, Calculate the vectors ¯ z i,j using, vol.16

, Fix positive values for ?, ?, ? 1 , ? 2 , ? < ? (possible starting values are given in the examples)

, Verify the feasibility of the system of inequalities, vol.15

, If unfeasible, reduce the value of or modify the value of ? and repeat from step 3. If feasible, the value of |? 1 | might be increased in step 2 until a desired value of T max is obtained without loosing feasibility

Y. , M as described in Theorem 5.2. Note that the parameters that influence directly the settling-time are ? 1 , ? 2 , ? 1 , ? 2 , ? and ?. The parameters and ? modify the bounds of the inequality (5.15c)

, Finally let us remark that following a similar procedure, analogous algorithms can be developed

, We start by choosing n = 3, ? 1 = ?0.02, ? 2 = ?? 1 , = ? = 0.5 and calculating ¯ z j ; following

J. Adamy, Implicit Lyapunov functions and isochrones of linear systems, IEEE Transactions on Automatic Control, vol.50, pp.874-879, 2005.

V. Andrieu, L. Praly, and A. Astolfi, Homogeneous Approximation, Recursive Observer Design, and Output Feedback, In: SIAM J. Control Optimization, vol.47, pp.1814-1850, 2008.

D. Angeli, E. D. Sontag, and Y. Wang, A characterization of integral input-to-state stability, IEEE Trans. Automat. Control, vol.45, p.19, 2000.

M. T. Angulo, J. A. Moreno, and L. Fridman, Robust exact uniformly convergent arbitrary order differentiator, Automatica 49, vol.8, p.86, 2013.

A. Bacciotti and L. Rosier, Lyapunov Functions and Stability in Control Theory. 2nd, 2005.

E. Barbashin, Existence of smooth solutions of some linear equations with partial derivatives, Doklady Akademii Nauk SSSR, vol.72, issue.3, p.14, 1950.

E. Barbashin and N. Krasovskii, On the existence of Lyapunov functions in the case of asymptotic stability in the large, Doklady Akademii Nauk SSSR, vol.86, p.14, 1952.

E. Bernuau, A. Polyakov, D. Efimov, and W. Perruquetti, Verification of ISS, iISS and IOSS properties applying weighted homogeneity, Systems & Control Letters, vol.62, pp.1159-1167, 2013.

E. Bernuau, Robustness and stability of nonlinear systems : a homogeneous point of view, p.22, 2013.

S. P. Bhat and D. S. Bernstein, Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrator, IEEE Trans. Automat. Control, vol.43, p.27, 1998.

, Finite Time Stability of Continuous Autonomous Systems, In: SIAM J. Control Optim, vol.38, issue.3, pp.9-13, 2000.

, Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals and Systems, vol.17, p.26, 2005.

R. Courant and F. John, Introduction to calculus and analysis II, vol.29, p.28, 2012.

E. Cruz-zavala, J. Moreno, and L. Fridman, Uniform Robust Exact Differentiator, IEEE Transactions on Automatic Control, vol.56, p.86, 2011.

S. Dashkovskiy, D. Efimov, and E. Sontag, Input to state stability and allied system properties, Automation and Remote Control 72, vol.8, p.20, 2011.

S. Drakunov, D. B. Izosimov, A. Luk&apos;yanov, V. A. Utkin, and V. Utkin, The block control design principle. II, In: Automation and Remote Control, vol.6, p.65, 1990.

, The block control principle. I, In: Automation and Remote Control, vol.5, p.65, 1990.

H. Du, S. Li, and C. Qian, Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE Transactions on Automatic Control, vol.56, pp.2711-2717, 2011.

D. Efimov, W. Perruquetti, and J. Richard, Development of homogeneity concept for time-delay systems, SIAM Journal on Control and Optimization, vol.52, p.20, 2014.

D. Efimov, A. Polyakov, A. Levant, and W. Perruquetti, Realization and discretization of asymptotically stable homogeneous systems, IEEE Transactions on Automatic Control, vol.62, p.97, 2017.

T. Floquet, J. Barbot, W. Perruquetti, and M. Djemai, On the robust fault detection via a sliding mode disturbance observer, International Journal of control, vol.77, pp.622-629, 2004.

