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1 Introduction

D
ESIGNING and programming supercomputers is a major challenge for computer scientists

with deep societal implications – both technological and geopolitical. Supercomputers make
possible major advances in science and technology, as recently popularized by the – stun-

ning – picture supercomputation of the massive stellar object at the center of the M87 galaxy. My re-
searches concern the automation of supercomputer design and programming. Specifically, my con-
tributions concern the design of compilation models and algorithms to generate efficient software
and hardware for supercomputing kernels. Being at the interface between software and hardware,
my work is deeply influenced and challenged by the trends on computer architectures and program-
ming languages for high-performance computing, detailed in the two next sections.
This work has been granted by several positions. First, as a post-doc at ENS de Lyon, Texas A&M
University and Ohio State University (2006–2009). Then, as a permanent research scientist at Inria
(2009–). In 2014, I have co-founded a start-up, XtremLogic, with Alexandru Plesco, my first PhD stu-
dent. Since then, I spend a part of my time (20%) at doing scientific advising around the compiler I
have developed and transferred to XtremLogic under an Inria licence, where it is now a part of the
production compiler.
This chapter is structured as follows. Sections 1.1 and 1.2 discusses the general context and the chal-
lenges addressed by my researches. Section 1.3 outlines the contributions presented in this docu-
ment. Finally, Section 1.4 outlines of this document.

1.1 Architecture trends: the emergence of reconfigurable circuits

Power wall Since the end of Dennard scaling, transistors can no longer be miniaturized under a
constant power density. As a consequence, parallel architectures have become ubiquitous and en-
ergy efficiency (measured in flop/J) has become a major issue whenever the energy budget is lim-
ited, typically for embedded systems and high-performance computers (HPC). The current trend
is to explore the trade-off between circuit genericity and energy efficiency. The more specialized is a
circuit, the less energy it consumes. At the two extremes, an ASIC (application specific integrated cir-
cuit) finely tuned to realize a specific function is more energy efficient than a mainstream processor
(Xeon, etc). Hence the rise of hardware accelerators [87] (Xeon-Phi, GPU, FPGA) which equip most
embedded systems and high-performance computers. This way, computer architectures are now het-
erogeneous, and new programming environments (operating system/runtime, language/compiler)
are required to exploit entirely their computing capabilities, as discussed in the next section.
Recently, reconfigurable FPGA circuits [50] have appeared to be a competitive alternative to GPU
[175] in the race for energy efficiency. FPGAs combine both flexibility of programmable chips and
energy-efficiency of specialized hardware and appear as a natural solution. However, designing a cir-
cuit is far more complex than writing a C program. Disruptive compiler technologies are required to
generate automatically a circuit configuration from an algorithmic description (High-level synthesis,
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CHAPTER 1. INTRODUCTION

HLS) [66]. A substantial part of our contributions concerns HLS for FPGA.

Memory wall Since the early days of Von Neuman architecture, computers are slowed down by
off-chip memory accesses. Whatever the technology used, the memory bandwidth (BW) is a limit-
ing factor and the gap with compute power is continuously widening. Memory hierarchy reduces
the bandwidth requirement by cutting the memory traffic, providing the application exhibits enough
data reuse. However, this requires to reorganize the computation to enforce data locality. This issue
has been widely addressed by the compilation community in the last decades. But still, mainstream
compilers are not able to automate this task.
The roofline model [168] is a visual performance model which identifies memory bottleneck by lever-
aging the operational intensity (OI) of the program – the average number of computation per memory
access. It simply states that the performance is bounded by the memory accesses (OI×BW) and the
peak performance PP of the processing unit (processor, GPU, etc): perf(OI) ≤ max{OI×BW,PP}. It
is an upper bound, which cannot be reached without hiding the memory latency by the computa-
tion. The operational intensity depends on the program execution order, which must be tuned so
OI×BW ≥ PP, and then become compute-bounded. However, there is no magic: the operational in-
tensity of a program is inherently bounded by the ratio between the volume of computation and
the volume of input/output data. Hence, some programs might stay memory bounded whatever the
execution order.
The roofline model is redefined in light of FPGA constraints [67]. With FPGA, the peak performance is
no longer constant, it decreases with the operational intensity! Indeed, the more operational intensity
we need, the more local memory we use, the less parallelization we get (since FPGA resources are
limited), and finally the less performance we get. Hence, there exists an optimal operational intensity,
which may require multiple iterations to be reached.
Clearly, writing a kernel to exploit the fine-grain parallelism of a processing unit while minimizing the
memory traffic is out of reach for a programmer. This must be achieved by a compiler. In particular,
there is a need for a unified compilation model which captures both parallelism and data transfers
with the memory. We propose a new HLS-oriented compilation methodology towards this goal.

1.2 Dealing with parallelism and heterogeneity

Languages When it comes to program a parallel computer with hardware accelerators, the pro-
grammer is left to a myriad of standards with different levels of abstraction, allowing to control both
coarse-grain and fine-grain parallelism. The general philosophy is to exploit coarse-grain parallelism
dynamically: tasks are expressed at the langage-level, then a runtime system schedules the tasks on
the processing units and rules the data transfers across processing units. Then, to exploit fine-grain
parallelism statically: ideally, it should be up to the compiler to schedule the computations of a task
to reveal parallelism and improve data locality.

Ï Low-level models like OpenCL [122] or CUDA [64] provide a software stack that exposes hardware
accelerators through a low level stream abstraction. It is possible to express both data parallelism
(into the kernels to be offloaded) and task parallelism (between the kernels). Two remarks: data par-
allelism was chosen to program GPUs. When the hardware accelerator is not a GPU and/or the kernel
exhibits pipeline parallelism with fine-grain synchronisations, this model is simply not appropriate.
This explains why the tentatives to port OpenCL to FPGA led to a failure. Task parallelism is entirely
driven by the programmer at host level. Hence, it is entirely up to the programmer to place and to
schedule the kernels and to issue the data transfers. With such a degree of freedom, these languages
are perfect for source-level compiler optimizations (as an intermediate language); but particularly
tedious for a programmer.

Ï Kernel offloading models such as OpenACC [65], OpenHMPP [78], or X10 [57] enrich a sequential,
mainstream language (e.g. C, Java, Python) with directives to delimit the kernels offloaded to hard-
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CHAPTER 1. INTRODUCTION

ware accelerators and parallel programming constructs. The memory of the hardware accelerator
and the data transfers are managed automatically before and after the kernel execution. Some ap-
proaches provide directives to tune the schedule of data transfers to overlap data transfers and com-
putations. Extending a mainstream sequential programming langage with parallel constructions is
appealing. However, it sometimes make unnatural the expression of the parallelism, which fits better
in dataflow languages.

Ï Task-based programming models such as StarPU [33], Quark [173] or SMPSs [124] view the pro-
gram as a composition of coarse-grain tasks to be scheduled at runtime in a dataflow fashion. The
runtime analyses the data dependencies and builds a task graph (DAG). Then, the tasks are sched-
uled and mapped to processing units to improve the usual metrics (load balancing, data locality,
data movements). This approach is generic enough to fit most heterogeneous systems [33]. However,
FPGA raise additional challenges, which must be addressed:
– With FPGA, the silicon surface may be reconfigured dynamically to realize several computations in

parallel. Hence, a FPGA is – virtually – several hardware accelerators whose features (e.g. silicon
surface) may be tuned dynamically. This dynamicity of hardware must be modeled and taken into
account by the runtime system. As well, a virtualization layer is clearly required.

– Unlike software parallelization, the nature of FPGA requires that many configuration decisions
must be made at compile time. It is our belief that these configurations will require a double-staged
process with an offline compilation keeping some parameters symbolic (like the size of the proces-
sor array in [147]), coupled with a runtime which plays on these parameters to reconfigure the
circuit. This raise the challenge of partial compilation, as discussed later.

Libraries With optimized HPC libraries, the programmer can exploit parallelism without tedious
parallel programming. At first glance, a kernel optimized by hand by an expert will always outperform
an automated compiler optimization. For instance, the Basic Linear Algebra Subprograms (BLAS)
[112] provides optimized building blocks for performing basic vector and matrix operations. Many
HPC libraries were designed on top of BLAS (LAPACK [32], ScaLAPACK [61], PLASMA and MAGMA
[30]). In particular, PLASMA addresses architectures with multicore CPU ; and MAGMA addresses
heterogeneous architectures with CPU and GPU. Both rely on task decomposition of the routines
into BLAS routines. This decomposition into subcomputations is wrongly referred to as a tiling in
the litterature. It is actually a semantic tiling (the associativity of the computation is no longer the
same). We address the formalization and the automation of semantic tiling in this document.
Adaptative libraries (ATLAS [167], FFTW [86], PhiPAC [49]) apply an autotuning at installation time
by varying parameters that affect performances (typically the blocking size). This actually relies on
a telescopic approach with a partial compilation: the compiled code contains optimization param-
eters which may be tuned at installation time (adaptative libraries), and even at runtime (iterative
compilation). This way, the library vendor does not have to provide the source code and to let sev-
eral recompilations at installation time, which takes times, in addition to be risky from a business
perspective. This clearly raises the challenge of partial compilation: how to parametrize a program
transformation, and how to let the parameter(s) survive the compilation. We address this challenge
in this document.
However, there is no magic: a pure library-driven approach raises many challenges:
– The optimization coverage is bounded to library functions, which excludes de facto global opti-

mizations
– The choice of computations to take from a library is left to the programmer, which is guided by

algorithmic considerations. However, non-trivial factorizations might perform better.
Learning and using a new library remains fastidious and may refrain the adoptation of a new stan-
dard: old habits die hard. Hence, we believe that the compiler should automate the refactoring of
a program with library functions, in the same way as an instruction selector selects the best set of
instructions to program a processor. We propose a complete system based on semantic tiling to au-
tomate this task.
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CHAPTER 1. INTRODUCTION

Compilers While runtimes exploit coarse-grain parallelism, compilers generate the machine code
offloaded to processing units while revealing fine-grain parallelism. Compilers enhances program-
mer productivity and code portability when compiling from a mainstream langage. However, com-
piler optimizations are still fragile and highly depend on the shape of the source code. This is because
most compiler analysis (dependences, alias) are locked by undecidable problems, which push to-
wards conservative approximations that limit there impact. Hence the emergence of domain-specific
compilers, which trade the genericity for precision.
A typical example is the polyhedral model, a theoretical framework to reason about kernels with
nested for loops and to restructure the code, mainly for extracting parallelism while ensuring data
locality. Since it is a source-to-source approach, it can be connected to any mainstream compiler.
Thanks to the emergence of robust algorithms and tools for getting the code to and from the polyhe-
dral representation, polyhedral code optimizations are progressively adopted by industry and trans-
fered to production compilers.
With FPGA, the compiler must produce a circuit configuration from a high-level algorithmic descrip-
tion. The process consists into two steps: first, high-level synthesis compiles the source code to a
circuit expressed in a hardware description language. Then, synthesis compiles the circuit to a binary
file describing the FPGA configuration (bitstream). That bitstream is uploaded to the FPGA chip when
the runtime proceeds to the configuration. High-level synthesis tools (VivadoHLS [165], OpenCL SDK
[122], Xilinx SDAccel [85]) are now mature enough to produce circuits with an optimized internal
structure thanks to efficient scheduling techniques, resource sharing, and finite state machines gen-
eration. This enhance the spreading of FPGA across software developers, which can take advantage
of the speed and the energy efficiency of FPGA without an hardware expertise.
However, HLS tools suffer from many limitations.
– The input langage lacks a clear semantics. It is usually presented as locally sequential, globally

dataflow. However interprocess synchronizations often assumes a DAG of process (e.g. with Alter-
a/OpenCL, C2H, CatapultC). Hence, it is legal for the HLS scheduler to change the order of chan-
nels reads and writes. This limitation forbids dataflow programs with cycles between processes,
which arises frequently with fine-grain processes.

– The I/O of the circuit are hard to program, in particular when it comes to optimize the communi-
cations between the circuit and an off-chip memory. So far, the memory hierarchy must be imple-
mented by the programmer (local memory sizing and allocation, data transfers scheduling). We
propose a complete system to address this challenge.

– Fine-grain parallelism is still extracted with old fashioned techniques like loop unrolling and loop
pipelining. Hence the need to push high-level parallelization techniques from the polyhedral model
to HLS tools. This is the goal of our work on HLS.

1.3 Contributions

Our contributions are twofold. We propose program transformations for automatic parallelization,
and more generally program optimization. Then, we propose models and algorithms for high-level
synthesis of circuit configurations for FPGA chips.
On the first part, we propose several extensions of loop tiling, a fundamental program transforma-
tion in automatic parallelization (generalized loop tiling). In particular, we address parametric loop
tiling, with opens the way to the partial compilation challenge. Then, algorithm recognition auto-
mates the refactoring of a program with a performance library.
On the second part, we automate the synthesis of data spilling between an FPGA chip and an off-chip
memory while hiding the communications by computation (communication synthesis). Then, we
propose an HLS model which explicits data spilling and fine-grain parallelism (data-aware process
networks). Our HLS algorithms have been implemented and transferred to the XtremLogic startup,
where they are used in the production compiler.
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CHAPTER 1. INTRODUCTION

Generalized loop tiling Many program transformations require dividing the program into blocks
of computation. For automatic parallelization, the blocks serve as subcomputations to be executed
in parallel. For memory traffic minimization, the blocks serve as reuse units: into a reuse unit, the
data are communicated via a local memory; between two reuse units, the data are communicated
through the remote memory. Loop tiling [55, 68, 99, 111, 142, 149, 171] is a very natural and standard
way to obtain such a partitioning.
We propose to extend loop tiling in two directions. First, we allow to parametrize the tile size with
a scaling parameter [26], for any convex polytopic tile shape [25]. The scaling parameter survives the
compilation, and may be tuned at installation time and even at execution time, which opens the
way to partial compilation. The main novelty is to express this transformation into the polyhedral
framework, and not as a post-processing step. The ability to compose with other polyhedral trans-
formations opens new perspectives for polyhedral partial compilation. Then, we show how our tiling
transformation might be extended to be a semantic tiling [23], a transformation which increases the
granularity of operators (scalar → matrix). Semantic tiling leverages associativity and commutativ-
ity of reduction operators to partition the computation. As we have seen, semantic tiling is usually
confused with tiling by the numerical community. Hence, it is already widely applied by hand for
supercomputing: it typically defines the tasks in task-level programming models. When the compu-
tations are identified (see our next contribution), we may automate the refactoring with performance
libraries. Our contributions on semantic tiling and its application to algorithm recognition are un-
der publication. Hence a sufficient level of detail is provided in this document. So far, a complete
description may be found in the PhD thesis of Guillaume Iooss [98], in the context of which all this
work (generalized loop tiling & algorithm recognition) was developed.

Algorithm recognition A compiler optimization will never replace a good algorithm, hence the
idea to recognize algorithm instances in a program and to substitute them by an optimized version.
In particular, this automates the refactoring of a program with a performance library, and free the
programmer from this tedious task. Algorithm recognition raises many challenges: program slicing
(divide the program into subcomputations), program equivalence (compare with an algorithm) and
performance evaluation (is the substitution beneficial?). During my PhD thesis, I have addressed the
recognition of algorithm templates – functions with first-order variables – into programs [3, 6, 7, 9]
and the substitution by a call to a performance library [2, 8]. The slicing was driven by a relaxed
version of the equivalence checking algorithm. However, the subcomputations were not clearly sep-
arated from the remainder of the program, which complicates the generation of the final code and
tends to produce inefficient factorizations.
We address these issues by leveraging semantic loop tiling to split the program into slices to be com-
pared with the templates. Though the recognition is more focused, it provides a natural algorithmic
partitioning and it eases the substitution by a call to the library. Our algorithm recognition system
applies iteratively a new template matching algorithm, which process the slices (tiles) until all the
library idioms have been recognized. We use a relaxed notion of template where the unknowns are
simply the inputs. This simplifies the process to find a composition of algorithms: match a template,
and apply recursively the recognition on the template inputs.
As stated in the previous paragraph, this work was developed in the context of the PhD thesis of
Guillaume Iooss where all the details may be found [98]. In addition, we addressed the equivalence
checking of programs with explicit reductions [24]. It is another way to tackle semantic equivalence
of programs. It was actually one of our first contributions towards semantic tiling. Finally, we this al-
gorithm was not used in our system: we prefered a two-step approach with a correct-by-construction
semantic transformation (semantic tiling), followed by template matching.

Communication synthesis FPGAs come with pretty few local memory (8 MB on an Intel Stratix
10 GX1150 FPGA). This does not fit supercomputing kernels requirements, which often feature large
memory footprint. Hence, compiler techniques are required to spill efficiently the data to an off-chip
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CHAPTER 1. INTRODUCTION

memory, as would do a register allocation, and to schedule the operations so the computation hides
the communications. All the more so due to the small bandwidth of off-chip memories found on
FPGA boards (typically a DDR4 memory with 25 GB/s).
We propose a complete HLS algorithm to automate the data spilling to the off-chip memory as a
source-to-source transformation in front of an HLS tool, which serves as an hardware backend. First,
we propose a template of architecture for optimized data transfers, and we show how this architec-
ture can be specified as a C program in front of an HLS tool [12, 13]. Then, we propose an algorithm
to schedule the data transfers [14, 15] so that the resulting application is highly-optimized, with min-
imized off-chip memory traffic. Communications are covered by computations by double-buffering
the subcomputations revealed by a loop tiling. This way, the maximal throughput is reachable pro-
viding a sufficient parallelization. By playing on the tiling we can simply explore several trade-offs.
Local memory size for memory traffic: the bigger is the local memory, the less memory traffic is issued.
Local memory size for peak performance: the bigger is the local memory, the less FPGA resources re-
main for the computation. Our compilation model gives a general methodology to explore the FPGA
roofline model for the best configuration.
These results were obtained in the context of the PhD thesis of Alexandru Plesco [126] and have
opened the way to a fruitful collaboration towards a complete polyhedral HLS approach in the con-
text of the XtremLogic start-up, as described in the next paragraph.

Data-aware process networks We propose a complete polyhedral-powered approach for high-level
synthesis (HLS) of supercomputing kernels to FPGA. We cross fertilize polyhedral process networks
(PPN) [160] with our communication synthesis approach to propose a new dataflow intermediate
representation which explicits both parallelism and data spilling to the off-chip memory: the data-
aware process networks (DPN). We show how DPN and PPN might be view as instances of regular
process networks (RPN), a general compilation-oriented dataflow model of computation. RPN in-
duces a general methodology of automatic parallelization, that we believe to be appropriate for HLS
of supercomputing kernels to FPGA.
We propose algorithms for both front-end C → DPN and back-end DPN → circuit. We addressed the
compilation of the process control (control compaction [21], single process scheduling [17, 18]), the
compilation of channels (typing [1, 4], allocation/sizing [5]) and the synchronization of communi-
cations (Xtremlogic/Inria patent [19]). We have developed entirely the front-end C → DPN, which
was transferred to the XtremLogic startup, that we co-founded in 2014 with Alexandru Plesco, three
years after his defense. XtremLogic is in charge of developing the back-end DPN → circuit. Though
the back-end is still under development today (and then no global, system-level, results are available
yet), we obtained a substantial number of results, which apply to DPN while being general enough to
apply to other contexts.
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CHAPTER 1. INTRODUCTION

1.4 Outline of the document

This manuscript is structured as follows:
– Chapter 2 presents our contributions to generalized loop tiling. We show how polyhedral loop tiling

can be extended to any polytopic shape with a scaling parameter, while staying in the polyhedral
representation. Then we propose an algorithm for semantic tiling.
B Context: Guillaume Iooss’ PhD.

– Chapter 3 presents our contributions to algorithm recognition, based on semantic tiling. Aside, we
propose an algorithm program equivalence in the presence of reductions.
B Context: Guillaume Iooss’ PhD

– Chapter 4 presents our contributions to compile off-chip memory accesses in HLS. We propose a
model of architecture to rule the I/O with the memory, an algorithm to schedule the memory trans-
fers while avoiding redondant communications (communication coalescing). This works serve as
a basis to the high-level synthesis methodology presented in the next chapter.
B Context: Alexandru Plesco’s PhD.

– Chapter 5 presents an high-level synthesis methodology based on data-aware process networks
(DPN), a model of computation which explicit the parallelism and memory transfers. We discuss
several compilation algorithms related to DPN, addressing the generation of process control, chan-
nels and synchronizations
B Context: start-up project with Alexandru Plesco.

– Chapter 6 concludes and draws research perspectives.
– Appendix A outlines our further contributions.
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2 Generalized Loop Tiling

Loop tiling [55, 68, 99, 111, 142, 149, 171] is a standard loop transformation which divides the compu-
tation into subcomputations by grouping the loop iterations into tiles to be executed atomically. With
loop tiling, an application might be distributed across the nodes of a parallel computer, while tun-
ing the ratio computation/communication to fit the architecture balance. Loop tiling is probably the
most appropriate and powerful program transformation for automatic parallelization. State-of-the-
art tiling algorithms leverage the polyhedral model [81, 82, 83, 135, 136], a mathematical formalism
to develop compiler optimizations. The polyhedral model provides a compact, mathematical repre-
sentation of both programs and their transformations. However, many locks refrain to exploit the full
potential of loop tiling:
– Tile size is a major parameter. In automatic parallelization, it impacts directly the parallelism, the

operational intensity and the local memory size. In particular, trade-offs might be explored by tun-
ing the tile size (typically, communication volume for local memory size). Hence, it is desirable to
have a symbolic compilation where parameters survive the compilation and can be tuned after-
wards, without having to recompile [86, 132, 167]. However, parametric tiling does not fit directly
in the polyhedral model, it is usually implemented directly in back-end code generators of poly-
hedral compilers [39, 107, 139]. How to express the parametric tiling in the polyhedral model and
make possible to compose with further polyhedral transformations is still an open problem today.

– Tile shape. Historically, loop tiling was defined as a direct partition of the iteration space with hy-
perrectangles [171] and hyper-parallelepiped, defined by its boundary hyperplanes [99, 172], to
preserve the atomicity. Trapezoidal tiling was introduced to allow concurrent start [108, 137, 176],
at the price of redundant computations. Then, redundant computations were removed by using
diamonds [52] and hexagons [91, 138]. Actually, any covering of the iteration space can define a
tiling, there is no need to have a partition (redundant computations are allowed) or tiles defined as
convex polyhedra. How to find the best tile shape for a given optimization criteria, how to trans-
form a program with an arbitrary polyhedral tile shape while staying in the polyhedral model, then
how to produce a reasonable loop nest out of it are still challenging problems today.

Summary and outline This chapter summarizes the contributions made to loop tiling. All these
results were obtained in the context of the PhD thesis of Guillaume Iooss [98]. Section 2.1 outlines
the polyhedral model and defines the tiling transformation. Then we present our contributions:
– Section 2.2 summarizes our work on hyperrectangular tiling with a scaling parameter. We show

that this transformation fits in the polyhedral model under certain restrictions [26].
– Section 2.3 generalizes the results of section 2.2 to any polytopic tile shape (e.g. diamond, hexagon).

Likewise, it is a polyhedral transformation under the same restrictions [25].
– Section 2.4 extends our parametric tiling transformation to a semantic tiling [23], a transformation

which increases the granularity of operators (scalar → matrix). This part is described in the PhD
thesis of Guillaume Iooss and is under publication with some of the contributions described in
Chapter 3.
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2.1 Polyhedral model

This section introduces the polyhedral model (Section 2.1.1) and our program model (Section 2.1.2).
Then, we define the polyhedral intermediate representation on which polyhedral transformations
are applied (Section 2.1.3). Finally, we introduce polyhedral transformations and show how loop
tiling is expressed in the polyhedral model (Section 2.1.4). In particular, we describe the locks ad-
dressed in this Chapter.

2.1.1 Polyhedral compilers

The polyhedral model [81, 82, 83, 135, 136] is a well established framework to design automatic par-
allelizers and compiler optimizations. It abstracts loop iterations as a union of convex polyhedra and
data access as affine functions. This way, precise—iteration-level—analyses can be designed thanks
to geometric operations and integer linear programming: exact array dataflow analysis [81], schedul-
ing [82, 83], memory allocation [70, 133] or code generation [31, 43, 134]. A program can fit in the
polyhedral model, given an appropriate abstraction. We will describe in the next section a class of
programs which fits directly in the polyhedral model.
A polyhedral compiler is usually a source-to-source compiler, that transforms a source program to
optimize various criteria: data locality [43], parallelism [83], a combination of locality and paral-
lelism [53, 170] or memory footprint [70] to name a few. The input language is usually imperative
(C like) [5, 53]. It may also be an equational language [117, 174]. Today, polyhedral optimizations can
also be found in the heart of production compilers [20, 92, 128, 152]. A polyhedral compiler follows a
standard structure. A front-end parses the source program, identifies the regions that are amenable
to polyhedral analysis, and builds an intermediate polyhedral representation using array dataflow
analysis [81]. This representation is typically an iteration-level dependence graph, where a node rep-
resents a polyhedral set of iterations (e.g., a statement and its enclosing loops), and edges represent
affine relations between source and destination polyhedra (e.g., dependence functions). Then, poly-
hedral transformations are applied on the representation. Because of the closure properties of the
polyhedral representation [117, 136] the resulting program remains polyhedral, and transformations
can be composed arbitrarily. Finally, a polyhedral back-end generates the optimized output program
from the polyhedral representation [31, 43, 134].

2.1.2 Program model

Polyhedral programs A polyhedral program consists of nested for loops and if conditions manip-
ulating arrays and scalar variables, which satisfies an affinity property: loop bounds, if conditions,
and array access functions are affine expressions of surrounding loops counters and structure param-
eters. With polyhedral programs, the control is static: it only depends on the input size (the structure
parameters), not the input values. This way, loop iterations and array accesses might represented
statically, and with decidable objects (Presburger sets) thanks to the affinity property. Polyhedral pro-
grams covers an important class of compute- and data-intensive loop kernels usually found in linear
algebra and signal processing applications [41, 129].
Figure 2.1.(a) depicts a polyhedral program computing the product of two polynomials given the
arrays of coefficients a and b for each monomial.
With polyhedral programs, each iteration of a loop nest is uniquely represented by the vector of sur-
rounding loop counters~i . The execution of a program statement S at iteration~i is denoted by 〈S,~i 〉.
The set DS of iteration vectors is called the iteration domain of S.
Figure 2.1.(b) depicts the iteration domains DS and DT (grey points). When the loop steps are equal
to one, an iteration domain is the set of integral points satisfying the affine constraints induced by
the enclosing loop bounds and tests. Such a set is called an integer polyhedron:
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Definition 2.1 (integer polyhedron). An integer polyhedron is a set P of integral points~x ∈Zn satisfy-
ing a conjunction of affine constraints~a1·~x+b1 ≥ 0∧. . .∧~ap ·~x+bp ≥ 0 where~ai ∈Zn and bi ∈Z for each

i . If A is the matrix whose rows are ~a1, . . . ,~ap , the matrix representation of P is: {~x ∈Zn , A~x +~b ≥~0}.

An iteration domain may depend on parameters (typically, the array size N on the example). Hence,
we extend the definition by considering some variables as parameters:

Definition 2.2 (parametric integer polyhedron). A parametric integer polyhedron is a set P of inte-
gral points~x ∈Zn satisfying A~x+B~n+~c ≥~0 where A and B are integral matrices and c ∈Zp .~n ∈C ⊆Zq

is the vector of parameters. C is called the context domain.

A parametric integer polyhedron P must be seen as an application C → 2Z
n

,~n 7→P (~n), and a point~x
of P as an application C →Zn ,~n 7→~x(~n). It is usually a piecewise affine function discussing the value
of~x(~n) depending on the parameters ~n. For instance, the first iteration of T reading c[2] is the point:
N 7→ (N ≥ 2 : (0,2), N = 1 : (1,1), N < 1 : ⊥). The notation ⊥ means that the point is not defined. We
avoid that mapping notation when the parameters are clear from the context. The ability to reason
on non-constant—parametric—execution traces is a essential feature of the polyhedral model.

Beyond polyhedral programs In general, any program may fit in the polyhedral model provided a
sound abstraction to the polyhedral representation (a front-end program → polyhedral representa-
tion). In that case, sound means that the abstraction should convey enough information to enforce
the correctness of polyhedral transformation. The compiler should also feature a code generator
from the polyhedral representation (back-end) able to convey dynamic control and memory refer-
ences. This way, non-polyhedral constructs (non affine array accesses, while loop, early exits) might
be handled [10, 47], at the price of precision: for instance, parallelization opportunities might be
missed because of dependence over-approximation.
Further polyhedral approaches rely on mixed static/dynamic compilation to cope with dynamic con-
structs. In particular, the sparse polyhedral model [145, 158] defines composable inspector/executor
schemes using the polyhedral formalism (affine relations) extended with uninterpreted functions to
cope with irregularities (non affine loop bounds and array indices).
In [10], we proposed an application of the polyhedral scheduling to checking the termination of pro-
grams with while loops. The control flow graph was encoded in the polyhedral model in such a way
that polyhedral scheduling gives a ranking function (a loop variant), thereby proving the termination.
An extended summary of this work may be found in Appendix A.

Execution order The sequential execution order ≺ is locally defined by the lexicographic ordering:
〈T, i , j 〉 ≺ 〈T, i ′, j ′〉 iff (i , j ) ¿ (i ′, j ′), where (i , j ) ¿ (i ′, j ′) iff i < i ′, or i = i ′∧ j < j ′. Between instances
of different statements 〈S1,~i 〉 and 〈S2,~j 〉, we consider the restriction of~i and ~j to the common loop
counters:~i ′ and ~j ′: 〈S1,~i 〉 ≺ 〈S2,~j 〉 iff~i ′ ¿ ~j ′, or~i ′ = ~j ′ and S1 is before S2 in the text of the kernel.
Here, we always have 〈S, i 〉 ≺ 〈T, i ′, j ′〉 as S and T do not share any loop and S is before T in the text
of the kernel.

Lexicographic optimization In the polyhedral model, we often need to compute the first/last iter-
ation satisfying a property. Computing the lexicographic minima/maxima of an integer polyhedron
can be done with standard ILP algorithms. The simplex algorithm with Gomory cuts has been ex-
tended to parametric integer polyhedra [80]. The result is a point in the meaning defined above: a
piecewise function discussing the result depending on the parameters. For instance, the first itera-
tion of T reading c[2] can be expressed by the parametric integer program: min¿{(i , j ) | i + j = 2∧0 ≤
i , j ≤ N }. In general, this function is piecewise quasi-affine, meaning that the pieces and the functions
may involve integer divisions and modulo. This can still be expressed with affine forms if existential
quantifiers are allowed, hence the notion of polyhedral domain [159]:
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for i := 0 to 2N
S: c[i] := 0;

for i := 0 to N
for j := 0 to N

T: c[i+j] := c[i+j] + a[i]*b[j];

(a) Product of polynomials

i

i

j

0 1 2 3 4 5 6

0

1

2

N = 3

0 1 2 3

S

T

(b) Iteration domains and direct

dependences

S[i ] = 0 ≤ i ≤ 2N : 0

T [i , j ] =


i = 0∨ j = N :

S[i + j ]+a[i ]∗b[ j ]
2 ≤ i ≤ N ∧1 ≤ j ≤ N −1 :

T [i −1, j +1]+a[i ]∗b[ j ]

(c) SARE

Figure 2.1 – Polyhedral program (a), execution trace (iteration domains) and direct dependences (b),
and corresponding system of affine recurrence equations (SARE) which captures the dataflow depen-
dences and the computation (c). The SARE is a possible intermediate representation in a polyhedral
compiler

Definition 2.3 (polyhedral domain). A polyhedral domain is defined as:{
~x ∈Zn |

p∨
i=1

∃~αi ∈Zmi : Ai~x +Bi~αi +Ci~n + ~di ≥~0
}

Where Ai , Bi and Ci are integral matrices and ~di ∈ Zn . Again, ~n ∈ C ⊆ Zq is the vector of parameters
and C is called the context domain.

For example, the set of even integers {x ∈Z | ∃y ∈Z : x = 2y} is a polyhedral domain. We point out that
polyhedral domains are exactly Presburger definable sets: D is a polyhedral domain iff there exists
a Presburger formula φ such that D = {~x ∈ Zn | ~x |= φ}. Emptiness checking, geometric operations
(projection, union, intersection) and lexicographic minima/maxima are computable over polyhedral
domains [95, 131, 159], though the algorithms are more expensive and require more machinery than
for integer polyhedra. The class of polyhedral domains is closed under usual operations: projection,
union, intersection. Integer lattices are particular polyhedral domains, required to define tiling:

Definition 2.4 (integer lattice). An integer lattice is the sub-group of (Zn ,+) generated by vectors
u1, . . . ,up of Zn :

L (u1, . . . ,up ) = {~z ∈Zn | ∃~λ ∈Zp :~z =λ1~u1 + . . .+λp~up } = LZn

where L is the matrix with column vectors u1, . . . ,up .

2.1.3 Polyhedral intermediate representations

We now discuss briefly the intermediate representations used in a polyhedral compiler. As always,
several representations are possible. They all capture the flow of data dependences, required for a
sound reorganization of the computations.

