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Notations

R The set of real numbers.

R+ The set of strictly positive real numbers: {x ∈ R : x > 0}.

R≥0 The set of nonnegative real numbers: {x ∈ R : x ≥ 0}.

‖ · ‖ The Euclidean norm.

| · | Absolute value of a real number.

d·cν Short notation of | · |νsign(·).

1,n Denotes the sequence 1, ...,n.

∂A The boundary of the set A.

‖x‖A The distance from a point x ∈ Rn to a set A ⊂ Rn: infξ∈A ‖x − ξ‖.

∂xρ(x,y, ...) Denotes the partial derivative of ρ(x,y, ...) with respect to x.

B The unitary ball: {x ∈ Rn : ‖x‖ ≤ 1}.

B(s) A ball of size s: {x ∈ Rn, s > 0 : ‖x‖ ≤ s}.

S The unit shpere: {x ∈ Rn : ‖x‖ = 1}.

Br The unitary ball in the homogeneous norm ‖x‖r : {x ∈ Rn : ‖x‖r ≤ 1}.

Br(s) A ball in the homogeneous norm ‖x‖r of size s: {x ∈ Rn, s > 0 : ‖x‖ ≤ s}.

S The unit shpere in the homogenenous norm ‖x‖r : {x ∈ Rn : ‖x‖ = 1}.
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diag(z1, ..., zn) A diagonal matrix with diagonal elements zi , i = 1,m.

1k A column vector of ones of size k.

λmin(P ),λmax(P ) The minimum and the maximum eigenvalues of the matrix P , resp.

rown(P ),coln(P ) The number of rows and the number of columns of a matrix P , resp.

ker(P ),range(P ) The null space and the column space of the matrix P , resp.

null(P ) The matrix with columns defining the orthonormal basis of the subspace ker(W ).
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Résumé Long

Ce manuscrit est composé de 5 chapitres ainsi que d’une conclusion générale et liste bibli-

ographique. La thèse porte sur la propriété de stabilité en temps fini pour les systèmes dynamiques.

Une attention particulière est portée au cas de figure où le temps de convergence est une fonction

bornée de l’espace d’état. Cette propriété, appelé stabilité en temps fixe, est étudiée dans le cas de

l’estimation d’état et du bouclage de sortie stabilisant en systèmes linéaires et non-linéaires.

Une première partie présente une introduction au sujet, donne quelques outils théoriques et

situe la contribution de la thèse. Ainsi, le chapitre 1 concerne les pré-requis nécessaires á la lecture

des chapitres suivants. Les théorèmes qui conforment la base théorique de la thèse sont introduits

de manière détaillé. Dans ce chapitre sont rappelées les notions de stabilité puis est discutée la

notion de stabilité en temps fini et enfin en temps fixe. Un certains nombres d’outils qui seront bien

utiles par la suite sont introduits. Toutes les notions introduites sont illustrées par des exemples.

Les premiers contributions théoriques se trouvent dans le chapitre 2. Dans ce chapitre est

introduit des caractérisations générales de stabilité en temps temps fixe en terme de fonction de

Lyapunov. L’idée principale de cette étude est d’utiliser, á l’image de ce qui se fait généralement

dans les théorèmes de Lyapunov inverses, le temps de convergence á partir d’un point comme une

fonction de Lyapunov.

Deux cas des conditions nécessaires et suffisantes sont introduites, les cas général de la fonction

de temps de convergence et le cas où cette fonction est continue. Les résultats sont alors étendus

dans le cadre des systèmes avec commande. Ainsi, il est introduite le concept de fonction de

Lyapunov de contrôle (CLF en anglais) à temps fixe qui, en ajoutant une hypothèse de small control
property garanti l’existence d’une loi de commande qui assure la stabilisation en temps fixe.

Dans le chapitre 3, les propriétés de Stabilité Entrée-État (ISS en anglais) dans le cas où le

système autonome vérifie la propriété de stabilité en temps fini et fixe est introduite; cette propriété

est appelé nonA ISS. En s’inspirant des travaux de Eduardo Sontag, le concept de function de class

KL généralisée est aussi introduit. Les théorèmes 3.1 et 3.2 caractérisent en terme de fonctions de

Lyapunov ces propriétés ISS en temps fixe et fini. Une hypothèse supplémentaire de régularité sur

le temps de convergence est alors introduite pour montrer le caractère nécessaire de l’existence

d’une fonction de Lyapunov nonA-ISS. Ce chapitre clôture avec une caractérisation analogue en

utilisant de fonctions de Lyapunov implicites.

Les chapitres 4 et 5 concernent la synthèse d’algorithmes d’estimation et de commande ex-

ploitant les outils développés précédemment. Le chapitre 4 s’attaque à la synthèse d’observateur

1



2 Résumé Long

pour les systèmes linéaires. Les outils développés jusqu’á présent sont alors exploités dans ce

contexte pour donner l’existence d’un observateur qui converge en temps fini et fixe. L’outil

central est l’utilisation de la fonction de Lyapunov implicite. Ce type d’outil permet l’introduction

d’inégalités matricielles linéaires qui sont un certificat à la possibilité de concevoir un observateur

d’état en temps fini et fixe. Dans un premier temps une condition LMI à dimension infinie est

présentée (les conditions matricielles doivent être vérifiées pour un continuum de paramètres); en

ajoutant des conditions LMI supplémentaires on obtient des conditions de dimension finie tout en

permettant de fournir une estimation du temps de convergence.

Dans le chapitre 5, le problème de bouclage de sortie est considéré pour une chaîne d’intégrateurs.

Une stratégie de commutation entre deux degrés d’homogénéité permet de synthétiser un observa-

teur et un contrôleur qui convergent en temps fixe . Une condition LMI est introduite permettant

l’obtention des paramètres optimales du schema de contrôle et qui permet d’ajuster le temps de

convergence.



General Introduction

Lyapunov stability (LS) and asymptotic stability (AS) are properties of dynamical systems that refer

to a particular behavior of the system’s trajectories with respect to an equilibrium point. Lyapunov

stable dynamics allow the system’s trajectories to be increasing, decreasing or constant, as long as

they remain contained inside a ball proportional to magnitude of deviation of the initial conditions

from the equilibrium. Asymptotic stability asks furthermore that the trajectories approach the

equilibrium point as time approaches infinity, in other words, AS states that given a sufficiently

large amount of time, the trajectories will arrive arbitrarily close to the equilibrium point. In this

case, locally increasing or decreasing trajectories are allowed as long as they remain contained in a

ball approaching zero.

Exponential stability (ES), for instance, occurs when the evolution of the system’s trajectories can

be upper bounded by an exponential function, thus revealing more about the system’s behavior and

its convergence rate. However, as in the AS case, the trajectories of systems with an exponentially

stable origin will converge exactly to zero in an infinite amount of time.

A more recently described type of stability, early developed in the works of Zubov [Zubov,

1958], Roxin [Roxin, 1966] and Haimo [Haimo, 1986], involves the existence of an initial-condition

dependent, scalar function T that provides the time for which all the system’s trajectories converge

exactly to the equilibrium. Here, the rate of convergence, instead of being characterized by

a trajectory bounding function, is determined by the function T , often called the settling-time
function. Since T is a real-valued function, this type of stability is called finite-time stability (FTS).

Fixed-time stability (FxTS) refers to the case when the settling-time function of an FTS system is

bounded by a finite value in the whole domain of trajectories’ convergence. This property implies

that for any initial condition, no matter how far from the origin, all the system’s trajectories will

converge to the origin before a fixed and a priori known time. Another term used to describe this

property is uniformity with respect to the initial conditions. To distinguish them from AS, both

FTS and FxTS are often referred as nonasymptotic (NonA) stability.

The main tool to establish FTS or FxTS of a given system is based on the theory of homogeneous

systems. Homogeneity is a symmetry-like property in which a multiplicative scaling of the argu-

ments of a function results in a proportional scaling of the function. Through this multiplicative

regularity, stability and robustness analysis can be significantly simplified.

The motivation for studying FTS systems in control theory is quite varied. Whenever control

and estimation goals are heavily time-constrained, they provide strict theoretical estimates on the

3



4 General Introduction

convergence time. Also, since the separation principle is not satisfied in the general nonlinear

case, these estimates can be further used to independently design FTS observers and controllers

and guarantee the stability of its combined application [Hong et al., 2000]. Along the same lines,

FTS can be used to assert stability of interconnected systems [Zoghlami et al., 2013]. In terms of

robustness and in comparison with exponentially stable systems, it has been shown that FTS leads

to an improved rejection of low-level persistent disturbances [Bhat and Bernstein, 2000]. In sliding

mode control theory, FTS constitutes a key feature [Polyakov and Fridman, 2014].

Several other works have shown ingenious implementations of FTS control and estimation

algorithms. These works include applications to secure network communications [Perruquetti et al.,

2008], finite-time regulation of robot manipulators [Hong et al., 2002], fault detection [Floquet

et al., 2004], multi-agent consensus [Wang et al., 2016] and synchronization [Du et al., 2011].

All the types of stability mentioned so far can be studied through Lyapunov analysis, this is,

by proposing a continuous positive definite scalar function V such that its derivative along the

trajectories of the system satisfies, for each type of stability, a particular differential inequality.

Therefore, the four of them benefit from the main advantage of Lyapunov analysis as well as suffer

from its main drawback. The former being the ability to determine the stability of a system without

linearizing it nor calculating explicitly its trajectories, and the latter the absence of a general

procedure to propose Lyapunov functions.

To expand the notions of Lyapunov analysis and to circumvent some its drawbacks, the works

of Adamy [Adamy, 2005] and Korobov [Korobov, 1979] propose an alternative stability framework

using implicit Lyapunov functions (ILF). The general idea is to propose an implicitly defined

function that satisfies certain properties in order to guarantee asymptotic stability without the

need of an explicit expression of V nor of its derivative. An extension to the FT and the FxT

case has been done in [Polyakov et al., 2015]. Clearly, this approach will also lack a general

constructive procedure to find ILFs, however, as will be shown in this work, there exist FTS

systems, in particular homogeneous systems, for which no explicit Lyapunov function is known,

yet they admit an implicit one. Another relevant case, addressed in Chapter 4, is the nonasymptotic

stabilization and observation of linear systems, where once more explicit Lyapunov functions that

assert NonA stability are not known. Here, the implicit approach will again prove to be useful.

Regardless of the stability type, robustness against perturbations becomes a central topic in

control theory since any real phenomena is exposed to them and they may alter or completely

destroy the stability properties of a given system. Robustness is a broad term that refers to the

coping capabilities of a given system when internal or external disturbances are present. Input-to-

state stability (ISS) is a widespread robustness framework for nonlinear system that addresses the

property that for any bounded input, the system’s state will remain bounded. In the case of linear

systems, any stable system possesses this feature, in nonlinear systems however, it becomes much

more difficult to assert it. Once more, this property can be characterized using Lyapunov theory

and the concept of ISS Lyapunov functions, developed for the most part by E. Sontag [Sontag and

Wang, 1995].

The present work revolves around three main concepts: NonA stability, homogeneous systems
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and the implicit Lyapunov function approach. In Chapter 1 we present the theoretical framework

and the formal definitions of the main concepts. Chapters 2 and 3 focus on theoretical contributions.

In the former, necessary and sufficient conditions for NonA stability for continuous autonomous

systems are presented. In the latter, a framework that gathers ISS Lyapunov functions, NonA

stability analysis and the implicit framework is introduced. By joining these notions, the stability

rate and the robustness properties of a given system can be proven with a single, implicitly defined

Lyapunov function. Chapters 4 and 5 deal with more practical aspects. In Chapter 4, FT and

FxT convergent observers are designed for linear MIMO systems using the implicit approach. In

Chapter 5, homogeneity properties and the implicit approach are used to design an FxT output

controller for the chain of integrators.
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Chapter1
Theoretical Background

Contents
1.1 Stability Rates in Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Input-to-State Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The Implicit Lyapunov Function Approach . . . . . . . . . . . . . . . . . . . . 28

1.5 General Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

This chapter presents the formal definitions of the three main concepts on which this work is

based, that is, convergence rates, homogeneity and input-to-state stability. As we discuss them, it

will become clear the relationship with one another and the goals set for this work.

1.1 Stability Rates in Nonlinear Systems

Throughout this work, we will consider the domain Γ ⊂ Rn as an open connected set containing the

origin and ∂Γ will denote its boundary. Consider the autonomous system

ẋ = f (x), x ∈ Γ , (1.1)

where f : Γ → Rn is a continuous function and f (0) = 0. Let us assume that f is such that (1.1) has

the properties of existence and uniqueness of solutions in forward time outside the origin. Then

ψx(t), alternatively ψ(x, t), denotes the solution to system (1.1) starting from x ∈ Γ at t = 0.

Definition 1.1 (Bacciotti and Rosier, 2005; Khalil, 2002; Polyakov, 2012). The origin of the system

(1.1) is said to be:

Lyapunov stable if for any x0 ∈ Γ the solution ψx0
(t) is defined for all t ≥ 0, and for any ε > 0

there exists some δ > 0 such that for any x0 ∈ Γ , if ‖x0‖ ≤ δ then ‖ψx0
(t)‖ ≤ ε for all t ≥ 0;

asymptotically stable if it is Lyapunov stable and ‖ψx0
(t)‖ → 0 as t→ +∞ for any x0 ∈ Γ ;

7



8 CHAPTER 1. Theoretical Background

finite-time stable if it is Lyapunov stable and finite-time converging from Γ , i.e. for any x0 ∈ Γ
there exists 0 ≤ T < +∞ such that ψx0

(t) = 0 for all t ≥ T . The function T (x0) = inf{T ≥ 0 : ψx0
(t) =

0 ∀t ≥ T } is called the settling-time function of system (1.1);

fixed-time stable if it is finite-time stable and supx0∈Γ T (x0) < +∞.

The set Γ is called the domain of attraction. If Γ = Rn, then the corresponding properties become

global.

Stability notions can be similarly defined with respect to a set, by replacing the distance to

the origin in Definition 1.1 with the distance to an invariant set. For example, global finite-time

stability with respect to a set A ⊂ Rn is equivalent to the following two properties:

i) Lyapunov stability: for any x0 ∈ Rn the solution ψx0
(t) is defined for all t ≥ 0, and for any ε > 0

there exists some δ > 0 such that if ‖x0‖A ≤ δ then ‖ψx0
(t)‖A ≤ ε for all t ≥ 0;

ii) finite-time stability: for any x0 ∈ Rn there exists 0 ≤ T < +∞ such that ‖ψ(t,x0)‖A = 0 for all

t ≥ T .

Example 1.1

The scalar system

ẋ = −dxcα , (1.2)

where α ∈ (0,1), has an equilibrium at the origin, is continuous on R and locally Lipschitz

everywhere except at the origin. Hence, every initial condition on R\{0} has a unique solution

in forward time. The solutions of (1.2) can be obtained by direct integration as

ψx(t) =

sign(x)[|x|1−α − (1−α)t]
1

1−α , t < 1
1−α |x|

1−α

0, t ≥ 1
1−α |x|

1−α
.

Since any trajectory will be exactly 0 for any t ≥ 1
1−α |x|

1−α, the settling-time function is given

by T (x) = 1
1−α |x|

1−α. Let us compare this with the exponentially stable linear system ẏ = −y,

whose trajectories are given by ψy(t) = ye−t. It is clear that the trajectories will be exactly zero

in an infinite amount of time. Figure 1.1 shows that starting at the same initial condition,

ψx(t) converges to zero around t = 2 while ψy(t) continues to decrease exponentially but

never reaching 0 exactly.
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Figure 1.1 – Trajectories ψx(t) and ψy(t) of the scalar systems ẋ = −dxcα and ẏ = −y, for x(0) = y(0) = 1 and
α = 1

2 .

The definition of finite-time stability does not address the regularity of the settling-time

function. The following example provides a discontinuous settling-time function at the origin (the

function T becomes infinite when approaching the origin from a particular direction).

Example 1.2 (Bhat and Bernstein, 2000).

Consider the vector field f : R2→ R2, defined in Figure 1.2 on the quadrants

QI = {x ∈ R2\{0} : x1 ≥ 0,x2 ≥ 0}, QII = {x ∈ R2 : x1 < 0,x2 ≥ 0},

QIII = {x ∈ R2 : x1 ≤ 0,x2 < 0}, QIV = {x ∈ R2 : x1 > 0,x2 < 0},

where f (0) = 0, r > 0, θ ∈ [0,2π) and x = (x1,x2) = (r cosθ,r sinθ).

In [Bhat and Bernstein, 2000], it is shown that f is continuous on R2, Lipschitz everywhere

except on the x1 and x2 axes, that the vector field (1.1) has unique solutions in forward time

and that its origin is globally finite-time stable. However, when approaching the origin from

the negative part of the x2-axis, the settling-time function tends to infinity. To prove this,

consider the sequence {xm} where xm = (0,− 1
m ),m = 1,∞. We have that xm → 0 as m→∞

and since θ̇ = −r on QIII , the time taken for a solution starting at xm to enter QII , before

converging to the origin, is equal to π

2
√
x2
m1 +x2

m2

= πm
2 . Since any solution that starts on QIII

must enter QII before converging to the origin, it follows that T (xm) ≥ πm
2 , for each xm ∈ QIII ,

and therefore T (xm)→∞ as xm→ 0. In Figure 1.2, the spacing of the arrows shows that for

the trajectories starting from the negative part of the x2 axis, the closer they start from the

origin, the longer it will take for them to converge.

Example 1.2 motivates the study of the regularity of the settling-time function. In order to do

so, more insight about the solutions of an FTS system is needed. Let us start that by showing that

all solutions are well defined.

Proposition 1.1 (Bhat and Bernstein, 2000). Suppose that the origin of (1.1) is finite-time stable.
Then, ψ is defined on R≥0 × Γ and ψ(t,x) = 0 for allt ≥ T (x), x ∈ Γ , where T (0) := 0.
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Figure 1.2 – Phase portrait of system defined by quadrants in the picture. The trajectories show the behavior
of a global finite-time stable system with discontinuous settling-time function.

Proof. It can be shown that LS of the origin implies that ψ = 0 is the unique solution of (1.1), this

proves that 0 is contained in the domain of definition of ψx, i.e. the set Γ , and that ψ0 = 0. Let

y ∈ Γ \{0} and define

x(t) =

ψ(t,y), 0 ≤ t ≤ T (y),

0, t ≥ T (y).
(1.3)

By construction, x is continuously differentiable on R≥0\{T (y)} and satisfies (1.1) on R≥0\{0}. Also,

it follows from the assumption of continuity of f that

lim
t→T (y)−

ẋ(t) = lim
t→T (y)−

f (x(t)) = 0 = lim
t→T (y)+

ẋ(t), (1.4)

so that x is continuously differentiable at T (y) and satisfies (1.1). Thus x(t) is a solution of (1.1) on

R≥0. To prove uniqueness, suppose that z is a solution of (1.1) on R≥0 satisfying z(0) = y. Then

by the uniqueness assumption, x and z agree on [0,T (y)). By continuity, x and z must also agree

on [0,T (x)] so that z(T (y)). Lyapunov stability now implies that z(t) = 0 for t > T (y). This proves

uniqueness. Thus ψx is defined and unique on R≥0 and satisfies ψx(t) = 0 on [T (x),∞) for every

x ∈ Γ . �

The next lemma introduces two key properties of the settling-time function that will be

extensively used in the chapters that follow.

Lemma 1.1 (Bhat and Bernstein, 2000). Suppose the origin of (1.1) is a finite-time stable equilibrium.
Then the following statements hold:

i) If x ∈ Γ and t ∈ R≥0, then T (ψx(t)) = max{T (x)− t,0}.

ii) T is continuous on Γ if and only if T is continuous at 0.
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Due to its importance for the topic of this thesis, below we present the proof of this lemma,

taken from [Bhat and Bernstein, 2000].

Proof of i). From the definition of T and uniqueness of solutions, we obtain

ψ(T (x) + t,x) = 0 (1.5)

ψ(t,ψ(h,x)) = ψ(t + h,x) (1.6)

for all x ∈ Γ and all t,h ∈ R≥0. From (1.5) and (1.6) we obtain the chain of equalities

ψ(T (x) + t − t,x) = ψ(T (x)− t,ψ(t,x)) = ψ(T (ψ(t,x)),ψ(t,x)) = 0

and from the definition of the settling-time function T we have that

T (ψ(t,x)) ≤ T (x)− t ∀t ≤ T (x). (1.7)

On the other hand, we have that

ψ(T (x),x) = ψ(T (ψ(t,x)),ψ(t,x)) = ψ(T (ψ(t,x)) + t,x) = 0.

By the definition of the settling-time function T , T (x) ≤ T (ψ(t,x)) + t, therefore

T (ψ(t,x)) ≥ T (x)− t ∀t ≤ T (x). (1.8)

Gathering (1.8) and (1.7), and considering that Proposition 1.1 implies that T can be extended by

defining T (0) = 0, the statement i) follows. �

Proof of ii). Necessity is immediate. To prove sufficiency, suppose that T is continuous at 0. Let

z ∈ Γ and consider a sequence {zm} in Γ that converges to z. Let τ− = liminfm→∞T (zm) and

τ+ = limsupm→∞T (zm). Note that both τ− and τ+ are in R≥0 and that

τ− ≤ τ+. (1.9)

Next, let {z+
l } be a subsequence of {zm} such that T (z+

l )→ τ+ as l →∞. The sequence {(T (z), z+
l )}

converges in R≥0 × Γ to (T (z), z). Proposition 1.1 implies that if the origin of (1.1) is FTS, then the

solutions of (1.1) define a continuous global semiflow on Γ , this is, ψ : R≥0 × Γ → Γ is a (jointly)

continuous function. Then, by continuity of ψ and the equation (1.5), ψ(T (z), z+
l )→ ψ(T (z), z) = 0

as l →∞. Since T is assumed to be continuous at 0, T (ψ(T (z), z+
l )→ T (0) = 0 as l →∞. Using

the property i) with t = T (z) and x = z+
l , we obtain max{T (z+

l ) − T (z),0} → 0 as l → ∞. Thus

max{τ+ − T (z),0} = 0, that is,

τ+ ≤ T (z). (1.10)

Now, let {z−l } be a subsequence of {zm} such that T (z−l )→ τ− as l →∞. It follows from (1.9) and

(1.10) that τ− ∈ R≥0. Therefore, the sequence {(T (z−l ), z−l )} converges in R≥0 × Γ to (τ−, z). Since
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ψ is continuous, it follows that ψ(T (z−l ), z−l ) → ψ(τ−, z) as l → ∞. Equation (1.5) implies that

ψ(T (z−l ), z−l ) = 0 for each l. Hence ψ(τ−, z) = 0 and by the definition of T (Definition 1.1),

T (z) ≤ τ−. (1.11)

From (1.9), (1.10) and (1.11) we conclude that τ− = τ+ = T (z) and hence T (zm)→ T (z) as m→
∞. �

Lyapunov Analysis

In this subsection, we introduce the main Lyapunov analysis results, stated as sufficient conditions.

As it is well known, they provide means to determine the stability of general nonlinear systems

without the need of explicitly calculate the solutions of the system. The following definitions and

notations will be used: a continuous function V : Γ → R≥0 is said to be radially unbounded on Γ if

V (x)→ +∞ as ‖x‖∂Γ → 0. If Γ is unbounded then, in addition, V (x)→ +∞ as ‖x‖ → +∞, x ∈ Γ .

When dealing with functions that are not everywhere differentiable, the Dini derivatives are

often used. They generalize the concept of the derivative by taking into account the limit’s side and

either the supremum or the infimum of the limit. Thus, the upper-right Dini derivative of a function

g : [a,b)→ R, b > a, is the functionD+g : [a,b)→ R given byD+g(t) = limsuph→0+
1
h [g(t+h)−g(t)], t ∈

[a,b). If g is differentiable at t, then D+g(t) is the ordinary derivative of g at t. For a continuous

function V : Γ → R, the upper-right Dini derivative of V along the solutions of (1.1) is given by

V̇ (x) =D+(V ◦ψx)(0), (1.12)

if V is continuously differentiable on Γ \{0}, then

V̇ (x) =
d(V ◦ψx)

dt
(0) =

∂V
∂x
f (x), x ∈ Γ \{0}. (1.13)

A function V : Γ → R is said to be proper if V −1(K) is compact for every compact set K ⊂ R. Note

that if Γ = Rn and V is continuous and radially unbounded, then V is proper [Bhat and Bernstein,

2000].

Theorem 1.1 [Lyapunov’s Direct Method] (Khalil, 2002; Krasovskij, 1963). Let x = 0 be an equilib-
rium of (1.1). Let V : Γ → R≥0 be a continuously differentiable function such that

i) V (0) = 0 and V (x) > 0 in Γ \{0}.

ii) V̇ (x) ≤ 0 in Γ .

Then, x = 0 is LS. Moreover, if V is radially unbounded and

iii) V̇ (x) < 0 in Γ \{0},

then x = 0 is AS on Γ .
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Typically, a function V satisfying i) and ii) is called a Lyapunov function (LF), whereas a function

V that satisfies i) and iii) is called a strict LF. However, depending on the context, the regularity of

the function V varies. In this work we will adopt the following terminology:

Definition 1.2. A function V : Γ → R≥0 is called a strict Lyapunov function for system (1.1) if it

fulfills the following properties:

i) Positive Definiteness. V (x) > 0 for all x ∈ Γ \ {0} and V (0) = 0.

ii) V is radially unbounded on Γ .

iii) V is continuously differentiable on Γ and V̇ (x) < 0 for each x ∈ Γ \{0}.

As the next theorems show, finite-time and fixed-time stability with continuous settling-time

function can also be asserted through Lyapunov analysis.

Theorem 1.2 (Bhat and Bernstein, 2000). Suppose there exist a positive definite continuous function
V : Γ → R and real numbers c > 0 and α ∈ (0,1) such that

V̇ (x) ≤ −cV (x)α , ∀x ∈ Γ \{0}. (1.14)

Then the origin of (1.1) is finite-time stable and T is continuous on Γ and satisfies

T (x) ≤ 1
c(1−α)V (x)1−α , ∀x ∈ Γ . (1.15)

If, in addition Γ = Rn, V is proper and V̇ takes negative values on Γ \{0}, then the origin is a globally
finite-time stable equilibrium of (1.1).

In fact, under some mild additional assumptions, (1.14) is also a necessary condition for FTS

[Moulay and Perruquetti, 2006]1, the proof of this result is based on a converse Lyaponv theorem,

which is the subject of the next section.

Theorem 1.3 (Polyakov, 2012). Suppose that there exists a continuous radially unbounded function
V : Rn→ R≥0 and real numbers c1, c2 > 0, α ∈ (0,1) and β > 1 such that

V̇ (x) ≤ −c1V (x)α − c2V (x)β .

Then the origin is a fixed-time stable equilibrium of (1.1) and T is continuous on Γ and satisfies

T (x) ≤ 1
c1(1−α) + 1

c2(β−1) , ∀x ∈ R
n. (1.16)

Converse Lyapunov Theorems

Converse theorems are fundamental aspects of mathematics. They complete the characterization of

mathematical properties and they often reveal more knowledge about the properties being studied.

In dynamical systems theory, the Lyapunov’s direct method (LDM) gives sufficient conditions for

1see Theorem 1.6 of this thesis.
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Lyapunov stability. This is, if there exists a function V as described in Theorem 1.1, then the

system’s origin is Lyapunov stable. It is not stated if the converse is true, this is, if all systems with

a LS origin posses a Lyapunov function. The results that answered this question were given more

than 50 years after the publication of LDM and it was through the development of converse results

that I.G. Malkin discovered that, in the nonautonomous case, the conditions of LDM are sufficient

not only to ascertain asymptotic stability but also uniform asymptotic stability [Malkin, 1954].

The first general converse theorem on LS for nonautonomous systems was given by K. Persidskii

in [Persidskii, 1937], where he obtained a locally Lipschitz Lyapunov function. The first converse

result on AS for both autonomous and periodic systems was given in 1949 by J.L. Massera, in his

result, he obtained a continuously differentiable LF [Massera, 1949]. Around the same time, E.A.

Barbashin demonstrated that for autonomous systems with an AS origin, there exists a LF with the

same regularity as that of the vector field f ∈ Ck , with k ≥ 1 [Barbashin, 1950]. N.N. Krasovskii and

E.A. Barbashin showed in [Barbashin and Krasovskii, 1952] that the radially unboundedness of V

is a necessary and sufficient condition for AS to hold for any2 x ∈ Γ , this result allowed J.L. Massera

and J. Kurzweil to obtain, independently, much stronger theorems involving smooth Lyapunov

functions for general nonautonomous systems [Kurzweil, 1956; Massera, 1956]. While Massera

considered locally Lipschitz vector fields, Kurzweil relaxed the regularity to only continuity, thus

allowing nonuniqueness of solutions.