W. Hahn, Stability of Motion, 1967.

V. T. Haimo, Finite Time Controllers, In: SIAM J. Control Optim, vol.24, p.3, 1986.
DOI : 10.1137/0324047

M. Harmouche, S. Laghrouche, Y. Chitour, and M. Hamerlain, Stabilisation of perturbed chains of integrators using Lyapunov-based homogeneous controllers, International Journal of Control 90, vol.12, p.94, 2017.

H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, Differential Equations: Stability and Control. Marcel Dekker, vol.109, pp.249-260, 1991.

Y. Hong, Z. Jiang, and G. Feng, Finite-Time Input-to-State Stability and Applications to Finite-Time Control Design, SIAM Journal on Control and Optimization, vol.48, pp.4395-4418, 2010.

Y. Hong, G. Yang, L. Bushnell, and H. O. Wang, Global finite-time stabilization: from state feedback to output feedback, Proceedings of the 39th IEEE Conference on, vol.3, pp.2908-2913, 2000.

Y. Hong, Y. Xu, and J. Huang, Finite-time control for robot manipulators, Systems & control letters, vol.46, pp.243-253, 2002.

A. Isidori, Nonlinear control systems, Springer Science & Business Media (cit, vol.65, p.42, 2013.

M. Kawski, Homogeneous stabilizing feedback laws, Control Theory and advanced technology 6, vol.4, p.21, 1990.

C. M. Kellett, Classical converse theorems in Lyapunov's second method, Discrete & Continuous Dynamical Systems-B 20, vol.8, p.14, 2015.

H. K. Khalil, Nonlinear systems, 3rd, New Jewsey, Prentice Hall 9, vol.17, 2002.

H. K. Khalil and L. Praly, High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control, vol.24, p.65, 2014.

V. I. Korobov, A general approach to the solution of the bounded control synthesis problem in a controllability problem, Matematicheskii Sbornik 151, vol.4, pp.582-606, 1979.

N. N. Krasovskij, Stability of motion: applications of Lyapunov's second method to differential systems and equations with delay, p.12, 1963.

J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion, Russian) Czechoslovak Mathematical Journal, vol.81, p.14, 1956.

Y. Lin, E. D. Sontag, and Y. Wang, A smooth converse Lyapunov theorem for robust stability, In: SIAM J. Control Optim, vol.34, issue.1, p.17, 1996.

F. Lopez-ramirez, A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time and fixed-time observers design via implicit Lyapunov function, Control Conference (ECC), p.111, 2016.

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, Fixed-time output stabilization of a chain of integrators, Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, p.111, 2016.

F. Lopez-ramirez, A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time and fixed-time observer design: Implicit Lyapunov function approach, Automatica, vol.87, p.111, 2018.

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, Fixed-Time Output Stabilization and Fixed-Time Estimation of a Chain of Integrators, International Journal of Robust and Nonlinear Control, p.112, 2018.

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, On Implicit Finite-Time and Fixed-Time ISS Lyapunov Functions, Decision and Control (CDC), IEEE 55th Conference on, p.111, 2018.

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, On Necessary and Sufficient Conditions for Fixed-Time Stability of Continuous Autonomous Systems, Proc. 17th European Control Conference (ECC) (cit, p.111, 2018.

I. Malkin, Questions concerning transformation of Lyapunov's theorem on asymptotic stability, p.14, 1954.

J. L. Massera, Contributions to stability theory, Annals of Mathematics, p.14, 1956.

J. L. Massera, On Liapounoff's conditions of stability, Annals of Mathematics, p.14, 1949.

T. Menard, E. Moulay, and W. Perruquetti, Fixed-time observer with simple gains for uncertain systems, Automatica, vol.81, p.69, 2017.

M. S. Misrikhanov and V. N. Ryabchenko, Pole placement for controlling a large scale power system, Automation and Remote Control 72, vol.10, p.65, 2011.

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of continuous systems, Journal of Mathematical Analysis and Application, vol.323, issue.2, pp.1430-1443, 2006.

