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Introduction

with deep societal implications — both technological and geopolitical. Supercomputers make

possible major advances in science and technology, as recently popularized by the — stun-
ning — picture supercomputation of the massive stellar object at the center of the M87 galaxy. My re-
searches concern the automation of supercomputer design and programming. Specifically, my con-
tributions concern the design of compilation models and algorithms to generate efficient software
and hardware for supercomputing kernels. Being at the interface between software and hardware,
my work is deeply influenced and challenged by the trends on computer architectures and program-
ming languages for high-performance computing, detailed in the two next sections.
This work has been granted by several positions. First, as a post-doc at ENS de Lyon, Texas A&M
University and Ohio State University (2006-2009). Then, as a permanent research scientist at Inria
(2009-). In 2014, I have co-founded a start-up, XtremLogic, with Alexandru Plesco, my first PhD stu-
dent. Since then, I spend a part of my time (20%) at doing scientific advising around the compiler I
have developed and transferred to XtremLogic under an Inria licence, where it is now a part of the
production compiler.
This chapter is structured as follows. Sections 1.1 and 1.2 discusses the general context and the chal-
lenges addressed by my researches. Section 1.3 outlines the contributions presented in this docu-
ment. Finally, Section 1.4 outlines of this document.

D ESIGNING and programming supercomputers is a major challenge for computer scientists

1.1 Architecture trends: the emergence of reconfigurable circuits

Power wall Since the end of Dennard scaling, transistors can no longer be miniaturized under a
constant power density. As a consequence, parallel architectures have become ubiquitous and en-
ergy efficiency (measured in flop/J) has become a major issue whenever the energy budget is lim-
ited, typically for embedded systems and high-performance computers (HPC). The current trend
is to explore the trade-off between circuit genericity and energy efficiency. The more specialized is a
circuit, the less energy it consumes. At the two extremes, an ASIC (application specific integrated cir-
cuit) finely tuned to realize a specific function is more energy efficient than a mainstream processor
(Xeon, etc). Hence the rise of hardware accelerators [87] (Xeon-Phi, GPU, FPGA) which equip most
embedded systems and high-performance computers. This way, computer architectures are now het-
erogeneous, and new programming environments (operating system/runtime, language/compiler)
are required to exploit entirely their computing capabilities, as discussed in the next section.

Recently, reconfigurable FPGA circuits [50] have appeared to be a competitive alternative to GPU
[175] in the race for energy efficiency. FPGAs combine both flexibility of programmable chips and
energy-efficiency of specialized hardware and appear as a natural solution. However, designing a cir-
cuit is far more complex than writing a C program. Disruptive compiler technologies are required to
generate automatically a circuit configuration from an algorithmic description (High-level synthesis,

HDR Christophe Alias 1/113



CHAPTER 1. INTRODUCTION

HLS) [66]. A substantial part of our contributions concerns HLS for FPGA.

Memory wall Since the early days of Von Neuman architecture, computers are slowed down by
off-chip memory accesses. Whatever the technology used, the memory bandwidth (BW) is a limit-
ing factor and the gap with compute power is continuously widening. Memory hierarchy reduces
the bandwidth requirement by cutting the memory traffic, providing the application exhibits enough
data reuse. However, this requires to reorganize the computation to enforce data locality. This issue
has been widely addressed by the compilation community in the last decades. But still, mainstream
compilers are not able to automate this task.

The roofline model [168] is a visual performance model which identifies memory bottleneck by lever-
aging the operational intensity (OI) of the program — the average number of computation per memory
access. It simply states that the performance is bounded by the memory accesses (OI x BW) and the
peak performance PP of the processing unit (processor, GPU, etc): perf(OI) < max{OI x BW,PP}. It
is an upper bound, which cannot be reached without hiding the memory latency by the computa-
tion. The operational intensity depends on the program execution order, which must be tuned so
OI x BW = PP, and then become compute-bounded. However, there is no magic: the operational in-
tensity of a program is inherently bounded by the ratio between the volume of computation and
the volume of input/output data. Hence, some programs might stay memory bounded whatever the
execution order.

The roofline model is redefined in light of FPGA constraints [67]. With FPGA, the peak performance is
no longer constant, it decreases with the operational intensity! Indeed, the more operational intensity
we need, the more local memory we use, the less parallelization we get (since FPGA resources are
limited), and finally the less performance we get. Hence, there exists an optimal operational intensity,
which may require multiple iterations to be reached.

Clearly, writing a kernel to exploit the fine-grain parallelism of a processing unit while minimizing the
memory traffic is out of reach for a programmer. This must be achieved by a compiler. In particular,
there is a need for a unified compilation model which captures both parallelism and data transfers
with the memory. We propose a new HLS-oriented compilation methodology towards this goal.

1.2 Dealing with parallelism and heterogeneity

Languages When it comes to program a parallel computer with hardware accelerators, the pro-
grammer is left to a myriad of standards with different levels of abstraction, allowing to control both
coarse-grain and fine-grain parallelism. The general philosophy is to exploit coarse-grain parallelism
dynamically. tasks are expressed at the langage-level, then a runtime system schedules the tasks on
the processing units and rules the data transfers across processing units. Then, to exploit fine-grain
parallelism statically: ideally, it should be up to the compiler to schedule the computations of a task
to reveal parallelism and improve data locality.

» Low-level models like OpenCL [122] or CUDA [64] provide a software stack that exposes hardware
accelerators through a low level stream abstraction. It is possible to express both data parallelism
(into the kernels to be offloaded) and task parallelism (between the kernels). Two remarks: data par-
allelismwas chosen to program GPUs. When the hardware accelerator is not a GPU and/or the kernel
exhibits pipeline parallelism with fine-grain synchronisations, this model is simply not appropriate.
This explains why the tentatives to port OpenCL to FPGA led to a failure. Task parallelism is entirely
driven by the programmer at host level. Hence, it is entirely up to the programmer to place and to
schedule the kernels and to issue the data transfers. With such a degree of freedom, these languages
are perfect for source-level compiler optimizations (as an intermediate language); but particularly
tedious for a programmer.

» Kernel offloading models such as OpenACC [65], OpenHMPP [78], or X10 [57] enrich a sequential,
mainstream language (e.g. C, Java, Python) with directives to delimit the kernels offloaded to hard-

HDR Christophe Alias 2/113



CHAPTER 1. INTRODUCTION

ware accelerators and parallel programming constructs. The memory of the hardware accelerator
and the data transfers are managed automatically before and after the kernel execution. Some ap-
proaches provide directives to tune the schedule of data transfers to overlap data transfers and com-
putations. Extending a mainstream sequential programming langage with parallel constructions is
appealing. However, it sometimes make unnatural the expression of the parallelism, which fits better
in dataflow languages.

» Task-based programming models such as StarPU [33], Quark [173] or SMPSs [124] view the pro-

gram as a composition of coarse-grain tasks to be scheduled at runtime in a dataflow fashion. The

runtime analyses the data dependencies and builds a task graph (DAG). Then, the tasks are sched-
uled and mapped to processing units to improve the usual metrics (load balancing, data locality,
data movements). This approach is generic enough to fit most heterogeneous systems [33]. However,

FPGA raise additional challenges, which must be addressed:

— With FPGA, the silicon surface may be reconfigured dynamically to realize several computations in
parallel. Hence, a FPGA is — virtually — several hardware accelerators whose features (e.g. silicon
surface) may be tuned dynamically. This dynamicity of hardware must be modeled and taken into
account by the runtime system. As well, a virtualization layer is clearly required.

— Unlike software parallelization, the nature of FPGA requires that many configuration decisions
must be made at compile time. It is our belief that these configurations will require a double-staged
process with an offline compilation keeping some parameters symbolic (like the size of the proces-
sor array in [147]), coupled with a runtime which plays on these parameters to reconfigure the
circuit. This raise the challenge of partial compilation, as discussed later.

Libraries With optimized HPC libraries, the programmer can exploit parallelism without tedious
parallel programming. At first glance, a kernel optimized by hand by an expert will always outperform
an automated compiler optimization. For instance, the Basic Linear Algebra Subprograms (BLAS)
[112] provides optimized building blocks for performing basic vector and matrix operations. Many
HPC libraries were designed on top of BLAS (LAPACK [32], ScaLAPACK [61], PLASMA and MAGMA
[30]). In particular, PLASMA addresses architectures with multicore CPU ; and MAGMA addresses
heterogeneous architectures with CPU and GPU. Both rely on task decomposition of the routines
into BLAS routines. This decomposition into subcomputations is wrongly referred to as a tiling in
the litterature. It is actually a semantic tiling (the associativity of the computation is no longer the
same). We address the formalization and the automation of semantic tiling in this document.
Adaptative libraries (ATLAS [167], FFTW [86], PhiPAC [49]) apply an autotuning at installation time
by varying parameters that affect performances (typically the blocking size). This actually relies on
a telescopic approach with a partial compilation: the compiled code contains optimization param-
eters which may be tuned at installation time (adaptative libraries), and even at runtime (iterative
compilation). This way, the library vendor does not have to provide the source code and to let sev-
eral recompilations at installation time, which takes times, in addition to be risky from a business
perspective. This clearly raises the challenge of partial compilation: how to parametrize a program
transformation, and how to let the parameter(s) survive the compilation. We address this challenge
in this document.
However, there is no magic: a pure library-driven approach raises many challenges:
— The optimization coverage is bounded to library functions, which excludes de facto global opti-
mizations
— The choice of computations to take from a library is left to the programmer, which is guided by
algorithmic considerations. However, non-trivial factorizations might perform better.
Learning and using a new library remains fastidious and may refrain the adoptation of a new stan-
dard: old habits die hard. Hence, we believe that the compiler should automate the refactoring of
a program with library functions, in the same way as an instruction selector selects the best set of
instructions to program a processor. We propose a complete system based on semantic tiling to au-
tomate this task.
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CHAPTER 1. INTRODUCTION

Compilers While runtimes exploit coarse-grain parallelism, compilers generate the machine code
offloaded to processing units while revealing fine-grain parallelism. Compilers enhances program-
mer productivity and code portability when compiling from a mainstream langage. However, com-
piler optimizations are still fragile and highly depend on the shape of the source code. This is because
most compiler analysis (dependences, alias) are locked by undecidable problems, which push to-
wards conservative approximations that limit there impact. Hence the emergence of domain-specific
compilers, which trade the genericity for precision.

A typical example is the polyhedral model, a theoretical framework to reason about kernels with

nested for loops and to restructure the code, mainly for extracting parallelism while ensuring data

locality. Since it is a source-to-source approach, it can be connected to any mainstream compiler.