For the scope of this thesis, and because of the former feature, we will make use of Kurzweil’s

theorem, adapted to the autonomous case3.

Theorem 1.4 (Kurzweil, 1956). If the origin of (1.1) is asymptotically stable on Γ , then there exists a
smooth strict Lyapunov function V : Γ → R≥0 for (1.1).

The proof of Kurzweil’s theorem works by first constructing a continuously differentiable

Lyapunov function V ∗ and then applying smoothing techniques until finally a C∞ Lyapunov

function V is obtained, therefore, without loss of generality we can assume that if the origin of

(1.1) is AS, then it admits an at least C1 strict LF.

Whenever a system has an asymptotically stable equilibrium at the origin and a strict Lyapunov

function is known, the mapping [0,+∞)→ V (x), t
ϕ
7→ V (ψx(t)) is well defined, differentiable and

strictly decreasing. This last property means that an inverse mapping s
θ7→ t, also strictly decreasing

and differentiable, can be uniquely defined and satisfies

θ′(s) =
1

V̇ (ψx(θ(s)))
.

2This property is commonly referred as asymptotic stability in the large. Note that all the statements of Definition 1.1
are given in this sense, this is in contrast to other stability definitions where the domain for which the stability properties
hold is assumed to exist. In theorems where the stated properties hold in the large i.e for all x ∈ Γ , the existence of the
domain Γ , fixed a priori, is guaranteed through the fulfillment of the theorem’s conditions.

3An extensive historical account of the development of converse results can be found in [Kellett, 2015].



1.1. Stability Rates in Nonlinear Systems 15

Thus, the following equality holds:

T (x) =
∫ T (x)

0
dt =

∫ 0

V (x)
θ′(s)ds =

∫ V (x)

0

ds

−V̇ (ψx(θ(s)))
. (1.17)

Equation (1.17) reveals a link between the Lyapunov function V and the settling-time T . This

equality allows to obtain necessary and sufficient conditions for finite-time stability and it is at the

core of several other results that will be developed in this thesis.

Theorem 1.5 (Moulay and Perruquetti, 2006). Let us consider system (1.1) and suppose additionally
that f is locally Lipschitz outside the origin. The following properties are equivalent:

i) the origin of system (1.1) is finite-time stable on Γ .

ii) there exists a class-C∞ strict Lyapunov function V : Γ → R≥0 for system (1.1), satisfying for all
x ∈ Γ ∫ 0

V (x)

ds

V̇ (ψx(θ(s)))
< +∞,

where the map s
θ7→ t fulfills the identity s = V (ψx(θ(s))).

Moreover if i) or ii) are verified, all smooth Lyapunov functions V : Γ → R≥0 for the system (1.1) satisfy
for all x ∈ Γ

T (x) =
∫ 0

V (x)

ds

V̇ (ψx(θ(s)))
< +∞.

Notice however, that in this last theorem the regularity of the settling-time function has not

been taken into account. In this regard, the following converse theorem involves finite-time

stability with continuous settling-time.

Theorem 1.6 (Bhat and Bernstein, 2000; Moulay and Perruquetti, 2006). Suppose that the origin of
(1.1) is finite-time stable on Γ and that the settling-time function T is continuous at 0. Then there exist
α ∈ (0,1), c > 0 and a continuous function V : Γ → R≥0 such that V̇ is real valued, continuous on Γ and
satisfies

V̇ (x) ≤ −cV (x)α , ∀x ∈ Γ .

Let us remark that by assuming only continuity of T at zero in Theorem 1.6, the conclusion

about the regularity of V cannot be strengthen to, for example, Hölder continuity. To see this,

consider the equation (1.15). It establishes a regularity relation between V and T and shows that

if V is Hölder continuous at the origin, then T has to be Hölder continuous at the origin. On the

other hand it would not be reasonable to assume Hölder continuity of the settling-time function

since it is known that there exist FTS systems with continuous (not Hölder) settling-time functions

(see [Bhat and Bernstein, 2000, Example 2.3]).
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1.2 Input-to-State Stability

This section addresses the robustness of nonlinear systems. The type of robustness to be discussed

relates the magnitude of the input of a given system with a magnitude on the system’s states. It can

be roughly enunciated as "regardless of the system’s initial state, if the inputs are uniformly small,

then the state must eventually be small" [Sontag, 1998]. This property, known as input-to-state
stability (ISS), is now a standard tool for robustness analysis.

Since we now deal with input signals, we will adopt the following notation: for a Lebesgue

measurable function d : R≥0→ Rm, we use ||d||[t0,t1) as ess supt∈[t0,t1)‖d(t)‖ to define the norm of d(t)

in the interval [t0, t1). Then the set of essentially bounded and measurable functions d(t) with the

property ||d||[0,+∞) < +∞ is denoted as L∞ and LD = {d ∈ L∞ : ||d||[0,+∞) ≤D} for any D > 0.

We consider autonomous systems with inputs of the form

ẋ = f (x,d), t ≥ 0, (1.18)

where x ∈ Rn is the state and d(t) ∈ Rm is the input, d ∈ L∞; f : Rn+m → Rn is continuous and

ensures forward existence of the system solutions, at least locally in time, and f (0,0) = 0. For an

initial condition x0 ∈ Rn and an input d ∈ L∞, the corresponding solution is denoted by ψx0
(t,d) for

any t ≥ 0 for which the solution exists. Since f might not be Lipschitz in x and/or in d, (1.18) might

not have unique solutions. In this work we are interested in strong stability notions i.e. properties

satisfied for all solutions. Thus, with a slight inexactness in the notation, we will assume that if a

property is satisfied for all initial conditions in a set, then it will also hold for all solutions issued

from those initial conditions.

Example 1.3

To motivate the importance of robustness analysis in nonlinear systems, consider the scalar

system

ẋ = −3x+ (1 + 2x2)d.

It has a globally exponentially stable origin when d = 0. However, if x(0) = 2 and d(t) = 1,

the solution

ψx(t) =
3− et

3− 2et

is unbounded and has a finite escape time.

The ISS definition relies on comparison functions, which are briefly recalled in what follows. A

continuous function ϑ : R≥0→ R≥0 is said to be a class-K function if it is strictly increasing with

ϑ(0) = 0; ϑ is a class-K∞ function if it is a class-K function and ϑ(s)→∞ as s→∞. A function

β : R≥0×R≥0→ R≥0 belongs to the class-KL if β(·, t) ∈ K for each fixed t ∈ R≥0 and limt→+∞β(s, t) = 0

for each fixed s ∈ R≥0. We are now ready to present the definition of ISS.

Definition 1.3 (Sontag and Wang, 1995). The system (1.18) is called input-to-state stable (ISS), if
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for any input d ∈ L∞ and any x0 ∈ Rn there exist some functions β ∈ KL, ϑ ∈ K such that

‖ψx0
(t,d)‖ ≤ β(‖x0‖, t) +ϑ(||d||[0,t)) ∀t ≥ 0. (1.19)

The function ϑ is called the nonlinear gain.

As can be seen, ISS relates a norm in the state with a gain (as a comparison function) in the

input. The less the nonlinear gain is, the less impact the input has in the system’s state and the

more robust the system is.

Lyapunov Characterization of ISS systems.

As with stability analysis, ISS can be characterized using Lyapunov functions. In the context of

systems with inputs, to stress the dependence on the variables x and d, instead of using the notation

V̇ (x) to denote the derivative of V (x) along the trajectories of (1.18), we will sometimes use the

notation DV (x)f (x,d) where D is a derivative operator. As in the previous section, whenever V

fails to be continuously differentiable, DV (x)f (x,d) will signify the upper-right Dini derivative of

V along the trajectories of (1.18).

Definition 1.4 (Sontag and Wang, 1995). A smooth function V : Rn→ R≥0 is called ISS Lyapunov
function for system (1.18) if for all x ∈ Rn and all d ∈ Rm there exist α1,α2 ∈ K∞ and χ,γ ∈ K such

that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (1.20)

‖x‖ ≥ χ(‖d‖)⇒DV (x)f (x,d) ≤ −γ(‖x‖). (1.21)

The following theorem is the main result in ISS theory, it relates, in both directions, the existence

of an ISS Lyapunov function with the ISS property of a given system.

Theorem 1.7 (Sontag and Wang, 1995). The system (1.18) is ISS if and only if it admits an ISS
Lyapunov function.

Once an ISS Lyapunov function is known, the nonlinear gain ϑ in (1.19) is given by ϑ =

α−1
1 ◦α2 ◦χ [Khalil, 2002, Theorem 4.19]. Also, without loss of generality, it is possible to assume

in (1.21) that γ ∈ K∞ [Lin et al., 1996, Remark 4.1].

In the case of LF for autonomous systems, a useful consequence of the continuity and positive

definiteness of V is that it can be bounded by comparison functions.

Lemma 1.2 (Khalil, 2002). Let V : Γ → R be a continuous positive definite function. Let B(s) ⊂ Γ for
some s > 0. Then, there exist class-K functions α1 and α2, defined on [0, s], such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ B(s).

If Γ = Rn, the functions α1 and α2 will be defined on [0,∞] and the foregoing inequality will hold for all
x ∈ Rn. Moreover, if V (x) is radially unbounded, then α1 and α2 can be chosen to belong to class-K∞.
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Example 1.4 [Khalil, 2002]

Consider the system

ẋ1 = −x1 + x2
2

ẋ2 = −x2 + d.
(1.22)

Let us start by verifying the stability of the origin when d = 0 with the candidate LF

V (x) = 1
2x

2
1 + 1

4x
4
2.

We have that

DV (x)f (x,d) = −x2
1 + x1x

2
2 − x

4
2 = −(x1 − 1

2x
2
2)2 − 3

4x
4
2,

which shows that the origin is GAS. Considering the case d , 0 and keeping the candidate

function we obtain

DV (x)f (x,d) = −1
2 (x1 − x2

2)2 − 1
2 (x2

1 + x4
2) + x3

2d ≤ −
1
2 (x2

1 + x4
2) + |x2|3|d|.

In order to dominate the term |x2|3|d| using the term −1
2 (x2

1+x4
2), we rewrite the last inequality

as

DV (x)f (x,d) ≤ −1
2 (1−θ)(x2

1 + x4
2)− 1

2θ(x2
1 + x4

2) + |x2|3|d|,

where θ ∈ (0,1). The term −1
2θ(x2

1 + x4
2) + |x2|3|d| will be nonpositive if |x2| ≥ 2|d|/θ or if

|x2| ≤ 2|d|/θ and |x1| ≥ (2|d|/θ)2. This condition is captured by

max {|x1|, |x2|} ≥max
{

2
θ |d|,

(
2
θ |d|

)2
}
.

Using the norm ‖x‖∞ = max{|x1|, |x2|} and defining the class-K function ρ as

ρ(r) = max
{

2
θ r,

(
2
θ r

)2
}

we see that ‖x‖∞ ≥ ρ(|d|)⇒ DV (x)f (x,d) ≤ −1
2 (1 − θ)(x2

1 + x4
2) so that the condition (1.21)

is satisfied. The condition (1.20) is fulfilled given the positive definiteness and the radial

unboundedness of V (see Lemma 1.2), hence the system (1.22) is ISS. Figure 1.3 shows a

trajectory of this system with d = 0 (left) and with d(t) = 0.5sin(5t). Although we remark

a deviation of the trajectory in the perturbed case, the trajectory converges to a small

neighborhood of the origin and remains there for any future time. Given the ISS property of

the origin, this behavior will hold for any initial condition on R2.

As the next lemma states, there is an alternative definition of an ISS Lyapunov function that

provides a dissipativity like characterization. In many cases, this equivalent characterization makes

the calculations more tractable.
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Figure 1.3 – Trajectory of system (1.22) starting from x(0) = (−2,2) a) with d = 0 and b) with d(t) = 1
2 sin(5t).

Lemma 1.3 (Sontag and Wang, 1995). A smooth function V : Rn→ R≥0 is an ISS Lyapunov function
for (1.18) if and only if there exist α1,α2,δ,γ ∈ K∞ such that (1.20) holds and

DV (x)f (x,d) ≤ δ(‖d‖)−γ(‖x‖). (1.23)

Integral Input-to-State Stability

Another type of robustness, closely related with ISS, arises when the system state remains bounded

for integrally bounded inputs.

Example 1.5 (Angeli et al., 2000)

Consider the following scalar system

ẋ = −arctanx+ d (1.24)

and let V (x) = xarctanx. Then

DV (x)f (x,d) = arctanx(−arctanx+ d) + x
1+x2 (−arctanx+ d)

≤ −(arctan |x|)2 + 2|d|,

which does not fulfill the Lyapunov characterization of Lemma 1.3 since (arctan |x|)2 is not

of class-K∞. In fact system (1.24) does not have any ISS Lyapunov function because it is not

an ISS system. To prove this it suffices to notice that the trajectory starting at x(0) = 1 with

d(t) = π/2 is unbounded. However, under the metrics of integral ISS, it can be show that for

integrally bounded inputs the system is nonetheless robust.
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Definition 1.5 (Sontag and Wang, 1995). System (1.18) is integral input-to-state stable (iISS) if

there exist functions ϑ1,ϑ2 ∈ K∞ and β ∈ KL such that for any x0 ∈ Rn and d ∈ L∞(Rp) the following

estimate holds:

ϑ1(‖ψx0
(t,d)‖) ≤ β(‖x0‖, t) +

∫ t

0
ϑ2(‖d(s)‖)ds,∀t≥0. (1.25)

Definition 1.6 (Sontag and Wang, 1995). A continuously differentiable function V : Rn → R≥0

is an iISS Lyapunov function for (1.18) if there exist α1,α2 ∈ K∞, δ ∈ K and a positive definite

continuous function γ such that (1.20) and (1.23) hold.

Let us stress that the difference between an ISS LF and a iISS one is that in ISS, the function γ

belongs to the class-K while in the iISS case it is continuous and positive definite. As in ISS, system

(1.18) is iISS if and only if there exist an iISS LF for it [Dashkovskiy et al., 2011, Theorem 3.1].

Coming back to the Example 1.5, the system (1.24) is iISS, therefore an estimate of the magni-

tude of the state ψx(t,d) on the form (1.25) holds. Note that the term involving ϑ2 can be seen as

an L2-norm, thus measuring in some sense the energy of the input.

Similar to practical stability, whenever the solutions of system (1.18) satisfy the estimate (1.18)

with an adittional constant offset i.e.

‖ψx0
(t,d)‖ ≤ β(‖x0‖, t) +ϑ(||d||[0,t)) + c ∀t ≥ 0, (1.26)

where c ≥ 0, we say that the system (1.1) is input-to-state practically stable (ISpS). Accordingly, an

ISpS Lyapunov function satisfies (1.20) and

DV (x)f (x,d) ≤ σ (‖d‖)−γ(‖x‖), ∀x ∈ Rn, ∀d ∈ Rm, (1.27)

where σ is a continuous and nondecreasing function and γ ∈ K∞. In accordance to the main

theorems on ISS, a given system is ISpS if and only if there exists a ISpS Lyapunov function for it

[Sontag and Wang, 1996, Proposition 6.4]4.

In the context of observation, ISS, ISpS and iISS provide a qualitative measure of the sensitivity

of the observation error with respect to disturbances, noises and perturbations.

1.3 Homogeneous Systems

Homogeneity is a symmetry-like property of mathematical objects that preserve a certain multi-

plicative scaling. For instance, we say that a function f that satisfies f (λx) = λkf (x) for any λ > 0,

is homogeneous of degree k ∈ R. This means that a scaling of a factor λ in the arguments of f ,

produces a scaling of the factor λk of the original function f . This strong multiplicative regularity

makes homogeneous systems, in spite of being in general nonlinear, to exhibit properties that are

typical of linear systems. This properties include ISS robustness [Bernuau et al., 2013], tolerance to

time delays [Efimov et al., 2014], scalability of trajectories and equivalence between attractivity

4In [Sontag and Wang, 1996], the authors make reference to the property comptact ISS and they later show that this
property equivalent to ISpS (see Proposition 6.3 of the same reference).
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and stability [Hahn, 1967], among others. In this sense, homogeneous systems can be considered

as halfway between linear and nonlinear systems.

Homogeneity as a property of symmetric polynomials was studied long ago by Euler and a more

general concept of homogeneity, called weighted homogeneity, was first studied in the context

of dynamical systems by V.I. Zubov [Zubov, 1958], M. Kawski [Kawski, 1990] and H. Hermes

[Hermes, 1991] independently.

Standard Homogeneity

Definition 1.7 (Hahn, 1967). Let n and m be two positive integers. A mapping f : Rn→ Rm is said

to be homogeneous of degree k ∈ R, in the classical sense, if

∀λ > 0 : f (λx) = λkf (x).

The function f (x) = Ax, where x ∈ Rn and A ∈ Rn×n i.e a linear system, is homogeneous of

degree 1 since f (λx) = λf (x).

The following examples show that homogeneous functions can be nonlinear or discontinuous

Example 1.6

� The function

f (x,y) =


x3 + y3

x2 + y2 , if x , 0

0, if x = 0

is homogeneous of degree 1, nonlinear and continuous.

� The function

f (x) =


dxc1/2+dyc1/2

x+y , if x+ y , 0

0, otherwise

is homogeneous of degree −1
2 and discontinuous.

Weighted Homogeneity

Weighted homogeneity broadens the concept of standard homogeneity by allowing the multi-

plicative factor λ to have different powers for each coordinate. Let us start with the fundamental

definition of this property. Let r = (r1, ..., rn) be an n-tuple of positive real numbers called weights.
rmax = max1≤j≤n rj and rmin = min1≤j≤n rj denote the maximum and the minimum element of r,

respectively. The matrix Λr(λ) = diag{λri }ni=1 is called the dilation matrix associated to the vector of

weights r and is defined for all λ > 0. Note that for any x ∈ Rn, Λr(λ)x = (λr1x1, ...,λ
rixi , ...,λ

rnxn)T .

The r-homogeneous norm is denoted for any x ∈ Rn as ‖x‖r,ρ =
(∑n

i=0 |xi |ρ/ri
)1/ρ

where ρ ≥ rmax.

When the value of ρ is omitted, i.e ‖x‖r , it will be taken as ρ = Πn
i=1ri . The unit sphere and a ball
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in the homogeneous norm are defined as Sr = {x ∈ Rn : ‖x‖r = 1} and Br(s) = {x ∈ Rn : ‖x‖r ≤ s} for

s ≥ 0. Note that the homogeneous norm is not a norm in the usual sense since it does not satisfy

the subadditivity property.

The next lemma shows a relevant relation between the Euclidean norm and the homogeneous

norm.

Lemma 1.4 (Bernuau, 2013). Let r = [r1, .., rn] be a vector of weights. For any x ∈ Rn, there exists some
σ,σ ∈ K∞ such that σ (‖x‖r ) ≤ ‖x‖ ≤ σ (‖x‖r ) holds.

Definition 1.8 (Bacciotti and Rosier, 2005). A function V : Rn→ R is said to be r-homogeneous of

degree η ∈ R if

V (Λr(λ)x) = ληV (x), ∀x ∈ Rn,∀λ > 0.

A vector field f : Rn→ Rn is said to be r-homogeneous of degree ν ∈ R if

f (Λr(λ)x) = λνΛr(λ)f (x), ∀x ∈ Rn,∀λ > 0, (1.28)

which is equivalent to fi being r-homogeneous of degree ν + ri , for each i.

Let us remark that there is a key difference between a homogeneous function and a homo-

geneous vector field. A dilated argument Λr(λ)x produces a multiplication factor of λη in a

homogeneous function i.e. V (Λr(λ)x) = ληV (x), whereas the same dilated factor produces a multi-

plication factor of λν+ri for each vector field coordinate xi i.e. f (Λr(λ)x) = λνΛr(λ)f (x). The system

(1.1) is called an r-homogeneous system of degree ν if the vector field f is r-homogeneous of degree

ν.

Example 1.7

The function V (x) = x2
1 + x3

2 is r-homogeneous of degree η = 4 with r = (2, 4
3 ) since

V (λ2x1,λ
4/3x2) = λ4V (x) ∀λ > 0. Figure 1.4 shows a plot of the function V , note that

a scaling of the factor λr1 in the x1 axes and a scaling of the factor λr2 in the x2-axis produces

a scaling of the factor λη in the V -axis. Note that V (x) is also r-homogeneous of degree 2

with r = (1, 2
3 ), this shows that the homogeneity degree and weights are not unique. In fact, it

is always possible to select r1 = 1 and scale η and ri , i , 1. Notice also that the simmetry-like

property of V can be seen along the curve λη , depicted in orange.
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Figure 1.4 – Plot of the r-homogeneous function V (x) = x2
1 + x3

2.

Example 1.8 Standard Homogeneity vs Weighted Homogeneity

The function V (x) = x2
1 + x2

2 is homogeneous of degree k = 2 in the standard sense. The

function W (x) = x4
1 + x2

2 is not homogeneous in the standard sense but it is r-homogeneous

of degree η = 4 with r = (1,2). Figure 1.5 shows a plot of both functions where it is posible to

see that V (λx1,λx2) = λ2V (x1,x2) whereas W (λx1,λ
2x2) = λ4W (x1,x2).

Figure 1.5 – Plot of the homogeneous function V (x) = x2
1 + x2

2 (left) and of the r-homogenous function
W (x) = x4

1 + x2
2 (right).

The scaling properties of homogeneous vector fields are slightly more involved and before

presenting an illustrative example, let us introduce a fundamental theorem from which many of

the properties of homogeneous systems are derived.

Theorem 1.8 (Zubov, 1958). Assume that f : Rn→ Rn is an r-homogeneous vector field of degree ν.
i) If the curve x(t) is a solution of (1.1), then any curve of the family Λr(λ)x(λνt), where λ > 0, is

also a solution of (1.1).
ii) Any solution ψ(x, t) of (1.1) satisfies

ψ(x,λνt) = Λ−1
r (λ)ψ(Λr(λ)x, t) ∀λ > 0,∀t ≥ 0. (1.29)

Theorem 1.8 presents two distinct properties of homogeneous systems. On one hand it states

that once a solution of the system is known, a whole family of solutions, parametrized by the factor
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λ, can be obtained. On the other hand, each individual solution satisfies the scaling property (1.29),

which can be interpreted as "a scaling in time of a solution, can be compensated by scaling the

solution itself and the initial condition from which the solution originated" [Hahn, 1967].

Example 1.9

Consider the following vector field

ẋ1 = f1(x) = x2 − x3
1,

ẋ2 = f2(x) = −x5
1.

(1.30)

It is an r-homogeneous vector field of degree ν = 2 with r = (1,3) since f1(λ1x1,λ
3x2) =

λ2+1f1(x1,x2) and f2(λ1x1,λ
3x2) = λ2+3f2(x1,x2). Figure 1.6.a depicts the evolution of a

single solution ψ(x∗, t) of the system (1.30) starting from the initial condition x∗ = (3
2 ,1). At

the instant t∗ = 0.02, the solution ψx∗ reaches the point A = ψ(x∗, t∗). A scaling of the factor

λν with λ = 8 of the time t∗ will produce that the solution reaches the point B = ψ(x∗,λνt∗).

Figure 1.6.b shows that B can also be reached by scaling, instead of the time, the initial

condition x∗ and the solution ψ, this is, B = Λ−1
r (λ)ψ(Λr(λ)x∗, t∗). This property is satisfied

for any t ≥ 0, thus illustrating the item ii) of Theorem 1.8.

Figure 1.7.a shows a family of curves ψκ obtained by scaling the solution ψ as ψκ(x, t) =

ψ(Λr(κ)x∗,κνt) for six different values of κ. The Figure 1.7.b shows the phase portrait of

system (1.30) and illustrates the fact that the family of curves ψκ are indeed solutions of the

system (1.30).

If a vector field fails to exhibit a global degree of homogeneity but behaves as a homogeneous

vector field near infinity and/or near the origin, we say that it is locally homogeneous.

Definition 1.9 (Andrieu et al., 2008, Bernuau et al., 2013). A vector field f : Rn→ Rn is (r0,λ0, f0)-

homogeneous with degree η0 ≥ −r0min (f0 is an r0-homogeneous vector field and r0min = min1≤j≤nr0n)

and λ0 ∈ R+ ∪ {+∞} if limλ→λ0
[λ−η0D−1

r0 (λ)f (Dr0(λ)x)− f0(x)] = 0, for all x ∈ Sr0 , uniformly on Sr0
with λ0 ∈ {0,∞}.

Let us now focus on the consequences that the scaling behavior of homogeneous systems have

in the study of stability and robustness of such systems.

Example 1.10

Consider the nonlinear system

ẋ1 = x2 − x3
1,

ẋ2 = −x5
1 + x2

2.
(1.31)

It has an equilibrium at the origin and it is not homogeneous since it is not possible to

find real numbers r1, r2 and ν that satisfy (1.28). When trying to find out if the origin is
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1
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1

1
b)

Figure 1.6 – Plot of a solution ψ(x∗, t) of the vector field (1.30). a) Shows the transit from A to B by scaling t∗.
b) Shows the transit from A to B by scaling x∗ and ψ.

stable, not only its linearization is unstable, but its Taylor series expansion up to degree 4 is

also unstable. Taking the homogeneous weights r1 = 1, r2 = 3 and eliminating the term x2
2

produces the following homogeneous approximation of system (1.31):

ẋ1 = x2 − x3
1,

ẋ2 = −x5
1.

(1.32)

Using the Lyapunov function V (x) = 1
18 (4x6

1 − 6x3
1x2 + 21x2

2), it can be easily shown that the

origin of both the original system and its homogeneous approximation is asymptotically

stable. This example aims to show that for certain systems, its homogeneous approximation

captures better the system’s behavior than its linearization.

An outstanding property of homogeneous systems is that many of the properties that hold

locally, will immediately hold globally. As the next theorem shows, this includes stability.

Theorem 1.9 (Hahn, 1967). Consider the homogeneous system (1.1) with a continuous vector field f
and with forward uniqueness of solutions. If the origin is a locally attractive equilibrium, then the origin
is globally asymptotically stable.

This last result may also roughly stated as "for homogeneous systems, attractivity implies
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Figure 1.7 – a) Plot of the family of solutions ψκ(x∗, t) of the vector field (1.30). b) Phase portrait of the
system (1.30).

stability".

Regarding nonasymptotic stability rates, stable homogeneous systems also provide a characteri-

zation based only on its homogeneity degree, this is, without relying on Lyapunov analysis.

Lemma 1.5 (Nakamura et al., 2002). If the homogeneous system (1.1) is r-homogeneous of degree ν
and asymptotically stable at the origin, then it is

i) globally finite-time stable at the origin if ν < 0;

ii) globally exponentially stable at the origin if ν = 0;

iii) globally fixed-time5 stable with respect to the unit ball Br(1) if ν > 0.

Example 1.11 (Bhat and Bernstein, 2005).

Consider the second order system

ẋ1 = x2

ẋ2 = −k1dx1c
η

2−η − k2dx2cη ,
(1.33)

5In fact, in the work of H. Nakamura, the term "fixed-time" is not employed, this was a term later adopted in the
literature. In the original source, item iii) reads "the states x converge to an arbitrary open set which includes the origin
in a constant period from each initial condition.", which is equivalent to the definition of FxTS with respect to a set.
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where η ∈ (0,1) and k1, k2 are such that s2 + k2s + k1 is a Hurwitz polynomial. The vector

field (1.33), denoted by fη , is continuous for all η > 0, r-homogeneous of degree η−1
η with

r = (2−η
2 , 1

2 ) and for η = 1 the following linear system is obtained:

ẋ = f1(x) =Hx, H =

 0 1

−k1 −k2

 . (1.34)

Since H is a Hurwitz matrix, the origin of (1.34) is exponentially stable and by Kurzweil’s

Theorem (Theorem 1.4), there exists a strict Lyapunov function V such that ∂V (x)
∂x f1(x) is

continuous and negative definite. Let A = V −1([0,1]), then A and its boundary ∂A are

compact since V is proper and 0 < ∂A since V is positive definite. Let us define a function

ϕ : (0,1]×∂A→ R by ϕ(η,x) = ∂V
∂x fη(x). Then ϕ is continuous and satisfies ϕ(1, z) < 0 for all

z ∈ ∂A, i.e. ϕ({1} ×∂A) ⊂ (−∞,0). Since ∂A is compact, it follows that there exists some ε > 0

such that ϕ((1−ε,1]×∂A) ⊂ (−∞,0) (see, for example, Lemma 5.8 in [Munkers, 1975]). Then,

for any η ∈ (1− ε,1), ϕ takes negative values on ∂A and therefore A is a positively invariant

set of fη for any α ∈ (1−ε,1). It follows from Theorem 1.9 that the origin of (1.33) is GAS for

any η ∈ (1−ε,ε). Finally, using Theorem 1.5 and the fact that the degree of homogeneity of fη
is negative with respect to r, we conclude that the origin of (1.33) is, furthermore, finite-time

stable.

