actin networks to the elastic strength of fibroblasts, Journal of Theoretical Biology, vol.242, issue.2, pp.502-516, 2006.

C. Wei, M. Philip, and . Lintilhac, Loss of Stability: A New Look at the Physics of Cell Wall Behavior during Plant Cell Growth, Plant Physiology, vol.145, issue.3, pp.763-772

M. Delarue, F. Montel, O. Caen, J. Elgeti, J. Siaugue et al., Mechanical Control of Cell flow in Multicellular Spheroids, Phys. Rev. Lett, vol.110, issue.13, p.138103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138971