J. R. Munkers, Topology a first course, Rrentice-Hall inc. New Jersey (cit, p.27, 1975.

H. Nakamura, Y. Yamashita, and H. Nishitani, Smooth Lyapunov functions for homogeneous differential inclusions, SICE 2002. Proceedings of the 41st SICE Annual Conference, vol.3, p.26, 2002.

W. Perruquetti, T. Floquet, and E. Moulay, Finite-time observers: application to secure communication, IEEE Transactions on Automatic Control, vol.53, issue.1, pp.356-360, 2008.

K. Persidskii, On a theorem of Lyapunov, In: (Russian) Dokl. Akad. Nauk SSSR, vol.14, p.14, 1937.

A. Polyakov, Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems, IEEE Transactions on Automatic Control, vol.57, p.37, 2012.

A. Polyakov and L. Fridman, Stability notions and Lyapunov functions for sliding mode control systems, Journal of the Franklin Institute, vol.351, pp.1831-1865, 2014.

A. Polyakov, D. Efimov, and W. Perruquetti, Homogeneous differentiator design using implicit Lyapunov function method, Control Conference (ECC), p.64, 2014.

A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica 51, pp.332-340, 2015.

A. A. Prasov and H. K. Khalil, A nonlinear high-gain observer for systems with measurement noise in a feedback control framework, IEEE Transactions on Automatic Control, vol.58, pp.569-580, 2013.

C. Qian and W. Lin, Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, Systems & Control Letters, vol.42, p.43, 2001.

H. Ríos and A. R. Teel, A hybrid observer for fixed-time state estimation of linear systems, Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, p.86, 2016.

E. Roxin, On Finite Stability in Control Systems, Rendiconti del Circolo Matematico di Palermo, vol.15, p.3, 1966.

R. G. Sanfelice and L. Praly, On the performance of high-gain observers with gain adaptation under measurement noise, Automatica 47, vol.10, p.69, 2011.

E. D. Sontag, A universal construction of Artstein's theorem on nonlinear stabilization, Systems & Control letters 13, vol.2, p.41, 1989.

E. D. Sontag, Comments on integral variants of ISS, Systems Control Lett, vol.34, p.16, 1998.

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems & Control Letters, vol.24, pp.351-359, 1995.

E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Automat. Control, vol.41, p.20, 1996.

Y. Wang, Y. Song, M. Krstic, and C. Wen, Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures, Automatica, vol.63, pp.374-383, 2016.

W. M. Wonham, Linear multivariable control, Optimal control theory and its applications, p.65, 1974.

K. Zimenko, A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time and fixed-time stabilization for integrator chain of arbitrary order, Proc. 17th European Control Conference (ECC) (cit, p.64, 2018.

N. Zoghlami, L. Beji, R. Mlayeh, and A. Abichou, Finite-time stabilization of interconnected nonlinear systems, Control Applications (CCA), 2013 IEEE International Conference on. IEEE, pp.1188-1193, 2013.

V. Zubov, On systems of ordinary differential equations with generalized homogenous right-hand sides, pp.80-88, 1958.

, A.1 Conference Articles ECC16

F. Lopez-ramirez, A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time and fixed-time observers design via implicit Lyapunov function, Control Conference (ECC), pp.289-294, 2016.

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, Fixed-time output stabilization of a chain of integrators, Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, pp.3886-3891, 2016.

L. Ecc2018 and C. ,

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, On Necessary and Sufficient Conditions for Fixed-Time Stability of Continuous Autonomous Systems, Proc. 17th European Control Conference, 2018.

M. Cdc2018, . Beach, and U. Florida,

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, On Implicit Finite-Time and Fixed-Time ISS Lyapunov Functions, Decision and Control (CDC), IEEE 55th Conference on A.2 Journal Articles Automatica, 2018.

F. Lopez-ramirez, A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time and fixed-time observer design: Implicit Lyapunov function approach, Automatica, vol.87, pp.52-60, 2018.

, International Journal of Robust and Nonlinear Control, 2018.

F. Lopez-ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, Fixed-Time Output Stabilization and Fixed-Time Estimation of a Chain of Integrators, International Journal of Robust and Nonlinear Control, 2018.