Notice that in this example we used linear systems techniques and homogeneity properties

of the system to conclude FTS. In [Bhat and Bernstein, 1998] the same conclusion about the

system is obtained using an explicit Lyapunov function for (1.33) but it is not known if it

can be extended for higher dimensional systems.

Later in this work, we will present an implicit Lyapunov function that also asserts FTS and

that, moreover, can be easily extended to an n-dimensional chain of integrators.

As for ISS, homogeneous systems also posses a convenient property. If the origin is GAS for

input zero, then the homogeneity degree will determine its robustness.

Define f̃ (x,d) = [f (x,d)T 0m]T ∈ Rn+m. It is an extended auxiliary vector field for the system

(1.18), where 0m is the zero vector of dimension m.

Theorem 1.10 (Bernuau et al., 2013). Let the vector field f̃ be homogeneous with the weighs r =

[r1, ..., rn]T > 0, r̃ = [r̃1, ..., r̃m] of degree ν ≥ −rmin, i.e. f (Λr(λ)x,Λr̃(λ)d) = ληΛr(λ)f (x,d) for all x ∈ Rn,
d ∈ Rm. Assume that the system (1.18) is globally asymptotically stable for d = 0, then the system (1.18)

is

i) ISS if r̃min > 0;

ii) iISS if r̃min = 0 and η ≤ 0.

In the case of locally homogeneous systems, ISS stability can be asserted through their homoge-

neous approximations at 0 and at∞.
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Theorem 1.11 (Andrieu et al., 2008). Let the vector field f̃ be continuous and ((r∞, r̄∞),+∞, f̃∞)-
homogeneous with the weights r∞ = (r∞1 , ..., r

∞
n ) > 0, r̄∞ = (r̄∞1 , ..., r̄

∞
p ) > 0 and ((r0, r̄0),0, f̃0)-homogeneous

with the weights r0 = (r0
1 , ..., r

0
n) > 0, r̄0 = (r̄0

1 , ..., r̄
0
p ) > 0. If the origins of the systems ẋ = f̃0(x,0), ẋ =

f̃ (x,0) and ẋ = f̃∞(x,0) are globally asymptotically stable then the system (1.18) is ISS.

1.4 The Implicit Lyapunov Function Approach

In calculus, analytical geometry and dynamical systems theory the role of implicit functions is

highly important and many fundamental theorems rely on them. An implicit function is given

as a solution of an equation of the form G(x,y) = 0, instead of its explicit form y = g(x). To find

the function g one has to solve the equation G(x,y) = 0 for y, provided that a solution exists. Take,

for instance, the classic example of the unitary circle. The equation G(x,y) = x2 + y2 − 1 = 0,

where G : R ×R→ R, describes a circle of radius 1 in R2. One solution for G(x,y) = 0 is given

by y =
√

1− x2, a second one is given by x =
√

1− y2 and therefore G(x,y) = 0 implicitly defines

two lower dimensional functions g : [−1,1]→ (0,1], g(x) =
√

1− x2 and h : [−1,1]→ [−1,0), h(y) =√
1− y2. In contrast, G(x,y) = x2 + y2 = 0 is only satisfied by the pair of values x = 0, y = 0 and

G(x,y) = x2 + y2 + c = 0 is not satisfied by any real valued solution with c > 0. The implicit function

theorem, whose first formal proof is attributed to Augustin Cauchy, states the conditions under

which there exists a solution of the equation G(x,y) = 0 and therefore an explicit function y = g(x)

or x = h(y).

Theorem 1.12 [Implicit Function Theorem] (Khalil, 2002). Assume that a function G : Rn ×Rm→
Rn is continuously differentiable at each point (x,y) of an open set S ⊂ Rn ×Rm. Let (x0, y0) be a point

in S for which G(x0, y0) = 0 and for which the Jacobian matrix
[
∂G
∂y

]
(x0, y0) is nonsingular. Then there

exist neighborhoods U ⊂ Rn of x0 and Y ⊂ Rm of y0 such that for each x ∈ U , the equation G(x,y) = 0

has a unique solution y ∈ Y . Moreover, this solution can be given as y = g(x), where g is continuously
differentiable at x = x0.

It is often the case that to study the function y, it is better to work with its implicit representation

G(x,y) = 0 rather than with its explicit form y = g(x).

Example 1.12 (Courant and John, 2012).

The equation of the lemniscate curve is given by

F(x,y) = (x2 + y2)2 − 2a2(x2 − y2) = 0

and it is not easily solved for y. For x = 0, y = 0 we obtain F = 0,∂xF = 0,∂yF = 0 and

therefore the conditions of the implicit function theorem are not satisfied at the origin. This

can be expected since the curve crosses twice trough the origin (see Figure 1.8). However, for

the rest of the curve points, Theorem 1.12 can be applied and using the chain rule we have
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that

y′ = −∂xF
∂yF

= −
4x(x2 + y2)− 4a2x

4y(x2 + y2) + 4a2y
.

From this last expression it is possible to calculate the maximum and minimum values since

they will occur whenever y′ = 0 i.e. at x = 0 or at x2 + y2 = a2. Thus the maximum values will

be attained at (±a
√

3/2, a/2) and its minimum ones at (±a
√

3/2,−a/2). Note that this critical

points were obtained without calculating an explicit representation of the function y.

Figure 1.8 – Lemniscate curve.

It is worth to mention that G(x,y) = 0 does not necessarily imply an algebraic equation, as

has been the case so far; it can be an integro-differential equation, a trigonometric equation, a

functional equation, etc. [Courant and John, 2012]. Indeed, the shape that an implicit function can

take is quite varied.

The notions about implicit functions can be extended to Lyapunov analysis. The next theorem,

presented first in the work of Adamy, shows what can be asked for a Lyapunov candidate function,

defined in the implicit form Q(V ,x) = 0, in order to show global asymptotic stability of the origin.

Theorem 1.13 (Adamy, 2005; Polyakov et al., 2015). If there exists a continuous function Q : R≥0 ×
Rn→ R, (V ,x) 7→Q(V ,x) satisfying the conditions

C1 Q is continuously differentiable on R≥0 ×Rn\{0};

C2 for any x∈Rn\{0} there exists V ∈ R≥0 : Q(V ,x)=0;

C3 for Ω :=
{
(V ,x) ∈ Rn+1 :Q(V ,x) = 0

}
we have

lim
x→0

(V ,x)∈Ω

V = 0, lim
V→0+

(V ,x)∈Ω

‖x‖ = 0 and lim
‖x‖→∞

(V ,x)∈Ω

V = +∞;

C4 −∞ < ∂VQ(V ,x) < 0 for V ∈ R≥0 and x ∈ Rn\{0};

C5 ∂xQ(V ,x)f (x) < 0 for all (V ,x) ∈Ω,

then the origin of (1.1) is globally uniformly asymptotically stable and the functionQ(V ,x) = 0 implicitly
defines a Lyapunov function V (x) for (1.1).
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If Q satisfies conditions C1-C5, then it is called an implicit Lyapunov function (ILF). Clearly,

conditions C1 and C4 are required to satisfy the implicit function theorem. Conditions C2 and C3

ensure that Q(V ,x) = 0 defines implicitly a unique, continuously differentiable radially unbounded

positive definite function V . The last condition is the implicit version of the differential inequality

of the Lyapunov’s direct method.

With the Lyapunov characterization of finite-time and fixed-time stability (Theorems 1.2 and

1.3) the following results are straightforward.

Theorem 1.14 (Polyakov et al., 2015). Suppose that there exists a function Q that satisfies conditions
C1-C4 of Theorem 1.13 and

C6 ∂xQ(V ,x)f (x) ≤ cV α∂VQ(V ,x), ∀(V ,x) ∈Ω, where c > 0 and α ∈ (0,1) are some constants.

Then the origin of (1.1) is uniformly finite-time stable with the settling-time estimate T (x0) ≤ V 1−α
0

c(1−α)
where V0 ∈ R≥0 :Q(V0,x0) = 0.

For the fixed-time case, we present two implicit Lyapunov characterizations. The first one

makes use of two functions Q1 and Q2 that implicitly define a single Lyapunov function V . The

second one presents a more succint condition by using a single implicit function Q; nonetheless

this condition may be more difficult to verify (see Chapter 4).

Theorem 1.15 (Polyakov et al., 2015). Let two functions Q1(V ,x) and Q2(V ,x) satisfy conditions
C1-C4 of Theorem 1.13 and

C7 Q1(1,x) =Q2(1,x) for all x ∈ Γ \{0}.

C8 ∂xQ1(V ,x)f (x) ≤ c1V
1−µ∂VQ1(V ,x), ∀V ∈ (0,1],∀x ∈ {z ∈ Rn\0 :Q1(V ,z) = 0}, where c1 > 0 and

µ ∈ (0,1] are some constants.

C9 ∂xQ2(V ,x)f (x) ≤ c2V
1+κ∂VQ2(V ,x), ∀V ≥ 1,∀x ∈ {z ∈ Rn\{0} : Q2(V ,z) = 0}, where c2 > 0 and

κ > 0 are some constants.

Then the origin of (1.1) is fixed-time stable with continuous T , satisfying T (x0) ≤ 1
c1µ

+ 1
c2κ

.

Theorem 1.16. Suppose that there exists a function Q that satisfies all conditions of Theorem 1.13 and

C10 ∂VQ(V ,x)f (x) ≤ (c1V
α + c2V

β)∂xQ(V ,x), ∀(V ,x) ∈Ω, where c1, c2 > 0, α ∈ (0,1) and β > 1 are
some constants.

Then the origin of (1.1) is fixed-time stable with continuous T , satisfying T (x0) ≤ 1
c1(1−α) + 1

c2(β−1) .

Clearly, the condition C10 of Theorem 1.16 implies the conditions C7-C9 of Theorem 1.16,

however, the converse does not hold in general.

1.5 General Problem Statement

To conclude this chapter, let us present in more detail some of the questions that are set to be

answered in this thesis.
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� Consider the system (1.1). Through Theorems 1.2, 1.5 and 1.6 we know necessary and

sufficient conditions for FTS of systems having or not continuous T . Regarding FxTS, only the

sufficient condition of Theorem 1.3 is known. Moreover, it has not been established if the conditions

for FTS and FxTS can be stated in a more general form, that is, if they can be expressed as differential

inequalities that involve a general function r that depends on V . If this is the case, what should be

the regularity of r and what properties should be satisfied? This is the central topic of Chapter 2,

where conditions for fixed-time stabilizability of nonlinear systems will also be presented.

� Consider now the system (1.18). When d = 0, we have seen that it is possible, using Lyapunov

analysis, to determine if the origin is AS, FT or FxTS. We have also discussed how the implicit

approach can be used to obtain the same conclusions. When d , 0 the ISS framework, along with its

Lyapunov characterization, is readily available. The ISS framework is built upon the consideration

of trajectories of asymptotic nature, that is, if the origin of a system is ISS stable, when d = 0

asymptotic stability of the origin follows. A natural extension of ISS would be to investigate the

properties of an ISS system whose trajectories behave nonasymptotically. Chapter 3 addresses this

case and presents both the explicit and the implicit approach. Then, it will be possible to establish

the stability rate of a system and its ISS robustness with a single Lyapunov function.

� Consider finally the linear control system

ẋ = Ax+ bu(t) + d(t)

y = Cx+ v(t),
(1.35)

where A ∈ Rn×n, u(t) ∈ Rp is the control input, y(t) ∈ Rq is the measured output, d(t) ∈ Rn is

an exogenous disturbance, v(t) is the measured noise and C and b are matrices of compatible

dimensions. Suppose that we wish to design a control signal u(t) and a dynamic observer

ż = Az+ bu(t) + ĝ(y(t)−Cz), ĝ : Rq→ Rn, (1.36)

that will respectively, drive the states to zero in fixed-time in the absence of disturbance and

estimate the state x in fixed-time in the absence of disturbances and noises. Note that using linear

techniques, the most we can hope for is to assert exponential stability of the states and of the

observation error. To assert FxTS, the nonlinear tools introduced in this chapter can be used.

In Chapter 4, the general MIMO linear case of system (1.35) will be studied. Here we face the

lack of explicit Lyapunov functions that can provide NonA rates. Here, the implicit approach will

be used to assert FTS and FxTS through the fulfillment of Linear Matrix Inequalities (LMI). This

methodology will also allow to obtain estimates on the settling-time function. In all cases, we will

show that the control setups are robust in an ISS sense.

In Chapter 5, we consider the case where the matrix A is in upper diagonal form i.e. the

system (1.35) becomes a chain of integrators. The control and estimation goals will be achieved

through homogeneous properties. More precisely, a controller and an observer that switch the

homogeneous degree of the whole system from positive to negative will enforce FxTS. The use

of homogeneous techniques greatly simplifies the stability analysis; however this comes with the



32 CHAPTER 1. Theoretical Background

price of not being able to derive settling-time estimates. Therefore, using the implicit approach, a

parameter optimization analysis will be performed in order to influence the settling-time estimate.
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This chapter derives, using Lyapunov analysis, the conditions that render the origin of a system

fixed-time stable. General necessary and sufficient conditions for FxTS that do not take into account

the regularity of the settling-time function will be developed first. Next, a characterization of

the FxTS property using a pair of functions will be proposed. This characterization involves a

strict Lyapunov function V and a continuous positive definite function that depends on V . It

will be seen that this characterization allows to obtain a sufficiency condition that rules out the

case of discontinuous T (x). More constructive conditions for FxTS, with specific definitions of the

characterizing functions will follow and in order to obtain a converse result, the concept of uniform
FxTS will be introduced. In the last section, the results obtained will be extended to present a

sufficient condition for fixed-time stabilization of nonlinear affine systems.

Let us first introduce an example that illustrates the behavior of a fixed-time stable system.

Example 2.1

Consider the scalar system

ẋ = −dxc
1
2 − dxc

3
2 , x ∈ R. (2.1)

The trajectories of this dynamics, for any initial condition x0 ∈ R and any t ≥ 0, can be

33
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obtained by direct integration and are given by

ψx0
(t) =

tan[arctan(|x0|
1
2 )− 1

2 t]
2 sign(x0) if 0 ≤ t ≤ T (x0)

0 if t > T (x0)
.

It is clear from the system’s solutions that for any t ≥ 2arctan(|x0|
1
2 ), ψx0

(t) = 0 so that the

settling-time function is T (x0) = 2arctan(|x0|
1
2 ). Moreover, this function is gobally bounded

on R since supx0∈RT (x0) = π. Therefore, all trajectories, regardless of the initial condition,

converge exactly to zero in t ≤ π seconds (see Figure 2.1).

0 1 2 3
0

10

20

30

40

t

Figure 2.1 – Plot of the solutions ψx0
(t) of system (2.1) for four different initial conditions.

Our aim is to deduce the conditions that a general nonlinear system has to satisfy in order to

behave as (2.1), without explicitly calculating its trajectories.

Since in Example 2.1 the trajectories of the system can be calculated explicitly, so does the

settling-time function. Although this is in general not possible, it will be seen that through

Lyapunov analysis the existence of T (x) can be proven and furthermore a finite bound for it can be

obtained.

The system (2.1) possesses yet another property. Note that since T (x0) is an increasing function

and limx0→+∞T (x0) = limx0→−∞T (x0) = π, the supremum over x0 ∈ R of T (x0) is independent on

the direction at which x0 tends to infinity. This property will be called uniform fixed-time stability
and it is defined as follows:

Definition 2.1. The origin of system (1.1) is called uniformly fixed-time stable if it is fixed-time

stable on Γ and there exists some Tm > 0 such that

liminf
x→∂Γ

T (x) = limsup
x→∂Γ

T (x) = Tm.

If Γ = Rn and T (x) satisfies

liminf
‖x‖→∞

T (x) = limsup
‖x‖→∞

T (x) = Tm,

then the origin of (1.1) is called globally uniformly fixed-time stable.
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2.1 Conditions for Fixed-Time Stability

Our first result presents a necessary and sufficient condition for fixed-time stability, here and in

the theorems that follow the properties of strict Lyapunov functions (see Definition 1.2) play a

crucial role.

Theorem 2.1. Consider system (1.1). The following properties are equivalent:

i) The origin is fixed-time stable on Γ .

ii) There exists a strict Lyapunov function V for system (1.1) satisfying for all x ∈ Γ

sup
x∈Γ

∫ 0

V (x)

ds

V̇ (ψx(θ(s)))
< +∞, (2.2)

where s
θ7→ t is the inverse mapping of t 7→ V (ψx(t)).

Proof. i)⇒ ii). If the system (1.1) is fixed-time stable, then its settling-time function is such that

T∗ := supx∈Γ T (x) < +∞ and ψx(t) = 0 for all t ≥ T∗ and for all x ∈ Γ . Since fixed-time stability implies

asymptotic stability, according to Theorem 1.4, there exists a strict Lyapunov function V for (1.1)

and therefore there exists a well defined application [0,T (x)) → (0,V (x)], t 7→ V (ψx(t)) strictly

decreasing and differentiable for all t ∈ [0,T (x)). Hence, for any x ∈ Γ , there exists a differentiable

inverse mapping (0,V (x)]→ [0,T (x)), s
θ7→ t, also decreasing that satisfies for all s ∈ (0,V (x)]

θ′(s) =
1

V̇ (ψx(θ(s)))
.

The change of variables s = V (ψx(t)) and the fact that V (ψx(T (x))) = 0 for all x ∈ Γ lead to

T (x) =
∫ T (x)

0
dt =

∫ 0

V (x)
θ′(s)ds =

∫ 0

V (x)

ds

V̇ (ψx(θ(s)))
.

Then we have that

+∞ > sup
x∈Γ

T (x) ≥ sup
x∈Γ

∫ 0

V (x)

ds

V̇ (ψx(θ(s)))
. (2.3)

for all x ∈ Γ and the conclusion readily follows.

ii)⇒ i). According to Theorem 1.4, because there exists a strict Lyapunov function V for system

(1.1), its origin is asymptotically stable. The equation (2.3) implies, furthermore, that it is fixed-time

stable. �

Note that no assumptions on the regularity of T (x) have been made, therefore, the conditions

stated in Theorem 2.1 do not exclude the case of discontinuous T (x). Also, the equation (2.2) is in

general difficult to verify since it involves the explicit calculation of the trajectories ψx and of the

inverse mapping θ. In what follows, more constructive conditions will be presented and the case

of discontinuous T (x) will be excluded.
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Sufficient Conditions for FxTS with Continuous T

Theorem 2.2. Suppose that there exists a continuously differentiable strict Lyapunov function V : Γ →
R≥0 for system (1.1) such that

S1 there exists a continuous positive definite function r : R≥0→ R≥0 that verifies∫ +∞

0

dz
r(z)

< +∞;

S2 the inequality V̇ (x)≤−r(V (x)) holds for all x ∈ Γ .

Then the origin of (1.1) is fixed-time stable with continuous settling-time function T : Γ → R≥0 and

T (x) ≤
∫ +∞

0

dz
r(z)

∀x ∈ Γ . (2.4)

Proof. Let us define the inverse mapping (0,V (x)]→ [0,T (x)) as s
σ7→ t, where T : Γ → R≥0 is the

settling-time function i.e. T (x) := inf{T ≥ 0 : V (ψx(T )) = 0}. Since V is, by assumption, differentiable

on x ∈ Γ and satisfies S2, σ (s) is strictly decreasing and differentiable with

σ ′(s) =
1

V̇ (ψx(σ (s)))
.

Then we have that for all x ∈ Γ

T (x) =
∫ T (x)

0
dt = −

∫ 0

V (x)

ds

−V̇ (ψx(σ (s)))
.

From condition S2 we have that −V̇ (x) ≥ r(V (x)) for all x ∈ Γ so that

−
∫ 0

V (x)

ds

−V̇ (ψx(σ (s)))
≤

∫ V (x)

0

ds
r(V (ψx(σ (s))))

≤
∫ supx∈Γ V (x)

0

ds
r(V (ψx(σ (s))))

=
∫ +∞

0

ds
r(s)

< +∞,

where in this last step the condition S1 was used. Therefore, supx∈Γ T (x) < +∞. Equivalently,

the origin of (1.1) is fixed-time stable. Taking any xk ∈ Γ \{0} converging to zero, we have that

T (xk) ≤
∫ V (xk)

0
ds
r(s) by continuity of V and since r was assumed to be positive definite we obtain

lim
xk→0

∫ V (xk)

0

ds
r(s)

= 0,

therefore T is continuous at the origin and due to Lemma 1.1.ii, T is continuous on Γ and, from the

analysis above, bounded by (2.4). �
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As can be seen from this theorem, fixed-time stability can be completely characterized by the

pair of functions (V ,r) and the regularity of this pair is linked to the regularity of the settling-time

function. The following corollary gives more insight about some of the forms that the function r

might take.

Corollary 2.1. Suppose there exists a continuously differentiable strict Lyapunov function V : Γ → R≥0

for system (1.1) and some constants c1, c2 > 0, α ∈ [0,1) and β > 1 such that

V̇ (x) ≤ −c1V (x)α − c2V (x)β ∀x ∈ Γ , (2.5)

is satisfied. Then the origin of (1.1) is fixed-time stable with continuous settling-time function T

satisfying T (x) ≤ 1
c1(1−α) + 1

c2(β−1) .

Proof. Although this result was proven in [Polyakov, 2012], in this proof we will use the char-

acterization proposed in Theorem 2.2 and show that the results are consistent. Let us con-

sider the ball D := {x ∈ Γ : V (x) ≤ 1} and denote TD := inf{x ∈ Γ \D,T ≥ 0 : V (ψx(T )) ≤ 1}, and

T0 := inf{x ∈ D,T ≥ 0 : V (ψx(T )) = 0} as the time functions that provide the time that takes to any

trajectory outside D to arrive to D, and the time that takes to any trajectory in D to arrive to zero,

respectively. Then we have that for all x ∈ Γ \D, V̇ (x) ≤ −r1(V (x)), where r1(z) = c2z
β , and therefore

TD(x) ≤
∫ supx∈Γ V (x)

1

dz
r1(z)

=
∫ +∞

1

dz

c2zβ

=
z1−β

c2(β − 1)

∣∣∣∣∣1
+∞

=
1

c2(β − 1)
< +∞.

For all x ∈ D, we have that V̇ (x) ≤ −r2(V (x)), where r2(z) = c1z
α and therefore

T0(x) ≤
∫ 1

0

dz
r2(z)

=
∫ 1

0

dz
c1zα

=
z1−α

c1(1−α)

∣∣∣∣∣1
0

=
1

c1(1−α)
< +∞.

Hence, S1 and S2 are satisfied with r(z) = r1(z) + r2(z) and

T (x) = TD + T0 ≤
1

c1(1−α)
+

1
c2(β − 1)

< +∞ ∀x ∈ Γ . �

Example 2.2 Two dimensional systems

Consider the systems

Σ1 :

 ẋ1 = −dx1cγ + x2

ẋ2 = −dx2cγ − x1

, Σ2 :

 ẋ1 = −dx1cγ − x3
1 + x2

ẋ2 = −dx2cγ − x3
2 − x1

, x ∈ R2,γ ∈ (0,1)
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Figure 2.2 – Trajectories of Σ1 and Σ2 for γ = 1
2 with initial conditions x0 = (−1,2) (left) and x0 = (−5,10)

(right).

and the Lyapunov function candidate V (x) = 1
2 (x2

1 + x2
2). For Σ1 we have

V̇ (x)
∣∣∣
Σ1

= −(|x1|γ+1 + |x2|γ+1) ≤ −V (x)
γ+1

2 ,

whereas for Σ2

V̇ (x)
∣∣∣
Σ2

= −(x4
1 + x4

2)− (|x1|γ+1 + |x2|γ+1) ≤ −V (x)
γ+1

2 −V (x)γ+1,

where γ+1
2 < 1 and 1 + γ > 1. Then, according to Corollary 2.1 and Theorem 1.2, Σ1 is

finite-time stable and Σ2 is fixed-time stable with T (x) ≤ 1
1−γ + 1

γ . Figure 2.2 shows the

trajectories of Σ1 and Σ2 under small initial conditions (left) and with slightly larger ones

(right). The time t represents the instant at which ‖x‖ ≤ 10−3. It is possible to see how

while the settling time of Σ1 increases significantly with larger initial conditions, that of Σ2

remains in a close vicinity.

2.2 Necessary Conditions for FxTS

In order to obtain the first result of this section, we will make use of the next lemma, whose proof

can be found at the end of the chapter.

Lemma 2.1. Suppose that the origin of system (1.1) is asymptotically stable on Γ . Then there exist a
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strict Lyapunov function
∼
V : Γ → R≥0 for (1.1), a continuous positive definite function

∼
W : Γ → R≥0 and

some α1,α2 ∈ K∞ that satisfy

M1
∼̇
V (x) = − ∼W (x) ∀x ∈ Γ .

M2 α1(
∼
V (x)) ≤ ∼W (x) ≤ α2(

∼
V (x)) ∀x ∈ Γ .

In fact, Lemma 2.1 is a corollary of Kurzweil’s theorem (Theorem 1.4) and it states, in words,

that if a given system is AS, then there exists a class-K∞ function that satisfies, instead of the well

known inequality
∼̇
V (x) < 0, the equality M1.

Now we are ready to present a necessary condition for FxTS using a similar characterization as

the one employed in Theorem 2.2.

Theorem 2.3. Consider system (1.1) and suppose that the origin is fixed-time stable on Γ . Then there
exist a strict Lyapunov function V and a class-K∞ function q that verifies

N1
∫ +∞

0

dz
q(z)

<+∞;

N2 −q(V (x)) ≤ V̇ (x) ∀x ∈ Γ .

Proof. Since fixed-time stability implies asymptotic stability we know, from Lemma 2.1, that there

exists a strict Lyapunov function V and a continuous positive definite function W that satisfy the

M conditions. Then we have that for all x ∈ Γ :

I there exist a decreasing differentiable mapping [0,T (x)]→ (0,V (x0)], t 7→ V (ψx(t)), with T (x) =

inf{T ≥ 0 : V (ψx(T )) = 0} and its corresponding inverse mapping (0,V (x)]→ [0,T (x)], s
σ7→ t, also

decreasing and differentiable such that σ ′(s) = 1/V̇ (ψx(σ (s))).

II Since V (x) andW (x) := V̇ (x) satisfy M, there exists some q ∈ K∞ such that −q(V (x)) ≤ V̇ (x) ∀x ∈ Γ
and N2 is satisfied.

III Then

T (x) =
∫ T (x)

0
dt = −

∫ 0

V (x)

ds

−V̇ (ψx(σ (s)))
.

From II, −V̇ (x) ≤ q(V (x)) and therefore

−
∫ 0

V (x)

ds

−V̇ (ψx(σ (s)))
≥

∫ V (x)

0

ds
q(V (ψx(σ (s))))

.

Hence

+∞ > sup
x∈Γ

T (x) ≥
∫ supx∈Γ V (x)

0

ds
q(s)

and N1 is fulfilled. �

It is not straightforward to obtain a converse result of Corollary 2.1 since some assumptions

about the behavior of V when x→ ∂Γ have to be made. However, for the case of uniform FxTS, the

next necessary and sufficient condition can be obtained.
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Theorem 2.4. Consider the system (1.1). The following statements are equivalent:

i) The origin of (1.1) is uniformly fixed-time stable on Γ with continuous settling-time function T (x).

ii) There exists a strict Lyapunov function V : Γ → R≥0 and some positive constants c1, c2 and c3 such
that

V̇ (x) =

−c2V (x)2 if V (x) ≥ c3

−c1 if V (x) < c3

. (2.6)

Proof. i)⇒ ii). By assumption, the origin of (1.1) is fixed-time stable with continuous T (x) and

there exists some Tm ∈ R such that liminf‖x‖→∂Γ T (x) = limsup‖x‖→∂Γ T (x) = Tm holds. Consider

now the Lyapunov function candidate

V (x) :=


1

Tm − T (x)
if T (x) ≥ Tm

2

4
T 2
m
T (x) if T (x) < Tm

2

.

Under the assumptions on T (x), V (x) is continuous, positive definite and radially unbounded for

all x ∈ Γ . From Lemma 1.1.i we have that

Ṫ (ψx(t)) = −1

and consequently

V̇ (x) =


−
(

1
Tm−T (x)

)2
if T (x) ≥ Tm

2

− 4

T 2
m

if T (x) < Tm
2

=


−V (x)2 if V (x) ≥ 2

Tm

− 4

T 2
m

if V (x) < 2
Tm

.