Dependences There exists a dependence 〈S1,~i 〉 → 〈S2,~j 〉 iff 〈S1,~i 〉 ≺ 〈S2,~j 〉 and both operations
access (write or read) the same data. Depending on the access type, we classify the dependences
in flow dependence (write then read), anti dependences (read then write), output dependences (write
then write) and read dependences (read then read). By nature, polyhedral transformations as loop
tiling will change the read order, hence read dependences are ignored. From a HLS perspective, read
dependences should preserved when the data come with a prescribed order e.g. when the data are
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read from an external FIFO. Also, anti- and output- dependences may be removed by array expan-
sion [81]. Hence we focus on flow dependences →flow. Specifically, we consider producer/consumer
dependences, relating the production of a value to its read, called direct dependences:

→pc= {xmax →flow y | xmax = max≺ {x, x →flow y}}

For each read y , we keep the last write xmax defining y . This is solved with lexicographic optimization
[81]. Direct dependences are depicted in red in Figure 2.1.(b). We have: 〈S, i + j 〉 →pc 〈T, i , j 〉 if i = 0
or j = N and 〈T, i −1, j +1〉→pc 〈T, i , j 〉 if 2 ≤ i ≤ N and 1 ≤ j ≤ N −1. Modulo a proper encoding of S
and T with integers, dependences relations may be represented by polyhedral relations:

Definition 2.5 (polyhedral relation). Given a polyhedral set {~x ∈ Zn+p | φ(~x,~n)} where ~n is the vector
of parameters, we define a polyhedral relation by distinguishing input variables x1, . . . xn from output
variables xn+1, . . . xn+p :

(x1, . . . , xn) → (xn+1, . . . , xn+p ) s.t. φ(~x,~n)

If we write → the direct dependence relation, and we define x →̂ (y,k) iff x → y on the k-th
read of y , then σ = →̂−1 is a piecewise-affine function, called the source function [81]. For instance,
σ(〈T, i , j 〉,1) gives the execution instance producing the value consumed by the read c[i+j] of state-
ment T :

σ(〈T, i , j 〉,1) =
{ 〈T, i −1, j +1〉 if i ≥ 1∧ j < N

〈S, i + j 〉 else

When σ is expressed with translations (clauses i ∈D : 〈S,~i +~t〉), the dependences are said to be uni-
form. →pc and σ are the same representation of the flow of dependences of the program. They natu-
rally lead to an equational representation of polyhedral programs.

Systems of Affine Recurrence Equations (SARE) A SARE is an equational normal form of the pro-
gram, which focuses on the computation itself and abstracts away the storage allocation and the
execution order. A SARE is a collection of recurrence equations between single-assignment arrays,
where equation domains are polyhedral domains and array index functions are affine:

Definition 2.6 (SARE). A SARE is a list of equations of the form

Var[~i] =


. . .
~i ∈Dk : Exprk
. . .

where the Dk are disjoint polyhedral domains, and where:
– Var is a variable, is defined over a polyhedral domain D and is either an input, an output or a local

variable
– Expr is an expression, and can be either:

– A variable Var[f(~i)] where f is an affine function
– A constant Const,
– An affine function of the indices f(~i)
– An operation Op(Expr1, ..., Exprk) of arity k (i.e., the operation has k arguments)

Moreover, we assume that E xpr depends strictly on all of its arguments (i.e., the value of each of the
argument impacts the value of E xpr ).

Figure 2.1.(c) gives the SARE representation for the program given in (a). We point out that a SARE is
nothing more than a finite representation of direct dependences [81]. Somehow, it might be viewed
as a reduced dependence graph whose nodes are arrays and edges are driven by source functions
of read arrays. SARE arrays are completely expanded to ensure the single assignment property: each
array cell is uniquely defined.
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The representation of computations by systems of recurrence equations was pioneered in 1967 by
Karp, Miller and Winograd [104], which paved the way to the polyhedral model. Since their uni-
form recurrence equation, more general representations were addressed. System of uniform recur-
rence equations (with several equations and uniform dependences) were addressed by the systolic
community [46, 135, 136, 150] where they are sometimes referred to as piecewise regular algorithms.
Then, SAREs were adopted to address programs with non-uniform dependences. SAREs were en-
forced as a standard program representation for scheduling and automatic parallelization as soon as
Feautrier found a front-end algorithm from polyhedral programs based on the computation of the
source function σ [81].
In a slightly more general form of SARE, we allow hierarchical SAREs where it is possible to “call”
another SARE , called subsystem [74] and to use a reduction operator, as defined in the two next para-
graphs. This is the representation used in the Alpha language [113, 117], leveraged by this Chapter.

Hierarchical SARE We enrich SAREs with the ability to call another SARE (called a subsystem [74]).
The call to a subsystem is specified by a new type of equation, called a use equation. A use equation
provides the inputs to this program, and retrieves its outputs. A use equation provides a formalism
somehow similar to the map construction of functional languages: the subsystem is applied iteratively
on variable elements specified by an extension domain. For instance, the matrix multiplication is an
iterative application of a dot product on line and columns vectors. The following example illustrates
this notion.

Example Let us assume that we want to implement a matrix-vector product, where the matrix is
lower-triangular, by using a subsystem which implements a scalar product:

Program “scalProd” : inputs: Vect1, Vect2 (both defined on {i |0 ≤ i < M } )
output: Res (scalar)
parameter: M

Res = ∑
0≤k<M

Vect1[k]∗Vect2[k];

Program “triMatVectProd” : inputs: Vect (defined on {i |0 ≤ i < N } )
L (defined on {i , j |0 ≤ i ≤ j < N } )

output: vectRes (defined on {i |0 ≤ i < N } )
parameter: N

use{k|0 ≤ k < N } scalProd [k]
((k, i → i )@V ect , L)

returns (vectRes);

where (k, i → i )@Vect is a 2-dimensional expression whose value at (k, i ) is Vect[i ].
In this example, we use the extension domain {k|0 ≤ k < N } which specifies N different subsystems
call. The k-th call computes the product of two vectors of size k. The first one is the first k elements of
V ect , the second one is the kth row of L. The value produced by the k-th instance of the subsystem
is the k-th element of vectRes.
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Reductions A reduction is the successive application of an associative and commutative binary op-
erator ⊕ over a list of values. It can be viewed as an accumulation, where any accumulation order is
allowed. For example, a matrix multiplication can be written by using a reduction:

C [i , j ] =
N−1∑
k=0

A[i ,k]∗B [k, j ];

In general, the value of a reduction at the point~i is
⊕

π(~k)=~i
E [~k], where E is an expression, and π is a

quasi-affine function (possibly with integer divisions and modulos), called the projection function.
In the example above, we sum over the index k, thus π : (i , j ,k 7→ i , j ), and the result of the reduction
is a two-dimensional variable whose indices (i , j ) belong to the image of π.
Reductions are powerful programming and computational abstractions. They ease program trans-
formations which change the associativity of the computation by changing the accumulation or-
der. Such transformations are called semantic transformations: the transformed program achieves
the same computation modulo associativity/commutativity, but the dependences are no longer re-
spected. This opens a wide range of opportunities for program optimization [109]. This said, seman-
tic transformations must be applied with care on computations over floating point values. In that
case, addition and multiplication are no longer associative/commutative and a direct transforma-
tion without analyzing the context may cause numerical unstability.

2.1.4 Polyhedral transformations

Polyhedral transformations tune the program structure, the execution order and the data layout to
fulfill various optimization goals. The outcome is a SARE (possibly changed), a schedule defining
the evaluation order of SARE array elements S[~i ] (or equivalently program operations 〈S,~i 〉), and an
allocation mapping the SARE arrays (or program arrays) to physical storage. At the end of the process,
these elements (SARE, schedule, allocation) are provided to a polyhedral code generator [31, 42, 44],
which produces the transformed program. Allocation functions will be studied in Chapter 4. We focus
here on schedules and we present the tiling transformation addressed in this chapter.

Scheduling A schedule θS maps each operation 〈S,~i 〉 to a timestamp θS(~i ) = (t1, . . . , td ) ∈ Zd , the
timestamps being ordered by the lexicographic order ¿. In a way, a schedule dispatches the execu-
tion instances 〈S,~i 〉 into a new loop nest, θS(~i ) = (t1, . . . , td ) being the new iteration vector of 〈S,~i 〉.
A schedule θ prescribes a new execution order ≺θ such that 〈S,~i 〉 ≺θ 〈T,~j 〉 iff θS(~i ) ¿ θT (~j ). Also,
〈S,~i 〉 ¹θ 〈T,~j 〉means that either 〈S,~i 〉 ≺θ 〈T,~j 〉or θS(~i ) = θT (~j ). A schedule is correct if it preserves flow
dependences: →pc ⊆≺θ. Again, the SARE representation removes anti and output dependences [81],
which are then ignored. This correctness condition enforces the scheduled program to be structurally
equivalent to the source program. In [2], we refer this program equivalence as Herbrand equivalence.
Herbrand equivalence will be addressed in the next Chapter in the context of algorithm recognition.
However, this is not a necessary condition: a schedule could perfectly describe an equivalent com-
putation by playing on semantic properties of operators, while breaking flow dependences (for in-
stance, by reorganizing a reduction in a different order). In that case, the schedule prescribes a se-
mantic transformation. Semantic transformations open a wide range of opportunities for program
optimization. This chapter presents a semantic version of loop tiling, called semantic tiling.
When a schedule is injective, it is said to be sequential: each execution is scheduled at a different time.
Hence everything is executed in sequence. In the polyhedral model, schedules are affine functions.
They can be derived automatically from flow dependences [53, 83].
On Figure 2.1, the original execution order is specified by the schedule θS(i ) = (0, i ), θT (i , j ) = (1, i , j ).
The lexicographic order ensures that the instances of S are executed before the instances of T (2).
Then, for each statement, the loops are executed in the specified order. Likewise, a schedule pre-
scribing parallelism could be θS(i ) = 0 and θT (i , j ) = i +1. With this schedule, all the iterations of S
are executed in parallel at timestamp 0, then each front i +1 = t of T is executed at timestamp t .

HDR Christophe Alias 16/113



CHAPTER 2. GENERALIZED LOOP TILING

Tiling Tiling groups the iterations into tiles (or blocks) to be executed atomically. After tiling, the
iteration domains are reindexed with block indices, which iterates over the tiles, and local indices
which iterates within a tile. In the resulting loop nest, the loop structure consists of tile loops (iterat-
ing over block indices) and intra-tile loops (iterating local indices). Figure 2.2.(c) illustrates the tiling
transformation for the product of polynomials given Figure 2.1, tiles are delimited by bold lines.
The atomicity condition means that tiles can be scheduled as atomic operations. Hence, no interde-
pendence is allowed between two tiles.
Providing the dependences, we may need different tile shapes to satisfy the atomicity condition. The
most commonly used shape is a hyper-parallelepiped, defined by its boundary hyperplanes [99, 172].
A particular case is hyperrectangular tiling where the tile boundaries are normal to the canonic axes.
For optimization purpose, other shapes may be required such as trapezoid (with redundant compu-
tation [108, 137, 176]), diamond [35] or hexagonal [91, 138] (see Figure 2.7). In particular, hexagonal
tiling can expose synchronization-free parallelism for GPU (still, a single global barrier is required).
Parallelepipedic tiling exhibits pipelined parallelism, and a common belief is that performances are
bounded by iterated flush-in and flush-out. This happens when the parallelism is described by a se-
quential program with parallel for constructs, but no longer when we target a dataflow program, as
the DPN representation discussed in Chapter 5.
The tiling transformation TS maps each iteration~i ∈Zn of DS to a tiled iteration (~ib ,~il ) ∈Z2n , where~ib

denotes the block indices and~il denotes the local indices. For instance, a tiling with hyperrectangles

of size (b1, . . . ,bn) =~b ∈ Zn would be specified by TS(~i ) =
(⌊

~i
~b

⌋
,~i mod~b

)
, with elementwise integer

division and modulo.

Tiling a SARE. Given a tiling transformation TS for each SARE array S, tiling a SARE means:

– Reindexing arrays with block and local indices S[~i ] 7→ Ŝ[~ib ,~il ].
– Tiling each equation domain of Ŝ with TS : D 7→ D̂.
– Rephrasing array index functions with block and local indices: f 7→ f̂ .

Example In Figure 2.2 the tiling is defined by:

TS(i ) = (bi /2c , i mod 2) and TT (i , j ) = (bi /2c ,
⌊

j /2
⌋

, i mod 2, j mod 2)

The original SARE is depicted in (a), domains and index functions are made symbolic for the pre-
sentation. (b) gives the tiled SARE, and (c) illustrates the iteration domains of S and T after the tiling
transformation. Tiled iteration domains are obtained by writing the euclidian division:

D̂S = {(ib , il ) | 0 ≤T −1
S (ib , il ) < 2N ∧ 2ib ≤T −1

S (ib , il ) ≤ 2(ib +1)}

Since T −1
S (ib , il ) = 2ib + il is affine, D̂ is a polyhedron. Hence it satisfies the constraints of the SARE

representation. This closure property is unclear when the tile size b is parametric, since T −1
S (ib , il ) =

b.ib + il is then a quadratic form.
Index functions are rephrased to account for tiled indices. The source and the target domains might
be different, with different dimensions and partitionings (e.g., with f : Z2 → Z), which makes it
challenging to determine them automatically. For instance, in the original SARE, the index func-
tion g is defined by: g (i , j ) = (i − 1, j + 1). In the tiled SARE, we substitute g with its tiled counter-
part, ĝ = TS ◦ g ◦T −1

T . Tiled index functions are piecewise: when (il −1, jl +1) is a valid local index,
ĝ (ib , jb , il , jl ) = (ib , jb , il −1, jl +1). On the corner case, we take the value from a neighbor tile. Finally,
we end-up with a piecewise affine definition of ĝ , which fits the SARE constraints. Again, the clo-
sure is not clear when the tile size~b, is parametric, as a direct application of ĝ = TS ◦ g ◦T −1

T would
lead a non-affine function. One of the contributions of this chapter is to show that when the tile size
depends on a single scaling parameter, we still have the closure.
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S[i ] = i ∈DS : 0

T [i , j ] =


(i , j ) ∈DT 1 :

S[ f (i , j )]+a[i ]∗b[ j ]
(i , j ) ∈DT 2 :

T [g (i , j )]+a[i ]∗b[ j ]

(a) SARE

Ŝ[ib , il ] = (ib , il ) ∈ D̂S : 0

T̂ [ib , jb , il , jl ] =


(ib , jb , il , jl ) ∈ D̂T 1 :

Ŝ[ f̂ (ib , jb , il , jl )]+ â[ib , il ]∗b[ jb , jl ]
(ib , jb , il , jl ) ∈ D̂T 2 :

T̂ [ĝ (ib , jb , il , jl )]+a[ib , il ]∗b[ jb , jl ]

(b) Tiled SARE

i

i

j

0 1 2 3 4 5 6

0

1

2

N = 3

0 1 2 3

Ŝ

T̂

ib = 0 ib = 1

jb = 0

jb = 1

ib = 0 ib = 1 ib = 2 ib = 3

(c) Tiled iteration domains

Figure 2.2 – Tiling transformation

Parallelepipedic tiling.
i

i

j

0 1 2 3 4 5 6

0

1

2

N = 3

0 1 2 3

Ŝ

T̂

ib = 0 ib = 1

ib = 2

ib = 3

jb = 0

jb = 1

ib = 0 ib = 1 ib = 2 ib = 3

The atomicity constraint may prevent hyperrectangular
tiling. In most cases, a parallelepipedic tiling with relevant
hyperplane boundaries may apply. On perfect loop nests, a
parallelepipedic tiling is classically defined as the composi-
tion of a unimodular transformation (change of basis) fol-
lowed by an hyperrectangular tiling [172]. This is naturally
extended to unperfect loop nests, or SARE with several ar-
rays, by transforming the iteration domain DS of each state-
ment S with a bijective affine transformation φS , then by ap-
plying an hyperrectangular tiling [53]. The final tiling trans-
formation is then TS ◦φS for each statement S. On the ex-
ample, the transformation φS(i ) = i and φT (i , j ) = (i + j , j ), followed by the same hyperrectangular
tiling defines the tiling depicted on the right. Sometimes, the dimensions of φ (φS[0] and φT [0], then
φT [1]) are referred to as “tiling hyperplanes”. This terminology will be used in Chapter 4 and Chapter
5.

Monoparametric tiling The tiling transformation is central in automatic parallelization and the
tile size plays a crucial role. In this chapter, we show that, when the tile size depends on a scaling
parameter b (monoparametric tiling), hyperrectangular tiling is a polyhedral transformation and we
present the polyhedral machinery to derive the tiled SARE. Also, we extend this result to any polytopic
tile shape (e.g. diamond, hexagon) where the lattice of tile origins and the tile shape depends on a
scaling parameter.
With this result, it is now possible the reason analytically on the tile size, directly in the polyhedral
transformation. This way, we go beyond the back-end approaches [39, 107, 139], which allow to tune
the tile size after the compilation. As for the back-end techniques, the scaling parameter b may sur-
vive the compilation, which enables runtime tuning for any composition of monoparametric tilings
and further polyhedral transformations.

Contributions and outline In this chapter, we present the following contributions:
– We propose the monoparametric tiling transformation and we show that it is a polyhedral trans-

formation. This closure property is the main contribution of this chapter. Section 2.2 describes
the monoparametric tiling transformation for hyperrectangular tiles. Then, Section 2.3 generalizes
these results to tilings with any polytopic shape.
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i

j

il

jl

(ib , jb)

2.b

b

Figure 2.3 – A 2 dimensional monoparametric tiling. The tiles are rectangles of ratio 2× 1, and the
domain is D = {i , j | 0 ≤ i , j ∧ i + j < N }. Each tile is uniquely identify by the block indices (ib , jb). A
point inside a tile is identify by the local indices (il , jl ). When tiling D, we observe 3 kinds of tiles: the
full ones (in green), the triangle ones (in gray) and the trapezoid ones (in purple). The shape of each
kind of tiles and their placement can both be expressed as polyhedral domains.

– We leverage monoparametric tiling to propose a semantic tiling transformation, a transformation
increasing the granularity of operators (scalar → matrix). This is discussed in Section 2.4. Semantic
tiling is decomposed in reduction tiling (Section 2.4.2), followed by an outlining of the tiles into
subsystems (Section 2.4.1).

Finally, Section 2.5 concludes this chapter and draw perspectives.

2.2 Hyperrectangular monoparametric tiling

In this section, we consider the monoparametric tiling transformation with hyperrectangular tiles.
Composed with a proper affine transformation, it covers any parallelepipedic tiling.
With hyperrectangular tiling, the tile shape is an hyperrectangle b.d1 × . . .×b.dn , where b is a scaling
parameter and (d1, . . . ,dn) ∈ Nn∗ is called the tile ratio. For instance, Figure 2.3 illustrates a 2b × b
monoparametric tiling on a triangular domain.
We define the hyperrectangular tiling transformation as follows:

Definition 2.7. Given the block size parameter b and a diagonal matrix D = diag(d1, . . . ,dn) of tile
ratio, the monoparametric tiling transformation associated to this tiling is:

Tb,D =
{
Zn 7→ Z2n

~i 7→ (~ib ,~il ) = (
⌊

~i
b.D.~1

⌋
,~i mod (b.D.~1))

where we have extended the division, modulo and floor operation elementwise to vectors.

The inverse of a monoparametric tiling is quadratic: T −1
b,D (~ib ,~il ) = b.D.~ib +~il , no surprise.

We assume that the parameters ~p can be decomposed in the same fashion: ~p = b.~pb +~pl where ~pb is
the vector of tiled parameters, ~pl the local parameters and~0 ≤ ~pl < b.~1.
The goal of this section is to show that SARE equation domains are still polyhedral domains after the
application of Tb,D (Section 2.2.1), and that SARE index functions can be expressed with piecewise
affine functions in the tiled domain (Section 2.2.2).
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2.2.1 Tiling polyhedra

In this section, we show that polyhedral domains are closed under the monoparametric tiling trans-
formation: if D is a polyhedral domain, then D̂ =Tb,D (D) is still a polyhedral domain. We consider a
convex polyhedron D = {~i , Q.~i +~q +Q(p).~p ≥~0}, then we show that the monoparametric tiling can be
expressed with a finite union of convex polyhedra.
By definition,~i = b.D.~ib +~il and ~p = b.~pb + ~pl . Hence:

b.Q.D.~ib +Q.~il +b.Q(p).~pb +Q(p).~pl +~q ≥~0

These constraints are no longer polyhedral (b is a parameter and ~ib are indices). To get rid of the
quadratic part, we divide both sides by the tile size parameter b (which is strictly positive):

Q.D.~ib +Q(p).~pb +
Q.~il +Q(p).~pl +~q

b
≥~0

In general, the fraction is a rational vector. Thus, to come back into the integer world, we take the
floor of the previous constraints (it is valid because a ≥ 0 ⇔ bac ≥ 0):

Q.D.~ib +Q(p).~pb +
⌊

Q.~il +Q(p).~pl +~q
b

⌋
≥~0

Let~k(~il ) =
⌊

Q.~il+Q (p).~pl+~q
b

⌋
. We show [26] that~k(~il ) can only take a constant number of values, since

~0 ≤~il < b.D.~1 and~0 ≤ ~pl < b.~1, bounded in terms of Q, Q(p), pl and D . Then, it is sufficient to enu-
merate these values to obtain the union of polyhedra describing the tiled iteration domain.

Example To illustrate this algebraic manipulation, consider the following parameterized triangle:

D = {i , j | N −1− i − j ≥ 0∧ i ≥ 0∧ j ≥ 0}

We consider the monoparametric tiling with tiles b ×b,

(
i
j

)
= b.

(
ib

jb

)
+

(
il

jl

)
, as depicted on Figure 2.4.

To simplify the presentation, we assume that the parameter N is a multiple of the size parameter b:
N = Nb .b. Then, the first inequality becomes:

N −1− i − j ≥ 0 ⇔ Nb .b −1−b.ib − il −b. jb − jl ≥ 0

⇔ Nb − ib − jb +
⌊−il− jl−1

b

⌋
≥ 0

Let us study the values of k1(il , jl ) =
⌊−il− jl−1

b

⌋
. Because of the sign of the numerator coefficients, the

maximum is −1 (il = jl = 0) and the minimum is −2 (il = jl = b −1). After analyzing the two other
inequalities, we obtain:

D̂ =

ib , jb , il , jl |
Nb − ib − jb −1 = 0

ib , jb ≥ 0
0 ≤ il , jl < b

−b ≤−il − jl −1


⊎ib , jb , il , jl |

Nb − ib − jb −2 ≥ 0
ib , jb ≥ 0

0 ≤ il , jl < b


This union of polyhedra is shown in Figure 2.4.

We point out that, on the first polyhedron, we changed the constraint Nb − ib − jb −1 ≥ 0 to the con-
straint Nb−ib− jb−1 = 0 in order to obtain a partition. Indeed, if P~r , denotes the polyhedron obtained
for~k(~il ) =~r , then P~r ⊆ P~s when r j < s j for each dimension j : f (~i )+~r ≥ 0 ⇒ f (~i )+~s ≥ 0. Hence the
idea to keep a constraint “ ≥ 0′′ for the smallest value of k1(il , jl ) (here, −2), and write “=0” constraints
for the remaining values of k1(il , jl ) (here, −1).

This observation leads to the following general formulation:
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i

j

∆
=

First tiled polyhedron
(k1 =−1)∪

Second tiled polyhedron
(k1 =−2)

Figure 2.4 – Obtained union of tiled polyhedra ∆. The original polyhedron is a triangle, and we have
assume that the tile sizes divide its sizes. We have two polyhedra in ∆: one corresponding to the full
tiles, and another for the diagonal lower-triangular tiles

Theorem 2.8. The image of a polyhedron D = {~i | Q.~i +Q(p).~p +~q ≥~0} by a monoparametric tiling
transformation Tb,D is the polyhedral domain:

D̂ =
m⋂

c=1

[ ⊎
kmin

c <kc≤kmax
c

~ib ,~il

∣∣∣ Qc .D.~ib +Q(p)
c .~pb +kc = 0

b.kc ≤Qc .~il +Q(p)
c .~pl +qc

~0 ≤~il < b.D.~1


]

{
~ib ,~il

∣∣∣ Qc .D.~ib +Q(p)
c .~pb +kmi n

c ≥ 0
~0 ≤~il < b.D.~1

}]

where~k enumerates the possible values of
⌊

Q.~il+Q (p).~pl+~q
b

⌋
∈ �~kmin;~kmax�, where �~a,~b� is the set of inte-

gral points in the rectangle whose corners are ~a and~b.

The first union ranges on the m constraints of D. Then, for each constraint c, we bound kc with kmi n
c

and kmax
c . The second member of the ] is a special case for kc = kmi n

c (note the constraint “≥ 0”).
Then, the first member of] add disjoint domains (thanks to the constraint “= 0”). After simplification
and elimination of empty domains, we obtain a family of convex polyhedra corresponding to the
different possible tile shapes. This provides a general monoparametric tiling algorithm.
The scalability of our approach is assessed experimentally on the Polybench kernels [129] (see Sec-
tion 2.3.3).

2.2.2 Tiling affine functions

After tiling the SARE equation domains, we need to modify accordingly the SARE array index func-
tions. This is a challenging issue, for which we propose a general solution described in this section.
Consider an affine function f :Zn →Zp ,~i 7→Q.~i+Q(p).~p+~q of the original SARE, used in an equation:

A[~i ] =~i ∈D : . . .B [ f (~i )] . . .

After applying a monoparametric partitionning to A (T ′
b,D ′ :~i 7→~I ) and B (Tb,D ), we expect an equa-

tion of the form:
Â[~I ] =~I ∈ D̂ : . . . B̂ [ f̂ (~I )] . . .

Hence, we want to derive from f a new index function f̂ which operates on the tiled domains:

f̂ =T ′
b,D ′ ◦ f ◦T −1

b,D
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f̂ (ib , jb , il , jl ) =



(4ib , M −2 jb −1, ib + jb , 2il ,b − jl −1, il + jl )
if 0 ≤ il < b ∧0 ≤ jl < b ∧0 ≤ il + jl < 2b

(4ib +1, M −2 jb −1, ib + jb , 2il −b,b − jl −1, il + jl )
if b ≤ il < 2b ∧0 ≤ jl < b ∧0 ≤ il + jl < 2b

(4ib , M −2 jb −2, ib + jb , 2il ,2b − jl −1, il + jl )
if 0 ≤ il < b ∧b ≤ jl < 2b ∧0 ≤ il + jl < 2b

(4ib , M −2 jb −2, ib + jb +1, 2il ,2b − jl −1, il + jl −2b)
if 0 ≤ il < b ∧b ≤ jl < 2b ∧2b ≤ il + jl < 4b

(4ib +1, M −2 jb −1, ib + jb +1, 2il −b,b − jl −1, il + jl −2b)
if b ≤ il < 2b ∧0 ≤ jl < b ∧2b ≤ il + jl < 4b

(4ib +1, M −2 jb −2, ib + jb +1, 2il −b,2b − jl −1, il + jl −2b)
if b ≤ il < 2b ∧b ≤ jl < 2b ∧2b ≤ il + jl < 4b

Figure 2.5 – Rephrased index function (i , j ) 7→ (2i , N − j −1, i + j ) for an input tiling 2b ×2b and an
output tiling b ×b.

while staying in the polyhedral model: f̂ must be affine, or at least piece-wise affine.
We start from the definition of f :~i ′ =Q.~i +Q(p).~p +~q . With similar arguments as at the beginning of
the proof of Theorem 2.8, we get rid of~il

′
to obtain:

~ib
′ =

⌊
D ′−1.Q.D.~ib +D ′−1.Q(p).~pb +

D ′−1.(Q.~il +Q(p).~pl +~q)

b

⌋
(2.1)

Now, assume that (D ′−1.Q.D) and (D ′−1.Q(p)) are integer matrices. We obtain:

~ib
′ = D ′−1.Q.D.~ib +D ′−1.Q(p).~pb +

⌊
D ′−1.(Q.~il +Q(p).~pl +~q)

b

⌋

Again, ~k(~il ) =
⌊

D ′−1.(Q.~il+Q (p).~pl+~q)
b

⌋
can take a finite number of values. By enumerating the possible

integer values, we obtain a piecewise expression of ~ib
′
, where each branch corresponds to a value~k

of~k(il ):
~ib

′ = D ′−1.Q.D.~ib +D ′−1.Q(p).~pb +~k
if b.~k ≤ D ′−1.Q.~il +D ′−1.Q(p).~pl +D ′−1.~q < b.(~k +~1)

Hence the main result:

Theorem 2.9. Consider an affine function f : Zn → Zp ,~i 7→ Q.~i +Q(p).~p +~q and a monoparametric
tiling for the source domain (Tb,D ) and for the target domain (T ′

b,D ′). Assume that (D ′−1.Q.D) and
(D ′−1.Q(p)) are integer matrices.
Then, the composition f̂ =T ′

b,D ′ ◦ f ◦T −1
b,D is a piecewise quasi-affine function, whose branches are:

f̂ (~ib ,~il ) =
(

D ′−1.Q.D.~ib +D ′−1.Q(p).~pb +~k
Q.~il +Q(p).~pl +~q −b.D ′.~k

)
if b.~k ≤ D ′−1.Q.~il +D ′−1.Q(p).~pl +D ′−1.~q < b.(~k +~1)

for each~k ∈ �~kmin;~kmax�.

Figure 2.6 illustrates the condition of integrality of (D ′−1.Q.D) and (D ′−1.Q(p)). To simplify, consider
the identity function f (i ) = i . On the left, the target tile size is b and the source tile size is 2b. Hence:
D ′−1.Q.D = 1/1×1×1 = 1 ∈Z and D ′−1.Q(p) = 1/1×1 = 1 ∈Z. In that case, the f̂ might be expressed
with a piecewise affine discussion, as illustrated on the figure. On the right, we have the opposite
situation: the target tile size is 2b and the source tile size is b. Hence, D ′−1.Q.D = 1/2×1×1 = 1/2 ∉Z.
In that case, f̂ requires integer divisions and modulos: it is piecewise quasi-affine.
In the next paragraph, we propose an algorithm to derive f̂ in this situation. Piecewise quasi-affine
functions still fit in the polyhedral representation, at the price of adding existential quantifiers to
the SARE domains. This may hinder the polyhedral transformations which expect integer polyhedra
rather than Presburger sets.
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f̂ib , il

2b b

2ib , il if il < b

2ib +1, il −b if il ≥ b

f̂
ib , il

ib +1, il

b 2b

⌊
ib
2

⌋
, il if ib ≡ 0 mod 2

⌊
ib
2

⌋
, il +b if ib ≡ 1 mod 2

Figure 2.6 – Condition of integrality of (D ′−1.Q.D) and (D ′−1.Q(p)) when f is the identity function. On
the left, f maps a tiling 2b to a tiling b. The condition is respected: f̂ is piecewise affine. On the right,
f maps a tiling b to a tiling 2b. The condition is no longer respected, f̂ requires integer divisions and
modulos. In general, f̂ is piecewise quasi-affine.

Example Consider the affine function f : (i , j 7→ 2i , N− j −1, i+ j ) and the following monoparamet-
ric tiling for the source domain and the target domain:

– Source domain: tiles 2b ×2b,

(
i
j

)
= b.

(
2 0
0 2

)
.

(
ib

jb

)
+

(
il

jl

)
where 0 ≤ il , jl < 2b, hence D =

(
2 0
0 2

)
.

– Target domain: tiles b ×b,

(
i ′

j ′
)
= b.

(
1 0
0 1

)
.

(
i ′b
j ′b

)
+

(
i ′l
j ′l

)
where 0 ≤ i ′l , j ′l < b, hence D ′ =

(
1 0
0 1

)
.

We assume that the parameter N is divisible by b, and we introduce N = Nb .b. We check that (D ′−1.Q.D)
and (D ′−1.Q(p)) are both integral, thus we will have purely affine constraints. Roughly, when the target
tile size are a multiple
After performing the operations described previously, we obtain an expression of ~i ′b :

 i ′b
j ′b
k ′

b

=
4 0

0 −2
1 1

[
ib

jb

]
+

0
1
0

 .
[
Nb

]+
k1

k2

k3


where k1 =

⌊
2il
b

⌋
, k2 =

⌊− jl−1
b

⌋
and k3 =

⌊
il+ jl

2b

⌋
. Thus, 0 ≤ k1 ≤ 1, −2 ≤ k2 ≤−1 and 0 ≤ k3 ≤ 1.

By enumerating (k1,k2,k2) ∈ {0,1}× {−1,−1}× {0,1}, we obtain 8 branches, 2 branches of which have
unsatisfiable conditions. After pruning them out, we obtain the expression of f̂ described in Fig-
ure 2.5.

Derivation when (D ′−1.Q.D) and (D ′−1.Q(p)) are not integer matrices If this condition is not sat-
isfied, we cannot separate directly the integer part in Equation 2.2.2. Thus, we write explicitly the

integer division of~ib and ~pb with each diagonal coefficient of D ′, D ′
l ,l : ~ib l = ~ib

(di v),l
.D ′

l ,l +~ib
(mod),l

and ~pb l = ~pb
(di v),l .D ′

l ,l + ~pb
(mod),l .

Now, Equation 2.2.2 becomes:

~ib
′
l =Ql .D.~ib

(di v),l +Q(p)
l .~pb

(di v),l +
ÌÌÌÊQl .D.~ib

(mod),l +Q(p)
l .~pb

(mod),l

D ′
l ,l .b

+
Ql .~il +Q(p)

l .~pl +ql

D ′
l ,l .b

ÍÍÍË
Again, kl (~ib

(mod),l
, ~pb

(mod),l ) =
⌊

Ql .D.~ib
(mod),l+Q (p)

l .~pb
(mod),l

D ′
l ,l .b + Ql .~il+Q (p)

l .~pl+ql

D ′
l ,l .b

⌋
can take a finite number of

values. It is sufficient to enumerate the values of the triplet (~ib
(mod),l

, ~pb
(mod),l ,kl ) for each dimension

l . For each value, we obtain a new piece for f̂ , hence the result:

Theorem 2.10. Given two monoparametric tiling transformation (Tb,D and T ′
b,D ′) and any affine

function (f (~i ) =Q.~i +Q(p).~p+~q), if (D ′−1.Q.D) or (D ′−1.Q(p)) is not an integer matrix, the composition
f̂ =T ′

b,D ′ ◦ f ◦T −1
b,D is a piecewise quasi-affine function with modulo conditions in its branches.
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Example Let us consider f : (i , j ) 7→ (i , j ) where the input indices are tiled as

(
i
j

)
=

(
ib

jb

)
.b+

(
il

jl

)
and

the output indices are tiled as

(
i ′

j ′
)
=

(
2i ′b
3 j ′b

)
.b +

(
i ′l
j ′l

)
. Let us consider the first output dimension:

i ′ = i ⇔ 2.i ′b .b + i ′l = ib .b + il

⇒ i ′b =
⌊

ib
2 + il

2b

⌋
= i (di v)

b +
⌊

i (mod)
b

2 + il
2b

⌋
where ib = 2.i (di v)

b + i (mod)
b and 0 ≤ i (mod)

b ≤ 1.
Now, consider the second output dimension. Likewise, we have:

j ′b = j (di v)
b +

⌊
j (mod)

b

3
+ jl

3b

⌋

where jb = 3. j (di v)
b + j (mod)

b and 0 ≤ j (mod)
b ≤ 2.

