?. E. Izquierdo, M. Dufour, A. Chu, C. Livache, B. Martinez et al., Coupled HgSe colloidal quantum wells through a tunable barrier: a strategy to uncouple optical and transport band gap, Chemistry of Materials, vol.30, pp.4065-4072
URL : https://hal.archives-ouvertes.fr/hal-01797591

?. N. Goubet, C. Livache, B. Martinez, X. Z. Xu, S. Ithurria et al., Wave-function engineering in HgSe/HgTe colloidal heterostructures to enhance mid-infrared photoconductive properties, Nano Letters, vol.18, pp.4590-4597

?. A. Jagtap, N. Goubet, C. Livache, A. Chu, B. Martinez et al., Shortwave infrared devices based on HgTe nanocrystals with air stable performances, vol.122, pp.14979-14985

?. J. Qu, N. Goubet, C. Livache, B. Martinez, D. Amelot et al., Intraband mid-infrared transitions in Ag 2 Se nanocrystals: potential and limitations for Hg-free low-cost photodetection, the, Journal of Physical Chemistry C, vol.122, pp.18161-18167

?. A. Jagtap, B. Martinez, N. Goubet, A. Chu, C. Livache et al., Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode, ACS Photonics, vol.5, pp.4569-4576

?. B. Martinez, C. Livache, E. Meriggio, X. Z. Xu, H. Cruguel et al., Polyoxometalate as control agent for the doping in HgSe self-doped nanocrystals, the, Journal of Physical Chemistry C, vol.122, pp.26680-26685
URL : https://hal.archives-ouvertes.fr/hal-01908222

?. C. Gréboval, E. Izquierdo, C. Livache, B. Martinez, M. Dufour et al., Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals, Nanoscale, vol.11, pp.3905-3915

?. M. Dufour, E. Izquierdo, C. Livache, B. Martinez, M. Silly et al., Doping as a strategy to tune color of 2D colloidal nanoplatelets, ACS Applied Materials and Interfaces, vol.11, pp.10128-10134

?. J. Qu, C. Livache, B. Martinez, C. Gréboval, A. Chu et al., Transport in ITO Nanocrystals with Short-to Long-Wave Infrared Absorption for Heavy-Metal-Free Infrared Photodetection, ACS Applied Nano Materials, vol.2, issue.3, pp.1621-1630
URL : https://hal.archives-ouvertes.fr/hal-02043472

?. C. Livache, B. Martinez, N. Goubet, C. Gréboval, J. Qu et al., A random colloidal quantum dot infrared photodetector and its use for intraband detection, Nature Communications, vol.10, p.2125

?. B. Martinez, J. Ramade, C. Livache, N. Goubet, A. Chu et al., HgTe nanocrystal inks for extended short wave infrared detection, Effect of pressure on interband and intraband transition of mercury chalcogenides quantum dots, Advanced Optical Materials, 1900348.

?. C. Livache, N. Goubet, C. Gréboval, B. Martinez, J. Ramade et al., Effect of Bibliographie 1. Faraday Michael, X. The Bakerian Lecture. -Experimental relations of gold (and other metals) to light, Philos. Trans. R. Soc. Lond, vol.147, pp.145-181, 1857.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys, vol.330, pp.377-445, 1908.

C. Delerue and D. Vanmaekelbergh, Electronic band structure of zinc blende CdSe and rock salt PbSe semiconductors with silicene-type honeycomb geometry. 2D Mater, vol.2, p.34008, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02906823

R. Benchamekh, N. A. Gippius, J. Even, M. O. Nestoklon, J. Jancu et al., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe, Phys. Rev. B, vol.89, p.35307, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942566

C. Kittel, Théorie quantique du solide, 1967.

R. Hill, Energy-gap variations in semiconductor alloys, J. Phys. C Solid State Phys, vol.7, pp.521-526, 1974.

A. Sadao, GaAs And Related Materials, 1994.

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, pp.149-154, 1967.

V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, 2003.