Thanks to the emergence of robust algorithms and tools for getting the code fo and from the polyhe-

dral representation, polyhedral code optimizations are progressively adopted by industry and trans-

fered to production compilers.

With FPGA, the compiler must produce a circuit configuration from a high-level algorithmic descrip-

tion. The process consists into two steps: first, high-level synthesis compiles the source code to a

circuit expressed in a hardware description language. Then, synthesis compiles the circuit to a binary

file describing the FPGA configuration (bitstream). That bitstream is uploaded to the FPGA chip when
the runtime proceeds to the configuration. High-level synthesis tools (VivadoHLS [165], OpenCL SDK

[122], Xilinx SDAccel [85]) are now mature enough to produce circuits with an optimized internal

structure thanks to efficient scheduling techniques, resource sharing, and finite state machines gen-

eration. This enhance the spreading of FPGA across software developers, which can take advantage
of the speed and the energy efficiency of FPGA without an hardware expertise.

However, HLS tools suffer from many limitations.

— The input langage lacks a clear semantics. It is usually presented as locally sequential, globally
dataflow. However interprocess synchronizations often assumes a DAG of process (e.g. with Alter-
a/OpenCL, C2H, CatapultC). Hence, it is legal for the HLS scheduler to change the order of chan-
nels reads and writes. This limitation forbids dataflow programs with cycles between processes,
which arises frequently with fine-grain processes.

— The I/O of the circuit are hard to program, in particular when it comes to optimize the communi-
cations between the circuit and an off-chip memory. So far, the memory hierarchy must be imple-
mented by the programmer (local memory sizing and allocation, data transfers scheduling). We
propose a complete system to address this challenge.

— Fine-grain parallelism is still extracted with old fashioned techniques like loop unrolling and loop
pipelining. Hence the need to push high-level parallelization techniques from the polyhedral model
to HLS tools. This is the goal of our work on HLS.

1.3 Contributions

Our contributions are twofold. We propose program transformations for automatic parallelization,
and more generally program optimization. Then, we propose models and algorithms for high-level
synthesis of circuit configurations for FPGA chips.

On the first part, we propose several extensions of loop tiling, a fundamental program transforma-
tion in automatic parallelization (generalized loop tiling). In particular, we address parametric loop
tiling, with opens the way to the partial compilation challenge. Then, algorithm recognition auto-
mates the refactoring of a program with a performance library.

On the second part, we automate the synthesis of data spilling between an FPGA chip and an off-chip
memory while hiding the communications by computation (communication synthesis). Then, we
propose an HLS model which explicits data spilling and fine-grain parallelism (data-aware process
networks). Our HLS algorithms have been implemented and transferred to the XtremLogic startup,
where they are used in the production compiler.
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CHAPTER 1. INTRODUCTION

Generalized loop tiling Many program transformations require dividing the program into blocks
of computation. For automatic parallelization, the blocks serve as subcomputations to be executed
in parallel. For memory traffic minimization, the blocks serve as reuse units: into a reuse unit, the
data are communicated via a local memory; between two reuse units, the data are communicated
through the remote memory. Loop tiling [55, 68,99, 111, 142, 149, 171] is a very natural and standard
way to obtain such a partitioning.

We propose to extend loop tiling in two directions. First, we allow to parametrize the tile size with
a scaling parameter [26], for any convex polytopic tile shape [25]. The scaling parameter survives the
compilation, and may be tuned at installation time and even at execution time, which opens the
way to partial compilation. The main novelty is to express this transformation into the polyhedral
framework, and not as a post-processing step. The ability to compose with other polyhedral trans-
formations opens new perspectives for polyhedral partial compilation. Then, we show how our tiling
transformation might be extended to be a semantic tiling [23], a transformation which increases the
granularity of operators (scalar — matrix). Semantic tiling leverages associativity and commutativ-
ity of reduction operators to partition the computation. As we have seen, semantic tiling is usually
confused with tiling by the numerical community. Hence, it is already widely applied by hand for
supercomputing: it typically defines the tasks in task-level programming models. When the compu-
tations are identified (see our next contribution), we may automate the refactoring with performance
libraries. Our contributions on semantic tiling and its application to algorithm recognition are un-
der publication. Hence a sufficient level of detail is provided in this document. So far, a complete
description may be found in the PhD thesis of Guillaume Iooss [98], in the context of which all this
work (generalized loop tiling & algorithm recognition) was developed.

Algorithm recognition A compiler optimization will never replace a good algorithm, hence the
idea to recognize algorithm instances in a program and to substitute them by an optimized version.
In particular, this automates the refactoring of a program with a performance library, and free the
programmer from this tedious task. Algorithm recognition raises many challenges: program slicing
(divide the program into subcomputations), program equivalence (compare with an algorithm) and
performance evaluation (is the substitution beneficial?). During my PhD thesis, I have addressed the
recognition of algorithm templates — functions with first-order variables — into programs [3, 6, 7, 9]
and the substitution by a call to a performance library [2, 8]. The slicing was driven by a relaxed
version of the equivalence checking algorithm. However, the subcomputations were not clearly sep-
arated from the remainder of the program, which complicates the generation of the final code and
tends to produce inefficient factorizations.

We address these issues by leveraging semantic loop tiling to split the program into slices to be com-
pared with the templates. Though the recognition is more focused, it provides a natural algorithmic
partitioning and it eases the substitution by a call to the library. Our algorithm recognition system
applies iteratively a new template matching algorithm, which process the slices (tiles) until all the
library idioms have been recognized. We use a relaxed notion of template where the unknowns are
simply the inputs. This simplifies the process to find a composition of algorithms: match a template,
and apply recursively the recognition on the template inputs.

As stated in the previous paragraph, this work was developed in the context of the PhD thesis of
Guillaume Iooss where all the details may be found [98]. In addition, we addressed the equivalence
checking of programs with explicit reductions [24]. It is another way to tackle semantic equivalence
of programs. It was actually one of our first contributions towards semantic tiling. Finally, we this al-
gorithm was not used in our system: we prefered a two-step approach with a correct-by-construction
semantic transformation (semantic tiling), followed by template matching.

Communication synthesis FPGAs come with pretty few local memory (8 MB on an Intel Stratix
10 GX1150 FPGA). This does not fit supercomputing kernels requirements, which often feature large
memory footprint. Hence, compiler techniques are required to spill efficiently the data to an off-chip
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CHAPTER 1. INTRODUCTION

memory, as would do a register allocation, and to schedule the operations so the computation hides
the communications. All the more so due to the small bandwidth of off-chip memories found on
FPGA boards (typically a DDR4 memory with 25 GB/s).

We propose a complete HLS algorithm to automate the data spilling to the off-chip memory as a
source-to-source transformation in front of an HLS tool, which serves as an hardware backend. First,
we propose a template of architecture for optimized data transfers, and we show how this architec-
ture can be specified as a C program in front of an HLS tool [12, 13]. Then, we propose an algorithm
to schedule the data transfers [14, 15] so that the resulting application is highly-optimized, with min-
imized off-chip memory traffic. Communications are covered by computations by double-buffering
the subcomputations revealed by a loop tiling. This way, the maximal throughput is reachable pro-
viding a sufficient parallelization. By playing on the tiling we can simply explore several trade-offs.
Local memory size for memory traffic: the bigger is the local memory, the less memory traffic is issued.
Local memory size for peak performance: the bigger is the local memory, the less FPGA resources re-
main for the computation. Our compilation model gives a general methodology to explore the FPGA
roofline model for the best configuration.

These results were obtained in the context of the PhD thesis of Alexandru Plesco [126] and have
opened the way to a fruitful collaboration towards a complete polyhedral HLS approach in the con-
text of the XtremLogic start-up, as described in the next paragraph.

Data-aware process networks We propose a complete polyhedral-powered approach for high-level
synthesis (HLS) of supercomputing kernels to FPGA. We cross fertilize polyhedral process networks
(PPN) [160] with our communication synthesis approach to propose a new dataflow intermediate
representation which explicits both parallelism and data spilling to the off-chip memory: the data-
aware process networks (DPN). We show how DPN and PPN might be view as instances of regular
process networks (RPN), a general compilation-oriented dataflow model of computation. RPN in-
duces a general methodology of automatic parallelization, that we believe to be appropriate for HLS
of supercomputing kernels to FPGA.

We propose algorithms for both front-end C — DPN and back-end DPN — circuit. We addressed the
compilation of the process control (control compaction [21], single process scheduling [17, 18]), the
compilation of channels (typing [1, 4], allocation/sizing [5]) and the synchronization of communi-
cations (Xtremlogic/Inria patent [19]). We have developed entirely the front-end C — DPN, which
was transferred to the XtremLogic startup, that we co-founded in 2014 with Alexandru Plesco, three
years after his defense. XtremLogic is in charge of developing the back-end DPN — circuit. Though
the back-end is still under development today (and then no global, system-level, results are available
yet), we obtained a substantial number of results, which apply to DPN while being general enough to
apply to other contexts.
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CHAPTER 1. INTRODUCTION

1.4 Outline of the document

This manuscript is structured as follows:

Chapter 2 presents our contributions to generalized loop tiling. We show how polyhedral loop tiling
can be extended to any polytopic shape with a scaling parameter, while staying in the polyhedral
representation. Then we propose an algorithm for semantic tiling.

> Context: Guillaume Iooss’ PhD.

Chapter 3 presents our contributions to algorithm recognition, based on semantic tiling. Aside, we
propose an algorithm program equivalence in the presence of reductions.

> Context: Guillaume Iooss’ PhD

Chapter 4 presents our contributions to compile off-chip memory accesses in HLS. We propose a
model of architecture to rule the I/O with the memory, an algorithm to schedule the memory trans-
fers while avoiding redondant communications (communication coalescing). This works serve as
a basis to the high-level synthesis methodology presented in the next chapter.

> Context: Alexandru Plesco’s PhD.

Chapter 5 presents an high-level synthesis methodology based on data-aware process networks
(DPN), a model of computation which explicit the parallelism and memory transfers. We discuss
several compilation algorithms related to DPN, addressing the generation of process control, chan-
nels and synchronizations

> Context: start-up project with Alexandru Plesco.

Chapter 6 concludes and draws research perspectives.

Appendix A outlines our further contributions.

