B. Albertazzi, Plasmas Lasers et Champs Magnétiques

, INRS, 2014.

B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht et al., Review of Scientific Instruments, vol.84, p.1, 2013.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., Science, vol.346, p.325, 2014.

D. J. Ampleford, S. V. Lebedev, A. Ciardi, S. N. Bland, S. C. Bott et al., Physical Review Letters, vol.100, 2008.

S. M. Andrews, D. J. Wilner, Z. Zhu, T. Birnstiel, J. M. Carpenter et al., The Astrophysical Journal Letters, vol.820, 2016.

P. Antici, Laser-acceleration of high-energy short proton beams and applications

C. Argiroffi, Coronal properties of X-ray bright stars in young associations: abundances, temperatures, and variability, 2005.

C. Argiroffi, A. Maggio, and G. Peres, Astronomy & Astrophysics, vol.465, p.5, 2007.

P. J. Armitage, Annual Review of Astronomy and Astrophysics, vol.49, 2010.

S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti et al., Computer Physics Communications, vol.169, p.153, 2005.

J. Bally, E. Feigelson, and B. Reipurth, The Astrophysical Journal, vol.584, p.843, 2003.

M. Balucinska-church and D. Mccammon, The Astrophysical Journal, vol.400, p.699, 1992.

J. Béard, J. Billette, P. Frings, M. Suleiman, and F. Lecouturier, Journal of Low Temperature Physics, vol.170, p.442, 2013.

J. Béard and F. Debray, Journal of Low Temperature Physics, vol.170, p.541, 2013.

P. M. Bellan, S. You, and S. C. Hsu, Astrophysics and Space Science, vol.298, p.203, 2005.

R. D. Blandford and D. G. Payne, Monthly Notices of the Royal Astronomical Society, vol.199, 1982.

K. Bockasten, Journal of the Optical Society of America, vol.51, p.943, 1961.

R. Bonito, S. Orlando, C. Argiroffi, M. Miceli, G. Peres et al., The Astrophysical Journal, vol.795, p.34, 2014.

R. Bonito, S. Orlando, M. Miceli, G. Peres, G. Micela et al., Astrophysical Journal, vol.737, 2011.

W. H. Bostick, Physical Review, vol.104, p.292, 1956.

S. Bouquet, C. Stéhlé, M. Koenig, J. P. Chièze, A. Benuzzi-mounaix et al., Physical Review Letters, vol.92, p.225001, 2004.

J. Bouvier, S. H. Alencar, T. J. Harries, C. M. Johns-krull, and M. M. Romanova, EAS Publications Series, vol.9, p.287, 2003.

S. I. Braginskii, Reviews of Plasma Physics, vol.1, p.205, 1965.

N. S. Brickhouse, S. R. Cranmer, A. K. Dupree, G. J. Luna, and S. Wolk, The Astrophysical Journal, vol.710, p.1835, 2010.

J. Bruneteau, E. Fabre, H. Lamain, and P. Vasseur, The Physics of Fluids, vol.13, 1970.

C. Busschaert, É. Falize, B. Loupias, C. Michaut, A. Ravasio et al., New Journal of Physics, vol.15, 2013.

N. Calvet and E. Gullbring, The Astrophysical Journal, vol.509, 1998.

J. Canto, G. Tenorio-tagle, and M. Rozyczka, Astronomy and Astrophysics, vol.192, p.287, 1988.

C. Carrasco-gonzález, L. F. Rodríguez, G. Anglada, J. Martí, J. M. Torrelles et al., Science -Reports, vol.330, p.1209, 2010.

S. Casassus, G. Van-der-plas, M. Sebastian-perez, W. R. Dent, E. Fomalont et al., Nature -Letters, vol.493, 2013.

P. Cassen and A. Moosman, Icarus, vol.48, p.353, 1981.

S. Chandrasekhar, H. Hydrodynamic, and . Stability, , 1981.

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti et al., Physical Review Letters, vol.107, 2011.

N. L. Chapman, J. A. Davidson, P. F. Goldsmith, M. Houde, W. Kwon et al., The Astrophysical Journal, vol.770, p.151, 2013.

U. Chaulagain, C. Stehlé, J. Larour, M. Kozlova, F. Suzuki-vidal et al., High Energy Density Physics, vol.17, p.106, 2015.