Finally, we build the pieces of f̂ by enumerating all the possible values of i (mod)
b and j (mod)

b . For ex-

ample, for i (mod)
b = j (mod)

b = 0:

~k(il , jl ) =
(⌊

il
2b

⌋ ⌊
jl

3b

⌋)T

k1(il , jl ) and k2(il , jl ) can only take the value 0, thus we will obtain the branch:

(ib/2, jb/3, il , jl )T if ib ≡ 0 mod 2∧ jb ≡ 0 mod 3

After enumerating all the possible values for (i (mod)
b ,k1, j (mod)

b ,k2), we obtain:

f̂ :


ib

jb

il

jl

 7→



(ib/2, jb/3, il , jl )T if ib ≡ 0 mod 2∧ jb ≡ 0 mod 3
(ib/2,( jb −1)/3, il , jl +b)T if ib ≡ 0 mod 2∧ jb ≡ 1 mod 3
(ib/2,( jb −2)/3, il , jl +2b)T if ib ≡ 0 mod 2∧ jb ≡ 2 mod 3
((ib −1)/2, jb/3, il +b, jl )T if ib ≡ 1 mod 2∧ jb ≡ 0 mod 3
((ib −1)/2,( jb −1)/3, il +b, jl +b)T if ib ≡ 1 mod 2∧ jb ≡ 1 mod 3
((ib −1)/2,( jb −2)/3, il +b, jl +2b)T if ib ≡ 1 mod 2∧ jb ≡ 2 mod 3

Deriving the ratios to avoid modulo conditions If we assume that the ratio of all variables were
chosen beforehand, we just have to check for their compatibility, i.e., we have to check that tiling
the dependence functions do not introduce non-polyhedral modulo constraints. This means that we
have to check, for any dependence function (~i 7→Q.~i +Q(p).~p+~q) and ratio D and D ′, that (D ′−1.Q.D)
and (D ′−1.Q(p)) are integral.
In a more general situation, we assume that the ratio of some variables were chosen beforehand (ei-
ther by the user or by the compiler), but not all ratios were decided. In order to apply the monopara-
metric tiling transformation, we propose an algorithm to find the ratio for all the remaining variables,
such that no modulo constraints are introduced in their equations [98].

2.3 General monoparametric tiling

In Section 2.2, we have focused on monoparametric tiling with hyperrectangular shapes. In this sec-
tion, we show how this theory can be extended to any polyhedral tile shape (hexagonal [91], dia-
mond [35], etc). In particular we show the closure of polyhedral representations under our general
monoparametric partitionning. We first recall the definition of the fixed size general tiling, then we
define our general monoparametric tiling.
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i

j

il

jl

(ib , jb)

4b

2b

Figure 2.7 – Example of hexagonal monoparametric tiling for a 2D space. (ib , jb) are the block indices,
which identify a tile, (il , jl ) are the local indices, which identify the position of a point inside a tile.
The tile shape is an hexagon with 45◦ slopes and of size 4b×2b, and can be viewed as the homothetic
scaling of a 4×2 hexagon. The red arrows correspond to a basis of the lattice of tile origins.

General fixed-size tiling A general fixed-size tiling is defined by:
– A bounded convex polyhedron P

– An integer lattice L of the tile origins (which admits a basis L) and,
– A function T which decomposes any point~i in the following way:

T (~i ) = (~ib ,~il ) ⇔~i = L.~ib +~il where L.~ib ∈L and~il ∈P

When this decomposition is unique, this tiling defines a partition of the space. Otherwise, we have
overlapping tiles. Some tilings do not have an integral lattice of tile origins (such as diamond tiling
with non-unimodular hyperplanes). We do not address overlapped tiles or non-integral tile origins.
We now extend this definition with a scaling parameter b, as for the hyperrectangular case:

Definition 2.11. A monoparametric general tiling is defined by:
– A tile shape Pb = b ×P , where P is a convex polyhedron (× is the homothetic scaling)
– A lattice of tile origins Lb = b ×L , where L is an integer lattice.
– A function Tb which decomposes any point~i in the following way:

Tb(~i ) = (~ib ,~il ) ⇔~i = b.L.~ib +~il where (L.~ib) ∈L and~il ∈ b ×P

We now show that the monoparametric general tiling is a polyhedral transformation, just as we did for
the hyperrectangular case. First, we show that tiled domains D̂ =Tb(D) are union of convex polyhe-
dra (Section 2.3.1). Then, we show that index functions between tiled domains, f̂ are piecewise quasi
affine. As for the hyperrectangular case, we give a condition that makes f̂ piecewise affine (Section
2.3.2).

2.3.1 Tiling polyhedra

Let us consider a n-dimensional polyhedron D = {~i | Q.~i +Q(p).~p +~q ≥~0} where ~p are the program
parameters. As in Section 2.2.1, we replace~i by the block indices ~ib and the local indices~il , such that
Tb(~i ) = (~ib ,~il ) (cf Figure 2.7).

Consider the c-th constraint of D: Qc .~i+Q(p)
c .~p+qc ≥ 0. We substitute~i by b.L.~ib+~il where~il ∈Pb . By

doing exactly the same operations as in the proof of Theorem 2.8, we obtain the following expression:

Qc .L.~ib +Q(p)
c .~pb +

⌊
Qc .~il +Q(p)

c .~pl +qc

b

⌋
≥~0
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Figure 2.8 – Polyhedron and tiling of the example. The dots correspond to the tile origins of the tiles
contributing to the polyhedron. The blue arrows show the basis of the lattice of tile origins.

Again, the quantity kc (~il ) =
⌊

Qc .~il+Q (p)
c .~pl+qc

b

⌋
can take a finite number of values because ~il ∈ Pb =

b × P where P is bounded. This way, we obtain a polyhedral formulation of the tiled iteration
domains D̂ very similar to Theorem 2.8 for the hyperrectangular case:

Theorem 2.12. The image of a polyhedron D = {~i |Q.~i +Q(p).~p +~q ≥~0} by a general monoparametric
tiling transformation is the polyhedral domain:

D̂ =
m⋂

c=1

[ ⊎
kmin

c <kc≤kmax
c

~ib ,~il

∣∣∣ Qc .L.~ib +Q(p)
c .~pb +kc = 0

b.kc ≤Qc .~il +Q(p)
c .~pl +qc

~il ∈Pb


]

{
~ib ,~il

∣∣∣ Qc .L.~ib +Q(p)
c .~pb +kmi n

c ≥ 0
~il ∈Pb

}]

where~k enumerates the possible values of
⌊

Q.~il+Q (p).~pl+~q
b

⌋
.

After distributing the intersection across the unions and eliminating the empty polyhedral, we obtain
as many polyhedra as the number of different tile shapes of the partitioned version of D (which is, at
most, the number of different values of~k).

Example Consider the polyhedron: D = {i , j | j − i ≤ N ∧ i + j ≤ N ∧0 < j } and the tiling:
– Pb = {i , j | −b < j ≤ b ∧ −2b < i + j ≤ 2b ∧ −2b < j − i ≤ 2b}

– Lb = L.b.Z2 where L =
[

3 3
1 −1

]
For simplicity, we assume that N = 6.b.Nb +2b, where Nb is a positive integer. A graphical represen-
tation of the polyhedron and of the tiling is shown in Figure 2.8.
We now unroll the enclosing intersection by considering independently each constraint of D.
– Consider the first constraint of the polyhedron.

j − i ≤ N ⇔ 0 ≤ 6.b.Nb +2.b +b.(3.ib +3. jb)+ il −b.(ib − jb)− jl

⇔ 0 ≤ 6.Nb +2+2.ib +4. jb +
⌊

il− jl

b

⌋
where −2b ≤ il − jl < 2b. Therefore, k1 =

⌊
il− jl

b

⌋
∈ �−2,1�. For k1 =−1 and 1, the equality constraint

6.Nb +2.ib +4. jb +2+k1 = 0 is not satisfied (because of the parity of its terms), thus k1 ∈ {−2,1}.
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– Consider the second constraint of the polyhedron.

i + j ≤ N ⇔ 0 ≤ 6.b.Nb +2.b −b.(3.ib +3. jb)− il −L.b.(ib − jb)− jl

⇔ 0 ≤ 6.Nb +2−4.ib −4. jb +
⌊−il− jl

b

⌋
where −2b ≤ −il − jl < 2b. Therefore k2 =

⌊−il− jl

b

⌋
∈ �−2,1�. For the same reason as the previous

constraint, k2 =−1 and 1 lead to empty polyhedra. Hence k2 ∈ {−2,0}.
– Finally, consider the third constraint of the polyhedron.

0 ≤ j −1 ⇔ 0 ≤ b.(ib − jb)+ jl −1

⇔ 0 ≤ ib − jb +
⌊

jl−1
b

⌋
where −b ≤ jl −1 < b. Therefore k3 =

⌊
jl−1

b

⌋
∈ �−1,0�

Therefore, we obtain a union of 2×2×2 = 8 polyhedra, which are the result of the following intersec-
tions: [

{ib , jb , il , jl |0 ≤ 6.Nb +2.ib +4. jb ∧ (il , jl ) ∈Tb}
]{ib , jb , il , jl |0 = 6.Nb +2.ib +4. jb +2∧ (il , jl ) ∈Tb ∧0 ≤ il − jl }

]
∩

[
{ib , jb , il , jl |0 ≤ 6.Nb −4.ib −4. jb ∧ (il , jl ) ∈Tb}
]{ib , jb , il , jl |0 = 6.Nb −4.ib −4. jb +2∧ (il , jl ) ∈Tb ∧0 ≤−il − jl }

]
∩

[
{ib , jb , il , jl |0 ≤ ib − jb −1∧ (il , jl ) ∈Tb}
]{ib , jb , il , jl |0 = ib − jb ∧ (il , jl ) ∈Tb ∧0 ≤ jl −1}

]

2.3.2 Tiling affine functions

As for the hyperrectangular case described in Section 2.2.2, we need to modify the SARE index func-
tions to account for the tiling reindexation.
Let us consider an affine function f : (~i 7→Q.~i +Q(p).~p +~q) and two tilings: one for the input indices
(Tb) and one for the output indices (T ′

b). Note that the “tile shapes” in the input and output dimen-
sions, Pb and P ′

b might be different.

We adapt the derivation of Theorem 2.9 to obtain a close definition of f̂ = T ′
b ◦ f ◦T −1

b . From~i ′ =
f (~i ) =Q.~i +Q(p).~p +~q), we obtain:

~ib
′+

⌊
L′−1.~il

′

b

⌋
=

⌊
L′−1.Q.L.~ib +L′−1.Q(p).~pb +

L′−1.(Q.~il +Q(p).~pl +~q)

b

⌋
Now, assume that L′−1.Q.L and L′−1.Q(p) are integral. This can be viewed as a generalization of the
hypothesis on (D ′−1.Q.D) and (D ′−1.Q(p)) on the hyperrectangular case. We show that the vectors
~k(~il ) =

⌊
L′−1.(Q.~il+Q (p).~pl+~q)

b

⌋
(on the right) and~k ′(~il

′
) =

⌊
L′−1.~il

′

b

⌋
(on the left) can take a finite number

of values. Each couple of vectors for~k(~il ) and~k ′(~il
′
) defines a new affine piece of f̂ :

Theorem 2.13. Given two general monoparametric tiling transformations (Tb and T ′
b) and any

affine function (f (~i ) = Q.~i +Q(p).~p +~q), the composition (T ′
b ◦ f ◦T −1

b ) is a piecewise quasi-affine
function, whose branches are of the form:

f̂ (~ib ,~il ) =
(

L′−1.Q.L.~ib +L′−1.Q(p).~pb +~k −~k ′

Q.~il +Q(p).~pl +~q +b.L′(~k ′−~k)

)

if


b.~k ≤ L′−1

(
Q.~il +Q(p).~pl +~q

)
< b.(~k +~1)

Q.~il +Q(p).~pl +~q +b.L′(~k ′−~k) ∈P ′
b

~il ∈Pb

for each~k ∈ �~kmin;~kmax�, for each ~k ′ ∈ �~k ′min
;~k ′max�, where L,L′ are bases of the lattices of tile origins

of respectively T and T ′, and assuming that (L′−1.Q.L) and (L′−1.Q(p)) are integer matrices.
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i

j

Figure 2.9 – Overlapping of rectangular (in green) and the hexagonal tiles

Example Consider the identity function (i , j ) 7→ (i , j ), with the two following tilings:
– For the input space, we choose an hexagonal tiling:

– Tb = {i , j | −b < j ≤ b ∧ −2b < i + j ≤ 2b ∧ −2b < j − i ≤ 2b}

– Lb = L.b.Z2 where L =
[

3 3
1 −1

]
– For the output space, we choose a rectangular tiling, with the same lattice:

– T ′
b = {i , j | 0 ≤ i < 3b ∧ 0 ≤ j < 2b}

– L′
b = L′.b.Z2 where L′ =

[
3 3
1 −1

]
An overlapping of these two tilings is shown in Figure 2.9.
The derivation goes as follow: [

i ′

j ′
]
=

[
i
j

]
⇔ L′.b.

[
i ′b
j ′b

]
+

[
i ′l
j ′l

]
= L.b.

[
ib

jb

]
+

[
il

jl

]
⇔

[
i ′b
j ′b

]
+L′−1. 1

b .

[
i ′l
j ′l

]
=

[
ib

jb

]
+L′−1. 1

b .

[
il

jl

]

Because L′−1 = 1
6 .

[
1 3
1 −3

]
, then the constraints become:

{
i ′b +

i ′l+3. j ′l
6b = ib + il+3. jl

6b

j ′b +
i ′l−3. j ′l

6b = jb + il−3. jl

6b

After taking the floor of these constraints: i ′b +
⌊

i ′l+3. j ′l
6b

⌋
= ib +

⌊
il+3. jl

6b

⌋
j ′b +

⌊
i ′l−3. j ′l

6b

⌋
= jb +

⌊
il−3. jl

6b

⌋
We define k ′

1 =
⌊

i ′l+3. j ′l
6b

⌋
, k1 =

⌊
il+3. jl

6b

⌋
, k ′

2 =
⌊

i ′l−3. j ′l
6b

⌋
and k2 =

⌊
il−3. jl

6b

⌋
. After analysis of the extremal

values of these quantities, we obtain:
– k1 ∈ �−1;0� and k2 ∈ �−1;0�
– k ′

1 ∈ �0;1� and k ′
2 ∈ �−1;0�

Therefore, we obtain a piecewise quasi-affine function with 16 branches (one for each value of (k1,k ′
1,k2,k ′

2)).
Each branch has the following form:(

ib +k1 −k ′
1, jb +k2 −k ′

2, il +3b(k ′
1 +k ′

2 −k1 −k2), jl +b(k ′
1 +k2 −k1 −k ′

2)
)

when 0 ≤ il +3b(k ′
1 +k ′

2 −k1 −k2) < 3b ∧ 0 ≤ jl +b(k ′
1 +k2 −k1 −k ′

2) < 2b
k1.b ≤ il +3 jl < (k1 +1).b ∧ k2.b ≤ il −3 jl < (k2 +1).b
−b < jl ≤ b ∧ −2b < il + jl ≤ 2b ∧ −2b < jl − il ≤ 2b
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Case where L′−1.Q.L or L′−1.Q(p) are not integral As for the hyperrectangular case, we want to ad-
dress the case where L′−1.Q.L and L′−1.Q(p) are not integral. When L and L′ are diagonal, we may
apply the same algorithm as for the hyperrectangular case. Otherwise, writing explicitly the integer
division and to enumerating the combination of values for the quotient and the modulo would pro-
duce a huge number of branches. Indeed, we would end-up with, at worse, as many integer divisions
as non-integral coefficients in L′−1.Q.L and L′−1.Q(p). Though it would work, we believe that comput-
ing a closed form for f̂ might not be relevant in that case. As for the hyperrectangular case, we need
to infer the tile ratio of the intermediate arrays to enforce the integrality of L′−1.Q.L and L′−1.Q(p).
This gives a complete algorithm to express general monoparametric tiling as a polyhedral represen-
tation. The next section evaluates experimentally the scalability of our technique.

2.3.3 Experimental validation

In this section, we evaluate the scalability of our monoparametric tiling transformation and the qual-
ity of the tiled code generated.
We have two implementations of monoparametric tiling:
– An implementation in the AlphaZ system [174], which covers only rectangular tile shapes
– A standalone C++ implementation 1 interfaced with a source-to-source C compiler, mppcodegen 2,

able to produce tiled code out of any mix of rectangular and general monoparametric tiling.
We first report on the scalability of the transformation itself, by studying the AlphaZ implementation.
Then, we will study the quality of the tiled code generated using the output of the C compiler.
We run our experiment on a machine with an Intel Xeon E5-1650 CPU with 12 cores running at 1.6
GHz (max speed at 3.8GHz), and 31GB of memory.

Scalability of the monoparametric tiling transformation

We use Polybench/Alpha 3 benchmarks, an hand-written Alpha implementation of the Polybench 4.0
benchmark suite.
Since the tiling transformation is the reindexing part of a tiling, there is no legality condition to re-
spect. Hence, we partition each kernel with a rectangular tiling of ratio 1d where d is the number
of dimensions of a variable. Then, we apply a polyhedral analysis on the transformed program. We
choose to compute the context domain of each node n of the Alpha program’s AST. Alpha programs
are not exactly SAREs, they feature piecewise definitions (case), reductions, calls to subsystems, and
any imbrication thereof. This is more flexible than a SARE, but it requires additional analyses to be
compiled. The context domain of a node is the set of indices on which the expression value is re-
quired to compute the output of a program. This analysis performs polyhedral operations (such as
image and preimage) for certain nodes of the AST. Its complexity increases with the size of the AST.

Results and analysis Figure 2.10 reports the time taken by each phase for all the kernel of Poly-
bench/Alpha, and the number of node of the AST of the program after the tiling transformation.
The time taken by the transformation itself remains reasonable (no more than about 2 seconds for
heat-3d). However, the time taken by the subsequent polyhedral analysis (i.e., the context domain
calculation) is huge for the stencil kernels (the last six kernels in the bottom table), with heat3d taking
up to about 37 minutes). This is due to the size of the program after tiling and the fact that the context
domain analysis builds a polyhedral set per node of the AST.

1. Available at https://github.com/guillaumeiooss/MPP
2. Available at https://foobar.ens-lyon.fr/mppcodegen
3. http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.

polybench/polybench-alpha-4.0/
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Figure 2.10 – Time taken by the hyperrectangular monoparametric tiling transformation inside the
compiler, number of nodes of the AST of the program after the tiling transformation and number of
equations of the partitioned program. All the considered stencil computations (adi to heat-3d) have
an order of 1.

The main reason a partitioned stencil computation is so big is because of the multiple uniform de-
pendences (of the form (~i 7→~i +~c) where~c are constants) in its computation. For each such depen-
dence, the partitioned piecewise affine function has a branch per block of data accessed. Thus the
normalized partitioned program will have a branch of computation per combination of block of the
data accessed. Even if we progressively eliminate empty polyhedra during normalization, we still
have a large number of branches that cannot be merged. Because all the branches contain useful
information, we cannot further reduce the size of this program.

Quality of the monoparametric tiled code

We now consider the source-to-source C compiler implementation. Our goal is the compare the qual-
ity of a monoparametric tiled code with a fixed-size tiled code. We produce these two codes with the
same compiler framework, the only different optimization decision being the nature of the tiling
performed. For each Polybench/C kernel, we generate a monoparametric tiled code and a fixed-size
tiled code with a tile size of 16 by using the tiling hyperplanes found by the pluto compiler [53]. In
order to conserve the memory mapping, we apply the monoparametric tiling transformation only
on the iteration space. We simply express the original index by using the tile index. For example, in
the case of a square rectangular tiling of tile size b and an array access A[i][k], we would generate
A[ib*b+il][kb*b+kl].
The execution timesare shown in Figure 2.11. For most of the kernels, the execution time of both tiled
code are comparable. However, the monoparametric code is sometimes twice as fast as the fixed-size
code. When substituting the tile size parameter with a constant in the monoparametric tiled code,
we obtain similar performance. Thus, this is caused by the difference of the structure of the code
generated by ISL. Indeed, the inner loop iterator is not the same: the original iterator is used for the
fixed-size tiled code (starting at the origin of the current tile) while the monoparametric code uses il

(starting at 0). Also, the monoparametric code explicitly separates the tile shapes into internal loops.
This leads to bigger code, but allows the factorization of some terms across loops.
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Figure 2.11 – Comparison of the execution time between a fixed-size tiled code and a monopara-
metric tiled code, given the same compiler framework and optimization parameters. Each number
reported is the average of 50 executions.

2.4 Semantic tiling

In this section, we leverage our monoparametric tiling to derive a semantic tiling. We show that it
suffices to combine reduction tiling (Section 2.4.2) and an an outlining transformation able to en-
capsulate the tiles into subsystems (Section 2.4.1) to do so. Finally, we evaluate the scalability of our
transformation.

Motivating Example Consider a matrix multiplication program with a reduction:

(∀0 ≤ i , j < N ) C [i , j ] =
N−1∑
k=0

A[i ,k]∗B [k, j ]

We assume that N is divisible by the block size b. After applying the tiling transformation, we obtain
the following program:

(∀0 ≤ ib , jb < Nb)(∀0 ≤ il , jl < b) Ĉ [ib , jb , il , jl ] = ∑
kb ,kl

Â[ib ,kb , il ,kl ]∗ B̂ [kb , jb ,kl , jl ];

The reduction introduces an additional dimension, k, which might be tiled by scheduling the evalu-
ation of Â[ib ,kb , il ,kl ]∗ B̂ [kb , jb ,kl , jl ] at timestamp (ib , jb ,kb , il , jl ,kl ). However, with that scheme,
the reduction itself is not tiled. Hence, we proposed to tile the reduction by modifying the structure of
the SARE:

Ĉ [ib , jb , il , jl ] =∑
kb

T [ib , jb ,kb , il , jl ];

T [ib , jb ,kb , il , jl ] =∑
kl

Â[ib ,kb , il ,kl ]∗ B̂ [kb , jb ,kl , jl ];

This transformation is somehow similar to a strip-mining where T [ib , jb ,kb , il , jl ] corresponds to the
intermediate result of the accumulation over the kbth tile. This transformation is always correct as
a reduction applies an associative operator. With that tiling, each tile (ib , jb ,kb) of variable T com-
putes a small matrix product. If we outline that tile computation into a function φ (implemented as
a subsystem), we obtain a SARE of the form:

Ĉ [ib , jb , il , jl ] =∑
kb

φ(Â[ib ,kb ,•,•], B̂ [kb , jb ,•,•])

The original SARE structure is preserved, but the granularity of the computation has increased: the
scalar product has been substituted by a matrix product φ. This transformation is called semantic
tiling. This transformation belongs to the class of semantic transformations: the dependences are
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not respected, but the transformed computation is equivalent modulo the associativity/commuta-
tivity of the reduction operator. The steps required are: (i) partitioning the domains and the index
functions, (ii) tiling the reductions, (iii) outlining the tiles. The next chapter completes our seman-
tic tiling with an equivalence checking tile/matrix operator to recognize the operator φ and let an
optimized library implement it.
To ease the presentation, we first discuss the outlining step (iii), then we explain the reduction tiling
(ii). This is because the outlining requires a tile classification which is updated by the reduction tiling.

2.4.1 Outlining the tiles

This section describes an outlining transformation that encapsulates the tiles into subsystems. In
particular, we expose the underlying tile classification which will be used in Section 2.4.2 to tile the
reductions.

Step 1 - Monoparametric tiling We apply the monoparametric tiling on the domains and the index
functions of each equation of the program. Remark that the blocked and local indices are cleanly
separated, as stated in Theorem 2.9. This property will be used in the outlining (step 3).

(∀~ib ∈Dbl ,1)(∀~il ∈Dl oc,1,1) V ar [~ib ,~il ] = SExpr1,1[~ib ,~il ];
(∀~ib ∈Dbl ,1)(∀~il ∈Dloc,1,2) V ar [~ib ,~il ] = SExpr1,2[~ib ,~il ];

. . . . . .
(∀~ib ∈Dbl ,2)(∀~il ∈Dloc,2,1) V ar [~ib ,~il ] = SExpr2,1[~ib ,~il ];
(∀~ib ∈Dbl ,2)(∀~il ∈Dloc,2,2) V ar [~ib ,~il ] = SExpr2,2[~ib ,~il ];

. . . . . .

After this step, the equation domains are tiled separately. The challenge is to outline the tile compu-
tation into subsystems out of this.

Step 2 - Extracting and classifying the tiles We proceed in two steps. First, we tile the variables
separately: for each variable, we classify the tiles according to their computation. If two tiles share the
same equations, then they can be realized by the same subsystem. This classification is called kind of
tiles. Then, we group the variables interdependent on the same tile. Indeed, putting them into separate
subsystems would break the atomicity constraint of the tiling. Hence, they have to be gathered on the
same kind of tile. We keep track of this interdependence by classifying interdependent variables in
the same tile group. These steps are detailed thereafter.
– a) Tile the variables separately. For each equation defining a variable V ar , we retrieve the con-

straints Dbl ,k on the blocked indices of the domain. The tile domains Dbl ,k may intersect, hence
they are separated to form a partition. For instance, the separation of Dbl ,1 and Dbl ,2 would be
{Dbl ,1 \Dbl ,2,Dbl ,1 ∩Dbl ,2,Dbl ,2 \Dbl ,1}. Each set of the partition defines a kind of tile. Indeed, each
tile uses the same equations and then do the same computation. For example, tiles of Dbl ,1 \Dbl ,2

use equations with SE xpr1,•, tiles Dbl ,1 ∩Dbl ,2 use equations with SE xpr1,• and SE xpr2,•, tiles
Dbl ,2 \Dbl ,2 use equations with SE xpr2,•.

– b) Group interdependent variables. For each variable of a tile group, we consider the family of block
constraints (DV ar

bl ,k )k . The list of non-empty intersections of these families corresponds to the differ-
ent kind of tiles. The corresponding equation of each one of these kind of tiles are the ones which
contributes to the intersection.

Step 3 - Building the subsystems For each kind of tile, we build the subsystem which perform its
computation. The equations can be obtained by removing the blocked dimensions of every variable
and dependence functions. On the following equation:

(∀~ib ∈Dbl )(∀~il ∈Dloc ) V ar [~ib ,~il ] = f (Var1[ub,1(~ib),ul ,1(~il )], . . . ,Vark [ub,k (~ib),ul ,k (~il )]);
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i = (ib , il )

j = ( jb , jl )

0 N

T
Out

in

in

out

Kinds of tile:
: ib = 0, jb = 0
: ib = jb > 0
: ib = jb +Nb
: jb = 0,0 < ib < Nb
: ib = jb +Nb −1
: 0 < jb < ib < jb +Nb −1

Figure 2.12 – Kinds of tile for a Jacobi1D skewed program

we would remove the blocked dimensions~ib to obtain:

(∀~il ∈Dloc ) V ar ′[~ib ,~il ] = f (Var’1[~il ], . . . ,Var’k [~il ]);

Note that this is possible only because the block and local indices are cleanly separated in a parti-
tioned affine function, as shown by Theorem 2.9.
The inputs can be determined by examining the dependences of the computation of the subsystem.
For example, if we have originally a dependence V ar [ib −1, jb −1,b −1,b −1], we can immediately
deduce that we need a data from the block (ib − 1, jb − 1) of the tile group of the variable V ar . We
create one input variable in the subsystem, per external block accessed in the computation of the
subsystem. For the outputs of a subsystem, we determine which data from the tile is needed by other
tiles. For example, if the data is used by (ib , jb +1) and (ib +1, jb +1), we produce two outputs. Then,
we emit the equations feeding the outputs from each variable A computed in the subsystem.

Step 4 - Building the main system Finally, we need to form the main system. In particular, we need
to gather the outputs of the subsystems to send them as input of others. We first create use equation
per subsystem generated, whose extension domain corresponds to the kind of tile. We also create one
new local variable per outputs of the use equation, in order to retrieve the results of the subsystem.
We also create local variables to gather the values of all the outputs of the same type and the same
variable. These variables are used inside the input expressions of the use equations.

Example Consider a skewed Jacobi1D computation:

(∀0 < i < N ) Out [i ] = temp[T −1, i +T −1];
(∀t = 0,0 < i < N ) temp[t , i ] = A[i ];
(∀t = i > 0) temp[t , i ] = temp[t −1, i −1];
(∀t > 0, i = N −1+ t ) temp[t , i ] = temp[t −1, i −1];
(∀t > 0, t < i < N −1+ t ) temp[t , i ] = (temp[t −1, i −2]+

temp[t −1, i −1]+ temp[t −1, i ])/3;

We consider a monoparametric tiling b ×b and we assume that N and T are divisible by the tile size
parameter b. To make a rectangular tiling legal, the domain of the variable temp has been skewed
with a change of basis (i , t ) 7→ (i + t , t ). The domains are depicted in Figure 2.12.
There are no interdependence between variables: the data flows exclusively from temp to Out . Con-
sequently the tile groups are {temp} and {Out }. The separation produces 20 differents equations
gathered in 7 kind of tiles (subsystems): 6 for the temp variable (listed in the figure 2.12), and one
for the Out variable. Once we have determined the equations and the inputs of each subsystem, we
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determine that the output of a tile are the 2 last columns on the right and the last row (needed for the
right, above and the diagonal above-right tiles).
For example, the subsystem corresponding to the kind of tile • (ib = jb +Nb −1) consists of 10 equa-
tions.

2.4.2 Tiling the reductions

In this section, we present the tiling transformation for the reduction operator, and we show how tile
classification must be modified to preserve the atomicity of the tiling. Consider a reduction:

V ar [~i ] = ⊕
π(~i ,~j )=~i

E xpr [~i ,~j ]

where π : (~i ,~j 7→~i ) is a canonic projection function. The reductions of an Alpha program can always
be preprocessed to make their projection function canonic [98]. This way, the monoparametric tiling
of π is always of the form π̂(~ib ,~jb ,~il ,~jl ) = (~ib ,~il ). After tiling, this reduction becomes:

ˆV ar [~ib ,~il ] =⊕
~jb

(⊕
~jl

ˆE xpr [~ib ,~jb ,~il ,~jl ]
)

We can separate the two reductions because the reduction operator is associative. To do so, we in-
troduce a fresh variable T [~ib ,~jb ,~il ] to represent the intermediate result of the “summation” on one
block of the reduction. T contains the result of the second “summation” in the previous equation.
The original reduction equation becomes:

ˆV ar [~ib ,~il ] =⊕
~jb

T [~ib ,~jb ,~il ]

The equation of T is:
T [~ib ,~jb ,~il ] =⊕

~jl

ˆE xpr [~ib ,~jb ,~il ,~jl ];

After this preprocessing the program is almost ready to be processed by our outlining algorithm.
There remains to decide in which tile group T should be put.

Tile groups and reductions We analyse the interdependences between the blocks of T and the
blocks of V̂ ar . Then, we gather the interdependant blocks to preserve the atomicity constraint. By
definition, the block ˆV ar [~ib] reads the blocks T [~ib ,~jb] for each~jb . Hence, the blocks T [~ib ,~jb] reading

ˆV ar [~ib] must be included in the same tile as ˆV ar [~ib] to avoid interdependence. In general, if the
block T [~ib ,~jb] reads ˆV ar [ fk (~ib ,~jb)] for k = 1,n, then the set of blocks to be included in the same tile as

ˆV ar [~ib] must contain at least the following set of tiles of T : {~ib ,~jb | f1(~ib ,~jb) = ~ib ∨ . . . ∨ fn(~ib ,~jb) = ~ib}
We use this set to split the variable T into two variables: T _same (Same Group), corresponding to
the tiles to be put into the same tile group as ˆV ar , and T _sep, corresponding to the tiles which can
be tiled separately.

Example Let us consider a program which solves the linear system L.~x = ~b where L is a lower-
triangular matrix:

(∀0 ≤ i < N ) x[i ] = (b[i ]− ∑
k<i

L[i ,k]×x[k])/L[i , i ];

We assume that x and temp belong to the same tile group. The tiling step introduces a new variable T
and transform the program into the following equations, assuming that the parameters are divisible:

(∀0 ≤ ib < Nb) (∀0 ≤ il < b) x[ib , il ] = (b[ib , il ]− ∑
kb≤ib

T [ib ,kb , il ])/L[ib , ib , il , il ];

(∀0 ≤ ib = kb < Nb) (∀0 ≤ il < b) T [ib ,kb , il ] = ∑
0≤kl<il

L[ib ,kb , il ,kl ]×x[kb ,kl ];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) T [ib ,kb , il ] = ∑
0≤kl<b

L[ib ,kb , il ,kl ]×x[kb ,kl ];
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kb

T [ib ,•]

. . .

x[ib]
x[ib −1]

Figure 2.13 – Dependences between the tiles of T and the tiles of x/temp

Let us analyze the dependences involving T to decide in which tile group we should insert it. The only
dependence which might introduce a cycle is the one corresponding to x[kb ,kl ] in the equations of
T (as shown in Figure 2.13). A cycle is introduced when kb = ib , thus we need to split this tile of T
from the other tiles. Therefore, we obtain the following program after normalization:

(∀0 ≤ ib < Nb) (∀0 ≤ il < b) x[ib , il ] = (b[ib , il ]− ∑
kb<ib

T _sep[ib ,kb , il ]

− ∑
kb=ib

T _same[ib ,kb , il ])/L[ib , ib , il , il ];

(∀0 ≤ ib = kb < Nb) (∀0 ≤ il < b) T _same[ib ,kb , il ] = ∑
0≤kl<il

L[ib ,kb , il ,kl ]×x[kb ,kl ];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) T _sep[ib ,kb , il ] = ∑
0≤kl<b

L[ib ,kb , il ,kl ]×x[kb ,kl ];

We have two tile groups: one containing the variables (x and T _same), and another containing the
variable T _sep. As a side note, we can notice that each tile of the first tile group correspond to a small
forward substitution computation, and that each tile of the second tile group correspond to a small
matrix multiplication: we obtained a semantic tiling. The next chapter will explain how to recognize
these computations.