HDR Christophe Alias 7/113



CHAPTER 1. INTRODUCTION

HDR Christophe Alias 8/113



Partl

Program Transformations for Automatic
Parallelization

HDR Christophe Alias 9/113



Generalized Loop Tiling

Loop tiling [55, 68,99, 111, 142, 149, 171] is a standard loop transformation which divides the compu-
tation into subcomputations by grouping the loop iterations into tilesto be executed atomically. With
loop tiling, an application might be distributed across the nodes of a parallel computer, while tun-
ing the ratio computation/communication to fit the architecture balance. Loop tiling is probably the
most appropriate and powerful program transformation for automatic parallelization. State-of-the-
art tiling algorithms leverage the polyhedral model [81, 82, 83, 135, 136], a mathematical formalism
to develop compiler optimizations. The polyhedral model provides a compact, mathematical repre-
sentation of both programs and their transformations. However, many locks refrain to exploit the full
potential of loop tiling:

— Tile sizeis a major parameter. In automatic parallelization, it impacts directly the parallelism, the
operational intensity and the local memory size. In particular, trade-offs might be explored by tun-
ing the tile size (typically, communication volume for local memory size). Hence, it is desirable to
have a symbolic compilation where parameters survive the compilation and can be tuned after-
wards, without having to recompile [86, 132, 167]. However, parametric tiling does not fit directly
in the polyhedral model, it is usually implemented directly in back-end code generators of poly-
hedral compilers [39, 107, 139]. How to express the parametric tiling in the polyhedral model and
make possible to compose with further polyhedral transformations is still an open problem today.

— Tile shape. Historically, loop tiling was defined as a direct partition of the iteration space with hy-
perrectangles [171] and hyper-parallelepiped, defined by its boundary hyperplanes [99, 172], to
preserve the atomicity. Trapezoidal tiling was introduced to allow concurrent start [108, 137, 176],
at the price of redundant computations. Then, redundant computations were removed by using
diamonds [52] and hexagons [91, 138]. Actually, any covering of the iteration space can define a
tiling, there is no need to have a partition (redundant computations are allowed) or tiles defined as
convex polyhedra. How to find the best tile shape for a given optimization criteria, how to trans-
form a program with an arbitrary polyhedral tile shape while staying in the polyhedral model, then
how to produce a reasonable loop nest out of it are still challenging problems today.

Summary and outline This chapter summarizes the contributions made to loop tiling. All these
results were obtained in the context of the PhD thesis of Guillaume Iooss [98]. Section 2.1 outlines
the polyhedral model and defines the tiling transformation. Then we present our contributions:

— Section 2.2 summarizes our work on hyperrectangular tiling with a scaling parameter. We show
that this transformation fits in the polyhedral model under certain restrictions [26].

— Section 2.3 generalizes the results of section 2.2 to any polytopic tile shape (e.g. diamond, hexagon).
Likewise, it is a polyhedral transformation under the same restrictions [25].

— Section 2.4 extends our parametric tiling transformation to a semantic tiling [23], a transformation
which increases the granularity of operators (scalar — matrix). This part is described in the PhD
thesis of Guillaume Iooss and is under publication with some of the contributions described in
Chapter 3.
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CHAPTER 2. GENERALIZED LOOP TILING

2.1 Polyhedral model

This section introduces the polyhedral model (Section 2.1.1) and our program model (Section 2.1.2).
Then, we define the polyhedral intermediate representation on which polyhedral transformations
are applied (Section 2.1.3). Finally, we introduce polyhedral transformations and show how loop
tiling is expressed in the polyhedral model (Section 2.1.4). In particular, we describe the locks ad-
dressed in this Chapter.

2.1.1 Polyhedral compilers

The polyhedral model [81, 82, 83, 135, 136] is a well established framework to design automatic par-
allelizers and compiler optimizations. It abstracts loop iterations as a union of convex polyhedra and
data access as affine functions. This way, precise—iteration-level—analyses can be designed thanks
to geometric operations and integer linear programming: exact array dataflow analysis [81], schedul-
ing [82, 83], memory allocation [70, 133] or code generation [31, 43, 134]. A program can fit in the
polyhedral model, given an appropriate abstraction. We will describe in the next section a class of
programs which fits directly in the polyhedral model.

A polyhedral compiler is usually a source-to-source compiler, that transforms a source program to
optimize various criteria: data locality [43], parallelism [83], a combination of locality and paral-
lelism [53, 170] or memory footprint [70] to name a few. The input language is usually imperative
(Clike) [5, 53]. It may also be an equational language [117, 174]. Today, polyhedral optimizations can
also be found in the heart of production compilers [20, 92, 128, 152]. A polyhedral compiler follows a
standard structure. A front-end parses the source program, identifies the regions that are amenable
to polyhedral analysis, and builds an intermediate polyhedral representation using array dataflow
analysis [81]. This representation is typically an iteration-level dependence graph, where a node rep-
resents a polyhedral set of iterations (e.g., a statement and its enclosing loops), and edges represent
affine relations between source and destination polyhedra (e.g., dependence functions). Then, poly-
hedral transformations are applied on the representation. Because of the closure properties of the
polyhedral representation [117, 136] the resulting program remains polyhedral, and transformations
can be composed arbitrarily. Finally, a polyhedral back-end generates the optimized output program
from the polyhedral representation [31, 43, 134].

2.1.2 Program model

Polyhedral programs A polyhedral program consists of nested for loops and if conditions manip-
ulating arrays and scalar variables, which satisfies an affinity property: loop bounds, if conditions,
and array access functions are affine expressions of surrounding loops counters and structure param-
eters. With polyhedral programs, the control is static: it only depends on the input size (the structure
parameters), not the input values. This way, loop iterations and array accesses might represented
statically, and with decidable objects (Presburger sets) thanks to the affinity property. Polyhedral pro-
grams covers an important class of compute- and data-intensive loop kernels usually found in linear
algebra and signal processing applications [41, 129].

Figure 2.1.(a) depicts a polyhedral program computing the product of two polynomials given the
arrays of coefficients a and b for each monomial.

With polyhedral programs, each iteration of a loop nest is uniquely represented by the vector of sur-
rounding loop counters i. The execution of a program statement S at iteration i is denoted by (S, ;}.
The set 9 of iteration vectors is called the iteration domain of S.

Figure 2.1.(b) depicts the iteration domains Y5 and 27 (grey points). When the loop steps are equal
to one, an iteration domain is the set of integral points satisfying the affine constraints induced by
the enclosing loop bounds and tests. Such a set is called an integer polyhedron:
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Definition 2.1 (integer polyhedron). Aninteger polyhedron is a set & of integral points X € Z" satisfy-
ing a conjunction of affine constraints di-X+by =2 OA...Adp-X+b), = 0 where d; € Z" and b; € Z for each
i. If A is the matrix whose rows are d, ..., dp, the matrix representation of & is: {X € 2", AX + b= 0}.

An iteration domain may depend on parameters (typically, the array size N on the example). Hence,
we extend the definition by considering some variables as parameters:

Definition 2.2 (parametric integer polyhedron). A parametric integer polyhedron is a set &2 of inte-
gral points % € 7" satisfying AX+Bii+¢ = 0 where A and B are integral matrices and c € ZP. i€ € < 74
is the vector of parameters. € is called the context domain.

-

A parametric integer polyhedron 22 must be seen as an application € — 22", 7 — 2(i1), and a point %
of & as an application € — Z", 7i — X(7). It is usually a piecewise affine function discussing the value
of X(71) depending on the parameters 7. For instance, the first iteration of T reading c[2] is the point:
N— (N=2:(0,2),N=1:(1,1),N<1:1). The notation L means that the point is not defined. We
avoid that mapping notation when the parameters are clear from the context. The ability to reason
on non-constant—parametric—execution traces is a essential feature of the polyhedral model.

Beyond polyhedral programs In general, any program may fit in the polyhedral model provided a
sound abstraction to the polyhedral representation (a front-end program — polyhedral representa-
tion). In that case, sound means that the abstraction should convey enough information to enforce
the correctness of polyhedral transformation. The compiler should also feature a code generator
from the polyhedral representation (back-end) able to convey dynamic control and memory refer-
ences. This way, non-polyhedral constructs (non affine array accesses, while loop, early exits) might
be handled [10, 47], at the price of precision: for instance, parallelization opportunities might be
missed because of dependence over-approximation.

Further polyhedral approaches rely on mixed static/dynamic compilation to cope with dynamic con-
structs. In particular, the sparse polyhedral model [145, 158] defines composable inspector/executor
schemes using the polyhedral formalism (affine relations) extended with uninterpreted functions to
cope with irregularities (non affine loop bounds and array indices).

In [10], we proposed an application of the polyhedral scheduling to checking the termination of pro-
grams with while loops. The control flow graph was encoded in the polyhedral model in such a way
that polyhedral scheduling gives a ranking function (aloop variant), thereby proving the termination.
An extended summary of this work may be found in Appendix A.

Execution order The sequential execution order < is locally defined by the lexicographic ordering:
(T, i, jy<(T,i,jyiff (i, j) < (i, j'), where (i, j) < (i’, j") iff i <i', or i =i’ A j < j'. Between instances
of different statements (Sl,f) and (S», ]_"), we consider the restriction of i and fto the common loop
counters: i’ and f’ :(Sy, 1) < (Sg,f) iff i < f’ ,ori = f’ and S; is before S, in the text of the kernel.
Here, we always have (S, i) < (T,i’, j') as S and T do not share any loop and S is before T in the text
of the kernel.

Lexicographic optimization In the polyhedral model, we often need to compute the first/last iter-
ation satisfying a property. Computing the lexicographic minima/maxima of an integer polyhedron
can be done with standard ILP algorithms. The simplex algorithm with Gomory cuts has been ex-
tended to parametric integer polyhedra [80]. The result is a point in the meaning defined above: a
piecewise function discussing the result depending on the parameters. For instance, the first itera-
tion of T reading c[2] can be expressed by the parametric integer program: min«{(i, j) | i+j=2A0<
i, j < N}.Ingeneral, this function is piecewise quasi-affine, meaning that the pieces and the functions
may involve integer divisions and modulo. This can still be expressed with affine forms if existential
quantifiers are allowed, hence the notion of polyhedral domain [159]:
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fori:=0to2N Sli]= 0<i<2N:0
S: cli] :=0;
i=0vj=N:
fori:=0to N Tl ] = Sli + jl+ ali] * b[]]
for j:=0to N PITY 2<isNA1=jsN-1:
T: cli+j] := cli+j] + a[i]*b[j]; Tli-1,j+11+alil = blj]
(b) Iteration domains and direct (c) SARE

(a) Product of polynomials
dependences

Figure 2.1 — Polyhedral program (a), execution trace (iteration domains) and direct dependences (b),
and corresponding system of affine recurrence equations (SARE) which captures the dataflow depen-
dences and the computation (c). The SARE is a possible intermediate representation in a polyhedral
compiler

Definition 2.3 (polyhedral domain). A polyhedral domain is defined as:
P - -
)_EEZn| \/EI&i ez™ ZAi)_5+BiC_ii+Ciﬁ+dl’ =0
i=1

Where A;, B; and C; are integral matrices and c_l} € 7". Again, ii € € < 79 is the vector of parameters
and € is called the context domain.