S. N. Chen, T. Iwawaki, K. Morita, P. Antici, S. D. Baton et al., Scientific Reports, vol.6, p.21495, 2016.

J. P. Chittenden, S. V. Lebedev, C. A. Jennings, S. N. Bland, and A. Ciardi, Plasma Physics and Controlled Fusion, vol.46, 2004.

H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, High Energy Density Physics, vol.1, p.3, 2005.

A. Ciardi and P. Hennebelle, Monthly Notices of the Royal Astronomical Society: Letters, vol.409, 2010.

A. Ciardi, S. V. Lebedev, A. Frank, E. G. Blackman, J. P. Chittenden et al., Physics of Plasmas, vol.14, 2007.

A. Ciardi, S. V. Lebedev, A. Frank, F. Suzuki-vidal, G. N. Hall et al., The Astrophysical Journal, vol.691, 2009.

A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda et al., Physical Review Letters, vol.110, p.25002, 2013.

S. Colombo, S. Orlando, G. Peres, C. Argiroffi, R. et al., Astronomy & Astrophysics, vol.594, 2016.

G. Costa, S. Orlando, G. Peres, C. Argiroffi, and R. Bonito, Astronomy & Astrophysics, vol.597, 2017.

J. E. Cross, G. Gregori, J. M. Foster, P. Graham, J. M. Bonnet-bidaud et al., Nature Communications, vol.7, p.11899, 2016.

R. L. Curran, C. Argiroffi, G. G. Sacco, S. Orlando, G. Peres et al., Astronomy & Astrophysics, vol.526, 2011.

J. A. Davidson, G. Novak, T. G. Matthews, B. Matthews, P. F. Goldsmith et al., The Astrophysical Journal, vol.732, p.97, 2011.

M. Dorf, Viscosity of a multispecies plasma containing hydrogen and high-Z ions, 2014.

C. Dougados, S. Cabrit, C. Lavalley, and F. Ménard, Astronomy and Astrophysics, vol.357, p.61, 2000.

R. P. Drake, Shock Wave and High Pressure Phenomena

(. Horie and . Springer, , p.534, 2008.

R. P. Drake and G. Gregori, Astrophysical Journal, vol.749, 2012.

R. Fabbro, C. Max, and E. Fabre, Physics of Fluids, vol.28, p.1463, 1985.

A. Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, V. M. Dyakin et al., Physica Scripta, vol.50, p.333, 1994.

É. Falize, Similitude et autosimilarité en physique des hautes densité d'energie. Appliocation à l'astrophysique de laboratoire, 2008.

D. R. Farley, K. G. Estabrook, S. G. Glendinning, S. H. Glenzer, B. A. Remington et al., Physical Review Letters, vol.83, p.1982, 1999.

F. Favata, C. V. Fridlund, G. Micela, S. Sciortino, and A. A. Kaas, Astronomy & Astrophysics, vol.386, p.204, 2002.

J. Ferreira, C. Dougados, and E. Whelan, Jets from Young Stars : Models and Constraints, 2007.

J. M. Foster, B. H. Wilde, P. A. Rosen, T. S. Perry, M. Fell et al., Physics of Plasmas, vol.9, p.2251, 2002.

A. Frank, T. P. Ray, S. Cabrit, P. Hartigan, H. G. Arce et al., Protostars and Planets VI, pp.451-474, 2014.

J. F. Friichtenicht and J. C. Slattery, Ionization associated with hyper velocity impact, 1963.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka et al., Scientific Reports, vol.3, p.1, 2013.

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov et al., Physical Review Letters, vol.103, p.1, 2009.

O. V. Gotchev, J. P. Knauer, P. Y. Chang, N. W. Jang, M. J. Shoup et al., Review of Scientific Instruments, vol.80, 2009.