2.4.3 Experimental results

In this section, we evaluate the scalability of our semantic tiling transformation. The next chapter
will present an application of semantic tiling to program optimization and give final performance
results.

Setup We have implemented the reduction tiling and the outlining transformations in the AlphaZ
research compiler. We use the benchmarks from Polybench/Alpha 4 , an hand-written Alpha imple-
mentation of the Polybench 4.0 benchmark suite. We run our experiment on a machine with an Intel
Xeon E5-1650 CPU with 12 cores running at 1.6 GHz (max speed at 3.8GHz), and 31GB of memory.
For each kernel, we apply the complete transformation (monoparametric tiling, reduction tiling, out-
lining). The default rectangular tiling is legal for all the benchmarks, except gramschmidt (where no
legal tiling could be found) and all the stencils which required to skew the iteration domain before-
hand.
We report the following informations:
– The time taken by the monoparametric tiling transformation (step 1).
– The time taken by the postprocessing of the monoparametric partitioned program by the alphaZ

compiler. This housekeeping step is mandatory: it computes the the counter range reaching each
subexpression of the program (context domain).

– The time taken by the outlining transformation (step 2: extracting and classifying the tiles, step 3:
building the subsystems and step 4: building the main system).

4. http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.
polybench/polybench-alpha-4.0/
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Step 2) Kind of tiles 4 3 2 2 1 6 2 1 2 4 7 1 7 3 1 4
Step 3) Subsystems 382 277 282 75 55 660 176 112 87 646 1479 148 236 406 68 224

Step 4) Main System 34 18 12 18 7 19 13 9 8 25 44 12 13 18 9 25
Total Time 1206 817 754 457 309 1928 658 383 516 1297 2471 436 706 828 346 1806

Context Domain 1030 651 390 363 237 2617 456 274 277 632 837 871 273 300 265 1057
Num SubSystem 10 6 2 5 3 12 3 2 3 4 6 4 4 2 4 7

Av. Nodes in Subsystems 14 14 12 11 11 15 13 12 9 10 8 7 7 8 8 36
Num Equations Main 24 14 5 15 7 25 7 5 7 9 13 9 10 5 10 31
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Step 1) Tiling 177 − 313 450 52 329 72 248 1907 1301 119 529 538 6088
Postprocessing 1130 − 1522 1946 193 546 78 3605 18535 19138 867 19037 28497 8m2s

Step 2) Kind of tiles 4 − 6 7 1 4 2 8 72 122 4 28 28 297
Step 3) Subsystems 230 − 304 426 52 227 19 592 1874 2740 107 1764 2823 88267

Step 4) Main System 49 − 33 53 7 69 28 51 427 940 28 242 215 2905
Total Time 1772 − 2350 3188 363 1928 302 4689 23719 24871 1251 21859 32474 9m40s

Context Domain 2143 − 1555 2444 358 1719 629 4968 53348 98721 1252 28482 34515 21m44s
Num SubSystem 8 − 10 16 3 24 3 25 48 53 9 33 33 129

Av. Nodes in Subsystems 70 − 33 30 23 30 16 45 319 234 54 184 259 1029
Num Equations Main 63 − 44 67 9 59 15 118 676 1067 45 293 333 1985

Figure 2.14 – Time taken by our semantic tiling transformation inside the compiler. We also report
the number of subsystems produced, the average number of nodes of a AST of a subsystem, and the
number of equations in the main system.
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– The total time spent in the transformation.
– The time taken by a polyhedral analysis on the transformed program: the computation of the con-

text domains of all the subexpressions of the final tiled program.
– The number of subsystems generated.
– The average number of nodes in the AST of a subsystem.
– The number of equations inside the main system.
The result of our experiments are presented in Figure 2.14.

Results and analysis Most of the time is spent during the construction of the subsystems and the
postprocessing of the program obtained after step 1 and before running step 2. This postprocess-
ing step traverses the monoparametric partitioned program to compute the context domain of the
sub-expressions of the form V ar [ub(~ib),ul (~il )]. The construction of the subsystems also contains a
traversal of the monoparametric partitioned program, in order to build the equations of the sub-
systems. The time taken by these steps is mostly caused by the size of the program after applying
the monoparametric tiling transformation. We also notice that the time taken by a context domain
computation following the monoparametric tiling transformation is reduced compared to the time
taken by the same polyhedral analysis after the monoparametric tiling transformation (cf Figure 2.10
Page 30). Thus, distributing the computation across subsystem helps reducing the time taken by the
polyhedral analysis on the transformed program.

2.5 Conclusion

In this chapter we summarized our contributions made to loop tiling. We extend loop tiling in sev-
eral directions. First we show that parametric loop tiling is a polyhedral transformation when the tile
shape and the lattice of tile origin depends on a single scaling parameter. We referred this transforma-
tion to as monoparametric tiling. We provide the compilation algorithms to transform a polyhedral
representation with a monoparametric tiling: first with hyperrectangular tile shape, then with any
polytopic tile shape. Finally, we describe an extension of monoparametric tiling to semantic tiling, a
semantic transformation which increases the grain of operators (scalar → matrix).
All these contributions open many perspectives. We believe we opened a new path to partial com-
pilation (referred to as symbolic compilation in [148]) by letting the tile parameter survive to the
compilation. Also semantic tiling opens a new way to automated library refactoring. We present our
contributions to this challenging problem in the next chapter. Finally, we believe that the numer-
ous polyhedral algorithms leveraging a tiling can benefit from parametrization (this includes all the
contributions described in this document). At least because it will make possible to integrate the
computation of the tile size directly in the transformation.
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3 Algorithm Recognition

Most compiler optimizations are based on low-level program transformations without any knowl-
edge of the meaning of the program. Although they produce satisfactory results, they will never re-
place a good algorithm. Hence the idea to recognize algorithm instances in a program and to sub-
stitute them by a call to a performance library [2]. More generally, algorithm recognition allows to
re-engineer a program and to build a hierarchical algorithmic description of a program [169], which
could enable high-level algorithmic optimizations. Algorithm recognition is based on program equiv-
alence, an old and well-known problem in Computer Science. Program equivalence has many other
applications, such as program comprehension, program verification [84, 88], semi-automated de-
bugging, compiler verification [97], translation validation [110, 123, 127, 178] to name just a few. This
problem is known to be undecidable as soon as the considered program class is rich enough to be
interesting. Moreover, if we account for the semantic properties of objects manipulated (e.g. associa-
tivity of +) in the program, the problem becomes harder.
During my PhD thesis, I have addressed the problem of template recognition and its application to
program optimization [2, 3, 6, 7, 8, 9]. Aside the complexity of template matching, an important issue
was to split the program into slices to be compared with the template, and substituted by a call to the
library function. An important slicing criterion is that the slice must be separable from the program
– in other words, atomic. Hence the idea of using iteration space tiling as a way to reveal library
functions. This was the starting point of the PhD thesis of Guillaume Iooss [98], in the context of
which all the ideas presented in this chapter were developed.

Summary and outline This chapter summarizes the contributions made to program equivalence
and algorithm recognition. Section 3.1 recalls the notion of program equivalence considered and
present the equivalence checking algorithm of Barthou et al. [37], whose concepts have largely influ-
enced our work. Then the chapter presents three contributions to algorithm recognition. The contri-
butions to template matching (Section 3.3) and template recognition (Section 3.4) are described in
the PhD thesis of Guillaume Iooss [98], and are under publication:
– Section 3.2 discusses our contributions to check the equivalence of programs with reductions [24].
– Section 3.3 presents our contributions to template matching. We consider a relaxed form of tem-

plate where the unknown functions are the inputs. A solution to a matching between a template
and a program is a substitution of the template inputs so the template matches the program.

– Section 3.4 presents our method for algorithm recognition. We apply our semantic tiling algorithm
to partition the computation into tiles, then we decompose the tile into templates applying itera-
tively our template matching algorithm. We report the results obtained by matching the BLAS [112]
functions on several medium size linear algebra applications.
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3.1 Program equivalence in the polyhedral model

In this section, we define the program equivalence considered in this chapter, the Herbrand equiva-
lence. Then, we present the equivalence checking semi-algorithm of Barthou et al. [37] on which we
built for the contributions presented in Section 3.2 and Section 3.3.

Program equivalence There several notions of program equivalence. The simplest one is called
Herbrand equivalence [2] and corresponds to a structural equivalence of the computation. Two pro-
grams are Herbrand equivalent iff they compute the same mathematical formula, syntactically (no
associativity, no commutativity involved for instance). In other words, if we consider the output val-
ues computed by a program as terms depending on the inputs, two programs are Herbrand equiv-
alent iff they compute exactly the same terms. Herbrand-equivalence is typically preserved by any
program transformation which satisfies data dependencies. Hence, Herbrand equivalence is suffi-
cient to check the correctness of polyhedral program transformations [2]. The problem of checking
the Herbrand equivalence of two SAREs is undecidable [37].
By definition, Herbrand equivalence does not consider any semantic property. For example, if we
compare two programs, one computing (a+b)+c and the other one a+ (b+c), they will not be Her-
brand equivalent, because the operations performed are different. Likewise, a program computing
a +b will not be equivalent to a program computing b +a.
Yet, several versions of an algorithm are likely to exhibit such semantic variations [169], hence the
need to go beyond Herbrand equivalence. Since my PhD thesis, a few approaches addressed this
issue. Some extend Barthou’s algorithm and manages associativity and commutativity over a finite
number of elements [144] or by testing every permutation of the arguments of operators [163]. Some
address non-parametrized computation by unrolling and normalization [103].
In Section 3.2, we propose a semi-algorithm to check the Herbrand-equivalence of programs with
reductions, an abstraction presented in Chapter 2 which normalizes the accumulation of a pool of
values with an associative/commutative operator. This way, we address all the semantic variations
leveraging reductions. This concerns, in our opinion, most of the semantic variations modulo asso-
ciativity/commutativity.
We now present Barthou’s algorithm, which serves as a basis for the contributions described in this
chapter.

Barthou’s equivalence semi-algorithm Barthou et al. [37] proposed a semi-algorithm to check the
Herbrand equivalence of two SAREs. It first builds an equivalence automaton encoding the equiva-
lence problem and then studies the accessibility set of particular states of this automaton. Starting
from the outputs of the two programs, the automaton unrolls the two computations and check that
the operators are the same at each step. The final states of the automaton contains atomic compar-
isons between input arrays. Their accessibility set is computed to check that the array indices are the
same. In a way, the equivalence automaton is an equivalence algorithm specialized on the two SAREs
to compare, which is then executed symbolically to conclude.
The equivalence automaton is a Memory State Automaton [37] (also referred to as integer interpreted
automata [10]):

Definition 3.1. A Memory State Automaton (MSA) is a finite automaton where:
– Every state p is associated with an integer vector ~vp of some dimension np .
– Every transition from p to q is associated with a firing relation Fp,q ∈Znp×Znq , which is a polyhedral

relation. On our context, this relation is always a function.
– A transition from 〈p,~vp〉 to 〈q,~vq〉 can only happen if (~vp ,~vq ) ∈ Fp,q .

We say that a state p is accessible iff there exists a finite path from the initial state p0 to p for some
associated vector. The accessibility relation of a state p is:

Rp = {(~v0,~vp ) | 〈p0,~v0〉→∗ 〈p,~vp〉}
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f (E1(~i ), . . . ,En(~i )) = f (E ′
1(~i ′), . . . ,E ′

n(~i ′))

E1(~i ) = E ′
1(~i ′) En(~i ) = E ′

n(~i ′). . .

Decompose rule

X [~i ] = . . .

E xpr 1(~i ) = . . . E xpr k(~i ) = . . .

~i ∈∆1 ~i ∈∆k. . .

where X [~i ] =


~i ∈∆1 : E xpr 1(~i )
. . . : . . .
~i ∈∆k : E xpr k(~i )

Compute rule

. . . X [u(~i )] · · · = . . .

. . . X [~j ] · · · = . . .

~j = u(~i )

where ~j is a fresh variable.
Generalize rule

Figure 3.1 – Construction rules for the equivalence automaton

The reachability set of a state p is the range (image set) of the accessibility relation Rp .
When the automaton has a cycle, the computation of the accessibility set involves the transitive clo-
sure of a polyhedral relation, which is not computable in general [51]. In most cases, the transitive
closure can be computed with a fast heuristic [105, 162].

Step 1: Building the equivalence automaton: We assume that a correspondance is given between
the outputs and the inputs of the two SAREs to compare. We use the convention that expressions,
operators and indices of the second SARE are “primed” (e.g., X ′, E ′). The equivalence automaton is
defined as follows:
– States: A state corresponds to a point of comparison between the two SAREs. It is labeled by an

equation e(~i ) = e ′(~i ′) and is associated with the vector (~i ,~i ′).
– Initial state: The initial state of the automaton is O[~i0] = O′[~i ′0] where O and O′ are the outputs of

the two SAREs.
– Transitions: The transitions unroll the computation of the two SAREs and compare the operators.

We have 3 types of transitions (rules) in the equivalence MSA: Decompose, Compute and Generalize,
as described in Fig 3.1. The Decompose compare two operators and expresses that two expressions
using the same operator are equivalent if their arguments are equivalent. The Compute executes a
SARE by “unrolling” a definition and creates a state per case. Note that for each value (~i ,~i ′) asso-
ciated with the source state, there is only one accessible state among the created states. The rules
Decompose and Compute allow to traverse the two SAREs and to check the equivalence. The Gener-
alize rule is useful to deal with recursions. It replaces an affine expression by a fresh index, allowing
us to go into a state we may have already encountered, but with different index values.

– Final state: The final states of the automaton corresponds to comparisons where nothing can be
eliminated or further unrolled. There are two kinds of final states: the success states and the failure
states. The accept states are:
– f () = f () (i.e., two identical constants)
– Ik = I ′k ′ where Ik and I ′k ′ are corresponding inputs.
The failure states are:
– f (. . . ) = f ′(. . . ) where f and f ′ are different operators,
– Ik [~i ] = f ′(. . . ) or f (. . . ) = I ′k [~i ′],
– Ik [~i ] = I ′k ′ [~i ] where Ik and I ′k ′ are not corresponding inputs.

Example. Let us compare the following SARE with itself:

O = A[N ]

A[i ] =
{

1 ≤ i ≤ N : f (I [i ], A[i −1])
i = 0 : I [0]
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where O is the output of the SARE and I the input. The equivalence automaton is the following (suc-
cess states are in blue and failure states in red):

O =O′

A[N ] = A′[N ]

A[i ] = A′[i ′]

I [0] = A′[i ′] f (I [i ], A[i −1]) = A′[i ′]

I [0] = I ′[0]

I [0] = f (I ′[i ′], A′[i ′−1])

f (I [i ], A[i −1]) = I ′[0] f (I [i ], A[i −1]) = f (I ′[i ′], A′[i ′−1])

I [i ] = I ′[i ′] A[i −1] = A′[i ′−1]

(Comp)

(Gen) i = N , i ′ = N

(Comp)
i = 0 i > 0

(Comp)
i ′ = 0 i ′ > 0 (Comp)i ′ = 0 i ′ > 0

(Dec)

(Gen)
i = i −1

i ′ = i ′−1

The automaton has a cycle: it corresponds to the comparison between the recursions of both SARE.
We can notice that, for every state of the automaton, we have i = i ′ (indeed, for each transition we
are modifying i , we are also modifying i ′ in the same way).

Step 2: Equivalence and reachability problem in the equivalence automaton: The two SAREs are
Herbrand equivalent if they compute the same expression from the same inputs. Hence, we have to
check than none of the failure states are reachable and that, for each accept state Ik [~i ] = I ′k ′ [~i ′], the

two indices are the same:~i =~i ′. This means that, if we compare the same element of the outputs,
then when we end up on a reachable success state, the compared elements must be the same:

Theorem 3.2 (from [37]). Two SAREs are equivalent iff, in their equivalence MSA:
– All failure states are not reachable from the start state: their accessibility set is empty.
– The accessibility relation of each reachable success state Ik [~i ] = I ′k ′ [~i ′] is included in the identity

relation {(~i ,~i ′) |~i =~i ′}.

Example (cont’d) The accessibility set of the failure states are empty (we can never have i = 0∧ i ′ > 0
or i > 0∧ i ′ = 0). Moreover, the equalities that need to be satisfied when reaching a success state are
respectively 0 = 0 (trivially satisfied) and i = i ′ (satisfied). Thus, according to Theorem 3.2 these two
SARE are equivalent.

Limitation of the equivalence algorithm: This algorithm only checks Herbrand equivalence, se-
mantic properties like associativity/commutativity of operators are not taken into account. For in-
stance, if we try to compare the SAREs O = I1+ I2 and O′ = I ′2+ I ′1, the equivalent automaton will have
a decompose rule which will generate two failure states with respective labels (I1 = I ′2) and (I2 = I ′1).

3.2 Equivalence of programs with reductions

We now discuss our an extension of Barthou’s equivalence algorithm to manage programs with re-
ductions [24]. The main challenge in this extension is to find a bijection between the terms of two
compared reductions, so that we can conclude for equivalence or not. We add the following con-
struction rule (called Decompose Reduce):
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⊕
π(~k)=~i

E [~k] = ⊕
π′(~k ′)=~i ′

E ′[~k ′]

E [~k] = E ′[~k ′]

σ(~k) = ~k ′

The idea of this rule is to map every term of the left reduction E [~k] to an equivalent term E ′[~k ′] on
the right reduction, such that these two instances are equivalent. If we manage to find a bijection σ

between the instances~k of the left reduction and the occurrences ~k ′ of the right reduction such that
E [~k] is equivalent to E ′[~k ′], then both reductions are equivalent. During the equivalence automaton
construction step, we leave σ as a symbolic function (it does not impact the construction of the rest
of the automaton). The rest of the algorithm will focus on inferring σ.

3.2.1 Illustrative example

To give the intuition of the algorithm, let us first consider the following SAREs:

O = ∑
i

A[i ]

A[i ] =
{

0 < i ≤ N : I [i ]
i = 0 : I [i +1]

O′ = ∑
i ′

A′[i ′]

A′[i ′] =
{

i ′ = N : I ′[1]
0 ≤ i ′ < N : I ′[i ′+1]

These two SAREs sum up all the I [i ], except for I [0], but with I [1] being counted twice (for index
points i = 0,1 in the first SARE, and for i ′ = 0, N in the second one). Thus, when we compare the
terms of the two bijections, we should map A[0] to either A′[0] or A′[N ] and A[1] to the other one,
and each remaining A[i ] to A′[i ′]. Let us derive these bijections from the equivalence automaton,
which is shown below, where σ : �0; N� 7→ �0; N�:

O =O′

∑
i

A[i ] =∑
i ′

A′[i ′]

A[i ] = A′[i ′]

I [i ] = A′[i ′] I [i +1] = A′[i ′]

I [i ] = I ′[1] I [i ] = I ′[i ′+1] I [i +1] = I ′[1] I [i +1] = I ′[i ′+1]

(Comp)

(Decomp reduce) σ(i ) = i ′

0 < i ≤ N i = 0(Comp)

i ′ = N 0 ≤ i ′ < N(Comp) i ′ = N 0 ≤ i ′ < N(Comp)

Extraction of the constraints: We want to find a bijectionσ such that the conditions of Theorem 3.2
are satisfied, i.e., one that makes all failure state unreachable, and the indices of all success states
equal. For example, let us consider the second success state s : I [i ] = I ′[i ′+1]: we need i = i ′+1 at
this state, for each (i , i ′) of its accessibility set Rs = {(i , i ′) | (0 < i ≤ N )∧ (0 ≤ i ′ < N )}. By studying the
accessibility set of each final state, we obtain the following constraints:

[ σ(i ) = i ′ ∧ (0 < i ≤ N ) ∧ (i ′ = N ) ∧ i = 1 ]
∨[ σ(i ) = i ′ ∧ (0 < i ≤ N ) ∧ (0 ≤ i ′ < N ) ∧ i = i ′+1 ]
∨[ σ(i ) = i ′ ∧ (i = 0) ∧ (i ′ = N ) ∧ i +1 = 1 ]
∨[ σ(i ) = i ′ ∧ (i = 0) ∧ (0 ≤ i ′ < N ) ∧ i +1 = i ′+1 ]
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Obtaining the partial bijections: Notice that our constraints admit a kind of structure: the con-
straints on i and i ′ are separated, except for the equalities coming from the success state itself. In our
example, each Diophantine equation admits a unique solution, and we can express i ′ as a function
of i :

σ̃1:

{
{ 1 } 7→ { N }

1 7→ N
σ̃2:

{ �1; N� 7→ �0; N −1�
i 7→ i −1

σ̃3:

{
{ 0 } 7→ { N }

0 7→ N
σ̃4:

{
{ 0 } 7→ { 0 }

0 7→ 0

At this point, if σ is equal to σ̃k on its definition domain Dk , then its success state is reachable from
the reduction state for each (~i , σ̃(~i )) and the indices are equal. Hence, the conditions of Theorem 3.2
are satisfied for~i ∈ Dk . The next paragraph explains how to find a combination of partial bijections
into a complete bijection (which covers all the values of~i ). If we can find such a bijection, then we can
conclude the equivalence of the two SAREs.

Sticking the partial bijections: We can represent the definition and image domain of σ as the
nodes of a bipartite graph and the partial bijections as the edges of this graph:

...
...

0
1
2

N −1
N

0′
1′
2′

N −1′
N ′

: σ̃1

: σ̃2

: σ̃3

: σ̃4

There is an edge from a node i to i ′ iff there is a partial bijection which maps i to i ′, i.e., iff selecting
σ(i ) = i ′ satisfies the conditions of Theorem 3.2. Thus, finding a bijection σ which satisfies Theo-
rem 3.2 is identical to finding a matching in this graph. In our example, we do not have any choice
for i ∈ �2; N�, but we can map i = 0 and 1 to either i ′ = 0′ or N ′. Thus, we have two possible bijections:

σ :


1 7→ N (σ̃1)
i 7→ i −1 when i ≥ 2 (σ̃2)
0 7→ 0 (σ̃4)

or σ :

{
i 7→ i −1 when i ≥ 1 (σ̃2)
0 7→ N (σ̃3)

We managed to build a bijection, thus we can conclude that the two reductions are equivalent. There-
fore, the two considered SAREs are equivalent. In summary, our semi-algorithm proceeds in the three
steps below, whose details may be found in [24]:

1. Extract the constraints on σ from the equivalence automaton. These informations are directly
available on the reachability sets of the terminal states.

2. Transform these constraints into partial bijections σ̃, which are portions of σ where the equiv-
alence constraints are satisfied. The challenge is to normalized the reachability set of terminal
states to the form (σ(i ), i ′) where σ is a function. To do so, we leveraged mathematical recipes.

3. Combine these partial bijections to obtainσ. This is the most challenging step, since it amounts
to find a matching on a bipartite graph with a parametric number of nodes. We proposed a
greedy heuristic and an extension of the augmenting path algorithm [166].

3.2.2 Experimental results

We have implemented a prototype of the equivalence algorithm 1 on the AlphaZ polyhedral compila-
tion framework. We have run our implementation on several examples, and we report their execution
time in Figure 3.1.

1. The prototype and the benchmarks are available at: http://cs.colostate.edu/AlphaZ/equivalence/index.
html
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Table 3.1 – Execution time (in milliseconds) that the algorithm spends in each phase for a few simple
examples. Experiments were done on an Intel core i5-3210M running Linux.

Example #states Automaton Partial Bijections Gathering Total
Illustrating example 15 74 ms 206 ms 133 ms 413 ms
Loop reverse 5 48 ms 56 ms 21 ms 125 ms
Distributed summation 15 75 ms 788 ms 297 ms 1160 ms
Non equivalence 4 45 ms 48 ms 84 ms 177 ms
Tiling 7 71 ms 245 ms 83 ms 399 ms

Every example manages parametric reductions, thus their equivalence cannot be decided by the pre-
vious work:

– Loop reverse. This example compares two 1D summations, one summing in increasing order and
the other one in decreasing order.

– Distributed summation. This example compares two sums of reductions, summing the terms I [i ]
for 0 ≤ i < 2N differently. In the first sum, the terms are split across the two reductions according
to the parity of i . In the second sum, the terms are split between 0 ≤ i < N and N ≤ i < 2N .

– Non Equivalence. This example compares two reductions which are not equivalent (the second
reduction has one extra term).

– Tiling. This example compares a 1D summation (
∑
i

I [i ]) with its tiled counterpart (
∑
i b

∑
i l

I [16i b+ i l ]

where 0 ≤ i l < 16).

For all these examples, the greedy heuristic (for combining the partial bijections) happened to be
sufficient to conclude in a reasonnable amount of time.
Finally, we did not use this algorithm in our algorithm recognition framework. We preferred to rely
on a semantic tiling (which is correct-by-construction) to reveal the potential algorithm, and then
use the template matching presented in the next section to retrieve the algorithms.

3.3 Template matching

In this section, we present our contribution to match a program to a template. A template is an al-
gorithm whose inputs are unknown and might correspond to an arbitrarily elaborate computation.
Given a template and a program, we look for a substitution of the template inputs by a computation
so the template and the program become Herbrand equivalent. This problem is somehow similar to
the matching problem over Herbrand algebra [34], with the notable difference that we do not deal
with terms, but with programs producing the terms to unify.
In a way, we try to match the template to the head of the program’s computation. This extension is a
central building block of the template recognition algorithm presented in the next section.
One of the main challenges of template matching is to deduce these inputs. In particular, if an in-
put appears in several places in a template, we should check that the corresponding computation is
coherent across all of these places.

Motivating example Here is an example of template matching between a program and a template.
Consider the program, corresponding to a serialized reduction over two arrays of size N (I2 and I1, I2

being summed in the reverse order), and an element I0[0]:

O = Temp[2N −1]
(∀N ≤ i < 2N ) Temp[i ] = Temp[i −1]+ I2[2N −1− i ]

(∀0 < i < N ) Temp[i ] = Temp[i −1]+ I1[i ]
(∀i = 0) Temp[i ] = I0[0]
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where I0, I1 and I2 are inputs of the program.
Now, consider the following template (a serialized reduction along an array of size N ′):

O′ = Temp ′[N ′−1]
(∀0 < i ′ < N ′) Temp ′[i ′] = Temp ′[i ′−1]+ I ′[i ′]

(∀i ′ = 0) Temp ′[i ′] = I ′[0]

We expect the following match:

(∀i ′ = 0) I ′[i ′] = I0[0]
(∀0 < i ′ < N ) I ′[i ′] = I1[i ′]
(∀N ≤ i ′ < 2N ) I ′[i ′] = I2[2N −1− i ′]

Our algorithm exploits the equivalence automaton introduced by Barthou to infer the match. We
proceed into 3 steps, detailed thereafter. In Step 1, we build the equivalence automaton and we col-
lect the states reaching a template input (here I ′). In step 2, we extract the constraints on template
inputs from the reachability sets. Finally Step 3 infers the match from the constraints.

Step 1 - Construction of the equivalence automaton We keep the construction rules of the equiv-
alence automaton and we modify the notion of success and failure state of Barthou’s equivalence
automaton to account for the inputs of a template. Template expressions appear on the right hand
side with a prime (e.g. E xpr ′):
– A template-accept state is a state which is labeled by an equation of the form E xpr = I ′, where

I ′ is an input of the template. These states define a possible substitution of the template inputs:
the template input I ′[~i ′] might be defined by the program expression E xpr [~i ] for each (~i ,~i ′) of the
accessibility set.

– A template-failure state is a state which is labeled by an equation of either:
– f (. . . ) = f ′(. . . ) where f and f ′ are different operators
– I = f ′(. . . ) where f ′ is an operator and I is an input of the program
In other words, the matching fails when the computation is not Herbrand equivalent ( f 6= f ′) or
when the template does more computation than the program.

Because we assume that the output of the template matches the output of the program, it might
impose some constraints on the parameters of the template (typically, both output arrays must be of
the same size). We extract these constraints and keep them.

Example (cont’d). We obtain the following equivalence automaton, with five template-success states
and one template-failure state depicted on Figure 3.2. The failure state I0[0] = Temp ′[i ′−1]+ I ′[i ′]
describes the case where the template computation is longer than those of the program.

Step 2 - Extracting the constraints on the inputs of the template We collect the constraints re-
quired to build the inputs of the template. The templates matches the program iff:
– There exists a template input which satisfies all the accessible template-accept states. For instance,

the template O = I ′+ I ′ does not match the program O = I1 + I2, as I ′ cannot have two different
definitions (I ′ = I1 and I ′ = I2).
Hence, we examine the automaton and we extract the constraints on the template inputs. For each
template-accept state E xprk [~i ] = I ′[~i ′], we keep its accessibility set S I ′,k which contains all the
possible couples of (~i ,~i ′) reaching the state. The construction of the template input is achieved in
the next step.

– The template-failure states are not accessible.
Hence, if a template-failure state is accessible only for certain values of the template parameters,
we extract the constraints on the template parameters which makes the corresponding accessibil-
ity set empty and consider them as constraints on the parameters of the template.
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O =O′

Temp[2N −1] = Temp ′[N ′−1]

Temp[i ] = Temp ′[i ′]

I0[0] = Temp ′[i ′]

Temp[i −1]+ I1[i ] = Temp ′[i ′]

Temp[i −1]+ I2[2N −1− i ] = Temp ′[i ′]

(1) I0[0] = I ′[0]

I0[0] = Temp ′[i ′−1]+ I ′[i ′]

(2) Temp[i −1]+ I1[i ] = I ′[0]

Temp[i −1]+ I1[i ] = Temp ′[i ′−1]+ I ′[i ′]

Temp[i −1] = Temp ′[i ′−1] (3) I1[i ] = I ′[i ′]

(4) Temp[i −1]+ I2[2N −1− i ] = I ′[0]

Temp[i −1]+ I2[2N −1− i ] = Temp ′[i ′−1]+ I ′[i ′]

Temp[i −1] = Temp ′[i ′−1](5) I2[2N −1− i ] = I ′[i ′]

?

(Comp × 2)

i = 2N −1, i ′ = N ′−1

i = 0

0 < i < N
N ≤ i < 2N

i ′ = 0 0 < i ′

i ′ = 0 0 < i ′

i = i −1

i ′ = i ′−1

i ′ = 0
0 < i ′

i = i −1

i ′ = i ′−1

Figure 3.2 – Template matching automaton

Example (cont’d). The reachability sets of template-success states gives the following S I ′,k constraints.
We recall the (number) annotating the state, it sets the k of S I ′,k :
– (1), S I ′,1: (i , i ′) ∈ {i , i ′|i = i ′ = 0 ∧ i = 2N −N ′+ i ′} I0[0] = I ′[0]
– (2), S I ′,2: (i , i ′) ∈ {i , i ′|0 < i < N ∧ i ′ = 0 ∧ i = 2N −N ′+ i ′} Temp[i −1]+ I1[i ] = I ′[0]
– (3), S I ′,3: (i , i ′) ∈ {i , i ′|0 < i < N ∧ 0 < i ′ ∧ i = 2N −N ′+ i ′} I1[i ] = I ′[i ′]
– (4), S I ′,4: (i , i ′) ∈ {i , i ′|N ≤ i < 2N ∧ i ′ = 0 ∧ i = 2N −N ′+ i ′} Temp[i −1]+ I2[2N − i −1] = I ′[0]
– (5), S I ′,5: (i , i ′) ∈ {i , i ′|N ≤ i < 2N ∧ 0 < i ′ ∧ i = 2N −N ′+ i ′} I2[2N − i −1] = I ′[i ′]
We have one template-failure state I0[0] = Temp ′[i ′− 1]+ I ′[i ′], whose accessibility set is {i , i ′|i ′ =
N ′−2N +i ∧ i = 0 ∧ 0 < i ′} = {i , i ′|2N < N ′ ∧ i = 0 ∧ 0 < i ′}. This set is empty iff N ′ ≤ 2N . This means
that the reduction we try to detect with our template must not be too long: N ′ = 2N corresponds to
detecting the whole program as a reduction (with a piece-wise input) and N ′ < 2N corresponds to
detecting only part of the program as a reduction.

Step 3 - Determining the inputs of the template We examine each input I ′ of the template and
we try to determine a valid value from the associated constraints. For each ~i ′, we examine how
many pairs (k,~i ) are such that I ′[~i ′] = E xprk [~i ], (~i ,~i ′ ∈ S I ′,k ), i.e., how many expressions E xprk [~i ]
are matched to the same ~i ′. In general, there is a parametric number of ~i ′, so it is not possible
to iterate over all them. Instead, we can compute separately the projections of the S I ′,k on ~i ′ (re-
ferred to as P I ′,k ), then consider the non-empty intersections pieces between a subset of these pro-
jected sets: if P I ′,k1 ∩P I ′,k2 6= ;, then both E xprk1 [~i ] and E xprk2 [~i ] must be mapped to I [~i ′], for all
~i ′ ∈P I ′,k1 ∩P I ′,k2 . If all the pairs mapped to the same I ′[~i ′] are equivalent, we can select any of them.
Another possibility is that the pairs are equivalent only for some values of the parameters: in that
case, we extract the constraints on the parameters (by projecting the constraints on the parameters).
If there exists a non-equivalent pair mapped to the same I ′[~i ′] for any value of the parameters then
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the program does not match the template.

Final step If a value is found for every input of the template, and if the constraints on the parame-
ters are satisfiable, then the template matches the program. In some situations, several values of the
template parameters are valid: in that case, we choose to select the biggest values of the parameters,
such that we match as much operations as possible from the program with the template.