V. Rinnerbauer, K. Hingerl, M. Kovalenko, and W. Heiss, Effect of quantum confinement on higher transitions in HgTe nanocrystals, Appl. Phys. Lett, vol.89, p.193114, 2006.

N. Goubet, A. Jagtap, C. Livache, B. Martinez, H. Portalès et al., Terahertz HgTe Nanocrystals: Beyond Confinement, J. Am. Chem. Soc, vol.140, pp.5033-5036, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01764916

J. M. Pietryga, Y. Park, J. Lim, A. F. Fidler, W. K. Bae et al., Spectroscopic and Device Aspects of Nanocrystal Quantum Dots, Chem. Rev, vol.116, pp.10513-10622, 2016.

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc, vol.115, pp.8706-8715, 1993.

J. Jasieniak, L. Smith, J. Van-embden, P. Mulvaney, and M. Califano, Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots, J. Phys. Chem. C, vol.113, pp.19468-19474, 2009.

M. A. Hines and P. Guyot-sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem, vol.100, pp.468-471, 1996.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, Chemistry of InP Nanocrystal Syntheses, vol.28, pp.2491-2506, 2016.

J. L. Stein, E. A. Mader, and B. M. Cossairt, Luminescent InP Quantum Dots with Tunable Emission by Post-Synthetic Modification with Lewis Acids, J. Phys. Chem. Lett, vol.7, pp.1315-1320, 2016.

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent et al., Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, vol.15, pp.5635-5640, 2015.

B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 2014.

M. A. Hines and G. D. Scholes, Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution, Adv. Mater, vol.15, pp.1844-1849, 2003.

Y. Pan, Y. R. Li, Y. Zhao, and D. L. Akins, Synthesis and Characterization of Quantum Dots: A Case Study Using PbS, J. Chem. Educ, vol.92, pp.1860-1865, 2015.

B. Martinez, C. Livache, L. D. Notemgnou-mouafo, N. Goubet, S. Keuleyan et al.,

J. Lobo, E. Dayen, and . Lhuillier, HgSe Self-Doped Nanocrystals as a Platform to Investigate the Effects of Vanishing Confinement, ACS Appl. Mater. Interfaces, vol.9, pp.36173-36180, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01597949

G. Allan and C. Delerue, Tight-binding calculations of the optical properties of HgTe nanocrystals, Phys. Rev. B, vol.86, p.165437, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787874

A. Jagtap, B. Martinez, N. Goubet, A. Chu, C. Livache et al., Design of a Unipolar Barrier for a Nanocrystal-Based Short-Wave Infrared Photodiode, ACS Photonics, vol.5, pp.4569-4576, 2018.

A. Mcworhter, 1/f noise nd related surface effects in Germanium, 1955.

F. N. Hooge and A. M. Hoppenbrouwers, 1/? noise in continuous thin gold films, Physica, vol.45, pp.386-392, 1969.

Y. Lai, H. Li, D. K. Kim, B. T. Diroll, C. B. Murray et al., Low-Frequency (1/f) Noise in Nanocrystal Field-Effect Transistors, ACS Nano, vol.8, pp.9664-9672, 2014.

J. F. Stephany, Origin of 1/f noise, J. Appl. Phys, vol.46, pp.665-667, 1975.

M. Jiang, X. Cao, S. Bao, H. Zhou, and P. Jin, Regulation of the phase transition temperature of VO2 thin films deposited by reactive magnetron sputtering without doping, Thin Solid Films, vol.562, pp.314-318, 2014.

A. Rogalski, Infrared detectors: an overview, Infrared Phys. Technol, vol.43, pp.187-210, 2002.

D. W. Palmer, , 2003.

A. Nag, M. V. Kovalenko, J. Lee, W. Liu, B. Spokoyny et al., HTe-, TeS32-, OH-, and NH2-as Surface Ligands, Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2-, HS-, Se2-, HSe-, Te2, vol.133, pp.10612-10620, 2011.

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-sionnest, Mid-infrared HgTe colloidal quantum dot photodetectors, Nat. Photonics, vol.5, pp.489-493, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01438551

G. M. Dalpian and J. R. Chelikowsky, Self-Purification in Semiconductor Nanocrystals, Phys. Rev. Lett, vol.96, p.226802, 2006.

