, Evaluation of IEEE802.15.4g for Environmental Observations. Jonathan Muñoz, Tengfei Chang, Xavier Vilajosana, Thomas Watteyne. MPDI Sensors

, Why Channel Hopping Makes Sense, even with IEEE802.15.4 OFDM at 2.4 GHz. Jonathan Muñoz, pp.4-7, 2018.

, Overview of IEEE802.15.4g OFDM and its Applicability to Smart Building Applications. Jonathan Muñoz, pp.3-5, 2018.

J. Openwsn-&-openmote-;-peiro, X. Muñoz, T. Vilajosana, and . Watteyne, Standardization: 1. Example Packets for 6TiSCH Configuration, IEEE International Conference on Sensing, Communication and Networking (SECON), poster and demo session, pp.27-30, 2016.

, Problem Statement for Generalizing 6TiSCH to Multiple PHYs. Jonathan Muñoz. draft-munoz-6tisch-considerations-multiplePHYs, vol.102, 2018.

, Global Time Distribution in 6TiSCH Networks. Xavier Vilajosana, Pere Tuset, Borja Martinez, Jonathan Muñoz. draft-vilajosana-6tisch-globaltime. IETF102, Montreal, 2018.

. M. Smartmesh-range-measurements, J. Ferreira, T. Muñoz, and . Watteyne, , 2018.

, Generalization of the radio interface to multiple technologies, Open-source contributions: 1. OpenWSN project

D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, and J. Henry, IoT Fundamentals, 2017.

M. G. Institute, , 2019.

A. Goldsmith, Wireless Communications, 2005.

, Topology Options for Bluetooth, pp.2019-2020

, IEEE Standard for Information technology-Telecommunications and information exchange between systems -Local and metropolitan area networks-Specific requirements -Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation, IEEE Std, vol.802, pp.1-594, 2017.

, What is LoRaWAN, pp.2019-2020

A. Berni and W. Gregg, On the utility of chirp modulation for digital signaling, IEEE Transactions on Communications, vol.21, issue.6, pp.748-751, 1973.

, LoRa Modulation Basics, pp.2019-2020

M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios, IEEE Wireless Communications, vol.23, issue.5, pp.60-67, 2016.

, LoRaWAN specification V1.1, pp.2019-2020

F. Adelantado, X. Vilajosana, P. Tuset-peiro, B. Martinez, J. Melia-segui et al., Understanding the Limits of LoRaWAN, IEEE Communications Magazine, vol.55, issue.9, pp.34-40, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01444572

, Sigfox Technology Overview, pp.2019-2020

S. Buy, , pp.2019-2020

K. Zeman, P. Masek, J. Krejci, A. Ometov, J. Hosek et al., Wireless M-BUS in Industrial IoT: Technology Overview and Prototype Implementation, pp.1-6, 2017.

V. Mohan, An Introduction to Wireless M-Bus, pp.2019-2020

, IEEE Standard for Information Technology -Telecommunications and Information Exchange Between Systems -Local and Metropolitan Area Networks Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std, 2003.

K. Pister, P. Thubert, S. Dwars, and T. Phinney, Industrial Routing Requirements in Low-Power and Lossy Networks, IETF Std. RFC5673, 2009.

A. Brandt, J. Buron, and G. Porcu, Home Automation Routing Requirements in Low-Power and Lossy Networks, IETF Std. RFC5826, 2010.

M. Dohler, T. Watteyne, T. Winter, and D. Barthel, Routing Requirements for Urban Low-Power and Lossy Networks, IETF Std. RFC5548, 2009.

J. Martocci, P. De-mil, N. Riou, and W. Vermeylen, Building Automation Routing Requirements in Low-Power and Lossy Networks, 2010.

. "zigbee-alliance, , pp.2019-2020

, Thread Group, pp.2019-2020

D. Chen, M. Nixon, and A. Mok, WirelessHART: Real-Time Mesh Network for Industrial Automation, 2010.

H. Khaleel, C. Pastrone, F. Penna, M. A. Spirito, and R. Garello, Impact of Wi-Fi Traffic on the IEEE 802.15.4 Channels Occupation in Indoor Environments, pp.1042-1045, 2009.

T. Watteyne, C. Adjih, and X. Vilajosana, Lessons Learned from Large-scale Dense IEEE802.15.4 Connectivity Traces, pp.145-150, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208425

C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton et al., FIT IoT-LAB: A Large Scale Open Experimental IoT Testbed, World Forum on Internet of Things (WF-IoT), pp.459-464, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213938

W. Guo, W. Healy, and M. Zhou, Impacts of 2.4-GHz ISM Band Interference on IEEE 802.15.4 Wireless Sensor Network Reliability in Buildings, IEEE Transactions on Instrumentation and Measurement, vol.61, issue.9, pp.2533-2544, 2012.