Example (cont’d). Let us determine the value of the template input I ′. By projecting the constraints
S I ,k on i’, we deduce that:
– I ′[0] is bind by S I ′,1, S I ′,2, S I ′,4, to values I0[0], Temp[i −1]+ I1[i ] and Temp[i −1]+ I2[2N − i −1],

respectively.
– I ′[i ′], i ′ > 0 is bind by S I ′,3 and S I ′,5 to values I1[i ] and I2[2N − i −1] respectively.
For each pool of constraints (S I ′,1, S I ′,2, S I ′,4 for i ′ = 0, and S I ′,3 and S I ′,5 for i ′ > 0), we compute the
parameter domain where each constraint apply. If the parameter domains are disjoint, then we have
a match.
– For i ′ = 0, the constraint S I ′,1 imposes that the template parameter N ′ is equal to 2N . The con-

straint S I ′,2 imposes that 0 < 2N −N ′ < N , i.e., N < N ′ < 2N and the constraint S I ′,5 imposes that
N ≤ 2N −N ′ < 2N , i.e. 0 < N ′ ≤ N . Therefore, these 3 constraints are disjoints, and we have:

I ′[0] =


N ′ = 2N : I0[0]
N < N ′ < 2N : Temp[2N −N ′−1]+ I1[2N −N ′]
0 < N ′ ≤ N : Temp[2N −N ′−1]+ I2[N ′−1]

For i ′ > 0, the constraint S I ′,3 imposes 0 < 2N −N ′+ i ′ < N , i.e., N ′−2N < i ′ < N ′−N . Because we
have already determined that N ′ ≤ 2N , 0 ≤ i ′ < N ′−N . The constraint S I ′,5 imposes N ≤ 2N −N ′+
i ′ < 2N , i.e., N ′−N ≤ i ′ < N ′. Thus, both of them are disjoints and we have:

I ′[i ′] =
{

0 < i ′ < N ′−N : I1[2N −N ′+ i ′]
N ′−N ≤ i ′ < N ′ : I2[N ′−1− i ′]

Therefore, the template matches for any N ′ ≤ 2N . To maximize the part of the program covered by
the template, we pick N ′ = 2N , which gives us, as the input of the template:

(∀i ′ = 0) I ′[i ′] = I0[0]
(∀0 < i ′ < N ) I ′[i ′] = I1[i ′]
(∀N ≤ i ′ < 2N ) I ′[i ′] = I2[2N −1− i ′]

Therefore, we conclude that the template matches.

Over-approximations and soundness This matching algorithm relies on a transitive closure,
which might not be exact. When the transitive closure is over-approximated, our algorithm is still
sound:
– We consider the negation of the accessibility set of a template failure-state to extract constraints

on the parameters. If the accessibility set of a template failure-state is over-approximated, these
constraints might be more restrictive than needed, but are sound.

– If the accessibility set of a template accept-state is over-approximated, then the input constraints
would span a larger domain than needed. It might create an intersection with a conflicting non-
equivalent constraint and might fail the algorithm. Hence, the approximation might only pro-
duce false negatives.

3.4 Template recognition

In this section, we combine our semantic tiling transformation (Chapter 2) with our template
matching algorithm (Section 3.3) in order to recognize instances of templates from a template
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Figure 3.3 – Template recognition procedure

library (Section 3.3). These instances are then substituted by a call to the template library. This
provides a complete algorithm to refactor a linear algebra program with matrix operations. In turn,
these matrix operations might be realized with an optimized library. The next section will show the
acceleration obtained using the BLAS library. The whole process is shown in Figure 3.3.
Thanks to SARE normalization, we are not bounded by syntactic artifact unlike pattern matching
approaches for algorithm recognition [48, 106, 119]. Since the SARE provide an exact dependence
representation, this makes our approach more precise than techniques based on statement-level
dependence graphs [125, 169]. As far as we know, this approach is, with our PhD, the only existing
approach for algorithm recognition leveraging the power of the polyhedral model.

3.4.1 Method

Step 1: Template library preprocessing In order to accelerate the recognition process, we clas-
sify the library templates according to their scalar operator: the operation obtained when the size
of matrices and vectors are set to 1. For instance, the scalar operator of a matrix multiplication
would be ×; the scalar operator of a Cholesky decomposition would be x 7→p

x.
This gives a simple hash function, that will accelerate the recognition process: since we match
library templates to program tiles, we set the program tile size to 1 to obtain the scalar operator,
and we deduce the potential templates to match.

Step 2: Semantic tiling We apply the semantic tiling transformation to the program. We use hy-
persquare tiles for every variable (identity tile ratio).
This transformation produces a main program and a list of subsystems corresponding to tile com-
putations. Thus, we consider each subsystem independently in the rest of the procedure.

Step 3: Template recognition We compare each subsystem with the templates of the library, us-
ing our template matching algorithm described in Section 2.4.2. If a subsystem is matched to a
template, we build a node corresponding to this template. Then, we consider the expressions of
the subsystem that correspond to the inputs of the template. If the expression is not an input vari-
able of the subsystem or a constant, we build a new subsystem which corresponds to the reminder
of the computation and apply our procedure recursively on this new system. Finally, we retrieve
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the produced tree of templates and link it to the node of the recognized template.
The output of our procedure is a tree of templates. Each node of this tree corresponds to a template,
whose inputs are the children of this node. The leaves of the template tree are either an input of the
program, a constant, or a non recognized computation. Figure 3.5 gives several trees of templates
produced by our algorithm.

3.4.2 Experimental results

In this section, we present an experimental validation of our our algorithm recognition framework.
We apply our framework to detect BLAS calls into medium-size linear algebra applications. This
assess the scalability and the recognition capabilities of our framework.

Template library We consider a modified version of the BLAS library [112] specified in Figure 3.4.
Level 1 operators output a scalar, level 2 operators output a vector, and level 3 operators output a
matrix. We will focus only on the double precision variant, but our approach can easily be extended
to any other data types.
In the original BLAS specification, most of the operations are scaled with a coefficient α. To re-
duce the number of templates, we assume that α= 1 everywhere, and add the operations C ←α.A
(where α 6= 1). A post-processing can be used to merge these operations, if they are detected in
succession, so that a single BLAS kernel can be used instead of two.
We also notice that BLAS has many variants of the same operation, depending on whether or not
one of its argument is transposed. To reduce the number of variants, we separate the transpose
operation. Once again, a post-processing can merge the transpose operation with the matrix mul-
tiplication operation, if these operations are detected in succession.

Applications We study the detection of templates in four applications:
– Symmetric Positive semi-Definite Matrix Inversion. This application computes the inverse of a

symmetric positive semi-definite A thanks to Cholesky decomposition A = L.LT and triangular
matrix inversion A−1 = L−T .L−1. This application has a total of 7 equations.

– Sylvester Equation Solver. This application computes the solution of a Sylvester equation A.X +
X .B =C , where A, B and C are given square matrices, and X is an unknown square matrix. This
application has a total of 4 equations.

– Algebraic Path Problem. The Algebraic Path Problem (APP) [36] is a graph algorithm which can
be viewed as a generalization of the Floyd-Warshall algorithm. This application is defined by 6
equations.

– McCaskill. This application is a subset of the computation of a bioinformatics application called
piRNA (Partition function of Interacting RNAs [60]). This application has a total of 11 equations.

The experiments presented in this section were run on a machine with an Intel Xeon E5-1650 CPU
with 12 cores running at 1.6 GHz (max speed at 3.8GHz), and 31GB of memory.

Results Table 3.2 summarizes the results. We give the number of subsystems obtained after the
semantic tiling (#subsystems), the number of comparisons template/program (#matchings), the
total number of states for all the equivalence automata built (states), the number of templates
detected (#templates detected) and the total time ellapsed (Total time).

SPDMI. We have detected 27 templates in this application, if we ignore the 3 “transpose” nodes that
precede a “non-recognized” node. The corresponding template trees are presented in Figure 3.5.
We managed to recognize completely the computation, except the Cholesky decomposition, which
was not part of our template library. The time taken by the monoparametric tiling is about 6 sec-
onds.
Sylvester. We have detected 8 templates in this application. These templates cover completely the
subsystems created from reductions, which contains the majority of the computation of the pro-
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Extra:
– Transpose: C ← AT

– Scalar multiplication - vector :~y ←α.~x where α 6∈ {0,1}
– Scalar multiplication - matrix : C ←α.A where α 6∈ {0,1}
– Addition - vector : ~y ← ~x1 + ~x2

– Addition - matrix : C ← A+B
– Reduction - vector :~y ←∑

k
~xk

– Reduction - matrix : C ←∑
k

Ak

Level 1:
– DSCAL : y ←α.x
– DDOT : α←~xT .~y
Level 2:
– DGEMV :~y ← A.~x
– DSYMV : ~y ← S.~x where S is symmetric
– DTRMV :~y ← L.~x where L is lower-triangular

~y ←U .~x where U is upper-triangular
– DTRSV :~y ← L−1.~x where L is lower-triangular

~y ←U−1.~x where U is upper-triangular
– DGER : A ←~x.~yT

– DSYR : A ←~x.~xT

– DSYR2 : A ←~x.~yT +~y .~xT

Level 3:
– DGEMM : C ← A.B
– DSYMM : C ← S.B or C ← B.S where S is symmetric
– DSYRK : C ← A.AT

– DSYR2K : C ← A.B T +B.AT

– DTRMM : C ← L.B or C ← B.L where L is lower-triangular
C ←U .B or C ← B.U where U is upper-triangular

– DTRSM : C ← L−1.B or C ← B.L−1 where L is lower-triangular
C ←U−1.B or C ← B.U−1 where U is upper-triangular

Figure 3.4 – List of templates in our library, after simplification

gram. The time taken by the monoparametric tiling is about 7 seconds.
APP. We have detected 44 templates in this application. The operations detected are mostly matrix
multiplications (A.B , B.U where U is upper-triangular, diagonal matrix multiplication), but also
some matrix and vector additions, point to point multiplications, reduction on a vector (~y =∑

k~xk ).
We managed to recognize the totality of the computation of 5 of these subsystems, over 6. The time
taken by the monoparametric tiling is about 20 seconds.
McCaskill. We have detected 80 templates in this application. However, only 8 of them are not a
“transpose” preceding a non-recognized computation. This poor result can be explained by the
fact that using a linear algebra library for this computation is not a good fit. However, the com-
putation of many subsystems have the same kind of structure. Thus, we might be able to iden-
tify a common operator which can be recognized over many subsystems. The time taken by the
monoparametric tiling is about 57 seconds.

Application #subsystems #matchings #states #templates detected Total time
SPDMI 16 200 9815 27 8 min

Sylvester 8 28 1602 8 2 min
APP 60 660 13054 44 27 min

McCaskill 113 2245 90812 80 1 h 10 min

Table 3.2 – Template recognition: experimental validation
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Figure 3.5 – Output of our template recognition framework: trees of recognized templates for each
subsystem found in the SPDMI example. The nodes in green correspond to the input of the tem-
plate, a constant, or a switch between inputs and constants. The nodes in red correspond to the
non-recognized computation.
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3.5 Conclusion

In this chapter we summarized our contributions made to algorithm recognition for the purpose
of program refactoring with a performance library. We address the problem of program equiva-
lence modulo associativity/commutativity by handling reductions. Then, we propose an algorithm
recognition framework leveraging the semantic tiling transformation, presented in Chapter 2. We
show how the semantic tiles might be decomposed in a template tree by leveraging a template
matching algorithm.
In the future, we plan to explore the possible performance models to choose a relevant refactoring
among all the possible factorization found by our algorithm. Semantic tiling is a building block
for more general semantic transformations. We plan to model and to mechanize the notion of
semantic transformation where we believe semantic tiling will play an important role. From a more
fundamental point of vue, we plan to address and to explain the apparent fractality of semantic
tiling – a beautiful and unexpected feature.
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4 Communication Synthesis

Since the end of Dennard scaling, high-performance computing applications are accelerated by
offloading kernels to specialized hardware accelerators such as GPGPU or FPGA. With FPGA (field
programmable gate array) accelerators, the designer must specify directly a low-level circuit con-
figuration.
High-level synthesis tools are compilers able to produce such a circuit configuration from a higher
level of abstraction (such as C) [29, 56, 90, 116, 156]. High-level synthesis tools are now quite effi-
cient for generating finite-state machines, for exploiting instruction-level parallelism, operator se-
lection, resource sharing, and even for performing some form of software pipelining, for one given
kernel. In other words, it is acceptable to rely on them for optimizing the heart of accelerators, i.e.,
the equivalent of back-end optimizations in standard (software) compilers.
However, the designer has still the responsibility to restructure the code and the communications
so the circuit can complete its computation without waiting for the off-chip memory. In particu-
lar, the operational intensity [67, 168] of the code must be tuned so it becomes compute-bounded,
which is possible only when the code exhibits enough data reuse. Also, the usual solutions to over-
come latency (prefetch) and bandwidth (local data reuse) must be specialized on the offloaded
kernel to gain efficiency and silicon surface.
How to decompose an application into smaller communicating processes, how to define the ade-
quate memory organization or communicating buffers, and how to integrate all processes in one
complete design with suitable synchronization mechanisms is extremely difficult, time-consuming,
and error-prone. This Chapter presents our contributions to these challenging issues.

Summary and outline This chapter summarizes our contributions to the compilation of data
transfers with an off-chip memory in the context of high-level synthesis for FPGA. All these results
were obtained in the context of the PhD thesis of Alexandru Plesco [126]. Section 4.1 outlines the
challenges related to memory access and to the HLS tool chosen for this study. Then:
– Section 4.2 identifies the features that make DDR optimization hard to perform, presents our

template of architecture for optimized data transfers, and show how this architecture can be
specified as a C program in front of the HLS tool [12, 13].
The next sections presents our contributions to compile the components of this architecture
from a C program.

– Section 4.3 presents our algorithm to schedule the data transfers [14, 15] with the the external
memory so as to reduce communications and reuse data as much as possible in the accelerator.

– Section 4.4 outlines our contribution to local memory allocation [5].
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4.1 Background

This section briefly outlines the challenges related to C2H, the HLS tool we chose to develop our
source-to-source optimization ; and the DDR memory, to which we want to optimize the accesses.

4.1.1 C2H at a glance

Some HLS tools rely on a quite direct mechanism to map the C syntax elements to the correspond-
ing hardware, e.g., encoding a loop with a simple finite-state machine (FSM) instead of unrolling
it, mapping each scalar variable to a register and each array to a distinct local memory, etc. This
may seem a limitation but, at the same time, it gives a mean to control what the HLS tool produces,
which is particularly important when used with source-to-source preprocessing, as we do. This is
one of the reasons why we chose C2H [56], the HLS tool designed by Altera Corporation, as a target
for our source-level optimizations.
The accelerator is controlled by several synchronized FSMs, one for each function or loop. Each
loop is software-pipelined to optimize its CPLI (cycles per loop iteration). Memory transactions
are pipelined with an optimistic latency (the FSM stalls if the data arrives later) and implicit fifos
are created to store transferred data.
Dependence analysis in C2H is limited to an analysis of “names”, with no analysis of array ele-
ments. Some potential aliasing can be removed, thanks to the pragma restrict but, still, this
weakness is a real difficulty for source-to-source transformations.

4.1.2 Optimization challenges at a glance

Data fetch penalty If a loop contains another loop, the FSM of the outer loop stalls at the cycle
containing the inner loop and waits for its end. In particular, it waits for the communications to be
completed, as illustrated in Figure 4.1 for 2 nested loops. This is referred to as data fetch penalty.

for (i=0;i<n;i++)

{

/*computation*/

}

............

for (j=0;j<n;j++)

j loop

time

i loop
latency

p
ip

el
in

e

DDR

first request

first data
received

Figure 4.1 – Latency penalty for an outer loop

Row penalty The DDR memory is organized in matricial banks, in turn organized in rows [101].
When accessing to a memory element, the corresponding row is selected, which takes times. Then,
the elements of the row can be accessed. On the DDR used in our study (DDR-400 128Mbx8, size of
16MB, and CAS of 3 at 200MHz memory clock), accessing a different row takes at least 65 ns, while
successive accesses to the same row would take only 10 ns.

4.2 A solution with communicating accelerators

We first show, with the vector sum example, why direct approaches do not work, due to C2H
features/limitations. We then detail our solution, based on multiple accelerators that orchestrate
communications, and how the required transformations and code generations can be automated.
Our compiler algorithms are then described in Section 4.3.
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4.2.1 First attempts toward a solution

Strip-mining and loop distribution To get accesses per block, a natural solution is to use strip-
mining and loop distribution as follows:
for (i=0; i<MAX; i=i+BLOCK) {

for(j=0; j<BLOCK; j++) a_tmp[j] = a_in[i+j];//prefetch

for(j=0; j<BLOCK; j++) b_tmp[j] = b_in[i+j];//prefetch

for(j=0; j<BLOCK; j++) c_out[i+j] = a_tmp[j] + b_tmp[j];

}

The two prefetching loops occur in parallel since there is no data dependence between them, thus
requests of a and b are still interleaved. To avoid the data fetch penalties, one can unroll the inner
loops and store each data read in a different scalar variable. If BLOCK is 8, the i loop has a CPLI of
16 and performs 16 read accesses, optimally. It happens (is it a feature of the scheduler of C2H?)
that the data are fetched in the textual order of the requests. The downside of this approach is the
code explosion and hence the resource need explosion. Also, it requires a non parametric unrolling
factor.

Juggling A more involved solution, similar to the juggling technique [71], is to linearize the 3
inner loops into one loop k, emulating the desired behavior thanks to an automaton that retrieves
the original indices. The code then looks like:
int ptr_local, ptr_ddr;

bi = 0; j = 0;

for (k=0; k<3*MAX; k++) {

if (j==2) { *(c_out+i+bi) = *(a_tmp+i) + *(b_tmp+i); }

else {

if (j==0) { ptr_ddr = a+(i+bi); ptr_local = a_tmp+i;}

else { ptr_ddr = b+(i+bi); ptr_local = b_tmp+i;}

*ptr_local = *ptr_ddr; /* data transfer */}

if (i++==BLOCK) { i=0; if (j++==3) {j=0; bi += BLOCK}}

}

Unfortunately, due to false dependences, C2H is now unable to pipeline the accesses. If the restrict
pragma is added for ptr_local and ptr_ddr, the loop is pipelined, with CPLI equal to 1, but in
some cases, depending on the scheduler and of runtime latencies, the code is incorrect: the com-
putation should start after the last data of array b has arrived, not just after the request itself. The
restrict pragma is too global, it cannot express the restriction between only two pointers. Also,
with C2H, data requests in if instructions are still initiated, speculatively, so as to enable their
pipelining, which, here, leads to interleaved reads and writes again. We tried many other variants
of this code, with different pointers, different writing, trying to enforce dependences when needed
and remove false dependences. We did not find any satisfactory solution. Either the code is poten-
tially incorrect, depending on the schedule, or its CPLI increases, or it is not pipelined at all.

4.2.2 Multiple accelerators to overlap communications and computations

The previous discussion shows that it is inefficient, if not impossible, to write the code managing
the communication in the code managing the computation.
If it is placed in a previous loop, the accelerator has to wait for the data to arrive before starting the
computation (data fetch penalty). If it is interleaved within the computation code, controlled by an
automaton as for the juggling technique, it is very difficult to ensure that this extra housekeeping
code does not alter the optimal data rate. A natural solution would implement the data transfer
in a single-loop accelerator, synchronized with the computation accelerator. However, since all
instructions from a loop are guaranteed to be executed only when the loop state machine finishes
its execution, it is again not possible to enforce data coherency with a correct synchronization
between the two accelerators. This suggests to split the computation in blocks, and to synchronize
the communications between two blocks.
All these considerations pushed us toward a more involved solution that we now expose.
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Figure 4.2 – Accelerators module architecture

Template architecture The template architecture is presented in Fig. 4.2. The generated acceler-
ators are represented as bold rounded rectangles, local memories as normal bold rectangles, and
the rest are FIFOs. In this design, FIFOs are used only for synchronization. The arrays on which the
computations are performed are located in local memories.
The computation is split into blocks, then, the data required for a block of computations are trans-
ferred using a double buffering approach implemented by two accelerators BUFF0_LD and BUFF1_LD.
This approach allows to use single-port local memories for buffers BUFF0 and BUFF1, which con-
sume fewer resources and are preferred over dual port ones, even if they are now usually available
on FPGA platforms.

Template accelerator Fig. 4.3 shows the template code of the BUFF0_LD accelerator. The code
has two nested loops. The outer loop iterates over the blocks (tiles), and each tile loads a block of
array a, and a block of array b. The inner loop uses the same mechanism as the juggling code of
Section 4.2.1 to emulate the traversal of the read requests, in the right order. After the desired local
and external addresses are computed, the data is transferred from external to local memory. Here,
as there are only reads, the code can be fully pipelined with CPLI equal to 1. The same holds for the
writing accelerators.

Synchronizations The key point is how the BUFF0_LD accelerator is synchronized, at C level,
with the other ones. Before each invocation of the inner loop, the accelerator performs a blocking
read from a synchronization fifo. Since C2H may schedule independent instructions in parallel, we
guarantee that the inner loop starts after this synchronization by introducing a dependence with
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pipeline depth for (t=0; t<iter_space; t+=db_iter) {
dummy_read += *st1_buff0_read;
for(r=0, tmp=dummy_read; r<r_sup; r++) {

if (s==0) {
compute local and global addresses for array a
and scan the iteration space of array a;
if end of iteration space: s++;

} else if (s==1) { same as s==0 for array b; }
transfer data from DDR to local memory;
if (r == r_sup −1) {*buff0_buff1_write = 0; tmp = 0; }

} 

}

*buff0_c01_write = tmp;
external linearized loop control; 

time

Figure 4.3 – Simplified template C code
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Figure 4.4 – Synchronization diagram

the variable dummy_read (dummy_read += ...). At the last iteration of the innermost loop, the ac-
celerator has finished sending requests to the memory, and a synchronization token is sent so that
another accelerator can start requesting data from the memory controller (if(r == r_sup-1)

...). When the innermost loop state machine receives all the requested data from the memory, a
synchronization token is sent to the computation accelerator. Similar to dummy_read, the variable
tmp guarantees that this synchronization takes place after the loop.
With this generic technique, it is possible to fetch, in an optimized blocked manner, many blocks
of different sizes, each with its individual access addresses, without increasing the hardware re-
sources too much (the only increase is the state machine size of the inner loop). Another advantage
is that we can dispatch one or multiple arrays to multiple memories. This should be used jointly
with optimizations of the computation accelerator so that parallel computations can be performed
on data from different local memories. This point is addressed in the next Chapter.

Pipelined execution Fig. 4.4 shows a possible synchronization of the whole system, with two
kinds of synchronizations, due to data dependencies (e.g., from BUFF0_LD to COMP0) and due to
resource utilization (e.g., from BUFF0_LD to BUFF1_LD). Here, the DDR transfers are still not opti-
mal: there is a small gap between the load and the store, due to the conservative synchronization
between BUFF1_LD and STORE0. We indeed assumed here, for the sake of illustration, that STORE0
could write to the location that BUFF0_LD reads. Without this assumption, the synchronization
could be moved to the last request of BUFF0_LD. However, if the computation finishes later, there
is still a gap due to the synchronization between COMP0 and STORE0. It can be eliminated by reduc-
ing the computation time with parallelization techniques. Or one can shift all stores to the right
(i.e., to delay them by one iteration) as depicted with dotted lines in Fig. 4.4. But this requires du-
plicating the local memory of the computed data, as COMP0(t) now overlaps with STORE0(t-1).
To avoid the gap when COMP0(i) delays STORE0(i), it is possible to find a solution without an
overlap between STORE0(i-1) and COMP0(i), thus with no extra memory duplication, as shown
by the (non intuitive) software pipeline of Fig. 4.5.

4.2.3 Automation of the process

Section 4.2.2 defined the synchronization mechanisms that enable to pipeline communications
by blocks, avoiding both the row change penalty, due to the DDR specification, and the data fetch
penalty, due to the way C2H schedules nested loops.
Compiler algorithms are required to fill out the accelerators templates and to allocate the buffers.
We list here the main steps that are necessary, as well as related references. Then, the next sections
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Figure 4.5 – Software pipeline

will describe our contributions to achieve these steps.
Section 4.3 describes our algorithms for steps 1 and 2. Then, Section 4.4 presents our algorithm for
steps 3.

Step 1. Loop tiling First, loop tiling divides the kernel into elementary blocks of computations to
be executed with a double buffering scheme. For the matrix-matrix product, this corresponds to a
block-based version. The double buffering scheme is then performed along the last loop describ-
ing tiles (loop unrolling by 2). A good tiling should reduce the volume of necessary data transfers,
as well as the sizes of the local memories needed (memory footprint optimization), while trying
to leave some data in local memory from one tile to another (temporal reuse). Many approaches
exists in the HPC community to compute such a tiling (see references in [172]). We focus on poly-
hedral programs where the tiling transformation is well formalized and general enough to handle
non perfectly-nested loops [53]. Also, we consider only loop tiling with parallelepipedic tiles (see
Chapter 2, Section 2.1.4).

Step 2. Communication coalescing The second step is to identify, for a given tile, the data to
read from and to write to the DDR, excluding those already stored locally or that will be overwritten
before their final transfer to the DDR (as the array c in the product of polynomial given Figure 2.1).
This is a particular form of communication coalescing as described in [58], for HPF, to host com-
munications outside loops (here the loops describing one tile). Then, the set of transferred data is
scanned [42, 54], preferably row by row. Even if an array is accessed by column in a tile, as for the
matrix-matrix product, the corresponding data can be transferred by row.

Step 3. Contraction of local arrays Then, a mapping function must be defined that convert in-
dices of the global array (in the DDR) to local indices of a smaller array in which the transferred data
are stored. Standard array contraction techniques [5, 75, 114] can be used for that.

Step 4. Code specialization The final transformation is to replace nested loops that scan data sets
or that define the computations in a tile by a linearization, as in the juggling code of Section 4.2.1.
This, again, is to avoid any data fetch penalty. Also, once the different accelerators are defined,
synchronizations (fifo_read or fifo_write) are placed as explained in Section 4.2.2.
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Figure 4.6 – Different tilings and communications

4.3 Communication scheduling

This section presents our compiler algorithms to split the computation into blocks to be executed
with the double-buffering scheme (step 1) ; and to derive of the set of data to be loaded/stored for
each block so the communication volume is minimized and the liveness of local values is reduced
(step 2).

Tile bands Recall that, after loop tiling, the iteration domain is partitioned into blocks (tiles) of
iterations to be executed atomically. Also, the loop structure consists of tile loops (I1, . . . , In), which
iterate over the tiles, and the intra-tile loops~i , which iterate within a tile.
A tile band is the set of tiles described by the innermost tile loop (along In), for a given iteration of
the outer tile loops~Iband = (I1, . . . , In−1).

Example. Consider the following code, which computes the product of two polynomials stored in
arrays a and b.

for (i=0; i<=2*N; i++)

S1: c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + a[i]*b[j];

The offloaded kernel is the set of nested loops containing S2. Figure 4.6 depicts a tile band for two
possible tilings: on the left: φ : (i , j ) 7→ (N − j , i ), on the right: φ′ : (i , j ) 7→ (i + j , i )

Our approach We consider tile bands as reuse units: inside a tile band, data are communicated
through the local memory ; between two tile bands, data are communicated through the off-chip
memory. This is a usual partitioning for this purpose [77, 104]. To reduce the liveness of array el-
ements, hence the size of local memory, we load the array elements right before their first read
(black boxes in Figure 4.6) and we store the array elements right after their last write (blue boxes in
Figure 4.6).
The tiles of a band are executed two-by-two, following the execution scheme presented in Section
4.2. This way, the execution of each tile T is decomposed into three pipelined processes, for loading
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data, storing data, and performing the computations. Also, two successive blocks of computation
in a tile band are pipelined with two blocks of communications, which results in an overlapping
between communications and computations.

Example (cont’d).
– Consider the tiling on the left. There is maximal inter-tile reuse of b within a tile band (along the

j axis), maximal intra-tile reuse of a within a tile (along the i axis), and some intra- and inter-tile
reuse for c between two successive tiles. In black boxes are shown the elements of c that must
be loaded by each tile, if maximal data reuse is exploited, and in blue boxes those that must be
stored back by each tile.

– Consider the tiling on the right. The data dependences on c are always kept in the tile band. This
way, the loads and stores for array c only arise on the first and last tiles of the tile band. Notice
that the loads and stores for the array a are the same in both cases. However, the number of
transfers for array b now increases compared to the first tiling. As an illustration, for this second
tiling, the tiled iteration domain is D̂S2 = {(I1, I2, i , j ) | (i , j ) ∈ DS2 and bI1 ≤ i + j < b(I1 +1) and
bI2 ≤ i ≤ b(I2 + 1)} and the full sequential schedule of iterations, θ, is (I1, I2, i , j ) 7→ (I1, I2, i , j ).
The tile bands are defined by the outer tile loop counters~Iband = (I1).

This way, we outperform the usual approaches for communication coalescing [38, 58, 59, 63, 94,
100, 115, 120] which load, just before executing a tile, all the data read in the tile, then store to the
DDR all the data written in the tile. With our approach, we exploit not only intra-tile reuse but also
inter-tile reuse, even if data dependences exist between tiles, at the granularity of individual array
elements. Furthermore, we load from (resp. store to) the DDR any data read (resp. written) in the
current tile band only once. As a bonus, this method handles naturally the case where dependences
exist between tiles of a tile band.
Also, our scheme inherits the capabilities of tiling to explore the trade-off communications/local
memory simply by playing with the tiling (tile shape, tile size).

Transfer sets The transfer sets LOAD(T ) and STORE(T ) express the data to be loaded/stored be-
fore/after the execution of a tile indexed by T . For a tile T , let IN(T ) be the data read in T , but not
defined earlier in the tile, i.e., used in T and live-in for T , and let OUT(T ) be the data written in T .
We assume IN(T ) and OUT(T ) to be exact: they can always be derived with polyhedral techniques.
The following theorem gives a solution where loads are performed as late as possible and stores as
soon as possible. This has the effect of minimizing the lifetime of data in the local memory, which
tends to reduce its size.
Theorem 4.1. The functions LOAD and STORE defined by

– LOAD(T ) = IN(T ) \ {IN(t < T )∪OUT(t < T )}
– STORE(T ) = OUT(T ) \ OUT(t > T )

avoid useless transfers and reduce lifetimes in local memory.

Method with first read/last write We use an equivalent formulation where the first read and the
last write of an array element ~m are computed explicitly. We define:
– FIRSTREAD(~m), the first operation of the tile band accessing ~m as a read. This remove the first

reads preceded by a write in the tile band. Indeed, it would be incorrect to load an element
already defined in the tile band.

– LASTWRITE(~m), the last operation of the tile band accessing ~m as a write.
The scope of FIRSTREAD(~m) and LASTWRITE(~m) is a tile band of the iteration domain, defined
by the outer tile loop counters ~Iband = (I1, . . . , In−1). ~Iband is kept as a parameter in the iteration
domains considered in the following. It is an implicit parameter of FIRSTREAD and LASTWRITE.
Theorem 4.1 can then be reformulated as follows:
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Theorem 4.2. The operators of Theorem 4.1 can be defined as:
– LOAD(T ) = {~m | FIRSTREAD(~m) ∈ T }
– STORE(T ) = {~m | LASTWRITE(~m) ∈ T }

FIRSTREAD(~m) is obtained by first extracting the set of operations accessing ~m. Then, by comput-
ing the access that is scheduled first (with respect to θ, the tiled schedule) in the tile band. This
boils down to compute the lexicographic minimum in a union of polytopes [14, 15].

Example (cont’d). Consider Figure 4.6 with the left tiling and the transfer sets for the array c. Our
technique determines that the elements be loaded are those depicted in black boxes (“First read
(c)”), and that the elements to be stored are those depicted in blue boxes (“Last write (c)”). For
b = 10 we obtain:
– FIRSTREAD(m) = (0,m) if 0 ≤−10I1 +N −m ≤ 9 (vertical portion of c);
– FIRSTREAD(m) = (10I1 −N +m, N −10I1) if 1 ≤ 10I1 −N +m ≤ N (horizontal portion).
FIRSTREAD(m) is parametrized by the considered tile band I1.
Finally, we derive LOAD(T ) as the set of data m accessed by the first read iterations of T :

{m | max(0, N −10I1 −9) ≤ m ≤ N −10I1, T = 0}∪
{m | max(1,10T ) ≤ m +10I1 −N ≤ min(N ,10T +9)}

Since this work, several approaches were developed to optimize the communications with off-
chip memory, by enabling parametric tiling size [69] or relaxing the load/store domains [40, 45,
130]. Our approach relies on a subtraction of polyhedra, which tends to produce large unions of
polyhedra. Hence, relaxations, or abstractions are required. The right level of abstraction is still to
be found. For instance, [130] relaxes our equations but still uses a subtraction. As for [40, 45], no
reuse is allowed between tiles, which limits the impact.

4.4 Local storage management

This section shows how the local memories (size and access function) are defined with respect
to the software-pipelined schedule of the processes. With our method, all the computations use
variables from the local memory. The lifetime of a variable starts with it first access (possibly from
a load operation) and ends at its last access (possibly from a store operation). Variables are mapped
to the local memory so that (i) two data alive at the same time are not mapped to the same local
address, (ii) the local memory size is as small as possible.

Array contraction Unlike the methods developed in [93], which try to pack data optimally (in
size), possibly with complex and expensive mapping functions and reorganization, we rely on ar-
ray contraction based on modular mappings [72, 75, 114]: an array cell a(~i ) is mapped to a local
array cell al (σ(~i )) where σ(~i ) = A~i mod~b, A is an integer matrix, and~b is an integral vector defin-
ing a modulo operation component-wise. When the array index functions are translations w.r.t. the
loop indices, as in a[i][j-1], the set of live array cells is a window sliding during a tiled program
execution. This is handled efficiently with the modulo.
In a polyhedral compiler, array contraction produces an allocation, which maps SARE array el-
ements to physical storage, providing the liveness constraints induced by a schedule (schedule
→ allocation). In a way, array contraction counteracts array expansion (of SARE arrays) under
scheduling constraints. A fundamental application of array contraction is the allocation of com-
munication channels in process networks. This will be addressed in the next Chapter.