M. Amelia, C. Lincheneau, S. Silvi, and A. Credi, Electrochemical properties of CdSe and CdTe quantum dots, Chem. Soc. Rev, vol.41, pp.5728-5743, 2012.

N. P. Osipovich, S. K. Poznyak, V. Lesnyak, and N. Gaponik, Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots, Phys. Chem. Chem. Phys, vol.18, pp.10355-10361, 2016.

S. K. Poznyak, N. P. Osipovich, A. Shavel, D. V. Talapin, M. Gao et al., Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution, J. Phys. Chem. B, vol.109, pp.1094-1100, 2005.

M. Chen and P. Guyot-sionnest, Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films, ACS Nano, vol.11, pp.4165-4173, 2017.

C. Wang, M. Shim, and P. Guyot-sionnest, Electrochromic Nanocrystal Quantum Dots. Science, vol.291, pp.2390-2392, 2001.

J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys, vol.69, pp.327-396, 2005.

E. Lhuillier, S. Ithurria, A. Descamps-mandine, T. Douillard, R. Castaing et al.,

P. Taberna, H. Simon, B. Aubin, and . Dubertret, Investigating the n-and p-Type Electrolytic Charging of Colloidal Nanoplatelets, J. Phys. Chem. C, vol.119, pp.21795-21799, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01476148

B. Martinez, C. Livache, N. Goubet, A. Jagtap, H. Cruguel et al., Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystals, J. Phys. Chem. C, vol.122, pp.859-865, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01668080

H. Henck, D. Pierucci, J. Chaste, C. H. Naylor, J. Avila et al., Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse, Appl. Phys. Lett, vol.109, p.113103, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438654

E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, and B. Dubertret, Electrolyte-Gated Colloidal Nanoplatelets-Based Phototransistor and Its Use for Bicolor Detection, Nano Lett, vol.14, pp.2715-2719, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01438564

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin et al., Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz, Nano Lett, vol.16, pp.1282-1286, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01418828

A. C. Thompson, D. T. Attwood, E. M. Gullikson, M. R. Howells, J. B. Kortright et al., , 2009.

S. Keuleyan, E. Lhuillier, and P. Guyot-sionnest, Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection, J. Am. Chem. Soc, vol.133, pp.16422-16424, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01438554

A. Robin, C. Livache, S. Ithurria, E. Lacaze, B. Dubertret et al., Surface Control of Doping in Self-Doped Nanocrystals, ACS Appl. Mater. Interfaces, vol.8, pp.27122-27128, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438644

J. Jeong, B. Yoon, Y. Kwon, D. Choi, and K. S. Jeong, Singly and Doubly Occupied Higher Quantum States in Nanocrystals, Nano Lett, vol.17, pp.1187-1193, 2017.

E. Lhuillier, S. Keuleyan, and P. Guyot-sionnest, Optical properties of HgTe colloidal quantum dots, Nanotechnology, vol.23, p.175705, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01438566

Z. Deng, K. S. Jeong, and P. Guyot-sionnest, Colloidal Quantum Dots Intraband Photodetectors, vol.8, pp.11707-11714, 2014.

N. F. Mott, Metal-Insulator Transition, Rev. Mod. Phys, vol.40, pp.677-683, 1968.
URL : https://hal.archives-ouvertes.fr/jpa-00209009

H. Fu, K. V. Reich, and B. I. Shklovskii, Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals, Phys. Rev. B, vol.93, p.125430, 2016.

T. Chen, K. V. Reich, N. J. Kramer, H. Fu, U. R. Kortshagen et al., Metal-insulator transition in films of doped semiconductor nanocrystals, Nat. Mater, vol.15, pp.299-303, 2016.

