N. Aboulaich, J. P. Vainonen, P. Stralfors, and A. Vener, Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes, Biochem. J, vol.383, pp.237-248, 2004.

N. Ariotti, M. A. Fernández-rojo, Y. Zhou, M. M. Hill, T. L. Rodkey et al., Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling, J. Cell Biol, vol.204, pp.777-792, 2014.

N. Ariotti, J. Rae, N. Leneva, C. Ferguson, D. Loo et al., Molecular characterization of caveolininduced membrane curvature, J. Biol. Chem, vol.290, pp.24875-24890, 2015.

M. Bastiani, L. Liu, M. M. Hill, M. P. Jedrychowski, S. J. Nixon et al., MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes, J. Cell Biol, vol.185, pp.1259-1273, 2009.

J. Beebe, J. Liu, and J. Zhang, Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we?, Pharmacol. Ther, 2018.

P. Bernatchez, A. Sharma, P. M. Bauer, E. Marin, and W. C. Sessa, A noninhbitory mutant of the caveolin1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice, p.121, 2011.

P. N. Bernatchez, P. M. Bauer, J. Yu, J. S. Prendergast, P. He et al., Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.761-766, 2005.

C. M. Blouin, Y. Hamon, P. Gonnord, C. Boularan, J. Kagan et al., Glycosylation-Dependent IFN-??R Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation, Cell, vol.166, pp.920-934, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438171

D. P. Byrne, C. Dart, and D. J. Rigden, Evaluating Caveolin Interactions: Do Proteins Interact with the Caveolin Scaffolding Domain through a Widespread Aromatic Residue-Rich Motif?, PLoS One, vol.7, 2012.

J. P. Cheng and B. J. Nichols, Caveolae: One Function or Many?, Trends Cell Biol, vol.26, pp.177-189, 2016.

J. P. Cheng, C. Mendoza-topaz, G. Howard, J. Chadwick, E. Shvets et al., Caveolae protect endothelial cells from membrane rupture during increased cardiac output, J. Cell Biol, vol.211, pp.53-61, 2015.

B. M. Collins, M. J. Davis, J. F. Hancock, and R. G. Parton, Structure-Based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling through Caveolin-Protein Interactions?, Dev. Cell, vol.23, pp.11-20, 2012.

J. Couet, S. Li, T. Okamoto, T. Ikezu, and M. P. Lisanti, Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins, J. Biol. Chem, vol.272, pp.6525-6533, 1997.

J. Couet, M. Sargiacomo, and M. P. Lisanti, Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities, J. Biol. Chem, vol.272, pp.30429-30438, 1997.

T. Fujimoto, Calcium pump of the plasma membrane is localized in caveolae, J. Cell Biol, vol.120, pp.1147-1157, 1993.

Y. Gambin, N. Ariotti, K. A. Mcmahon, M. Bastiani, E. Sierecki et al., Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae, vol.3, p.1434, 2014.

V. Gangadharan, A. Nohe, J. Caplan, K. Czymmek, and R. L. Duncan, , 2015.

, Caveolin-1 regulates P2X7 receptor signaling in osteoblasts, Am. J. Physiol. Cell Physiol, vol.308, pp.41-50

G. Garcia-cardena, Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. functional significance of the nos caveolin binding domain in vivo, J. Biol. Chem, vol.272, pp.25437-25440, 1997.

J. G. Goetz, P. Lajoie, S. M. Wiseman, and I. R. Nabi, Caveolin-1 in tumor progression: The good, the bad and the ugly, Cancer Metastasis Rev, vol.27, pp.715-735, 2008.

C. G. Hansen, G. Howard, and B. J. Nichols, Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis, J. Cell Sci, vol.124, pp.2777-2785, 2011.

A. Hayer, M. Stoeber, C. Bissig, and A. Helenius, Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes, Traffic, vol.11, pp.361-382, 2010.

M. M. Hill, M. Bastiani, R. Luetterforst, M. Kirkham, A. Kirkham et al., PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function, Cell, vol.132, pp.113-124, 2008.

C. L. Hoop, V. N. Sivanandam, R. Kodali, M. N. Srnec, and P. C. Van-der-wel, structural characterizationof the caveolin scaffolding domain in association with cholesterol-rich membranes, vol.51, pp.90-99, 2012.

J. F. Jasmin, I. Mercier, F. Sotgia, and M. P. Lisanti, SOCS proteins and caveolin-1 as negative regulators of endocrine signaling, Trends Endocrinol. Metab, vol.17, pp.150-158, 2006.

H. H. Patel, F. Murray, and P. A. Insel, Caveolae as organizers of pharmacologically relevant signal transduction molecules, Annu. Rev. Pharmacol. Toxicol, vol.48, pp.359-391, 2008.

L. C. Platanias, Mechanisms of type-I-and type-II-interferon-mediated signalling, Nat. Rev. Immunol, vol.5, pp.375-386, 2005.

K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney et al., Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

P. E. Scherer, T. Okamoto, M. Chun, I. Nishimoto, H. F. Lodish et al., Identification, sequence, and expression of caveolin-2 defines a caveolin gene family, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.131-135, 1996.

G. Schreiber and J. Piehler, The molecular basis for functional plasticity in type I interferon signaling, Trends Immunol, vol.36, pp.139-149, 2015.

A. N. Shajahan, Z. C. Dobbin, F. E. Hickman, S. Dakshanamurthy, C. et al., Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal Kinase, 2012.

, J. Biol. Chem, vol.287, pp.17682-17692

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani et al., Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

M. Stoeber, P. Schellenberger, C. A. Siebert, C. Leyrat, A. Helenius et al., Model for the architecture of caveolae based on a flexible, netlike assembly of Cavin1 and Caveolin discs, Proc. Natl. Acad. Sci. U. S. A, 2016.

J. Taira, M. Sugishima, Y. Kida, E. Oda, M. Noguchi et al., , 2011.

, Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1, Biochemistry, vol.50, pp.6824-6831

A. E. Trane, D. Pavlov, A. Sharma, U. Saqib, K. Lau et al., Deciphering the binding of Caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): Scaffolding subdomain identification, interaction modeling, and biological significance, J. Biol. Chem, vol.289, pp.13273-13283, 2014.

A. V. Villarino, Y. Kanno, and J. J. Shea, Mechanisms and consequences of Jak -STAT signaling in the immune system, vol.18, 2017.

M. Way and R. G. Parton, M-caveolin, a muscle-specific caveolin-related protein, FEBS Lett, vol.376, pp.108-112, 1995.

J. J. Williams, N. Alotaiq, W. Mullen, R. Burchmore, L. Liu et al.,

K. Abell, A. Bilancio, R. W. Clarkson, P. G. Tiffen, A. I. Altaparmakov et al., Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition, Nat. Cell Biol, vol.7, pp.392-398, 2005.

N. Aboulaich, J. P. Vainonen, P. Stralfors, and A. Vener, Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes, Biochem. J, vol.383, pp.237-248, 2004.

C. Abramovich, L. M. Shulman, E. Ratovitski, S. Harroch, M. Tovey et al., Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-alpha and IFN-beta, EMBO J, vol.13, pp.5871-5877, 1994.

S. Aoki, A. Thomas, M. Decaffmeyer, R. Brasseur, and R. M. Epand, The role of proline in the membrane re-entrant helix of caveolin-1, J. Biol. Chem, vol.285, pp.33371-33380, 2010.

M. Aragona, T. Panciera, A. Manfrin, S. Giulitti, F. Michielin et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell, vol.154, pp.1047-1059, 2013.

A. Arbuzova, L. Wang, J. Wang, G. Hangyas-mihalyne, D. Murray et al., Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS, Biochemistry, vol.39, pp.10330-10339, 2000.

A. Ardissone, C. Bragato, L. Caffi, F. Blasevich, S. Maestrini et al., Novel PTRF mutation in a child with mild myopathy and very mild congenital lipodystrophy, BMC Med. Genet, vol.14, p.89, 2013.

K. Arimoto, S. Miyauchi, S. A. Stoner, J. Fan, and D. Zhang, Negative regulation of type I IFN signaling, J. Leukoc. Biol, 2018.

N. Ariotti and R. G. Parton, SnapShot: caveolae, caveolins, and cavins, Cell, vol.154, pp.704-704, 2013.

N. Ariotti, M. A. Fernández-rojo, Y. Zhou, M. M. Hill, T. L. Rodkey et al., Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling, J. Cell Biol, vol.204, pp.777-792, 2014.

N. Ariotti, J. Rae, N. Leneva, C. Ferguson, D. Loo et al., Molecular characterization of caveolininduced membrane curvature, J. Biol. Chem, vol.290, pp.24875-24890, 2015.

, Cell, vol.23, pp.886-895

C. M. Blouin, L. Lay, S. Lasnier, F. Dugail, I. Hajduch et al., , 2008.

, Biochem. Biophys. Res. Commun, vol.376, pp.331-335

C. M. Blouin, Y. Hamon, P. Gonnord, C. Boularan, J. Kagan et al., Glycosylation-Dependent IFNGamma-R Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation, Cell, vol.166, pp.920-934, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438171

M. M. Brierley and E. N. Fish, Review: IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry, J. Interferon Cytokine Res, vol.22, pp.835-845, 2002.

J. F. Bromberg, M. H. Wrzeszczynska, G. Devgan, Y. Zhao, R. G. Pestell et al., Stat3 as an oncogene, Cell, vol.98, pp.295-303, 1999.

M. Bucci, J. P. Gratton, R. D. Rudic, L. Acevedo, F. Roviezzo et al., In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation, Nat. Med, vol.6, pp.1362-1367, 2000.

M. Buchert, C. J. Burns, E. , and M. , Targeting JAK kinase in solid tumors: emerging opportunities and challenges, Oncogene, vol.35, pp.939-951, 2016.

R. Burgener, M. Wolf, T. Ganz, and M. Baggiolini, Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets, Biochem. J, vol.269, pp.729-734, 1990.

D. Butcher, T. Alliston, and V. M. Weaver, A tense situation: forcing tumour progression, vol.9, pp.108-122, 2009.

D. P. Byrne, C. Dart, and D. J. Rigden, Evaluating Caveolin Interactions: Do Proteins Interact with the Caveolin Scaffolding Domain through a Widespread Aromatic Residue-Rich Motif?, PLoS One, vol.7, 2012.

M. M. Caffarel, R. Zaragoza, S. Pensa, J. Li, A. R. Green et al., , 2012.

, Constitutive activation of JAK2 in mammary epithelium elevates Stat5 signalling, promotes alveologenesis and resistance to cell death, and contributes to tumourigenesis, Cell Death Differ, vol.19, pp.511-522

C. Cai, N. Weisleder, J. Ko, S. Komazaki, Y. Sunada et al., Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin, J. Biol. Chem, vol.284, pp.15894-15902, 2009.

C. Cajean-feroldi, F. Nosal, P. C. Nardeux, X. Gallet, J. Guymarho et al., Identification of residues of the IFNAR1 chain of the type I human interferon receptor critical for ligand binding and biological activity, Biochemistry, vol.43, pp.12498-12512, 2004.

H. Cao, L. Alston, J. Ruschman, and R. A. Hegele, Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia, Lipids Health Dis, vol.7, p.3, 2008.

C. Capanni, P. Sabatelli, E. Mattioli, A. Ognibene, M. Columbaro et al., Dysferlin in a hyperCKaemic patient with caveolin 3 mutation and in C2C12 cells after p38 MAP kinase inhibition, Exp. Mol. Med, vol.35, pp.538-544, 2003.

J. Casanova, S. M. Holland, and L. D. Notarangelo, Inborn errors of human JAKs and STATs, Immunity, vol.36, pp.515-528, 2012.

M. Cecelja and P. Chowienczyk, Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review, Hypertens, vol.54, pp.1328-1336, 1979.

S. R. Chan, W. Vermi, J. Luo, L. Lucini, C. Rickert et al., STAT1-deficient mice spontaneously develop estrogen receptor alpha-positive luminal mammary carcinomas, Breast Cancer Res, vol.14, p.16, 2012.

S. Chang, C. A. Chang, D. Lee, P. Lee, Y. Yeh et al., Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad, Proc. Natl. Acad. Sci, vol.105, pp.3927-3932, 2008.

C. Charpin, V. Secq, S. Giusiano, S. Carpentier, L. Andrac et al., A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays, Int. J. Cancer, vol.124, pp.2124-2134, 2009.