Thus, (2.6) is satisfied with c1 = 4
T 2
m

, c2 = 1 and c3 = 2
Tm

.

ii)⇒ i). From previous arguments, we have that for all x ∈ Γ such that V (x) ≥ c3, the chain of

equalities

T (x) =
∫ c3

V (x)

ds

V̇ (ψx(θ(s)))
+
∫ 0

c3

ds

V̇ (ψx(θ(s)))
=

∫ V (x)

c3

ds

c2s2
+
∫ c3

0

ds
c1

holds and

T (x) =
1
c2 c3

− 1
c2V (x)

+
c3

c1
.

Since V (x) is continuous, T (x) is also continuous. Moreover, since V (x) is radially unbounded, it

follows that

liminf
x→∂Γ

T (x) = limsup
x→∂Γ

T (x) =
1
c2 c3

+
c3

c1
.

For all x ∈ Γ such that V (x) < c3, the settling-time function gets reduced to

T (x) =
V (x)
c1

<
c3

c1
.
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Gathering this arguments we conclude that the origin of (1.1) is uniformly fixed-time stable with

Tm = 1
c2 c3

+ c3
c1

. �

2.3 FxT Stabilization of Nonlinear Affine Systems

In this section, we will give a sufficient conditions for fixed-time stabilization following a similar

structure of well known results on asymptotic stabilization of autonomous systems.

Consider the following affine in the input u system:

ẋ = f0(x) +
m∑
i=1

fi(x)ui , x ∈ Rn and u ∈ Rm, (2.7)

where f0(0) = 0, fi is continuous for all 0 ≤ i ≤m and such that (2.7) has uniqueness of solutions in

forward time. Its closed-loop representation is given by

ẋ = f0(x) +
m∑
i=1

fi(x)ui(x), x ∈ Rn. (2.8)

Let us recall the definition of stabilization and propose a definition of fixed-time stabilization. In the

latter, we will only consider fixed-time stabilization with continuous settling-time functions.

Definition 2.2. The control system (2.7) is stabilizable (respectively fixed-time stabilizable) if there

exists a nonempty neighborhood of the origin Γ ⊆ Rn and a C0 feedback control law u : Γ → Rm

such that:

1. u(0) = 0;

2. the origin of the system (2.8) is asymptotically stable (respectively fixed-time stable with a

continuous settling-time function).

Such a feedback law u(x) is called a stabilizer (respectively fixed-time stabilizer) for system (2.7).

A radially unbounded, positive definite, C1 function V : Γ → R≥0 is a control Lyapunov function
(CLF) for the system (2.7) if for all x ∈ Γ \{0},

inf
u∈Rm

(a(x) + 〈B(x),u〉) < 0, (2.9)

where a(x) = Lf0V (x), B(x) = (B1(x), . . . ,Bm(x)) with Bi(x) = LfiV (x) for 1 ≤ i ≤ m. Such a control

Lyapunov function satisfies the small control property (SCP) if for each ε > 0, there exists τ > 0 such

that, if x ∈ τBn, then there exists some u ∈ εBm such that

a(x) + 〈B(x),u〉 < 0. (2.10)

For a CLF, a(x) < 0 whenever B(x) = 0, and one may think that this is a necessary condition

for asymptotic stabilization. However, as shown in [Sontag, 1989], it is also a sufficient one.
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Indeed, E. Sontag shows that if a radially unbounded and positive definite C1 function V satisfies

b(x) = 0⇒ a(x) < 0 where b(x) = ‖B(x)‖2, then the feedback law u = w(x),

wi(x) :=


−
a(x) +

√
a(x)2 + b(x)2

b(x)
Bi(x) if x ∈ Γ \{0}

0 if x = 0
, (2.11)

known as Sontag’s universal formula, is a stabilizer for (2.7). It was also shown in [Sontag, 1989]

that this feedback law is continuous on Γ \{0} and that if V additionally satisfies the SCP, then w is

continuous on Γ (see, for instance, [Isidori, 2013, Chapter 9]).

The following theorem presents an analogous formulation for fixed-time stabilization and in

order to prove it, we will provide a continuous fixed-time stabilizer, akin to Sontag’s universal

formula.

Theorem 2.5. Consider the system described by (2.7). There exists a continuous fixed-time stabilizer
u = v(x) for (2.7) if there exists a radially unbounded and positive definite C1 control Lyapunov function
V : Γ → R≥0 that satisfies the small control property and

a(x)2 + b(x)2ρ(x)2 ≥ (c1V (x)α + c2V (x)β)2 ∀x ∈ Γ , (2.12)

for some c1, c2 > 0, α ∈ (0,1) and β > 1, where ρ : Γ → R≥0 is a continuous function on Γ \{0} such that

limsup
x→0

ρ(x)
√
b(x) < +∞. (2.13)

Proof. I Let us introduce, for brevity in the notation, the function ϕ(s) := c1s
α + c2s

β and define the

feedback law

vi(x) :=


−
a(x) +

√
a(x)2 + b(x)2ρ̃(x)2

b(x)
Bi(x) if x ∈ Γ \{0}

0 if x = 0
, (2.14)

where ρ̃(s) := (1 + ρ(x)). The derivative of V along the trajectories of (2.7)-(2.14) is given by

V̇ (x) =
〈
∇V (x), f0(x) +

m∑
i=1

fi(x)vi(x)
〉

= −
√
a(x)2 + b(x)2ρ̃(x)2 < 0 ∀x ∈ Γ \{0}. (2.15)

Thus the control (2.14) is a stabilizer for (2.7) and V is a strict Lyapunov function for the closed-loop

system (2.8).

II Since ρ̃(x) ≥ 1 for all x , 0, using the change of variables B̃i(x) = Bi(x)
√
ρ̃(x), b̃ = b(x)ρ̃(x) in

(2.14) we obtain

vi(x) =


−
√

1 + ρ(x)
a(x) +

√
a(x)2 + b̃(x)2

b̃(x)
B̃i(x) if x ∈ Γ \{0}

0 if x = 0

,
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so that Sontag’s universal formula is recovered multiplied by a gain
√

1 + ρ(x), which is continuous

for all x ∈ Γ \{0}. Then, since by assumption V satisfies the SCP and ρ(x)
√
b(x) is bounded at the

origin, (2.14) is a continuous feedback stabilizer for (2.7).

III Now let us show that the control (2.14) is a fixed-time stabilizer for (2.7). We have from

(2.15) that

V̇ (x) = −
( a(x)
ϕ(V (x))

)2

+
(

(1 + ρ(x))b(x)
ϕ(V (x))

)2
1
2

ϕ(V (x))

≤ −
(
a(x)2 + ρ(x)2b(x)2

ϕ(V (x))2

) 1
2

ϕ(V (x))

≤ −ϕ(V (x)),

which implies fixed-time stability for all x ∈ Γ and from Corollary 2.1, (2.14) is moreover a

continuous fixed-time stabilizer for (2.7). �

Example 2.3

Consider the following system

ẋ1 = −dx1cµ − dx1c1+µ − x2

ẋ2 = dx1cη |x2|1−η + |x2|
µ−η

2 u
(2.16)

where η ∈ (0,1),µ ∈ (0,1) and µ > η. By choosing the C1 control Lyapunov function candidate

V (x) = 1
η+1 |x1|η+1 + 1

η+1 |x2|η+1, we have that

a(x) = −|x1|η+µ − |x1|1+η+µ,

B(x) = |x2|
η+µ

2 , b(x) = |x2|η+µ.

Since infu∈R(a(x) +Bu) < 0 for x , 0, V is a CLF for the system. Selecting ρ(x) = 1 + |x2| we

arrive to

|a(x)|+ b(x)ρ(x) = |x1|η+µ + |x2|η+µ + |x1|1+η+µ + |x2|1+η+µ.

From Jensen’s inequality and Lemma 2.3 of [Qian and Lin, 2001] we obtain for any p ≥ 1

and all z1, z2 ∈ R:

|z1|p + |z2|p ≥ 21−p(|z1|+ |z2|)p,

(|z1|+ |z2|)1/p ≤ |z1|1/p + |z2|1/p,
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Figure 2.3 – State norm ‖x‖ in logarithmic scale of the system (2.16) in open loop u = 0 (left), in closed loop
u = v(x) (middle) and the control signal v(t) (right) for x0 = (−40,80), µ = 1/4 and η = 1/5.

which in our case can be used as follows:

|x1|η+µ + |x2|η+µ =
(
|x1|η+1

) η+µ
η+1 +

(
|x2|η+1

) η+µ
η+1 ≥

(
|x1|η+1 + |x2|η+1

) η+µ
η+1 ,

|x1|η+µ+1 + |x2|η+µ+1 =
(
|x1|η+1

) η+µ+1
η+1 +

(
|x2|η+1

) η+µ+1
η+1 ≥ 2−

µ
η+1

(
|x1|η+1 + |x2|η+1

) η+µ+1
η+1 ,

and

|a(x)|+ b(x)ρ(x) ≥ (η + 1)
η+µ
η+1V (x)

η+µ
η+1 + 2−

µ
η+1 (η + 1)

η+µ+1
η+1 V (x)

η+µ+1
η+1 .

Since the inequalities above hold, then

(|a(x)|+ b(x)ρ(x))2 ≥ ϕ(V (x))2 (2.17)

where ϕ(V (x)) = (η + 1)δ1V (x)δ1 + 21−δ2(η + 1)δ2V (x)δ2 , δ1 = η+µ
η+1 < 1 and δ2 = 1+η+µ

η+1 > 1, and

the condition (2.12) is fulfilled. It can be easily checked that (2.13) is satisfied and since
a(x)
|B(x)| ≤ 0, V satisfies the small control property. Then all the conditions of Theorem 2.5 are

met and the feedback law

u = v(x) =
|x1|η+µ + |x1|1+η+µ −

√(
|x1|η+µ + |x1|1+η+µ

)2
+ (2 + |x2|)2|x2|η+µ

|x2|
η+µ

2

is a continuous fixed-time stabilizer for (2.16). Figure 2.3 shows, from left to right, the norm

of the state for the open loop system (2.16) i.e. u = 0, the closed loop system with u = v(x)

and the control signal. It is posible to see that although the open loop system is stable, its

convergence rate is not in fixed-time. The middle plot in Figure 2.3 shows that the controller

v(x) enforces fixed-time stability and in the right-hand plot we can see that the control signal

v(t) is indeed continuous.
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2.4 Conclusions

Complete necessary and sufficient conditions for fixed-time stability of continuous autonomous

systems have been presented. A characterization of this property using a pair of functions has been

proposed and it allows, in the sufficiency case, to rule out the case of discontinuous settling-time

function. It is worth noticing that in the sufficiency case, the characterizing function r is continuous

and positive and this assumption is enough to assert fixed-time stability with continuous T . In the

necessary case, however, the characterizing function q is not only continuous and positive definite

but also increasing and unbounded i.e. a class-K∞ function and no assumptions on the regularity

of T were made. A particular, more constructive and previously studied form of the characterizing

function r has shown to be consistent with the framework here presented.

The concept of uniform fixed-time stability has been introduced and a necessary and sufficient

condition for this property has been obtained. Finally, a sufficient condition for fixed-time stabi-

lization of continuous affine systems, analogous to previous results on asymptotic stabilization,

has also been obtained. It is left as an open problem, to find a necessary condition for fixed-time

stabilization of affine systems.

2.5 Proofs

Proof of Corollary 2.1. Following Theorem 1.4, there exists a continuous positive definite function

V such that

W ∗(x) := −∂V
∂x
f (x) > 0 ∀x ∈ Γ \{0}.

Let us propose the function
∼
V (x) =

∫ V (x)
0 ξ(p)dp, where ξ ∈ K∞ is defined later on. Note that from

its definition,
∼
V is continuous and radially unbounded. Then

∼̇
V (x) = ξ(V (x))V̇ (x) = −ξ(V (x))W ∗(x).

By defining
∼
W (x) := ξ(V (x))W ∗(x) we obtain M1 and it becomes clear that

∼
W is continuous,

∼
W (0) = 0 and

∼
W (x) > 0 for all x ∈ Γ \{0} such that M2 is satisfied with a suitably selected ξ and the

class-K∞ functions

α1(s) =
s

s+ 1
inf

x∈Γ :
∼
V(x)≥s

∼
W (x), α2(s) = s+ sup

x∈Γ :
∼
V(x)≤s

∼
W (x).

Since
∼
V satisfies all conditions of Definition 1.2, it constitutes a strict Lyapunov function for system

(1.1). �



46 CHAPTER 2. Conditions for Fixed-Time Stability



Chapter3
NonA ISS Lyapunov Functions

Contents

3.1 Nonasymptotic Input-to-State Stability . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Explicit Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Implicit Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

This chapter gathers the notions of nonasymptotic stability rates with input-to-state stability.

We will start by defining the properties of finite-time ISS and fixed-time ISS followed by its

explicit Lyapunov characterization. Through academic examples and simulations we will compare

asymptotic ISS versus NonA ISS and we will show that NonA ISS might be preferable, both in

terms of robustness and convergence rate. In the last section we will use the results of the explicit

framework to develop the implicit one. The chapter closes with an example that illustrates the

capabilities of the implicit NonA ISS framework.

It is worth to mention that Y. Hong, Z.P. Jiang and G. Feng have worked extensively in the topic

of finite-time ISS [Hong et al., 2010]. Many of the results to be presented here incorporate the

notions developed in Hong’s work and extend them to the fixed-time case using both the explicit

and the implicit approach.

Let us recall the system under study:

ẋ = f (x,d), t ≥ 0, (3.1)

where x ∈ Rn is the state, d(t) ∈ Rm is the input signal and the same assumptions made in Section

1.2 about f and d hold.

47
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3.1 Nonasymptotic Input-to-State Stability

The definitions of NonA ISS will make use of a special kind of comparison functions, later in the

chapter it will become clear why class-KL functions are not suitable to describe this property, as it

was the case for asymptotic ISS (see Theorem 1.3).

Definition 3.1. A continuous function β : R≥0 ×R≥0→ R≥0 is a generalized class-KL function (GKL
function) if

i) the mapping s 7→ β(s,0) is a class-K function;

ii) for each fixed s ≥ 0 the mapping t 7→ β(s, t) is continuous, decreases to zero and there exists

some
∼
T (s) ∈ [0,+∞) such that β(s, t) = 0 for all t ≥∼T (s).

Compared to KL functions, a GKL function has to be a K function only for t = 0 whereas a KL
function has to be so for any fixed t ≥ 0. Moreover, a GKL function not only has to be continuous

and decreasing for each fixed s, but also has to converge to zero in a finite time1.

Definition 3.2. The system (3.1) is said to be finite-time ISS (FTISS) if for all x0 ∈ Rn and d ∈ L∞,

each solution ψx0
(t,d) is defined for t ≥ 0 and satisfies

‖ψx0
(t,d)‖ ≤ β(‖x0‖, t) +ϑ(‖d‖[0,∞)) ∀t ≥ 0, (3.2)

where ϑ is a class-K function and β is a class-GKL function with β(r, t) = 0 when t ≥∼T (r) with
∼
T (r)

continuous with respect to r and
∼
T (0) = 0. The system (3.1) is said to be fixed-time ISS (FXISS) if it

is FTISS and supr∈R≥0

∼
T (r) < +∞.

Remark that indeed the key difference with respect to asymptotic ISS is that β is a GKL function

and that according to Definition 3.1 this implies the existence of the settling-time function
∼
T .

Remark also that only the case of continuous
∼
T is considered.

Example 3.1 (Hong et al., 2010)

The trajectories of the input scalar system

ẋ = −dxc
1
3 − x3 + d2 (3.3)

satisfy, for all x,d ∈ R, the inequality (3.2) with

β(s, t) =

(s
2
3 − 1

3 t)
3
2 if 0 ≤ t ≤∼T (s)

0 otherwise
,
∼
T (s) = 3s

2
3 , γ(s) = 2s2.

Since β(s,0) = s is a class-K function, β(s, t) = 0 for all t ≥∼T (s) and for each fixed s, β(s, t) is

decreasing (see Figure 3.1), β is a class-GKL function and the system (3.3) is FTISS. Figure

1Note that the definition of a GKL function presented here differs from the one introduced in [Hong et al., 2010].
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3.1 also shows, in blue, the projection of β(s,0) on the s-β axis. The white line on the t-s axis

represents the settling-time curve t = 3s
2
3 .

The plot of β in Figure 3.1 also helps to understand the use of class-GKL functions: by looking

at the grid lines on the s axis, it is possible to notice that for any fixed t , 0, β(s, t) is not a class-K
function since it equals to zero for multiple values of s. Hence, the FTISS property cannot be

defined using KL functions.

Figure 3.1 – 3D plot of the function β(s, t) of Example 3.1.

.
From the definition of FTISS, it follows that if system (3.1) is FTISS, for d = 0 it becomes FTS

with some continuous settling-time function T . Therefore, for FTISS systems, the existence of T (x)

implies that of
∼
T (x) and vice versa. Hence FTISS implies FTS when d = 0, however the converse is

in general not true.

Example 3.2

The state of the system

ẋ = −(1 + sind)dxc
1
3 (3.4)

is bounded for each bounded input d ∈ R. Moreover, for d = 0 the origin of (3.4) is FTS.

However, for d = 3π/2, the origin is not even AS and therefore not FTISS.

3.2 Explicit Characterization

Definition 3.3. Consider a positive definite and radially unbounded C1 function V : Rn → R≥0.

V is called a finite-time ISS Lyapunov function for system (3.1) if there exist some χ ∈ K, c > 0 and

α ∈ [0,1) such that for all x ∈ Rn and all d ∈ Rm

‖x‖ ≥ χ(‖d‖)⇒DV (x)f (x,d) ≤ −cV (x)α . (3.5)

V is called a fixed-time ISS Lyapunov function for system (3.1) if there exist some χ ∈ K, c1, c2 > 0,



50 CHAPTER 3. NonA ISS Lyapunov Functions

α ∈ [0,1) and β > 1 such that for all x ∈ Rn and all d ∈ Rm

‖x‖≥χ(‖d‖)⇒DV (x)f (x,d)≤−c1V (x)α − c2V (x)β (3.6)

In [Hong et al., 2010], some sufficient conditions for finite-time ISS with continuous settling-

time function are presented. However converse results are not obtained. The following result

shows that if some assumptions about Lipschitz continuity of the system and of the settling-time

function are added, then a converse result can be obtained.

Assumption 3.1. Let on any compact set K ⊂ (Rn \ {0})×Rm the function f : Rn+m→ Rn in (3.1) be
Lipschitz and, in addition, suppose there exists some continuous function L : R≥0→ R≥0 such that

‖f (x,d)− f (x,0)‖ ≤ L(‖x‖)‖d‖

for all x ∈ Rn and d ∈ Rm.

Theorem 3.1. The system (3.1) is FTISS if it admits a finite-time ISS Lyapunov function. Conversely, if
(3.1) is FTISS with a Lipschitz continuous settling-time function

∼
T and Assumption 3.1 is satisfied, then

there exists a finite-time ISS Lyapunov function for it.

As it was the case in Chapter 2, in order to obtain a complete characterization, i.e. necessary and

sufficient conditions for FXISS some assumptions on the uniformity of the settling-time function

with respect to x are required. Therefore we will present only a sufficient Lyapunov condition for

FXISS, however, using the notions of uniform fixed-time stability, introduced in Chapter 2, and the

conditions of Theorem 2.4, a converse result on FXISS can be obtained.

Theorem 3.2. The system (3.1) is FXISS if it admits a fixed-time ISS Lyapunov function.

Naturally, whenever d = 0 and the above theorems’ conditions are fulfilled, the corresponding

settling-time estimates (1.15) and (1.16) hold.

With the Lyapunov tools for FTISS and FXISS now at hand, let us illustrate in more detail some

of the differences with respect to asymptotic ISS.

Example 3.3 ISS vs FTISS

Consider the input systems

Σ1 :

 ẋ1 = −x1 − x2 + d1

ẋ2 = x1 − x3
2 + d2

, Σ2 :

 ẋ1 = −dx1cγ − x2 + d1

ẋ2 = x1 − dx2cγ + d2

, x,d ∈ R2,γ ∈ (0,1)

and the Lyapunov function candidate V (x) = 1
2 (x2

1 + x2
2).
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For the system Σ1 we have

V̇
∣∣∣
Σ1

= −x2
1 − x

4
2 + x1d1 + x2d2

≤ −(1−θ)x2
1 − (1−θ)x4

2 −θx
2
1 −θx

4
2 + |x1| ‖d‖∞ + |x2| ‖d‖∞

where 0 < θ < 1 and ‖d‖∞ = max{|d1|, |d2|}. Next we have that

V̇
∣∣∣
Σ1
≤ −(1−θ)x2

1 − (1−θ)x4
2, for |x1| ≥

‖d‖∞
θ

and |x2| ≥
(
‖d‖∞
θ

)1/3

.

For |x2| ≤ (‖d‖∞/θ)1/3 we obtain

V̇
∣∣∣
Σ1
≤ −x2

1 − x
4
2 + |x1| ‖d‖∞ +

(‖d‖∞)4/3

θ1/3

= −(1−θ)x2
1 − x

4
2 −θx

2
1 + |x1| ‖d‖∞ +

(‖d‖∞)4/3

θ1/3
.

Let ρ1(r) be the largest positive real root of the quadratic equation

−θy2 + ry +
r4/3

θ1/3
= 0, r ≥ 0.

Then ρ1 is a class-K∞ function and ρ1(r) ≥ r/θ. Hence, for |x2| ≤ (‖d‖∞/θ)1/3 we have

V̇
∣∣∣
Σ1
≤ −(1−θ)x2

1 − x
4
2, for |x1| ≥ ρ1(‖d‖∞).

Proceeding similarly for the case |x1| ≤ ‖d‖∞/θ, we arrive to

V̇
∣∣∣
Σ1
≤ −x2

1 − (1−θ)x4
2, for |x2| ≥ ρ2(‖d‖∞),

where ρ2(r) is the largest positive real root of the quartic equation

−θy4 + ry +
r2

θ
= 0, r ≥ 0.

Gathering the above estimates and defining ρ3(r) = max{ρ1(r),ρ2(r)} we obtain

V̇
∣∣∣
Σ1
≤ −(1−θ)x2

1 − (1−θ)x4
2, ∀ ‖x‖∞ ≥ ρ3(‖d‖∞).

From Theorem 1.7 we conclude that Σ1 is an ISS system.

Using a similar analysis for Σ2 it is not difficult to show that
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Figure 3.2 – Phase space diagram (left) and time plot (right) of a trajectory of the ISS system Σ1 with initial
condition x0 = (−2,2) and d1(t) = d2(t) = 0.5sin(5t).

Figure 3.3 – Phase space diagram (left) and time plot (right) of a trajectory of the FTISS system Σ2 with
initial condition x0 = (−2,2) and d1(t) = d2(t) = 0.5sin(5t).

V̇
∣∣∣
Σ2
≤


−(1−θ)( |x1|γ+1 + |x2|γ+1), for |x1| ≥

( ‖d‖∞
θ

) 1
γ and |x2| ≥

( ‖d‖∞
θ

) 1
γ .

−(1−θ) |x1|γ+1 − |x2|γ+1, for |x1| ≥ 2γ+1

θ1/γ ‖d‖
1
γ
∞ and |x2| ≤

( ‖d‖∞
θ

) 1
γ .

−|x1|γ+1 − (1−θ) |x2|γ+1, for |x1| ≤
( ‖d‖∞

θ

) 1
γ and |x2| ≥ 2γ+1

θ1/γ ‖d‖
1
γ
∞.

Thus

‖x‖∞ ≥ ρ4(‖d‖∞)⇒ V̇
∣∣∣
Σ2
≤ −(1−θ)V (x)

γ+1
2 ,

where ρ4(r) = 2γ+1

θ1/γ r
1
γ and γ+1

2 < 1. Then, according to Theorem 3.1, Σ2 is an FTISS system.

Figure 3.2 shows a trajectory of Σ1 starting at x0 = (−2,2) with inputs d1(r) = d2(t) =

0.5sin(5t). Figure 3.3 shows a trajectory of Σ2 starting at the same initial condition and with

the same inputs. It becomes noticeable that the trajectories of Σ2 are less influenced by the

disturbance d and that they remain contained in a smaller vicinity of the origin.
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3.3 Implicit Characterization

Let us begin this section with the implicit characterization of asymptotic ISS and by recalling that

the set Ω ⊂ Rn+1 was defined in Theorem 1.13 as Ω :=
{
(V ,x) ∈ Rn+1 :Q(V ,x) = 0

}
.

Definition 3.4. A continuous function Q : R≥0 ×Rn→ R is called an implicit ISS Lyapunov function
for system (3.1) if it satisfies the conditions C1-C4 of Theorem 1.13 for d = 0 and

C5iss ‖x‖ ≥ χ(‖d‖)⇒ ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d)≥γ(‖x‖)

for all (V ,x) ∈Ω and all d ∈ Rm, with χ,γ ∈ K.

Theorem 3.3. System (3.1) is ISS if and only if there exists an implicit ISS Lyapunov function Q(V ,x)

for it.

As in the explicit case, the implicit formulation can also benefit from an alternative definition,

formulated in dissipativity-like terms.

Corollary 3.1. Suppose that there exists a continuous function Q : R≥0 ×Rn → R that satisfies the
conditions C1-C4 of Theorem 1.13 for d = 0 and

C5iss* ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d) ≥ ζ(‖x‖)− δ(‖d‖)

for all (V ,x) ∈ Ω and all d ∈ Rm, where δ,ζ ∈ K∞. Then (3.1) is ISS and Q(V ,x) is an implicit ISS
Lyapunov function for (3.1).

Implicit NonA ISS Lyapunov Functions

Definition 3.5. Consider a continuous function Q : R≥0 ×Rn→ R that satisfies all conditions of

Theorem 1.13 for d = 0. Q is called an implicit finite-time ISS Lyapunov function for (3.1) if there

exist some χ ∈ K, c1 > 0 and α ∈ (0,1) such that for all (V ,x) ∈Ω and all d ∈ Rm

C5ft ‖x‖≥χ(‖d‖)⇒ ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d)≥cV α .

Q is called an implicit fixed-time ISS Lyapunov Function for (3.1) if there exist some χ ∈ K, c1, c2 > 0,

α ∈ [0,1) and β > 1 such that for all (V ,x) ∈Ω and all d ∈ Rm

C5fx ‖x‖≥χ(‖d‖)⇒ ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d)≥c1V
α + c2V

β .

An alternative Lyapunov characterization of FXISS can also be established by using two func-

tions Q1(V ,x) and Q2(V ,x) that define, implicitly and in a piecewise fashion, the function V . This

characterization is analogous to the one made in Theorem 1.15.

Theorem 3.4. System (3.1) is FTISS if there exists an implicit finite-time ISS Lyapunov function for it.
Conversely, if (3.1) is FTISS with a Lipschitz continuous settling-time function

∼
T and Assumption 3.1

holds, then there exists an implicit finite-time Lyapunov function for it.



54 NonA ISS Lyapunov Functions

Theorem 3.5. System (3.1) is FXISS if it admits an implicit fixed-time ISS Lyapunov function.

Clearly, the implicit approach inherits from the explicit one both the dissipativity-like charac-

terization and the settling-time estimates (1.15) and (1.16), provided that d = 0.

Corollary 3.2. Consider a continuous function Q : R+ ×Rn → R that satisfies conditions C1-C4 for
d = 0. If there exist some δ ∈ K∞, c > 0 and α ∈ (0,1) such that

C5ft* ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d) ≥ cV α − δ(‖d‖)

for all (V ,x) ∈Ω and all d ∈ Rm, then (3.1) is FTISS and Q(V ,x) is an implicit finite-time ISS Lyapunov
function for (3.1). If there exist some δ ∈ K∞, c1, c2 > 0, α ∈ (0,1) and β > 1 such that

C5fx* ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d) ≥ c1V
α + c2V

β − δ(‖d‖)

for all (V ,x) ∈Ω and all d ∈ Rm, then (3.1) is FXISS and Q(V ,x) is an implicit fixed-time ISS Lyapunov
function for (3.1).

Example 3.4

Consider the system

ẋ = −x3 + x2d1 − xd2 + d1d2 (3.7)

and the following implicit ISS Lyapunov function candidate:

Q(V ,x) =
x2

2V
− 1. (3.8)

We have that ∂Q(V ,x)
∂V = − x2

2V 2 , and that ∂Q(V ,x)
∂x = x

V , hence

− ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d) = − V x
2x2 (−x3 + x2d1 − xd2 + d1d2),

if 3|d1| ≤ |x| and 3|d2| ≤ x2 and since Q = 0⇒ 1 = x2

2V we have

∂xQ(V ,x)
∂VQ(V ,x)f (x,d) ≥ 2

9x
4.