J. Qu, C. Livache, B. Martinez, C. Greboval, A. Chu et al., Transport in ITO Nanocrystals with Short-to Long-Wave Infrared Absorption for Heavy Metal-Free Infrared Photodetection, ACS Appl. Nano Mater, vol.2, pp.1621-1630, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02043472

M. K. Taha, O. Boisron, B. Canut, P. Melinon, J. Penuelas et al., Control of the compensating defects in Al-doped and Ga-doped ZnO nanocrystals for MIR plasmonics, RSC Adv, vol.7, pp.28677-28683, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01964749

S. Einfeldt, F. Goschenhofer, C. R. Becker, and G. Landwehr, Optical properties of HgSe, Phys. Rev. B, vol.51, pp.4915-4925, 1995.

A. M. Schimpf, N. Thakkar, C. E. Gunthardt, D. J. Masiello, and D. R. Gamelin, Charge-Tunable Quantum Plasmons in Colloidal Semiconductor Nanocrystals, vol.8, pp.1065-1072, 2014.

G. Shen and P. Guyot-sionnest, HgS and HgS/CdS Colloidal Quantum Dots with Infrared Intraband Transitions and Emergence of a Surface Plasmon, J. Phys. Chem. C, vol.120, pp.11744-11753, 2016.

T. B. Tran, I. S. Beloborodov, X. M. Lin, T. P. Bigioni, V. M. Vinokur et al., Multiple Cotunneling in Large Quantum Dot Arrays, Phys. Rev. Lett, vol.95, p.76806, 2005.

H. Moreira, Q. Yu, B. Nadal, B. Bresson, M. Rosticher et al., Electron Cotunneling Transport in Gold Nanocrystal Arrays, Phys. Rev. Lett, vol.107, p.176803, 2011.

P. Guyot-sionnest, Electrical Transport in Colloidal Quantum Dot Films, J. Phys. Chem. Lett, vol.3, pp.1169-1175, 2012.

C. M. Chuang, A. Maurano, R. E. Brandt, G. W. Hwang, J. Jean et al., Open-Circuit Voltage Deficit, Radiative Sub-Bandgap States, and Prospects in Quantum Dot Solar Cells, Nano Lett, vol.15, pp.3286-3294, 2015.

P. Guyot-sionnest, E. Lhuillier, and H. Liu, A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states, J. Chem. Phys, vol.137, p.154704, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01438575

C. Main and D. Nesheva, Transient Photocurrent Techniques as a Means of Characterising Amorphous Semiconductors, J. Optoelectron. Adv. Mater, vol.3, pp.655-664, 2001.

J. Orenstein, M. A. Kastner, and V. Vaninov, Transient photoconductivity and photo-induced optical absorption in amorphous semiconductors, Philos. Mag. Part B, vol.46, pp.23-62, 1982.

J. Orenstein and M. Kastner, Photocurrent Transient Spectroscopy: Measurement of the Density of Localized States in -As2Se3, Phys. Rev. Lett, vol.46, pp.1421-1424, 1981.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu et al., Colloidalquantum-dot photovoltaics using atomic-ligand passivation, Nat. Mater, vol.10, pp.765-771, 2011.

A. T. Fafarman, W. Koh, B. T. Diroll, D. K. Kim, D. Ko et al., Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids, J. Am. Chem. Soc, vol.133, pp.15753-15761, 2011.

E. Lhuillier, S. Keuleyan, P. Zolotavin, and P. Guyot-sionnest, Mid-Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors, vol.25, pp.137-141, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01438562

M. Dufour, E. Izquierdo, C. Livache, B. Martinez, M. G. Silly et al., Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets, ACS Appl. Mater. Interfaces, vol.11, pp.10128-10134, 2019.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy et al., Doping semiconductor nanocrystals, Nature, vol.436, pp.91-94, 2005.