T. S. Green and G. B. Niblett, Nuclear Fusion, vol.1, p.42, 1960.

E. Guenther, H. Lehmann, J. Emerson, and J. Staude, Astronomy & Astrophysics, vol.341, p.768, 1999.

E. Gullbring, L. Hartmann, C. Briceno, N. Calvet, C. Briceño et al., The Astrophysical Journal, vol.492, p.323, 1998.

P. Hartigan, S. Edwards, P. , and R. , The Astrophysical Journal, vol.609, p.261, 2004.

L. Hartmann, Accretion processes in star formation, p.346, 2008.

P. Hennebelle and A. Ciardi, Astronomy & Astrophysics -Letter to the Editor, vol.506, p.29, 2009.

G. J. Herczeg and L. A. Hillenbrand, The Astrophysical Journal, vol.681, 2008.

D. P. Higginson, G. Revet, B. Khiar, M. Blecher, M. Borghesi et al., High Energy Density Physics, vol.23, p.48, 2017.

H. Hornung, Annual Review of Fluid Mechanics, vol.18, p.33, 1986.

S. C. Hsu and P. M. Bellan, Physical Review Letters, vol.90, 2003.

J. D. Huba, NRL Plasma Formulary, pp.1-70, 2016.

C. L. Hull, R. L. Plambeck, A. D. Bolatto, G. C. Bower, J. M. Carpenter et al., The Astrophysical Journal, p.768, 2013.

C. M. Johns-krull, The Astrophysical Journal, vol.664, 2007.

C. M. Johns-krull, J. A. Valenti, A. P. Hatzes, and A. Kanaan, The Astrophysical Journal, vol.510, p.41, 1999.

C. M. Johns-krull, J. A. Valenti, S. H. Saar, and A. P. Hatzes, Magnetic Fields Across the Hertzsprung-Russell Diagram, pp.527-532, 2001.

C. P. Johnstone, M. Jardine, S. G. Gregory, J. F. Donati, and G. Hussain, Monthly Notices of the Royal Astronomical Society, vol.437, 2014.

M. Joos, P. Hennebelle, and A. Ciardi, Astronomy and Astrophysics, vol.543, 2012.

J. Kane, D. Arnett, B. A. Remington, S. G. Glendinning, J. Castor et al., The Astrophysical Journal, vol.478, p.75, 1997.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa et al., Physical Review Letters, vol.53, p.1057, 1984.

B. Khiar, Laboratory astrophysics with magnetized laser-produced plasmas, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01699030

B. Khiar, G. Revet, A. Ciardi, and J. Fuchs, Physics of Plasmas, 2018.

A. Konigl, The Astrophysical Journal, vol.261, p.115, 1982.

J. H. Krolik and T. R. Kallman, The Astrophysical Journal, vol.286, p.366, 1984.

J. Kwan and E. Tademaru, The Astrophysical Journal, vol.332, p.41, 1988.

L. Lancia, B. Albertazzi, C. Boniface, A. Grisollet, R. Riquier et al., Physical Review Letters, vol.113, p.1, 2014.

L. Landau and E. M. Lifshitz, Fluid Mechanics, vol.6, 1987.

E. Landi, G. Del-zanna, P. R. Young, K. P. Dere, and H. E. Mason, The Astrophysical Journal, vol.744, p.99, 2012.

S. V. Lebedev, A. Ciardi, D. J. Ampleford, S. N. Bland, S. C. Bott et al., Monthly Notices of the Royal Astronomical Society, vol.361, 2005.

A. Lévy, Accélération d'ions par interaction laser-matière en régime de ultra haut contraste laser, 2008.

Z. Li, R. Krasnopolsky, and H. Shang, The Astrophysical Journal, vol.738, 2011.

Z. Li, R. Krasnopolsky, and H. Shang, The Astrophysical Journal, vol.774, 2013.

B. Loupias, M. Koenig, E. Falize, S. Bouquet, N. Ozaki et al., Physical Review Letters, vol.99, p.1, 2007.

J. J. Macfarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, High Energy Density Physics, vol.3, p.181, 2007.

M. J. Manuel, C. C. Kuranz, A. M. Rasmus, S. R. Klein, M. J. Macdonald et al., High Energy Density Physics, vol.17, p.52, 2015.

T. Matsakos, J. Chièze, C. Stehlé, M. González, L. Ibgui et al., Astronomy & Astrophysics, vol.557, 2013.

T. Matsakos, S. Massaglia, E. Trussoni, K. Tsinganos, N. Vlahakis et al., Astronomy and Astrophysics, vol.502, 2009.

S. Matt, R. Winglee, and K. Böhm, Monthly Notices of the Royal Astronomical Society, vol.345, p.660, 2003.

A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, Review of Scientific Instruments, vol.79, 2008.

F. Ménard and G. Duchêne, Astronomy and Astrophysics, vol.425, 2004.

A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu et al., The Astrophysical Journal Supplement Series, vol.170, 2007.