R. R. Chaturvedi, T. Herron, R. Simmons, D. Shore, P. Kumar et al., Passive stiffness of myocardium from congenital heart disease and implications for diastole, Circulation, vol.121, pp.979-988, 2010.

N. Chaudhary, G. A. Gomez, M. T. Howes, H. P. Lo, K. A. Mcmahon et al., Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis, PLoS Biol, vol.12, 2014.

J. P. Cheng and B. J. Nichols, Caveolae: One Function or Many?, Trends Cell Biol, vol.26, pp.177-189, 2016.

J. P. Cheng, C. Mendoza-topaz, G. Howard, J. Chadwick, E. Shvets et al., Caveolae protect endothelial cells from membrane rupture during increased cardiac output, J. Cell Biol, vol.211, pp.53-61, 2015.

D. Chmiest, N. Sharma, N. Zanin, C. Viaris-de-lesegno, M. Shafaq-zadah et al., , 2016.

A. M. Fra, E. Williamson, K. Simons, and R. G. Parton, De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.8655-8659, 1995.

V. Francois-newton, G. Magno-de-freitas-almeida, B. Payelle-brogard, D. Monneron, L. Pichard-garcia et al., USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response, PLoS One, vol.6, 2011.

V. Francois-newton, M. Livingstone, B. Payelle-brogard, G. Uze, and S. Pellegrini, USP18 establishes the transcriptional and anti-proliferative interferon alpha/beta differential, Biochem. J, vol.446, pp.509-516, 2012.

T. Fujimoto, Calcium pump of the plasma membrane is localized in caveolae, J. Cell Biol, vol.120, pp.1147-1157, 1993.

T. Fujimoto, H. Kogo, K. Ishiguro, K. Tauchi, and R. Nomura, Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell, J. Cell Biol, vol.152, pp.1079-1085, 2001.

M. Furqan, A. Akinleye, N. Mukhi, V. Mittal, Y. Chen et al., STAT inhibitors for cancer therapy, J. Hematol. Oncol, vol.6, p.90, 2013.

F. Galbiati, D. Volonte, J. A. Engelman, G. Watanabe, R. Burk et al., Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade, EMBO J, vol.17, pp.6633-6648, 1998.

F. Galbiati, J. A. Engelman, D. Volonte, X. L. Zhang, C. Minetti et al., Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities, J. Biol. Chem, vol.276, pp.21425-21433, 2001.

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, The relationship between force and focal complex development, J. Cell Biol, vol.159, pp.695-705, 2002.

Y. Gambin, N. Ariotti, K. Mcmahon, M. Bastiani, E. Sierecki et al., Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae, vol.3, p.1434, 2014.

V. Gangadharan, A. Nohe, J. Caplan, K. Czymmek, and R. L. Duncan, , 2015.

, Caveolin-1 regulates P2X7 receptor signaling in osteoblasts, Am. J. Physiol. Cell Physiol, vol.308, pp.41-50

G. Garcia-cardena, Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. functional significance of the nos caveolin binding domain in vivo, J. Biol. Chem, vol.272, pp.25437-25440, 1997.

J. Garcia, J. Bagwell, B. Njaine, J. Norman, D. S. Levic et al., Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord, Curr. Biol, vol.27, 1982.

M. Gavutis, S. Lata, P. Lamken, P. Muller, and J. Piehler, Lateral ligandreceptor interactions on membranes probed by simultaneous fluorescenceinterference detection, Biophys. J, vol.88, pp.4289-4302, 2005.

E. Gazzerro, F. Sotgia, C. Bruno, M. P. Lisanti, and C. Minetti, Caveolinopathies: from the biology of caveolin-3 to human diseases, Eur. J. Hum. Genet, vol.18, pp.137-145, 2010.

C. Gazziola, N. Cordani, S. Carta, E. De-lorenzo, A. Colombatti et al., The relative endogenous expression levels of the IFNAR2 isoforms influence the cytostatic and pro-apoptotic effect of IFNalpha on pleomorphic sarcoma cells, Int. J. Oncol, vol.26, pp.129-140, 2005.

O. L. Gervasio, W. D. Phillips, L. Cole, A. , and D. G. , Caveolae respond to cell stretch and contribute to stretch-induced signaling, J. Cell Sci, vol.124, pp.3581-3590, 2011.

J. Ghislain, C. A. Lingwood, and E. N. Fish, Evidence for glycosphingolipid modification of the type 1 IFN receptor, J. Immunol, vol.153, pp.3655-3663, 1994.

L. Ghitescu, A. Fixman, M. Simionescu, and N. Simionescu, Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis, J. Cell Biol, vol.102, pp.1304-1311, 1986.

J. R. Glenney and D. Soppet, Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.10517-10521, 1992.

J. G. Goetz, P. Lajoie, S. M. Wiseman, and I. R. Nabi, Caveolin-1 in tumor progression: The good, the bad and the ugly, Cancer Metastasis Rev, vol.27, pp.715-735, 2008.

J. G. Goetz, S. Minguet, I. Navarro-lerida, J. J. Lazcano, R. Samaniego et al., Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis, Cell, vol.146, pp.148-163, 2011.

P. Gonnord, C. M. Blouin, and C. Lamaze, Membrane trafficking and signaling: Two sides of the same coin, Semin. Cell Dev. Biol, vol.23, pp.154-164, 2012.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons et al., Regulation of Focal Adhesion Dynamics, vol.466, pp.263-266, 2011.

I. Gresser and F. Belardelli, Endogenous type I interferons as a defense against tumors, Cytokine Growth Factor Rev, vol.13, pp.111-118, 2002.

C. Guilluy, L. D. Osborne, L. Van-landeghem, L. Sharek, R. Superfine et al., Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus, Nat. Cell Biol, vol.16, pp.376-381, 2014.

Y. Guo, L. Yang, K. Haught, and S. Scarlata, Osmotic stress reduces Ca 2+ signals through deformation of caveolae, J. Biol. Chem, vol.290, pp.16698-16707, 2015.

S. Gustincich and C. Schneider, Serum deprivation response gene is induced by serum starvation but not by contact inhibition, Cell Growth Differ, vol.4, pp.753-760, 1993.

C. Haan, S. Kreis, C. Margue, and I. Behrmann, Jaks and cytokine receptors--an intimate relationship, Biochem. Pharmacol, vol.72, pp.1538-1546, 2006.

F. Han, D. Gu, Q. Chen, and H. Zhu, Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines, Pancreas, vol.38, pp.766-774, 2009.

C. G. Hansen and B. J. Nichols, Exploring the caves: cavins, caveolins and caveolae, Trends Cell Biol, vol.20, pp.177-186, 2010.

C. Hansen, N. Bright, G. Howard, and B. J. Nichols, SDPR induces membrane curvature and functions in the formation of caveolae, Nat. Cell Biol, vol.11, 2009.

C. G. Hansen, G. Howard, and B. J. Nichols, Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis, J. Cell Sci, vol.124, pp.2777-2785, 2011.

C. G. Hansen, E. Shvets, G. Howard, K. Riento, and B. J. Nichols, Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae, Nat. Commun, vol.4, pp.1813-1831, 2013.

S. Haricharan, L. , and Y. , STAT signaling in mammary gland differentiation, cell survival and tumorigenesis, Mol. Cell. Endocrinol, vol.382, pp.560-569, 2014.

A. K. Harris, P. Wild, D. Stopak, N. Series, A. et al., Silicone Rubber Substrata,: A New Wrinkle in the Study of Cell Locomotion Silicone Rubber Substrata,: A New Wrinkle in the Study of Cell Locomotion, vol.208, pp.177-179, 2008.

J. S. Harunaga and K. M. Yamada, Cell-matrix adhesions in 3D, Matrix Biol, vol.30, pp.363-368, 2011.

K. Hayashi, S. Matsuda, K. Machida, T. Yamamoto, Y. Fukuda et al., Invasion activating caveolin-1 mutation in human scirrhous breast cancers, Cancer Res, vol.61, pp.2361-2364, 2001.

Y. K. Hayashi, C. Matsuda, M. Ogawa, K. Goto, K. Tominaga et al., Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy, J. Clin. Invest, vol.119, pp.2623-2633, 2009.

A. Hayer, M. Stoeber, D. Ritz, S. Engel, H. H. Meyer et al., , 2010.

, Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation, J. Cell Biol, vol.191, pp.615-629

A. Hayer, M. Stoeber, C. Bissig, and A. Helenius, Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes, Traffic, vol.11, pp.361-382, 2010.

D. J. Hernandez-deviez, S. Martin, S. H. Laval, H. P. Lo, S. T. Cooper et al., Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3, Hum. Mol. Genet, vol.15, pp.129-142, 2006.

V. J. Hernandez, J. Weng, P. Ly, S. Pompey, H. Dong et al., Cavin-3 dictates the balance between ERK and Akt signaling, Elife, vol.2013, pp.1-26, 2013.

M. M. Hill, M. Bastiani, R. Luetterforst, M. Kirkham, A. Kirkham et al., PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function, Cell, vol.132, pp.113-124, 2008.

T. Hirama, R. Das, Y. Yang, C. Ferguson, A. Won et al., Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane, J. Biol. Chem, vol.292, pp.14292-14307, 2017.

C. L. Hoop, V. N. Sivanandam, R. Kodali, M. N. Srnec, and P. C. Van-der-wel, structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes, vol.51, pp.90-99, 2012.

J. K. Hu, W. Du, S. J. Shelton, M. C. Oldham, C. M. Dipersio et al., An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice, Cell Stem Cell, vol.21, pp.91-106, 2017.

K. Hughes and C. J. Watson, The spectrum of STAT functions in mammary gland development, JAK-STAT, vol.1, pp.151-158, 2012.

N. E. Hynes, C. J. Watson, P. Igaz, S. Toth, and A. Falus, Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice, Cold Spring Harb. Perspect. Biol, vol.2, pp.435-441, 2001.

D. Iliopoulos, S. A. Jaeger, H. A. Hirsch, M. L. Bulyk, and K. Struhl, STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer, Mol. Cell, vol.39, pp.493-506, 2010.

D. E. Ingber, Cellular mechanotransduction: putting all the pieces together again, FASEB J, vol.20, pp.1230-1232, 2006.

J. Irianto, J. Swift, R. P. Martins, G. D. Mcphail, M. M. Knight et al., Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes, Biophys. J, vol.104, pp.759-769, 2013.

A. Isaacs and J. Lindenmann, Virus interference. I. The interferon, Proc. R. Soc. London. Ser. B, Biol. Sci, vol.147, pp.258-267, 1957.

M. Isshiki, A. , and R. G. , Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction, Traffic, vol.4, pp.717-723, 2003.

N. Itano, S. Okamoto, D. Zhang, S. A. Lipton, and E. Ruoslahti, Cell spreading controls endoplasmic and nuclear calcium: A physical gene regulation pathway from the cell surface to the nucleus, Proc. Natl. Acad. Sci, vol.100, pp.5181-5186, 2003.

K. Iwabuchi, K. Handa, and S. Hakomori, Separation of "glycosphingolipid signaling domain" from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling, J. Biol. Chem, vol.273, pp.33766-33773, 1998.

Y. Izumi, S. Hirai, Y. Tamai, A. Fujise-matsuoka, Y. Nishimura et al., A protein kinase Cdelta-binding protein SRBC whose expression is induced by serum starvation, J. Biol. Chem, vol.272, pp.7381-7389, 1997.

D. A. Jaitin, L. C. Roisman, E. Jaks, M. Gavutis, J. Piehler et al., Inquiring into the differential action of interferons (IFNs): an IFN-alpha2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-beta, Mol. Cell. Biol, vol.26, pp.1888-1897, 2006.

P. A. Janmey and R. T. Miller, Mechanisms of mechanical signaling in development and disease, J. Cell Sci, vol.124, pp.9-18, 2011.

P. Jansa, C. Burek, E. E. Sander, and I. Grummt, The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I, Nucleic Acids Res, vol.29, pp.423-429, 2001.

J. F. Jasmin, I. Mercier, F. Sotgia, and M. P. Lisanti, SOCS proteins and caveolin-1 as negative regulators of endocrine signaling, Trends Endocrinol. Metab, vol.17, pp.150-158, 2006.

E. G. Jeong, M. S. Kim, H. K. Nam, C. K. Min, S. Lee et al., Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers, Clin. Cancer Res, vol.14, pp.3716-3721, 2008.