Back to the main example. Consider the left tiling of Fig. 4.6. Communication scheduling informs
us that every tile (I1, I2) must load the following region of a to the local variable al :

al ←− LOADa(I1, I2) = a[bI2 : bI2 +b −1]
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where b denotes the tile size (on the figure, b = 2). Meanwhile, the double buffering process loads
the data for the next tile in the band, (I1, I2 +1):

al ←− LOADa(I1, I2 +1) = a[bI2 +b : bI2 +2b −1]

This means that at the same time, a_tmp needs at most 2b array cells. The following allocation
satisfies these constraints, while minimizing the local storage size:

σ : a[i ] 7→ al [i mod 2b]

This way, it is sufficient to encode the software-pipelined schedule of the processes with a polyhe-
dral program / schedule in order to derive the allocation function for each array of the kernel.

Array liveness analysis We defined a polyhedral analysis to compute array liveness from a poly-
hedral program with respect to any polyhedral schedule [5]. The output is a conflict polyhedron, a
set of differences δ=~i −~j such that a(~i ) conflicts with a(~j ) according to the schedule, which serves
as an input to array contraction techniques [72, 114].
We consider all the configurations where a(~i ) conflicts with a(~j ):

t
t0

`i

` jW j

Ri

R j

Wia(i)

a(j)

To be exact, [Wk ,Rk ] should be a life interval, hence Wk must be the write defining Rk . However,
this requires an exact array dataflow analysis to be settled [81], which leads to complex domains
(possibly one per piece of the source function).
Hence, we propose the following conservative approximation. Instead of the last writes, we con-
sider any write Wi of a(~i ) executed before Ri . This over-approximation has the effect of consider-
ing that an array cell is live from its very first write to its very last read, even it is live only on several
smaller “intervals”.
For our specific usage, the optimization of the local memory used to store data from the DDR
within a tile band, this means that a local array cell is considered live from the time it is loaded to
its last use in the tile band, even if it is overwritten one or more times in the tile band. This case
is unlikely to happen, since, most often, array indices are translations (e.g. a[i,j-1]), resulting in a
single sliding interval for each array cell.

B Software: BEE. We have developed a tool called BEE based on these principles. It takes
as input a program annotated with pragmas specifying the schedule. BEE analyzes the pro-
gram, computes the conflict polyhedron DS for each array, then computes the mapping
using [114] (tuned home version) or [72] (calling the CLAK library), and finally outputs the
program with the contracted arrays. BEE can be tried online a.

a. http://compsys-tools.ens-lyon.fr/bee

4.5 Experimental results

We implemented our source-to-source optimizer using the polyhedral libraries Polylib and PIP.
Our prototype inputs the C source code of the kernel to be optimized, annotated with pragmas
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Kernel ALUT Reg. T. reg. IP M. freq. Speed-up

System alone 4406 3474 3606 8 205.85
DMA original 4598 3612 3744 8 200.52 1
DMA manual 9853 10517 10649 8 162.55 6.01
DMA autom. 11052 12133 12265 48 167.87 5.99
VS original 5333 4607 4739 8 189.04 1
VS manual 10881 11361 11493 8 164 6.54
VS autom. 11632 13127 13259 48 159.8 6.51
MM original 6452 4557 4709 40 191.09 1
MM manual 15255 15630 15762 188 162.02 7.37
MM autom. 24669 32232 32364 336 146.25 7.32

Table 4.1 – Synthesis: original, manual, automatic

specifying the loop tiling. Then, it generates automatically a C source code implementing a double-
bufferized version of the kernel. The 5 driver codes are then synthesized using C2H, which inte-
grates them automatically in the system instantiated using Altera SOPC builder.
We apply our method to optimize three kernels: a copy a ← b where a and b are 1-dimensional
arrays (DMA), the sum of two vectors (VS) and the product of two matrices (MM).
We used ModelSim to evaluate our designs, which were synthesized on the FPGA Altera Stratix II
EP2S180F1508C3, running at 100 MHz, and connected to an outside DDR memory, of specification
JEDEC DDR-400 128 Mb ×8, CAS of 3.0, running at 200 MHz. The optimized versions can run 6x or
more faster than the direct implementations (remember that the maximal speed-up is at most 8, if
we start from a code where successive DDR accesses are in different rows). Note that these speed-
ups are obtained neither because computations are parallelized (tiles are run in sequential), nor
because the communications are pipelined (this is also the case in the original versions), but (i)
because DDR requests are reorganized to get successive accesses on the same row as much as
possible, (ii) because some communications overlap computations, and (iii) because some data
reuse is exploited.
However, to achieve this, there is a (moderate) price to pay in terms of hardware resources, in ad-
dition to the local memories involved to store the data locally. This is illustrated in Table 4.1, which
gives different parameters measuring the hardware usage: the number of look-up tables (column
“ALUT”), of registers (“Reg.”), of all registers including those used by the synthesis tool (“T. reg.”),
and of hard 9-bit multiplication IP cores (“IP”). Compared to the manually-optimized versions, the
automatic ones use slightly more ALUT and registers, mostly because they use 2 separate FIFOs for
synchronization between the drivers Load0 and Load1, and the driver Compute (we changed the
design to make it more generic). They also use more multipliers to perform tile address calcula-
tions, which could be removed by strength reduction.
Speed-ups are given in the column “Speed-up”. Optimized versions have a slightly smaller max-
imal running frequency than the original ones (column “M. freq.” in MHz). But, if the designs
already saturate the memory bandwidth at 100 MHz, running the systems at a higher frequency
will not speed them up anyway. This maximal frequency reduction could come from more com-
plex codes, the Avalon interconnect routing, and the use of double-port memories available in the
FPGA, which induces additional synthesis constraints.

4.6 Conclusion

In this chapter, we have proposed an HLS algorithm to optimize the communications with the
off-chip memory. We built our algorithm as a source-to-source post-pass in front of C2H, the C-
to-VHDL compiler of Altera. We propose a template of architecture to optimize off-chip memory
accesses. Then, we propose original techniques to analyze, optimize, and generate the final code.
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In particular, we propose an communication scheduling algorithm which minimize the memory
transfers, while reducing the local memory size. Finally, we presented our contributions to local
storage allocation.
The template of architecture and the tiling strategy developed in this chapter were the basis to the
HLS methodology presented in the next chapter. Many improvements are possible. In particular,
the complexity of LOAD and STORE sets could be set could be trade for the communication volume
and/or the local memory size, if access are scheduled in different tiles.
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5 Data-aware Process Networks

Process networks [102, 160] are dataflow models of computation expressing naturally task-level
parallelism for streaming applications. In this context, they are a relevant intermediate representa-
tion for parallelizing compilers, where a front-end extracts the parallelism and derive the process
network, then a back-end maps the process network to the target architecture.
For HPC applications manipulating a huge volume of data with large reuse distances, process net-
works are no longer relevant, since the buffers size would literally explodes. Rather, automatic par-
allelizers traditionally rely on partitioning, scheduling and allocation techniques to distribute the
computations while orchestrating communications.
In the context of high-level synthesis of HPC applications for FPGA, we leverage the polyhedral
process networks developed in the Compaan project [118, 140, 153, 160] to define a new dataflow
model of computation, the data-aware process networks (DPN), which combines the expressivity
of process networks with the partitioning and the communication scheduling presented in Chapter
4 to orchestrate the spilling with the off-chip memory.
We develop a complete front-end C → DPN by leveraging some of the ideas developed in the Com-
paan project. Then, we propose compiler algorithms for the back-end DPN → circuit.

Summary and outline This chapter summarizes our contributions to high-level synthesis of HPC
applications for FPGA in the polyhedral model. Most of these results were obtained in collaboration
with Alexandru Plesco, in the context of the XtremLogic start-up project, and are now used in the
production compiler of the Xtremlogic start-up.
Section 5.1 introduces regular process networks (RPN), a general model of computation derived
from polyhedral programs, which subsumes polyhedral process networks, and serves as a founda-
tion to our model. Then:
– Section 5.2 presents data-aware process networks (DPN), a parallel intermediate representation

which leverages the execution model proposed in chapter 4 to unify the parallelism and the data
transfers [20].
Our contributions to the synthesis of a DPN to a circuit are presented in Sections 5.4, 5.5 and 5.6.

– Section 5.3 presents a loop scheduling algorithm to optimize the throughput when the datapath
involves pipelined arithmetic operators [17, 18].

– Section 5.4 discusses our contribution to synthesize the control of a DPN [21].
– Section 5.5 presents our contribution to restructure the channels so FIFO channels are guaran-

teed after a loop tiling [1, 4].
– Section 5.6 outlines our contribution to synchronize interprocess communications [19].
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5.1 Regular process networks

Since the early days of high-level synthesis, partitioning techniques were designed to distribute the
computations across parallel units, while exploring the parallelism trade-offs [121, 141, 143, 150].
On the other hand, dataflow representations are natural candidates to represent the parallelism
of an application. For polyhedral programs, the Compaan project propose to represent programs
with polyhedral process networks (PPN) [118, 140, 153, 160], a dataflow model of computation de-
rived from SARE, with the Kahn process networks semantics [102].
This section describes a simple dataflow representation for polyhedral programs inspired by PPN,
which captures the partitioning of computations and communications: the regular process net-
works (Section 5.1.1). Although there is nothing fundamentally new behind RPN (a RPN is nothing
more than a PPN with a generic partitioning strategy), the cross fertilization between the concept
of partitioning and dataflow representation gives us a general HLS design methodology (Section
5.1.2), which drives the contributions presented in this chapter.
We only use RPN in the next section to define properly our DPN model and to make a fair compar-
ison with PPN.

5.1.1 Regular process networks

Given a polyhedral program, we build a regular process network (RPN) with the following opera-
tions:
– We partition the computation (iteration domains) into processes: if D denotes the union of the

iteration domains of the program, any partition D = D1 ] . . . ]Dn defines a set of processes
{P1, . . . ,Pn}, each Pi iterating over Di .

– We provide a schedule θi for each process Pi .
– Then, we partition the direct dependences into channels: if → denotes the direct dependence

relation, any partition →=→1 ] . . .] →n defines a set of channels {1, . . . ,n} such that the data
transferred by →c is conveyed through channel c. We say that →c is resolved by channel c.
With this definition, the channel implementation is completely abstracted. It could be a FIFO, a
global/local memory, a link between communicating FPGA, and so on.

More formally:

Definition 5.1 (Regular process network (RPN)). Given a program, a regular process network is a
couple (P ,C ,θ,ω) such that:
– Each process P ∈P is specified by an iteration domain DP and a sequential schedule θP inducing

an execution order ≺P over DP . Each iteration~i ∈ DP realizes the execution instance ωP (~i ) in the
program.
The processes partition the execution instances in the program: {ωP (DP ) for each process P of P }
is a partition of the program computation.

– Each channel c ∈ C is specified by a producer process Pc ∈ P , a consumer process Cc ∈ P and
a dataflow relation →c relating each production of a value by Pc to its consumption by Cc : if
~i →c ~j , then execution~i of Pc produces a value read by execution ~j of Cc . →c is a subset of the
direct dependences from the iterations of Pc in the program (ωPc (DPc )) to the iterations of Cc in
the program (ωCc (DCc )) and the set of →c for each channel c between two given processes P and
C , {→c , (Pc ,Cc ) = (P,C )}, is a partition of direct dependences from P to C .

Example. Figure 5.1.(a) depicts a polyhedral kernel and (b) provides the iteration domains for each
assignment (• for assignment load, • for assignment compute and ◦ for assignment store). On Fig-
ure 5.1.(c), each execution 〈S,~i 〉 is mapped to process PS : load iterations (•) are mapped to pro-
cess Load, compute iterations (•) are mapped to process C , and store iterations (◦) are mapped
to process Store. With this straightforward partitioning, the instances mapped to a process come
from the same statement, hence the input ports are the reads of the statement. The input/out-
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for i := 0 to N +1
• load(a[0, i ]);

for t := 1 to T
for i := 1 to N

• a[t , i ] := a[t −1, i −1]+a[t −1, i ]+
a[t −1, i +1];

for i := 1 to N
◦ store(a[T, i ]);
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(a) Jacobi 1D kernel (b) Flow dependences (c) Regular process network

Figure 5.1 – Motivating example: Jacobi-1D kernel. (a) depicts a polyhedral kernel, (b) gives the poly-
hedral representation of loop iterations (•: load, •: compute, ◦: store) and flow dependences (red ar-
rows), then (c) gives a possible implementation as a regular process network: each assignment (load,
compute, store) is mapped to a different process and flow dependences (1 to 7) are solved through
channels.

put ports are depicted with black points. Dependences labeled by k on the dependence graph in
(b) are solved by channel k. With this dependence partitioning, we have a different channel per
couple producer/read reference. This way, the input values can be read in parallel. We assume
that, locally, each process executes instructions in the same order than in the original program:
θload(i ) = i , θcompute(t , i ) = (t , i ) and θstore(i ) = i . Remark that the leading constant (0 for load, 1 for
compute, 2 for store) has disappeared: the timestamps only define an order local to their process:
≺load , ≺compute and ≺stor e . The global execution order is driven by the dataflow semantics: the
next process operation is executed as soon as its operands are available.

Execution semantics The execution of a RPN is locally sequential (each process executes its op-
erations sequentially) and globally dataflow (for each operation, the process executes once the
input data are available). Hence, the execution order is constrained by the direct dependences be-
tween processes → for the global dataflow part; and the local sequential execution for each process
Pi , ≺θi for the local sequential part:

≺RP N ⊇ →∪
(⋃

i
≺θi

)

Partitioning strategy The partitioning strategy presented on the example (processes with in-
stances of the same statement, statement instances possibly split across several processes, one
channel per couple producer/read) defines the class of polyhedral process networks (PPN) [118,
140, 153, 160] developed in the context of the Compaan project. In this chapter, we build on the
PPN partitioning strategy to define an RPN partitioning strategy (referred to as DPN, for data-aware
process networks), which explicit the data transfers between the RPN and a remote memory.

Correctness We may wonder how to constrain the partitioning strategy and the process schedul-
ing to obtain a correct RPN i.e. whose execution terminate and produces the same output value
than the program given the same inputs. Actually, this is pretty open: for any partition, there exists
a process schedule leading to a correct execution. This schedule is simply the original program
schedule, or any valid sequential program schedule.
Under this scheduling constraint, the channels can always be sized to ensure a correct execution,
and avoid deadlocks: at worse, the channels can be kept single-assignment. We point out that de-
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pending on the partitioning of the channels, the synchronizations may be hard to enforce. This
optimization criterion will be discussed later.

5.1.2 Compilation methodology

Regular process networks are a very general family of intermediate representations, that we believe
to be appropriate and effective for automatic parallelization and specifically high-level synthesis
of polyhedral kernels. RPN enforces the following compilation methodology, that drives the con-
tributions discussed in this chapter.

Partitioning strategy At compiler design time, choose a partitioning strategy. This is clearly driven
by the features of the target architecture. In the specific context of HLS of high-performance ker-
nels which manipulate a huge volume of data with an important data reuse, we propose the DPN
(data-aware process network) partitioning strategy [4, 20] described in Section 5.2.

Front-end: derive a RPN from a program.

1. Apply the computation partitioning and find a schedule θi for each process Pi . Many criteria
can drive the derivation of θi : throughput, parallelism, channel size to quote a few. In Sec-
tion 5.3, we propose a loop scheduling algorithm which maximize the throughput of a single
process by reducing bubbles in the arithmetic datapath [17, 18]. This is an important building
block for the future derivation of process schedules.

2. Compile the process control (multiplexers for input ports, demultiplexers for output ports,control
loop nest or FSM). This step has been addressed in the context of PPN [153]. This basically
follows the line of the generation of a SARE from the source function σ. We reuse and adapt
these algorithms in the context of DPN [20].

3. Compile the channels (type of channel, size/allocation function, synchronizations).

In Section 4.4, we have proposed an array liveness analysis to size and allocate channels [5].
In Section 5.5, we propose an algorithm to restructure the channels of a PPN to enforce a FIFO
communication pattern after a loop tiling [1]. We show that our algorithm is complete on the
DPN partitioning: all the FIFO broken by the the loop tiling can be restored by our channel
partitioning [4]. In case a channel is not a FIFO, we propose an alternative synchronization
apparatus [19] based on the iteration vectors of the producer and the consumer processes.

We end-up with a rich RPN representation, which is ready to by mapped to the target.

Back-end: map the RPN to the target architecture In addition to target-specific passes, the back-
end should feature simplification passes of the RPN representation. With the PPN partitioning
strategy, it is possible to factor the channels [164] and the processes which share a lot of common
control. In Section 5.4, we propose a back-end algorithm to compact affine control [21].

5.2 Data-aware process networks

PPN were developed in the context of HLS of data-centric embedded applications [76]. These ap-
plications manipulate streams of data and/or reasonably small matrices, while keeping a small
number of data alive at the same time [151]. This way, the total size of the channels stays reason-
able. When it comes to compute-intensive applications for high-performance computing, things
are totally different. Indeed, the computation volume and the data reuse are such that the total
channel size would literally explodes. For instance, a matrix multiplication A ×B à la PPN would
require to store the whole matrices A and B in channels, which is clearly not possible with FPGA,
as the local memory size is at most a few tens of megabytes.
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Hence, spilling strategies must be found, just as for register allocation. As shown in Chapter 4, parti-
tioning strategies must be designed to split the application into reuse units (here tile bands) where
into a reuse unit, the data flows through local memory and between two reuse units, the data flows
through a remote memory. This general principle inspires the DPN partitioning.

DPN: a RPN partitioning strategy to tune operational intensity A data-aware process network
[4, 20] is a RPN partitioning strategy where several dependences are explicitly solved through the
remote memory. For these dependences, the source (writing the remote data) flows the data to a
channel connected to a store process, assumed to write the data to the remote memory. Then the
dependence target is connect to a load process through a distinct channel, which reads that data
from the remote memory. Additional synchronizations are required to enforce the dependence.
In other words, with the DPN partitioning strategy, the reuse units are made explicit and the ra-
tio computation/data transfers can be tuned at dataflow level, by playing on a few parameters as
explained later. From a HLS perspective, the DPN models a circuit with the adequate processes
to load/store data from the outside world, the computation processes and the channels which or-
ganizes the local memory. It naturally extends the partitioning strategy by tile bands described in
Chapter 4.

Making data transfers explicit Given a loop tiling, we consider the execution per tile band along
the lines developed in Chapter 4: a tile band acts as a reuse unit. Dependences into the tile band
(source and target in the same tile band) are resolved by a channel (in the local memory) and
dependences from/to another tile band are resolved through a remote memory: incoming depen-
dences are loaded from the remote memory, outcoming dependences are stored to the remote mem-
ory. Figure 5.2 gives a possible DPN partition (b) from a loop tiling (a) on the motivating example.
The loop tiling is defined by hyperplanes (φ1,φ2) where φ1(t , i ) = t =~τ1 · (t , i )T with ~τ1 = (0,1)T

and φ2(t , i ) = t + i =~τ2 · (t , i )T with ~τ2 = (1,1)T . By definition, the iteration domain is sliced into
tile bands by all the hyperplanes except the last one (here~τ1, hence we obtain vertical bands). (b)
depicts the tile band with 4 ≤ t ≤ 7. Since tile band acts as a reuse unit, incoming dependences
(here 1,2,3) are loaded and outcoming dependences (here 13,14,15) are stored to an external stor-
age unit. Dependences inside a band are resolved through channels (here 4 to 12).

Adding parallelism Inside a band, the computations may be split in parallel process thanks to
surrounding hyperplanes with normals (~τ1, . . . ,~τn−1). On Figure 5.2.(a), each band is split in p = 2
sub-bands by the hyperplane ~τ1 = (1,0)T , separated by a dotted line. Each sub-band is mapped
to separate process on Figure 5.2.(b): C1 for the left sub-band, C2 for the right sub-band. With
this partitioning strategy, we can tune the arithmetic intensity (A.I .) by playing on the band width
b (here A.I . = 2× bN /2N = b) and select the parallelism independently. Each parallel process is
identified by its coordinate ~̀= (`1, . . . ,`n−1) across surrounding hyperplanes.The parallel instance
of C of coordinate ~̀ is written C~̀ (here we have parallel instances C0 and C1).

Dependence partitioning We distinguish between i/o dependences, (→i /o source or target out-
side of the band e.g. 1,2,3 or 13,14,15), local dependences to each parallel process (→local , source
and target on the same parallel process e.g. 4,5,6) and synchronization dependences between par-
allel process (→s ynchr o , source and target on different parallel process e.g. 7,8,9). Again, i/o depen-
dences are solved through remote memory whereas local dependences and synchronization depen-
dences are solved through local memory.

Load/store processes For each array a loaded/stored through →i /o , a load (resp. store) process
LOADa (resp. STOREa) is created. For each i/o dependence (P~̀,φ1, . . . ,φn ,~i ) →i /o (C~̀′ ,φ

′
1, . . . ,φ′

n ,~j ),

assuming the data written by P~̀ is a[u(~i )] and the data read by C~̀′ is a[v(~j )], the dependence is re-
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moved and replaced by a dependence flowing to STOREa : (P~̀,φ1, . . . ,φn ,~i ) →i /o (STOREa ,φ1, . . . ,φn ,u(~i )),

and by a dependence flowing from LOADa : (LOADa ,φ1, . . . ,φn , v(~j )) →i /o (C~̀′ ,φ
′
1, . . . ,φ′

n ,~j ) (on Fig-
ure (b), these processes are simply named Load/Store). We point out that →i /o defines the sets
In(T ) and Out (T ) of data read/defined into a tile T used in Chapter 4 to derive the processes
LOADa and STOREb which minimize the data transfers.

Connection with the canonic PPN partitioning Finally, the dependences are partitioned in such
a way that each new channel c ′ connects a single producer process and consumer process (here
original PPN channel 4 is split into DPN channels 4,7,10): this is the property inherited from PPN.
We keep track of the original PPN channel with the mappingµ:µ(c ′) := c (hereµ(4) =µ(7) =µ(10) =
4). The DPN partitioning will be denoted by (L ,P ′,S ,C ′) where L is the set of LOAD process, P ′

is the set of parallel processes, S is the set of store processes STORE and C ′ is the set of channels.
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Figure 5.2 – Data-aware process network (DPN) for the Jacobi-1D kernel. (a) computations are
executed per band (between red thick lines), tile per tile. Incoming dependences (1,2,3) are loaded,
outcoming dependences (13,14,15) are stored, internal dependences (4 to 12) are solved through
local channels depicted in (b). Parallelization is derived by splitting a band with tiling hyperplanes
(here the dotted line). With this scheme, arithmetic intensity and parallelism can be tuned easily.

B Software: DCC and POCO. All our contributions around DPN and communication co-
alescing (described in Chapter 4) have been implemented in our research compiler, DCC

(Data-aware process network C compiler). DCC analyzes a polyhedral program written in
C and annotated with pragmas specifying the tiling and the schedule θ, then it produces
a DPN. DCC comes with a polyhedral compilation library, POCO (Polyhedral Compilation
Library) which implements most of the basic polyhedral analysis (mainly dataflow analysis
[81], liveness analysis [5], array contraction [5, 114], and polyhedral code generation [54]).
We have entirely implemented these tools, which serves now as a front-end for the Xtrem-
Logic HLS tool. So far, the XtremLogic back-end is still under construction. This prevent to
have global results on DPN. Instead, we present local results for our different contributions.

The next sections presents our contribution to the synthesis process, both on the front-end and
the back-end part.
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for (i=0;i<N;i++)
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Figure 5.3 – Automation flow

5.3 Loop scheduling for pipelined arithmetic operators

This section presents a scheduling technique to keep busy the pipeline of the arithmetic datapath,
thereby improving the overall latency of the design [17, 18]. This contribution focuses on perfect
loop nests with uniform dependences. It is not intended to schedule globally a DPN, but we believe
it provides important insights to address this problem.

Contribution The arithmetic operators (+,−,×,/,p., . . .) used in the datapath of hardware accel-
erators are usually pipelined to keep the frequency of the circuit at a reasonable level. As a conse-
quence, an operation scheduled at date t will output its result at date t +d where d is the number
of stages of the pipeline. If the result is consumed at date t ′, we must have t ′ > t +d (pipeline con-
straint). Otherwise, the pipeline of the consumer will be frozen until the data is available, which
would degrade the throughput of the circuit. We propose a method to derive automatically an ef-
ficient, sequential, hardware using pipelined arithmetic operators in the data-path. In particular,
we propose a scheduling algorithm [17, 18] which reorganizes the computations to reduce the total
execution time while satisfying the pipeline constraints. Figure 5.3 depicts our compilation flow.
In this study, we consider the floating-point arithmetic custom operators generated by the tool
FloPoCo [73], from a specification including the precision and the pipeline depth. We point out
that our method could apply to any pipelined datapath. The operations are carefully scheduled to
keep the FloPoCo operators busy, hence making optimal use of their pipelines. The input kernel is
specified by a naive sequential C program, as depicted in Figure 5.4.(a) for matrix multiplication.
The user must also specify the pipeline depth for each FloPoCo operator. These are the only inputs
required.

Program model Our algorithm operates on perfect loop nests with uniform dependences iterat-
ing over a single statement S. A typical example is the matrix multiply kernel given in Figure 5.4.(a).
Hence, we can represent the dependences with dependence vectors ∆D = {~j −~i | 〈S,~i 〉 →pc 〈S,~j 〉}
where →pc denotes the direct dependences (see Section 2.1.3, paragraph Dependences). The de-
pendences are uniform when ∆D is finite (non parametric). This applies to matrix multiply (as
∆D = {(0,0,1)}). This model captures stencil operations and basic linear algebra operators. We
point out that our scheduling algorithm does not require uniform dependences. They are required
by our hardware generation scheme to produce shift registers. This constraint can be relaxed if
we use FIFO instead of shift registers, we will discussed this point later. However, how to extend
this approach to a general loop nest (or equivalently on to the processes of a DPN) is still an open
problem.

5.3.1 Motivating examples

In this section, we illustrate the feasibility of our approach on two examples. The first example
is the matrix multiplication, that has one uniform data dependency that propagates along one
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1 typedef float fl;

2 void mmm(fl* a, fl* b, fl* c, int N) {

3 int i, j, k;

4 for (i = 0; j < N; j++)

5 for (j = 0; i < N; i++){

6 for (k = 0; k < N; k++)

7 c[i][j] = c[i][j] + a[i][k]*b[k][j];//S

8 }

9 }

(a)

step 0
step 1

step 2

pipeline size m

i

N-1

0 N-1

~τ

tile slice

k

j

(b)

Figure 5.4 – Matrix-matrix multiplication: (a) C code, (b) iteration domain with tiling

axis. The second example is the Jacobi 1D algorithm. It is more complicated because it has three
uniform data dependencies with different distances.

Matrix multiplication

The original code and its iteration domain is depicted in Figure 5.4. Each point (i , j ,k) of the it-
eration domain represents an execution of the assignment S with the loop counters i , j and k.
There is a unique data dependency carried by the loop k, which can be expressed as a vector
~d = (δi ,δ j ,δk) = (0,0,1) (Figure 5.4.(b)). With the original sequential schedule, the computation
applies sequentially a multiply and accumulate operation (x, y, z) 7→ x + (y ∗ z) along the k axis,
that we want to implement with a specialized FloPoCo operator (Figure 5.6.(a)). It consists of a
pipelined multiplier with ` pipeline stages that multiplies the elements of matrices a and b, fol-
lowed by a pipeline adder with m pipelined stages. When k = 0, the accumulation is initialized
thanks to a delayed control signal and the corresponding steering logic. For k > 0, the multiplica-
tion result is accumulated with the current sum, available via the feedback loop (when the delayed
control signal S is 1). This result will be available m cycles later (m is the adder pipeline depth), for
the next accumulation.
The original execution order (with schedule θ(i , j ,k) = (i , j ,k)), would not exploit at all the pipeline,
causing a stall of m −1 cycles for each iteration of the loop k. Indeed, the iteration (0,0,0) would
be executed, then wait m −1 cycles for the result to be available, then the iteration (0,0,1) would
be executed, and so on. To address this issue, the loop schedule must enforce at least m iterations
between the definition of a value at iteration~i = (i , j ,k) and its use at iteration~i + ~d = (i , j ,k +1).
In other words, the dependence distance ∆(~d) must be greater than m.
We enforce this property with a loop tiling, where the last iteration traverses an hyperplane (called
the parallel hyperplane in the remainder) without carrying any dependence. Then, we can cus-
tomize the dependence distance simply by playing on the tile size. On to the example, we can
choose the parallel hyperplane H~τ with~τ= (0,0,1). H~τ does not contain the dependence ~d . Hence,
each iteration on this hyperplane can be executed independently, so it is possible to insert in the
arithmetic operator pipeline one computation every cycle. Then, we complete the tiling with hy-
perplanes (H1, H2) using standard tiling techniques [53] (here, the normal vectors are (1,0,0) and
(0,1,0)), H = (H1, H2, H~τ). Finally, we consider the schedule θ(I1, I2, I3, i , j ,k) = (I1, I2, I3, i ,k, j )
where the last dimension “slides” along H~τ. Basically, on this example, the tile width along H2 is
exactly ∆(~d). Hence, we set it to the pipeline depth m.
This way, the result is scheduled to be used exactly at the cycle it gets out of the operator pipeline,
without any temporary buffering. In a way, the pipeline registers of the arithmetic operator are
used as a temporary buffer. We point out that this is possible because dependences are uniform.
Otherwise, we would not be able to guarantee, in general, a constant dependence distance and
we would have to use a FIFO, whose size can by bounded with array contraction techniques, for
instance, those described in section 4.4.
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1 typedef float fl;

2 void jacobi1d(fl a[T][N]){

3 fl b[T][N];

4 int i,t;

5 for (t = 0; t < T; t++)

6 for (i = 1; i < N-1; i++)

7 a[t][i] = (a[t-1][i-1]+a[t-1][

i]+

8 a[t-1][i+1])/3;

9 }
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Figure 5.5 – Jacobi 1D: (a) source code, (b) iteration domain with tiling

Jacobi 1D

The kernel is given in Figure 5.5.(a), this is a standard stencil computation with two nested loops.
We want to implement the datapath with the pipelined operator depicted on Figure 5.6.(b). On this
example, we have several dependence vectors, ∆D = {~d1 = (δt ,δi ) = (1,−1), ~d2 = (1,0), ~d3 = (1,1)}
(Figure 5.5.(b)).
Again, we build a tiling H = (H1, H~τ) with a parallel hyperplane H~τ. We choose H~τ with normal
vector~τ= (δt ,δi ) = (2,1). We verify that H~τ does not contain any dependence:~τ · ~d > 0, for any de-
pendence ~d ∈∆D . Equivalently, we say that H~τ satisfies all the dependences. Then, we complete the
tiling with the hyperplane H1 with normal vector (1,0). Finally, we choose a tiled schedule whose
last dimension slides along H~τ: θ(I1, I2, t , i ) = (I1, I2,2t + i , t ). Figure 5.5.(b) shows the consecutive
tile slices with I1 = 0 with a tile height of 4 iterations in the direction of H1.
With this schedule, the dependence distances are ∆(~d1) = 5 iterations, ∆(~d2) = 9 iterations and
∆(~d3) = 13 iterations, which means that the data flowing through the dependence ~d1 (resp. ~d2, ~d3)
must be available at least 5 (resp. 9, 13) iterations later. Notice that the dependence distances are
the same for any point of the iteration domain, as the dependencies are uniform. In hardware, this
translates to adding delay shift registers at the operator’s output and connecting this output to the
operator’s inputs via feedback lines, according to the data dependency distance levels `0, `1 and
`2 (see Figure 5.5.(b)). Once again, the intermediate values are kept in the pipeline, no additional
storage is needed in a slice.
As the tiling hyperplanes are not parallel to the original axis, some tiles in the borders are not full
parallelograms (see left and right triangles in Figure 5.5.(b)). Inside these tiles, the dependence
vectors are not longer constant. To overcome this issue, we extend the iteration domain with virtual
iteration points where the pipelined operator will compute on dummy data. This data is discarded
at the border between the real and extended iteration domains (propagate iterations, when i = 0
and i = N −1). For the border cases, the correctly delayed data is fed via line Q (oS=1).

5.3.2 Method

The key idea is to tile the program in such a way that each dependence distance can be customized
by playing on the tile size. Then, it is always possible to set the minimum dependence distance
to the pipelined depth of the FloPoCo operator, and to handle the remaining dependencies with
additional (pipeline) registers in the way described for the Jacobi 1D example.
This amounts to find a parallel hyperplane H~τ, and to complete the tiling with independent hy-
perplanes: H1, . . . , Hn−1, assuming the depth of the loop kernel is n. Now, it is easy to see that the
hyperplane H~τ should be the (n-1)-th hyperplane (implemented by Li t ), any hyperplane Hi being
the last one (implemented by Lpar ). Roughly speaking, Li t pushes H~τ, and Lpar traverses the cur-
rent 1D section of H~τ. It remains in step c to compute the tile size to fit the fixed FloPoCo operator
pipeline depth. If several dependencies exist, the minimum dependence distance∆(~d) must be set
to the pipeline depth of the operator.
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Figure 5.6 – Pipelined arithmetic operators produced by FloPoCo

We propose an ILP formulation to find an parallel hyperplane H~τ while reducing the dependence
distances ∆(~d) (hence the number of shift registers). We compute the dependence distances ∆(~d)
as a symbolic expression of the tile height ` along the before-last hyperplane (Hn−1 for a tiling
(H1, . . . , Hn−1, H~τ). Finally,` can be derived by solving the equation∆(~d) = m where m is the pipeline
depth and ∆(~d) is the smallest dependence distance [17, 18].