A. Sahu, M. S. Kang, A. Kompch, C. Notthoff, A. W. Wills et al.,

D. J. Frisbie and . Norris, Electronic Impurity Doping in CdSe Nanocrystals, Nano Lett, vol.12, pp.2587-2594, 2012.

D. J. Norris, A. L. Efros, and S. C. Erwin, Doped Nanocrystals. Science, vol.319, pp.1776-1779, 2008.

M. K. Hamza, J. Bluet, K. Masenelli-varlot, B. Canut, O. Boisron et al., Tunable mid IR plasmon in GZO nanocrystals, Nanoscale, vol.7, pp.12030-12037, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01965002

J. Qu, N. Goubet, C. Livache, B. Martinez, D. Amelot et al., Intraband Mid-Infrared Transitions in Ag2Se Nanocrystals: Potential and Limitations for Hg-Free Low-Cost Photodetection, J. Phys. Chem. C, vol.122, pp.18161-18167, 2018.

A. H. Nethercot, Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts, Phys. Rev. Lett, vol.33, pp.1088-1091, 1974.

C. Livache, E. Izquierdo, B. Martinez, M. Dufour, D. Pierucci et al., Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells, Nano Lett, vol.17, pp.4067-4074, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541341

P. Guyot-sionnest and M. A. Hines, Intraband transitions in semiconductor nanocrystals, Appl. Phys. Lett, vol.72, pp.686-688, 1998.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi et al., Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange, ACS Nano, vol.8, pp.5863-5872, 2014.

D. M. Kroupa, M. Vörös, N. P. Brawand, B. W. Mcnichols, E. M. Miller et al., Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification, Nat. Commun, vol.8, p.15257, 2017.

C. M. Chuang, P. R. Brown, V. Bulovi?, and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater, vol.13, pp.796-801, 2014.

K. S. Jeong, Z. Deng, S. Keuleyan, H. Liu, and P. Guyot-sionnest, Air-Stable n-Doped Colloidal HgS Quantum Dots, J. Phys. Chem. Lett, vol.5, pp.1139-1143, 2014.

S. Yang, D. Prendergast, and J. B. Neaton, Tuning Semiconductor Band Edge Energies for Solar Photocatalysis via Surface Ligand Passivation, Nano Lett, vol.12, pp.383-388, 2012.

B. Boer, A. Hadipour, M. M. Mandoc, T. Van-woudenbergh, and P. W. Blom, Tuning of Metal Work Functions with Self-Assembled Monolayers, Adv. Mater, vol.17, pp.621-625, 2005.

Z. Deng and P. Guyot-sionnest, Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots, ACS Nano, vol.10, pp.2121-2127, 2016.

C. Rocchiccioli-deltcheff, M. Fournier, R. Franck, and R. Thouvenot, Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in Molybdenum(VI) and Tungsten(VI) compounds related to the Keggin structure, Inorg. Chem, vol.22, pp.207-216, 1983.

P. Souchay, Polyanions and polycations, 1963.

L. Huder, C. Rinfray, D. Rouchon, A. Benayad, M. Baraket et al., Evidence for Charge Transfer at the Interface between Hybrid Phosphomolybdate and Epitaxial Graphene, Langmuir, vol.32, pp.4774-4783, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01700875

M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev, vol.98, pp.219-238, 1998.

J. Huang, W. Liu, D. S. Dolzhnikov, L. Protesescu, M. V. Kovalenko et al., Surface Functionalization of Semiconductor and Oxide Nanocrystals with Small Inorganic Oxoanions (PO43-, MoO42-) and Polyoxometalate Ligands, ACS Nano, vol.8, pp.9388-9402, 2014.

K. T. Ng and D. M. Hercules, XPS studies of oxides of row transition metals of W, J. Phys. Chem. C, vol.80, p.2095, 1976.

G. E. Mcguire, G. K. Schweitzer, and T. A. Carlson, Core electron binding energies in some Group IIIA, VB, and VIB compounds, Inorg. Chem, vol.12, pp.2450-2453, 1973.

S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet et al., Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films, Chem. Mater, vol.25, pp.2455-2462, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01438558

M. Shim and P. , Guyot-Sionnest, n-type colloidal semiconductor nanocrystals, Nature, vol.407, pp.981-983, 2000.

W. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel et al., Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene, Sci. Rep, vol.3, 2004.