Then, according to Theorem 3.3 the function Q(V ,x) defined by (3.8) is an implicit ISS

Lyapunov function for (3.7) with γ(|x|) = 2
9x

4 and χ(|d|) = ν−1, ν(r) = min{ r3 ,
r2

3 } and we

conclude that the origin of (3.7) is ISS. Note that although in this example it is possible to

obtain an explicit expression for V , using the implicit framework this is not necessary.

The next example revisits the Example 1.11, where FTS of an unperturbed homogeneous system

was determined. Now, instead of using homogeneity properties, we will first present an implicit

Lyapunov function candidate from which FTS can be derived. Then we will show that the system

is furthermore FTISS. The ILF candidate will be discussed in more detail in Chapter 4, for the

moment, only some of its main properties will be used.
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Example 3.5

Consider the double integrator system

ẋ = A0x+ bu(x) + d, A0 =

 0 1

0 0

 , b =

 0

1

 , d,x ∈ R2, (3.9)

and the following control law

u(x) = −k1dx1c
η

2−η − k2dx2cη , (3.10)

where η ∈ (0,1) and k1, k2 are such that s2 + k2s+ k1 is a Hurwitz polynomial. It is clear that

for d = 0, (3.9) is equivalent to system (1.33). Let us propose the following implicit Lyapunov

function candidate:

Q(V ,x) = xTDr(V
−1)PDr(V

−1)x − 1, (3.11)

where P > 0 and Dr(V −1) =
(
V −r1 0

0 V −r2

)
, r1 = 2−η

2 , r2 = 1
2 . Let us first show that Q indeed

constitutes a well defined ILF candidate. The function Q(V ,x) is differentiable for any

(V ,x) ∈ R+ ×Rn\{0} and since P > 0 then

λmin(P )‖x‖2

V
≤Q(V ,x) + 1 ≤ λmax(P )‖x‖2

V 2−η (3.12)

and there exist some V −,V + ∈ R+ such that Q(V −,x) < 0 < Q(V +,x) and some V ∈ R+ such

that Q(V ,x) = 0. Hence conditions C1-C3 of Theorem 1.13 are fulfilled. Remark that for

η = 1, the identity Q(V ,x) = 0 defines the quadratic Lyapunov function V (x) = xT P x. The

derivative of Q w.r.t. V is given by

∂VQ = −V −1xTDr(V
−1)(HrP + PHr )Dr(V

−1)x,

where Hr =
(
r1 0
0 r2

)
. Since Hr = 1

2 I2 + 1−η
2

(
1 0
0 0

)
where I2 is the identity matrix, Hr → 1

2 I2 as

η→ 1 and

0 < PHr +HrP ,

so that ∂VQ(V ,x) < 0 for all (V ,x) ∈ R+ × Rn\{0} and condition C4 of Theorem 1.13 is

satisfied. Assuming additionally that PHr +HrP ≤ P and taking into account (from (3.11))

that Q(V ,x) = 0⇒ xTDr(
1
V )PDr(

1
V )x = 1 we obtain

−V −1 ≤ ∂VQ(V ,x) < 0. (3.13)

Similarly, the derivative of Q along the trajectories of (3.9)-(3.10), denoted as ∂xQf , is given

by

∂xQf = 2xTDr(
1
V )PDr(

1
V )(A0x+ bu(x) + d).
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Let us assume that the following condition holds for some µ > 0:

A0S + SAT0 + bq+ bT qT + S +µI2 ≤ 0, (3.14)

where S = P −1 and q = kS−1. By adding and subtracting the term

2V η/2xTDr(
1
V )PDr(

1
V )bkDr(

1
V )x, and taking into account that Dr(

1
V )A0D

−1
r ( 1

V ) = V (η−1)/2A0

and that Dr(
1
V )b = V −

1
2 b, we obtain

∂xQf =
(
y
z

)T
Θ

(
y
z

)
+V

η−1
2 (2yT P bkỹη − yT P y) + 1

µV
1−η

2 zT z,

where y =Dr(
1
V )x, z =Dr(

1
V )d, ỹη = y − (dy1c

η
2−η ,dy2cη)T and

Θ =

V
η−1

2 (P (A0 − bk) + (A0 − bk)T P + P ) P

P − 1
µV

1−η
2 I2

 .
Since the Schur complement of

(
P −1 0
0 ε

)
Θ

(
P −1 0
0 ε

)
for any ε ∈ R is equivalent to the left hand

side of (3.14) and Q(V ,x) = 0⇒ yT P y = 1, we have that

∂xQf ≤ V
η−1

2 (2yT P bkỹη − 1) + 1
µV

1−η
2 dTD2

r ( 1
V )d.

Since ỹη → 0 and D2
r ( 1
V )→ V −1I2 as η → 1, there exists some η, sufficiently close to one,

such that maxy:yT P y=1 y
T P bkỹη < l1 ≤ 1. Then

∂xQ < −l2V
η−1

2 + 1
µV
−1+ 1−η

2 dT d,

where l2 = 1− l1 > 0, l1 >
1
µ . From (3.13) we obtain

∂xQ
∂VQ

f (x,d) ≥ l1V 1+ η−1
2 − 1

µV
−1+ 1−η

2 dT d,

and from (3.12) we finally derive

‖x‖ ≥ χ(‖d‖)⇒ ∂xQ
∂VQ

f (x,d) ≥ (l1 − 1
µ )V 1+ η−1

2

where χ(r) = 1
λmin(P )r

1
η+1 , 1+ η−1

2 < 1 and we recover the condition C5ft of Definition 3.5. Thus,

we conclude that Q(V ,x) is a finite-time implicit ISS Lyapunov function and from Theorem

3.3, the system (3.9)-(3.10) is FTISS for any η sufficiently close to 1. Figure 3.4, shows the
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simulation plot of system (3.9) with with the disturbance d1(t) = d2(t) = d̂(t), where

d̂(t) = 0.2sin(10t)+

1 if t ∈ [5,6]

0 otherwise
. (3.15)

t (seconds)
0 2 4 6 8 10

-1

-0.5

0

0.5

1
x1

x2

d̂(t)

Figure 3.4 – Simulation of system (3.9) for η = 0.8, initial conditions x(0) = (0.6,−0.6) and the disturbance
term (3.15).

3.4 Conclusions

A theoretical framework to characterize NonA ISS has been presented. Both the implicit and the

explicit approach have been addressed. For the FTISS property, necessary and sufficient conditions

were obtained and although for FXISS only a sufficient condition was presented, it was shown that

by introducing some assumptions on the uniformity of the settling-time a converse result can be

obtained. The theorems here presented allow to assert, with a single function, the convergence

type and the robustness, in an input-to-state sense, of a given nonlinear system. Whenever the

disturbances are absent, the results obtained allow to estimate the reaching time to zero. Finally,

an alternative dissipativity-like characterization was also provided.

3.5 Proofs

Proof of Theorem 3.1.
Sufficiency. If there exists a finite-time ISS Lyapunov function for (3.1), then we have that ‖x‖ ≥
χ(‖d‖) implies that

DV (x)f (x,d) ≤ −cV (x)α (3.16)

and from Definition 1.4 we know that (1.20) holds.

I Let us define the set V = {x : V (x) ≥ α2 ◦χ(‖d‖[0,∞))}. We have that for any x ∈ V , α2(‖x‖) ≥ V (x) ≥
α2 ◦χ(‖d‖∞), which implies that ‖x‖ ≥ χ(‖d‖) and by (3.16), Rn\V is an invariant and attractive



58 CHAPTER 3. NonA ISS Lyapunov Functions

set. Then, using the comparison lemma and direct integration, it is straightforward to obtain a

class-GKL function β(r, t) such that

‖ψx0
(t,d)‖ ≤ β(‖x0‖, t) while ψx0

(t,d) ∈ V , (3.17)

where β(r, t) = 0 ∀t ≥∼T (r) and
∼
T (r) is a continuous function for all r ∈ Rn.

II If x < V then V (x) < α2 ◦χ(‖d‖[0,∞)) and therefore ‖x‖ ≤ ϑ(‖d‖[0,∞)), where ϑ = α−1
1 ◦α2 ◦χ. In

addition, Rn\V is invariant so that

‖ψx0
(t,d)‖ ≤ ϑ(‖d‖[0,∞)) while ψx0

(t,d) < V , (3.18)

IV Combining (3.17) and (3.18) gives

‖ψx0
(t,d)‖ ≤ β(‖x0‖, t) +ϑ(‖d‖[0,∞)) ∀t ≥ 0,

and FTISS for (3.1) is obtained.

Necessity. This part of the proof has four main steps. First, using converse arguments, a Lyapunov

function V (x) is constructed that shows FTS of the unperturbed system (3.1). Second, it is shown

that this Lyapunov function V (x) is actually an FTISS Lyapunov function if ‖x‖ < ρ, for any ρ > 0

(with the asymptotic gain dependent on ρ). Third, applying smoothing tools another ISS Lyapunov

function W (x) is designed for ‖x‖ > δ for any δ ∈ (0,ρ). Finally, a desired global FTISS Lyapunov

function is constructed by uniting V and W .

I Since (3.1) is FTISS, when d = 0 there exists some T (x) such that ‖ψx(t,0)‖ = 0 ∀t ≥ T (x). If T (x) is

a locally Lipschitz function, then by Theorem 1.6, it is possible to define a function V (x) := T (x)
1

1−α ,

with α ∈ [0,1), satisfying α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) for some α1,α2 ∈ K∞ and such that

∂V (x)
∂x

f (x,0) ≤ −cV (x)α (3.19)

for some c > 0 and for almost all x ∈ Rn.

II (Case ‖x‖ < ρ). Since T (x) is Lipschitz continuous, V (x) is also locally Lipschitz continuous and

‖∂V∂x ‖ ≤ κ + η(‖x‖) for some κ ∈ R≥0 and η ∈ K. By Assumption 1, ‖f (x,d)− f (x,0)‖ ≤ L(‖x‖)‖d‖ for

some L : R≥0→ R≥0. Thus∥∥∥∥∥∂V (x)
∂x

(
f (x,d)− f (x,0)

)∥∥∥∥∥ ≤ (κ+ η(‖x‖))L(‖x‖)‖d‖.

Let us define

d := ϕρ(‖x‖)u where ϕρ(‖x‖) :=
cα1(‖x‖)α

2(κ+ η(ρ))L(ρ)
. (3.20)

Then, for ‖u‖ ≤ 1 and some ρ > 0, it becomes clear that ‖x‖ ≤ ρ implies∥∥∥∥∥∂V (x)
∂x

(
f (x,ϕρ(‖x‖)u)− f (x,0)

)∥∥∥∥∥ ≤ c
2V (x)α .
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From (3.20), it follows that ‖u‖ ≤ 1 implies that ‖x‖ ≥ ϕ−1
ρ (‖d‖) and using the inequality (3.19) we

have that ρ > ‖x‖ ≥ ϕ−1
ρ (‖d‖) implies

∂V (x)
∂x

f (x,d) ≤ − c2V (x)α .

III (Case ‖x‖ > δ). For any two constants Lx > 0 and Lu > 0 define the function

µδ(a,d) := min

1,
(Lxa+Ld‖d‖)(1 + sup‖x‖≤a ‖f (x,d)‖)

(Lxδ+Ld‖d‖)(1 + sup‖x‖≤δ ‖f (x,d)‖)

 ,
for some δ ∈ (0,ρ). Note that by design µδ is continuous, increasing, bounded by 1, equals to 1

when a = δ, strictly positive outside of the origin and µδ(0,0) = 0. Define a vector field

fδ(x,d) :=

f (x,d), if ‖x‖ ≥ δ

µδ(‖x‖,d)f (x,d), if ‖x‖ < δ
,

which is locally Lipschitz and continuous by construction. Indeed, the function f possesses this

property outside of the origin by the imposed hypothesis, and for ‖x‖ < δ we have that

‖fδ(x,d)‖ ≤ ‖µδ(‖x‖,d)f (x,d)‖

=
‖f (x,d)‖

1 + sup‖s‖≤δ ‖f (s,d)‖
·

1 + sup‖s‖≤‖x‖ ‖f (s,d)‖
Lxδ+Ld‖d‖

(Lx‖x‖+Ld‖d‖)

≤
1 + sup‖s‖≤‖x‖ ‖f (s,d)‖

Lxδ+Ld‖d‖
(Lx‖x‖+Ld‖d‖)

≤
1 + sup‖s‖≤δ ‖f (s,d)‖

Lxδ+Ld‖d‖
(Lx‖x‖+Ld‖d‖) ,

so that fδ is locally Lipschitz for all x ∈ Rn. Now let us consider the system

ẋ = fδ(x,d),

where fδ is, as showed above, a locally Lipschitz continuous function and it is ISS since (3.1) has

this property (multiplication by a continuous strictly positive function µδ does not influence the

stability, it acts as a time re-scaling). Consider now the following modified version of the system

(3.1):

ẋ = fδ(x,d) = f (x,d) +∆f ,

where ∆f := f (x,d)− fδ(x,d), and by construction ‖x‖ ≥ δ⇒ ∆f = 0. Following the converse results

on existence of ISS Lyapunov functions, there exists a continuously differentiable, positive definite
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and radially unbounded function W : Rn≥0→ R≥0, α3 ∈ K∞ and σ ∈ K such that

‖x‖ ≥ σ (‖d‖)⇒ ∂W (x)
∂x fδ(x,d) ≤ −α3(‖x‖),

then due to the properties of the auxiliary perturbation ∆f :

‖x‖ ≥max{δ,σ (‖d‖)} ⇒ ∂W (x)
∂x f (x,d) ≤ −α3(‖x‖).

IV Let us define the function

∼
V (x) := s(V (x))W (x) + (1− s(V (x)))V (x),

where s : R≥0→ R≥0 satisfies

s(r) =

1 if r ≥ α2(ρ)

0 if r ≤ α1(δ)

and s′(r) = ∂s(r)
∂r > 0 for all r ∈ (α1(δ),α2(ρ)). Assume that V (x) ≤W (x) for all x ∈ {x ∈ Rn : α1(δ) ≤

V (x) ≤ α2(ρ)} (both functions, V (x) and W (x), are continuous, positive definite and radially

unbounded, then we can adopt such a hypothesis without being restrictive, since multiplying W (x)

by a constant we can always assure its fulfillment), then we have that

∂
∼
V (x)
∂x f (x,d) = sẆ (x) + (1− s)V̇ (x) + s′V̇ (W (x)−V (x)),

and gathering all the previous estimates, we arrive to

‖x‖ ≥ χ(‖d‖)⇒ ∂
∼
V (x)
∂x f (x,d) ≤ −α4(‖x‖), (3.21)

where χ(r) := max{σ (r),ϕ−1
ρ (r)} and α4 ∈ K∞ such that

α4(‖x‖) ≥

α3(‖x‖), V (x) ≥ α2(ρ)
c
2
∼
V (x)α , V (x) ≤ α1(δ)

.

Consequently,
∼
V is a finite-time ISS Lyapunov function for (3.1). �

Proof of Theorem 3.2. The proof follows closely the reasoning of the sufficiency proof of Theorem

3.1. Instead of (3.19), the estimate

DV (x)f (x,d) ≤ −c1V (x)α − c2V (x)β

is obtained. Then, form Theorem 1.3 we know that the inequality (3.5) holds with β(r, t) = 0 ∀t ≥∼T
(r) and that supr∈R≥0

∼
T (r) < +∞. Since the estimates (3.17) and (3.18) also hold in this case, we

conclude FXISS of the origin of (3.1). �
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Proof of Theorem 3.3.
I Conditions C1, C2 and C4 of Theorem 1.13, and the implicit function theorem imply that the

equation Q(V ,x) = 0 implicitly defines a unique function V : Rn\{0} → R+ such that Q(V (x),x) = 0

for all x ∈ Rn\{0}.
II The function V is continuously differentiable outside the origin and ∂xV = − ∂xQ(V ,x)

∂VQ(V ,x) forQ(V ,x) =

0, x , 0. Condition C3 of Theorem 1.13 implies that the function V can be continuously prolonged

at the origin (by setting V (0) = 0) and that V is positive definite and radially unbounded; by

Lemma 1.2 this means that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (3.22)

for some α1,α2 ∈ K∞ and therefore (1.20) holds.

III The derivative of V along the vector field (3.1) is given by

DV (x)f (x,d) = ∂xV f (x,d)

= − ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d);

and from condition C5iss we obtain

‖x‖ ≥ χ(‖d‖)⇒DV (x)f (x,d) ≤ −γ(‖x‖),

for all (V ,x) ∈Ω. Therefore Q(V ,x) = 0 implicitly defines an ISS Lyapunov function for system

(3.1). Consequently, according to Theorem 1.13, (3.1) is an ISS system.

Converse implication. If system (3.1) is an ISS system, then there exists an ISS Lyapunov function
∼
V : Rn → R≥0 for it (see Theorem 1.7). Then it is clear that the implicit ISS Lyapunov function

Q(V ,x) =
∼
V (x)
V − 1 satisfying C1-C5iss also exists. �

Proof of Corollary 3.1. The proof is a direct consequence of Theorem 3.3 and Lemma 1.3. �

Proof of Theorem 3.4.
Sufficiency. I As shown before, from conditions C1-C4 of Theorem 1.13, Q(V (x),x) = 0 implicitly

defines a unique, proper, positive definite function V (x) such that (3.22) holds and its derivative

along (3.1) is given by

DV (x)f (x,d) = − ∂xQ(V ,x)
∂VQ(V ,x)

f (x,d). (3.23)

II From condition C5ft and (3.23) we have that ‖x‖ ≥ χ(‖d‖) implies that

DV (x)f (x,d) ≤ −cV a(x)

so that Q implicitly defines a finite-time ISS Lyapunov function. The result follows by applying

Theorem 3.1.

Necessity. From Theorem 3.1, if (3.1) is FTISS, there exist a finite-time ISS Lyapunov function Ṽ .
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Then it is straightforward to construct an implicit finite-time ISS Lyapunov Q, e.g. Q =
∼
V
V − 1, that

satisfies conditions C1-C5ft hold. �

Proof of Theorem 3.5. By previous considerations and if condition C5fx holds, then for ‖x‖ ≥ χ(‖d‖)

DV (x)f (x,d) ≤ −c1V (x)α − c2V (x)β ,

so that Q implicitly defines a fixed-time ISS Lyapunov function and from Theorem 3.2 we conclude

that the origin of (3.1) is FXISS. �

Proof of Corollary 3.2. From C5ft* and previous considerations we have that

DV (x)f (x,d) ≤ δ(‖d‖)−κV (x)α .

by adding and subtracting θV (x)α, with θ ∈ (0,κ) we obtain

DV (x)f (x,d) ≤ −(κ −θ)V (x)α −θV (x)α + δ(‖d‖),

and by taking into account (3.22), it becomes clear that it is always possible to find some χ ∈ K∞
such that

‖x‖ ≥ χ(‖d‖)⇒DV (x)f (x,d) ≤ −cV (x)α ,

take, for instance, c = κ−θ and χ = α−1
2 ◦( 1

θδ)1/α. The fixed-time case can be dealt with by following

the same reasoning and repeating the arguments of the proof of Theorem 3.4. �
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Let us consider the perturbed linear control system: ẋ(t) = Ax(t) +Bu(t) + dx(t),

y(t) = Cx(t) + dy(t),
(4.1)

where x ∈ Rn is the state variable, y ∈ Rk is the measured output, u : R→ Rs is the control input,

A ∈ Rn×n is the system matrix, B ∈ Rn×s is the matrix of input gains and the matrix C ∈ Rk×n is the

output matrix which links the measured outputs to the state variables. The pair (A,C) is assumed

to be observable and rank(C) = k.

The goal of this chapter is twofold:

� Design two dynamic observers that estimate the state of the non-perturbed system (4.1) in

a finite time or in a fixed (defined a priori) time, under the assumption that the domain of

initial conditions is unknown.

� Both observers must be robust (in an input-to-state sense) with respect to L∞-bounded

measurement noises dy(t) and L∞-bounded disturbances dx(t).
The theorems to be presented will be used for analysis and design of finite-time and fixed-time

observers using the implicit Lyapunov approach. In this chapter and the one that follows we will

63
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make use of a particular type of implicit LF candidate, whose main properties will be discussed in

detail.

4.1 Implicit Lyapunov Function Candidate

The corresponding implicit LF candidate is selected as

Q(V ,z) := zTDr(V
−1)PDr(V

−1)z − 1, (4.2)

where V ∈ R+, z ∈ Rn, P = P T ∈ Rn×n is a positive definite matrix and Dr(·) is the dilation matrix of

the form

Dr(λ) = diag(λr1In1
,λr2In2

, . . . ,λrmInm), (4.3)

with r = (r1, ..., rm)T ∈ Rm, ri > 0, rmin = min1≤j≤nrj and ni are natural numbers such that n1+...+nm =

n.

Several remarks about this particular selection of candidate function are appropiate.

� The function Q is an implicit analog of the quadratic Lyapunov function. Indeed, for

r1 = ... = rm = 0.5, Q(V ,z) = 0 implies that V = zT P z.

� If m = 2, n1 = n2 = 1 and r1 = 2, r2 = 1, V can be found analically. Indeed, the equation

Q(V ,x) = 0 becomes

V 4 − p22x
2
2V

2 − 2p12x1x2V − p11x
2
1 = 0,

where {pij} are elements of the matrix P > 0 and (x1,x2) ∈ R2. The roots of this equation can

be found using, for example, Ferrari formulas. For higher dimensional systems and/or for a

different selection of r, it becomes much more difficult to obtain V analically. Nonetheless,

using numerical methods, such as the bisection method, V can be easily found numerically

[Polyakov et al., 2015].

� In [Polyakov et al., 2015] the implicit framework is used to design FT and FxT controllers for

a chain of integrators. The structure of the controllers involves online calculation of V , which

makes its implemantation computationally expensive1. In the observation algorithms to be

presented, online calculation of V is not needed and the parameters and the gain matrices

are calculated offline.

� As will be seen, the particular structure of Q allows to tranform the conditions for FTS and

FxTS of Theorems 1.14 and 1.15 into an LMI feasability problem. Moreover, the selection of r

will influence the settling-time estimates, allowing to adjust to some extent the convergence

rate.

� With a suitable selection of r, Q(V ,x) = 0 implicitly defines a homogeneous function V (see

[Polyakov et al., 2014] for more details).
1An improvement of this work, where the online calculation of V is no longer needed can be found in [Zimenko

et al., 2018].
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Block Diagonal Decomposition

The observers’ design starts with a decomposition of the considered system into an appropriate

block canonical form.

Lemma 4.1. Consider the system (4.1) with the pair (A,C) being observable and rank(C) = k. Then
there exists a nonsingular transformation Φ such that

ΦAΦ−1 = FC̃ + Ã, CΦ−1 = (C0 0 ... 0 ) , C̃ = (Ik 0) ∈ Rk×n,

Ã =


0 A12 0 ... 0
0 0 A23 ... 0
...

...
...

. . .
...

0 0 0 ... Am−1m
0 0 0 ... 0

, C0 ∈ Rk×k ,F ∈ Rn×k ,

where m is an integer, Aj−1 j ∈ Rnj−1×nj , nj = rank(Aj−1 j), j = 2, ...,m, so that n1 = rank(C) = k and∑m
i=1ni = n.

We omit the proof of this lemma since it is a consequence of well known results on block

observability and controllability forms (see [Wonham, 1974], [Drakunov et al., 1990a], [Drakunov

et al., 1990b], [Misrikhanov and Ryabchenko, 2011]), however, we provide a suitable algorithm

to calculate the transformation matrix Φ in the Proofs section. If k = 1 then m = n, ni = 1 and Φ

transforms the matrix A into the canonical Brunovsky form. It is also worth stressing that canonical

forms and related transformations also exist for nonlinear systems (see for instance [Isidori, 2013],

[Khalil and Praly, 2014]). Therefore, the observer design algorithms given below can be adapted to

the nonlinear case.

4.2 Observers’ Design

Finite-Time Observer

Let us consider the following nonlinear observer

d
dt
x̂(t) = Ax̂(t) +Bu(t)− g

FT
(y(t)−Cx̂(t)), (4.4)

where x̂(t) ∈ Rn is the observer state vector and the function g
FT

: Rk→ Rn is defined as

g
FT

(σ ) := Φ−1
[
Dr̃

(
‖P̃ C−1

0 σ‖−1
)
L
FT
−F

]
C−1

0 σ, (4.5)

where σ ∈ Rk , the matrices Φ ∈ Rn×n, C0 ∈ Rk×k and F ∈ Rn×k are defined in Lemma 4.1, Dr̃(·) is the

dilation matrix given by (4.3) with

r̃=
(

µ
1+(m−1)µ ,

2µ
1+(m−1)µ , ...,

mµ
1+(m−1)µ

)T
, µ ∈ (0,1], (4.6)
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and L
FT
∈ Rn×k and P̃ ∈ Rk×k are matrices of observer gains, to be determined. The error equation in

the disturbance-free case (i.e. dx = 0, dy = 0) has the form

ė =
(
Ã+Dr̃

(
‖P̃ C̃e‖−1

)
L
FT
C̃
)
e, (4.7)

where e = Φ(x − x̂), Ã ∈ Rn×n and C̃ ∈ Rk×n are defined in Lemma 4.1. Obviously, if µ→ 0 then

Dr̃
(
‖P̃ C̃e‖−1

)
→ In and the presented observer becomes the classical Luenberger one.

Remark 4.1. If the term ‖P̃ C−1
0 σ‖ in (4.5) is replaced by ε(1+(m−1)µ)/µ where ε > 0 is a small constant,

then the system (4.4)-(4.5) becomes a high-gain observer [Prasov and Khalil, 2013], [Khalil and

Praly, 2014] with the error dynamics given by

ė =
(
Ã+ diag(ε−1In1

,ε−2In2
, · · · ,ε−mInm)L

FT
C̃
)
e.

In our algorithms the gain factor ε depends on the available part of the observation error, namely,

on σ = y −Cx̂ = Ce. This allows the finite-time and fixed-time observers to be less sensitive with

respect to noises (see Section 4.3).

Let us defineHr =diag(r1In1
, r2In2

, ..., rmInm)∈Rn×n, r =
[
1+ µ

1+(m−1)µ

]
1m−r̃ and Ξ(λ)=λ

(
Dr̃(λ−1)−In

)
.

Theorem 4.1. Let for some µ ∈ (0,1], α > 0, ξ > 0 and τ ≥ 1 the system of matrix inequalities P Ã+ÃTP+C̃T Y T+Y C̃+ξP+α(PHr+HrP ) P

P −ξZ

 ≤ 0, (4.8a)

P > 0, Z > 0, X > 0, (4.8b) τX Y T

Y P

 ≥ 0, (4.8c)

P ≥ C̃TXC̃, (4.8d)

PHr +HrP > 0, (4.8e)

Ξ(λ)ZΞ(λ)≤ 1
τ P , ∀λ∈ [0,1], (4.8f)

be feasible for some P ,Z ∈Rn×n, Y ∈Rk×n and X ∈ Rk×k. Then the error equation (4.7) with L
FT

=P −1Y

and P̃ = X1/2 is globally finite-time stable with settling time T ≤ V ρ(e(0))
αρ ,ρ= µ

1+(m−1)µ , where V : Rn→ R
is defined implicitly by the equation Q(V , ·) = 0 with Q given by (4.2).

In other words, this theorem claims that any solution of the observer system (4.4) converges to

a solution of the real system (4.1) in a finite time T , which is dependent on the initial estimation

error e(0) ∈ Rn. The main idea of the proof is to show that the function Q (defined in the statement

of Theorem 4.1) satisfies all conditions of Theorem 1.14. Proofs of all theorems and propositions

are given in the Proofs section.

Corollary 4.1. The system of matrix inequalities (4.8) is feasible for sufficiently small µ > 0.
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Indeed, observability of the pair (A,C) implies that the pair (Ã + 0.5(αHr + ξIn), C̃) is also

observable. Hence, it can be easily shown that the inequality (4.8a) is feasible with some positive

definite matrices P ,Z ∈ Rn×n and Y ∈ Rk×n. The matrix inequalities (4.8d) and (4.8c) are also

feasible for some X ∈ Rk×k and sufficiently large τ ≥ 1. Since ‖Ξ(λ)‖ → 0 uniformly on λ ∈ [0,1] as

µ→ 0, then the inequalities (4.8e), (4.8f) will hold for sufficiently small µ > 0.

In order to apply Theorem 4.1 we need to solve the parametrized system of nonlinear matrix

inequalities (4.8) with respect to variables P , X, Z, Y for a given µ ∈ (0,1] and α,ξ,τ > 0. By

fixing the value λ ∈ [0,1], the system (4.8) becomes a system of LMIs, which can be solved using

any appropriate mathematical software (e.g. MATLAB). However, the mentioned LMIs must be

checked for any λ ∈ [0,1]. Due to the smoothness of Ξ(λ) with respect to λ ∈ (0,1], this can be done

on a proper grid constructed over this interval. The next corollary provides sufficient feasibility

conditions for the parametrized matrix inequality (4.8f).