5.3.3 Experimental results

Table 5.1 presents synthesis results for both our running examples, using a large range of preci-
sions, and two different FPGA. The results presented confirm that precision selection plays an im-
portant role in determining the maximum number of operators to be packed on one FPGA. As it
can be remarked from the table, our automation approach is both flexible (several precisions) and
portable (Virtex5 and StratixIII), while preserving good frequency characteristics.

Table 5.1 – Synthesis results for the full (including FSM) MMM and Jacobi1D codes. Results obtained
using using Xilinx ISE 11.5 for Virtex5, and QuartusII 9.0 for StratixIII

Application FPGA
Precision Latency Frequency Resources
(wE , wF ) (cycles) (MHz) REG (A)LUT DSPs

Matrix-Matrix
Virtex5(-3)

(5,10) 11 277 320 526 1

Multiply
(8,23) 15 281 592 864 2

(10,40) 14 175 978 2098 4

N=128

(11,52) 15 150 1315 2122 8
(15,64) 15 189 1634 4036 8

StratixIII
(5,10) 12 276 399 549 2
(9,36) 12 218 978 2098 4

Jacobi1D Virtex5(-3)
(5,10) 98 255 770 1013 -

stencil
(8,23) 98 250 1559 1833 -

N=1024

(15,64) 98 147 3669 4558 -

T=1024 StratixIII
(5,10) 98 284 1141 1058 -
(9,36) 98 261 2883 2266 -

(15,64) 98 199 4921 3978 -

The generated kernel performance for one computing kernel is: 0.4 GFLOPs for matrix-matrix mul-
tiplication, and 0.56 GFLOPs for Jacobi, for a 200 MHz clock frequency. Thanks to program restruc-
turing and optimized scheduling in the generated FSM, the pipelined kernels are used with very
high efficiency. Here, the efficiency can be defined as the percentage of useful (non-virtual) inputs
fed to the pipelined operator. This can be expressed as the ratio #(I \V )/#I , where I is the itera-
tion domain and V ⊆I is the set of virtual iterations. The efficiency represents more than 99% for
matrix-multiply, and more than 94% for Jacobi 1D. Taking into account the kernel size and operat-
ing frequencies, tens, even hundreds of pipelined operators can be packed per FPGA, resulting in
significant potential speedups.
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Table 5.2 – Synthesis results for the parallelized MMM and Jacobi1D. Results obtained using using
Quartus II 10.1 for StratixIII with wE = 8, wF = 23

Application Par. factor
Frequency Resources

(MHz) REG (A)LUT M9K DSPs

Matrix-Matrix
1 308 701 614 3 4

Multiply
2 282 1317 999 5 8

N=128

4 303 2473 1789 12 16
8 302 4842 3291 20 32

16 281 9582 6291 32 64

Jacobi1D
1 311 1217 1199 9 -

stencil
2 295 2394 2095 21 -

N=1024
4 283 4600 3853 38 -

T=1024
8 274 9018 7314 69 -

16 251 17806 14218 132 -

Adding parallelism Table 5.2 presents synthesis results of the parallelization for both our run-
ning examples on the StratixIII FPGA using the single precision format. Matrix-multiply paral-
lelization follow the DPN scheme (invented after this contribution), the tiling bands are simply
along the i axis. As for the Jacobi 1D, we used a different parallelization scheme where the tile band
is split in 2 processes along the i axis. The left process iterates with schedule θ1(t , i ) = (2t + i , t ),
while the right process iterates with schedule θ2(t , i ) = (2t − i , t ) (see Figure 5.7). Since both pro-
cess are driven by the same FSM, no synchronizations are required (more details in [18], p 10). As
expected, due to massive parallelism and no inter parallel process communication, for matrix mul-
tiplication example the scaling in terms of resources is proportional to the parallelization factor.
The maximum operating frequency remains fairly constant. Jacobi 1D scales very well too. A small
increase in utilized resources is due to the increase in the multiplexer size in order to fit signals
from neighbor computational cores. The frequency remains fairly constant. This proves that our
method is well suited for FPGA implementation.
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Figure 5.7 – An alternative to executing the Jacobi Kernel using 2 processing elements.

5.4 Synthesizing the control

Hardware accelerators derived with polyhedral compilation techniques make an extensive use of
affine expressions (affine functions and convex polyhedra) in control and steering logic. Since the
control is pipelined, these affine objects must be evaluated at the same time for different values,
which forbids aggressive reuse of operators. This section presents a method to factorize a collection
of affine expressions without preventing pipelining. Our key contributions are (i) to use semantic
factorizations exploiting arithmetic properties of addition and multiplication and (ii) to rely on a
cost function whose minimization ensures a correct usage of FPGA resources. Our algorithm is to-
tally parametrized by the cost function, which can be customized to fit a target FPGA. Experimen-
tal results on a large pool of linear algebra kernels show a significant improvement compared to
traditional low-level RTL optimizations. In particular, we show how our method reduces resource
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consumption by revealing hidden strength reductions.

5.4.1 Affine control

Multiplexers Consider process C1 on the DPN depicted on Figure 5.2. Each input port is asso-
ciated a multiplexer which selects the source channel depending on the iteration (I1, I2, t , i ) being
executed. Recall that I1 and I2 are the tile counters for the tiling with hyperplanes φ1(t , i ) = t and
φ2(t , i ) = t + i . This multiplexer is nothing but the source function σ (see section 2.1.3, paragraph
“Dependences”) and might be computed with with parametric integer programming techniques
[81]. The result is an integer piecewise quasi-affine mapping, a mapping from D ⊆ Zn to Zp de-
fined, given a partition D =P1] . . .]Pq , by a quasi-affine function ui (affine with possible integer
divisions by a constant) on each part P i . When no divisions are involved, the mapping is said to
be integer piecewise affine.
We point out that integer piecewise affine mappings are not necessarily continuous. Some results
on piecewise affine mappings, for instance lattice-based representation [146], may no longer apply.
For example, on port 1 of process C1 (corresponding to read a[t-1,i-1] on Figure 5.1.(a)) we have
the multiplexer:

σ(〈C1, I1, I2, t , i 〉,1) =


t = 4I1 : 〈buffer1, i −1〉
t > 4I1 ∧ i = 1 : 〈buffer1, i −1〉
t > 4I1 ∧ i > 1 : 〈buffer4, t −1, i −1〉

Multiplexers are always integer piece-wise quasi-affine mappings modulo the encoding of buffer
identifiers with integers and the padding of iteration vectors so they have the same dimension. The
complexity of the multiplexer (number of clauses, number of affine constraints per clause) may
increase exponentially with the dimension of the iteration domain. Hence, efficient compaction
techniques are required.

Finite-state machine Once the schedule is found for the process, it remains to generate the con-
trol which executes the process in the order prescribed by the schedule. Many approaches were
developed [42, 54]. Usually, we synthesize a control automaton per process P , which issues a new
iteration vector ~i of P at each clock cycle [54]. Given the schedule θP of process P , two integer
piecewise quasi-affine functions are required. A function FirstP , which issues the first iteration of
P w.r.t θP (initial state), and a function NextP which maps each iteration of P to the next iteration
of P to be executed w.r.t. θP (transition function). On the running example, with T = N = 16, tiles
of size 4×4, and a schedule θC1 (I1, I2, t , i ) = (I1, I2, t , i ), we have:

FirstP = (0,0,0,1)

NextP (I1, I2, t , i ) =



(depth I1)
2− I1 ≥ 0 :

(1+ I1,1+ I1,4+4I1,1)

(depth I2)
2+ I1 − I2 ≥ 0 :

(I1,1+ I2,4I1,4−4I1 +4I2)

(depth t )
2+ t −4I2 < 0∧−t +4I1 ≥ 0 :

(t − (3t )/4, I2,1+ t ,−1− t +4I2)
2+ t −4I2 ≥ 0∧−t +4I1 ≥ 0 :

(t − (3t )/4, I2,1+ t ,1)

(depth i )
13− i ≥ 0∧2− t − i +4I2 ≥ 0 :

(I1, I2, t ,1+ i )

HDR Christophe Alias 77/113



CHAPTER 5. DATA-AWARE PROCESS NETWORKS

We point out that NextP is an integer piecewise quasi-affine per depth of the schedule. When several
domains overlap, the deeper clause is chosen. Intuitively, each depth can be seen as a loop from a
perfect loop nest: for I1, for I2, for t , for i . It is another reason why techniques to simplify generic
piecewise affine functions do not apply, even though no integer divisions are involved.
All in all, the multiplexing and the control involved on this simplified jacobi-1d example have a set
of 123 affine constraints and 69 affine expressions. Clearly, they should be compacted before being
mapped to an FPGA. This section presents our contribution to compact several integer piecewise
affine functions, provided as a pool of affine constraints and expressions, as a DAG using efficiently
FPGA resources.

5.4.2 Cost model

We present here the cost model that drive our experiments. We point out that the cost function |.|
is a parameter of our algorithm. It could perfectly be refined/redefined to fit a different target.

Cost of a DAG An FPGA consists of reconfigurable building blocks with lookup tables, 1 bit adders
and 1 bit registers (ALM with Altera, CLB with Xilinx). In addition, RAM blocks and DSP blocks are
usually provided. Our DAGs use only integer operators (integer addition, integer multiplication by
an integer constant) which require an amount of building blocks proportional to the bitwidth of
the result. Hence, the resource usage of a DAG D = (N ,E) can be modeled as a simple weighted
sum:

|D| = ∑
n∈N

w(n) ·bw(n)

Where bw(n) denotes the bitwidth of the result computed by the operator n of the DAG and w(n)
denotes, roughly, the number of building blocks required by n to compute 1 bit of result. bw is
simply computed for each node of the DAG by a bottom-up application of the rules bw(x + y) =
1+max(bw(x),bw(y)) and bw(x ∗ y) = bw(x)+bw(y) starting from the bitwidth of the input vari-
ables. Furthermore, w can be customized at will to fit a target FPGA. In the following, we will as-
sume w(+) = 1 and w(∗) = 100. With that choice, our algorithm will tend to decompose affine ex-
pressions with multiplications by a power of 2. Note that the cost model is not intended to reflect
the actual resources requirement. Rather, it should be viewed as an objective function whose min-
imization leads to desired properties. We point out that special cases (multiplication by a power of
2, multiplication by a negative constant) are also taken into account by our model [21].

Affine forms Our algorithm builds the DAG by adding affine forms incrementally, and needs an
upper bound on the cost of the sub-DAG computing an affine form. Consider an affine form u =∑n

i=1 ai xi +b where the xi are integer variables and the coefficients ai and b are integer constants.
In the worst case, the term ai xi (or b) with the largest bitwidth is evaluated first, each addition
increasing the size of the result of 1 bit. Hence, the worst possible bitwidth for the result of u is
bwworst(u) = n −1+max{w(b)}∪ {w(ai )+w(xi ), i ∈ �1,n�}. Therefore, an upper bound for |u| is:

due = n ·bwworst(u) ·w(+)+
n∑

i=1
|ai ∗xi |

5.4.3 Semantic factorizations

We classically reduce the resources to evaluate a pool of expressions by factorizations, the most
common being common subexpression factorization. Our contribution is to investigate semantic
factorizations, which leverage associativity and commutativity of operators + and ×. We present
briefly the two kinds of semantic factorizations considered: expression factorization and constraint
factorization. We illustrate these notions on the affine expressions E1 = i + 2 j + k and E2 = 5i +
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(a) Common subexpression elimination (b) Expression factorization
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< 0
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(c) Common subexpression elimination (d) Constraint factorization

Figure 5.8 – Semantic factorizations: expression factorization (b) and constraint factorization (d).

2 j +3k where i , j and k are input variables. Figure 5.8 depicts the different kind of factorizations
considered.

Expression factorization Common subexpression elimination would produce the DAG sketched
in Figure 5.8.(a). The resources used are 4 adders, 2 multipliers by a constant and 1 shifter. Now,
observe that E2 = E1 +4i +2k. This leads to the DAG in Figure 5.8.(b). This semantic factorization
is called expression factorization in the remainder. With expression factorization, the resources
required are now 4 adders and 3 shifters, which is better than the first solution. We point out
that expression factorization is not always beneficial. If one tries to derive E1 from E2, with E1 =
E2 + (−4i −2k), the resource usage would be worse than the direct solution (4 adders and 5 mul-
tipliers by a constant). A best combination of factorizations must be found among all the possible
combinations.

Constraint factorization A similar factorization scheme can be applied to affine constraints.
Consider the normalized affine constraints C1 : 4i + 3 j < 0 and C2 : −4i − 3 j + 1 < 0. Writing C2 :
4i+3 j ≥ 0, it is easy to detect that C2 =¬C1. Now, consider the affine constraint C2 : −5i−3 j−1 < 0.
There is no direct connexion with C1. But if we write C2 : 5i + 3 j ≥ 0, the affine expression of
C2 (5i +3 j ) can be obtained from the affine expression of C1 (4i +3 j ), giving the improved DAG
depicted in Figure 5.8.(d). With that constraint factorization, the resources used are reduced to 2
adders, 1 multiplier by a constant and 1 shifter. We point out that constraint factorization (C2 from
C1) is a terminal transformation. Indeed, the expression of C2 (e2 s.t C2 : e2 < 0) is never computed.
Hence, subsequent factorizations involving the expression e2 are not possible. For this reason, ex-
pression factorizations will be preferred over constraint factorizations.
We propose a unified way to represent the possible sequence of factorizations of affine expressions
and constraints and to select combination of factorizations minimizing the resource consumption.
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5.4.4 Method

Realization graph Given a set of affine constraints C and affine expressions E , we summarize
all the possible semantic factorizations by means of a realization graph Gr . Basically, the nodes of

Gr are affine expressions and constraints, and an edge u
∆−→ v means that v can be realized from

u with a cost of ∆. Also, Gr has a root node called initial_node which serves as a starting point to
build affine expressions and constraints. Intuitively, a rooted path in Gr would give a realization of
the reached nodes. Figure 5.9 depicts the realization graph built from the constraints:

C = {i +2 j +k < 0, 5i +2 j +3k < 0, 4i +3 j < 0, −5i −3 j −1 < 0}

Depending on the factorization (expression or constraint) a specific edge (plain or dashed) is is-
sued.Also, we point out that Gr contains constraints and expressions to synthesize (yellow nodes)
and intermediate nodes (white nodes). We explain later how intermediate nodes are generated.

Expression factorization Given a DAG node computing an expression u, an expression v can be
computed by applying the expression factorization rule v = u + (v −u). In that case, we would add
to the DAG the following components:
– A sub-DAG computing v −u (to be optimized as well)
– An adder taking the output nodes of u and v −u.
The additional resource cost is the cost of the operator + plus the cost of the affine form v −u:

∆= (1+max{bwworst(u),bwworst(v −u)}) ·w(+)+dv −ue

When that additional cost ∆ is less than the cost of computing directly v , we register this possible

design choice as an expression factorization edge u
∆−→ v to the realization graph Gr (plain edges

on Figure 5.9.(a)). When the source (resp. target) node is a constraint u < 0 (resp. v < 0), the edge
has the same meaning.

Constraint factorization Given a DAG node computing an affine constraint normalized as u < 0,
the constraint v < 0 can be derived from u < 0 with a simple logic negation when v < 0 ≡¬(u < 0),
which means: v < 0 ≡−u −1 < 0 or more simply: u + v =−1. This gives a first simple test to detect
negations. Otherwise, remark that (u + (−1−u − v))+ v =−1. This means that v < 0 ≡¬(u + (−1−
u−v) < 0). Hence v < 0 can be computed from u by adding the following components to the DAG:
– A sub-DAG computing −1−u − v (to be optimized)
– An adder taking the output nodes of u and −1−u − v .
– The result of the adder is checked by connecting the most significant bit (to have < 0) to a nega-

tion.
The additional resource cost would then be the cost of the operator +, plus the cost of the affine
form −1−u − v :

∆= (1+max{bwworst(u),bwworst(−1−u − v)}) ·w(+)+d−1−u − ve

When that additional cost ∆ is less than the cost of computing directly v , we register this possible

design choice as a constraint factorization edge u < 0
∆−→¬ v < 0 in the realization graph Gr (dashed

edges on Figure 5.9.(a)).

Building the realization graph We use the following algorithm to build the realization graph
from a set of affine constraints C and affine expressions E (Algorithm 1). This is a summary, the
detailed algorithm can be found in [21]. The graph is initialized with the node initial_node (line
1). Then each expression and constraint is inserted as a node u and expression/constraint factor-
izations edges from/to u are inserted whenever the factorization is beneficial, as explained in the
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Figure 5.9 – (a) Realization graph Gr obtained from C , (b) Resource-efficient realization tree T in Gr

(in red), (c) Resource-efficient DAG from realization tree T in Gr , (d) Recursive compaction of fresh
expressions Enew
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previous paragraphs (lines 3–4). Finally, the maximal strict subexpression with each node c ′ of Gr ,
v = CS(c,c ′) is inserted, and the factorization edges from/to v are inserted whenever it is beneficial
(lines 5 – 8). This is required, as semantic factorizations do not include common subexpression
factorizations. This way, all the solutions including a mix between common subexpression factor-
izations and semantic factorizations will be investigated to find an optimal compaction.

Algorithm 1: Build the realization graph Gr from affine constraints and expressions

Input : Affine constraints C and affine expressions E

Output: Realization graph Gr

1 Insert initial_node;
2 foreach c ∈C ∪E do
3 Insert c ;
4 Insert factorization edges
5 foreach c ′ ∈C ∪E do . Factorizations with common subexpressions
6 Insert CS(c,c ′) ;
7 Insert factorization edges

8 end
9 end

10 Return the graph Gr

Finding an optimal realization An expression factorization edge u
∆−→ v of the realization graph

Gr means that expression of v (if v is a constraint e < 0, the expression is e) may be realized from the

expression of u with a cost∆. For instance, the edge i+2 j +k
18−→ 5i+2 j +3k in Figure 5.9.(a) means

that v = 5i +2 j +3k might be realized from u = i +2 j +k with an expression of cost 18. Note that u
and v might be realized directly with cost 22 and 122 respectively (see edges from initial_node). u

and v might also be realized from w = 2 j . In that case, we choose edges initial_node
0−→ w , w

15−→ u

and w
117−−→ v for a total cost of 0+15+117 = 132. From this observation, we may conclude that a

realization of u and v is a subtree of Gr rooted at initial_node and including the nodes u and v to
be realized. Finally, remark that constraint factorization edges u −→¬v are always terminal, since
the expression of v is not actually computed. These observations lead to the following definition:

Definition 5.2 (Realization). Let Gr be the realization graph of expressions E and constraints C . A
realization is a subgraph T ⊆Gr which satisfies the following conditions:

1. Each expression/constraint is realized correctly: T is a tree rooted at initial_node, and T spans
E ∪C .

2. No useless common subexpression is computed: the leaves of T belong to E ∪C .

3. Negation edges are terminal.

In other words, a realization is a particular spanning tree of Gr (condition 1). When common
subexpression are involved (white nodes in Figure 5.9.(a)), they must be intermediate results in the
final realization (condition 2). Negation edges must be terminal, as their expression is not available
for further factorizations (condition 3). The cost of a realization is the sum of the weights ∆ on its
edges. Hence, finding an efficient realization amounts to compute a minimal spanning tree of Gr ,
under the constraints specified in definition 5.2.
We propose an algorithm in two steps. First, we use Prim’s greedy heuristic to find a minimum
spanning tree rooted on initial_node among the expression factorization edges of Gr . Then, we look
for beneficial constraints factorization among the orphan nodes: nodes u which are neither factor-

ized (spanning tree with initial_node
∆−→ u), nor implied in a factorization (u has no successors in

HDR Christophe Alias 82/113



CHAPTER 5. DATA-AWARE PROCESS NETWORKS

the spanning tree). Remark that semantic factorizations require the computation of fresh expres-

sions (expression factorization u
∆−→ v requires the fresh expression u − v , constraint factorization

u
∆−→¬ v requires the fresh expression −1−u − v). This set Enew of fresh expressions must, in turn,

must be compacted. We simply apply recursively our algorithm on Enew .

Back to the example On the example, our algorithm finds the spanning tree depicted with red
edges on Figure 5.9.(b). The edges chosen for the realization tree are in red. The total cost of the
design (72) is greatly improved compared to direct realization (487) (only arcs from initial_node,
no factorization at all) and compared to common subexpression factorization (391) (edges from
node 2 j and direct realization of −5i −3 j −1). (c) depicts the DAG finally produced after applying
the factorizations selected in (b) by using the construction rules discussed above. In particular,
(d) shows the sub-DAG obtained after the recursive compaction of fresh expressions Enew : it is a
sub-DAG of the final result given in (c).

5.4.5 Experimental results

We present the main result: our compaction method outperforms Intel/Altera synthesis tool by
a factor of 30% on the affine control of the polyhedral kernels from the benchmark suite Poly-
Bench/C v3.2 [129].
A detailed study of the impact of semantic factorization on the compaction, in particular the rela-
tion between semantic factorizations and strength reduction may be found in [21].

Experimental setup We have applied our algorithm to simplify the affine control generated for
the kernels of the benchmark suite PolyBench/C v3.2 [129]. Table 5.3 depicts the kernels and the
synthesis results obtained on FPGA. For each kernel, a DPN process network is generated using
the DCC tool [20].The execution order is deeply restructured and the affine control per process
(control automaton,mux/demux) can be quite complex. Before deriving the DAGs, we simplify the
control polyhedra with various heuristics including gist and integer set coalescing [161]. Then, for
each process, we collect the affine control and we apply our algorithm to produce a DAG. Table
5.3 presents the sum of the criteria collected for each process. #dags is the total number of DAG
produced, #C is the total number of affine constraints. #E is the total number of affine expressions.
All in all, we have produced and analyzed a total of 261 DAGs from 4990 constraints and 2464
expressions.

Synthesis results We have implemented a VHDL generator for our DAGs and a direct genera-
tor which puts the affine expressions in VHDL and let the synthesis tool do the optimizations –
typically common subexpression elimination and boolean optimizations. This way, we can com-
pare our approach to the optimizations applied by the synthesis tool. The DAGs are generated
using the hierarchical approach. Both direct and optimized designs are pipelined at ALM level
by adding a sufficient number of registers to the outputs. This way, the synthesis tool will per-
form low level logic optimizations and retiming to redistribute the registers through the design.
The synthesis was performed using Quartus Prime TM 16.1.2 from Intel on the platform on the
Arria 10 10AX115S2F4I1SG FPGA with default synthesis options (optimization level - balanced).
Intel Quartus Prime is capable of applying highly advanced optimizations automatically including
common subexpression factorization and many other advanced boolean optimizations. The DAGs
were tested using GHDL simulation tool over uniformly distributed random stimuli.
The synthesis results are presented in the table 5.3. The synthesis results for our DAGs are pro-
vided in the column SEM+Quartus (semantic factorizations + quartus). The synthesis results for
the direct implementation are given in the column Quartus (quartus only). The gain in ALMs com-
pared to the direct implementation is given in the column Gain. Both implementations run at
the maximum FPGA frequency of 645.16 MHz. The frequency is limited by the target MAX delay
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Kernel #dags #C #E
SEM+Quartus Quartus

Gain
ALM Regs ALM Regs

2mm 15 250 161 1011 612 1430 596 29%
3mm 18 369 206 1775 946 2528 922 30%
atax 12 134 83 628 328 900 321 30%
bicg 11 112 69 500 278 715 278 30%
correlation 27 356 205 1609 1129 2567 909 37%
covariance 16 243 143 1221 708 1872 618 35%
doitgen 9 145 124 393 280 607 268 35%
fdtd-2d 13 502 167 2339 1713 3293 1603 29%
gemm 10 125 93 672 270 851 270 21%
gemver 20 187 137 847 459 1102 438 23%
gesummv 14 95 84 456 245 549 227 17%
heat-3d 8 734 175 3545 1194 5667 2559 37%
jacobi-1d 8 134 64 628 556 912 520 31%
jacobi-2d 8 370 111 1660 1204 2547 1144 35%
lu 7 213 87 1116 666 1469 628 24%
mvt 11 118 70 550 290 758 290 27%
seidel-2d 5 226 63 1161 1464 1758 1291 34%
symm 13 213 116 1011 471 1540 465 34%
syr2k 10 135 90 721 290 944 281 24%
syrk 9 118 81 636 246 828 246 23%
trisolv 9 93 56 474 218 632 213 25%
trmm 8 118 79 549 262 806 253 32%

Table 5.3 – Synthesis results on Polybench/C v3.2

limited by the signal hold timing and other physical constraints. Both versions use a significant
amount of 5-6 inputs ALMs, thus achieving higher compression ratio. There is no ALM overhead
because of registers, as for all the examples they are entirely packed inside the ALMs containing
logic. Experimental results show a significant gain in ALM, compared to the direct implementa-
tion optimized by Quartus (common subexpression elimination). The average gain is 30%, with a
deviation of 5%. Remark that the kernel gesummv shows slightly less gain than the other kernels.
The kernel gesummv has many simple polyhedra with small bitwidths in the computations. In that
case, low-level boolean optimizations are more effective than semantic factorizations: arithmetic
operations are merged with boolean ∧ operations from the polyhedra using large (up to 7 bit) LUT.
For the DAGs parts involved, this results in 3 to 4 times less ALMs than the optimized dags. The op-
timized dags can benefit less from these optimizations, as the bitwidth of the operations increases
through the computations. Nonetheless, even for that kernel the benefit of semantic factorizations
is significant. The synthesis results confirms the validity of our models and approach. Semantic
factorization appears to complement nicely the optimization applied by quartus, and may be used
profitably as an optimizing preprocessing for affine control.

5.5 Exposing FIFO channels

This section presents our contributions to the compilation of the channels for PPN and DPN pro-
cess networks. Usually, the compilation of the channels consists into three steps:

1. Infer the channel type (FIFO, FIFO with register, addressable channel) by analyzing the pro-
ducer/consumer communication pattern [155]

2. Size the channel. If the channel is not a FIFO, derive an allocation function σ. In Chapter 4 we
propose a contribution to liveness analysis for array/channel targeting channel sizing and
allocation [5]

3. If the channel is not a FIFO, generate the synchronizations which enforce the dependences.
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Section 5.6 outlines a lightweight synchronization apparatus [19].

This section describes an important channel reorganization algorithm which is able to recover the
FIFO communication patterns broken by a loop tiling. Our algorithm is proven to be complete on
DPN: all the FIFO can be recovered. This is an important enabling transformation for DPN.

5.5.1 Communication patterns

A channel c ∈ C might be implemented by a FIFO iff the consumer Cc reads the values from c in
the same order than the producer Pc writes them to c (in-order) and each value is read exactly once
(unicity) [153, 155]. The in-order constraint can be written:

in-order(→c ,≺P ,≺C ) :=
∀x →c x ′,∀y →c y ′ : x ′ ≺C y ′ ⇒ x ¹P y

The unicity constraints can be written:

unicity(→c ) :=
∀x →c x ′,∀y →c y ′ : x ′ 6= y ′ ⇒ x 6= y

We point out that unicity depends only on the dataflow relation →c , it does not dependent on
the execution order of the producer process ≺P and the consumer process ≺C . The negations
¬in-order(→c ,≺P ,≺C ) and ¬unicity(→c ) amount to check the emptiness of a convex polyhedron,
which can be done by most LP solvers. This gives an algorithm to analyze the communication pat-
tern of a channel [155]. In particular, a channel may be implemented by a FIFO iff it verifies

fifo(→c ,≺P ,≺C ) :=
in-order(→c ,≺P ,≺C )∧unicity(→c )

When the consumer reads the data in the same order than they are produced but a datum may be
read several times: in-order(→c ,≺P ,≺C )∧¬unicity(→c ), the communication pattern is said to be
in-order with multiplicity: the channel may be implemented with a FIFO and a register keeping the
last read value for multiple reads. However, additional circuitry is required to trigger the write of a
new datum in the register [153]: this implementation is more expensive than a single FIFO. Finally,
when we have neither in-order nor unicity:¬in-order(→c ,≺P ,≺C )∧¬unicity(→c ), the communica-
tion pattern is said to be out-of-order with multiplicity: significant hardware resources are required
to enforce flow- and anti- dependences between producer and consumer and additional latencies
may limit the overall throughput of the circuit [20, 154, 157, 177].

5.5.2 Loop tiling breaks the FIFO communication patterns

Consider Figure 5.1.(c), channel 5, implementing dependence 5 (depicted on (b)) from 〈•, t −1, i 〉
(write a[t , i ]) to 〈•, t , i 〉 (read a[t − 1, i ]). With the original sequential schedule, the data are pro-
duced (〈•, t − 1, i 〉) and read (〈•, t − 1, i 〉) in the same order, and only once: the channel may be
implemented as a FIFO. Now, assume that process compute follows the tiled execution order de-
picted in Figure 5.10.(a). The execution order now executes tile with point (4,4), then tile with point
(4,8), then tile with point (4,12), and so on. In each tile, the iterations are executed for each t , then
for each i . Consider iterations depicted in red as 1,2,3,4 in Figure 5.10.(b). With the new execution
order, we execute successively 1,2,4,3, whereas an in-order pattern would have required 1,2,3,4.
Consequently, channel 5 is no longer a FIFO. The same hold for channel 4 and 6. We propose an al-
gorithm to reorganize the channels so most FIFO are recovered on PPN partitioning (Section 5.5.4).
We prove that our method is complete on DPN partitioning: all the FIFO are recovered.
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(a) Loop tiling (b) Communication pattern (c) Our solution

Figure 5.10 – Impact of loop tiling on the communication patterns. (a) gives the execution order
of the Jacobi-1D main loop after a loop tiling, (b) shows how loop tiling disables the FIFO commu-
nication pattern, then (c) shows how to split the dependences into new channels so FIFO can be
recovered.

5.5.3 Our solution: splitting the channels to recover the FIFO broken

Consider Figure 5.10.(c). Dependence 5 is partitioned in 3 parts: red dependences crossing tiling
hyperplane φ1 (direction t ), blue dependences crossing tiling hyperplane φ2 (direction t + i ) and
green dependences inside a tile. Since the execution order in a tile is the same as the original exe-
cution order (actually a subset of the original execution order), green dependences will verify the
same FIFO communication pattern as in the non-tiled version. As concerns blue and red depen-
dences, source and target are executed in the same order because the execution order is the same
for each tile and dependence 5 happens to be short enough.

Our algorithm Figure 5.11 depicts the algorithm for partitioning channels given a regular pro-
cess network (P ,C ,θ,µ) (line 5). For each channel c from a producer P = Pc to a consumer C =Cc ,
the channel is partitioned by depth along the lines described in the previous section (line 7). DP

and DC are assumed to be tiled with the same number of hyperplanes. P and C are assumed to
share the schedule: θ(I1, . . . , In ,~i ) = (I1, . . . , In ,~i ). In other words, in a tile, the execution order is the
same as in the original program. In particular, this happens with our tiling scheme for I/O opti-
mization [20]. If not, the next channel →c is considered (line 6). The split is realized by procedure
SPLIT (lines 1–4). A new partition is built starting from the empty set. For each depth (hyperplane)
of the tiling, the dependences crossing that hyperplane are filtered and added to the partition (line
3): this gives dependences →1

c , . . . ,→n
c . Finally, dependences lying in a tile (source and target in the

same tile) are added to the partition (line 4): this gives →n+1
c . θP (x) ≈n θC (y) means that the n first

dimensions of θP (x) and θC (y) (tiling coordinates (I1, . . . , In)) are the same: x and y belong to the
same tile.

5.5.4 Completeness on DPN, limitations on PPN

Completeness on DPN Our splitting algorithm always succeeds to recover all the FIFO on DPN
[4]: if a PPN channel c is a FIFO before tiling, then, after tiling and turning the PPN into a DPN,
the algorithm can split each DPN channel c ′ created from the PPN channel c (c ′ = µ(c)) in such
a way that we get FIFOs. We say that the splitting algorithm is complete over DPN. This is an im-
portant enabling property for DPN: essentially, it means that DPN allow to implement the tiling

HDR Christophe Alias 86/113



CHAPTER 5. DATA-AWARE PROCESS NETWORKS

1 SPLIT(→c ,θP ,θC )
2 for k := 1 to n
3 ADD(→c ∩{(x, y), θP (x) ¿k θC (y)});
4 ADD(→c ∩{(x, y), θP (x) ≈n θC (y)});

5 FIFOIZE((P ,C ,θ,µ))
6 for each channel c
7 {→1

c , . . . ,→n+1
c } := SPLIT(→c ,θPc ,θCc );

8 if fifo(→k
c ,≺θPc

,≺θCc
) ∀k

9 REMOVE(→c );
10 INSERT(→k

c ) ∀k;

Figure 5.11 – Our algorithm for partitioning channels [1]. The algorithm SPLIT produces the depen-
dence partition described on Figure 5.10.(c), for each depth k of the producer schedule θP and the
consumer schedule θC . The dependence partition is kept if each set of the dependence partition has
a FIFO pattern.

transformation while keeping FIFO channels, which is necessary (though not sufficient) to map it
to hardware. We recall the main result, whose proof may be found in [4]:

Theorem 5.3 (Completeness on DPN). Consider a PPN (P ,C ,θ,ω) transformed to a DPN (L ,P ′,S ,C ′)
w.r.t. a tiled schedule θ̂ where each tile is executed with the original execution order (prescribed by
θ). Then, for each channel c ′ ∈C ′ of the DPN: if the original channel in the PPN c = µ(c ′) is a FIFO,
then the split of c ′ will be a FIFO as well.