For example, the set of even integers {x € Z| 3y € Z: x = 2y} is a polyhedral domain. We point out that
polyhedral domains are exactly Presburger definable sets: & is a polyhedral domain iff there exists
a Presburger formula ¢ such that 2 = {X € Z" | X |= ¢}. Emptiness checking, geometric operations
(projection, union, intersection) and lexicographic minima/maxima are computable over polyhedral
domains [95, 131, 159], though the algorithms are more expensive and require more machinery than
for integer polyhedra. The class of polyhedral domains is closed under usual operations: projection,
union, intersection. Integer lattices are particular polyhedral domains, required to define tiling:

Definition 2.4 (integer lattice). An integer lattice is the sub-group of (Z",+) generated by vectors
ui,...,up of Z":

Lu,...,up) =1Z€Z"|3A€ 2P : 2= Mily +...+ Apilp) = LZ"

where L is the matrix with column vectors uy, ..., up.

2.1.3 Polyhedral intermediate representations

We now discuss briefly the intermediate representations used in a polyhedral compiler. As always,
several representations are possible. They all capture the flow of data dependences, required for a
sound reorganization of the computations.

Dependences There exists a dependence (Sl,z?) — (Sz,f') iff (Sl,f) < (Sg,f> and both operations
access (write or read) the same data. Depending on the access type, we classify the dependences
in flow dependence (write then read), anti dependences (read then write), output dependences (write
then write) and read dependences (read then read). By nature, polyhedral transformations as loop
tiling will change the read order, hence read dependences are ignored. From a HLS perspective, read
dependences should preserved when the data come with a prescribed order e.g. when the data are
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read from an external FIFO. Also, anti- and output- dependences may be removed by array expan-
sion [81]. Hence we focus on flow dependences — . Specifically, we consider producer/consumer
dependences, relating the production of a value to its read, called direct dependences:

—pc= {Xmax —flow ¥ | Xmax = mgx{x, X —flow Y}

For each read y, we keep the last write x4, defining y. This is solved with lexicographic optimization
[81]. Direct dependences are depicted in red in Figure 2.1.(b). We have: (S,i + j) —pc (T,i, /) if i =0
or j=Nand(T,i-1,j+1) —pc(T,i,j)if2<i<Nand 1< j<N-1. Modulo a proper encoding of S
and T with integers, dependences relations may be represented by polyhedral relations:

Definition 2.5 (polyhedral relation). Given a polyhedral set {X € Z""*P | (X, i)} where 7i is the vector
of parameters, we define a polyhedral relation by distinguishing input variables x;, ... x, from output
variables Xp+1,... Xn+p:

(X100 X0) = (Xps1see s Xnap)  SL PR, 1)

If we write — the direct dependence relation, and we define x = (y,k) iff x — y on the k-th
read of y, then o = o7 lisa piecewise-affine function, called the source function [81]. For instance,
o(T,1i, j»,1) gives the execution instance producing the value consumed by the read c[i+j] of state-

ment T
(T,i-1,j+1ifi=1Aj<N

o(Ti, ), 1) = { (S,i+ j)else

When o is expressed with translations (clauses i € 2 : (S, i+ ), the dependences are said to be uni-
form. — . and o are the same representation of the flow of dependences of the program. They natu-
rally lead to an equational representation of polyhedral programs.

Systems of Affine Recurrence Equations (SARE) A SARE is an equational normal form of the pro-
gram, which focuses on the computation itself and abstracts away the storage allocation and the
execution order. A SARE is a collection of recurrence equations between single-assignment arrays,
where equation domains are polyhedral domains and array index functions are affine:

Definition 2.6 (SARE). A SARE is a list of equations of the form
Var[i] = { i€PDy:Ezpr,

where the 9. are disjoint polyhedral domains, and where:

— Var is avariable, is defined over a polyhedral domain 2 and is either an input, an output or a local
variable

— Ezpris an expression, and can be either:
— Avariable Var [f (i) ] where f is an affine function

— Aconstant Const,
- An affine function of the indices f (i)
— Anoperation 0p (Expry, ..., Expry) ofarityk (i.e., the operation has k arguments)

Moreover, we assume that Expr depends strictly on all of its arguments (i.e., the value of each of the
argument impacts the value of Expr).

Figure 2.1.(c) gives the SARE representation for the program given in (a). We point out that a SARE is
nothing more than a finite representation of direct dependences [81]. Somehow, it might be viewed
as a reduced dependence graph whose nodes are arrays and edges are driven by source functions
of read arrays. SARE arrays are completely expanded to ensure the single assignment property: each
array cell is uniquely defined.
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The representation of computations by systems of recurrence equations was pioneered in 1967 by
Karp, Miller and Winograd [104], which paved the way to the polyhedral model. Since their uni-
form recurrence equation, more general representations were addressed. System of uniform recur-
rence equations (with several equations and uniform dependences) were addressed by the systolic
community [46, 135, 136, 150] where they are sometimes referred to as piecewise regular algorithms.
Then, SAREs were adopted to address programs with non-uniform dependences. SAREs were en-
forced as a standard program representation for scheduling and automatic parallelization as soon as
Feautrier found a front-end algorithm from polyhedral programs based on the computation of the
source function o [81].

In a slightly more general form of SARE, we allow hierarchical SAREs where it is possible to “call”
another SARE, called subsystem [74] and to use a reduction operator, as defined in the two next para-
graphs. This is the representation used in the Alpha language [113, 117], leveraged by this Chapter.

Hierarchical SARE We enrich SAREs with the ability to call another SARE (called a subsystem [74]).
The call to a subsystem is specified by a new type of equation, called a use equation. A use equation
provides the inputs to this program, and retrieves its outputs. A use equation provides a formalism
somehow similar to the map construction of functional languages: the subsystem is applied iteratively
on variable elements specified by an extension domain. For instance, the matrix multiplication is an
iterative application of a dot product on line and columns vectors. The following example illustrates
this notion.

Example Let us assume that we want to implement a matrix-vector product, where the matrix is
lower-triangular, by using a subsystem which implements a scalar product:

Program “scalProd” : inputs: Vectl, Vect2 (both defined on {i|0 < i < M} )
output: Res (scalar)
parameter: M

Res= Y Vectl[k] * Vect2[k];
0<k<M

Program “triMatVectProd”: inputs: Vect (defined on {i|0 < i < N} )
L (definedon {i,jl0<=i<j< N})
output: vectRes (defined on {i|0 < i < N})
parameter: N

use{k|0 < k < N} scalProd [k]
((k,i—i)@Vect, L)
returns (vectRes);

where (k,i — i)@Vectis a 2-dimensional expression whose value at (k, i) is Vect]i].

In this example, we use the extension domain {k|0 < k < N} which specifies N different subsystems
call. The k-th call computes the product of two vectors of size k. The first one is the first k elements of
Vect, the second one is the kth row of L. The value produced by the k-th instance of the subsystem
is the k-th element of vectRes. O
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Reductions A reduction is the successive application of an associative and commutative binary op-
erator & over a list of values. It can be viewed as an accumulation, where any accumulation order is
allowed. For example, a matrix multiplication can be written by using a reduction:

. N_l . .
Cli,jl = kgo Ali, k] = Blk, j1;

In general, the value of a reduction at the point iis @ E [%], where E is an expression, and 7 is a
n(k)=i

quasi-affine function (possibly with integer divisions(a)nd modulos), called the projection function.
In the example above, we sum over the index k, thus 7 : (i, j, k — i, j), and the result of the reduction
is a two-dimensional variable whose indices (i, j) belong to the image of 7.

Reductions are powerful programming and computational abstractions. They ease program trans-
formations which change the associativity of the computation by changing the accumulation or-
der. Such transformations are called semantic transformations: the transformed program achieves
the same computation modulo associativity/commutativity, but the dependences are no longer re-
spected. This opens a wide range of opportunities for program optimization [109]. This said, seman-
tic transformations must be applied with care on computations over floating point values. In that
case, addition and multiplication are no longer associative/commutative and a direct transforma-
tion without analyzing the context may cause numerical unstability.

2.1.4 Polyhedral transformations

Polyhedral transformations tune the program structure, the execution order and the data layout to
fulfill various optimization goals. The outcome is a SARE (possibly changed), a schedule defining
the evaluation order of SARE array elements S[i] (or equivalently program operations (S, 7)), and an
allocation mapping the SARE arrays (or program arrays) to physical storage. At the end of the process,
these elements (SARE, schedule, allocation) are provided to a polyhedral code generator [31, 42, 44],
which produces the transformed program. Allocation functions will be studied in Chapter 4. We focus
here on schedules and we present the tiling transformation addressed in this chapter.

Scheduling A schedule s maps each operation (S, ?) to a timestamp 95(7) =(f,...,tg) € 7%, the
timestamps being ordered by the lexicographic order «. In a way, a schedule dispatches the execu-
tion instances (S, 17) into a new loop nest, 95(17) = (f,..., t7) being the new iteration vector of (S, 17).
A schedule 0 prescribes a new execution order <4 such that (S,7) <g (T, j) iff 05(i) < 07(}). Also,
(S, ?} <p (T, f') means that either (S, ?} <g (T, f) orf 5(;) = HT(f).A schedule is correctifit preserves flow
dependences: — ¢ S <g. Again, the SARE representation removes anti and output dependences [81],
which are then ignored. This correctness condition enforces the scheduled program to be structurally
equivalent to the source program. In [2], we refer this program equivalence as Herbrand equivalence.
Herbrand equivalence will be addressed in the next Chapter in the context of algorithm recognition.
However, this is not a necessary condition: a schedule could perfectly describe an equivalent com-
putation by playing on semantic properties of operators, while breaking flow dependences (for in-
stance, by reorganizing a reduction in a different order). In that case, the schedule prescribes a se-
mantic transformation. Semantic transformations open a wide range of opportunities for program
optimization. This chapter presents a semantic version of loop tiling, called semantic tiling.

When a schedule is injective, it is said to be sequential: each execution is scheduled at a different time.
Hence everything is executed in sequence. In the polyhedral model, schedules are affine functions.
They can be derived automatically from flow dependences [53, 83].