H. Jiao, K. Berrada, W. Yang, M. Tabrizi, L. C. Platanias et al., Direct association with and dephosphorylation of Jak2 kinase by the SH2-domaincontaining protein tyrosine phosphatase SHP-1, Mol. Cell. Biol, vol.16, pp.6985-6992, 1996.

B. Joshi, M. Bastiani, S. S. Strugnell, C. Boscher, R. G. Parton et al., Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis breast cancer, Jak-Stat, vol.2, 2012.

O. Kovtun, V. A. Tillu, W. Jung, N. Leneva, N. Ariotti et al., Structural insights into the organization of the cavin membrane coat complex, Dev. Cell, vol.31, pp.405-419, 2014.

J. J. Krolewski, R. Lee, R. Eddy, T. B. Shows, and R. Dalla-favera, Identification and chromosomal mapping of new human tyrosine kinase genes, Oncogene, vol.5, pp.277-282, 1990.

M. Kruger, I. Kratchmarova, B. Blagoev, Y. Tseng, C. R. Kahn et al., Dissection of the insulin signaling pathway via quantitative phosphoproteomics, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.2451-2456, 2008.

T. V. Kurzchalia, P. Dupree, R. G. Parton, R. Kellner, H. Virta et al., VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles, J. Cell Biol, vol.118, pp.1003-1014, 1992.

H. Kwon and Y. Pak, Prolonged tyrosine kinase activation of insulin receptor by pY27-caveolin-2, Biochem. Biophys. Res. Commun, vol.391, pp.49-55, 2010.

H. Kwon, K. Jeong, E. M. Hwang, J. Y. Park, S. G. Hong et al., Caveolin-2 regulation of STAT3 transcriptional activation in response to insulin, Biochim. Biophys. Acta -Mol. Cell Res, vol.1793, pp.1325-1333, 2009.

H. Kwon, K. Jeong, E. M. Hwang, J. Y. Park, and Y. Pak, A novel domain of caveolin-2 that controls nuclear targeting: Regulation of insulin-specific ERK activation and nuclear translocation by caveolin-2, J. Cell. Mol. Med, vol.15, pp.888-908, 2011.

H. Kwon, J. Lee, K. Jeong, D. Jang, and Y. Pak, Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation, Biochim. Biophys. Acta -Mol. Cell Res, vol.1853, pp.1022-1034, 2015.

U. Lahtinen, M. Honsho, R. G. Parton, K. Simons, and P. Verkade, Involvement of caveolin-2 in caveolar biogenesis in MDCK cells, FEBS Lett, vol.538, pp.85-88, 2003.

H. Laklai, Y. A. Miroshnikova, M. W. Pickup, E. A. Collisson, G. E. Kim et al., Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression, Nat. Med, vol.22, pp.497-505, 2016.

J. M. Lamar, P. Stern, H. Liu, J. W. Schindler, Z. Jiang et al., , 2012.

, The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain, Proc. Natl. Acad. Sci, vol.109, pp.2441-2450

C. Lamaze and S. Torrino, Caveolae and cancer: A new mechanical perspective, Biomed. J, vol.38, pp.367-379, 2015.

C. Lamaze, N. Tardif, M. Dewulf, S. Vassilopoulos, and C. M. Blouin, The caveolae dress code: structure and signaling, Curr. Opin. Cell Biol, vol.47, pp.117-125, 2017.

P. Lamken, S. Lata, M. Gavutis, and J. Piehler, Ligand-induced assembling of the type I interferon receptor on supported lipid bilayers, J. Mol. Biol, vol.341, pp.303-318, 2004.

P. Lamken, M. Gavutis, I. Peters, J. Van-der-heyden, G. Uze et al., Functional cartography of the ectodomain of the type I interferon receptor subunit ifnar1, J. Mol. Biol, vol.350, pp.476-488, 2005.

L. Lan, C. Neumann, J. , J. , and N. , Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study, FEBS Lett, vol.580, pp.5301-5305, 2006.

J. A. Langer and S. Pestka, Interferon receptors, Immunol. Today, vol.9, pp.393-400, 1988.

L. Lay, S. Hajduch, E. Lindsay, M. R. Le-liepvre, X. Thiele et al., Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis, Traffic, vol.7, pp.549-561, 2006.

D. W. Leaman, S. Leung, X. Li, and G. R. Stark, Regulation of STATdependent pathways by growth factors and cytokines, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.10, pp.1578-1588, 1996.

J. Lee and K. J. Glover, The transmembrane domain of caveolin-1 exhibits a helix-break-helix structure, Biochim. Biophys. Acta, vol.1818, pp.1158-1164, 2012.

J. Lee, Y. , A. , C. , H. et al., Tissue Transglutaminase Mediated Tumor-Stroma Interaction Promotes Pancreatic Cancer Progression, vol.179, pp.95-105, 2015.

W. J. Leonard and J. J. Shea, Jaks and STATs: biological implications, Annu. Rev. Immunol, vol.16, pp.293-322, 1998.

I. Levental, P. C. Georges, and P. A. Janmey, Soft biological materials and their impact on cell function, Soft Matter, vol.3, pp.299-306, 2007.

K. R. Levental, H. Yu, L. Kass, J. N. Lakins, J. T. Erler et al., Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin signaling Kandice, vol.139, pp.891-906, 2009.

D. E. Levy and J. E. Darnell, Stats: transcriptional control and biological impact, Nat. Rev. Mol. Cell Biol, vol.3, pp.651-662, 2002.

C. Li, S. Rezania, S. Kammerer, A. Sokolowski, T. Devaney et al., Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line, Sci. Rep, vol.5, pp.1-9, 2015.

Q. Li, L. Bai, N. Liu, M. Wang, J. P. Liu et al., Increased polymerase I and transcript release factor (Cavin-1) expression attenuates plateletderived growth factor receptor signalling in senescent human fibroblasts, Clin. Exp. Pharmacol. Physiol, vol.41, pp.169-173, 2014.

S. Li, T. Okamoto, M. Chun, M. Sargiacomo, J. E. Casanova et al., Evidence for a regulated interaction between heterotrimeric G proteins and caveolin, J. Biol. Chem, vol.270, pp.15693-15701, 1995.

S. Li, J. Couet, and M. P. Lisanti, Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases, J. Biol. Chem, vol.271, pp.29182-29190, 1996.

T. Li, F. Sotgia, M. A. Vuolo, M. Li, W. C. Yang et al., Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status, Am. J. Pathol, vol.168, 1998.

S. C. Lien, S. F. Chang, P. L. Lee, S. Y. Wei, M. D. Chang et al., Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK, Biochim. Biophys. Acta -Mol. Cell Res, vol.1833, pp.3124-3133, 2013.

Y. W. Lim, H. P. Lo, C. Ferguson, N. Martel, J. Giacomotto et al., Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development, Curr. Biol, vol.27, 1968.

L. E. Ling, M. Zafari, D. Reardon, M. Brickelmeier, S. E. Goelz et al., Human type I interferon receptor, IFNAR, is a heavily glycosylated 120-130 kD membrane protein, J. Interferon Cytokine Res, vol.15, pp.55-61, 1995.

M. P. Lisanti, P. E. Scherer, Z. Tang, and M. Sargiacomo, Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis, Trends Cell Biol, vol.4, pp.231-235, 1994.

M. P. Lisanti, Z. Tang, P. E. Scherer, E. Kubler, A. J. Koleske et al.,

, Caveolae, transmembrane signalling and cellular transformation, Mol. Membr. Biol, vol.12, pp.121-124

B. Liu, S. Mink, K. A. Wong, N. Stein, C. Getman et al., PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity, Nat. Immunol, vol.5, pp.891-898, 2004.

H. Liu, L. Yang, Q. Zhang, L. Mao, H. Jiang et al., Probing the structure and dynamics of caveolin-1 in a caveolae-mimicking asymmetric lipid bilayer model, Eur. Biophys. J, 2016.

L. Liu, D. Brown, M. Mckee, N. K. Lebrasseur, D. Yang et al., CCM proteins control endothelial beta1 integrin dependent response to shear stress, Biol. Open, vol.3, pp.1228-1235, 2014.

O. A. Malakhova, K. Kim, . Il, J. Luo, W. Zou et al., UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity, EMBO J, vol.25, pp.2358-2367, 2006.

M. Marchetti, M. Monier, A. Fradagrada, K. Mitchell, F. Baychelier et al., Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors, Mol. Biol. Cell, vol.17, pp.2896-2909, 2006.

Z. Marijanovic, J. Ragimbeau, K. G. Kumar, S. Y. Fuchs, and S. Pellegrini, TYK2 activity promotes ligand-induced IFNAR1 proteolysis, Biochem. J, vol.397, pp.31-38, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00478537

B. Martinac, Mechanosensitive ion channels: molecules of mechanotransduction, J. Cell Sci, vol.117, pp.2449-2460, 2004.

B. Martinac and O. P. Hamill, Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.4308-4312, 2002.

H. T. Mcmahon and J. L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, vol.438, pp.590-596, 2005.

K. Mcmahon, H. Zajicek, W. Li, M. J. Peyton, J. D. Minna et al., SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function, EMBO J, vol.28, pp.1001-1015, 2009.

F. Meng, S. Saxena, Y. Liu, B. Joshi, T. H. Wong et al., The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration, 2017.

, Mol. Biol. Cell, vol.28, pp.2190-2201

C. Mertens and J. E. Darnell, SnapShot: JAK-STAT signaling, Cell, vol.131, p.612, 2007.

T. Meshulam, J. R. Simard, J. Wharton, J. A. Hamilton, and P. F. Pilch, Role of caveolin-1 and cholesterol in transmembrane fatty acid movement, Biochemistry, vol.45, pp.2882-2893, 2006.

T. Meyer, A. Marg, P. Lemke, B. Wiesner, and U. Vinkemeier, DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1, Genes Dev, vol.17, 1992.

C. Mineo, Y. S. Ying, C. Chapline, S. Jaken, A. et al., Targeting of protein kinase Calpha to caveolae, J. Cell Biol, vol.141, pp.601-610, 1998.

J. Mohan, B. Moren, E. Larsson, M. R. Holst, and R. Lundmark, Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae, J. Cell Sci, vol.128, pp.979-991, 2015.

S. Monier, R. G. Parton, F. Vogel, J. Behlke, A. Henske et al., VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro, Mol. Biol. Cell, vol.6, pp.911-927, 1995.

S. Monier, D. J. Dietzen, W. R. Hastings, D. M. Lublin, and T. Kurzchalia, , 1996.

, Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol, FEBS Lett, vol.388, pp.143-149

F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan et al., Stress clamp experiments on multicellular tumor spheroids, Phys. Rev. Lett, vol.107, p.188102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01138973

R. Montesano, J. Roth, A. Robert, and L. Orci, Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins, Nature, vol.296, pp.651-653, 1982.

H. Moon, C. S. Lee, K. L. Inder, S. Sharma, E. Choi et al., PTRF/cavin-1 neutralizes noncaveolar caveolin-1 microdomains in prostate cancer, pp.1-10, 2013.

B. Morén, C. Shah, M. T. Howes, N. L. Schieber, H. T. Mcmahon et al., EHD2 regulates caveolar dynamics via ATPdriven targeting and oligomerization, Mol. Biol. Cell, vol.23, pp.1316-1329, 2012.

D. Mosqueira, S. Pagliari, K. Uto, M. Ebara, S. Romanazzo et al., Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure, ACS Nano, vol.8, pp.2033-2047, 2014.

J. K. Mouw, Y. Yui, L. Damiano, R. O. Bainer, J. N. Lakins et al., Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression, vol.20, pp.360-367, 2014.

S. Mrkonjic, O. Destaing, and C. Albiges-rizo, Mechanotransduction pulls the strings of matrix degradation at invadosome, Matrix Biol, pp.190-203, 2017.

D. I. Mundy, W. P. Li, K. Luby-phelps, A. , and R. G. , Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content, Mol. Biol. Cell, vol.23, pp.864-880, 2012.

M. Murata, J. Peränen, R. Schreiner, F. Wieland, T. V. Kurzchalia et al.,

, VIP21/caveolin is a cholesterol-binding protein, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.10339-10343

T. Murata, M. I. Lin, R. V. Stan, P. M. Bauer, J. Yu et al., Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells, J. Biol. Chem, vol.282, pp.16631-16643, 2007.

M. P. Myers, J. N. Andersen, A. Cheng, M. L. Tremblay, C. M. Horvath et al., TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B, J. Biol. Chem, vol.276, pp.47771-47774, 2001.