Proposition 4.1. The parametric inequality (4.8f) holds if

Ξ(qi)ZΞ(qi) + 1
2 (q2

i − q
2
i−1)M < 1

τ P , i = 1, ...,N , (4.9a)

P > 0, Z > 0, M > 0 (4.9b)(
(In −Hr̃ )Z +Z(In −Hr̃ ) −ZHr̃

−Hr̃Z M

)
> 0, (4.9c)

where 0=q0<q1<...<qN =1, Hr̃ =diag(r̃1In1
, r̃2In2

, ..., r̃mInm), P ,M,Z ∈ Rn×n.

The provided result allows the implementation of a simple algorithm to solve the parametrized

system of matrix inequalities (4.8) with fixed α, ξ, τ and µ.
Algorithm 4.1.

Initialization: N = 1,q
0

= 0,q
N

= 1,Σ = {q0,qN}.
Loop: While the system of LMIs (4.8a-4.8d), (4.9) is not feasible, do Σ← Σ∪

{
qi−1+qi

2

}N
i=1

and N ← 2N .

Since the matrix inequality (In−Hr̃)Z+Z(In−Hr̃) > 0 is obviously feasible for sufficiently small

µ > 0, then, in the view of Corollary 4.1, the presented algorithm always finds the required solution

if µ is sufficiently small.

Fixed-Time Observer

Let us consider now the observer

d
dt
x̂(t) = Ax̂+Bu(t)− g

FX
(y(t)−Cx̂(t)), (4.10)

where x̂ ∈ Rn and the function g
FX

: Rk→ Rn is defined as

g
FX

(σ ) := Φ−1
[

1
2

{
Dr̃

(
‖P̃1C

−1
0 σ‖

−1
)

+Dr̃
(
‖P̃2C

−1
0 σ‖

)}
L
FX
−F

]
C−1

0 σ,

where σ ∈ Rk, the matrices Φ ∈ Rn×n, C0 ∈ Rk×k and F ∈ Rn×k are defined in Lemma 4.1, and the

matrices P̃i ∈ Rk×k , i = 1,2 and L
FX
∈ Rn×k are gain matrices to be determined.
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The error equation between (4.1) and (4.10) with dx = dy = 0 is given by

ė=
(
Ã+ 1

2

{
Dr̃

(
‖P̃1C̃e‖−1

)
+Dr̃

(
‖P̃2C̃e‖

)}
L
FX
C̃
)
e, (4.11)

e = Φ(x − x̂), where Ã ∈ Rn×n and C̃ ∈ Rk×n are defined in Lemma 4.1.

Let us define ri = (−1)i r̃ +
[
1+ (−1)i+1µ

1+(m−1)µ

]
1m, Ξ̄δi (λ) = λ1

2

{
Dr̃

(
λi−1

2
δ1λ1

)
+Dr̃

(
δ2λ1

λi−2
2

)
− 2In

}
, δ = (δ1,δ2),

λ = (λ1,λ2) and Hi = diag{(ri)1In1
, ..., (ri)mInm} ∈ R

n×n for i = 1,2.

Theorem 4.2. Let for some µ ∈ (0,1], α > 0, ξ > 0, τ ≥ 1 and δ= (δ1,δ2),δi > 0, i = 1,2, the system of
matrix inequalities P Ã+ÃTP +C̃T Y T +Y C̃+ξP +α(PHi+HiP ) P

P −ξZi

 ≤ 0, (4.12a)

 τX Y T

Y P

 ≥ 0, (4.12b)

P > 0, X > 0, Zi > 0, (4.12c)

PHi+HiP >0, (4.12d)

P ≥ C̃TXC̃, (4.12e)

Ξ̄δi (λ)ZiΞ̄
δ
i (λ)≤ 1

τ P , ∀λ∈ [0,1]×[0,1], (4.12f)

be feasible with P ,Z1,Z2 ∈ Rn×n, Y ∈ Rn1×n and X ∈ Rk×k. Then the error equation (4.11) with
L
FX

= P −1Y , P̃i = δiX1/2 is globally fixed-time stable with Tmax ≤
1+(m−1)µ

0.5αµ .

Under the following additional restrictions, the parametric LMI (4.12f) can be simplified:

Proposition 4.2. Let 0 = q0 < q1 < ... < qN1
= 1 and 0 < p0 < p1 < ... < pN2

= 1 for some N1,N2 ≥ 1. If
the positive definite matrices Zi ,Si ,Mi ,Ri ,Ui ∈ Rn×n satisfy the following system of LMIs ZiHr̃+Hr̃Zi ZiHr̃

Hr̃Zi Ui

 ≥ 0, (4.13a)

MiHr̃+Hr̃Mi > 0, (4.13b)
2Zi−ZiHr̃−Hr̃Zi ZiHr̃ −ZiHr̃

Hr̃Zi Mi 0

−Hr̃Zi 0 Si

 ≥ 0, (4.13c)

Ξ̄δi (qj ,ps)ZiΞ̄
δ
i (qj ,ps) + ln

(
ps
ps−1

)
Ξ̄δi (qj ,0)UiΞ̄

δ
i (qj ,0) +

q2
j −q

2
j−1

2 (Dr̃ (δ2)MiDr̃ (δ2) + Si) ≤ 1
τ P , (4.13d)

(
Υi(qj ,p0) Ξ̄δi (qj ,0)ZiDr̃

(
p1/2

0

)
Dr̃

(
p1/2

0

)
ZiΞ̄

δ
i (qj ,0) Ri

)
≥ 0, (4.13e)

where Υi(qj ,p0) := 1
τ P − D̃(qj )(Dr̃ (p0)ZiDr̃ (p0)+Dr̃ (p

1/2
0 )RiDr̃ (p

1/2
0 ))D̃(qj )− Ξ̄δi (qj ,0)ZiΞ̄

δ
i (qj ,0)−

q2
j −q

2
j−1

2 (Mi +Si)

and D̃i(qj ) :=
qj
2 Dr̃

(
(δ3−iqj )(−1)i

)
, i = 1,2, j = 1, ...,N1, s = 1, ...,N2, then (4.12f) holds.
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Based on this proposition, an algorithm for solving the parametrized system of LMIs (4.12) can

be presented, analogously to the finite-time case.

Algorithm 4.2.

Initialization: β > 0, N1 = 1, N2 = 1, p0>0, p
N1

=1, q0 =0, q
N2

=1, Σ= {q0,qN1
}, Λ= {p0,pN2

}.
Loop: While the system of LMIs (4.12a-4.12e), (4.13) with qj ∈ Σ, ps ∈Λ is not feasible, do

Σ←Σ∪
{
0.5(qj−1+qj )

}N1

j=1
with qj ∈Σ, N1←2N1,

Λ←Λ∪
{
p1e
−β

}
with p1∈Λ, N2←N2 + 1.

Remark that the grid Λ is a logarithmic grid such that the term ln
(
ps
ps−1

)
in (4.13d) equals β for

any ps ∈Λ\{p0,p1}.

Robustness Analysis

We consider now (4.1) with nonzero dx : R+ → L∞(Rn), and nonzero dy : R+ → L∞(Rk). Since

the observers’ robustness follows from their homogeneity properties, we will establish, for each

observer, the type of homogeneity that it exhibits and next that they are robust against bounded

disturbances and bounded measurement noise. Again, the error variable is defined as e = Φ(x − x̂).

Corollary 4.2. Consider the perturbed error equation between (4.1) and (5.5)

ė = Ãe+Dr̃(‖P̃ C̃e+ dy‖−1)L
FT

(C̃e+ dy) +φ, (4.14)

where φ=−FC̃dy+Φdx, dx ∈L∞(Rn),dy ∈L∞(Rk) and assume that all conditions of Theorem 4.1 are
satisfied. Then the system (4.14) is ISS for µ ∈ (0,1) and iISS for µ = 1.

A similar result can be provided for the fixed-time observer:

Corollary 4.3. Consider the following perturbed error equation between (4.1) and (4.10)

ė=Ãe+ 1
2 {Dr̃(ε

−1
1 ) +Dr̃(ε2)}L

FX
(C̃e+ dy)+φ, (4.15)

where φ=Φdx−FC̃dy , εi =‖P̃iC̃e+dy‖,i=1,2, dx,dy ∈L∞ and assume that all conditions of Theorem 4.2
are satisfied. Then the error dynamics (4.15) is ISS stable with respect to additive disturbances dx and
measurement noises dy .

Only qualitative analysis of robustness (i.e. ISS) is presented in this section. The quantitative

one needs further research developments using ideas introduced in [Sanfelice and Praly, 2011],

[Prasov and Khalil, 2013], [Menard et al., 2017]. The LMIs presented in the previous section are

expected to be useful for obtaining of rather precise ellipsoidal estimates of the observation error

in the perturbed case.
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4.3 Numerical Simulations

The following two numerical simulations aim to show the main properties of the finite-time and

the fixed-time observers. In both examples, an inverted-cart pendulum model will be used. In the

first example, the robustness of the FT observer will be studied by applying it to the nonlinear

plant and a comparison with a high-gain (HG) observer will be included. The second example will

focus on the uniformity w.r.t to initial conditions of the FxT observer. A linearized model will be

used such that we can compare the performance of the observers with initial conditions far away

from the linearizing equilibrium point.

The state vector is given by x = [x, ẋ,θ, θ̇]T , where as usual (x, ẋ) represents the position and the

velocity of the cart and (θ, θ̇) the angle (from the vertical down position) and the angular velocity

of the pendulum. The model parameters are M = 0.5 Kg - mass of the cart, mc = 0.2 Kg - mass of

the pendulum, b = 0.1 N/m/s - cart friction coefficient, l = 0.3 m - length to pendulum center of

mass, I = 0.006 Kg - moment of inertia of the pendulum.

It is assumed that only the cart position and pendulum angle can be measured directly. The

nonlinear equations describing the system motion are given by

(M +mc)ẍ+ bẋ+mc − lθ̈ cosθ −mclθ̇2 sinθ = Fin

(I +mcl
2)θ̈ +mcgl sinθ +mclẍcosθ = 0,

where Fin represents the input force. A simple proportional control law Fin = Kp
d
dt θ̂(t) is used to

stabilize the pendulum around the downward position and d
dt θ̂(t) is an estimate of the angular

velocity, to be obtained using the observers. The linearization of the model around the downward

equilibrium point x0 =0 ∈ R4 gives the following parameters for (4.1):

A=


0 1 0 0

0 −0.1818 2.672 0

0 0 0 1

0 0.4545 −31.181 0

 , B=


0

1.818

0

−4.545

 , C=

 1 0 0 0

0 0 1 0

 .
The first step of the observer design is to transform the linearized model into the observable

canonical form, given in Lemma 4.1, by obtaining the matrix Φ =
(

0 0 1 0
−1 0 0 0
a −1 0 0
b 0 0 1

)
, where a = −0.1818

and b = −0.4545.

Example 4.1 Comparison between FT and HG observers

In order to make a fair comparison, the parameters of both observers have been adjusted in

order to to have a similar time response for the initial condition x0 = (0,−2,π/4,1); that is to

say, the norm of the estimation errors is admitted to be less than 0.15 for t ≥ 0.5 s. Using
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Algorithm 4.1 with (µ,α,τ,ξ) = (0.25,2.5,100,4), we design the FT observer (4.4), (4.5) with

L
FT

=
(
−9.9080 0 0 −46.8452

0 −9.9080 −46.8452 0

)T
, P̃ =0.0969

(
1 0
0 1

)
,

and we compare it with the HG observer, designed according to Remark 4.1. Namely, the

term ‖P̃ C−1
0 σ‖ in (4.5) is replaced by ε(1+(m−1)µ)/µ.

Note that, the gain factor ε = 0.3 (and correspondingly the admissible estimation error

‖e(0.5)‖ ≤ 0.15) is selected sufficiently large since the HG observer becomes more sensitive

with respect to measurement noises as ε decreases. The estimation error of the FT observer

turned out to be 10 times less (‖e(t)‖ ≤ 0.01) for t ≥ 0.5 s. The numerical simulations have

been done using the explicit Euler method with a sampling period of 10−4.

Figure 4.1.a depicts the evolution of the observation errors of FT and HG observers for the

noise-free case. Although the observers were designed using a linearized model, the system

remains stable for the complete nonlinear model. It is also worth noting that the FT observer

demonstrates a smaller peaking during transients.

To compare the observers for the case of noisy measurements, a band-limited white noise of

power 10−5 has been added to the output signal during the simulation. The corresponding

results are presented at Figure 4.1.b. They show almost twice better precision (in both

L2
(0.5,1.5) and L∞(0.5,1.5) norms of the error) of the FT observer with respect to the HG one. This

fact has a simple explanation in the context of high-gain observer theory: since the gain
factor ε of the FT observer depends on the available part of the observation error (see Remark 4.1),
namely,

ε = ε(σ ) = ‖ ∼P C−1
0 σ‖µ/(1+(m−1)µ), σ = y −Cx̂ = Ce,

then its value is automatically adapted to the noises of different magnitude (the larger the noise
magnitude, the smaller the gain). In the noisy case the convergence time of the FT observer

slightly increases, allowing a better estimation precision.

Example 4.2 Uniformity w.r.t. to initial conditions

Here we compare the FT and the FxT observers assuming that the FT observer is derived as

the homogeneous approximation of the FxT observer at zero, i.e. LFT = 0.5LFX and
∼
P=
∼
P 1,

where

L
FX

=
(
−3.8624 0 0 −6.7081

0 −3.8624 −6.7081 0

)T
,
∼
P 1=

(
0.0233 0

0 0.0233

)
,
∼
P 2=

(
0.2589 0

0 0.2589

)
are the gain matrices of the FxT observer obtained applying Algorithm 4.2 with the param-

eters (µ,α,τ,ξ,δ1,δ2,β) = (0.12,0.006,15,1,0.3,10/3,0.3). The comparison results between

the FT and FxT observers in the noise-free case are depicted in Figure 4.2. They confirm low

convergence time sensitivity with respect to initial conditions for the FxT algorithm; for the
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Figure 4.1 – Simulation plots of eẋ and eθ̇ for the HG and FT observers applied to the nonlinear plant with
initial conditions x(0) = (0,−2, π4 ,1) and Kp = 10. a) shows the noise-free case and in b) a band-limited white
noise was introduced in the measurements.

FT one it is possible to see that the convergence time increases drastically as the norm of the

initial conditions increases.

The result of the simulations are depicted using a logarithmic scale in order to demonstrate

the fast (hyper-exponential) convergence rate of the observers.

Since locally (close to the origin of the error system) the FxT algorithm almost coincides

with the FT one, it has almost the same sensitivity with respect to measurement noises (see

Fig. 4.3).

t (seconds)
0 5 10 15 20

‖e
‖

10−10

100

1010

1020

FT Observer
FxT Observer

Figure 4.2 – Simulation plot of ‖e‖ for the FT and FxT observers applied to the linearized plant for three
different initial conditions x(0) = (0,1, π4 ,0),x(0) = 103(0,1, π4 ,0),x(0) = 107(0,1, π4 ,0) and Kp = 5.
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Figure 4.3 – Simulation plot of ‖e‖ for the FT and FxT observers with measurement band limited noise in the
linearized plant, with initial conditions x(0) = 103(0,1,π,0) and Kp = 5.

4.4 Experimental Results

In this section we present a set of experimental results, obtained by applying the FT observer in

order to estimate the angular velocities of a rotary pendulum, also known as the Furuta pendulum.

The performance of the angular velocity estimation will be compared against a conventional

high-pass filter.

The physical setting consists of a QUANSER QUBE-Servo 2 rotary pendulum, depicted in Figure

4.4. The state of the pendulum is described by the vector x = [θ,α, θ̇, α̇]T where θ is the rotary

angle and α is the pendulum angle, both measured in radians, α = 0 represents the pendulum’s

downward position and a positive increment of α represents a turn in the counter-clockwise

direction (see Figure 4.4).

Figure 4.4 – Picture and free body diagram of the QUANSER rotary pendulum.
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The nonlinear equations of the rotary pendulum are given by(
mpL

2
r + 1

4mpL
2
p − 1

4mpL
2
p cos(α)2 + Jr

)
θ̈ −

(
1
2mpLpLr cos(α)

)
α̈

+
(

1
2mpL

2
p sin(α)cos(α)

)
θ̇α̇ +

(
1
2mpLpLr sin(α)

)
α̇2 = τ −Dr θ̇ (4.16)

1
2mpLpLr cos(α)θ̈ +

(
Jp + 1

4mpL
2
p

)
α̈

−1
4mpL

2
p cos(α)sin(α)θ̇2 + 1

2mpLpg sin(α) = −Dpα̇, (4.17)

where m, L, J and D represent the mass, the length, the moment of inertia and the damping

coefficient of either the pendulum (subindex p) or the rotary arm (subindex r).

The torque τ , applied at the base of the rotary arm, is generated by the servo motor as described

by the equation

τ =
km

(
Vm − kmθ̇

)
Rm

,

where km is the motor’s back-emf constant and Rm is the motor’s terminal resistance.

The pendulum’s parameter values are as follows:

Rotary DC Motor

Param. Value Units

Rm 8.4 Ω

km 0.042 V ·s
rad

Rotary Arm

Param. Value Units

mr 0.095 kg

Lr 0.085 m

Jr
mr ·L2

r
12 kg ·m2

Dr 0.001 N ·m·s
rad

Pendulum Link

Param. Value Units

mp 0.024 kg

Lp 0.129 m

Jp
mp ·L2

p

12 kg ·m2

Dp 0.00001 N ·m·s
rad

The linearization2 around the downward equilibrium point yields the following values for the

state-space model:

A =
1
JT


0 0 JT 0

0 0 0 JT
0 1

4m
2
pL

2
pLrg −

(
Jp + 1

4mpL
2
p

)
Dr

1
2mpLpLrDp

0 −1
2mpLpg

(
Jr +mpL2

r

)
1
2mpLpLrDr −

(
Jr +mpL2

r

)
Dp


and

B =
1
JT

[
0 0 Jp + 1

4mpL
2
p −1

2mpLpLr
]T
, C =

1 0 0 0

0 1 0 0

 , D =

00
 ,

where JT = JpmpL2
r + JrJp + 1

4 JrmpL
2
p.

The physical platform of the rotary pendulum provides photo sensors that allow to measure

both θ and α as increments in the rotary discs and convert them into values in radians. The goal of

the experiment is to apply a voltage input signal to the rotational motor and estimate the angular

velocities θ̇ and α̇ using only measurements of the angles θ and α.

2For more details on the pendulum’s modeling and its linearization refer to the QUANSER QUBE-Servo 2 user
manual (https://www.quanser.com/products/qube-servo-2/).

https://www.quanser.com/products/qube-servo-2/
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Two cases are considered: 1) A high-pass filter with transfer function 50s
s+50 is applied to each of

the two angle measurements θ and α in order to estimate θ̇ and α̇. This is in fact the method used

by the manufacturer to estimate the angular velocities. 2) The finite-time observer (4.4), (4.5) with

parameters (µ,α,τ,ξ) = (0.3,2.5,100,4).

The selection of the observer parameters has been made following the same procedure as the

numerical example in the previous section, this is, the parameters have been chosen for the FT

observer to have a similar time responses as the high-pass filtering. The parameter selection of the

FT observer yields, using Algorithm 4.1, the gain matrices

L
FT

=
(
−9.976 0 0 51.674

0 −9.976 51.674 0

)T
, P̃ =0.0139

(
1 0
0 1

)
.

Figure 4.5 – Experiment’s results. The upper left figure shows the input voltage signal. The upper right
plot shows the angle measurements, obtained from the pendulum’s photo sensors. The lower part of the
figure shows the estimations of the angular velocities obtained with the high-pass filter (left) and with the
FT observer (right).

The experiment’s results are depicted in Figure 4.5, they were obtained using the manufacturer’s

Simulink interface and they confirm the noise reduction property of the FT observer. Note that no

additional noise has been added to the physical setting, so that the noise present in the angular

velocity measurements is produced exclusively by the quantization errors of the photo sensors. To

highlight the noise reduction effect, Figure 4.6 depicts the frequency spectrum of the measurements

signals of θ̇ and α̇. It is possible to see that the amplitude of the high-frequency components of the

measurement signals is significantly smaller in the FT observer.
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Figure 4.6 – Frequency spectrum of the measurement signals θ̇ and α̇ of the high-pass filter (left) and the FT
observer (right).

4.5 Conclusions

This chapter presents finite-time and fixed-time nonlinear observers for MIMO linear systems.

Their key features are homogeneity properties and the use of the implicit Lyapunov function

method for stability analysis of the error equation. The former allows the observers to attain NonA

(finite-time or fixed-time) convergence while the latter simplifies the tuning of the observers’ gains

using LMI-based algorithms. The design is based on a transformation to a canonical observability

form so that similar observers can be easily applied to nonlinear systems that admit this canonical

form. In the case of the FT observer, the presented algorithm always finds a feasible solution.

The observers’ robustness against bounded measurement noises and disturbances was also

studied. It was shown that while both observers are ISS stable, the FT observer becomes iISS if the

parameter µ is equal to zero.

The performance of the observers was tested through numerical simulations and physical

experiments. They confirm a noise reduction effect compared to asymptotic observers. Quantitative

robustness analysis (e.g. construction of a sharp estimate of the observation error in the perturbed

case) is considered an important problem for further research.

4.6 Proofs

Block Decomposition

Let the matrices Ti be defined by the following algorithm:

Initialization : A1 = A, C1 = C, T1 = In, m = 1.

Loop: While rank(Cm)<rown(Am) do Tm+1 =( Ĉm C⊥m ), Am+1 = (C⊥m)T AmC⊥m, Cm+1 = ĈTmAmC
⊥
m, m =

m+ 1, where C⊥m := null (Cm), Ĉm := null
((
C⊥m

)T )
.

This simple algorithm can be easily realized in MATLAB and it helps to construct an orthogonal
coordinate transformation that decomposes the original system (4.1) into a block upper diagonal
canonical form. If the pair (A,C) is observable, then the algorithm given above stops after m
steps, where m < n, and the matrix O=T1

( Iw2 0
0 T2

)( Iw3 0
0 T3

)
...

(
Iwm 0

0 Tm

)
, where wi := n− rown(Ti), is an
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orthogonal matrix such that OTO = OOT = In and

OAOT =


A11 A12 0 ... 0
A21 A22 A23 ... 0

..

.
..
.

..

. . . . ..
.

Am-11 Am-12 ... Am-1m-1 Am-1m
Am1 Am2 ... Amm−1 Amm


, CO =

(
C0 0 ... 0

)
,

where C0 = CĈ1, Aij ∈ Rni×nj , ni := rank(Ci), i, j = 1, ...,m and rank(Ai i+1) = ni+1. This can be

proven, for example, using ideas of duality and Lemma 3 from [Polyakov, 2012].

Since rank(Ai i+1) = ni+1 = rown(ATi i+1) thenATi i+1·Ai i+1 is invertible andA+
i i+1 =(ATi i+1Ai i+1)−1ATi i+1

is the left inverse matrix to Ai i+1. Consider now the next recursive algorithm in the matrix A.

Initialization: A[m]
i j = Ai j , i, j = 1,2, ..,m

Loop: for q =m,m− 1, ...,2

for p = 0,1, ...,q − 2

for j = 1,2, ...,q − p − 1

A
[q-p-1]
q j = A[q-p]

q j −A
[q-p]
q q-p ·A+

q-p-1 q-p ·A
[q-p]
q-p-1 j

end

A
[q-1]
q-1 q-p-1 =A[q]

q-1 q-p-1+A[q]
q-1 q ·A

[q-p]
q q-p ·A+

q-p-1 q-p

end

end
where the superscript [m] represents the m-th iteration over the matrix A. Then it can be shown
that the transformation

Φ =



In1 0 . . . 0 0

−A[2]
22A

+
12 In2 . . . 0 0

...
...

. . .
...

...

−A[2]
m−12A

+
12 −A[3]

m−13A
+
23 . . . Inm−1 0

−A[2]
m2A

+
12 −A[3]

m 3A
+
23 . . . −A[m]

mmA
+
m−1m Inm


O (4.18)

reduces the original matrixA to the block form: ΦAΦ−1 = FC̃+Ã, where n1 = k, F = (A[1]
11 , A

[1]
21 ,..., A

[1]
m-1, A

[1]
m1 )T

and

C̃=[In1
0]∈Rn1×n, Ã =


0 A12 0 ... 0
0 0 A23 ... 0

..

.
..
.

..

. . . . ..
.

0 0 0 ... Am−1m
0 0 0 ... 0

 .
Proof of Theorem 4.1

I. Show that the function Q defined by (4.2) satisfies the conditions C1-C3 of Theorem 1.14. It is
continuously differentiable on R+ ×Rn\{0}. Since P > 0, then the inequalities

λmin(P )‖z‖2

max{V 2minri,V 2maxri}
≤Q(V ,z) + 1≤ λmax(P )‖z‖2

min{V 2minri,V 2maxri}

imply that for any z ∈ Rn\{0} there exist V − ∈ R+ and V + ∈ R+ such that Q(V −, z) < 0 < Q(V +, z).
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Moreover, if Q(V ,z) = 0 then, obviously, the condition C3 of Theorem 1.13 holds. Since ∂Q
∂V =

−V −1zTDr(V −1)(HrP + PHr)Dr(V −1)z, then HrP + PHr > 0 implies ∂Q
∂V < 0 for all V ∈ R+ and all

z ∈ Rn\{0}. So the condition C4 of Theorem 1.13 also holds. Therefore, the equation Q(V ,z) = 0

implicitly defines a positive definite Lyapunov function candidate V : Rn→ R.

II. Let us denote λ = ‖P̃ C̃e‖/V and show that 0 ≤ λ ≤ 1 if (4.8d) holds. By defining ẽ :=Dr(V −1)e,

we have that λ = ‖P̃ C̃e‖/V = ‖P̃ C̃ẽ‖ and ẽT P ẽ = 1 (due to Q(V ,e) = 0). Given (4.8d) and that

P̃ = X1/2, we obtain λ2 = ẽT C̃TXC̃ẽ ≤ ẽT P ẽ = 1.

III. Denote by ∂Qe the partial derivative of Q along (4.7):

∂Qe = 2eTDr(V −1)PDr(V −1)
(
Ã+Dr̃

(
‖P̃ C̃e‖−1

)
L
FT
C̃
)
e.

Taking into account the identitiesDr̃(V )V −1 =Dr(V −1)V µ/(1+(m−1)µ), Dr(V −1)ÃD−1
r (V −1)= V

−µ
1+(m−1)µ Ã

and Dr̃(V −1)L
FT
C̃=V

−µ
1+(m−1)µD−1

r (V −1)L
FT
C̃Dr(V −1) we derive

∂Qe = V
−µ

1+(m−1)µ

(
Dr (V −1)e

Ξ(λ)L
FT

C̃e
‖P̃ C̃e‖

)T
Υ

(
Dr (V −1)e

Ξ(λ)L
FT

C̃e
‖P̃ C̃e‖

)
where Υ =

(
P (Ã+L

FT
C̃)+(Ã+L

FT
C̃)T P P

P 0

)
. Using the matrix inequality (4.8a) with Y = P L

FT
and the

identity eTDr(V −1)PDr(V −1)e = 1 we estimate

∂Qe≤V
−µ

1+(m−1)µ

(
−αeTDr (V −1)(PHr+HrP )Dr (V −1)e+ ξ (P̃ C̃e)T

‖P̃ C̃e‖ P̃
−1LT

FT
Ξ(λ)ZΞ(λ)L

FT
P̃ −1 P̃ C̃e

‖P̃ C̃e‖−ξ
)
.

Since (4.8c) is equivalent to P̃ −1LT
FT
P L

FT
P̃ −1 ≤ τIk with P̃ = X1/2 and taking into account (4.8d) and

(4.8f) we derive

∂Qe ≤
−αeTDr(V −1)(PHr +HrP )Dr(V −1)e

V
µ

1+(m−1)µ

< αV
1− µ

1+(m−1)µ ∂Q
∂V .

Finally, applying Theorem 1.14 we finish the proof.

Proof of Proposition 4.1

Denote W (λ)=zTΞ(λ)ZΞ(λ)z. Since Ξ′(θ)= 1
θΞ(θ)(In −Hr̃ )−Hr̃ , then

W ′(θ) = zT (Ξ′(θ)ZΞ(θ) +Ξ(θ)ZΞ′(θ))z

= zT
(
Ξ(θ)
In

)T (
1
θ (In−Hr̃ )Z+1

θZ(In−Hr̃ ) −ZHr̃
−Hr̃Z θM

)(
Ξ(θ)
In

)
z −θzTMz

and due to (4.9c) and the Schur complement we have W ′(θ) ≥ −θzTMz and W (λ) ≤W (qi)− 1
2 (λ2 −

q2
i )zTMz for any λ ∈ [qi−1,qi], i = 1, ....,N . Hence, the set of inequalities (4.9) imply (4.8f).