On Figure 2.1, the original execution order is specified by the schedule 85(i) = (0,1), 07(i, j) = (1,1, ).
The lexicographic order ensures that the instances of S are executed before the instances of T (2).
Then, for each statement, the loops are executed in the specified order. Likewise, a schedule pre-
scribing parallelism could be 85(i) = 0 and 87(i, j) = i + 1. With this schedule, all the iterations of S
are executed in parallel at timestamp 0, then each front i + 1 = ¢ of T is executed at timestamp f.
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Tiling Tiling groups the iterations into tiles (or blocks) to be executed atomically. After tiling, the
iteration domains are reindexed with block indices, which iterates over the tiles, and local indices
which iterates within a tile. In the resulting loop nest, the loop structure consists of tile loops (iterat-
ing over block indices) and intra-tile loops (iterating local indices). Figure 2.2.(c) illustrates the tiling
transformation for the product of polynomials given Figure 2.1, tiles are delimited by bold lines.

The atomicity condition means that tiles can be scheduled as atomic operations. Hence, no interde-
pendence is allowed between two tiles.

Providing the dependences, we may need different tile shapes to satisfy the atomicity condition. The
most commonly used shape is a hyper-parallelepiped, defined by its boundary hyperplanes [99, 172].
A particular case is hyperrectangular tiling where the tile boundaries are normal to the canonic axes.
For optimization purpose, other shapes may be required such as trapezoid (with redundant compu-
tation [108, 137, 176]), diamond [35] or hexagonal [91, 138] (see Figure 2.7). In particular, hexagonal
tiling can expose synchronization-free parallelism for GPU (still, a single global barrier is required).
Parallelepipedic tiling exhibits pipelined parallelism, and a common belief is that performances are
bounded by iterated flush-in and flush-out. This happens when the parallelism is described by a se-
quential program with parallel for constructs, but no longer when we target a dataflow program, as
the DPN representation discussed in Chapter 5.

The tiling transformation 9 maps each iteration i € Z" of 95 to atiled iteration (fb, 7;) € 7%" where fb
denotes the block indices and #; denotes the local indices. For instance, a tiling with hyperrectangles
of size (by,...,bp) = b € Z" would be specified by J5(i) = ( [%J ,1 mod E), with elementwise integer
division and modulo.

Tiling a SARE. Given a tiling transformation J for each SARE array S, tiling a SARE means:
— Reindexing arrays with block and local indices S[i] — Slip, i;].

— Tiling each equation domain of § with T5: 2 — 9.

- Rephrasing array index functions with block and local indices: f — f.

Example In Figure 2.2 the tiling is defined by:
Js(@)=(li/2),imod2) and  IJ7(,j)=(li/2],]|j/2],i mod 2, j mod 2)

The original SARE is depicted in (a), domains and index functions are made symbolic for the pre-
sentation. (b) gives the tiled SARE, and (c) illustrates the iteration domains of S and T after the tiling
transformation. Tiled iteration domains are obtained by writing the euclidian division:

Ds ={(ip, i) 10= T N(ip, i1) <2N A 2 < T (ip, i) <2(ip+ 1)}

Since F/‘S_l (ip,17) = 2ip + ij is affine, Pisa polyhedron. Hence it satisfies the constraints of the SARE
representation. This closure property is unclear when the tile size b is parametric, since E’TS‘I (ip,11) =
b.ip +i; is then a quadratic form.

Index functions are rephrased to account for tiled indices. The source and the target domains might
be different, with different dimensions and partitionings (e.g., with f : 7% — 7), which makes it
challenging to determine them automatically. For instance, in the original SARE, the index func-
tion g is defined by: g(i, j) = (i — 1, j + 1). In the tiled SARE, we substitute g with its tiled counter-
part, § = JgogoJ !, Tiled index functions are piecewise: when (i; — 1, j; + 1) is a valid local index,
&(ip, ju, i1, j1) = Up, jp, i1 —1, j;+1). On the corner case, we take the value from a neighbor tile. Finally,
we end-up with a piecewise affine definition of g, which fits the SARE constraints. Again, the clo-
sure is not clear when the tile size b, is parametric, as a direct application of § = Igo goJ- T ! would
lead a non-affine function. One of the contributions of this chapter is to show that when the tile size
depends on a single scaling parameter, we still have the closure. O
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Slil= i€Ps:0
(i,j)€Dr1:
) SUfG ) +alil + L)
TBI=1 G jeor,:

Tlg(i, )1+ alil * bij]
(a) SARE
Slip, i) = (ip,ip) €Ds:0

(ibljlzvilyjl) €Dy :
Slf (i, jb, iz,jl)] +alip, i) * bljp, jil

Tlip, jprinjl=14 .05
(Eb g 21 1] (b, Jbr 11, JD) ED12:
T18(ip, jp, i1, J)1 + alip, i1] * bl jp, ji]
(b) Tiled SARE (c) Tiled iteration domains

Figure 2.2 - Tiling transformation

Parallelepipedic tiling.

The atomicity constraint may prevent hyperrectangular
tiling. In most cases, a parallelepipedic tiling with relevant
hyperplane boundaries may apply. On perfect loop nests, a
parallelepipedic tiling is classically defined as the composi-
tion of a unimodular transformation (change of basis) fol-
lowed by an hyperrectangular tiling [172]. This is naturally
extended to unperfect loop nests, or SARE with several ar-
rays, by transforming the iteration domain &5 of each state-
ment S with a bijective affine transformation ¢s, then by ap-
plying an hyperrectangular tiling [53]. The final tiling trans-
formation is then J o ¢ps for each statement S. On the ex-
ample, the transformation ¢5(i) = i and ¢ (i, j) = (i + j, j), followed by the same hyperrectangular
tiling defines the tiling depicted on the right. Sometimes, the dimensions of ¢ (¢ps[0] and ¢ [0], then
¢[1]) are referred to as “tiling hyperplanes”. This terminology will be used in Chapter 4 and Chapter
5.

iy =0 iy =1

Monoparametric tiling The tiling transformation is central in automatic parallelization and the
tile size plays a crucial role. In this chapter, we show that, when the tile size depends on a scaling
parameter b (monoparametric tiling), hyperrectangular tiling is a polyhedral transformation and we
present the polyhedral machinery to derive the tiled SARE. Also, we extend this result to any polytopic
tile shape (e.g. diamond, hexagon) where the lattice of tile origins and the tile shape depends on a
scaling parameter.

With this result, it is now possible the reason analytically on the tile size, directly in the polyhedral
transformation. This way, we go beyond the back-end approaches [39, 107, 139], which allow to tune
the tile size after the compilation. As for the back-end techniques, the scaling parameter b may sur-
vive the compilation, which enables runtime tuning for any composition of monoparametric tilings
and further polyhedral transformations.

Contributions and outline In this chapter, we present the following contributions:

— We propose the monoparametric tiling transformation and we show that it is a polyhedral trans-
formation. This closure property is the main contribution of this chapter. Section 2.2 describes
the monoparametric tiling transformation for hyperrectangular tiles. Then, Section 2.3 generalizes
these results to tilings with any polytopic shape.
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I ji
b} | ib. Jb)
I i

2.b

A4

Figure 2.3 — A 2 dimensional monoparametric tiling. The tiles are rectangles of ratio 2 x 1, and the
domainis 2 ={i,j| 0<1i,jAi+ j< N} Each tile is uniquely identify by the block indices (iy, j;). A
point inside a tile is identify by the local indices (i, j;). When tiling &, we observe 3 kinds of tiles: the
full ones (in green), the triangle ones (in gray) and the trapezoid ones (in ). The shape of each
kind of tiles and their placement can both be expressed as polyhedral domains.

— We leverage monoparametric tiling to propose a semantic tiling transformation, a transformation
increasing the granularity of operators (scalar — matrix). This is discussed in Section 2.4. Semantic
tiling is decomposed in reduction tiling (Section 2.4.2), followed by an outlining of the tiles into
subsystems (Section 2.4.1).

Finally, Section 2.5 concludes this chapter and draw perspectives.

2.2 Hyperrectangular monoparametric tiling

In this section, we consider the monoparametric tiling transformation with hyperrectangular tiles.
Composed with a proper affine transformation, it covers any parallelepipedic tiling.

With hyperrectangular tiling, the tile shape is an hyperrectangle b.d; x ... x b.d,,, where b is a scaling
parameter and (dy,...,d,) € N7 is called the tile ratio. For instance, Figure 2.3 illustrates a 2b x b
monoparametric tiling on a triangular domain.

We define the hyperrectangular tiling transformation as follows:

Definition 2.7. Given the block size parameter b and a diagonal matrix D = diag(d,,...,d,) of tile
ratio, the monoparametric tiling transformation associated to this tiling is:

Zn — Z?_n
Iup = 2z s 7 =z e
bD { FR- (zb,z,)=([ﬁJ,zmod (b.D.1))

where we have extended the division, modulo and floor operation elementwise to vectors.

The inverse of a monoparametric tiling is quadratic: bj[l)(i;’ 1?1) = b.D.i;7 + 171, no surprise.

We assume that the parameters p can be decomposed in the same fashion: p = b.pj, + p; where py, is
the vector of tiled parameters, p; the local parametersand 0 < p; < b.1.

The goal of this section is to show that SARE equation domains are still polyhedral domains after the
application of 93 p (Section 2.2.1), and that SARE index functions can be expressed with piecewise
affine functions in the tiled domain (Section 2.2.2).
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2.2.1 Tiling polyhedra

In this section, we show that polyhedral domains are closed under the monoparametric tiling trans-
formation: if 2 is a polyhedral domain, then D=9 p,0(9) is still a polyhedral domain. We consider a
convex polyhedron @ = {i, Q.i + §+ QP .p = 0}, then we show that the monoparametric tiling can be
expressed with a finite union of convex polyhedra.

By definition, i = b.D.i} + i; and p = b.p}, + p;. Hence:

b.Q.D.iy+ Q.71+ b.QP .5y + QP .j;+ G =0

These constraints are no longer polyhedral (b is a parameter and i, are indices). To get rid of the
quadratic part, we divide both sides by the tile size parameter b (which is strictly positive):

L Qi+QPpi+g
b

In general, the fraction is a rational vector. Thus, to come back into the integer world, we take the
floor of the previous constraints (it is valid because a =0 < |a] =0):

Q-fz+Q;’”’-ﬁz+EIJ -3

>0

Q.D.ip+ QP .y

Q.D.ip+ QP gy + {

- - 7 (DN S-1 - -
Let k(i) = {MJ . We show [26] that k(i;) can only take a constant number of values, since

0< fl <b.DIand 0 < pr < b.1, bounded in terms of Q, Q, p; and D. Then, it is sufficient to enu-
merate these values to obtain the union of polyhedra describing the tiled iteration domain.