N. Goubet, C. Livache, B. Martinez, X. Z. Xu, S. Ithurria et al., Wave-Function Engineering in HgSe/HgTe Colloidal Heterostructures To Enhance Mid-infrared Photoconductive Properties, Nano Lett, vol.18, pp.4590-4597, 2018.

M. E. Cryer and J. E. Halpert, 300 nm Spectral Resolution in the Mid-Infrared with Robust, High Responsivity Flexible Colloidal Quantum Dot Devices at Room Temperature, ACS Photonics, vol.5, pp.3009-3015, 2018.

M. Böberl, M. V. Kovalenko, S. Gamerith, E. J. List, and W. Heiss, Inkjet-Printed Nanocrystal Photodetectors Operating up to 3 ?m Wavelengths, Adv. Mater, vol.19, pp.3574-3578, 2007.

J. P. Clifford, K. W. Johnston, L. Levina, and E. H. Sargent, Schottky barriers to colloidal quantum dot films, Appl. Phys. Lett, vol.91, p.253117, 2007.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese et al., Schottky Solar Cells Based on Colloidal Nanocrystal Films, Nano Lett, vol.8, pp.3488-3492, 2008.

L. Chang, R. R. Lunt, P. R. Brown, V. Bulovi?, and M. G. Bawendi, Low-Temperature Solution-Processed Solar Cells Based on PbS Colloidal Quantum Dot/CdS Heterojunctions, Nano Lett, vol.13, pp.994-999, 2013.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang et al., Quantum Junction Solar Cells, Nano Lett, vol.12, pp.4889-4894, 2012.

A. G. Pattantyus-abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos et al., Depleted-Heterojunction Colloidal Quantum Dot Solar Cells, ACS Nano, vol.4, pp.3374-3380, 2010.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna et al., Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model, Nano Lett, vol.8, pp.3904-3910, 2008.

J. Gao, J. M. Luther, O. E. Semonin, R. J. Ellingson, A. J. Nozik et al., Quantum Dot Size Dependent J?V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells, Nano Lett, vol.11, pp.1002-1008, 2011.

K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, and E. S. , Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films, ACS Nano, vol.3, pp.3638-3648, 2009.

E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells, Sci. Adv, vol.3, p.4204, 2017.

B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou et al., Surface passivation engineering strategy to fully-inorganic cubic CsPbI 3 perovskites for high-performance solar cells, Nat. Commun, vol.9, p.1076, 2018.

M. A. Green, A. Ho-baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nat. Photonics, vol.8, pp.506-514, 2014.

H. Chen, S. Xiang, W. Li, H. Liu, L. Zhu et al., Inorganic Perovskite Solar Cells: A Rapidly Growing Field, Sol. RRL, vol.2, p.1700188, 2018.

E. H. Sargent, Solar Cells, Photodetectors, and Optical Sources from Infrared Colloidal Quantum Dots, Adv. Mater, vol.20, pp.3958-3964, 2008.

O. E. Semonin, J. M. Luther, S. Choi, H. Chen, J. Gao et al., Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell, Science, vol.334, pp.1530-1533, 2011.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov et al., Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots, J. Am. Chem. Soc, vol.126, pp.11752-11753, 2004.

P. Guyot-sionnest and J. A. Roberts, Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots, Appl. Phys. Lett, vol.107, p.253104, 2015.

M. V. Kovalenko, M. Scheele, and D. V. Talapin, Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands. Science, vol.324, pp.1417-1420, 2009.

Z. Ning, H. Dong, Q. Zhang, O. Voznyy, and E. H. Sargent, Solar Cells Based on Inks of n-Type Colloidal Quantum Dots, ACS Nano, vol.8, pp.10321-10327, 2014.

A. A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley et al., Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection, ACS Nano, vol.11, pp.5547-5557, 2017.

Y. Zhang, G. Wu, C. Ding, F. Liu, Y. Yao et al., Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy, J. Phys. Chem. Lett, pp.3598-3603, 2018.

M. Yuan, M. Liu, and E. H. Sargent, Colloidal quantum dot solids for solution-processed solar cells, Nat. Energy, vol.1, p.16016, 2016.