Limitations on PPN

When the RPN follows the PPN partitioning, there is no guarantee that
the algorithm will always succeed to recover FIFO. The side figure gives
a counter example. We modify the kernel given on Figure 5.1.(a) to ob-
serve a single dependence (t , i ) 7→ (t +2, i −1) on the compute domain
(•) and we keep the same loop tiling. The resulting PPN is almost like
in (c) but with a single compute buffer (4 is kept to solve the depen-
dence, 5,6 are removed). The algorithm will split the dependence in
three parts: the dependences crossing the t hyperplane (partially de-
picted, in green), the dependences crossing the t + i hyperplane (not
depicted) and the dependence totally inside a tile (not depicted). In tile
2, iteration (4,11) is executed before iteration (5,7): (4,11) ≺θ̂ (5,7). But
the dependence target of iterations (4,11) and (5,7) are not executed
in the same order because (5,7) targets tile 5 and (4,11) targets tile 6
(the next tile in the execution order). Hence the in-order property is
not verified and the channel cannot be realized by a FIFO.
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We observe that the algorithm works pretty well for short uniform dependences. However, when
dependences are longer, the target operations reproduce the tile execution pattern, which prevents
to find a FIFO. The same happens when the tile hyperplanes are “too skewed”. Indeed, skewed hy-
perplanes can be viewed as orthogonal hyperplanes modulo a change of basis. When the hyper-
planes are too skewed, the change of basis enlarge the dependence size which produce the same
effect as in the counter-example. The next section will, in particular, assess the capabilities of our
algorithm to recover FIFO on general PPN.
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5.5.5 Experimental evaluation

This section presents the experimental results obtained on the benchmarks of the polyhedral com-
munity. We check the completeness of the algorithm on DPN process networks. Then, we assess
the performances of the algorithm on PPN without DPN partitioning scheme. Finally, we show
how much additional storage is produced by the algorithm.

Experimental setup We have run the algorithm on the kernels of PolyBench/C v3.2 [129]. We
have checked the completeness of the algorithm on PPN with DPN partitioning (Table 5.4), study
the behavior of the algorithm on general PPN, without DPN partitioning (Table 5.5). Each kernel
is tiled to reduce I/O while exposing parallelism [20] and translated both to a PPN and a DPN
using our research compiler, DCC (DPN C Compiler). On the DPN, the process are parallelized
with a degree of p = 2 on each band dimension: for a kernel with a loop tiling of dimension n, each
compute process is split in 2n−1 parallel processes.

Completeness on DPN Table 5.4 checks the completeness of our algorithm on PPN with DPN
partitioning. For each kernel, column #buffers gives the total number of channels after apply-
ing our algorithm, column #fifos gives the total number of FIFO among these channels, the next
columns provide the total size of FIFO channels and the total size of channels (unit: datum). Then,
the next column assess the completeness of the algorithm. To do so, we recall the number of FIFO
c in the original PPN before DPN partitioning and without tiling (#fifo basic). After tiling and DPN
partitioning, each FIFO c is partitioned into several buffers c ′ (µ(c ′) = c). Column #fifo passed gives
the number of original FIFO c such that all target buffers c ′ are directly FIFO: #{c | ∀c ′ : µ(c ′) = c ⇒
c ′ is a FIFO}. No splitting is required for these buffers c ′. Column #fifo fail gives the number of orig-
inal FIFO c such that at least one target buffer c ′ is not a FIFO: #{c | ∃c ′ :µ(c ′) = c ∧c ′ is not a FIFO}.
If all the failing buffers c ′ can be split into FIFO by the algorithm, we say that c has been restored.
The column #fifo restored count the restored FIFO c. Since the algorithm is complete, we expect to
have always #fifo fail = #fifo restored. The last column gives the proportion of FIFO c not restored.
We expect it to be always 0. As predicted, the results confirm the completeness of the algorithm on
DPN partitioning: all the FIFO are restored.

Limits on PPN without DPN partitioning Table 5.5 shows how the algorithm can recover FIFO
on a tiled PPN without the DPN partitioning. The columns have the same meaning as the table
5.4: columns #buffers and #fifos gives the total number of buffers (resp. fifos) after applying the
algorithm. Column #fifo basic give the number of FIFO in the original untiled PPN: we basically
want to recover all these fifos. Among these FIFO buffers: column #fifo passed gives the number
of buffers which are still a FIFO after tiling and column #fifo fail gives the number of FIFO buffer
broken by the tiling. These are the FIFO which need to be recovered by our algorithm. Among these
broken FIFO: column #fifo restored gives the number of FIFO restored by the algorithm and col-
umn % fail gives the ratio of broken FIFO not restored by the algorithm. Since our algorithm is not
complete on general PPN, we expect to find non-restored buffers. This happens for kernels 3mm,
2mm, covariance, correlation, fdtd-2d, jacobi-2d, seidel-2d and heat-3d. For kernels 3mm,
2mm, covariance and correlation, failures are due to the execution order into a tile, which did
not reproduce the original execution order. This is inherently due to the way we derive the loop
tiling. It could be fixed by imposing the intra tile execution order as prerequisite for the tiling al-
gorithm. But then, other criteria (buffer size, throughput, etc) could be harmed: a trade-off needs
to be found. For the remaining kernels: fdtd-2d, jacobi-2d, seidel-2d and heat-3d, failures
are due to tiling hyperplanes which are too skewed. This fall into the counter-example described
above, it is an inherent limitation of the algorithm, and it cannot be fixed by playing on the sched-
ule. The algorithm succeed to recover the all FIFO channels on a significant number of kernels (14
among 22): it happens that these kernels fulfill the conditions expected by the algorithm (short de-
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pendence, tiling hyperplanes not too skewed). Even on the “failing” kernels, the number of FIFO
recovered is significant as well, though the algorithm is not complete: the only exception is the
heat-3d kernel.

Kernel #buffers #fifos total fifo size total size #fifo basic #fifo passed #fifo fail #fifo restored %fail
trmm 12 12 516 516 2 1 1 1 0

gemm 12 12 352 352 2 1 1 1 0
syrk 12 12 8200 8200 2 1 1 1 0

symm 30 30 1644 1644 6 5 1 1 0
gemver 15 13 4180 4196 4 3 1 1 0

gesummv 12 12 96 96 6 6 0 0 0
syr2k 12 12 8200 8200 2 1 1 1 0

lu 45 22 540 1284 3 0 3 3 0
trisolv 12 9 23 47 4 3 1 1 0

cholesky 44 31 801 1129 6 4 2 2 0
doitgen 32 32 12296 12296 3 2 1 1 0

bicg 12 12 536 536 4 2 2 2 0
mvt 8 8 36 36 2 0 2 2 0

3mm 53 43 5024 5664 6 3 3 3 0
2mm 34 28 1108 1492 4 2 2 2 0

covariance 45 24 542 1662 7 4 3 3 0
correlation 71 38 822 2038 13 9 4 4 0

fdtd-2d 120 120 45696 45696 12 5 7 7 0
jacobi-2d 123 123 10328 10328 10 2 8 8 0
seidel-2d 102 102 60564 60564 9 2 7 7 0
jacobi-1d 23 23 1358 1358 6 2 4 4 0

heat-3d 95 95 184864 184864 20 2 18 18 0

Table 5.4 – Detailed results on PPN with DPN execution scheme. The algorithm is complete on DPN:
all the FIFO were recovered (%fail = 0)

Impact on storage requirements The side ta-
ble depicts the additional storage required after
splitting channels. For each kernel, we compare
the cumulative size of channels split and success-
fully turn to a FIFO (size-fifo-fail) to the cumu-
lative size of the FIFOs generated by the split-
ting (size-fifo-split). The size unit is a datum e.g.
4 bytes if a datum is a 32 bits float. We also quan-
tify the additional storage required by split chan-
nels compared to the original channel (∆ := [size-
fifo-split - size-fifo-fail] / size-fifo-fail). It turns out
that the FIFO generated by splitting use mostly
the same data volume than the original channels.
Additional storage resources are due to our sizing
heuristic [5], which rounds channel size to a

kernel size-fifo-fail size-fifo-split ∆

trmm 256 257 0%
gemm 512 288 -44%
syrk 8192 8193 0%
symm 800 801 0%
gemver 32 33 3%
gesummv 0 0
syr2k 8192 8193 0%
lu 528 531 1%
cholesky 273 275 1%
atax 1 1 0%
doitgen 4096 4097 0%
jacobi-2d 8320 8832 6%
seidel-2d 49952 52065 4%
jacobi-1d 1152 1174 2%
heat-3d 148608 158992 7%

power of 2. Surprisingly, splitting can sometimes help the sizing heuristic to find out a smaller
size (kernel gemm), and then reducing the storage requirements. Indeed, splitting decomposes a
channel into channels of a smaller dimension, for which our sizing heuristic is more precise. In
a way, our algorithm allows to find out a nice piecewise allocation function whose footprint is
smaller than a single piece allocation. We plan to exploit this nice side effect in the future.

5.6 Synchronizing non-FIFO communications

When a channel cannot be realized by a FIFO, synchronizations must enforce flow- and anti-
dependences between the producer and the consumer:
– The consumer cannot read a value before it is produced (flow dependence).
– The producer must wait for a storage slot to be freed before writing a value (anti dependence).
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Kernel #buffers #fifos total fifo size total size #fifo basic #fifo passed #fifo fail #fifo restored %fail
trmm 3 3 513 513 2 1 1 1 0

gemm 3 3 304 304 2 1 1 1 0
syrk 3 3 8194 8194 2 1 1 1 0

symm 9 9 821 821 6 3 3 3 0
gemver 8 7 4147 4163 4 2 2 2 0

gesummv 6 6 96 96 6 6 0 0 0
syr2k 3 3 8194 8194 2 1 1 1 0

lu 11 6 531 1091 3 0 3 3 0
trisolv 6 5 20 36 4 3 1 1 0

cholesky 12 9 789 1077 6 3 3 3 0
doitgen 4 4 12289 12289 3 2 1 1 0

bicg 6 6 532 532 4 2 2 2 0
mvt 4 4 34 34 2 0 2 2 0

3mm 10 6 1056 2848 6 2 4 2 50%
2mm 6 4 784 1296 4 2 2 1 50%

covariance 12 8 533 1317 7 4 3 2 33%
correlation 22 15 810 1642 13 9 4 3 25%

fdtd-2d 20 14 10054 36166 12 0 12 6 50%
jacobi-2d 12 4 1153 8385 10 0 10 2 80%
seidel-2d 12 6 803 49955 9 0 9 3 66%
jacobi-1d 13 13 1178 1178 6 1 5 5 0

heat-3d 20 0 0 148608 20 0 20 0 100%

Table 5.5 – Detailed results on PPN. The algorithm is not complete on general PPN: some FIFO were
not recovered (for some kernels, %fail 6= 0).

In the Compaan project, the data flows through a FIFO from the producer process to the consumer
process, where it is stored locally into a reordering buffer, which ensures consumer synchroniza-
tion and correct retrieval of consumer reads. Several realizations of reordering buffers have been
proposed, such as pseudo-polynomial [154] or Content Addressable Memory (CAM) based imple-
mentations [157, 177]. The authors report a negative impact on resource usage and on the overall
throughput. Also, the multiplicity is not handled directly with these implementations: when a data
is read several times, it is up to the consumer to remove the data from the buffer after the last read
[153]. The last read is derived as a subset of the consumer iterations responsible for a last read. It
is a union of convex polyhedra, with as many polyhedra as corner cases. However, this union is
huge when the iterations are tiled (we implemented it), hence none of these implementations are
appropriate for our purpose.

Method First, non-FIFO channels are sized and allocated with the array contraction technique
described in Chapter 4. Then, each channel is equipped with a synchronization unit. Prior to exe-
cute an iteration, a process requests a consumer clearance from the synchronization unit of the read
channel. Then it computes a value and it requests a producer clearance from the synchronization
unit of the written channel (see Figure 5.12).
The synchronization unit is equipped with two predicates: Freeze(P) and Freeze(C) with deduces
from the requested iterations of the producer~iP and the consumer~iC if they can be executed.

Consumer freezing predicate The consumer waits for a data to written by the producer before
reading it:

Freeze(C) ⇐⇒ θP (~iP )
¿= θP (σ(~iC ))

where σ is the source function (giving the producer iteration producing the value to be read). This
forces the consumer to wait for the producer (source) to write the value.

Producer freezing predicate The producer waits for a slot to be freed before overwriting it. Since
~iC cannot be checked easily to be a last read iteration, we use the relaxed predicate:

Freeze(P) ⇐⇒ θC (~iC ) ¿≤d θP (~iP )
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Where d is the depth of the dependence resolved by the channel, w.r.t. θP and θC . This forces the
producer to be scheduled behind the consumer. This way, the value hold by the previous occur-
rence of the dependence will not be over written.

Freeze(P) and Freeze(C) may be expressed with a small affine formula. This gives a very lightweight,
but efficient synchronization apparatus, which can handle any communication pattern.

Figure 5.12 – Synchronization of non-FIFO channels

Kernel Producer efficiency (%) Consumer efficiency (%)
Vector Sum 1024 (tiles 64) 79% 69%

Vector Sum 1024 (tiles 256) 96% 75%
Matrix Sum 1024x1024 (tiles 64×64) 94% 92%
Matrix Multiply 64x64 (tiles 32×32) 4% 98%

Jacobi1D 8x512 (tiles 4×64) 88% 72%
Cholesky 256x256, (tiles 64×64) 90% 98%

Table 5.6 – Average efficiency of synchronization units

Experimental results The synchronizations units have been implemented both on the front-
end DCC and in the Xtremlogic back-end (which derives a verilog description of the circuit). In
our hardware implementation, the processes continuously check the status of the synchronization
units by sending read/write requests until the synchronization unit issues a clearance. Among all
the requests send to a synchronization unit (#cycle_total, one per cycle) some are unsuccessful
(#cycles_freeze, the synchronization unit issues a freeze). This way, we can define the efficiency as:

efficiency = cycles_total−cycles_freeze

cycles_total

Depending on the side where we count the requests and the freezes (from the producer, or from
the consumer), we obtain the producer efficiency and the consumer efficiency.
Table 5.6 depicts the results obtained on 5 kernels with different tile sizes: the sum of two vectors
(Vector Sum), the sum (resp. multiplication) of two matrices (Matrix Sum resp. Matrix Multiply),
the Jacobi-1D stencil encoded as a perfect loop nest (see Figure 5.1.(a), Jacobi1D) and the Cholesky
solver from the benchmark suite PolyBench/C v3.2 [129] (Cholesky). The kernels were tiled along
the lines described in Section 5.3 to amortize the request latency. Then, we measure, through a
RTL simulation, the average efficiency for load channels. For these channels, the producer is a load
process, and the consumer is a compute process. Hence, the important information is the efficiency
on the consumer side, which impacts directly the overall throughput.
For small tiles and low reuse (vector sum, tile 64), the efficiency is degraded because of the pipeline
bubbles in the control part of the channel. For the kernels with high data reuse (Matrix Multiply),
the efficiency of the consumer side is very high, as the tiling enforces data locality. Artificially, the
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producer efficiency is low because of the data reuse (4%). Indeed, the producer (the load process)
needs to wait for the data to be completely reused before issuing new data.

5.7 Conclusion

In this chapter, we have presented the data-aware process networks (DPN), a dataflow interme-
diate representation for HLS which cross fertilizes dataflow parallelism and the data transfer op-
timization method developed in Chapter 4. Like polyhedral process networks, DPN are encom-
passed by regular process networks (RPN), a general family of dataflow intermediate representa-
tions for HLS, which combines the power of computation and communication partitioning, with a
flexible dataflow model of computation. Then, we have presented our contributions to map a DPN
to circuit. We have outlined our algorithms to synthesize the process control, enforce FIFO chan-
nels after a tiling and compile the synchronizations for non-FIFO channels. Apart from DPN, we
have presented a loop scheduling technique to improve the throughput of circuits with pipelined
arithmetic operators. These contributions are practice-oriented: we built a complete front-end C
→ DPN able to produce a DPN from an annotated C kernel. This software is transferred to the
XtremLogic startup and is part of the production HLS compiler.
DPN and more generally RPN opens new opportunities for HLS, since the target features (multi-
FPGA, memory hierarchy) might be addressed with a relevant partitioning, hence a RPN instance.
Also, many challenges must be addressed to map efficiently a DPN to a circuit. In particular, buffers
are duplicated to allow parallel reads, processes are produced from statements in the same loop,
hence with the same control automaton. Thus, factorization techniques are required.
Also, RPN-level scheduling techniques are required, for instance to keep process pipelines busy.
This hits one of the fundamental limits of the polyhedral model, since affine schedules are inher-
ently bounded to fork/join parallelism and cannot express pipelined parallelism. How to extend
polyhedral scheduling to prescribe a dataflow execution is still opened today, despite the recent
progresses with polynomial scheduling.
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6 Conclusion and perspectives

The contributions described in this document addressed the design of compiler algorithms to gen-
erate efficient software and hardware. We leverage the polyhedral model to phrase our algorithms,
and we operate a cross-fertilization between the polyhedral community, nowadays more software
oriented though its systolic roots; and the HLS community, which is progressively acquiring au-
tomatic parallelization techniques from the HPC community. We have implemented entirely our
research results around HLS as a research compiler, DCC, transferred to the start-up XtremLogic
under an Inria License, where it is part of the production HLS compiler.

6.1 Summary of the manuscript

Chapter 2 presents several extensions of loop tiling, a standard loop transformation widely used
in compiler optimizations, in particular in all the contributions described in this document.
We rephrase the polyhedral formulation of loop tiling to enable any polytopic tile shape,
whose size depends on a scaling parameter [25, 26]. The scaling parameter survives the com-
pilation, and may be used at runtime to tune the tile size. Since it is formulated as a polyhe-
dral transformation, and not simply in back-end code generation, it makes possible to reason
about the tile size directly in the polyhedral transformation. Also it makes possible to produce
parametrized programs, tuneable at runtime, which opens the way to partial polyhedral com-
pilation. We also propose a polyhedral formulation to semantic tiling [23], a transformation
increasing the granularity of operations (scalar → matrix). Semantic tiling is used in the nu-
merical community (where it is sometimes referred to as tiling or blocking, though it is not)
to realize the tiles with library functions. This task is automated thereafter.

Chapter 3 builds on the ideas developed in my PhD thesis [2] to refactor a program with a per-
formance library [3, 6, 7, 8, 9]. We leverage our semantic tiling transformation to extract the
subcomputations to be realized by library functions. We address the equivalence checking of
two programs involving reductions [24], this algorithm was finally not used in the framework.
We propose a template matching semi-algorithm and we show how to apply it to reengineer
a semantic tile as a composition of library calls. The whole system has been validated on 4
medium-sized applications. This work is under publication.

Chapter 4 presents an HLS algorithm to optimize the data transfers between an FPGA circuit and
an off-chip memory. In particular, we propose a template of architecture [12, 13] and an algo-
rithm to schedule the data transfers [14, 15] ensuring a maximal communication coalescing,
while hiding the communications with computations. We designed our HLS algorithm as a
source-to-source transformation in front of a mainstream HLS tool, in charge of producing
the circuit. We leverage a loop tiling to improve the data reuse in local memory and to rule
the memory prefetch. This approach allows the future exploration of design trade-offs sim-
ply by playing on the tile size: local memory size for memory traffic, local memory size for
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parallelization degree; thereby it gives a simple way to explore the roofline model of the input
application in search of the optimal operational intensity.

Chapter 5 leverages the ideas behind our I/O system to propose a complete automatic paralleliza-
tion methodology for HLS. Starting from Polyhedral Process Networks (PPN), we propose a
new model of computation, Data-aware Process Networks (DPN), which explicits both par-
allelism and off-chip memory accesses; then we propose a compiler-oriented generalization,
Regular Process Networks (RPN), which encompass many polyhedral parallel intermediate
languages/models of computation (PPN, DPN, CRP) and leads to a general automatic par-
allelization methodology. DPN serves as an intermediate representation in our compiler. In
particular, we propose several compilation algorithms which apply to DPN while being gen-
eral enough to apply to other contexts. We investigate the compilation of the process con-
trol (control compaction [21], single process scheduling [17, 18]), the compilation of chan-
nels (typing [1, 4], allocation/sizing [5], synchronizations [19]). This contribution is practice-
oriented: we built a complete front-end C → DPN able to produce a DPN from an annotated
C kernel. This front-end is transferred to the XtremLogic startup under an Inria license and is
part of the production HLS compiler.

6.2 Future research topics

My contributions promote the cross-fertilization of compiler techniques for high-performance
computing and high-level synthesis techniques. The implementation of HPC applications is a sub-
tle balance between the static part (compiler) and the dynamic part (runtime/OS). Despite the suc-
cess of polyhedral compilation techniques, compiler-based automatic parallelization is still seen
as an unreachable grail. We do believe it is not the case and that time has come to rebalance the
compiler part in the design process. The FPGA technology pushed by industry provides a unique
opportunity to do so, since most configuration decisions must be made statically.

6.2.1 Compiler support for task-level parallelism

This research project is part of a current Inria team proposal at LIP

So far, the polyhedral model addresses fine-grain parallelization at kernel-level. With FPGAs, many
configuration decisions must be made at compile time. Hence the need to increase the compiler
support for exploiting coarse-grain parallelism on multi-FPGA systems. All the aspects of paral-
lelization need to be investigated: decomposition in tasks, intra/inter task scheduling, load balanc-
ing, data transfers & synchronization. These aspects are, as always with compilation, completely
inter-dependent and strongly constrained by the target architecture.
Semantic tiling gives a possible task splitting. However there is no warranty that it will minimize
the data transfer and maximize inner parallelism and data locality. A schedule-driven splitting,
which pushes most of the dependences into a task (similarly to pluto algorithm [53]) is probably a
part of the solution. Scalability issues must also be addressed, as the input application is expected
to be larger than a polyhedral kernel (hundreds rather than tens of lines). Furthermore, the fron-
tier between runtime schedule and compile-time scheduling must be redefined in light of FPGA
constraints. If the application is completely polyhedral, we may imagine a purely static, compile-
time, scheduling. But then we would be bounded by scalability issues. This advocates for mixed
static/dynamic approach. How to use properly the FPGA resources must also be investigated. In
particular the parallelism of kernels must be tuned dynamically to fit the FPGA resources while
ensuring a minimal latency. This raises the question of partial compilation addressed partially by
monoparametric tiling.

Collaborators on this topic: Laure Gonnord (Univ. of Lyon), Ludovic Henrio (CNRS), Matthieu
Moy (Univ. of Lyon).
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6.2.2 HLS-specific dataflow optimizations

This research project is addressed in a “Projet Emergence ENS” with Matthieu Moy, which was ac-
cepted in December 2018. I am the principal investigator of this project.

We want to address the HLS perspectives opened by Data-aware process networks. Historically,
we first addressed a source-to-source HLS approach (Chapter 4) – more suited for academic re-
search – then we moved to a fully integrated approach (Chapter 5) – more viable for a production
compiler. Though the latter will clearly give better results, we are bounded by intellectual property
issues, which prevents us to work directly on XtremLogic back-end. This pushes us to get back to a
source-to-source approach. Hence, the first step is to write a back-end DPN → FPGA via an existing

mainstream HLS tool: DPN → C
HLS−−−→ FPGA. How to feed the HLS tool with a C implementation of

a DPN so the main features (dataflow execution, parallelism, FIFO channels, I/O) are conveyed by
the HLS process is quite challenging but reachable.
DPN is an intermediate representation, not a circuit. Hence, optimization passes are required be-
fore obtaining a reasonable circuit. Some may even be applied by default by the HLS tool itself.
The first point is the elimination of redundancies induced by the DPN model itself: buffers are
duplicated to allow parallel reads, processes are produced from statements in the same loop and
thus with the same control automaton. We plan to study how these constructs can be factorized at
C-level and to design the appropriate DPN-to-C translation algorithms.
Also, we want to develop DPN-level analyses and transformations to quantify the optimal reach-
able throughput and to reach it. We expect DPN-style parallelism to increase the throughput, but in
turn it may require an operational intensity beyond the optimal point of the FPGA roofline model.
Our scheduling algorithm for perfect loop nests [18] is a good starting point. We will assess the
trade-offs, build the cost-models, and the relevant dataflow transformations.

Collaborators on this topic: Matthieu Moy (Univ. Lyon)

6.2.3 Scaling the polyhedral model

This research project is part of an on-going eureka celtic-plus proposal.

One of the biggest challenges with the polyhedral model is the space complexity of intermedi-
ate representations. Two operations usually lead in a complexity explosion: subtraction of convex
polyhedra and operations between piece-wise affine functions (e.g. min,max). With DPNs, this
translates to a complex control which may jeopardize the compilation. In our DCC compiler, we
managed to reduce that complexity with a myriad of tricks. This made it possible to pass all the
polybenchs kernels (even heat-3d). Nontheless, the issue arises each time a new polyhedral algo-
rithm is developed. hence the need to find general solutions.
We believe that laziness is the solution! Instead of computing a closed form at compile-time, we let
the runtime evaluate it on demand. But then, how to compose with lazy values is an open problem,
somehow related to partial compilation. A good starting point is to study how the monoparametric
tiling transformation may be expressed in a lazy manner, while staying polyhedral. Another way is
to explore how on-the-fly evaluation can reduce the complexity of the control. A good starting
point is the control required for the load process (which fetches data from off-chip memory). If we
want to avoid multiple load of the same data, the FSM (Finite State Machine) of the load process
might be very complex. We believe that dynamic construction of the load set (set of data to load
from the main memory) will use less silicon than an FSM with large piecewise affine functions
computed statically.

Collaborators on this topic: David Castell-Rufas (U. of Barcelona)
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A Further Contributions

This appendix summarizes some of our contributions not described in the manuscript. Section A.1
gives a brief summary of our contributions to termination analysis (basically, checking if a program
with while loops terminates, then bound the computational complexity). Then, we outline briefly
our post-doc contributions in Section A.3 and Section A.2.

A.1 Termination analysis [10, 11, 16, 22]

Ranking method In [10], we have proposed a program analysis to check the termination of a
program encoded as an integer interpreted automata (See Definition 3.1). To do so, we synthesize
a ranking function: a reverted scheduling function which decreases in a well founded set each time
a transition is fired. If such a function can be derived, then the program terminates.
The technique is simple: we reinterpret the integer interpreted automata as a PRDG (state → state-
ment, transition → dependence), then we derive an affine schedule [83] while reverting the causal-
ity constraint: if (~vp ,~vq ) ∈ Fp,q , then rankq (~vq ) ¿ rankp (~vp ). The difficulty is to associate an itera-
tion domain (an invariant) to each state of the automata. To do so, we use linear relation analysis
based on abstract interpretation techniques [89].
When the invariant is not precise enough, no ranking function is found, and we cannot conclude.
We also propose a method to infer the program complexity based on polyhedron counting tech-
niques [62].

Extensions In [22], we extended this technique in a scalable and modular way. The program to
analyse is reduced to the smallest relevant subset through a termination-specific slicing technique.
Then, the program is divided into pieces of code that are analyzed separately, thanks to an external
engine for termination.

B Software: RANK. We have implemented these techniques in a tool called Rank a [11]. Aside
these techniques, Rank features a non-termination analysis: in some cases, Rank can infer
an input causing the program to loop.

a. Rank is available at http://compsys-tools.ens-lyon.fr/rank and can be tried online

Monotone interpretation method We show in [16] how monotone interpretations – a termina-
tion analysis technique for term rewriting systems – can be used to assess the inherent parallelism
of recursive programs manipulating inductive data structures. As a side effect, we show how mono-
tone interpretations specify a parallel execution order, and how our approach extends naturally
affine scheduling to recursive programs.
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A.2 SSA-form with array regions [28]

Program optimization requires a representation of data dependences. Historically, the SSA-form
has been introduced as a representation of program dependences to enable pseudo-code opti-
mization. Then, SSA-form moved to back-end passes, from instruction selection [79] to register
allocation where it boils down to optimal algorithms [96] thanks to the properties induced on the
interference graph.
A SSA-form called region array SSA is proposed, which explicits the data flow across array vari-
ables by adding array regions in the annotation. The φ functions explicit the source array regions
and can be view as a relaxed version of array dataflow analysis. The array regions are parametrized
by dynamic informations (e.g. if x>0 then D1 else D2), which was intended to ease the con-
struction of runtime parallelization algorithms. We implemented the region array SSA form in the
Polaris compiler.

A.3 Automatic vectorization [27]

Modern computer architectures features arithmetic instructions operating on vectors. Often, the
load instructions assume an alignment of the vectors in memory. If not, expensive reorganization
operations are required to set properly the vector registers.
This property may be enforced by reorganizing the data layout of arrays while rescheduling the
computation. But still, there remains to generate the code with vector instructions, which is chal-
lenging as the parallelism is sometimes not sufficient to fill out full vectors. We have proposed a
polyhedral algorithm to extract the complete – full – vector operations and to produce the final
vector code.
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Résumé

Depuis la fin de la loi de Dennard, les performances des superordinateurs sont limitées par leur
consommation énergétique. Les accélérateurs matériels ont été introduits pour améliorer les per-
formances sous un budget énergétique limité. Ce faisant, les superordinateurs sont devenus des
plateformes hétérogènes où des processeurs multicoeurs cohabitent avec des circuits reconfig-
urables (FPGA, CGRA) et des accélérateurs graphiques (GPU). Programmer de tels ordinateurs, et
notamment configurer les circuits FPGA est un défi qui ne peut être relevé qu’avec des modèles et
des algorithmes de compilation adaptés. C’est tout l’enjeu de nos travaux de recherche au cours la
dernière décennie, dont ce document présente une synthèse.

Un premier chapitre décrit nos contributions au tuilage de boucles, une transformation fondamen-
tale pour la parallélisation automatique, qui découpe le calcul en sous-calculs atomiques appelés
tuiles. Nous reformulons le tuilage de boucles dans le modèle polyédrique pour permettre n’im-
porte tuile polytopique dont la taille dépend d’un facteur homothétique (tuilage monoparamétrique),
et nous décrivons une transformation de tuilage pour des programmes avec des réductions – une
accumulation selon un opérateur associative et commutatif. Nos résultats ouvrent la voie à des
transformations de programme sémantiques; qui ne préservent pas le calcul, mais produisent un
programme équivalent.

Un second chapitre décrit nos contributions à la reconnaissance d’algorithmes. Une optimisation
de compilateur ne remplacera jamais un bon algorithme, d’où l’idée de reconnaître les instances
d’un algorithme dans un programme et de les substituer par un appel vers une bibliothèque haute-
performance, chaque fois que c’est possible et utile. Dans notre thèse, nous avons traité la recon-
naissance de templates – des fonctions avec des variables d’ordre 1 – dans un programme et son
application à l’optimisation de programes. Nous proposons une approche complémentaire qui
s’appuie sur notre tuilage monoparamétrique complété par une transformation pour tuiler les
réductions. Ceci automatise le tuilage sémantique, une nouvelle transformation sémantique qui
augmente le grain des opérateurs (scalaire → matrice).

Un troisième chapitre présente nos contributions à la synthèse des communications avec une mé-
moire off-chip dans le contexte de la synthèse de circuits haut-niveau (High-Level Synthesis, HLS).
Nous proposons un modèle d’exécution basé sur le tuilage de boucles, une architecture pipelinée
et un algorithme de compilation source-à-source qui, connecté à l’outil de HLS C2H d’Altera, pro-
duit une configuration de circuit FPGA qui réalise un volume minimal de transferts de données.
Notre algorithme est optimal – les données sont chargées le plus tard possible et stockées le plus
tôt possible, avec une réutilisation maximale et sans redondances.

Enfin, un quatrième chapitre présente nos contributions pour construire un modèle de compila-
tion complet pour la synthèse de circuits haut-niveau. Nous présentons les réseaux de processus
DPN (Data-aware Process Networks), une représentation intermédiaire dataflow qui s’appuie sur
les idées développées au chapitre 3 pour expliciter les transferts de données entre le circuit et la
mémoire off-chip. Nous proposons une suite d’algorithmes pour compiler un DPN à partir d’un
programme séquentiel et pour synthétiser un DPN en circuit. En particulier, nous présentons nos
algorithmes pour compiler le contrôle, les canaux et les synchronisations d’un DPN. Ces résultats
sont utilisés dans le compilateur de production de la start-up XtremLogic.
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Summary

Since the end of Dennard scaling, power efficiency is the limiting factor for large-scale computing.
Hardware accelerators such as reconfigurable circuits (FPGA, CGRA) or Graphics Processing Units
(GPUs) were introduced to improve the performance under a limited energy budget, resulting into
complex heterogeneous platforms. This document presents a synthetic description of our research
activities over the last decade on compilers for high-performance computing and high-level syn-
thesis of circuits (HLS) for FPGA accelerators.

A first chapter describes our contributions to loop tiling, a key program transformation for au-
tomatic parallelization which splits the computation atomic blocks called tiles. We rephrase loop
tiling in the polyhedral model to enable any polyhedral tile shape whose size depends on a single
parameter (monoparametric tiling), and we present a tiling transformation for programs with re-
ductions – accumulations w.r.t. an associative/commutative operator. Our results open the way for
semantic program transformations; program transformations which does not preserve the compu-
tation but still lead to an equivalent program.

A second chapter describes our contributions to algorithm recognition. A compiler optimization
will never replace a good algorithm, hence the idea to recognize algorithm instances in a program
and to substitute them by a call to a performance library. In our PhD thesis, we have addressed
the recognition of templates – functions with first-order variables – into programs and its appli-
cation to program optimization. We propose a complementary algorithm recognition framework
which leverages our monoparametric tiling and our reduction tiling transformations. This auto-
mates semantic tiling, a new semantic program transformation which increases the grain of oper-
ators (scalar → matrix).

A third chapter presents our contributions to the synthesis of communications with an off-chip
memory in the context of high-level circuit synthesis (HLS). We propose an execution model based
on loop tiling, a pipelined architecture and a source-level compilation algorithm which, connected
to the C2H HLS tool from Altera, ends up to a FPGA configuration with minimized data transfers.
Our compilation algorithm is optimal – the data are loaded as late as possible and stored as soon
as possible with a maximal reuse.

A fourth chapter presents our contributions towards a complete compilation model for high-level
circuit synthesis in the polyhedral model. We present the Data-aware Process Networks (DPN), a
dataflow intermediate representation which leverages the ideas developed in chapter 3 to explicit
the data transfers with an off-chip memory. We propose an algorithm to compile a DPN from a
sequential program, and we present our contribution to the synthesis of DPN to a circuit. In par-
ticular, we present our algorithms to compile the control, the channels and the synchronizations
of a DPN. These results are used in the production compiler of the Xtremlogic start-up.
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