Example To illustrate this algebraic manipulation, consider the following parameterized triangle:
P2={i,jIN-1-i—j=0Ai=0Aj=0}

iy

b

To simplify the presentation, we assume that the parameter NN is a multiple of the size parameter b:

N = Np.b. Then, the first inequality becomes:

We consider the monoparametric tiling with tiles b x b, (;) =b. ( ) + (;l), as depicted on Figure 2.4.
I

N-1-i-j=z0 © Nup.b-1-bip—ij—b.j,—ji1=0
© Np—ip—jp+ [_II_TII_IJ =0
Let us study the values of k1 (i, j;) = l_”_T]’_lJ . Because of the sign of the numerator coefficients, the
maximum is —1 (i; = j; = 0) and the minimum is -2 (i; = j; = b— 1). After analyzing the two other
inequalities, we obtain:

Np—ip—jp,—1=0
b= =Jb Ny—ip—jp—220

A . . . . ib) .b = 0 . . o . . .
D=1 ip jp, i1, ji1 0< i; i1<b (S s s is J1 | ip, jp=0
— 0<ijji<b
-b=—-i;—j;—1 i
This union of polyhedra is shown in Figure 2.4. O

We point out that, on the first polyhedron, we changed the constraint Ny, — i, — j, — 1 = 0 to the con-
straint N,—ip— jp—1 = 0in order to obtain a partition. Indeed, if 2%;, denotes the polyhedron obtained
for k(i;) = 7, then 22 € 2 when rj < s; for each dimension j: f()+7=0=> f(i)+5=0. Hence the
idea to keep a constraint “ > 0" for the smallest value of ki (i, j;) (here, —2), and write “=0” constraints
for the remaining values of k; (i, j;) (here, —1).

This observation leads to the following general formulation:
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First tiled polyhedron
(k1 =-1)

e C o 1P

Second tiled polyhedron
(k1 =-2)

Figure 2.4 — Obtained union of tiled polyhedra A. The original polyhedron is a triangle, and we have
assume that the tile sizes divide its sizes. We have two polyhedra in A: one corresponding to the full
tiles, and another for the diagonal lower-triangular tiles

Theorem 2.8. The image of a polyhedron @ = {i | Q.i + Q).p + G = 0} by a monoparametric tiling
transformation 9, p is the polyhedral domain:

. m Lo Qc-D-lTEJ+Q£p)-ﬁb+kc:0
2=0[ 8 L] bke<Qei+ QP i+ a.
“ R ks 0<i;<bDI

5] QP k220 |
bl 6Sll<b.D.l

- s » 7,47 - - -
where k enumerates the possible values of lMJ € [k™"; k™), where [a, b] is the set of inte-

gral points in the rectangle whose corners are d and b.

The first union ranges on the m constraints of 2. Then, for each constraint ¢, we bound k. with ké"i”
and k"**. The second member of the v is a special case for k. = ké’”" (note the constraint “= 0”).
Then, the first member of w add disjoint domains (thanks to the constraint “= 0”). After simplification
and elimination of empty domains, we obtain a family of convex polyhedra corresponding to the
different possible tile shapes. This provides a general monoparametric tiling algorithm.

The scalability of our approach is assessed experimentally on the Polybench kernels [129] (see Sec-
tion 2.3.3).

2.2.2 Tiling affine functions

After tiling the SARE equation domains, we need to modify accordingly the SARE array index func-
tions. This is a challenging issue, for which we propose a general solution described in this section.
Consider an affine function f: 2" — ZP,i — Q.i+Q'P. 5+ of the original SARE, used in an equation:

Alil=i€P : ...BIf()]...

After applying a monoparametric partitionning to A (9 'y, pr : i— I)and B (77 b,D), We expect an equa-
tion of the form:

- -

Alll=1€% :...BIfD)...

Hence, we want to derive from f a new index function f which operates on the tiled domains:

fzg-/b,D,ofogbjg
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(4ib,M—2jh—1,ib+jb, 2il,b—jl—1,il+jl)
if 0<si;j<bAO<j<bAO<ij+j;<2b
(4ih+1,M—2jh—1,ib+jb, 2il—b,b—jl—1,il+jl)
if b<ij<2bA0<j;<bAO<ij+ji<2b
4ip, M=2jp,—2,ip+ jp, 2i;,2b—ji—1,i;+jp
f(i i i) =< if 0<ij<bAb<j;<2bA0<ij+j;<2b
b I W JU = @iy, M=2j, 2,0y + jp +1, 2i),2b— j;—1,ij + j; —2b)

if 0sij<bAb<jj<2bA2b<ij+j;<4b
@ip+1,M-2j,—-1,ip+jp+1, 2ij—bb—j;—1,ij+j;—2b)

if b<ij<2bA0<jj<bA2bs<ij+ji<4b
@ip+1,M=2j,-2,ip+jp+1, 2ij—b2b—j;—1,ij+j;—2b)

if b<ij<2bAb<j<2bA2b<ij+j;<4b

Figure 2.5 — Rephrased index function (i, j) — (2i, N — j —1,i + j) for an input tiling 2b x 2b and an
output tiling b x b.

while staying in the polyhedral model: f must be affine, or at least piece-wise affine.

We start from the definition of f: i’ = Q. + Q") + §. With similar arguments as at the beginning of
-/

the proof of Theorem 2.8, we get rid of i; to obtain:

(2.1)

> - D'LQ.L+QP.5+§
ib':{D’_I.Q.D.ib+D'_1.Q(p).ﬁb+ Qu+Q7pi*q)

b

Now, assume that (D' _I.Q.D) and (D' _I.Q(p)) are integer matrices. We obtain:

. DL(Q.i;+ QW .p, + q’)J
b

i, =D''.Q.D.i,+D''.QP p,

> > -1 (0 7+0P 747
Again, k(i;) = {D '(Q'”ZQ P ’+q)J can take a finite number of values. By enumerating the possible

integer values, we obtain a piecewise expression of i;’, where each branch corresponds to a value k
of k(ij):
>/ g _, 7
i, =D'"1.Q.D.ip, + D'"1.QV) py + k
if bk<D'1.Q.L;+D1.QP p;+D1.G<b.(k+1)
Hence the main result:

Theorem 2.9. Consider an affine function f : Z" — ZP,i — Q.i + QP).p + § and a monoparametric
tiling for the source domain (9,p) and for the target domain (I ! p,p'). Assume that (D' _I.Q.D) and
(D'1.Q'P)) are integer matrices.

Then, the composition f ="', pro fo T,

b.p IS a piecewise quasi-affine function, whose branches are:

Fini = D"I.Q.D.ﬁ,+D"1.Q(p).ﬁbj75
bl Q.i;+QP .5, +G-b.D' .k
if bk<D'1'.Q.i;+D1.QW.5;+D 1 .G<b.(k+1)

for each k € [k™; kmax],

Figure 2.6 illustrates the condition of integrality of (D'~!.Q.D) and (D'~!.Q?). To simplify, consider
the identity function f(i) = i. On the left, the target tile size is b and the source tile size is 2b. Hence:
D'.Q.D=1/1x1x1=1€Zand D'"'.QP =1/1x1=1€ Z. In that case, the f might be expressed
with a piecewise affine discussion, as illustrated on the figure. On the right, we have the opposite
situation: the target tile size is 2b and the source tile size is b. Hence, D'1.Q.D=1/2x1x1=1/2 ¢ Z.
In that case, f requires integer divisions and modulos: it is piecewise quasi-affine.

In the next paragraph, we propose an algorithm to derive f in this situation. Piecewise quasi-affine
functions still fit in the polyhedral representation, at the price of adding existential quantifiers to
the SARE domains. This may hinder the polyhedral transformations which expect integer polyhedra
rather than Presburger sets.
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— 2ip+1,i;—b  ifij=b ip+1,i; — [%J,wb if i, =1mod 2
ib, i1 f f ‘
— 2ip,ip  ifij<b iy, il — %], ifiy=0mod2
2b b b 2b

Figure 2.6 - Condition of integrality of (D'~'.Q.D) and (D'~!.Q'”) when f is the identity function. On
the left, f maps a tiling 2b to a tiling b. The condition is respected: f is piecewise affine. On the right,
f maps a tiling b to a tiling 2b. The condition is no longer respected, f requires integer divisions and
modulos. In general, f is piecewise quasi-affine.

Example Consider the affine function f: (i, j — 2i, N—j—1,i+ j) and the following monoparamet-
ric tiling for the source domain and the target domain:

— Source domain: tiles 2b x 2b, (Z) =b. (2 0) (Zb) + ( ) where 0 < iy, j; <2b, hence D = (2 0).
J 0 2/ \jn) i 0 2
i

. / !
— Target domain: tiles b x b, (l.,) b. (1 0) ( b) + (Z )whereO <1i/,jl < b, hence D' = (1 0).

J o 1)'\j,) i 0 1
We assume that the parameter N is divisible by b, and we introduce N = Nj,.b. We check that (D’ ’I.Q.D)
and (D'~!.Q'P) are both integral, thus we will have purely affine constraints. Roughly, when the target
tile size are a multiple
After performing the operations described previously, we obtain an expression of i;:

i1 (4 0\, , (0 ky
b ip

ip| =10 -2 [ L. [Nb] + | ko
K1)V o ks

where ki = | %], ko = | 4= | and ky = | 5 | Thus, 0< ky <1, -2< ks <—Tand 0 < ks <1.

By enumerating (ki, ko, kz) €{0,1} x {—1,-1} x {0, 1}, we obtain 8 branches, 2 branches of which have
unsatisfiable conditions. After pruning them out, we obtain the expression of f described in Fig-
ure 2.5. O

Derivation when (D'~1.Q.D) and (D'~!.Q”)) are not integer matrices If this condition is not sat-
isfied, we cannot separate directly the integer part in Equation 2.2.2. Thus, we write explicitly the

div),!1 ),
integer division of i;, and j;, with each diagonal coefficient of D', Dl / ip = lb( ) D’ (mo »
and pbl pb(dlv) N D/ p (mod)l
Now, Equation 2.2.2 becomes.