Proof of Theorem 4.2

I. The function Qi defined by (4.2) with r = ri , i = 1,2 satisfies the conditions C1-C4 of Theorem

1.13 (see proof of Theorem 4.1). Note that Q1(1, z) =Q2(1, z) for all z ∈ Rn. In order to complete the

proof we need to show that the conditions C7-C9 of Theorem 1.15 hold.
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II. Let P̃i = δi P̃ with P̃ = X1/2. In the proof of Theorem 4.1, it was shown that 0 ≤ λ1 = ‖P̃ C̃e‖V ≤ 1

with Q(V ,e) = 0 if (4.12e) holds. The same result remains true for Qi(V ,e) = 0.

III. Let ∂Qei be the derivative of Qi along the equation (4.11)

∂Qei = 2eTDri (V
−1)PDri (V

−1)

Ã+
Dr̃

(
1

δ1λ1V

)
+Dr̃ (δ2λ1V )

2 L
FX
C̃

e, λ1 =
‖P̃ C̃e‖
V

.

Since Dri (ρ)=ρ1+ (−1)i+1µ
1+(m−1)µDr̃

(
ρ(−1)i

)
, ρ>0 then

∂Qei = V
(−1)i µ

1+(m−1)µ

(
Dri (V

−1)e

Ξ̄δi (λ)L
FX

C̃e
‖P̃ C̃e‖

)T
χ

(
Dri (V

−1)e

Ξ̄δi (λ)L
FX

C̃e
‖P̃ C̃e‖

)
,

λ = (λ1,λ2), where χ =
(
P (Ã+L

FX
C̃)+(Ã+L

FX
C̃)TP P

P 0

)
, λ2 = V 2 ∈ (0,1] if i = 1 and λ2 = 1/V 2 ∈ (0,1] if

i = 2. Repeating the considerations of the proof of Theorem 4.1 we derive that (4.12) imply

∂Qei ≤ −αV
(−1)i µ

1+(m−1)µ eTDri(
1
V )(PHi+HiP )Dri(

1
V )e. Taking into account ∂Qi (V ,e)

∂V = −V −1eTDri(V
−1)(HiP +

PHi)Dri (V
−1)e and LMI (4.12d) we derive that all conditions of Theorem 1.15 hold, so that the

error equation (4.11) is fixed-time stable and Tmax ≤
1+(m−1)µ

0.5αµ .

Proof of Proposition 4.2

I. Consider the function Wi(λ) = zT Ξ̄δi (λ)ZiΞ̄
δ
i (λ)z, where z ∈ Rn is an arbitrary non-trivial vector.

Since

∂Ξ̄δi
∂λ1

=
1
λ1

Ξ̄δi (λ) +
1
2

(
Dr̃

(
δ2λ1/λ

i−2
2

)
−Dr̃

(
λi−1

2 /(δ1λ1)
))
Hr̃

=
1
λ1

(
Ξ̄δi (λ)(In −Hr̃ ) +Dr̃(δ2λ1/λ

i−2
2 )Hr̃ +Hr̃

)
,

then

∂Wi
∂λ1

= zT ∂Ξ̄i∂λ1
ZΞ̄δi z+ zT Ξ̄δi Z

∂Ξ̄δi
∂λ1

z

= zT


Ξ̄δi (λ)

Dr̃

(
δ2λ1
λi−2

2

)
In


T  2Zi−Hr̃Zi−ZiHr̃

λ1
ZiHr̃ −ZiHr̃

Hr̃Zi 0 0
−Hr̃Zi 0 0




Ξ̄δi (λ)

Dr̃

(
δ2λ1
λi−2

2

)
In

z.
Using the inequality (4.13c) we derive ∂Wi

∂λ1
≥−λ1Ψi(λ) −λ1z

T Siz, where

Ψi(λ) = zTDr̃
(
δ2λ1

λi−2
2

)
MiDr̃

(
δ2λ1

λi−2
2

)
z.

On the other hand, the inequality MiHr̃ + Hr̃Mi > 0 implies the estimates ∂Ψi (λ)
∂λ1

> 0 and
∂Ψi (λ)
∂λ2

≥ 0. Hence we conclude ∂Wi
∂λ1
≥ −λ1z

TDr̃(δ2)MiDr̃(δ2)z − λ1z
TSiz for λ ∈ [0,1] × [0,1] and
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Wi(λ)≤Wi(qj ,λ2) +
q2
j −λ

2
1

2 zT (Dr̃(δ2)MiDr̃(δ2) + Si)z for all λ1 ∈ [qj−1,qj ].

II. Since Ξ̄δi (λ) = Ξ̄δi (λ̃) + λ1
2 Dr̃

(
λ

(−1)i+1

1

)
Dr̃(λ2) with λ̃ = (λ1,0), then we derive the identity Wi(λ) =

zTBi(λ1)T Fi(λ2)Bi(λ1)z, where Fi(λ2) =
(
Dr̃ (λ2)
In

)
Zi

(
Dr̃ (λ2)
In

)T
and Bi(λ1) =

(
λ1
2 Dr̃

(
(λ1δ3−i )(−1)i+1

)
Ξ̄δi (λ̃)

)
. Let us

denote κ(λ2) = ln(λ2W ). Since κ has the derivative

dκ
dλ2

=
1

λ2W

(
W + zTBi(qj )

T
(
Dr̃ (λ2) 0

0 In

)
Γi

(
Dr̃ (λ2) 0

0 In

)
Bi(qj )z

)
,

where Γi =
(
Hr̃Zi+ZiHr̃ Hr̃Zi

ZiHr̃ 0

)
. Since Γi +

(
0 0
0 Ui

)
≥ 0 due to (4.13a), dκ

dλ2
≥ 1
λ2
− ce−κ(λ2) with c = zT Ξ̄δi (λ̃)Ui

Ξ̄δi (λ̃)z. Hence W (λ) ≤W (λ1,ps) + c ln(psλ−1) ≤W (λ1,ps) + c ln( ps
ps−1

) for all λ2 ∈ [ps−1,ps]. Therefore,

LMIs (4.13a-4.13d) imply W (λ) ≤ τ−1zTP z for all λ ∈ [0,1]× [p0,1]. Finally, it is easy to check that

Wi(λ) ≤ W̃ (λ) :=zTBi(λ1)T
(
Dr̃ (λ2)ZiDr̃ (λ2)+Dr̃ (λ2) 0

0 Zi+ZiDr̃ (λ2)Zi

)
Bi(λ1)z. Since ZiHr̃+Hr̃Zi≥0 then ∂W̃

∂λ2
≥0 and

W (λ)≤W̃ (λ1,p0) for all λ2∈ [0,p0]. Therefore, the inequality (4.13e) implies W (λ)≤τ−1zTP z for all

λ∈ [0,1]×[0,p0].

Proof of Corollary 4.2

Denote with f̃ (e,d) the right-hand side of (4.14), where d = (dx,dy). For d = 0 it coincides with

the right-hand side of (4.7) and defines an r-homogeneous vector field with degree −µ
1+(m−1)µ <

0. Taking into account that D−1
r (λ)ÃDr(λ) = λ

− µ
1+(m−1)µ Ã and that C̃Dr(λ)e = λr1C̃e, we derive

λ
µ

1+(m−1)µD−1
r (λ)(Ã+Dr̃(

1
‖P̃ C̃Dr (λ)e‖ )LFT C̃)Dr(λ)e = (Ã+Dr̃(‖P̃ C̃e‖−1)L

FT
C̃)e, therefore the error dynamics

(4.7) is r-homogeneous of degree η = − µ
1+(m−1)µ . Selecting r̄ = (1k , r −

µ
1+(m−1)µ1n) ∈ Rk+n and using

Theorem 1.10, we conclude ISS for system (4.14) for µ ∈ (0,1). If µ = 1 then r̄min = 0 and only iISS

can be asserted for (4.14).

Proof of Corollary 4.3

Denote f̃ (e,d) the right-hand side of (4.15), where d = (dx,dy). For d = 0 it defines a vector field

f (·) = f̃ (·,0) that is locally homogeneous at 0 and at +∞, namely, (r1,0, f0)-homogeneous with

negative degree η0 = − µ
1+(m−1)µ and (r2,+∞, f∞)-homogeneous with positive degree η∞ = µ

1+(m−1)µ ,

f0 =(Ã+ 1
2Dr̃(‖P̃1C̃e‖−1)L

FX
C̃)e and f∞=(Ã+ 1

2Dr̃(‖P̃2C̃e‖)LFXC̃)e.

Indeed,

lim
λ→0

λ−ηD−1
r1 (λ)

[Dr̃ (‖P̃1C̃Dr1 (λ)e‖−1)+Dr̃ (‖P̃2C̃Dr1 (λ)e‖)
2 L

FX
C̃Dr1(λ)e+ ÃDr1(λ)e

]
= lim
λ→0

(Ae+
1
2
Dr̃(‖P̃1C̃e‖−1)L

FX
C̃e)

for η = − µ
1+(m−1)µ < 0, so that the r1-homogeneous approximation of degree η around 0 of (4.11)

is f0. Analogously, it can be shown that f∞ is the r2-homogeneous approximation of (4.11) with

degree η∞ = µ
1+(m−1)µ > 0 at +∞. It is worth stressing that if all the conditions of Theorem 4.2

hold, then the origins of ė = f0(e), ė = f (e) and ė = f∞(e) are globally asymptotically stable. Hence,
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selecting r̄0 = (1k , r1 −
µ

1+(m−1)µ1n) ∈ Rk+n and r̄∞ = (1k , r2 + µ
1+(m−1)µ1n) ∈ Rk+n, and using Theorem

1.11 we derive that the system (4.15) is ISS.
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This chapter presents an output control scheme that estimates and regulates to zero, both

in fixed-time, a chain of integrators. The output control scheme relies in a switching strategy

that commutes, from positive to negative, the homogeneity degree of the full control system. As

the switch triggering signal, the norm of the states will be used for the controller, whereas an

auxiliary dynamics will be introduced for the observer. In the first part of the chapter, rather simple

conditions to achieve FxTS of the control setting will be given, however, under these preliminary

conditions, it will not be possible to obtain settling-time estimates, nor to determine how the

parameter choice will influence the convergence time. In Section 5.2, using the implicit Lyapunov

approach, a parameter tuning algorithm that allows to influence the settling-time will be presented.

Consider a chain of integrators:

ẋ = A0x+ bu + d,

y = Cx+ v,
t ≥ 0, (5.1)

where x ∈ Rn is the state vector, u ∈ R is the control input, y ∈ R is the measured output; d ∈ Rn

and v ∈ R are time-dependent signals that represent, respectively, the exogenous disturbance and

the measurement noise, d,v ∈ L∞ and the matrices

83
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A0 =



0 1 0 . . .0 0

0 0 1 . . .0 0
...

...
. . .

...

0 0 0 . . .0 1

0 0 0 . . .0 0


, b =


0
...

0

1


, C = (1 0 . . .0),

are in the upper-diagonal canonical form.

It is required to design a stabilizing dynamic output control u(t) that ensures the ISpS property

(see Section 1.2) of the system (5.1) for any (d,v) ∈ L∞; and that for d = v = 0 provides global

fixed-time stability of the closed-loop system at the origin.

5.1 Output Feedback Control Design

The solution of the problem is divided in three steps. First, a state feedback controller is proposed

to ensure the problem solution. Second, the equations of the observer are introduced. Third, a

combined output feedback is presented and analyzed.

State feedback

For i = 1,n and xi ∈ R and α > 0 the controller proposed has the form:

u(x) =
n∑
i=1

ai dxicαi (ν(‖x‖)) , αi(ν) =
1 +nν

1 + (i − 1)ν
, (5.2)

ν(ω) =


ν1 ifω ≤m,

ν2 ifω ≥M,
ν2−ν1
M−mω+ Mν1−mν2

M−m otherwise,

(5.3)

where a = (a1, . . . , an) ∈ R1×n is the vector of control coefficients forming a Hurwitz polynomial,

−∞ < ν1 < 0 < ν2 < +∞ and 0 < m <M < +∞ are the tuning parameters to be defined later. Denote

ri(ν) = 1 + (i − 1)ν, i = 1,n, (5.4)

then it is straightforward to verify that for d = 0 the system (5.1), (5.2) is r(ν1)–homogeneous of

degree ν1 < 0 for ‖x‖ ≤m and r(ν2)–homogeneous of degree ν2 > 0 for ‖x‖ ≥M. Let us show that

for properly selected control parameters, the system (5.1), (5.2) is globally fixed-time stable at the

origin.

Lemma 5.1. Let a ∈ Rn form a Hurwitz polynomial, then for any 0 < m < M < +∞ there exists
τ ∈ (0,n−1) such that if ν1 ∈ (−τ,0) and ν2 ∈ (0, τ) then the system (5.1), (5.2) for d = 0 is globally
fixed-time stable at the origin.
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Proof. Denote

A = A0 + ba =


0 1 0 ... 0 0
0 0 1 ... 0 0
...
...
...
. . . 1

...
0 0 0 ... 0 1
a1 a3 a3 ... an−1 an

 ,
then by the lemma conditions there are matrices P ∈ Rn×n and Q ∈ Rn×n such that

P = P T > 0, Q =QT > 0, AT P + PA = −Q.

Consider for (5.1), (5.2) the Lyapunov function candidate

V (x) = xT P x,

whose derivative admits the differential equation:

V̇ (x) =DV (x)[A0x+ bu(x)] = −xTQx+ 2xT P bδ(x),

where δ(x) =
∑n
i=1 ai(dxic

αi (ν(‖x‖)) − xi). By construction, ν(‖x‖) = 0 for ‖x‖ = µ = mν2−Mν1
ν2−ν1

. Since

δ : Rn→ R is a continuous function and ν : R+→ [ν1,ν2], it is possible to select the values of ν1

and ν2 sufficiently close to zero such that |δ(x)| stays small enough, and therefore V̇ (x) < 0 on any

compact containing the level ‖x‖ = µ. Thus, there exists some τ ∈ (0,n−1) (if τ ≥ n−1 then αi(ν(‖x‖))
may become non-positive) such that with ν1 ∈ (−τ,0) and ν2 ∈ (0, τ) for all x ∈ {x ∈ Rn :m ≤ ‖x‖ ≤M}
we have V̇ (x) < 0 for any selection of 0 < m < m <M <M < +∞. Using Lemma 1.5, we can prove in

this case that the system is r(ν1)–homogeneous of degree ν1 < 0 and fixed-time stable at the origin

from Br(ν1)(ρ1) for Br(ν1)(ρ1) ⊂ {x ∈ Rn : ‖x‖ ≤ m}, and it is r(ν2)–homogeneous of degree ν2 > 0

and globally fixed-time stable with respect to any ball Br(ν2)(ρ2) such that {x ∈ Rn : ‖x‖ = M} ⊂
Br(ν2)(ρ2). The constants τ,m,M can be selected in a way that Br(ν1)(ρ1) ⊂ {x ∈ Rn : m ≤ ‖x‖ ≤ m}
and Br(ν2)(ρ2) ⊂ {x ∈ Rn : M ≤ ‖x‖ ≤M}, then (5.1), (5.2) is globally convergent and it is globally

fixed-time stable at the origin (the time that the system spent in the set {x ∈ Rn :m ≤ ‖x‖ ≤M} is

finite). �

In order to analyze robust stability properties of the closed loop dynamics (5.1), (5.2) let us

introduce the system

fν(x, d̃) := A0x+ b
n∑
i=1

ai
⌈
xi + d̃1,i

⌋αi (ν)
+ d̃2,

where d̃ = [d̃T1 d̃
T
2 ]T ∈ R2n is the new disturbance input, d̃1 represents measurements noises and

d̃2 = d.

Corollary 5.1. Let all conditions of Lemma 5.1 be satisfied, then the system (5.1), (5.2) is ISpS for any
d̃ ∈ L∞.

Proof. Consider the system (5.1), (5.2) for ‖x‖ ≥M, and ẋ = fν2
(x, d̃) is the corresponding approxi-
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mating system, which is r(ν2)–homogeneous of degree ν2 > 0 and globally fixed-time stable with

respect to any ball Br(ν2)(ρ) with ρ > 0 for d̃ = 0. Take r̃ =

 r(ν2)

r(ν2) + ν2

, then fν2
(Λr(λ)x,Λr̃(λ)d̃) =

λνΛr(λ)fν2
(x, d̃) for all x ∈ Rn, d̃ ∈ R2n and all λ > 0. Consequently, if all conditions of Lemma 5.1

are satisfied, then also all conditions of Theorem 1.10 are true and the system ẋ = fν2
(x, d̃) is ISS

with respect to d ∈ L∞. Since ẋ = fν2
(x, d̃) is the approximation of (5.1), (5.2) for ‖x‖ ≥M, then (5.1),

(5.2) (the system ẋ = fν(‖x‖)(x, d̃)) is ISpS. �

Thus, the presented state control (5.2) solves the posed problem of robust global fixed-time

stabilization for the system (5.1).

Remark 5.1. Clearly, for any R ∈ Rn×n,R = RT > 0 the system (5.1), (5.2) with ν(‖x‖R), where

‖x‖R =
√
xTRx, possesses the same properties as (5.1), (5.2) with ν(‖x‖).

State observer

To explain the observer structure, let us first consider the case d = v = 0, then the proposed observer

takes the form (see also [Angulo et al., 2013; Cruz-Zavala et al., 2011; Ríos and Teel, 2016]):

ż(t) = A0z(t) + bu(t) + k (ν(ζ(t)), y(t)−Cz(t)) , (5.5)

ki(ν,e) = Li decβi (ν) , βi(ν) = 1 + iν i = 1,n,

ζ̇(t) = −0.5ζ(t) + p (ν(ζ(t)), y(t)−Cz(t)) ,

p (ν,e) = 4κT (ν,e)P κ(ν,e), κ(ν,e) = Le − k(ν,e),

where z(t) ∈ Rn is the state estimate, ζ(t) ∈ R+ is an auxiliary time function; the function ν is given

in (5.3) with −∞ < ν1 < 0 < ν2 < +∞ and 0 < m <M < +∞, are, as previously, the tuning parameters;

L = [L1, . . . ,Ln]T is the vector of coefficients of the observer providing the Hurwitz property of the

matrix A0 −LC; P ∈ Rn×n is a matrix solution of the equations

P = P T > 0, (A0 −LC)T P + P (A0 −LC) = −P .

In [Angulo et al., 2013], instead of using an auxiliary ζ-filter to commute the right-hand sides of

(5.5) with negative and positive homogeneity degree, a time switching between two systems with

positive and negative homogeneity degree is proposed. In [Ríos and Teel, 2016], in order to switch

between observers with negative and positive homogeneity degrees, an hysteresis mechanism is

used.

Lemma 5.2. Let A0−LC be a Hurwitz matrix for a given L ∈ Rn×1 and assume that the solutions of (5.1)

are defined for all t ≥ 0, then for any 0 < m <M < +∞ there exists τ ∈ (0,n−1) such that if ν1 ∈ (−τ,0)

and ν2 ∈ (0, τ) then the system (5.1), (5.5) for d = v = 0 is globally Lyapunov stable and fixed-time
convergent with respect to the setA = {(x,z,ζ) ∈ R2n+1 : x = z,‖ζ‖ ≤M} for all (x,z) ∈ R2n, provided that
ζ(0) >M is sufficiently big.
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A more precise restriction on the value of ζ(0) is given in the proof of this lemma, it is not

related with the initial conditions x(0), z(0) (see (5.8)).

Proof. Denote e = x − z as the estimation error, then

ė = A0e − k (ν(ζ),Ce+ v) + d

= (A0 −LC)e − k (ν(ζ),Ce+ v) +L(Ce+ v) + d −Lv

= (A0 −LC)e+κ(ν(ζ),Ce+ v) + d −Lv.

Consider a Lyapunov function V (e) = eT P e, then

V̇ = −V + 2eT P [κ(ν(ζ),Ce+ v) + d −Lv]

≤ −0.5V + p (ν(ζ),Ce+ v) + 4(d −Lv)T P (d −Lv).

For an auxiliary error variable ξ = V − ζ we obtain:

ξ̇ ≤ −0.5ξ + 4(d −Lv)T P (d −Lv)

and ξ is exponentially converging to zero (ζ is converging to V ) if d = v = 0. In addition, if there is

an instant of time t′ ≥ 0 such that ξ(t′) ≥ 0, then ξ(t) ≥ 0 for all t ≥ t′.
Repeating the arguments of Lemma 5.1, for any 0 < m <M < +∞ there exists τ ∈ (0,n−1) such

that if ν1 ∈ (−τ,0) and ν2 ∈ (0, τ) then the system

ė = A0e − k (ν,Ce) (5.6)

is globally asymptotically stable for any fixed value of ν ∈ [ν1,ν2]. Moreover, for ν = ν1 it is

r(ν1)–homogeneous of degree ν1 < 0 and globally finite-time stable at the origin, and for ν = ν2 the

system (5.6) is r(ν2)–homogeneous of degree ν2 > 0 and globally fixed-time stable with respect to

any ball Br(ν2)(ρ) with ρ > 0. In addition,

V̇ (e) < 0 ∀e ∈ {e ∈ Rn :m ≤ V (e) ≤M} (5.7)

for any selection of 0 < m < m < M < M < +∞ and any (possibly time-varying) value of ν(ζ(t)) ∈
[ν1,ν2].

Denote by TM > 0 the uniform settling-time of convergence to the ball Br(ν2)(ρM) of (5.6) for

ν = ν2, where ρM > 0 is such that {e ∈ Rn : V (e) ≤M} ⊂ Br(ν2)(ρM ). Let

TM < 2ln(ζ(0)−M), (5.8)

then ζ(t) ≥ M for t ∈ [0, tM) with tM ≥ TM (tM can also be infinite), therefore ν(ζ(t)) = ν2 for

t ∈ [0, tM ) from (5.3) and the estimation error dynamics is r(ν2)–homogeneous and fixed-time stable

with respect to the ball Br(ν2)(ρM) on this interval of time. Since tM ≥ TM , then the system (5.6)
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with ν = ν(ζ(t)) enters in the ball Br(ν2)(ρM) and there is an instant of time t′ ∈ [0, tM) such that

ξ(t) ≥ 0 for all t ≥ t′ (i.e. ζ(t) ≥ V (e(t)) for all t ≥ t′). Next, due to (5.7), the system (5.6) with

ν = ν(ζ(t)) reaches the set {e ∈ Rn : V (e) ≤m} in a finite time Tm > TM , where it stays for all t ≥ Tm.

By the properties of the dynamics of ξ an ζ, the instant tM < +∞ and there is another time instant

tm ≥max{t′ ,Tm} such that ζ(t) ≤ m for all t ≥ tm (ζ(t) is exponentially approaching V (e(t)) from

above, while V (e(t)) ≤ m < m for t ≥ Tm). Consequently, ν(ζ(t)) = ν1 for t ≥ tm and it reaches for

the origin in a uniform time. Summarizing the arguments we obtain that the system (5.6) with

ν = ν(ζ(t)) is globally fixed-time stable at the origin if d = v = 0. The variable ζ is also bounded

and exponentially converging to zero. �

Corollary 5.2. Let all conditions of Lemma 5.2 be satisfied, then the system (5.1), (5.5) is ISpS with
respect to the set A for any (d,v) ∈ L∞.

Proof. Denote, for brevity, | · |∞ = ‖ · ‖[0,∞). From the equation for ξ we have that:

V (t) ≤ ζ(t) + (V (0)− ζ(0))e−0.5t + 8χ(|v|∞, |d|∞),

where supt≥0(d(t)−Lv(t))T P (d(t)−Lv(t)) ≤ χ(|v|∞, |d|∞) = ‖P ‖2(|d|2∞+‖L‖22|v|2∞) and ‖·‖2 is the induced

matrix norm. Consider the set Υ0 = {(e,ζ) ∈ Rn+1 : V (e) ≥M + max{0,V (0)− ζ(0)}+ 8χ(|v|∞, |d|∞)}.
From the inequality above ζ(t) ≥M for e(t) ∈ Υ0. Thus, ν(t) = ν2 if e(t) ∈ Υ0 and the estimation

error dynamics takes the form:

ė = f (e, d̃) = A0e − k
(
ν2,Ce+ d̃1

)
+ d̃2.

Denote r̃ =

 r1(ν2)

r(ν2) + ν2

 , then f (Λr(λ)e,Λr̃(λ)d̃) = λνΛr(λ)f (x, d̃) for all x ∈ Rn, d̃ ∈ Rn+1 and all

λ > 0. Consequently, if all conditions of Lemma 5.2 are satisfied (the system ė = f (e,0) corresponds

to (5.6)), then also all conditions of Theorem 1.10 are true and the system ė = f (e, d̃) is ISS with

respect to d̃ ∈ L∞. Therefore, there exists an ISS Lyapunov function W : Rn→ R+ (an alternative

choice of W can be found in [Bernuau et al., 2013]) and some function % of class K∞ such that

W (e) ≥ %(M + max{0,V (0)− ζ(0)}+ 8χ(|v|∞, |d|∞)) implies that e ∈ Υ0. Then either an ISS estimate

holds for W or W (e) ≤ %(M + max{0,V (0)−ζ(0)}+ 8χ(|v|∞, |d|∞)), which implies boundedness of W ,

and the same property for ζ. Consequently, all solutions of (5.5) are defined for all t ≥ 0 (x(t) is also

defined for all t ≥ 0 by conditions of Lemma 5.2). Then the term (V (0)− ζ(0))e−0.5t can be skipped

and the above consideration can be repeated for the set Υ = {(e,ζ) ∈ Rn+1 : V (e) ≥M+8χ(|v|∞, |d|∞)}
in order to prove ISpS with respect to the set A of the system (5.1), (5.5). Obviously, the variable

ζ(t) is also asymptotically bounded by M + 16χ(|v|∞, |d|∞) in this case. �
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Output feedback

The proposed dynamic output feedback consists in the application of the state feedback (5.2) with

the state estimates generated by the observer (5.5):

u(z) =
n∑
i=1

ai dzicαi (ν(‖z‖)) , (5.9)

then the dynamics of the closed-loop system (5.1), (5.5), (5.9) can be written in the coordinates x,

e = x − z and ζ as follows:

ẋ = A0x+ b
n∑
i=1

ai dxi − eicαi (ν(‖x−e‖)) + d,

ė = A0e − k (ν(ζ),Ce+ v) + d, (5.10)

ζ̇ = −0.5ζ + p (ν(ζ),Ce+ v) .

The main result is a direct consequence of Lemmas 5.1 and 5.2, and Corollaries 5.1 and 5.2.

Theorem 5.1. Let the following conditions be satisfied:

i) a ∈ R1×n forms a Hurwitz polynomial;

ii) A0 −LC is a Hurwitz matrix for given L ∈ Rn;

iii) ζ(0) >M is sufficiently big.

Then for any 0 < m <M < +∞ there exists some τ ∈ (0,n−1) such that for ν1 ∈ (−τ,0) and ν2 ∈ (0, τ) the
system (5.1), (5.5), (5.9) is

1) fixed-time converging with respect to the set {(x,z,ζ) ∈ R2n+1 : x = z = 0} for d = v = 0 and for any
initial conditions (x(0), z(0)) ∈ R2n,

2) ISpS for any (d,v) ∈ L∞.

Proof. The system (5.10) is a cascade of the (e,ζ)- and x-dynamics. If d = v = 0 then (e,ζ)-subsystem

is autonomous and globally fixed-time converging with respect to the set {(e,ζ) ∈ Rn+1 : e = 0}
(with the uniform settling-time To > 0) according to Lemma 5.2. During the interval [0,To] the

system (5.1) has bounded trajectories due to the ISpS property with respect to measurement noises

(estimation errors e) established in Corollary 5.1, and for t ≥ To the x-subsystem is also autonomous

and globally fixed-time converging at the origin by Lemma 5.1.

For (d,v) ∈ L∞ the ISpS property follows the results of Corollaries 5.1, 5.2 and the cascade

structure of (5.10). �

In Theorem 5.1, the same parameters m, M, ν1 and ν2 have been selected for the controller

(5.9) and for the observer (5.5) in order to keep the notation compact, however, they can be chosen

differently in applications and the result of Theorem 5.1 stays correct.