A. N. Mostovych, B. H. Ripin, and J. A. Stamper, Physical Review Letters, vol.62, p.2837, 1989.

A. Natta, L. Testi, J. Muzerolle, S. Randich, F. Comerón et al., Astronomy and Astrophysics, vol.424, 2004.

J. U. Ness, M. Güdel, J. H. Schmitt, M. Audard, and A. Telleschi, Astronomy & Astrophysics, vol.427, 2004.

P. Nicola, C. Stenz, V. Tikhonchuk, A. Kasperczuk, T. Pisarczyk et al., Physics of Plasmas, vol.17, 2010.

S. Orlando, R. Bonito, C. Argiroffi, F. Reale, G. Peres et al., Astronomy & Astrophysics, vol.559, 2013.

S. Orlando, G. G. Sacco, C. Argiroffi, F. Reale, and A. Maggio, Astronomy & Astrophysics, vol.510, 2010.

G. J. Pert, Journal of Plasma Physics, vol.41, p.263, 1989.

T. A. Peyser, C. K. Manka, B. H. Ripin, and G. Ganguli, Physics of Fluids B, vol.4, p.2448, 1992.

C. Plechaty, R. Presura, and A. A. Esaulov, Physical Review Letters, vol.185002, p.1, 2013.

B. B. Pollock, D. H. Froula, G. R. Tynan, L. Divol, D. Price et al., Review of Scientific Instruments, vol.79, 2006.

H. Puell, Zeitschrift fur Naturforschung -Section A, Journal of Physical Sciences, vol.25, p.1807, 1970.

A. Raga, S. Cabrit, C. Dougados, and C. Lavalley, Astronomy & Astrophysics, vol.367, p.959, 2001.

A. C. Raga, L. Binette, J. Canto, and N. Calvet, The Astrophysical Journal, vol.364, p.601, 1990.

P. R. Ratcliff, M. Burchell, M. J. Cole, T. W. Murphy, A. et al., International Journal of Impact Engineering, vol.20, p.663, 1997.

F. Reale, S. Orlando, P. Testa, G. Peres, E. Landi et al., Science, vol.341, p.251, 2013.

B. A. Remington, R. P. Drake, and D. D. Ryutov, Reviews of Modern Physics, vol.78, p.755, 2006.

B. A. Remington, J. Kane, R. P. Drake, S. G. Glendinning, K. Estabrook et al., Physics of Plasmas, vol.4, 1994.

B. H. Ripin, J. D. Huba, E. A. Mclean, C. K. Manka, T. Peyser et al., Physics of Fluids B, vol.5, p.3491, 1993.

M. D. Rosen, R. H. Price, E. M. Campbell, D. W. Phillion, K. G. Estabrook et al., Physical Review A, vol.36, p.247, 1987.

M. Rozyczka and G. Tenorio-tagle, Monthly Notices of the Royal Astronomical Society, vol.274, p.1157, 1995.

S. N. Ryazantsev, I. Y. Skobelev, A. Y. Faenov, T. A. Pikuz, A. N. Grum-grzhimailo et al., JETP Letters, vol.102, p.707, 2015.

S. N. Ryazantsev, I. Y. Skobelev, A. Y. Faenov, T. A. Pikuz, A. N. Grum-grzhimailo et al., JETP Letters, vol.102, p.707, 2016.

G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics, p.400, 1985.

D. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington et al., The Astrophysical Journal, vol.518, p.821, 1999.