D.i = (mod),l (P) > (mod),l 7 P =
0= QDL W), @it Q1.D.ip +Q,".Pb +Ql-ll+Ql Pr+qi
= QD0 LoPb D} ,.b D) .b

(mod) 1

) ), = )
*Qp 5,0 + Quii+Q” .pi+aq

(mod),l Q;.D
Again, k;(ij , oDy = { - Db D],b

J can take a finite number of

values. It is sufficient to enumerate the values of the triplet (l b
1. For each value, we obtain a new piece for f, hence the result:

d 1 . .
(mod), , 7Dt k) for each dimension

Theorem 2.10. Given two monoparametric tiling transformation (9, p and I 'y, /) and any affine
function (f () = Q.i+ QW) .p+4), if(D'"'.Q.D) or (D'~1.QP) is not an integer matrix, the composition
=T ppofod, b_)% is a piecewise quasi-affine function with modulo conditions in its branches.
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ip
Jb

i
Ji

Example Letusconsider f: (i, j) — (i, j) where the input indices are tiled as (;) = ( .b+( ) and

” ” .
. . l 21 I . . .
the output indices are tiled as (].,) = ( 3].1,’) b+ (]l,) Let us consider the first output dimension:
b 1
i'=i o 2i.b+ij=ipb+1i

/ iy i (div) ii;mad) i
= ’b=b+%J =1 ﬂ 2 +ﬁJ

where i}, = 2.il(7di”) + iém"d) and 0 < izm"d) <1.
Now, consider the second output dimension. Likewise, we have:

j(mod) ]

./ .(div) b l
= + | — 4+ —

Jp ]b \‘ 3 3bJ

where j, =3.j"" + j"? and 0 < j{"* < 2.
Finally, we build the pieces of f by enumerating all the possible values of iémmi) and j l()m"d). For ex-
ample, for i;m"d) = jl(jm"d) =0:
7T, . . [ ] T
w0 4] 4]
k1(iy, j;) and k»(ij, j;) can only take the value 0, thus we will obtain the branch:
(ip/2,jp/3, i1, jnT if ip=0mod2A j, =0mod 3
After enumerating all the possible values for (i é’" oD 1, j lgm"d), k»), we obtain:
(ip!2, ju/3, injin® if i, =0mod2A j,=0mod 3
ip (ip/2, (jp—1)/3, inji+b)7T if i,=0mod2A j, =1mod3
7l b < (ip/2, (jp—2)/3, i, ji+2b)7 if i, =0mod2A j,=2mod3
i ((ip—1)12, jp!3, i+b,jpT if i, =1mod2A j, =0mod3
1 ((ip-1D12,(jpb=1/3, ij+b,j;+b7T if i=1mod2A j,=1mod3
(ip—1)/2,(jp—2)/3, i1+Db,ji+2b)T if ip=1mod2A j, =2mod 3
O

Deriving the ratios to avoid modulo conditions If we assume that the ratio of all variables were
chosen beforehand, we just have to check for their compatibility, i.e., we have to check that tiling
the dependence functions do not introduce non-polyhedral modulo constraints. This means that we
have to check, for any dependence function (fr—» Q.7+ Q(p) .p+q) and ratio D and D', that (D’ _I.Q.D)
and (D'~1.Q'P)) are integral.

In a more general situation, we assume that the ratio of some variables were chosen beforehand (ei-
ther by the user or by the compiler), but not all ratios were decided. In order to apply the monopara-
metric tiling transformation, we propose an algorithm to find the ratio for all the remaining variables,
such that no modulo constraints are introduced in their equations [98].

2.3 General monoparametric tiling

In Section 2.2, we have focused on monoparametric tiling with hyperrectangular shapes. In this sec-
tion, we show how this theory can be extended to any polyhedral tile shape (hexagonal [91], dia-
mond [35], etc). In particular we show the closure of polyhedral representations under our general
monoparametric partitionning. We first recall the definition of the fixed size general tiling, then we
define our general monoparametric tiling.
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2b

4b

Figure 2.7 — Example of hexagonal monoparametric tiling for a 2D space. (ip, jp) are the block indices,
which identify a tile, (i, j;) are the local indices, which identify the position of a point inside a tile.
The tile shape is an hexagon with 45° slopes and of size 4b x 2b, and can be viewed as the homothetic
scaling of a 4 x 2 hexagon. The red arrows correspond to a basis of the lattice of tile origins.

General fixed-size tiling A general fixed-size tilingis defined by:

— A bounded convex polyhedron 22

— An integer lattice £ of the tile origins (which admits a basis L) and,
- Afunction 9 which decomposes any point i in the following way:

T (@) =(ip i) ©i=Li,+i; where Li,€ L andij€ P

When this decomposition is unique, this tiling defines a partition of the space. Otherwise, we have
overlapping tiles. Some tilings do not have an integral lattice of tile origins (such as diamond tiling
with non-unimodular hyperplanes). We do not address overlapped tiles or non-integral tile origins.
We now extend this definition with a scaling parameter b, as for the hyperrectangular case:

Definition 2.11. A monoparametric general tiling is defined by:

— Atile shape 22y, = b x 22, where & is a convex polyhedron (x is the homothetic scaling)
— A lattice of tile origins £, = b x £, where &£ is an integer lattice.

— Afunction I3, which decomposes any point i in the following way:

Tp(D) = (ip, i) © i=b.L.ip+1; where(L.ip)€ L andi;€ bx P

We now show that the monoparametric general tiling is a polyhedral transformation, just as we did for
the hyperrectangular case. First, we show that tiled domains 2 = 93,(2) are union of convex polyhe-
dra (Section 2.3.1). Then, we show that index functions between tiled domains, f are piecewise quasi
affine. As for the hyperrectangular case, we give a condition that makes f piecewise affine (Section
2.3.2).

2.3.1 Tiling polyhedra

Let us consider a n-dimensional polyhedron @ = {i | Q.i + Q). + § = 0} where p are the program
parameters. As in Section 2.2.1, we replace 7by the block indices 17;9 and the local indices 17}, such that
T(1) = (ip, i7) (cf Figure 2.7).

Consider the c-th constraint of 2: QC.7+ Qép ), p+q.=0.We substitute 7by b.L.i_;, + ;l where l_} € &y. By
doing exactly the same operations as in the proof of Theorem 2.8, we obtain the following expression:

QC.E+Q£’”).ﬁz+ch L5
; >

nd (p) -
Qc.L.ip + Q" .y + {
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Figure 2.8 — Polyhedron and tiling of the example. The dots correspond to the tile origins of the tiles
contributing to the polyhedron. The blue arrows show the basis of the lattice of tile origins.

N s (p) = -
Again, the quantity k.(i;) = w can take a finite number of values because i; € 22, =

b x 22 where £ is bounded. This way, we obtain a polyhedral formulation of the tiled iteration
domains 2 very similar to Theorem 2.8 for the hyperrectangular case:

Theorem 2.12. The image of a polyhedron @ ={i | Q.i + Q). + § = 0} by a general monoparametric
tiling transformation is the polyhedral domain:

QeLip+ QP py+ke=0

R m o e
9= ﬂ1[ W lb:ll’ b.ke<Qeit+ QP .j1+ qe
c= min max -
Jein < e, <2 iep,
ng (p) > j
wE ?’ Qc.Liy+QF . py+kMn=0 ]
4 1y, 1] +
ijedp

- g p) = -
where k enumerates the possible values of [MJ .
After distributing the intersection across the unions and eliminating the empty polyhedral, we obtain
as many polyhedra as the number of different tile shapes of the partitioned version of & (which is, at
most, the number of different values of k).

Example Consider the polyhedron: 2 ={i,j|j—i<NAi+ j< NAO< j}and the tiling:
- Py=1{i,jl -b<jsbn-2b<i+j<2b A -2b<j—i<2b}

— Lp=L.b.Z> where L = i’ _31
For simplicity, we assume that N = 6.b.Ny, +2b, where N, is a positive integer. A graphical represen-
tation of the polyhedron and of the tiling is shown in Figure 2.8.

We now unroll the enclosing intersection by considering independently each constraint of 2.

— Consider the first constraint of the polyhedron.

j—i<N & 0<6.b.N,+2.b+Db.(3.ip+3.jp)+i;—b.(ip— jp)— Ji
& 0=6.Np+2+2.ip+4jy+ V;b”J
where —2b < i;— j; < 2b. Therefore, k; = [”;I]“J € [-2,1]. For k; = —1 and 1, the equality constraint
6.Np +2.i + 4. jp + 2+ k1 = 0is not satisfied (because of the parity of its terms), thus k; € {-2,1}.
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— Consider the second constraint of the polyhedron.

i+j=sN © 0= 6.b.Ny,+2.b— b.(3.ip +3.jp)— i1 — L.b.(ip, - Jp) —Ji
& 0<6.Np+2—diy—4.jp+ {#J
where —2b < —i; — j; < 2b. Therefore k, = {#J € [-2,1]. For the same reason as the previous
constraint, k, = —1 and 1 lead to empty polyhedra. Hence k; € {-2,0}.
— Finally, consider the third constraint of the polyhedron.

0<j-1 o 0<sb.(ip—jp)+ji—1
o OSib—jbﬂ%J
where —b < j; — 1 < b. Therefore k3 = {%J € [-1,0]

Therefore, we obtain a union of 2 x 2 x 2 = 8 polyhedra, which are the result of the following intersec-
tions:

{ip, Jb, 11, j1IIO < 6.Np+2.ip +4.jp A (D7, j1) € T} ]
W{ip, jp, i1, j1l0=6.Np+2.ip +4.jp +2A (i}, j) €T AO<i;— ji}
{ip, b, 11, J1II0<6.Np —4.ip —4.jp A iy, j1) €T} ]
Wiip, jp, i, j1l0=6.Np —4.ip —4.jp +2A (i}, j) €T A0 < —i;— ji}
{ibs Jbo i, J1lO < iy — jo— 1A (if, j1) € Tp} ]

Wiip, jp, i1, J1II0=ip = jo A (i, j) €Tp A0 < j =1}

N

N

2.3.2 Tiling affine functions

As for the hyperrectangular case described in Section 2.2.2, we need to modify the SARE index func-
tions to account for the tiling reindexation.

Let us consider an affine function f: (i — Q.i + Q”).j + §) and two tilings: one for the input indices
(Jp) and one for the output indices (7';). Note that the “tile shapes” in the input and output dimen-
sions, 22, and 22, might be different.