90 CHAPTER 5. Output Fixed-Time Stabilization of a Chain of Integrators

Example 5.1

Let n = 3, L =
[
1.5 1.01 0.25

]T
, a = −2.5[111], m = 1, M = 5, ν2 = −ν1 = 0.1, ζ(0) = 5M

and

P =


0.121 −0.13 0.047

−0.13 0.261 −0.308

0.047 −0.308 0.617

 ,
then all conditions of Theorem 5.1 are satisfied. We test first the system without perturba-

tions; the results are depicted in the upper left plot of Figure 5.1, where the initial conditions

of the system are x0 = (5,10,0) and those of the observer are z0 = (0,0,0). The solid color lines

represent the actual state x while the doted color lines represent the estimated state z. It

can be seen how the estimated states converge rapidly to the actual states before converging

both to zero. In the lower left part of Figure 5.1 we can appreciate the elements of the

control scheme, the upper and lower limits of the homogeneity degree M and n are shown

as straight lines. The norm of the observed states ‖z‖ is depicted in yellow, while this norm

is between M and m the control’s degree of homogeneity lies over the line ν2−ν1
M−m ‖z‖+

Mν1−mν2
M−m .

In the case of the observer, the filter ζ(t) acts as the modulator of the observer’s homogeneity

degree. The control signal is shown in green.

Figure 5.1 (right) shows the same setup with initial conditions x0 = 103(5,10,0), it can be

seen that although the initial state is significantly larger, the settling time remains within

the same interval, showing the expected uniformity w.r.t the initial state.

In the lower right part of the figure it can be seen that the control signal u grows considerably

to cope with the conditions imposed. We next go back to the previous initial settings and

introduce in the control scheme the disturbance

d(t)=sin(2t)+

10 if t ∈ [30,31]

0 otherwise
. (5.11)

The results are shown in Figure 5.2. We can notice that the system is robust against this

disturbance and its effect in the control scheme elements are depicted in the lower plot of

this figure. In particular we can see that the disturbance modifies both ‖z‖ and ζ(t) therefore

changing the homogeneity degree of both the controller and the observer.
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Figure 5.1 – Simulation plot of system (5.1), (5.5) and (5.9) for n = 3 without disturbances. On the left-hand
side with conditions x0 = (5,10,0), on the right-hand side with initial conditions x0 = 103(5,10,0).

Figure 5.2 – Simulation plot of system (5.1), (5.5) and (5.9) for n = 3 with initial conditions x0 = (5,10,0) and
the disturbance (5.11).

Remark 5.2. Since in Theorem 5.1, the ISpS property with respect to d is proven, then considering

d as a function of x and assuming that the norm of such a function is less than the asymptotic gain

function of the system for x sufficiently large, it is possible to prove fixed-time convergence to a

zone and global boundedness of the system solutions for a nonlinear system (plant) with the same

closed-loop setting of the proposed control (5.9) and observer (5.5).



92 CHAPTER 5. Output Fixed-Time Stabilization of a Chain of Integrators

5.2 Parameter Tuning

In this section we provide effective algorithms to tune the parameters involved in the feedback

controller. Based on the ILF approach, these algorithms transform the design procedure into an

LMI feasibility problem, which simplifies significantly its practical applicability. In addition, they

will provide an adjustable upper bound, even if conservative, of the settling-time.

Consider the implicit Lyapunov function candidate

Q(V ,x) := xTDr(ν)(V
−1)PDr(ν)(V

−1)x − 1, (5.12)

where V ∈ R+, x ∈ Rn, P ∈ Rn×n and P = P T > 0. The function Q defined above is very similar to

the candidate function introduced in Section 4.1, note that the only difference is that the value of

the vector r depends on ν. Besides the properties already discussed about Q, for the controller

parametrization we will make use of the property that Q(1,x) = 0 implies xT P x = 1 and that with r

defined by (5.4), the implicitly defined function V (x) is r-homogeneous of degree 1.

Controller Parametrization

For brevity in the notation, the following representation of system (5.1), (5.2) will be used:

ẋ = A0x+ badxcα(ν(‖x‖
P

)), (5.13)

where dxcα(ν) = (|x1|α1(ν)sign(x1), . . . , |xn|αn(ν)sign(xn))T . Note that without loss of generality, the

usual norm of the argument of ν in control (5.2) has been replaced with a weighted one (see

Remark 5.1). Let us introduce in the notation the matrix Hr(ν) = −diag(r1(ν), r2(ν), ..., rn(ν)). When

ν takes a fixed value νj denote, for brevity, the homogeneous weights rj = r(νj), the matrix

Hrj = −diag(rj,1, rj,2, ..., rj,n), the dilation matrix Drj (λ) = diag(λrj,1 ,λrj,2 , ...,λrj,n) and the exponent

αj = α(νj ). Accordingly,

Qj(V ,z) = zTDrj (V
−1)PDrj (V

−1)z − 1. (5.14)

Theorem 5.2. Let for some ν1 ∈ (−1
n ,0), ν2 = −ν1, φ,β,κ,γj > 0, β < φ and ε ∈ (0,1) the system of

matrix inequalities

A0X +XAT0 + bY +Y T bT +φX + βbbT ≤ 0 (5.15a)

−γjX ≤HrjX +XHrj < 0, (5.15b)

ξIn ≤ X ≤
1
κ
In,


β2ξ
‖z̄j‖2

Y

Y T X

 ≥ 0, (5.15c)

z̄j,i =


gj,i(κ−1/2) +κ−1/2p̄iε if κ−1/2 ≤ α1/(1−αj,i )

j,i

max{gj,i(α
1/(1−αj,i )
j,i ), gj,i(κ−1/2)}+κ−1/2p̄iε, if κ−1/2 > α

1/(1−αj,i )
j,i ,

(5.16)
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where gj,i : R→ R, gj,i(z) =
∣∣∣dzcαj,i − z∣∣∣, p̄i = (n− i + 1)ν2 and αj,i = (

1+nνj
rj,1

, ...,
1+nνj
rj,n

), be feasible for some

ξ > 0, X ∈ Rn×n, X = XT > 0, Y ∈ R1×n, with j = 1,2, i = 1,n.
Then the system (5.1), (5.2) for d = 0, a = Y P and P = X−1 is globally fixed-time stable at the origin

with

m=
√
λmax(P −

1
2Dr1(1−ε)PDr1(1−ε)P −

1
2 )<1<M=

√
λmin(P −

1
2Dr2(1+ε)PDr2(1+ε)P −

1
2 )

and the settling-time estimate Tmax ≤
γ1

(φ−β)|ν1|
+ γ2

(φ−β)ν2
.

The proof of this theorem can be found in the chapter’s Proof section. Let us now introduce

a constructive procedure, based on Theorem 5.2, to calculate the controller’s parameters. This

procedure relies in the solution of the system of LMIs (5.15), which can be solved using standard

optimization tools such as MATLAB.

Constructive procedure to obtain the controller’s parameters P , a, m and M.

1. Set the size of the chain of integrators n.

2. Fix a negative value for ν1. Start with values close to zero e.g. −0.001.

3. Fix positive values for ε and κ (a possible initial value is 0.5 for both).

4. Calculate the vectors z̄i,j using (5.16).

5. Fix positive values for φ, β, γ1, γ2, β < φ (possible starting values are given in the examples).

6. Verify the feasibility of the system of inequalities (5.15).

7. If unfeasible, reduce the value of ε or modify the value of κ and repeat from step 3. If feasible,

the value of |ν1|might be increased in step 2 until a desired value of Tmax is obtained without

loosing feasibility (recall that in practice, this value might be conservative).

8. From the obtained matrices X and Y , calculate P , a, m and M as described in Theorem 5.2.

Note that the parameters that influence directly the settling-time are ν1,ν2,γ1,γ2,φ and β. The

parameters ε and κ modify the bounds of the inequality (5.15c), so that its manipulation may relax

the feasibility conditions of (5.15).

Finally let us remark that following a similar procedure, analogous algorithms can be developed

for the observer.

Example 5.2

We start by choosing n = 3, ν1 = −0.02, ν2 = −ν1, ε = κ = 0.5 and calculating z̄j ; following

Theorem 5.2 we obtain z̄1 = (0.0715,0.0662,0.0605), z̄2 = (0.0721,0.0689,0.0661). We now

choose the parameters φ = 0.5, β = 0.3, γ1 = γ2 = 3 and solve the set of LMIs (5.15a-5.15c) to

obtain

Pc =


2.3367 1.8430 1.7795
1.8430 4.8778 2.1295
1.7795 2.1295 4.2590

 , a = (−0.5952,−1.7576,−1.3889).

With this parameter choice, the maximum settling time of the controller is Tmax = 1500s.

Figure 5.3 (left) depicts the substitution of these values in the system (5.1), (5.5) with initial
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Figure 5.3 – Simulation plot of the unperturbed system (5.1), (5.5) and (5.9) for n = 3, using the parameter
tuning procedure, initial conditions x0 = (0.5,1,0) (left) and x0 = (0.5,1,0) (right).

conditions x(0) = (5,10,0). It is possible to see a fast convergence to the real states before

converging also rapidly to the origin. On the right-hand side of Figure 5.3, the initial

conditions have been changed to x(0) = 103(5,10,0), it is possible to see that the settling time

is not significantly modified and that in both cases the system reaches the equilibrium long

before the settling time estimate. Finally, in Figure 5.4 the initial conditions were reset to

x(0) = (5,10,0) and the disturbance term

d(t) = sin(2t) +

10 if t ∈ [30,31]

0 otherwise
(5.17)

was added. We can see that the convergence to zero is preserved and with a much better

performance than in Example 5.1.

Example 5.3

This last example is meant to compare the fixed-time controller (5.1), (5.2), referred here

as the non-recursive controller, with the finite-time and fixed-time ones described in [Har-

mouche et al., 2017], referred accordingly as the recursive ones. The parameter choice

for the tuning algorithm 5.2 is as follows: ν1 = −1/400,ν2 = −ν1,ε = 0.1,φ = 8,β = 7,κ =

0.5,γ1 = γ2 = 3. And the obtained parameter values are a = −(384,136.08,16.94) and

Pc = 103
(

2.3195 0.5083 0.0359
0.5083 0.1455 0.0113
0.0359 0.0113 0.0014

)
, z̄1 = (0.0047,0.0056,0.0064) and z̄2 = (0.0047,0.0056,0.0065).

The corresponding parameters for both the finite-time and the fixed-time controllers in

[Harmouche et al., 2017] are the same as the ones used in the example section of the cited

article. Figure 5.5 (left) shows the unperturbed states of the chain of integrators with initial

conditions x0 = (1,1,1). Clearly, the fixed-time controller outperforms the finite-time one.

In Figure 5.5 (right) it is possible to see how in the finite-time case, the variation of initial
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Figure 5.4 – Simulation plot of the perturbed system (5.1), (5.5) and (5.9) for n = 3 and using the parameter
tuning procedure. The initial conditions are x0 = (5,10,0) and the disturbance term defined by (5.17).

conditions affects the settling-time while the fixed-one remains within two seconds. Finally,

Figure 5.6 shows an improvement of over two seconds in the settling time with respect to the

recursive fixed-time controller, illustrating that with the tuning algorithm, the settling time

can be adjusted. As shown in the interior plots, fixed-time stability is assumed whenever

all the states enter a strip of magnitude 10−4 (depicted between black lines in Fig. 5.6) and

remain there for the rest of the simulation.

5.3 Conclusions

A state feedback control has been constructed for a chain of integrators, which ensures global

convergence of all trajectories to the origin with an upper bound of the settling-time that is

independent of the initial conditions i.e. fixed-time stability. An observer has been proposed,

which provides a global estimation of the plant state (global differentiation) with a fixed-time

convergence rate. Both control and estimation algorithms are robust with respect to disturbances

and noises. It has been shown that the combination of these algorithms results in a global fixed-time

output stabilization control law. Effective tools to optimize the scheme’s parameters, allowing

the maximum settling time to be estimated have been presented and the efficacy of this scheme

has been demonstrated in simulations. In the perturbed case, practical fixed-time stabilization is

obtained, this is fixed-time stabilization to a ball containing the origin whose radius depends on

the size of the perturbation.
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Figure 5.5 – Comparative plots between the recursive finite-time observer and the nonrecursive fixed-time
one for n = 3, without disturbances and with initial conditions x0 = (1,1,1) (left) and x0 = (10,−10,10)
(right).

Figure 5.6 – Comparison results between the recursive finite-time observer and the nonrecursive fixe-time
one for n = 3, without disturbances and with initial conditions x0 = (10,10,10).
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As with many control algorithms that focus on fast convergence rates, the control signal

magnitude might grow significantly to cope with the time constraints imposed. In practice, these

constraints can only be granted locally due to boundedness of the admissible control magnitude.

However, in contrast to other control algorithms, the FxT controllers do not need to be re-tuned if

the admissible control magnitude (and, consequently, the domain of fixed-time convergence) is

increased. A related issue deals with the methods used for simulation, which have to be adapted to

treat highly nonlinear systems [Efimov et al., 2017].

5.4 Proofs

Proof of Theorem 5.2. I The functions Qj(V ,x), j = 1,2 defined in (5.14) satisfy the conditions C1-

C3 of Theorem 1.13. Indeed, they are continuously differentiable for all V ∈ R+ and for all x ∈ Rn.

Since P > 0, the inequalities

λmin(P )‖x‖2

max{V 2minri ,V 2maxri }
≤Qj(V ,x) + 1 ≤ λmax(P )‖x‖2

min{V 2minri ,V 2maxri }
,

imply that for any x ∈ Rn\{0} there exist V − ∈ R+ and V + ∈ R+ such that Qj(V −,x) < 0 < Qj(V +,x).

Moreover, if Qj(V ,x) = 0 then, obviously, the condition C3 of Theorem 1.13 holds and there exists a

Lyapunov function candidate V : Rn→ R implicitly defined by the identity xTDrj (V
−1)PDrj (V

−1)x =

1.

II Since

∂VQj = V −1xTDrj (V
−1)(PHrj +HrjP )Drj (V

−1)x,

taking into account (5.15b), we have that ∂VQj < 0 ∀V ∈ R+ and x ∈ Rn\{0}. So the condition C4 of

Theorem (1.13) also holds and therefore Qj(V ,z) = 0 implicitly defines a proper positive definite

Lyapunov function candidate V : Rn→ R.

III By denoting ∂xQjf as the partial derivative of Qj with respect to x along the trajectories of

(5.13) we obtain

∂xQjf = 2xTDrj (V
−1)PDrj (V

−1)[A0x+ badxcα(ν)].

By adding and subtracting inside the brackets the auxiliary term V 1+nνjbaDrj (V
−1)x and taking

into account that Drj (V
−1)A0D

−1
rj (V −1) = V −νjA0 and that Drj (V

−1)b = V −1−(n−1)νjb, we simplify the

derivative as

∂xQjf =

Drj (V −1)x

d(V ,x)

T V −νj (PA0 +AT0 P + P ba+ aT bT P ) P b

bT P 0

Drj (V −1)x

d(V ,x)

 ,
where d(V ,x) = V −νj

(
a(V −1−nνj dxcα(ν)−Drj (V

−1)x)
)
. By adding and subtracting the termsφV −νjxTDrj

(V −1)PDrj (V
−1)x and 1

βV
νjdT (V ,x)d(V ,x) we obtain
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∂xQjf =

Drj (V −1)x

d(V ,x)

T Θ Drj (V −1)x

d(V ,x)

−φV −νjxTDrj (V −1)PDrj (V
−1)x+ V νj

β d
T (V ,x)d(V ,x),

where

Θ =

V −νj (PA0+AT0 P +P ba+aT bT P +φP ) P b

bT P V νj

β

 .
Using the Schur complement,

(
P −1 0
0 η

)T
Θ

(
P −1 0
0 η

)
, for any η ∈ R, it is equivalent to the left-hand side

of (5.15a) and we arrive to

∂xQjf ≤ −V −νjφxTDrj (V
−1)PDrj (V

−1)x+V νjβ−1dT (V ,x)d(V ,x).

The term d(V ,x) can be rewritten as d(V ,x) = V −νjd0(V ,x) where d0(V ,x) = a(V −1−nνj dxcα(ν) −
Drj (V

−1)x), and we have that

∂xQjf ≤ −V −νjφxTDrj (V
−1)PDrj (V

−1)x+V −νjβ−1dT0 (V ,x)d0(V ,x).

If the latter term is bounded by dT0 (V (x),x)d0(V (x),x) < β2 then we derive

∂xQjf ≤ −φV −νj + βV −νj ,

and using inequality (5.15b) we arrive to

∂xQjf ≤
φ−β
γj
V 1+νj∂VQj ,

for (V ,x) : xTDrj (V
−1)PDrj (V

−1)x = 1. Then, by defining cj = φ−β
γj

, the conditions of Theorem 1.15

are satisfied.

IV Proof of the estimate dT0 (V ,x)d0(V ,x) ≤ β2.

IV.a Let us introduce the sets Ω1 = {x :m2 ≤ xT P x ≤ 1} and Ω2 = {x : 1 ≤ xT P x ≤M2}. Considering

first the set Ω2 and using the change of variables y =Dr2(V −1)x we obtain

max
(V ,x):xTDr2 (V −1)PDr2 (V −1)x=1

and xT P x∈[1,M2]

V = max
(V ,y):yT P y=1

and yTDr2 (V )PDr2 (V )y∈[1,M2]

V = 1 + ε.

Indeed, from inequality (5.15b) we know that ∂
∂V y

TDr2(V )PDr2(V )y > 0 and therefore

min
y:yT P y=1

yTDr2(V )PDr2(V )y > min
y:yT P y=1

yTDr2(1 + ε)PDr2(1 + ε)y =M2
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if V > 1 + ε and 1 < ‖x‖
P
≤M implies 1 ≤ V (x) ≤ 1 + ε. Similarly, we show

min
(V ,x):xTDr1 (V −1)PDr1 (V −1)x=1

and xT P x∈[m2,1]

V = 1− ε.

Hence, we immediately conclude that m ≤ ‖x‖2
P
≤M⇒ 1− ε ≤ V (x) ≤ 1 + ε.

IV.b Recall that the function ν is defined as follows

ν(‖x‖
P
) =


ν1, if ‖x‖

P
≤m,

ν2, if ‖x‖
P
≥M

ν2−ν1
M−m ‖x‖P + Mν1−mν2

M−m , otherwise

.

Then we have that

max
x∈Ω2

d T0 (V (x),x)d0(V (x),x) = max
x∈Ω2

δε(V (x),x)T aT aδε(V (x),x)

≤ aaT max
x∈Ω2

δε(V (x),x)T δε(V (x),x),

where

δε(V ,x) = V −1−nν2
(
dxcα(ν(‖x‖

P
)) −Dr2(V −1)x

)
.

Using again the change of variables y =Dr2(V −1)x and considering that x ∈Ω2 =⇒ V ∈ [1,1+ε]

we have that

aaT max
x∈Ω2

δε(V (x),x)T δε(V (x),x) ≤ aaT max
V ∈[1,1+ε]
‖y‖

P
=1

Ξ(V ,y)TΞ(V ,y),

where Ξ(V ,y) =
∣∣∣V −1−nν2dDr2(V )ycα(ν) − y

∣∣∣, and in a component-wise expression we have

Ξi(V ,y) =
∣∣∣V −1−nν2+r2,iαi (ν)dyicαi (ν) − yi

∣∣∣ = V −pi (ν)
∣∣∣dyicαi (ν) −V pi (ν)yi

∣∣∣,
where pi(ν) = 1 +nν2 − r2,iαi(ν) ≥ 0. Hence,

Ξi(V ,y) ≤ max
V ∈[1,1+ε]
‖y‖

P
=1

∣∣∣dyicαi (ν) −V pi (ν)yi
∣∣∣

= max
y:yT P x=1

{
∣∣∣|yi |αi (ν) − |yi |

∣∣∣, ∣∣∣|yi |αi (ν) − (1 + ε)pi (ν)|yi |
∣∣∣}

= max
y:yT P x=1

{
∣∣∣dyicαi (ν) − yi

∣∣∣, ∣∣∣|yi |αi (ν) − yi + yi − (1 + ε)pi (ν)yi
∣∣∣}

≤ max
y:yT P x=1

∣∣∣|yi |αi (ν) − |yi |
∣∣∣+ |yi |

∣∣∣1− (1 + ε)pi (ν)
∣∣∣.

Lemma 5.3. The function g : R2
≥0 → R≥0 defined as g(s,ε) =

∣∣∣sε − s∣∣∣, s,ε ∈ R≥0 admits the following
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1

Figure 5.7 – Plot of function g(s,ε) =
∣∣∣dscε − s∣∣∣, with fixed ε ∈ R+. Remark that if s̄ > 1, the maximum value of

g(s) in the interval s ≤ s̄ is the maximum between g(ε1/(1−ε), ε) and g(s̄, ε).

estimate

max
s∈[0,s̄],ε∈[0,ε̄]

g(s,ε) =


g(s̄, ε̄), for s̄ ≤ ε̄1/(1−ε̄)

max{g(ε̄1/(1−ε̄), ε̄), g(s̄, ε̄)}, for s̄ > ε̄1/(1−ε̄).
(5.18)

Proof. The function g is depicted in Figure 5.7. It is easy to show that the function gε attains

a local maximum at smax1
= ε1/(1−ε) within the interval s ∈ [0,1], therefore, if s ≤ smax1

then

maxs∈[0,s̄] g(s,ε) = g(s̄, ε) and if s̄ > smax1
then maxs∈[0,s̄] g(s,ε) = max{g(ε1/(1−ε), ε), g(s̄, ε)}. Taking into

account that ∂(sε−s)
∂ε = sε lns, we complete the proof. �

Since yT P y = 1 implies that |yi | ≤ λ−1/2
min (P ) = κ−1/2, then using Lemma 5.3 the term

∣∣∣|yi |αi (ν)− |yi |
∣∣∣

can be bounded as

∣∣∣dyicαi (ν) − yi
∣∣∣ ≤ z̃2,i =


gα2,i

(κ−1/2), for κ−1/2 ≤ α1/(1−α2,i )
2,i

max{g2,i(α
1/(1−α2,i )
2,i ), g2,i(κ−1/2)}, for κ−1/2 > α

1/(1−α2,i )
2,i .

Then for V ∈ [1,1 + ε] and yT P y = 1 one has

Ξi(V ,y) ≤ z̃2,i +κ−1/2((1 + ε)pi (ν) − 1) ≤ z̄2,i +κ−1/2((1 + ε)p̄i − 1),

where ν = ν(‖x‖
P
) ∈ [0,ν2], pi(ν) = 1 +nν2 − (1 + (i − 1)ν2) 1+nν

1+(i−1)ν and p̄i = pi(0) = (n− i + 1)ν2. Here,

the fact that for any x in the interval 1 ≤ ‖x‖
P
≤M, pi(ν(‖x‖

P
)) ≤ p̄i has been used.

By applying the mean value theorem with h : R→ R, h(θ) = θp̄i , we obtain that h(1 + ε)− h(1) =

h′(θ∗)ε, where θ∗ ∈ [1,1 + ε]. Noting that 0 < p̄i < 1, we have that (1 + ε)p̄i − 1 ≤ p̄iε and we arrive to
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the following estimate

Ξi(V ,y) ≤ z̃2,i +κ−1/2p̄iε,

for V ∈ [1,1 + ε] and ‖y‖
P

= 1. Therefore, it has been proven that

max
x∈Ω2

d T0 (V (x),x)d0(V (x),x) ≤ aT a‖z̄2‖2.

where z̄2 = (z̄2,1, ..., z̄2,n)T ∈ Rn+ and z̄2,i = z̃2,i +κ−1/2p̄iε.

Accordingly, proceeding in the same fashion for the set Ω1, we obtain

max
x∈Ω1∪Ω2

d T0 (V (x),x)d0(V (x),x) ≤ aT a‖z̄2‖2.

Using the Schur complement, inequality (5.15c) becomes aP −1aT ≤ ξβ2

‖z̄j‖2
and since aaT ξ ≤

aP −1aT , we have that aaT ≤ β2

‖z̃j‖2
and we conclude that

d0(V (x),x)T d0(V (x),x) ≤ β2

if x ∈Ω1 ∪Ω2.

IV.c Boundedness of dT0 (V (x),x)d0(V (x),x) in Rn\(Ω1 ∪Ω2)

If x ∈ Rn\{x : ‖x‖
P
≤M} then ν(‖x‖

P
) = ν2 and

d0(V (x),x) = aV −1−nν2(dxcα(ν2) −Dr2(V −1)x) = a(dycα(ν2) − y)

where y =Dr2(V −1(x))x and yT P y = 1 (since Q(V (x),x) = 0). Hence, Ξi(V ,y) ≤ z̃2,i and the required

estimate d0(V ,x)T d0(V ,x) ≤ β2 is straightforward. Similar considerations can be provided for

x : ‖x‖
P
≤m. �
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Conclusions

The work here presented can be mainly seen as contributions to the study of NonA stability of

dynamical systems. The results obtained can be divided into two groups: analysis and design

results.

The second chapter dealt, using Lyapunov analysis, with the mathematical conditions satisfied

by dynamical systems with fixed-time stable origins. Both cases, general and continuous settling-

time function, were addressed and a complete characterization (necessary and sufficient conditions)

of the FxTS property were obtained by means of a pair of functions. More constructive conditions

for FxTS with continuous settling-time functions were also presented and in order to obtain a

converse result, the concept of uniform FxT was introduced. These results were further used to

find a sufficient condition for fixed-time stabilization of general nonlinear systems that are affine

in the control input.

The third chapter addressed the property of NonA ISS. This property provides qualitative

means to study both the robustness and the convergence rate of a given input system. Both the

explicit and the implicit Lyapunov framework were developed.

In the fourth chapter, the implicit Lyapunov approach was applied to design NonA observers for

MIMO linear systems. By using a canonical decomposition, finite-time and fixed-time observation

algorithm were obtained and its design procedure relies on an LMI feasibility problem. The

robustness of the observers was proved using known results about ISS of homogeneous systems.

Finally, the last chapter presents an output control that achieves FxTS using a sign switching

technique of the homogeneous degree. The ILF approach was used to obtain a parametrization

algorithm that allows to adjust the settling-time estimate. As in Chapter 4, robustness with

respect to measurement noises and perturbations was verified using ISS properties of homogeneous

systems.
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Control and Estimation in Finite-Time and in Fixed-Time via Implicit Lyapunov Functions

Abstract

This work presents new results on analysis and synthesis of finite-time and fixed-time stable systems, a type
of dynamical systems where exact convergence to an equilibrium point is guaranteed in a finite amount
of time. In the case of fixed-time stable system, this is moreover achieved with an upper bound on the
settling-time that does not depend on the system’s initial condition.

Chapters 2 and 3 focus on theoretical contributions; the former presents necessary and sufficient conditions
for fixed-time stability of continuous autonomous systems whereas the latter introduces a framework that
gathers ISS Lyapunov functions, finite-time and fixed-time stability analysis and the implicit Lyapunov
function approach in order to study and determine the robustness of this type of systems.

Chapters 4 and 5 deal with more practical aspects, more precisely, the synthesis of finite-time and fixed-time
controllers and observers. In Chapter 4, finite-time and fixed-time convergent observers are designed for
linear MIMO systems using the implicit approach. In Chapter 5, homogeneity properties and the implicit
approach are used to design a fixed-time output controller for the chain of integrators. The results obtained
were verified by numerical simulations and Chapter 4 includes performance tests on a rotary pendulum.

Keywords: finite-time stability, fixed-time stability, homogeneous systems, analyse de lyapunov

Contrôle et Estimation en Temps Fixe et en Temps Fini via Fonctions de Lyapunov Implicites

Résumé

Dans ce travail, on montre des nouveaux résultats pour l’analyse et la synthèse des systèmes stables en temps
fini et fixe. Ce genre des systèmes convergent exactement à un point d’équilibre dans une quantité du temps
qui est fini et, dans le cas de systèmes stables en temps fixe, dans un temps maximal constant qui ne dépend
pas des conditions initiales du système.

Les chapitres 2 et 3 portent sur des résultats d’analyse ; ce premier present des conditions nécessaires et
suffisants pour la stabilité en temps fixe des systèmes autonomes continues tandis que ce dernier combine
l’approche de la fonction implicite de Lyapunov avec des résultats de stabilisation ISS pour étudier la
robustesse de ce genre de systèmes.

Les chapitres 4 et 5 présentent des résultats pratiques liés á la procédure de synthèse des contrôleurs et
des observateurs. Le chapitre 4 emploie la méthode de la fonction de Lyapunov implicite afin d’obtenir
des observateurs convergents en temps fini et fixe pour les systèmes linéaires MIMO. Le chapitre 5 utilise
des propriétés d’homogénéité et des fonctions de Lyapunov implicites pour synthétiser un contrôleur de
sortie en temps fixe pour une chaîne d’intégrateurs. Les résultats obtenus ont été validés par des simulations
numériques et le chapitre 4 contient des tests de performance sur un pendule rotatif.

Mots clés : stabilisation en temps fini, stabilisation en temps fixe, systèmes homogènes, lyapunov analysis
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