D. D. Ryutov, R. P. Drake, R. , and B. A. , The Astrophysical Journal Supplement Series, vol.127, p.465, 2000.

D. D. Ryutov, N. L. Kugland, M. C. Levy, C. Plechaty, J. S. Ross et al., Physics of Plasmas, vol.20, p.1, 2013.

D. D. Ryutov, N. L. Kugland, H. S. Park, C. Plechaty, B. A. Remington et al., Physics of Plasmas, vol.19, p.1, 2012.

D. D. Ryutov, N. L. Kugland, H. S. Park, S. M. Pollaine, B. A. Remington et al., Physics of Plasmas, vol.18, p.3, 2011.

D. D. Ryutov, B. A. Remington, H. F. Robey, and R. P. Drake, Physics of Plasmas, vol.8, p.1804, 2001.

G. G. Sacco, C. Argiroffi, S. Orlando, A. Maggio, G. Peres et al., Astronomy & Astrophysics, vol.491, p.17, 2008.

G. G. Sacco, S. Orlando, C. Argiroffi, A. Maggio, G. Peres et al., Astronomy & Astrophysics, vol.522, p.55, 2010.

G. Schmidt, Physics of Fluids, vol.3, p.961, 1960.

J. H. Schmitt, J. Robrade, J. Ness, F. Favata, and B. Stelzer, Astronomy and Astrophysics, vol.432, p.35, 2005.

F. H. Shu, The Astrophysical Journal, vol.214, p.488, 1977.

R. K. Smith, N. S. Brickhouse, D. A. Liedahl, R. , and J. C. , The Astrophysical Journal, vol.556, 2001.

L. Spitzer, Physics of Fully Ionized Gases
DOI : 10.1119/1.1969155

, Interscience Publisher Ltd, 1956.

H. C. Spruit, T. Foglizzo, and R. Stehle, Monthly Notices of the Royal Astronomical Society, vol.288, p.333, 1997.

J. M. Stone and M. L. Norman, The Astrophysical Journal, vol.389, p.297, 1992.

D. Strickland and G. Mourou, Optics Communications, vol.55, p.447, 1985.

K. M. Strom, S. E. Strom, S. C. Wolff, J. Morgan, and M. Wenz, The Astrophysical Journal Supplement Series, vol.62, p.39, 1986.

E. Sucov, J. Pack, A. V. Phelps, and A. G. Engelhardt, Physics of Fluids, vol.10, p.2035, 1967.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks et al., Physics of Plasmas, vol.1, p.1626, 1994.

A. Telleschi, M. Güdel, K. R. Briggs, M. Audard, and L. Scelsi, Astronomy & Astrophysics, vol.468, p.443, 2007.

P. Testa, J. J. Drake, and G. Peres, The Astrophysical Journal, p.508, 2004.

B. Trubnikov, Reviews of Plasma Physics, vol.I, p.105, 1965.

S. Ustamujic, S. Orlando, R. Bonito, M. Miceli, A. I. Gómez-de-castro et al., Astronomy & Astrophysics, vol.596, 2016.

E. P. Velikhov, Soviet Physics Jetp, vol.36, p.1398, 1959.

T. Vinci and A. Flacco, , 2018.

R. Yurchak, A. Ravasio, A. Pelka, S. Pikuz, E. Falize et al., Physical Review Letters, vol.112, 2014.

Y. P. Zakharov, V. M. Antonov, E. L. Boyarintsev, A. V. Melekhov, V. G. Posukh et al., Plasma Physics Reports, vol.32, p.183, 2006.

Y. B. Zel'dovich and Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena -I, vol.I, 1966.

J. P. Zou, C. L. Blanc, P. Audebert, S. Janicot, .. M. Sautivet et al., Journal of Physics, vol.112, p.32021, 2008.

, Experimental data from the FSSR showing emission-weighted a) electron temperature and b) electron density for the cases without (squares) and with (circles) a 20 T magnetic field, Schematic representation of the FSSR X-ray spectrometer field of view regarding the plasma dynamic

, GORGON simulated volumetric electron density maps at 2, 10 and 30 ns, p.42

. .. , 43 1.19. GORGON longitudinal density profiles (top) and velocity (bottom) compare to a 1D self similar expansion

, The radius of the cavity (at 10% of the peak density) at z = 1 mm from the target for different laser irradiation energies. Error bars are defined as the difference between the radius at 50% and 10% of the peak density. The solid line is from eq.1.4 with a constant absorption of f = 12%, Electron density for laser irradiation energies of (top) 3 J, (middle) 6 J and (bottom) 16 J, p.47

, Electron density for magnetic field strength of (a) 6 T at 23 ns, (b) 20 T at 11 ns, and (c) 30 T at 11 ns

, Schematic of the staged heating experimental setup and 3D MHD simulations of the overall plasma dynamics, The radius of the cavity as a radius of the magnetic field strength

, the case of main pulse alone, (b,e,h) and (c,f,i) rows show the temporally staged cases of 9 and 19 ns delay, Plasma electron density measured via interferometry

, Streaked optical emission profiles along the center of the plasma expansion axis for (a) the main-pulse-only case and (b) [(c)] the precursor and main pulses with a 9 ns [19 ns] delay between them

, -(c) Pseudocolor maps of n e . (d) Profiles of n e , averaged over the laser focal spot. (e) Ratio of longitudinal to radial kinetic energy, 3D MHD simulations results in the temporally staged heating cases. (a), p.55