We adapt the derivation of Theorem 2.9 to obtain a close definition of f = 9,0 foJ, b’l. From i’ =
f(f) = Q.f+ Q(p).ﬁ + ¢), we obtain:

- g - LLQ.i+QP.p+§
ib’ﬂ b’ = |LNQ.Lip+ L' 1.QW gy + Q4 bQ Pi+4)

Now, assume that L''.Q.L and L'-'.Q\P) are integral. This can be viewed as a generalization of the
hypothesis on (D’_l.Q.D) and (D' _I.Q(”)) on the hyperrectangular case. We show that the vectors

75(1_"1) = {Lril'(Q'”J’bQ(m'ﬁ ’HﬂJ (on the right) and e (l_"l/) = V’_;‘;’ J (on the left) can take a finite number

of values. Each couple of vectors for l_é(f}) and &/ (l_"l/) defines a new affine piece of f :
Theorem 2.13. Given two general monoparametric tiling transformations (93, and J'},) and any
affine function (f(i) = Q.i + Q). p + §), the composition (T, 0f09b_1) is a piecewise quasi-affine
function, whose branches are of the form:
AT T L’_I.Q.L.{;}+L,_1.Q(p).ﬁb+7(?—]2,
Fp i =\" 0 =" o) 5 4 74 b1/ (K — K
Q.i;+QY.pi+q+b.L'(k'-k)
bk<L (Qfl +QP . j; + Z]) <b.(k+1)
. - o) = . = - L
if Qii+QP.pr+g+bLl' (kK -k e,
il € ,@b

for each k € [k™™; k™2], for each k' € [k' ™), where L, L' are bases of the lattices of tile origins
of respectively 9 and ', and assuming that (L'~'.Q.L) and (L'-*.Q'P) are integer matrices.
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Figure 2.9 — Overlapping of rectangular (in green) and the hexagonal tiles

Example Consider the identity function (i, j) — (i, j), with the two following tilings:
- For the input space, we choose an hexagonal tiling:
- Jp={i,jl =b<jsb A -2b<i+j<2b A -2b<j—-i=<2b}
3
1 -1
- For the output space, we choose a rectangular tiling, with the same lattice:
- .Jﬁ)’:{i,j|05i<3b/\ 0<j<2b}

— Ly =L.b.7> where L =

3 3
I 7! 2 I _
- Lb—L.b.Z where L' = [1 _1]

An overlapping of these two tilings is shown in Figure 2.9.
The derivation goes as follow:

’ i i i
< L'.b l,’+.l L.b[b+.l
Jb Ji
o +L/ ll /ll [ll]
[ b ]l Y/

1 3 .
Because L1 = 5 [ ], then the constraints become:

1 -3

bTER 6b
.7 ll— ']l . il—3.j1
bt 0 = JbT6p

After taking the floor of these constraints:

. i1+3.j! . i +3.]
{ il 4l ]l=lb+ll Ji

We define k| = [l 3 ]’J k= [1,+3 JZJ Kk} = [l;_z]l’J and kp = [i’;’le . After analysis of the extremal
values of these quantities, we obtain:

— k1 €[-1;0] and ky € [-1;0]

- kj €[0;1] and k;, € [-1;0]

Therefore, we obtain a piecewise quasi-affine function with 16 branches (one for each value of (ky, k7, k2, k3)).
Each branch has the following form:

(80 K= K}, o+ o = I+ 30K} + Ky = Ky = ), s+ bUK, + ko — ey = )

when 0 < i;+3b(k} + kj —ky —k2) <3b A 0< ji+b(ky + k2 — k1 — kj) <2b
ki.b=<ij+3ji<(k1+1).b A kp.b<ij—3j;<(kp+1).b
-b<jisb A -2b<ij+ji<2b A -2b<jj—i;j<2b
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O

Case where L'~'.Q.L or L'~!.Q'”) are not integral As for the hyperrectangular case, we want to ad-
dress the case where L'~!.Q.L and L'~'.Q"” are not integral. When L and L’ are diagonal, we may
apply the same algorithm as for the hyperrectangular case. Otherwise, writing explicitly the integer
division and to enumerating the combination of values for the quotient and the modulo would pro-
duce a huge number of branches. Indeed, we would end-up with, at worse, as many integer divisions
as non-integral coefficients in L'~!.Q.L and L'~!.Q”). Though it would work, we believe that comput-
ing a closed form for f might not be relevant in that case. As for the hyperrectangular case, we need
to infer the tile ratio of the intermediate arrays to enforce the integrality of L'-'.Q.L and L'~!.Q'.
This gives a complete algorithm to express general monoparametric tiling as a polyhedral represen-
tation. The next section evaluates experimentally the scalability of our technique.

2.3.3 Experimental validation

In this section, we evaluate the scalability of our monoparametric tiling transformation and the qual-

ity of the tiled code generated.

We have two implementations of monoparametric tiling:

— An implementation in the AlphaZ system [174], which covers only rectangular tile shapes

— A standalone C++ implementation ! interfaced with a source-to-source C compiler, mppcodegen 2,
able to produce tiled code out of any mix of rectangular and general monoparametric tiling.

We first report on the scalability of the transformation itself, by studying the AlphaZ implementation.

Then, we will study the quality of the tiled code generated using the output of the C compiler.

We run our experiment on a machine with an Intel Xeon E5-1650 CPU with 12 cores running at 1.6

GHz (max speed at 3.8GHz), and 31GB of memory.

Scalability of the monoparametric tiling transformation

We use Polybench/Alpha® benchmarks, an hand-written Alpha implementation of the Polybench 4.0
benchmark suite.

Since the tiling transformation is the reindexing part of a tiling, there is no legality condition to re-
spect. Hence, we partition each kernel with a rectangular tiling of ratio 1¢ where d is the number
of dimensions of a variable. Then, we apply a polyhedral analysis on the transformed program. We
choose to compute the context domain of each node n of the Alpha program’s AST. Alpha programs
are not exactly SAREs, they feature piecewise definitions (case), reductions, calls to subsystems, and
any imbrication thereof. This is more flexible than a SARE, but it requires additional analyses to be
compiled. The context domain of a node is the set of indices on which the expression value is re-
quired to compute the output of a program. This analysis performs polyhedral operations (such as
image and preimage) for certain nodes of the AST. Its complexity increases with the size of the AST.

Results and analysis Figure 2.10 reports the time taken by each phase for all the kernel of Poly-
bench/Alpha, and the number of node of the AST of the program after the tiling transformation.
The time taken by the transformation itself remains reasonable (no more than about 2 seconds for
heat-3d). However, the time taken by the subsequent polyhedral analysis (i.e., the context domain
calculation) is huge for the stencil kernels (the last six kernels in the bottom table), with heat3d taking
up to about 37 minutes). This is due to the size of the program after tiling and the fact that the context
domain analysis builds a polyhedral set per node of the AST.

1. Available athttps://github.com/guillaumeiooss/MPP

2. Available athttps://foobar.ens-1yon.fr/mppcodegen

3. http://wwu.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.
polybench/polybench-alpha-4.0/
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Parsing 121 69 62 83 50 118 83 54 43 93 112 | 51 51 54 55 389
Tiling 300 | 157 | 151 | 178 | 93 282 | 439 | 119 | 82 | 308 | 482 | 112 | 113 | 187 | 159 | 369

Context Domain | 1147 | 504 | 163 | 230 | 162 | 1257 | 685 | 153 | 207 | 319 | 451 | 153 | 153 | 185 | 201 | 1197

Num AST Nodes | 110 66 21 47 29 136 36 21 25 34 39 25 25 13 29 113
Num Equations 10 6 2 5 3 14 3 2 3 4 6 4 4 2 4 15

5 =
g | E e | z| & |2 | & ST I B 2
Time taken (ms) = 5 = g 2 -2 g % 'c': ko 3 3 o) =
5 | g ElE|l 8|3 2 B S S 3 2
s = 5, a 3 S 7]
o0 =
Parsing 121 147 106 179 74 468 220 122 546 331 139 134 183 278
Tiling 266 398 284 472 139 | 1213 | 390 380 2393 1048 678 628 550 3275
Context Domain | 2182 | 1867 | 1208 | 2672 | 203 | 2843 | 335 | 6845 | 2m32s | 1m52s | 2913 58s 1m28s | 37m 13s
Num AST Nodes 315 123 138 216 39 659 27 537 11931 4194 334 2836 4684 50170
Num Equations 34 20 20 30 5 40 4 57 570 495 38 194 210 1242

Figure 2.10 — Time taken by the hyperrectangular monoparametric tiling transformation inside the
compiler, number of nodes of the AST of the program after the tiling transformation and number of
equations of the partitioned program. All the considered stencil computations (adi to heat-3d) have
an order of 1.

The main reason a partitioned stencil computation is so big is because of the multiple uniform de-
pendences (of the form (i — i + ¢) where & are constants) in its computation. For each such depen-
dence, the partitioned piecewise affine function has a branch per block of data accessed. Thus the
normalized partitioned program will have a branch of computation per combination of block of the
data accessed. Even if we progressively eliminate empty polyhedra during normalization, we still
have a large number of branches that cannot be merged. Because all the branches contain useful
information, we cannot further reduce the size of this program.

Quality of the monoparametric tiled code

We now consider the source-to-source C compiler implementation. Our goal is the compare the qual-
ity of a monoparametric tiled code with a fixed-size tiled code. We produce these two codes with the
same compiler framework, the only different optimization decision being the nature of the tiling
performed. For each Polybench/C kernel, we generate a monoparametric tiled code and a fixed-size
tiled code with a tile size of 16 by using the tiling hyperplanes found by the pluto compiler [53]. In
order to conserve the memory mapping, we apply the monoparametric tiling transformation only
on the iteration space. We simply express the original index by using the tile index. For example, in
the case of a square rectangular tiling of tile size b and an array access A[i] [k], we would generate
Alib¥b+il] [kb*b+k1].

The execution timesare shown in Figure 2.11. For most of the kernels, the execution time of both tiled
code are comparable. However, the monoparametric code is sometimes twice as fast as the fixed-size
code. When substituting the tile size parameter with a constant in the monoparametric tiled code,
we obtain similar performance. Thus, this is caused by the difference of the structure of the code
generated by ISL. Indeed, the inner loop iterator is not the same: the original iterator is used for the
fixed-size tiled code (starting at the origin of the current tile) while the monoparametric code uses i;
(starting at 0). Also, the monoparametric code explicitly separates the tile shapes into internal loops.
This leads to bigger code, but allows the factorization of some terms across loops.
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Fixed-size 949 | 944 | 776 | 27.5 | 3.32 | 1416 | 939 | 617 | 618 | 1420 | 2460 | 19.2 | 21.3
Monoparametric | 843 | 945 | 945 | 33.2 | 3.20 | 1616 | 928 | 575 | 700 | 1279 | 2814 | 17.6 | 22.7
g E < o o
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- S = | ¢ | 5 = I - T A O R
Time taken (ms) 2 Z % 3 = % £ = 5 5 c ]
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= =]
oo =
Fixed-size 424 | 21.0 | 2054 | 3093 | 4255 | 2.94 | 20179 | 2515 | 5.22 | 2797 | 13540 | 5395
Monoparametric | 418 | 20.8 | 1108 | 3107 | 2357 | 1.63 | 19021 | 1636 | 7.84 | 2300 | 13438 | 3746

Figure 2.11 — Comparison of the execution time between a fixed-size tiled code and a monopara-
metric tiled code, given the same compiler framework and optimization parameters. Each number
reported is the average of 50 executions.

2.4 Semantic tiling

In this section, we leverage our monoparametric tiling to derive a semantic til