T. Watteyne, S. Lanzisera, A. Mehta, and K. S. Pister, Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks, IEEE International Conference on Communications (ICC), pp.1-5, 2010.

, Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks, IIEEE Std, vol.15, pp.4-2012, 2012.

, Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer, IEEE Standard for Local and metropolitan area networks-Part, vol.15, 2012.

K. S. Pister and L. Doherty, TSMP: Time Synchronized Mesh Protocol, IASTED International Symposium on Distributed Sensor Networks (DSN), 2008.

, Standard for Information Technology -Telecommunications and Information Exchange Between Systems -Local and Metropolitan Area Networks Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) IEEE Std 802, IEEE, vol.15, pp.4-2015, 2015.

T. Watteyne, J. Weiss, L. Doherty, and J. Simon, Industrial IEEE802.15.4e Networks: Performance and Trade-offs, Conference on Communications (ICC), pp.604-609, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208430

T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm et al., Industrial Wireless IP-Based Cyber -Physical Systems, Proceedings of the IEEE, vol.104, issue.5, pp.1025-1038, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01282597

, LTC5800-IPM: SmartMesh IP Node 2.4GHz 802.15.4e Wireless Mote-on-Chip, 2013.

X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang et al., A realistic energy consumption model for tsch networks, Sensors Journal, IEEE, vol.14, pp.482-489, 2014.

T. Watteyne, A. Mehta, and K. Pister, Reliability Through Frequency Diversity: Why Channel Hopping Makes Sense, International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN), 2009.

, 4-2015 -IEEE Standard for Low-Rate Wireless Networks, IEEE Std, vol.15, 2016.

E. Mccune, This Emperor Has No Clothes?, IEEE Microwave Magazine, 2013.

&. Wi and S. Alliance, , pp.2019-2023

C. Sum, F. Kojima, and H. Harada, Performance Analysis of a Multi-PHY Coexistence Mechanism for IEEE 802.15.4g FSK Network, IEEE Wireless Communications and Networking Conference, 2013.

K. Chang and B. Mason, The IEEE 802.15.4g Standard for Smart Metering Utility Networks, IEEE SmartGridComm 2012 Symposium -Smart Grid Standards, Testbeds and Field Trials Symposium, 2012.

T. Watteyne, L. Doherty, J. Simon, and K. Pister, Technical Overview of SmartMesh IP, 2013.

J. Yoshida, May) Do Linear's Dust Networks Matter in IoT? EETimes, 2014.

P. Thubert, An Architecture for IPv6 over the TSCH mode of IEEE, IETF, 2018.

X. Vilajosana, K. Pister, and T. Watteyne, TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration, IETF, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01531205

T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly et al., OpenWSN: a standards-based low-power wireless development environment, Transactions on Emerging Telecommunications Technologies (ETT), vol.23, issue.5, pp.480-493, 2012.

S. Duquennoy, A. Elsts, B. A. Nahas, and G. Oikonomo, TSCH and 6TiSCH for Contiki: Challenges, Design and Evaluation, Distributed Computing in Sensor Systems (DCOSS), pp.11-18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668864

R. Hermeto, A. Gallais, and F. Theoleyre, Scheduling for IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial wireless networks: A survey, Computer Communications, vol.114, pp.84-105, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336182

S. Duquennoy, B. Nahas, O. Landsiedel, and T. Watteyne, Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH, Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pp.337-350, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208403

T. Chang, M. Vicinic, X. Vilajosana, S. Duquennoy, and D. Dujovne, 6TiSCH Minimal Scheduling Function (MSF), 2018.

T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, LLSF: Low Latency Scheduling Function for 6TiSCH Networks, 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)
URL : https://hal.archives-ouvertes.fr/hal-01297645

, IEEE, pp.93-95, 2016.

Q. Wang, X. Vilajosana, and T. Watteyne, RFC 8480 -6TiSCH Operation Sublayer (6top) Protocol 6P, vol.11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968655

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission of IPv6 Packets over the IEEE802.15.4 Networks, IETF, 2007.

Z. Shelby and C. Bormann, The Wireless Embedded Internet, vol.6, 2010.

T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey et al., RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, IETF Std. RFC6550, 2012.

P. Thubert, Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL), IETF, 2012.

O. Iova, F. Theoleyre, T. Watteyne, and T. Noel, The Love-Hate Relationship between IEEE 802.15.4 and RPL, IEEE Communications Magazine, vol.55, issue.1, pp.188-194, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01206377

Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application Protocol (CoAP), 2014.