S. Na, O. Collin, F. Chowdhury, B. Tay, M. Ouyang et al., Rapid signal transduction in living cells is a unique feature of mechanotransduction, Proc. Natl. Acad. Sci, vol.105, pp.6626-6631, 2008.

I. R. Nabi, Cavin fever: Regulating caveolae, Nat. Cell Biol, vol.11, pp.789-791, 2009.

T. Naka, M. Narazaki, M. Hirata, T. Matsumoto, S. Minamoto et al., Structure and function of a new STAT-induced STAT inhibitor, Nature, vol.387, pp.924-929, 1997.

P. Nassoy and C. Lamaze, Stressing caveolae new role in cell mechanics, Trends Cell Biol, vol.22, pp.381-389, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00821324

C. T. Ng, B. M. Sullivan, J. R. Teijaro, A. M. Lee, M. Welch et al., Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection, Cell Host Microbe, vol.17, pp.653-661, 2015.

B. J. Nichols, A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex, Nat. Cell Biol, vol.4, pp.374-378, 2002.

H. Niwa, T. Burdon, I. Chambers, and A. Smith, Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3, Genes Dev, vol.12, pp.2048-2060, 1998.

D. Novick, B. Cohen, and M. Rubinstein, The human interferon alpha/beta receptor: characterization and molecular cloning, Cell, vol.77, pp.391-400, 1994.

F. H. Nystrom, H. Chen, L. N. Cong, Y. Li, and M. J. Quon, Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells, Mol. Endocrinol, vol.13, pp.2013-2024, 1999.

J. J. O'shea, M. Gadina, and R. D. Schreiber, Cytokine signaling in 2002: new surprises in the Jak/Stat pathway, vol.109, pp.121-152, 2002.

J. J. O'shea, D. M. Schwartz, A. V. Villarino, M. Gadina, B. Iain et al., The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention, pp.311-328, 2015.

T. Ogata, T. Ueyama, K. Isodono, M. Tagawa, N. Takehara et al., , p.120

K. Harada, T. Takahashi, T. Shioi, and H. Matsubara, MURC, a musclerestricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance, Mol. Cell. Biol, vol.28, pp.3424-3436, 2008.

P. Oh, D. P. Mcintosh, and J. E. Schnitzer, Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium, J. Cell Biol, vol.141, pp.101-114, 1998.

T. Okamoto, . Schlegel, P. E. Scherer, and M. P. Lisanti, Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane, J Biol Chem, vol.273, pp.5419-5422, 1998.

P. R. Onck, T. Koeman, T. Van-dillen, and E. Van-der-giessen, Alternative explanation of stiffening in cross-linked semiflexible networks, Phys. Rev. Lett, vol.95, p.178102, 2005.

P. A. Orlandi and P. H. Fishman, Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains, J. Cell Biol, vol.141, pp.905-915, 1998.

A. W. Orr, B. P. Helmke, B. R. Blackman, and M. A. Schwartz, Mechanisms of mechanotransduction, Dev. Cell, vol.10, pp.11-20, 2006.

U. Ortegren, M. Karlsson, N. Blazic, M. Blomqvist, F. H. Nystrom et al., Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes, Eur. J. Biochem, vol.271, pp.2028-2036, 2004.

A. Ost, U. Ortegren, J. Gustavsson, F. H. Nystrom, and P. Stralfors, , 2005.

, Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes, J. Biol. Chem, vol.280, pp.5-8

A. G. Ostermeyer, J. M. Paci, Y. Zeng, D. M. Lublin, S. Munro et al., Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets, J. Cell Biol, vol.152, pp.1071-1078, 2001.

R. E. Pagano, Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.358, pp.885-891, 2003.

G. E. Palade, T. Panciera, L. Azzolin, M. Cordenonsi, and S. Piccolo, Mechanobiology of YAP and TAZ in physiology and disease, Nat. Rev. Mol. Cell Biol, vol.24, pp.758-770, 1424.

C. Pardo-pastor, F. Rubio-moscardo, M. Vogel-gonzalez, S. A. Serra, A. Afthinos et al., Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.1925-1930, 2018.

R. G. Parton, Caveolae as plasma membrane sensors, protectors and organizers, Nat. Rev. Mol. Cell Biol, vol.14, pp.98-112, 2013.

R. G. Parton and K. Simons, The multiple faces of caveolae, Nat. Rev. Mol. Cell Biol, vol.8, pp.185-194, 2007.

R. G. Parton, M. Hanzal-bayer, and J. F. Hancock, Biogenesis of caveolae: a structural model for caveolin-induced domain formation, J. Cell Sci, vol.119, pp.787-796, 2006.

H. H. Patel, F. Murray, and P. A. Insel, Caveolae as organizers of pharmacologically relevant signal transduction molecules, Annu. Rev. Pharmacol. Toxicol, vol.48, pp.359-391, 2008.

D. W. Paty and D. K. Li, Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group, Neurology, vol.43, pp.662-667, 1993.

R. J. Pelham and Y. L. Wang, Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate, Biol. Bull, vol.194, pp.348-350, 1998.

L. Pelkmans and M. Zerial, Kinase-regulated quantal assemblies and kissand-run recycling of caveolae, Nature, vol.436, pp.128-133, 2005.

L. Pelkmans, J. Kartenbeck, and A. Helenius, Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER, Nat. Cell Biol, vol.3, pp.473-483, 2001.

L. Pelkmans, D. Puntener, and A. Helenius, Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae, Science, vol.296, pp.535-539, 2002.

S. Pestka, C. D. Krause, and M. R. Walter, Interferons, interferon-like cytokines, and their receptors, Immunol. Rev, vol.202, pp.8-32, 2004.

M. Peters-golden and T. G. Brock, Intracellular compartmentalization of leukotriene synthesis: Unexpected nuclear secrets, FEBS Lett, vol.487, pp.323-326, 2001.

L. M. Pfeffer, C. A. Dinarello, R. B. Herberman, B. R. Williams, E. C. Borden et al., Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons, Cancer Res, vol.58, pp.2489-2499, 1998.

J. Piehler, C. Thomas, K. Christopher-garcia, and G. Schreiber, Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation, Immunol. Rev, vol.250, pp.317-334, 2012.

L. C. Platanias, Mechanisms of type-I-and type-II-interferon-mediated signalling, Nat. Rev. Immunol, vol.5, pp.375-386, 2005.

L. C. Platanias, S. Uddin, and O. R. Colamonici, Tyrosine phosphorylation of the alpha and beta subunits of the type I interferon receptor. Interferon-beta selectively induces tyrosine phosphorylation of an alpha subunit-associated protein, J. Biol. Chem, vol.269, pp.17761-17764, 1994.

A. Pol, R. Luetterforst, M. Lindsay, S. Heino, E. Ikonen et al., , 2001.

, A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance, J. Cell Biol, vol.152, pp.1057-1070

A. Pol, S. Martin, M. A. Fernandez, M. Ingelmo-torres, C. Ferguson et al., Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies, Mol. Biol. Cell, vol.16, pp.2091-2105, 2005.

L. Prescott and M. W. Brightman, The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations, Tissue Cell, vol.8, pp.241-258, 1976.

L. Prosperini, C. R. Mancinelli, C. Pozzilli, M. G. Grasso, A. Clemenzi et al., From high-to low-frequency administered interferon-beta for multiple sclerosis: a multicenter study, Eur. Neurol, vol.71, pp.233-241, 2014.

M. Raab, M. Gentili, H. Belly, . De, H. Thiam et al., ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death, vol.352, pp.359-363, 2016.

M. Rao, M. , and S. , Active organization of membrane constituents in living cells, Curr. Opin. Cell Biol, vol.29, pp.126-132, 2014.

B. Razani, J. A. Engelman, X. B. Wang, W. Schubert, X. L. Zhang et al., Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities, J. Biol. Chem, vol.276, pp.38121-38138, 2001.

B. Razani, S. E. Woodman, and M. P. Lisanti, Caveolae: from cell biology to animal physiology, Pharmacol. Rev, vol.54, pp.431-467, 2002.

B. Razani, X. B. Wang, J. A. Engelman, M. Battista, G. Lagaud et al., Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae, Mol. Cell. Biol, vol.22, pp.2329-2344, 2002.

A. Del-rio, R. Perez-jimenez, R. Liu, P. Roca-cusachs, J. M. Fernandez et al., Stretching single talin rod molecules activates vinculin binding, Science, vol.323, pp.638-641, 2009.

R. Siddiqui, M. Komarova, Y. A. Vogel, S. M. Gao, X. Bonini et al., Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability, J. Cell Biol, vol.193, pp.841-850, 2011.

K. T. Root, S. M. Plucinsky, and K. J. Glover, Recent Progress in the Topology, Structure, and Oligomerization of Caveolin: A Building Block of Caveolae, 2015.

K. G. Rothberg, Y. S. Ying, B. A. Kamen, A. , and R. G. , Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate, J. Cell Biol, vol.111, pp.2931-2938, 1990.

K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney et al., Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

O. Du-roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier et al., Force mapping in epithelial cell migration, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.2390-2395, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00188271

P. Saharinen and O. Silvennoinen, The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokineinducible activation of signal transduction, J. Biol. Chem, vol.277, pp.47954-47963, 2002.

P. Saharinen, K. Takaluoma, and O. Silvennoinen, Regulation of the Jak2 tyrosine kinase by its pseudokinase domain, Mol. Cell. Biol, vol.20, pp.3387-3395, 2000.

S. M. Santini, T. Di-pucchio, C. Lapenta, S. Parlato, M. Logozzi et al., The natural alliance between type I interferon and dendritic cells and its role in linking innate and adaptive immunity, J. Interferon Cytokine Res, vol.22, pp.1071-1080, 2002.

M. Sargiacomo, M. Sudol, Z. Tang, and M. P. Lisanti, Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells, J. Cell Biol, vol.122, pp.789-807, 1993.

M. Sargiacomo, P. E. Scherer, Z. Tang, E. Kubler, K. S. Song et al., Oligomeric structure of caveolin: implications for caveolae membrane organization, Proc. Natl. Acad. Sci, vol.92, pp.9407-9411, 1995.

Y. Sawada, M. Tamada, B. J. Dubin-thaler, O. Cherniavskaya, R. Sakai et al., Force Sensing by Extension of the Src Family Kinase Substrate, p130Cas, Cell, vol.127, pp.1015-1026, 2006.

P. E. Scherer, T. Okamoto, M. Chun, I. Nishimoto, H. F. Lodish et al., Identification, sequence, and expression of caveolin-2 defines a caveolin gene family, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.131-135, 1996.

P. E. Scherer, R. Y. Lewis, D. Volonte, J. A. Engelman, F. Galbiati et al., Cell-type and tissuespecific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo, J. Biol. Chem, vol.272, pp.29337-29346, 1997.

A. Schlegel and M. P. Lisanti, A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1, 2000.

, C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo, J. Biol. Chem, vol.275, pp.21605-21617

A. Schlegel, R. B. Schwab, P. E. Scherer, and M. P. Lisanti, A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro, J. Biol. Chem, vol.274, pp.22660-22667, 1999.

A. Schlegel, P. Arvan, and M. P. Lisanti, Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum, J. Biol. Chem, vol.276, pp.4398-4408, 2001.

I. Schrauwen, S. Szelinger, A. L. Siniard, A. Kurdoglu, J. J. Corneveaux et al., A Frame-Shift Mutation in CAV1 Is Associated with a Severe Neonatal Progeroid and Lipodystrophy Syndrome, PLoS One, vol.10, 2015.

G. Schreiber, The molecular basis for differential type I interferon signaling, J. Biol. Chem, vol.292, pp.7285-7294, 2017.

G. Schreiber and J. Piehler, The molecular basis for functional plasticity in type I interferon signaling, Trends Immunol, vol.36, pp.139-149, 2015.

Y. Senju and S. Suetsugu, Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II, Bioarchitecture, vol.5, pp.70-77, 2015.

Y. Senju, Y. Itoh, K. Takano, S. Hamada, and S. Suetsugu, Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting, J. Cell Sci, vol.124, pp.2032-2040, 2011.

Y. Senju, E. Rosenbaum, C. Shah, S. Hamada-nakahara, Y. Itoh et al., Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane, J. Cell Sci, vol.128, pp.2766-2780, 2015.

A. N. Shajahan, Z. C. Dobbin, F. E. Hickman, S. Dakshanamurthy, C. et al., Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal Kinase, 2012.