. .. , 59 2.4. Standard description of the accretion shock in the magnetospheric accretion model, in the context of a Classical T Tauri star

, 6. Cartoon of the experimental accretion experiment we performed using a magnetically collimated supersonic flow generated by a laser, p.94

, 2 cm from the stream target, following the 1D self-similar model, Cartoon showing the top view of the central coil-region of the experimental set-up and the diagnostics paths, vol.101

, Dynamic-variation as a function of the magnetic field and the ion density, for a CTTS accretion column with free fall velocity of 500 km s ?1, p.102

, Left: Laboratory and astrophysical density jump at the shock location. Right: Experimental shock front location as a function of time, determined from the interferometry data

, Stream + corona (left panels) and chromospheric materials (right panels) volumetric mass density

, Left: Radiation losses for the PVC (C 2 H 3 Cl) in [erg/s/cm ?3 /Hz/sr] as a function of the photon energy

, Best fit of the X-ray spectrum measured near the obstacle (PVC target, the stream being generated from a CF2 target) in the case of a magnetic field strength of B = 20 T and as obtained by the PrismSPECT code in steady-state mode for an electron temperature of 200 eV, = 1.5 × 10 19 cm ?3 and an electron temperature T e = 100 eV

, Left: Comparison of experimental spectra (in black) recorded near the obstacle target, for the cases of 20 T applied B-field, together with simulations (in red) of the He ? like line series obtained using a recombination plasma model. Right: The spectrum measured for, p.20

, while the stream is generated from a CF2 target), in the range from 14.5 to 15.4 Å and containing the Ly? line and its dielectronic satellites

, 116 2.21. 2D slices of ion and electron temperatures as well as plasma thermal beta at t = 22 ns (i.e. 12 ns after the stream impacts the obstacle -1000 km/s jet component)

, Right: Cooling time defined ast cooling = (3/2)n i (1 + Z)kT /n i n e ?(T ), for both the experimental case (red curve) and the laboratory case (black curve)

, Electron and ion temperature evolution for different initial temperatures and densities

, Schematic representation of the electrons and ions temperatures evolution during the experimental accretion dynamic

K. ]. , Simulation of reduced X-ray emissivity from a young star due to local absorption in the shell, Stream + corona (left panels) and chromospheric materials

. Orlando, Astrophysical simulation using the Pluto Code for different initial magnetic field values, 2010.

, Experimental electron density maps of the accretion dynamic for different applied magnetic field strength value. From left to right, 6, 20 and 30 Tesla respectively

, A.1. Cartoon of the X-ray radiography configuration

A. , Illustration of the step transition observed in the transmitted X-rays between the target and vacuum or an ablated plasma expanding toward vacuum, p.146

, Recorded radial transmission of the X-rays along the target surface, at z = 55m from the target surface. (b) Longitudinal transmission of the X-rays, p.147

, Brmax such as it solves equation A.1 for various values of h? a and h? b , with h? b > h? a (N.B.: this is why the upper left part of the 2D map is emptied)

, Lineouts of the map of Fig

A. , Evolution with h? b of the affine parameter of the T Brmax (h? a ) function, i.e. a(h? b ) and b(h? b ), and the corresponding fits. a(h? b ) follows a power law while b(h? b ) follows an affine relation

, 25 1.3. Measured and estimated plasma conditions in the propagating plasma sheet well formed

. .. , 103 2.2. Parameters of the laboratory accretion, with respect to the ones of the accretion stream in CTTSs, for the initial incoming stream, the score and the shell, Parameters of the laboratory accretion stream, with respect to the ones of the accretion stream in CTTSs, for the incoming stream

?. G. Revet, S. N. Chen, R. Bonito, B. Khiar, E. Filippov et al., Laboratory unravelling of matter accretion in young stars, Science Advances, vol.3, p.11, 2017.

?. D. Higginson, G. Revet, B. Khiar, J. Béard, M. Blecher et al., of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet, vol.119, p.25, 2017.

?. D. Higginson, G. Revet, B. Khiar, J. Béard, M. Blecher et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, vol.23, pp.48-59, 2017.

?. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al.,

F. Higginson, S. A. Kroll, K. Pikuz, L. Naughton, C. Romagnani et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, vol.346, p.325, 2014.