J. Thelen, D. Goense, and K. Langendoen, Radio Wave Propagation in Potato Fields, First workshop on Wireless Network Measurements, vol.04, 2005.

C. Hartung, R. Han, C. Seislstad, and S. Holbrook, FireWxNet: A Multi-Tiered Portable Wireless System for Monitoring Weather Conditions in Wildland Fire Environments, Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, pp.28-41, 2006.

M. Lazarescu, Desing and field test of a WSN platform prototype for long-term enviromental monitoring, Sensors, issue.4, pp.9481-9518, 2015.

A. Cerpa, N. Busek, and D. Estrin, SCALE: A tool for Simple Connectivity Assessment in Lossy Environments, UCLA Center for Embedded Network Sensing, vol.21, 2003.

C. S. Sum, L. Lu, M. T. Zhou, F. Kojima, and H. Harada, System Evaluation of a Practical IEEE 802.15.4/4e/4g Multi-Physical and Multi-Hop Smart Utility Network, IET Communications, vol.9, issue.5, pp.665-673, 2015.

J. Dias, F. Ribeiro, M. Campos, R. Ricardo, L. Martins et al., Evaluation of an RPL/6LoWPAN/IEEE 802.15.4g Solution for Smart Metering in an Industrial Environment, Conference on Wireless On-demand Network Systems and Services (WONS), pp.1-4, 2016.

K. Mochizuki, K. Obata, K. Mizutani, and H. Harada, Development and Field Experiment of Wide Area Wi-SUN System Based on IEEE 802.15.4g, World Forum on Internet of Things (WF-IoT), pp.76-81, 2016.

C. Sum, M. A. Rahman, L. Lu, F. Kojima, and H. Harada, On Communication and Interference Range of IEEE 802.15.4g Smart Utility Networks, IEEE Wireless Communications and Networking Conference, 2012.

G. M. Bragg, K. Martinez, P. J. Basford, and J. K. Hart, 868MHz 6LoWPAN with ContikiMAC for an Internet of Things Environmental Sensor Network, SAI Computing Conference, pp.1273-1277, 2016.

F. Kojima and H. Harada, Study on Multipath Characteristics for IEEE 802.15.4g SUN Applications in the Frequency Band Used in Japan, IEEE Conference on Communications Workshops, pp.1-5, 2010.

A. Tonneau, N. Mitton, and J. Vandaele, How to Choose an Experimentation Platform for Wireless Sensor Networks?, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01147346

L. Sanchez, J. A. Galache, G. V. , J. M. Hernandez, J. Bernat et al., SmartSantander: The meeting point between Future Internet research and experimentation and the smart cities, Future Network Mobile Summit, pp.1-8, 2011.

C. A. Boano, M. Schuß, and K. U. Römer, EWSN Dependability Competition: Experiences and Lessons Learned, IEEE Internet of Things eNewsletter, 2017.

K. Brun-laguna, P. H. Gomes, P. Minet, and T. Watteyne, Moving Beyond Testbeds? Lessons (We) Learned about Connectivity, IEEE Pervasive Computing, Special Issue on Beyond Testbeds: Real-World IoT Deployments, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968647

A. Atmel and . Datasheet, , pp.2019-2021

S. Malek, F. Avanzi, K. Brun-laguna, T. Maurer, C. Oroza et al., Real-Time Alpine Measurement System Using Wireless Sensor Networks, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630303

I. Itu-r,-"recommendation, Propagation Data and Prediction Methods for the Planning of Indoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz, International Telecommunication Union, Tech. Rep, pp.6-2017

, Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 2: Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU for non specific radio equipment, 2017.

. Cept-ecc, Relating to the use of Short Range Devices (SRD), CEPT-ECC, 2017.

, FCC, 15.247 Operation within the bands 902-928 MHz, pp.2400-2483

. Mhz, , p.13

, Telecontrol and Data Transmission Radio Equipment. STD-T108, Association of Radio Industries and Businesses (ARIB), vol.02, p.2012

A. , Japan The Association of Radio Industries and Businesses defines the use of the 922.4-928 MHz band [80], using carrier sense under these premises: ? Minimum listening time during CCA of 128 µs; maximum: 5 ms. ? Maximum single TX time, p.400

, ? Duty cycle ?, vol.10

, ? If the previous TX time is ? 200 ms and more than 6 ms, it shall wait for 2 ms before consecutive TX

, Using two radio channels at the same time (i.e. signal is 400 kHz wide), the maximum single TX time has to be less than 200 ms

, Using up to 5 radio channels at the same time, maximum single TX time has to be less than 100 ms