, J. Biol. Chem, vol.287, pp.17682-17692

D. K. Sharma, A. Choudhury, R. D. Singh, C. L. Wheatley, D. L. Marks et al., Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling, J. Biol. Chem, vol.278, pp.7564-7572, 2003.

K. Shimoda, K. Kato, K. Aoki, T. Matsuda, . Miyamoto et al., Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function, Immunity, vol.13, pp.561-571, 2000.

E. Shvets, V. Bitsikas, G. Howard, C. G. Hansen, and B. J. Nichols, , 2015.

, Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids, Nat. Commun, vol.6, p.6867

P. D. Simoncic, A. Lee-loy, D. L. Barber, M. L. Tremblay, and C. J. Mcglade, , 2002.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, pp.569-572, 1997.

K. Simons and J. L. Sampaio, Membrane organization and lipid rafts, Cold Spring Harb. Perspect. Biol, vol.3, p.4697, 2011.

B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani et al., Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

K. S. Song, Z. Tang, S. Li, and M. P. Lisanti, Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homotypic caveolin-caveolin interactions, J. Biol. Chem, vol.272, pp.4398-4403, 1997.

S. Sonnino and A. Prinetti, Sphingolipids and membrane environments for caveolin, FEBS Lett, vol.583, pp.597-606, 2009.

G. Sowa, M. Pypaert, D. Fulton, and W. C. Sessa, The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.6511-6516, 2003.

R. Starr, T. A. Willson, E. M. Viney, L. J. Murray, J. R. Rayner et al., A family of cytokineinducible inhibitors of signalling, Nature, vol.387, pp.917-921, 1997.

M. Stoeber, I. K. Stoeck, C. Hänni, C. K. Bleck, G. Balistreri et al., Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin, EMBO J, vol.31, pp.2350-2364, 2012.

M. Stoeber, P. Schellenberger, C. A. Siebert, C. Leyrat, A. Helenius et al., Model for the architecture of caveolae based on a flexible, netlike assembly of Cavin1 and Caveolin discs, Proc. Natl. Acad. Sci. U. S. A, 2016.

E. Stoppani, S. Rossi, E. Meacci, F. Penna, P. Costelli et al., Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature, Biochim. Biophys. Acta, vol.1812, pp.468-479, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00670746

A. E. Trane, D. Pavlov, A. Sharma, U. Saqib, K. Lau et al., Deciphering the binding of Caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): Scaffolding subdomain identification, interaction modeling, and biological significance, J. Biol. Chem, vol.289, pp.13273-13283, 2014.

C. Trimmer, F. Sotgia, D. Whitaker-menezes, R. M. Balliet, G. Eaton et al., , 2011.

, Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts, Cancer Biol. Ther, vol.11, pp.383-394

R. Di-trolio, E. Simeone, G. Di-lorenzo, C. Buonerba, and P. A. Ascierto, The use of interferon in melanoma patients: a systematic review, Cytokine Growth Factor Rev, vol.26, pp.203-212, 2015.

A. Tsuyada, A. Chow, J. Wu, G. Somlo, P. Chu et al., CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells, Cancer Res, vol.72, pp.2768-2779, 2012.

D. Ungureanu, J. Wu, T. Pekkala, Y. Niranjan, C. Young et al., The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling, Nat. Struct. Mol. Biol, vol.18, pp.971-976, 2011.

G. Uze, G. Lutfalla, and I. Gresser, Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA, Cell, vol.60, pp.225-234, 1990.

E. Vasile, M. Simionescu, and N. Simionescu, Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ, J. Cell Biol, vol.96, pp.1677-1689, 1983.

L. Velazquez, K. E. Mogensen, G. Barbieri, M. Fellous, G. Uze et al., Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction, J. Biol. Chem, vol.270, pp.3327-3334, 1995.

A. V. Villarino, Y. Kanno, and J. J. Shea, Mechanisms and consequences of Jak -STAT signaling in the immune system, vol.18, 2017.

J. Vinten, M. Voldstedlund, H. Clausen, K. Christiansen, J. Carlsen et al., A 60-kDa protein abundant in adipocyte caveolae, Cell Tissue Res, vol.305, pp.99-106, 2001.

J. Vinten, A. H. Johnsen, P. Roepstorff, J. Harpoth, and J. Tranum-jensen, Identification of a major protein on the cytosolic face of caveolae, Biochim. Biophys. Acta, vol.1717, pp.34-40, 2005.

V. Vogel and M. P. Sheetz, Cell fate regulation by coupling mechanical 128 cycles to biochemical signaling pathways, Curr. Opin. Cell Biol, vol.21, pp.38-46, 2009.

D. Volonte, C. F. Mctiernan, M. Drab, M. Kasper, and F. Galbiati, Caveolin-1 and caveolin-3 form heterooligomeric complexes in atrial cardiac myocytes that are required for doxorubicin-induced apoptosis, Am. J. Physiol. Heart Circ. Physiol, vol.294, pp.392-401, 2008.

H. J. Wallweber, C. Tam, Y. Franke, M. A. Starovasnik, and P. J. Lupardus, Structural basis of recognition of interferon-alpha receptor by tyrosine kinase 2, Nat. Struct. Mol. Biol, vol.21, pp.443-448, 2014.

P. J. Walser, N. Ariotti, M. Howes, C. Ferguson, R. Webb et al., Constitutive formation of caveolae in a bacterium, Cell, vol.150, pp.752-763, 2012.

S. P. Wanaski, B. K. Ng, and M. Glaser, Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains, Biochemistry, vol.42, pp.42-56, 2003.

M. Way and R. G. Parton, M-caveolin, a muscle-specific caveolin-related protein, FEBS Lett, vol.376, pp.108-112, 1995.

V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand et al., Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies, J. Cell Biol, vol.137, pp.231-245, 1997.

N. A. De-weerd, S. A. Samarajiwa, and P. J. Hertzog, Type I interferon receptors: biochemistry and biological functions, J. Biol. Chem, vol.282, 2007.

S. C. Wei, L. Fattet, J. H. Tsai, Y. Guo, V. H. Pai et al., Matrix stiffness drives epithelialmesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway, Nat. Cell Biol, vol.17, pp.678-688, 2015.

Z. Wei, X. Zou, H. Wang, J. Lei, Y. Wu et al., The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolaeassociation, Biochem. Biophys. Res. Commun, vol.456, pp.750-756, 2015.

R. R. Weichselbaum, H. Ishwaran, T. Yoon, D. S. Nuyten, S. W. Baker et al., An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.18490-18495, 2008.

N. Weiss, H. Couchoux, C. Legrand, C. Berthier, B. Allard et al., Expression of the muscular dystrophy-associated caveolin-3(P104L) mutant in adult mouse skeletal muscle specifically alters the Ca(2+) channel function of the dihydropyridine receptor, Pflugers Arch, vol.457, pp.361-375, 2008.

A. F. Wilks, Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction, Proc. Natl. Acad. Sci. U. S. A, vol.86, pp.1603-1607, 1989.

A. F. Wilks, The JAK kinases: Not just another kinase drug discovery target, Semin. Cell Dev. Biol, vol.19, pp.319-328, 2008.

A. F. Wilks, A. G. Harpur, R. R. Kurban, S. J. Ralph, G. Zurcher et al., Two novel protein-tyrosine kinases, each with a second phosphotransferaserelated catalytic domain, define a new class of protein kinase, Mol. Cell. Biol, vol.11, pp.2057-2065, 1991.

T. M. Williams and M. P. Lisanti, Caveolin-1 in oncogenic transformation, cancer, and metastasis, Am. J. Physiol. Cell Physiol, vol.288, pp.494-506, 2005.

J. J. Williams, N. Alotaiq, W. Mullen, R. Burchmore, L. Liu et al., Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability, Nat. Commun, vol.9, p.168, 2018.

T. M. Williams, G. S. Hassan, J. Li, A. W. Cohen, F. Medina et al., Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice, J. Biol. Chem, vol.280, pp.25134-25145, 2005.

A. L. Willis, F. Sabeh, X. Y. Li, and S. J. Weiss, Extracellular matrix determinants and the regulation of cancer cell invasion stratagems, J. Microsc, vol.251, pp.250-260, 2013.

S. Wilmes, O. Beutel, Z. Li, V. Francois-newton, C. P. Richter et al., Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling, J. Cell Biol, vol.209, pp.579-593, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02070629

J. P. Winer, S. Oake, and P. A. Janmey, Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation, PLoS One, vol.4, 2009.

A. K. Witkiewicz, A. Dasgupta, F. Sotgia, I. Mercier, R. G. Pestell et al., An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers, Am. J. Pathol, vol.174, pp.2023-2034, 2009.

S. E. Woodman, A. W. Ashton, W. Schubert, H. Lee, T. M. Williams et al., Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli, Am. J. Pathol, vol.162, pp.2059-2068, 2003.

J. Wu, A. Lewis, and J. Grandi, Touch, Tension, and Transduction -the Function and Regulation of Piezo Ion Channels, vol.2, pp.147-185, 2017.

E. Yamada, The fine structure of the gall bladder epithelium of the mouse, J. Biophys. Biochem. Cytol, vol.1, pp.445-458, 1955.

M. Yamamoto, Y. Toya, C. Schwencke, M. P. Lisanti, M. G. Myers et al., Caveolin is an activator of insulin receptor signaling, J. Biol. Chem, vol.273, pp.26962-26968, 1998.

K. Yamaoka, P. Saharinen, M. Pesu, V. E. Holt, O. Silvennoinen et al., The Janus kinases (Jaks), 2004.

, Genome Biol, vol.5, p.253

J. Yang, D. Liao, C. Chen, Y. Liu, T. Chuang et al., Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway, Stem Cells, vol.31, pp.248-258, 2013.

L. Yang and S. Scarlata, Super-resolution visualization of caveola deformation in response to osmotic stress, J. Biol. Chem, vol.292, pp.3779-3788, 2017.

H. Yasukawa, H. Misawa, H. Sakamoto, M. Masuhara, A. Sasaki et al., The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop, EMBO J, vol.18, pp.1309-1320, 1999.

A. Yetter, S. Uddin, J. J. Krolewski, H. Jiao, T. Yi et al., , 1995.

, Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase, J. Biol. Chem, vol.270, pp.18179-18182

I. Yeow, G. Howard, J. Chadwick, C. Mendoza-topaz, C. G. Hansen et al., EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress, Curr. Biol, vol.27, pp.2951-2962, 2017.

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block et al., Transcription Against an Applied Force, vol.270, pp.1653-1657, 1995.

J. Yu, S. Bergaya, T. Murata, I. F. Alp, M. P. Bauer et al., Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels, J. Clin. Invest, vol.116, pp.1284-1291, 2006.

H. Zheng, J. Qian, B. Varghese, D. P. Baker, and S. Fuchs, Ligandstimulated downregulation of the alpha interferon receptor: role of protein kinase D2, Mol. Cell. Biol, vol.31, pp.710-720, 2011.

Z. Zhong, Z. Wen, and J. E. Darnell, Stat3 and Stat4: members of the family of signal transducers and activators of transcription, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.4806-4810, 1994.

, Life Technologies) supplemented with 10% FCS (Gibco, Life Technologies), 5 mM pyruvate (Gibco, Life Technologies) and 1% penicillin-streptomycin (Gibco, Life Technologies). MCF10A cells were grown in DMEM GlutaMAX (Gibco, Life Technologies) supplemented with 5% (v/v) horse serum; 20 ng/mL EGF; 100 ng/mL CTx; 0.01mg/mL human insulin; 500 ng/mL hydrochortisone. WT MLEC cells were cultured in Enothelial Balal Medium (EBM2) from Lonza supplemented with 15% Hyclone FCS, 4mM glutamine, All cells were grown at 37°C under 5% of CO2. HS578T, MDA-MB-231 cells were grown in DMEM GlutaMAX (Gibco

, 0.1% VEGF (v/v), 0.1% R3-IGF-1 (v/v), 0.1% ascorbic acid

R. Antibodies,

, T5168, 1/1000 for WB); mouse anti-chlatrin heavy chain (BD Transduction, 610500, 1/5000 for WB) rabbit anticaveolin-1 (Cell Signaling 3238S, 1/1000 for WB); mouse anti-caveolin-1 (BD Transduction, 610407, 10µg/condition for IP); mouse anti-STAT3 (Cell signaling, clone 124H6, 9139, 1/1000 for WB); rabbit anti-pSTAT3 (Cell signaling, clone D3A7 9145, 1/1000 for WB)

, 1/1000 for WB); rabbit anti-JAK1 (Cell Signaling, 3332S, 1/1000 for WB), mouse anti-pSTAT1 (Cell Signaling, vol.9167, p.10

, 40 mM dithiothreitol and 0.03% phenol red (w/v)). Lysates were analyzed by SDS-PAGE and Western blot analysis and immunoblotted with the indicated primary antibodies and horseradish peroxydase-conjugated secondary antibodies. Chemiluminescence signal was revealed using Pierce TM ECL Western Blotting Substrate

, References and recommended reading Papers of particular interest, published within the period of review, have been highlighted as: of special interest of outstanding interest

G. E. Palade, The fine structure of blood capillaries, J. Appl. Phys, vol.24, p.1424, 1953.

E. Yamada, The fine structure of the gall bladder epithelium of the mouse, J. Biophys. Biochem. Cytol, vol.1, pp.445-458, 1955.