D. M. Balazs, N. Rizkia, H. Fang, D. N. Dirin, J. Momand et al., Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal, ACS Appl. Mater. Interfaces, vol.10, pp.5626-5632, 2018.

J. Kim, O. Ouellette, O. Voznyy, M. Wei, J. Choi et al., Butylamine-Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells, Adv. Mater, p.1803830, 2018.

A. Jagtap, N. Goubet, C. Livache, A. Chu, B. Martinez et al., Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances, J. Phys. Chem. C, vol.122, pp.14979-14985, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01811285

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp et al., Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime, Nat. Commun, vol.5, p.3803, 2014.

S. Ghosh and L. Manna, The Many "Facets" of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals, Chem. Rev, vol.118, pp.7804-7864, 2018.

M. M. Ackerman, X. Tang, and P. Guyot-sionnest, Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors, ACS Nano, vol.12, pp.7264-7271, 2018.

T. Fukuda, A. Takahashi, K. Takahira, H. Wang, T. Kubo et al., Limiting factor of performance for solution-phase ligand-exchanged PbS quantum dot solar cell, Sol. Energy Mater. Sol. Cells, vol.195, pp.220-227, 2019.

K. Qiao, Y. Cao, X. Yang, J. Khan, H. Deng et al., Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI 2 incorporation, RSC Adv, vol.7, pp.52947-52954, 2017.

X. Tang, X. Tang, and K. W. Lai, Scalable Fabrication of Infrared Detectors with Multispectral Photoresponse Based on Patterned Colloidal Quantum Dot Films, ACS Photonics, vol.3, pp.2396-2404, 2016.

X. Tang, M. M. Ackerman, M. Chen, and P. Guyot-sionnest, Dual-band infrared imaging using stacked colloidal quantum dot photodiodes, Nat. Photonics, p.1, 2019.

C. Buurma, R. E. Pimpinella, A. J. Ciani, J. S. Feldman, C. H. Grein et al., MWIR imaging with low cost colloidal quantum dot films, Opt. Sens. Imaging Photon Count. Nanostructured Devices Appl, vol.9933, p.993303, 2016.

E. J. Klem, C. Gregory, D. Temple, and J. Lewis, PbS colloidal quantum dot photodiodes for low-cost SWIR sensing, Proc. SPIE, vol.9451, p.945104, 2015.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko et al., Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nat. Photonics, vol.3, pp.332-336, 2009.

E. Heves, C. Ozturk, V. Ozguz, and Y. Gurbuz, Solution-Based PbS Photodiodes, Integrable on ROIC, for SWIR Detector Applications, IEEE Electron Device Lett, vol.34, pp.662-664, 2013.

E. Georgitzikis, P. E. Malinowski, L. M. Hagclsieb, V. Pejovic, G. Uytterhoeven et al., Z. Hens, P. Heremans, D. Cheyns, pp.1-4, 2018.

X. Tang, M. M. Ackerman, G. Shen, and P. Guyot-sionnest, Towards Infrared Electronic Eyes: Flexible Colloidal Quantum Dot Photovoltaic Detectors Enhanced by Resonant Cavity, Small, vol.15, p.1804920, 2019.

X. Tang, M. M. Ackerman, and P. Guyot-sionnest, Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices, ACS Nano, vol.12, pp.7362-7370, 2018.

C. Livache, B. Martinez, N. Goubet, C. Gréboval, J. Qu et al., A colloidal quantum dot infrared photodetector and its use for intraband detection, Nat. Commun, vol.10, p.2125, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02124021

S. B. Hafiz, M. R. Scimeca, P. Zhao, I. J. Paredes, A. Sahu et al., Silver Selenide Colloidal Quantum Dots for Mid-Wavelength Infrared Photodetection, ACS Appl. Nano Mater, vol.2, pp.1631-1636, 2019.

A. Sahu, A. Khare, D. D. Deng, and D. J. Norris, Quantum confinement in silver selenide semiconductor nanocrystals, Chem. Commun, vol.48, pp.5458-5460, 2012.