?. G. Revet, B. Khiar, J. Beard, R. Bonito, S. Orlando et al.,

, Laser experiment for the study of accretion dynamics of Young Stellar Objects: design and scaling. High Energy Density Physics

?. G. Revet, B. Khiar, E. Filippov, J. Beard, M. Cerchez et al.,

, Laboratory Evidence for the importance of poloidal magnetic field -outflow initial alignment in collimating jets emerging from Young Stars

?. B. Khiar, G. Revet, A. Ciardi, and J. , Fuchs Observation of the magnetic Rayleigh-Taylor instability in a laser-produced plasma. Phys. Plasmas

?. E. Humières, S. Chen, M. Lobet, M. Sciscio, P. Anticid et al., Fuchs Longitudinal laser ion acceleration in low density targets: experimental optimization on the Titan laser facility and numerical investigation of the ultra-high intensity limit, Proc. SPIE, vol.9514, p.95140, 2015.

?. K. Burdonov, A. A. Eremeev, N. I. Ignatova, R. R. Osmanov, A. D. Sladkov et al., Shaykin, I.A. Shaikin, I.V.Yakovlev Experimental stand for studying the impact of laser-accelerated protons on biological objects, Quantum Electronics, vol.46, issue.4, pp.283-287, 2016.

?. S. Chen, M. Gauthier, M. Bazalova-carter, S. Bolanos, S. Glenzer et al., Fuchs Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability, Rev. Sci. Instrum, vol.87, p.73301, 2016.

?. E. Filippov, Y. Pikuz, S. Skobelev, D. Ryazantsev, D. P-higginson et al., J Fuchs Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method, Journal of Physics: Conference Series, vol.774, 2016.

?. S. Ryazantsev, I. Yu, A. Skobelev, . Ya, T. A. Faenov et al., Pikuz Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of Helike ions X-ray emission, Phys. Plasmas, vol.23, p.123301, 2016.

?. A. Soloviev, K. Burdonov, S. N. Chen, A. Eremeev, A. Korzhimanov et al., Fuchs Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures, Scientific Reports, vol.7, p.12144, 2017.

?. S. Chen, M. Vranic, T. Gangolf, E. Boella, P. Antici et al., Fuchs Collimated protons accelerated from an overdense gas jet irradiated by a 1 mm wavelength high-intensity short-pulse laser, Scientific Reports, vol.7, p.13505, 2017.

?. M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen et al., Antici Laser-accelerated particle beams for stress testing of materials, Nature Communications, vol.9, p.372, 2018.

?. M. Tarisien, J. L. Henares, C. Baccou, . Th, F. Bonnet et al., Scintillators in high-power laser driven experiments, IEEE Transactions on Nuclear Science, 2018.

, Presentations ? ICHED summer school, p.2015

?. Hedla-conference, , p.2016

?. Ichedp-conference, , p.2016

?. Mach-meeting, , p.2017

?. Nwp-conference, 2017 -Invited ? IFSA conference, p.2017

?. Hedla-conference, , p.2015, 2018.

?. Iched-conference, , p.2015

?. Plas@par and P. Day, , p.2016

?. Meeting, , p.2016

, Il est ici mis en exergue une propagation non-inhibée à travers les lignes de champ magnétique (aux temps observés sur la durée de l'expérience), sous la forme d'une nappe (2D) de plasma. De plus, il est observé le développement d'intéressantes structures associées à des instabilités de Rayleigh-Taylor magnétisées à la base la nappe

. Le, En utilisant la même configuration expérimentale que dans le premier chapitre, le jet formé (dans le cas du champ magnétique parfaitement aligné) est utilisé pour imiter la colonne d'accrétion et est lancé sur une cible secondaire qui agit comme la surface stellaire. La dynamique de choc à l'emplacement de l'obstacle est soigneusement étudiée et un lien avec les phénomènes d'accrétion dans le contexte des « Classical T Tauri stars » (CTTSs) est construit. Il est montré que l'expérience est en capacité de reproduire un phénomène d'accrétion où la pression cinétique dirigée du plasma domine la pression magnétique ambiante d'une manière modérée (un facteur 10 séparant les deux pressions au maximum). Dans cette situation, un cocon de plasma, formé autour de la région d'impact via l'interaction avec le champ magnétique, est observé être similaire à celui trouvé dans les simulations astrophysiques de ce type d'accrétion. Ce cocon est un élément important en tant que milieu potentiel d'absorption des émissions X. Ce milieu permettrait en effet d