K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney et al., Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

T. V. Kurzchalia, P. Dupree, R. G. Parton, R. Kellner, H. Virta et al., VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles, J. Cell Biol, vol.118, pp.1003-1014, 1992.

P. E. Scherer, T. Okamoto, M. Chun, I. Nishimoto, H. F. Lodish et al., Identification, sequence, and expression of caveolin-2 defines a caveolin gene family, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.131-135, 1996.

M. Way and R. G. Parton, M-caveolin, a muscle-specific caveolinrelated protein, FEBS Lett, vol.376, pp.108-112, 1995.

Z. Tang, P. E. Scherer, T. Okamoto, K. Song, C. Chu et al., Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle, J. Biol. Chem, vol.271, pp.2255-2261, 1996.

A. M. Fra, E. Williamson, K. Simons, and R. G. Parton, De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin

, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.8655-8659, 1995.

M. M. Hill, M. Bastiani, R. Luetterforst, M. Kirkham, A. Kirkham et al., PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function, Cell, vol.132, pp.113-124, 2008.

L. Liu, D. Brown, M. Mckee, N. K. Lebrasseur, D. Yang et al., Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance, Cell Metab, vol.8, pp.310-317, 2008.

C. Hansen, N. Bright, G. Howard, and B. J. Nichols, SDPR induces membrane curvature and functions in the formation of caveolae, Nat. Cell Biol, vol.11, pp.807-814, 2009.

K. Mcmahon, H. Zajicek, W. Li, M. J. Peyton, J. D. Minna et al., SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function, EMBO J, vol.28, pp.1001-1015, 2009.

M. Bastiani, L. Liu, M. M. Hill, M. P. Jedrychowski, S. J. Nixon et al., MURC/Cavin-4 and cavin family members form tissuespecific caveolar complexes, J. Cell Biol, vol.185, pp.1259-1273, 2009.

O. Kovtun, V. A. Tillu, W. Jung, N. Leneva, N. Ariotti et al., Structural Insights into the organization of the cavin membrane coat complex, Dev. Cell, vol.31, pp.405-419, 2014.

M. Stoeber, P. Schellenberger, C. A. Siebert, C. Leyrat, and A. Helenius, Grü newald K: Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.8069-8078, 2016.

, With Ref. [30], first description of the structural basis of the caveolar coat organization with 15 nm-wide circular Cav1 oligomers on each face of a dodecahedron

Z. Tang, T. Okamoto, P. Boontrakulpoontawee, T. Katada, A. J. Otsuka et al., Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes, J. Biol. Chem, vol.272, pp.2437-2445, 1997.

P. Walser, N. Ariotti, M. Howes, C. Ferguson, R. Webb et al., Constitutive formation of caveolae in a bacterium, vol.150, pp.752-763, 2012.

Y. Senju, Y. Itoh, K. Takano, S. Hamada, and S. Suetsugu, Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting, J. Cell Sci, vol.124, pp.2032-2040, 2011.

C. G. Hansen, G. Howard, and B. J. Nichols, Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis, J. Cell Sci, vol.124, pp.2777-2785, 2011.

P. Oh, D. P. Mcintosh, and J. E. Schnitzer, Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium, J. Cell Biol, vol.141, pp.101-114, 1998.

A. Ludwig, G. Howard, C. Mendoza-topaz, T. Deerinck, M. Mackey et al., Molecular composition and ultrastructure of the caveolar coat complex, PLoS Biol, vol.11, p.1001640, 2013.

M. Stoeber, I. K. Stoeck, C. Hä-nni, C. Bleck, G. Balistreri et al., Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin, EMBO J, vol.31, pp.2350-2364, 2012.

A. Hayer, M. Stoeber, C. Bissig, and A. Helenius, Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes, Traffic, vol.11, pp.361-382, 2010.

M. Murata, J. Perä-nen, R. Schreiner, F. Wieland, T. V. Kurzchalia et al., VIP21/caveolin is a cholesterol-binding protein, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.10339-10343, 1995.

C. Thiele, M. J. Hannah, F. Fahrenholz, and W. B. Huttner, Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles, Nat. Cell Biol, vol.2, pp.42-49, 2000.

R. M. Epand, B. G. Sayer, and R. F. Epand, Caveolin scaffolding region and cholesterol-rich domains in membranes, J. Mol. Biol, vol.345, pp.339-350, 2005.

S. Sonnino and A. Prinetti, Sphingolipids and membrane environments for caveolin, FEBS Lett, vol.583, pp.597-606, 2009.

R. Burgener, M. Wolf, T. Ganz, and M. Baggiolini, Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets, Biochem. J, vol.269, pp.729-734, 1990.

Y. Gambin, N. Ariotti, K. Mcmahon, M. Bastiani, E. Sierecki et al., Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae, vol.3, p.1434, 2014.

A. Ludwig, B. J. Nichols, and S. Sandin, Architecture of the caveolar coat complex. J. Cell Sci, vol.129, pp.3077-3083, 2016.

, 3D cryo-electron microscopy study that first describes

L. Pelkmans and M. Zerial, Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae, Nature, vol.436, pp.128-133, 2005.

J. Cheng and B. J. Nichols, Caveolae: one function or many?, Trends Cell. Biol, vol.26, pp.177-189, 2016.

K. Simons and D. Toomre, Lipid rafts and signal transduction, Nat. Rev. Mol. Cell Biol, vol.1, pp.31-39, 2000.

G. García-cardeñ-a, P. Martasek, B. S. Masters, P. M. Skidd, J. Couet et al., Dissecting the interaction between nitric oxide synthase (NOS) and caveolin:Functional significance of the nos caveolin binding domain in vivo, J. Biol. Chem, vol.272, pp.25437-25440, 1997.

F. H. Nystrom, H. Chen, L. N. Cong, Y. Li, and M. J. Quon, Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells, Mol. Endocrinol, vol.13, pp.2013-2024, 1999.

J. Couet, M. Sargiacomo, and M. P. Lisanti, Interaction of a receptor tyrosine kinase, EGF-R, with caveolins:Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities, J. Biol. Chem, vol.272, pp.30429-30438, 1997.

R. Strippoli, J. Loureiro, V. Moreno, I. Benedicto, M. L. Pé-rez et al., This study shows that epithelial-mesenchymal transition and fibrosis induced through chronic exposure to hypotonic shock during repeated peritoneal dialysis are more pronounced in CAV1 À/À mice, EMBO Mol. Med, vol.7, pp.102-123, 2015.

V. Gangadharan, A. Nohe, J. Caplan, K. Czymmek, and R. L. Duncan, Caveolin-1 regulates P2 Â 7 receptor signaling in osteoblasts, Am. J. Physiol. Cell Physiol, vol.308, pp.41-50, 2015.

S. Li, J. Couet, and M. P. Lisanti, Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin, J. Biol. Chem, vol.271, pp.29182-29190, 1996.

K. S. Song, S. Li, T. Okamoto, L. A. Quilliam, M. Sargiacomo et al., Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains, J. Biol. Chem, vol.271, pp.9690-9697, 1996.

J. Taira, M. Sugishima, Y. Kida, O. E. Noguchi, M. Higashimoto et al., Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1, Biochemistry, vol.50, pp.6824-6831, 2011.

R. G. Parton and K. Simons, The multiple faces of caveolae, Nat. Rev. Mol. Cell Biol, vol.8, pp.185-194, 2007.

S. Li, T. Okamoto, M. Chun, M. Sargiacomo, J. E. Casanova et al., Evidence for a regulated interaction between heterotrimeric G proteins and caveolin, J. Biol. Chem, vol.270, pp.15693-15701, 1995.

P. N. Bernatchez, P. M. Bauer, J. Yu, J. S. Prendergast, P. He et al., Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.761-766, 2005.

A. E. Trane, D. Pavlov, A. Sharma, U. Saqib, K. Lau et al., Deciphering the binding of Caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance, J. Biol. Chem, vol.289, pp.13273-13283, 2014.

P. Bernatchez, A. Sharma, P. M. Bauer, E. Marin, and W. C. Sessa, A noninhbitory mutant of the caveolin1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice, J. Clin. Invest, vol.121, pp.3747-3755, 2011.

B. M. Collins, M. J. Davis, J. F. Hancock, and R. G. Parton, Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions?, Dev. Cell, vol.23, pp.11-20, 2012.

D. P. Byrne, C. Dart, and D. J. Rigden, Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif, PLoS One, vol.7, p.44879, 2012.

M. Kirkham, S. J. Nixon, M. T. Howes, L. Abi-rached, D. E. Wakeham et al., Evolutionary analysis and molecular dissection of caveola biogenesis, J. Cell Sci, vol.121, pp.2075-2086, 2008.

H. Liu, L. Yang, Q. Zhang, L. Mao, H. Jiang et al., By performing molecular dynamic simulation, this study provides new clues on Cav1 plasma membrane embedding through 82-> 136 amino acids, It opens new possibilities for Cav1 CSD accessibility and interaction with signaling effectors, vol.45, pp.511-521, 2016.

B. Sinha, D. Kö-ster, R. Ruez, P. Gonnord, M. Bastiani et al., Cells respond to mechanical stress by rapid disassembly of caveolae, Cell, vol.144, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

N. Ariotti, R. J. Leneva, N. Ferguson, C. Loo, D. Okano et al., Molecular characterization of caveolin-induced membrane curvature, J. Biol. Chem, vol.290, pp.24875-24890, 2015.

A. N. Shajahan, Z. C. Dobbin, F. E. Hickman, S. Dakshanamurthy, and R. Clarke, Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and Undressing the caveolar coat Lamaze et

, www.sciencedirect.com Current Opinion in Cell Biology, vol.47, pp.117-125, 2017.

, BCLxL proteins via c-Jun N-terminal kinase (JNK), J. Biol. Chem, vol.287, pp.17682-17692, 2012.

B. Joshi, M. Bastiani, S. S. Strugnell, C. Boscher, R. G. Parton et al., Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation, J. Cell Biol, vol.199, pp.425-435, 2012.

A. Echarri, D. Pozo, and M. A. , Caveolae-mechanosensitive membrane invaginations linked to actin filaments, J. Cell Sci, vol.128, pp.2747-2758, 2015.

C. M. Blouin, Y. Hamon, P. Gonnord, C. Boularan, J. Kagan et al., Glycosylation-dependent IFN-gR partitioning in lipid and actin nanodomains is critical for JAK activation, Cell, vol.166, pp.920-934, 2016.

P. Nassoy and C. Lamaze, Stressing caveolae new role in cell mechanics, Trends Cell. Biol, vol.22, pp.381-389, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00821324

O. L. Gervasio, W. D. Phillips, L. Cole, and D. G. Allen, Caveolae respond to cell stretch and contribute to stretch-induced signaling, J. Cell Sci, vol.124, pp.3581-3590, 2011.

N. Ariotti, M. A. Ferná-ndez-rojo, Y. Zhou, M. M. Hill, T. L. Rodkey et al., The core structural domain of Cav1 inserted in membrane and necessary for caveolae formation is defined from a bacterial expression system, J. Cell Biol, vol.204, pp.777-792, 2014.

T. Fujimoto, Calcium pump of the plasma membrane is localized in caveolae, J. Cell Biol, vol.120, pp.1147-1157, 1993.

Y. Guo, L. Yang, K. Haught, and S. Scarlata, Osmotic stress reduces Ca 2+ signals through deformation of caveolae, J. Biol. Chem, vol.290, pp.16698-16707, 2015.

P. Gonnord, C. M. Blouin, and C. Lamaze, Membrane trafficking and signaling: two sides of the same coin, Semin. Cell Dev. Biol, vol.23, pp.154-164, 2012.

P. Totta, F. Gionfra, C. Busonero, and F. Acconcia, Modulation of 17b-estradiol signaling on cellular proliferation by caveolin-2, J. Cell Physiol, vol.231, pp.1219-1225, 2016.

H. Kwon, K. Jeong, E. M. Hwang, J. Park, S. Hong et al., Caveolin-2 regulation of STAT3 transcriptional activation in response to insulin, Biochim. Biophys. Acta, vol.1793, pp.1325-1333, 2009.

H. Kwon and Y. Pak, Prolonged tyrosine kinase activation of insulin receptor by pY27-caveolin-2, Biochem. Biophys. Res. Commun, vol.391, pp.49-55, 2010.

H. Kwon, J. Lee, K. Jeong, D. Jang, and Y. Pak, Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation, Biochim. Biophys. Acta Mol. Cell Res, vol.1853, pp.1022-1034, 2015.

H. Kwon, K. Jeong, E. M. Hwang, J. Y. Park, and Y. Pak, A novel domain of caveolin-2 that controls nuclear targeting: regulation of insulin-specific ERK activation and nuclear translocation by caveolin-2, J. Cell Mol. Med, vol.15, pp.888-908, 2011.

H. Moon, C. S. Lee, K. L. Inder, S. Sharma, E. Choi et al., PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer, Oncogene, vol.33, pp.3561-3570, 2013.

Q. Li, L. Bai, N. Liu, M. Wang, J. P. Liu et al., Increased polymerase I and transcript release factor (Cavin-1) expression attenuates platelet-derived growth factor receptor signalling in senescent human fibroblasts, Clin. Exp. Pharmacol. Physiol, vol.41, pp.169-173, 2014.

V. J. Hernandez, J. Weng, P. Ly, S. Pompey, H. Dong et al., Cavin-3 dictates the balance between ERK and Akt signaling, Elife, pp.1-26, 2013.

J. Mohan, R. Moré, N. B. Larsson, E. Holst, M. R. Lundmark et al., Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae, J. Cell Sci, vol.128, pp.979-991, 2015.

C. G. Hansen, E. Shvets, G. Howard, K. Riento, and B. J. Nichols, Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae, Nat. Commun, vol.4, p.1831, 2013.

N. Ariotti and R. G. Parton, SnapShot: Caveolae, Caveolins, and Cavins, Cell, pp.154-704, 2013.

J. G. Goetz, P. Lajoie, S. M. Wiseman, and I. R. Nabi, Caveolin-1 in tumor progression: the good, the bad and the ugly, Cancer Metastasis Rev, vol.27, pp.715-735, 2008.

N. C. Merrillees, The fine structure of muscle spindles in the lumbrical muscles of the rat, J. Biophys. Biochem. Cytol, vol.7, pp.725-742, 1960.

P. E. Scherer, M. P. Lisanti, G. Baldini, M. Sargiacomo, C. C. Mastick et al., Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles, J. Cell Biol, vol.127, pp.1233-1243, 1994.

B. Razani, T. P. Combs, X. B. Wang, P. G. Frank, D. S. Park et al., Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities, J. Biol. Chem, vol.277, pp.8635-8647, 2002.

C. A. Kim, M. Delé-pine, E. Boutet, E. Mourabit, H. et al., Association of a homozygous nonsense caveolin-1 mutation with berardinelliseip congenital lipodystrophy, J. Clin. Endocrinol. Metab, vol.93, pp.1129-1134, 2008.

Y. K. Hayashi, C. Matsuda, M. Ogawa, K. Goto, K. Tominaga et al., Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy, J. Clin. Invest, vol.119, pp.2623-2633, 2009.

H. Cao, L. Alston, J. Ruschman, and R. A. Hegele, Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia, Lipids Heal. Dis, vol.7, p.3, 2008.

I. Schrauwen, S. Szelinger, A. L. Siniard, A. Kurdoglu, J. J. Corneveaux et al., :e0131797. The second human heterozygous mutation described for CAV1 leading to partial loss of Cav1 and caveolae, PLoS One, vol.10, 2015.

A. Ardissone, C. Bragato, L. Caffi, F. Blasevich, S. Maestrini et al., Novel PTRF mutation in a child with mild myopathy and very mild congenital lipodystrophy, BMC Med. Genet, vol.14, p.89, 2013.

S. Ding, M. Lee, R. Summer, L. Liu, S. K. Fried et al., Pleiotropic effects of cavin-1 deficiency on lipid metabolism, J. Biol. Chem, vol.289, pp.8473-8483, 2014.

C. M. Blouin, L. Lay, S. Lasnier, F. Dugail, I. Hajduch et al., Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes, Biochem. Biophys. Res. Commun, vol.376, pp.331-335, 2008.

L. Lay, S. Hajduch, E. Lindsay, M. R. , L. Liè-pvre et al., Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis, Traffic, vol.7, pp.549-561, 2006.

C. M. Blouin, L. Lay, S. Eberl, A. A. Kö-feler, H. C. Guerrera et al., Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects, J. Lipid Res, vol.51, pp.945-956, 2010.

M. Drab, P. Verkade, M. Elger, M. Kasper, M. Lohn et al., Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice, Science, vol.293, pp.2449-2452, 2001.

B. Razani, J. A. Engelman, X. B. Wang, W. Schubert, X. L. Zhang et al., Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities, J. Biol. Chem, vol.276, pp.38121-38138, 2001.

M. S. Karbalaei, C. Rippe, S. Albinsson, M. Ekman, A. Mansten et al., Swä rd K: Impaired contractility and detrusor hypertrophy in cavin-1-deficient mice, Eur. J. Pharmacol, vol.689, pp.179-185, 2012.

M. Bucci, J. P. Gratton, R. D. Rudic, L. Acevedo, F. Roviezzo et al., In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation, Nat. Med, vol.6, pp.1362-1367, 2000.

M. Isshiki and R. Anderson, Function of caveolae in Ca 2+ entry and Ca 2+ -dependent signal transduction, Traffic, vol.4, pp.717-723, 2003.

B. Razani, X. B. Wang, J. A. Engelman, M. Battista, G. Lagaud et al., Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae, Mol. Cell Biol, vol.22, pp.2329-2344, 2002.

J. Yu, S. Bergaya, T. Murata, I. F. Alp, M. P. Bauer et al., Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels, J. Clin. Invest, vol.116, pp.1284-1291, 2006.

E. Gazzerro, F. Sotgia, C. Bruno, M. P. Lisanti, and C. Minetti, Caveolinopathies: from the biology of caveolin-3 to human diseases, Eur. J. Hum. Genet, vol.18, pp.137-145, 2010.

F. Galbiati, J. A. Engelman, D. Volonte, X. L. Zhang, C. Minetti et al., Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and Ttubule abnormalities, J. Biol. Chem, vol.276, pp.21425-21433, 2001.

N. Weiss, H. Couchoux, C. Legrand, C. Berthier, B. Allard et al., Expression of the muscular dystrophyassociated caveolin-3 P104L mutant in adult mouse skeletal muscle specifically alters the Ca 2+ channel function of the dihydropyridine receptor, Eur. J. Physiol, vol.457, pp.361-375, 2008.

E. Stoppani, S. Rossi, E. Meacci, F. Penna, P. Costelli et al., Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature, Biochim. Biophys. Acta, vol.1812, pp.468-479, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00670746

C. Capanni, P. Sabatelli, E. Mattioli, A. Ognibene, M. Columbaro et al., Dysferlin in a hyperCKaemic patient with caveolin 3 mutation and in C2C12 cells after p38 MAP kinase inhibition, Exp. Mol. Med, vol.35, pp.538-544, 2003.

D. J. Hernandez-deviez, Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3, Hum. Mol. Genet, vol.15, pp.129-142, 2005.

H. P. Lo, S. J. Nixon, T. E. Hall, B. S. Cowling, C. Ferguson et al., The caveolin-Cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle, J. Cell Biol, vol.210, pp.833-849, 2015.

, This paper shows that expression of a dominant active disease-associated Cav3 mutant in zebrafish embryo leads to compromised muscle plasma membrane integrity after intense muscular activity

K. Savage, S. Leung, S. K. Todd, L. A. Brown, R. L. Jones et al., Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis, Breast Cancer Res. Treat, vol.110, pp.245-256, 2008.

S. Sugie, S. Mukai, K. Yamasaki, T. Kamibeppu, H. Tsukino et al., Significant Association of Caveolin-1 and Caveolin-2 with Prostate Cancer Progression, Cancer Genom. Proteomics, vol.12, pp.391-396, 2015.

L. Bai, X. Deng, Q. Li, M. Wang, W. An et al., Down-regulation of the cavin family proteins in breast cancer, J. Cell Biochem, vol.113, pp.322-328, 2012.

Z. D. Nassar, M. M. Hill, R. G. Parton, and M. Parat, Caveola-forming proteins caveolin-1 and PTRF in prostate cancer, Nat. Rev. Urol, vol.10, pp.529-536, 2013.

C. Lamaze and S. Torrino, Caveolae and cancer: a new mechanical perspective, Biomed. J, vol.38, p.367, 2015.

E. D. Austin, L. Ma, C. Leduc, E. Berman-rosenzweig, A. Borczuk et al., Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension, Circ. Cardiovasc. Genet, vol.5, pp.336-343, 2012.

P. G. Frank, Genetic ablation of caveolin-1 confers protection against atherosclerosis, Arterioscler. Thromb. Vasc. Biol, vol.24, pp.98-105, 2004.

G. Whiteley, R. F. Collins, and A. Kitmitto, Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor, J. Biol. Chem, vol.287, pp.40302-40316, 2012.

D. Li, L. Shao, B. Chen, X. Zhang, M. Zhang et al., First super-resolution imaging of Cav1 in living cells by nonlinear structured illumination microscopy revealing Cav1 ring-like structures in addition to, Science, vol.349, issue.3500, 2015.

J. Cheng, C. Mendoza-topaz, G. Howard, J. Chadwick, E. Shvets et al., This study suggests that mechanoprotection may occurin vivo through caveolae flattening as mice lacking CAV1 exhibit increased plasma membrane damages in cardiac and lung endothelial cells, J. Cell Biol, vol.211, pp.53-61, 2015.

S. Goedicke-fritz, A. Kaistha, M. Kacik, S. Markert, A. Hofmeister et al., Evidence for functional and dynamic microcompartmentation of Cav-1/ TRPV4/KCa in caveolae of endothelial cells, Eur. J. Cell Biol, vol.94, pp.391-400, 2015.

Y. Guo, L. Yang, K. Haught, and S. Scarlata, Osmotic stress reduces Ca 2+ signals through deformation of caveolae, J. Biol. Chem, vol.290, pp.16698-16707, 2015.

F. Kai, H. Laklai, and V. M. Weaver, Force matters: biomechanical regulation of cell invasion and migration in disease, Trends Cell. Biol, vol.26, pp.486-497, 2016.

, www.sciencedirect.com Current Opinion in Cell Biology, vol.47, pp.117-125, 2017.

, Cells were seeded at clonal density, and individual myogenic clones were isolated. For caveolin-3 expression, immortalized WT and P28L myoblasts were transduced with lentiviral vectors expressing WT caveolin-3 and a GFP reporter gene

, All cells were grown at 37°C under 5% of CO 2 . All myoblasts cell lines were cultured in Skeletal Muscle Cell Growth Medium (Promocell) supplemented with 20% FCS (Gibco, Life technologies), 50 µg/mL of fetuine, 10 ng/mL of epidermal growth factor, 1 ng/mL basic fibroblast growth factor, vol.10

, Prior to any cell seeding, surfaces (well, coverslip, patterned coverslips) are coated with 0.01% of matrigel

, For myoblast differentiation, confluent cells (80-100% confluency) are put in DMEM high-glucose Glutamax (Gibco, Life Technologies)

R. Antibodies, Mouse anti-?Tubulin (Sigma-Aldrich, clone B512, T5168, 1/1000 for WB); mouse anti-caveolin-3 (Santa Cruz, clone A3, sc-5310, 1/1000 for WB, 1/250 for IF)

, for IF); goat anti-GM130 (Santa Cruz, clone P-20, sc-16268, 1/50 for IF), vol.mouse anti

, MF20 (kind gift of Vincent Mouly, 1/100 for WB, 1/20 for IF); mouse anti-STAT3 (Cell Signaling, clone 124H6, 9139, 1/1000 for WB)

, Secondary antibodies conjugated to

A. Fitc and . Cy3, Cy5 or horseradish peroxidase

, HiPerFect (Qiagen) according to the manufacturer's instructions at days 0 and 2 of differentiation and were cultured in differentiation medium for a total of 4 days. Experiments were performed on validation of silencing efficiency by immunoblot analysis using specific antibodies and normalizing to the total level of tubulin used as loading controls. 20 nM of a pool of four siRNA targeting Cav3 were used (SI03068730, SI02625665, SI02625658 and SI00146188, QIAGEN), Control siRNA (1022076, QIAGEN) was used at the same concentration and served as reference point, RNA interference-mediated silencing. Myoblasts were transfected with small interfering RNAs (siRNAs) using

. Immunoblotting, Cells were lysed in sample buffer (62.5 mM Tris/HCl pH 6, vol.0, p.2

. Sds, Lysates were analyzed by SDS-PAGE and Western blot analysis and immunoblotted with the indicated primary antibodies and horseradish peroxidase-conjugated secondary antibodies. Chemiluminescence signal was revealed using Pierce? ECL Western Blotting Substrate

, Acquisition and quantification were performed with the ChemiDoc MP Imaging System

, For Cav3, Cav1, MF-20, GM130 staining, cells are fixed with 4% PFA (v/v) (Sigma-Aldrich) for 10 min at RT, quenched in 50 mM NH 4 Cl and then permeabilized with 0.2% BSA (v/v) and 0.05% saponin (v/v), Immunofluorescence. Myoblasts were grown and differentiated on coverslips for 4 days

, Cells are incubated sequentially with indicated primary and fluorescence-conjugated RT. In both protocols, coverslips are mounted in Fluoromount-G mounting medium (eBioscience) supplemented with 2 µg/mL of DAPI (Sigma-Aldrich). Acquisition of images are done using a spinning disk microscope (inverted Spinning Disk Confocal Roper/Nikon; Camera: CCD 1392x1040 CoolSnap HQ2

, Epon embedding was used to preserve the integrity of cell structures. Myotubes were fixed sequentially for 1 h at room temperature with 1.25% glutaraldehyde in 0.1 M Na-Cacodylate and then overnight at 4°C

G. E. Palade, The fine structure of blood capillaries, J. Appl. Phys, vol.24, p.1424, 1953.

E. Yamada, The fine structure of the gall bladder epithelium of the mouse, J. Biophys. Biochem. Cytol, vol.1, pp.117-122, 1955.

N. Aboulaich, J. P. Vainonen, P. Stralfors, and A. V. Vener, Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes, Biochem. J, vol.383, pp.237-248, 2004.

C. G. Hansen, G. Howard, and B. J. Nichols, Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis, J. Cell Sci, vol.124, pp.2777-2785, 2011.

M. M. Hill, PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function, Cell, vol.132, pp.113-124, 2008.

B. Morén, EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization, Mol. Biol. Cell, vol.23, pp.1316-1329, 2012.

K. G. Rothberg, Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

P. E. Scherer, Identification, sequence, and expression of caveolin-2 defines a caveolin gene family, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.131-135, 1996.

M. Way and G. Parton, M-caveolin, a muscle-specific caveolin-related protein, FEBS Lett, vol.376, pp.108-112, 1995.

M. Tagawa, MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis, Am. J. Physiol. Cell Physiol, vol.295, pp.490-498, 2008.

C. Minetti, Impairment of Caveolae Formation and T-System Disorganization in Human Muscular Dystrophy with Caveolin-3 Deficiency, Am. J. Pathol, vol.160, pp.265-270, 2002.

J. P. Cheng, B. J. Nichols, and . Caveolae, One Function or Many?, Trends Cell Biol, vol.26, pp.177-189, 2016.

C. Lamaze, N. Tardif, M. Dewulf, S. Vassilopoulos, and M. C. Blouin, The caveolae dress code: structure and signaling, Curr. Opin. Cell Biol, vol.47, pp.117-125, 2017.

B. Sinha, Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae, Cell, vol.144, pp.402-413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00821331

J. P. Cheng, Caveolae protect endothelial cells from membrane rupture during increased cardiac output, J. Cell Biol, vol.211, pp.53-61, 2015.

H. P. Lo, The caveolin-Cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle, J. Cell Biol, vol.210, pp.833-849, 2015.

J. Garcia, Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord, Curr. Biol, vol.27, 1982.

Y. Lim, Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development, Curr. Biol, vol.27, 1968.

L. Lay, S. Kurzchalia, and T. V. , Getting rid of caveolins: Phenotypes of caveolindeficient animals, Biochim. Biophys. Acta, vol.1746, pp.322-333, 2005.

C. Minetti, Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy, Nat. Genet, vol.18, pp.365-368, 1998.

I. Carbone, Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia, Neurology, vol.54, pp.1373-1376, 2000.

R. C. Betz, Mutation in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease, Nat. Genet, vol.28, pp.218-219, 2001.

M. Tateyama, Mutation in the caveolin-3 gene causes a peculiar form of distal myopathy, Neurology, vol.58, pp.323-325, 2002.

L. Merlini, Familial isolated hyperCKaemia associated with a new mutation in the caveolin-3 (CAV-3) gene, J. Neurol. Neurosurg. Psychiatry, vol.73, pp.65-67, 2002.

F. Sotgia, Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease, Am. J. Physiol. Cell Physiol, vol.285, pp.1150-1160, 2003.

E. Brauers, Differential effects of myopathy-associated caveolin-3 mutants on growth factor signaling, Am. J. Pathol, vol.177, pp.261-270, 2010.

D. J. Hernandez-deviez, Caveolin regulates endocytosis of the muscle repair protein, dysferlin, J. Biol. Chem, vol.283, pp.6476-6488, 2008.

C. Cai, Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin, J. Biol. Chem, vol.284, pp.15894-15902, 2009.

M. T. Tierney, STAT3 signaling controls satellite cell expansion and skeletal muscle repair, Nat. Med, vol.20, pp.1182-1186, 2014.

F. D. Price, Inhibition of JAK-STAT signaling stimulates adult satellite cell function, Nat. Med, vol.20, pp.1174-1181, 2014.

A. Bonetto, STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia, PLoS One, vol.6, p.22538, 2011.

K. Podar, Essential role of caveolae in interleukin-6-and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells, J. Biol. Chem, vol.278, pp.5794-5801, 2003.

P. C. Heinrich, Principles of interleukin (IL)-6-type cytokine signalling and its regulation, Biochem. J, vol.374, pp.1-20, 2003.

D. E. Levy and C. K. Lee, What does Stat3 do?, J. Clin. Invest, vol.109, pp.1143-1148, 2002.

P. Nassoy and C. Lamaze, Stressing caveolae new role in cell mechanics, Trends Cell Biol, vol.22, pp.381-389, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00821324

Y. W. Lim, Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development, Curr. Biol, vol.27, 1968.

L. Prescott and M. W. Brightman, The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations, Tissue Cell, vol.8, pp.241-258, 1976.

A. F. Dulhunty and C. Franzini-armstrong, The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths, J. Physiol, vol.250, pp.513-552, 1975.

E. Gazzerro, F. Sotgia, C. Bruno, M. P. Lisanti, and C. Minetti, Caveolinopathies: from the biology of caveolin-3 to human diseases, Eur. J. Hum. Genet, vol.18, pp.137-145, 2010.

N. Weiss, Expression of the muscular dystrophy-associated caveolin-3P104L mutant in adult mouse skeletal muscle specifically alters the Ca 2+ channel function of the dihydropyridine receptor, Eur. J. Physiol, vol.457, pp.361-375, 2008.

K. Fecchi, D. Volonte, M. P. Hezel, K. Schmeck, and F. Galbiati, Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells, FASEB J, vol.20, pp.705-707, 2006.

P. Muñoz-cánoves, C. Scheele, B. K. Pedersen, and A. L. Serrano, Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword?, FEBS J, vol.280, pp.4131-4148, 2013.

K. Ostrowski, T. Rohde, M. Zacho, S. Asp, and B. Pedersen, Evidence that IL-6 is produced in skeletal muscle during intense long-term muscle activity, J. Physiol, vol.508, pp.949-953, 1998.

B. Bjerregard, I. Ziomkiewicz, A. Schulz, and L. Larsson, Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin, Cell Tissue Res, vol.357, pp.355-362, 2014.

F. Galbiati, Caveolin-3 Null Mice Show a Loss of Caveolae, Changes in the Microdomain Distribution of the Dystrophin-Glycoprotein Complex, and Ttubule Abnormalities, J. Biol. Chem, vol.276, pp.21425-21433, 2001.

K. S. Song, Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells: Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins, J. Biol. Chem, vol.271, pp.15160-15165, 1996.

D. J. Hernández-deviez, Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3, Hum. Mol. Genet, vol.15, pp.129-142, 2006.

K. Mamchaoui, Skeletal Muscle Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders, Skelet. Muscle, vol.1, p.34, 2011.

N. Carpi, M. Piel, A. Azioune, and J. Fink, Micropatterning on glass with deep UV, Protoc. Exch, 2011.

W. T. Micropatterned, Representative pictures were taken at the indicated times during hypoosmotic shock. Arrows correspond to myotubes and asterisks correspond to burst myotubes. (d, f) Quantification of the percentage of burst myotubes (upper panel) and mean time of bursting in minutes (lower panel) in (c) and (e), respectively. (a, b) Scale bar = 5 µm. (c, e) Scale bar = 120 µm, Reproducibility of experiments: (a) Representative pictures and quantifications from 7 independent experiments (WT n=20, P28L n=23 and R26Q n=22) (b) Representative pictures and quantifications from, vol.7

, Representative data of 3 independent experiments quantified in (d) (% burst cells: WT n=310, P28L n=299 and R26Q n=271; mean time of bursting: WT n=165, P28L in (f) (% burst cells: siCtl n=749 and siCav3 n=569; mean time of bursting: siCtl n=171 and siCav3 n=506). Mean value ± SD. (a, b) Statistical analyses were done using Kurskal-Wallis test

*. P<0, , p.5

, Tubulin serves as a loading control. (b) Quantification of STAT3 activation of (a), corresponding to the ratio pSTAT3 on STAT3 total levels after normalization to tubulin levels. (c) Confocal microscopy of immunofluorescent pSTAT3 in WT, Cav3 P28L and Cav3 R26Q myotubes stimulated or not for 15 min with 10 ng/mL IL6. White dashed lines outline nucleus boundaries (d) Quantification of pSTAT3 nuclear translocation in (c) corresponding to nuclei/cytoplasm mean intensity ratio of pSTAT3. (e) Immunoblot analysis of pSTAT3 levels in WT ctl (siCtl), and Cav3 R26Q myotubes. (a) Immunoblot analysis of pSTAT3 and STAT3 levels in WT, Cav3 P28L and Cav3 R26Q myotubes stimulated for the indicated times with 10 ng/mL IL6

, Expression of STAT3 related genes: from left to right SOCS3, MYH8, ACTC1 and ACTN2 in WT, Cav3 P28L or Cav3 R26Q myotubes. (c) Scale bar = 10 µm. Reproducibility of loaded with calcein-AM (green). The medium was switched with a 30 mOsm medium supplemented with propidium iodide (PI, red), ng/mL IL6. (f) Quantification of STAT3 activation in (e), corresponding to the ratio pSTAT3 on STAT3 total level after normalization with tubulin level. (g)

, Confocal microscopy of immunofluorescent pSTAT3 in Cav3 P28L GFP or P28L

, Cav3-GFP transduced myotubes stimulated or not for 15 min with 10 ng/mL IL6

, White dashed lines outline nucleus boundaries (g) Quantification of pSTAT3 nuclear translocation in (f) corresponding to nuclei/cytoplasm mean intensity ratio of pSTAT3. (a) Scale bar = 10 µm. (b) Scale bar = 200 nm

, Reproducibility of experiments: (a) Representative pictures of 3 experiments. (b) Representative pictures quantified in (c) (number of analyzed regions: P28L GFP = 169, P28L Cav3-GFP = 182

, % burst cells: GFP n=353 and Cav3-GFP n=358; time of burst: GFP n=175 and Cav3-GFP n=65). (f) Show representative data of 3 experiments quantified in (g) (control: GFP n=33 and Cav3-GFP n=42; 15 min: GFP n=14 and Cav3-GFP n=13), Mean value ± SEM. (c), (e) and (g) Statistical analysis

. **-p<0, , p.1

*. P<0,